A novel frozen product and method for making same are disclosed, wherein a beaded frozen product is intermixed with conventional ice cream. In this regard, the beaded ice cream (or other frozen product) may be intermixed with soft-serve ice cream on an individual serving basis, or may be intermixed with ice cream manufactured on a large scale production (e.g., packaged with ice cream conventionally sold in grocery stores). With regard to individual servings, beads of ice cream may be injected at a dispensing nozzle of a machine for dispensing soft-serve ice cream. Alternatively, the beaded ice cream may be introduced into a reservoir of soft-serve ice cream. Alternatively, the beaded ice cream may be introduced into a reservoir of soft-serve ice cream and intermixed through a stirring or agitation process. With regard to packaged ice cream, such as that purchased in grocery stores, beaded ice cream may be introduced into a conventional ice cream mix at a stage in the process where the non-beaded ice cream is still flowable such that the beaded ice cream may be stirred or agitated to mix and disperse relatively evenly throughout the ice-cream product. Upon final freezing, the beads of ice cream, which retain their beaded form, will be intermixed and suspended throughout the ice-cream product.
FIG. 3

SUPPLY OF BEADED FROZEN PRODUCT
SUPPLY OF BEADED FROZEN PRODUCT

FIG. 4
Prepare Beaded Frozen Product

Perform early processing stages of ice cream manufacture

Deliver flowable ice cream product into container

Introduce beaded frozen product into container with flowable ice cream

Stir, agitate, or otherwise intermix the beaded frozen product throughout

Further freeze combined, intermixed product

FIG. 5
102 Prepare Beaded Frozen Product

104 Perform early processing stages of ice cream manufacture

206 Deliver beaded ice cream into stream of conventional ice cream as product flows through barrel freezer (beaded ice cream may be introduced via conventional fruit or nut feeder).

110 Stir, agitate, or otherwise intermix the beaded frozen product throughout

112 Further freeze combined, intermixed product

End
Start

302

Prepare Beaded Frozen Product

304

Ship Beaded Frozen Product to Dispensing Location

306

Introduce Beaded Frozen Product into Dispensing Nozzle of Soft-Serve Ice Cream

308

Dispense Combined Ice-Cream Product

End

FIG. 7
Start

402

Prepare Beaded Frozen Product

404

Ship Beaded Frozen Product to Dispensing Location

406

Introduce Beaded Frozen Product into Reservoir of Soft-Serve Ice-Cream Machine

408

Stir, agitate, or otherwise intermix the beaded frozen product and Ice Cream, in the reservoir

508

Dispense Combined Ice-Cream Product

End

FIG. 8
NOVELTY FROZEN PRODUCT AND APPARATUS AND METHOD FOR MAKING SAME

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Utility patent application Ser. No. 10/326,253, which was filed on Dec. 19, 2002. That application in turn claims priority to U.S. Provisional Patent Application No. 60/344,006, which was filed on Dec. 27, 2001.

FIELD OF THE INVENTION

[0002] The present invention relates generally to ice cream products and their methods of preparation, and more particularly to a novelty frozen product.

DESCRIPTION OF THE PRIOR ART

[0003] Sales of ice cream and frozen yogurt products have risen dramatically in recent years, and applicants herein have captured a portion of this product market through the development of a unique novelty ice cream, frozen yogurt and ice product in the form of beads. This product, marketed under the trademarks “Dippin’ Dots®” and “Ice Cream of the Future®”, has become very popular in specialty stores, at fairs and theme parks, and through vending machines.

[0004] Applicants have proprietary rights in the method of preparing and storing the product pursuant to U.S. Pat. No. 5,126,156, issued Jun. 30, 1992, herein incorporated by reference, as well as rights associated with improvements pursuant to U.S. Pat. No. 5,664,422, issued Sep. 9, 1997, and U.S. Pat. No. 6,000,229, issued Dec. 14, 1999, herein incorporated by reference. As is generally described therein, the patented method involves flavored liquid dairy and other alimentary compositions to a feed tray and then dripping the composition into a freezing chamber. The feed tray comprises a plurality of orifices through which liquid composition passes to fall into the freezing chamber, either in the form of droplets or liquid streams, which streams break into droplets before freezing. Each orifice may also have a corresponding feed dropper, which is downwardly disposed in relation to the tray such that the liquid composition passes from the tray through an orifice and then through an associated feed dropper where a droplet or liquid stream is formed. The orifices or combination of orifices and feed droppers will hereinafter be referred to collectively as feed assemblies.

[0005] The falling droplets of liquid composition freeze rapidly (i.e., flash freeze) in the freezing chamber due to the presence of both gaseous and liquid refrigerant in the area between the orifices and the bottom of the freezing chamber, thereby forming solid beads of flavored ice cream, yogurt or other alimentary products, such as flavored ice. More specifically, as droplets of liquid free fall through a gaseous region of the freezing chamber, and before the droplets contact the liquid refrigerant, the outer spheres of the droplets form a thin frozen shell. This thin frozen shell serves to protect the spherical shape of the droplets as they impact the surface of the liquid refrigerant. The remainder of the droplets freezes completely as they pass through the liquid refrigerant, and before reaching the bottom of the freezing chamber. The frozen beads are removed from the freezing chamber and packed for distribution and later consumption.

[0006] While the free-flowing, beaded ice cream that is prepared through the above-described flash-freezing process has enjoyed wide-spread popularity and success, it is believed that other unique novelty ice cream products may enjoy similar demand and success.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views. In the drawings:

[0008] FIG. 1 is a perspective view of an ice cream product in accordance with one embodiment of the invention.

[0009] FIG. 2 is side view of an ice cream cone containing soft-serve ice cream in accordance with one embodiment of the invention.

[0010] FIG. 3 is a diagram of a soft-serve ice cream dispensing apparatus in accordance with one embodiment of the invention.

[0011] FIG. 4 is a diagram of a soft-serve ice cream dispensing apparatus in accordance with another embodiment of the invention.

[0012] FIG. 5 is a flowchart illustrating certain steps in the process of manufacturing a novelty ice cream product in accordance with one embodiment of the invention.

[0013] FIG. 6 is a flowchart similar to FIG. 5, but illustrating a slightly alternative embodiment.

SUMMARY OF THE INVENTION

[0014] The present invention is directed to a novel frozen product and method for making the same, wherein a beaded frozen product, like that manufactured in accordance with U.S. Pat. No. 5,126,156, U.S. Pat. No. 5,664,422, or U.S. Pat. No. 6,000,229 are intermixed with conventional frozen product. The embodiment that will be described herein includes the incorporating of a beaded ice cream into a conventional ice cream product. However, consistent with the invention, the frozen product need not be ice cream, but may be yogurt, sherbet, or other alimentary products, such as flavored ice cream.

[0015] In this regard, the beaded ice cream may be intermixed with soft-serve ice cream on an individual serving basis, or may be intermixed with ice cream manufactured on a large scale production (e.g., packaged with ice cream conventionally sold in grocery stores). With regard to individual serving, beads of ice cream may be injected at a dispensing nozzle of machine for dispensing soft-serve ice cream. Alternatively, the beaded ice cream may be introduced into a reservoir of soft-serve ice cream and intermixed through a stirring or agitation process.

[0016] With regard to packaged ice cream, such as that purchased in grocery stores, beaded ice cream may be introduced into a conventional ice cream mix at a stage in
the process where the non-beaded ice cream is still flowable such that the beaded ice cream may be stirred or agitated to mix and disperse relatively evenly throughout the ice cream product. Upon final freezing, the beads of ice cream, which retain their beaded form, will be intermixed and suspended throughout the ice cream product.

[0017] The present invention is directed not only to the final product, but also various methods of manufacturing the product. It will be appreciated that the introduction of beaded frozen product into a conventional ice cream product may enhance the conventional freezing process. For example, introducing a large number of beads at a much lower temperature (e.g., –175 degrees F) will accelerate the freezing process by lowering the overall temperature of the mixture. It will also reduce the size of ice crystals formed in the conventional ice cream product.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0018] Having summarized various aspects of the preferred embodiment, reference will now be made to a detailed description of the invention as illustrated in the drawings. While the invention will be described in connection with these drawings, there is no intent to limit it to the embodiment or embodiments disclosed therein. On the contrary, the intent is to cover all alternatives, modifications and equivalents included within the spirit and scope of the invention as defined by the appended claims.

[0019] Reference is made to FIG. 1, which illustrates and ice cream product 10 constructed in accordance with the present invention. Specifically, the product illustrated in FIG. 1 shows an ice cream product such as that conventionally bought in a grocery store. The product shows a container 12 containing ice cream product 14 having beads 16 interspersed throughout.

[0020] The product may be packaged in a half-gallon or larger container to provide multiple servings. As illustrated, the ice cream has a conventional texture, with beads intermixed throughout the frozen ice cream product. In this regard, the beaded ice cream may be a flash-dash frozen product that is preferably manufactured in accordance with the teachings of U.S. Pat. Nos. 5,126,156, U.S. Pat. No. 5,664,422, and U.S. Pat. No. 6,000,229. In accordance with the present invention, this beaded ice cream is evenly intermixed throughout an otherwise conventional ice cream product.

[0021] As is known, and disclosed in the above-cited patents, the flash-frozen, beaded ice cream product, in order to maintain a free-flowing consistency to the beaded ice cream, it is preferably stored at temperatures well below zero F. It has been found that higher storage temperatures result in fusion of the beads, and thereby loss of its free-flowing consistency. For this reasons, ice cream made in accordance with the above-cited patents is generally not sold in grocery stores due to the inability of the conventional freezers to maintain sufficiently low temperatures.

[0022] However, it has been recognized that if the beaded ice cream is solidified or frozen within a conventional ice cream product, that it need not be stored in such low temperatures, because the resulting product need not maintain a free-flowing consistency. What is important, however, for purposes of the preferred embodiment, is that the beaded ice cream product be introduced into the conventional ice cream product at a point in the processing where the beaded product may be evenly mixed throughout the remaining ice cream product, yet not too early in the processing or manufacturing stage such that the beaded product would melt and lose the consistency of the identifiable beads. As illustrated in FIG. 1, the final product illustrates a desired consistency of the final product.

[0023] One such method of producing a conventional ice cream containing a non-conventional beaded product would be to use a mechanism similar to a fruit and nut feeder (i.e., a mechanism used to mix fragments of fruit and/or nuts into ice cream products), which delivers product into the freezer barrel of a continuous conventional barrel freezer. The introduction of the cryogenic beads at –150 degrees F into the conventionally frozen product in the barrel freezer (typically at approximately 28 degrees F) causes the 28 degree F. ice cream to freeze faster, thereby reducing the size of the ice crystals and increasing the quality of the ice cream that was combined with the beaded product.

[0024] Reference is made briefly to FIG. 2, which illustrates a similar product that may be distributed in a soft-serv form. The drawing of FIG. 2 shows an ice cream cone 20 having soft-serv ice cream 22 thereon. As illustrated, the product includes a soft-serv ice cream that has a novelty beaded 24 ice cream distributed throughout.

[0025] With regard to soft-serv ice cream, a variety of apparatus and dispensing machinery is known for dispensing individual servings of ice cream. U.S. Pat. No. 6,250,791 illustrates one such apparatus. In general, the apparatus for dispensing soft-serv ice cream includes a reservoir for containing a relatively large quantity of the ice cream product. A delivery mechanism, such as an auger or screw type conveyor may be provided for directing ice cream from the reservoir to a dispensing tap where it may be controllably dispensed in single serving quantities. One method for creating the product illustrated in FIG. 2 would be to provide a unique injection nozzle in conjunction with the auger delivery system for injecting beaded ice cream product into the soft-serv ice cream at or near the point of dispensing. Of course, in this embodiment, a separate reservoir for retaining or holding the beaded ice cream product may be provided. Furthermore, the separate reservoir will preferably be maintained at a sufficiently low temperature to preserve the free-flowing beaded configuration of the product, so that it may be readily injected in the soft-serv ice cream product.

[0026] One such apparatus is illustrated in FIG. 3. As shown therein, an apparatus 40 is shown for dispensing soft-serv ice cream. The apparatus 40 includes a reservoir 50 for containing soft-serv (or flowable) ice cream product. The apparatus 40 also includes a delivery system, such as an auger delivery system 52 for dispensing the soft-serv product. As is known, this delivery system may be activated by the pull of a lever 56. Other features of the apparatus 40, as well as alternative apparatus configurations, will be appreciated by persons skilled in the art, and need not be further described herein.

[0027] In accordance with the invention, a separate reservoir or freezer compartment 60 may be provided for storing frozen beaded product to be mixed with the soft-serv ice
cream product to be dispensed from apparatus 40. Preferably, the freezer compartment 60 will be maintained at a sufficiently low temperature as to preserve the free-flowing granularity of the beaded frozen product. A second delivery system (not specifically illustrated) may be provided to channel and introduce the beaded frozen product into the delivery channel of the apparatus 40, such that the beaded frozen product is introduced into the soft-serve product at or near the point of dispensing.

[0029] In an alternative approach, one of more nozzles may be provided for injecting beaded ice cream into the reservoir of soft-serve ice cream. If a stirring mechanism, agitator, or other device is provided for periodically or continually mixing the soft-serve ice cream product within the reservoir, such a mechanism may be effective for intermixing the beaded ice cream product throughout.

[0030] Of course, depending upon the particular apparatus or machinery, other ways may be readily recognized for introducing and mixing the novel beaded ice cream product throughout soft-serve ice cream.

[0031] In connection with a conventional, larger scale ice cream manufacturing process, the introduction of the beaded ice cream into the conventional ice cream product is desired. Conventionally, ice cream is manufactured by mixing liquid ingredients in a mixing tank and feeding the mixed ingredients into a cooling unit where the mixed ingredients are reduced in temperature to about 20 degrees F. The mixed ingredients become significantly more viscous but will still flow. If the flavor being manufactured includes solid items, such as cookie parts, are mixed into the flowing material at this point. This chilled and fully mixed material is fed to a package filling machine which feeds the material into the ice cream package. The ice cream package is closed and shrink wrapped to other packages for more convenient handling. The packaged ice cream is then placed in a hardening area for several hours where its temperature is reduced to zero or below for hardening. The packaged, finished ice cream is ready to be stored or shipped.

[0032] Indeed, a variety of methods, processes, and apparatus are known for manufacturing ice cream. U.S. Pat. No. 6,103,287, which is hereby incorporated by reference, discloses one such system and process. Consistent with the present invention, processes and apparatus such as the one described in U.S. Pat. No. 6,103,287 may be used, or other processes and apparatus may be used.

[0033] Preferably, conventional ice cream product is introduced into its shipping container in a semi-frozen state (e.g., in a soft or flowable form) and the container is introduced into a freezing chamber where it is frozen into a solid form for shipping and distribution. Preferably the beaded ice cream product is introduced into the semi-frozen ice cream product at or near the time the product is introduced into the shipping container. The beads of ice cream may be stirred or otherwise mixed into the semi-frozen product to achieve a reasonably uniform distribution throughout. As the filled containers later freeze solid, the product configuration illustrated in FIG. 1. It should be appreciated that, by introducing the beaded ice cream product into the conventional ice cream product, after the conventional ice cream product has been formed into a semi-frozen, the temperature of the resulting product should be sufficiently low that the beaded ice cream product does not melt and therefore loose its beaded appearance and consistency.

[0034] Reference is briefly made to FIG. 5, which is a flowchart that illustrates certain fundamental method steps of the above-described embodiment. As illustrated in FIG. 5, the basic steps to one embodiment of this method include preparing a beaded frozen product (as per any of the previously-referenced patents) (step 102). Generally, this prepared beaded frozen product will be stored at a sufficiently low storage temperature to preserve its free-flowing, beaded composition. Then, the method performs the early (conventional) processing stages of the manufacture of ice cream (step 104). As is known, in the normal manufacture of such ice cream product, the ice cream is introduced into a container while in a soft or flowable form (step 106). While in this form, the beaded frozen product is introduced into the ice cream (step 108). Then, the combined product is preferably agitated or stirred to substantially intermix the combined product (step 110). Finally, the combined/intermixed product is further frozen, to solidify the ice cream around the frozen beads (step 112), resulting in a product similar to that illustrated in FIG. 1.

[0035] FIG. 6 is a flowchart similar to FIG. 5, but illustrating a slightly different embodiment. In the embodiment of FIG. 6, the beaded product may be introduced into the conventional/flowable ice cream through the barrel freezer portion, using a mechanism such as a mechanism used to introduce fruit or nut pieces into conventional ice cream (step 206).

[0036] Reference is now made to FIG. 7, which is a flowchart illustrating the top-level steps in a process for dispensing an ice-cream product using an apparatus similar to that of FIG. 3. In this embodiment, a beaded frozen product is prepared (step 302) and then shipped to a dispensing location (step 304). Thereafter, the beaded frozen product is introduced into a soft-serve ice cream at a dispensing nozzle (step 306). Finally, the intermixed ice-cream product is dispensed 308 from a dispensing nozzle of the apparatus.

[0037] Finally, reference is made to FIG. 8, which is a flowchart illustrating the top-level steps in a process for dispensing an ice-cream product using an apparatus similar to that of FIG. 4. In this embodiment, a beaded frozen product is prepared (step 402) and then shipped to a dispensing location (step 404). Thereafter, the beaded frozen product is introduced into a reservoir containing a soft-serve ice cream (step 406). Next, the product is intermixed in the reservoir (step 408). Finally, the intermixed ice-cream product is dispensed from a dispensing nozzle of the apparatus (step 508).

[0038] The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiment or embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use.
contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly and legally entitled.

What is claimed is:

30. An apparatus for manufacturing a novelty frozen product and ice cream mixture comprising:

- a flash freezing cryogenic freezer configured to produce a beaded frozen product;
- a storage unit configured to hold a supply of beaded frozen product;
- a mixture reservoir configured to accept the beaded frozen product and an ice-cream product; and
- a mixing component configured to intermix the beaded frozen product into the ice-cream product.

31. The apparatus of claim 30, further comprising:

- a post-mixing freezer configured to freeze the beaded frozen product and ice cream mixture.

32. The apparatus of claim 30, wherein the storage unit comprises a paddle component.

33. The apparatus of claim 30, further comprising:

- an ice cream product reservoir attached to the output of said mixing component, wherein said product reservoir is configured to accept large quantities of ice cream product.

34. The apparatus of claim 30, further comprising:

- an output nozzle configured to dispense the beaded frozen product and ice-cream mixture.

35. The apparatus of claim 34, further comprising:

- a delivery mechanism configured to direct the ice cream product to said output nozzle.

36. The apparatus of claim 34, wherein the mixing component comprises an auger delivery mechanism configured to deliver the beaded frozen product and ice-cream mixture to the output nozzle.

37. The apparatus of claim 30, wherein the storage unit is configured to hold the supply of beaded frozen product at a temperature to maintain the beaded frozen product’s free-flowing characteristics.

38. The apparatus of claim 30, further comprising:

- a barrel freezer portion, configured to introduce the beaded frozen product into the ice-cream product.

39. The apparatus of claim 30, further comprising:

- a fruit or nut feeder, configured to introduce the beaded frozen product into the ice-cream product.

* * * * *