

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 October 2009 (29.10.2009)

(10) International Publication Number
WO 2009/130487 A1

(51) International Patent Classification:
C07D 471/04 (2006.01) *A61P 35/00* (2006.01)
A61K 31/4985 (2006.01)

Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB (GB). SPRINGER, Caroline Joy [GB/GB]; Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswoold Road, Sutton, Surrey, SM2 5NG (GB).

(21) International Application Number:
PCT/GB2009/001077

(74) Agents: MEWBURN ELLIS LLP et al.; 33 Gutter Lane, London EC2V 8AS (GB).

(22) International Filing Date:
27 April 2009 (27.04.2009)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/047,902 25 April 2008 (25.04.2008) US
0807609.3 25 April 2008 (25.04.2008) GB

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(72) Inventors; and

(75) Inventors/Applicants (for US only): NICULESCU-DUVAZ, Ion [GB/GB]; Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswoold Road, Sutton, Surrey, SM2 5NG (GB). ZAMBON, Alfonso [IT/GB]; Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswoold Road, Sutton, Surrey, SM2 5NG (GB). NICULESCU-DUVAZ, Dan [GB/GB]; Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswoold Road, Sutton, Surrey, SM2 5NG (GB). WHITTAKER Steven [GB/GB]; Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB (GB). MARAIS, Richard [GB/GB]; Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research,

(54) Title: ARYL-QUINOLYL COMPOUNDS AND THEIR USE

(57) Abstract: The present invention pertains generally to the field of therapeutic compounds for treating proliferative disorders, cancer, etc., and more specifically to certain aryl-quinolyl compounds, as described herein, which, *inter alia*, inhibit RAF (e.g., B-Raf) activity. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both *in vitro* and *in vivo*, to inhibit RAF (e.g., BRAF) activity, to inhibit receptor tyrosine kinase (RTK) activity, to inhibit cell proliferation, and in the treatment of diseases and disorders that are ameliorated by the inhibition of RAF, RTK, etc., proliferative disorders such as cancer (e.g., colorectal cancer, melanoma), etc.

WO 2009/130487 A1

ARYL-QUINOLYL COMPOUNDS AND THEIR USERELATED APPLICATIONS

5 This application is related to United States provisional patent application number 61/047,902 filed 25 April 2008 and United Kingdom patent application number 0807609.3 filed 25 April 2008, the contents of both of which are incorporated herein by reference in their entirety.

TECHNICAL FIELD

10 The present invention pertains generally to the field of therapeutic compounds for treating proliferative disorders, cancer, etc., and more specifically to certain aryl-quinolyl compounds, as described herein, which, *inter alia*, inhibit RAF (e.g., B-RAF) activity. The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of 15 such compounds and compositions, both *in vitro* and *in vivo*, to inhibit RAF (e.g., BRAF) activity, to inhibit receptor tyrosine kinase (RTK) activity, to inhibit cell proliferation, and in the treatment of diseases and disorders that are ameliorated by the inhibition of RAF, RTK, etc., proliferative disorders such as cancer (e.g., colorectal cancer, melanoma), etc.

20 BACKGROUND

A number of patents and publications are cited herein in order to more fully describe and disclose the invention and the state of the art to which the invention pertains. Each of these 25 references is incorporated herein by reference in its entirety into the present disclosure, to the same extent as if each individual reference was specifically and individually indicated to be incorporated by reference.

30 Throughout this specification, including the claims which follow, unless the context requires otherwise, the word "comprise," and variations such as "comprises" and "comprising," will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

35 It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a pharmaceutical carrier" includes mixtures of two or more such carriers, and the like.

40 Ranges are often expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the use of the antecedent "about," it will be understood that the particular value forms another embodiment.

45 This disclosure includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or

relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.

RAF, Proliferative Disorders, and Cancer

5

Mutations in genes that directly or indirectly control cell growth and differentiation are generally considered to be the main cause of cancer. Malignant tumors develop through a series of stepwise, progressive changes that lead to the loss of growth control characteristic of cancer cells, i.e., continuous unregulated proliferation, the ability to invade surrounding 10 tissues, and the ability to metastasize to different organ sites. Carefully controlled *in vitro* studies have helped define the factors that characterize the growth of normal and neoplastic cells and have led to the identification of specific proteins that control cell growth and differentiation.

15 RAF is key downstream target for the ras GTPase and mediates the activation of the MAP kinase cascade consisting of raf-MEK-ERK. Activated ERK is a kinase that subsequently targets a number of proteins responsible for mediating, amongst other things, the growth, survival and transcriptional functions of the pathway. These include the transcription factors ELK1, C-JUN, the Ets family (including Ets 1, 2, and 7), and the FOS family. The ras-raf- 20 MEK-ERK signal transduction pathway is activated in response to many cell stimuli including growth factors such as EGF, PDGF, KGF etc. Because the pathway is a major target for growth factor action, the activity of raf-MEK-ERK has been found to be upregulated in many factor dependent tumours. The observation that about 20% of all tumours have undergone an activating mutation in one of the ras proteins indicates that the pathway is more broadly 25 important in tumorigenesis. There is growing evidence that activating mutations in other components of the pathway also occur in human tumours. This is true for RAF.

30 The RAF oncogene family includes three highly conserved genes termed A-RAF, B-RAF and C-RAF (also called *Raf-1*). RAF genes encode protein kinases that are thought to play important regulatory roles in signal transduction processes that regulate cell proliferation. 35 RAF genes code for highly conserved serine-threonine-specific protein kinases, which are recruited to the plasma membrane following direct binding to the Ras small Guanine-nucleotide binding proteins and this is the initiating event in RAF activation. RAF proteins are part of a signal transduction pathway believed to consist of receptor tyrosine kinases, p21 Ras, RAF protein kinases, Mek1 (ERK activator or MAPKK) kinases and ERK (MAPK) kinases, which ultimately phosphorylate several cellular substrates, including transcription factors. Signaling through this pathway can mediate differentiation, proliferation or oncogenic transformation in different cellular contexts. Thus, RAF kinases are believed to play a fundamental role in the normal cellular signal transduction pathway, coupling a multitude of 40 growth factors to their net effect, cellular proliferation. Because RAF proteins are direct downstream effectors of ras protein function, therapies directed against RAF kinases are believed to be useful in treatment of *ras*-dependent tumors.

45 The RAF kinases are differentially regulated and expressed; C-RAF is the most thoroughly characterized and is expressed in all organs and in all cell lines that have been examined. A-

RAF and B-RAF also appear to be ubiquitous, but are most highly expressed in urogenital and brain tissues, respectively. Because B-RAF is highly expressed in neural tissues it was once thought to be limited to these tissues but it has since been found to be more widely expressed. Although all RAF proteins can bind to active Ras, B-raf is most strongly activated by oncogenic Ras, and may be the primary target of oncogenic Ras in transformed cells.

Recent evidence indicates that mutational activation of B-RAF is found in a number of different tumours including more than 65% of malignant melanomas, more than 10% of colorectal cancers (Davies, H., *et al.*, 2002, *Nature*, Vol. 417, pp. 949-954; Rajagopalan, H. *et al.*, 2002, *Nature*, Vol. 418, p. 934), ovarian cancers (Singer, G., *et al.*, 2003, *J. Natl. Cancer Inst.*, Vol. 95, pp. 484-486) and papillary thyroid cancers (Brose, M., *et al.*, 2002, *Cancer Res.*, Vol. 62, pp. 6997-7000; Cohen, Y., *et al.*, 2003, *Invest. Ophthalmol. Vis. Sci.*, Vol. 44, pp. 2876-2878). A range of different B-RAF mutations have been identified in different tumours with the most common being a V600E mutation in the so-called activation loop of the kinase domain (Davies, H., *et al.*, 2002, *Nature*, Vol. 417, pp. 949-954).

Other mutations of B-RAF found associated with human cancers may not necessarily activate B-RAF directly but do upregulate the activity of the ras-raf-MEK-ERK pathway by mechanisms which are not fully understood but may involve cross-talk with other RAF isoforms, such as A-RAF (Wan, P., *et al.*, 2004, *Cell*, Vol. 116, pp. 855-867). In such cases, inhibition of RAF activity would remain a beneficial aim in cancer treatment.

In addition to link between B-RAF and certain cancers, there is a significant amount of evidence to indicate a more broad inhibition of RAF activity could be beneficial as an antitumour therapy. Blocking the pathway at the level of B-RAF would be effective at counteracting the upregulation of this pathway caused by tumourigenic ras mutations and also in tumours responding to growth factor action via this pathway. Genetic evidence in *Drosophila* and *C. elegans* indicates that RAF homologues are essential for ras dependent actions on differentiation (Dickson, B., *et al.*, 1993, *Nature*, Vol. 360, pp. 600-603). Introduction of constitutively active MEK into NIH3T3 cells can have a transforming action whilst expression of dominant negative MEK proteins can suppress the tumourigenicity of ras transformed cell lines (Mansour, S.J., *et al.*, 1994, *Science*, Vol. 265, pp. 966-970; Cowley, S., *et al.*, 1994, *Cell*, Vol. 77, pp. 841-852). Expression of a dominant negative raf protein has also been found to inhibit ras dependent signalling as has suppression of raf expression using an antisense oligonucleotide construct (Koch, W., *et al.*, 1991, *Nature*, Vol. 349, pp. 426-428; Bruder, T.T., *et al.*, 1992, *Genes and Development*, Vol. 6, pp. 545-556).

This and other evidence suggests that inhibition of RAF (e.g., B-RAF) activity would be beneficial in the treatment of cancer, and that inhibition of RAF (e.g., B-RAF) activity could be particularly beneficial in those cancers containing a constitutively activated B-raf mutation.

The raf-MEK-ERK pathway functions downstream of many receptors and stimuli indicating a broad role in regulation of cell function. For this reason inhibitors of RAF may find utility in other disease conditions that are associated with upregulation of signalling via this pathway. The raf-MEK-ERK pathway is also an important component of the normal response of non-

transformed cells to growth factor action. Therefore inhibitors of RAF may be of use in diseases where there is inappropriate or excessive proliferation of normal tissues. These include, but are not limited to glomerulonephritis and psoriasis. The cellular signalling pathway of which RAF is a part has also been implicated in inflammatory disorders 5 characterized by T-cell proliferation (T-cell activation and growth), such as tissue graft rejection, endotoxin shock, and glomerular nephritis.

RAF (e.g., B-RAF) has been shown to be a valid therapeutic target in hyperproliferative disorders such as cancer. Activated versions of RAF (e.g., B-RAF) are able to transform 10 mammalian cells, allowing them to take on the characteristics of cancer cells and the growth of these cells becomes dependent on the mutant RAF (e.g., B-RAF) protein. Inhibition of RAF (e.g., B-RAF) activity in human cancer cell lines that express the mutant forms of RAF (e.g., B-RAF) blocks their growth and ultimately induces their death.

15 Angiogenesis

Chronic proliferative diseases are often accompanied by profound angiogenesis, which can contribute to or maintain an inflammatory and/or proliferative state, or which leads to tissue destruction through the invasive proliferation of blood vessels. (Folkman, 1997, EXS, Vol. 79, 20 pp. 1-81; Folkman, 1995, Nature Medicine, Vol. 1, pp. 27-31; Folkman and Shing, 1992, J. Biol. Chem., Vol. 267, p. 10931.)

Angiogenesis is generally used to describe the development of new or replacement blood vessels, or neovascularisation. It is a necessary and physiological normal process by which 25 the vasculature is established in the embryo. Angiogenesis does not occur, in general, in most normal adult tissues, exceptions being sites of ovulation, menses and wound healing. Many diseases, however, are characterized by persistent and unregulated angiogenesis. For instance, in arthritis, new capillary blood vessels invade the joint and destroy cartilage (Colville-Nash and Scott, 1992, Ann. Rhum. Dis., Vol. 51, p. 919). In diabetes (and in many 30 different eye diseases), new vessels invade the macula or retina or other ocular structures, and may cause blindness (Brooks *et al.*, 1994, Cell, Vol. 79, p. 1157). The process of atherosclerosis has been linked to angiogenesis (Kahlon *et al.*, 1992, Can. J. Cardiol., Vol. 8, p. 60). Tumor growth and metastasis have been found to be angiogenesis-dependent (Folkman, 1992, Cancer Biol., Vol. 3, p. 65; Denekamp, 1993, Br. J. Rad., Vol. 66, p. 181; 35 Fidler and Ellis, 1994, Cell, Vol. 79, p. 185).

The recognition of the involvement of angiogenesis in major diseases has been accompanied by research to identify and develop inhibitors of angiogenesis. These inhibitors are generally classified in response to discrete targets in the angiogenesis cascade, such as activation of 40 endothelial cells by an angiogenic signal; synthesis and release of degradative enzymes; endothelial cell migration; proliferation of endothelial cells; and formation of capillary tubules. Therefore, angiogenesis occurs in many stages and attempts are underway to discover and develop compounds that work to block angiogenesis at these various stages.

There are publications that teach that inhibitors of angiogenesis, working by diverse mechanisms, are beneficial in diseases such as cancer and metastasis (O'Reilly *et al.*, 1994, Cell, Vol. 79, p. 315; Ingber *et al.*, 1990, Nature, Vol. 348, p. 555), ocular diseases (Friedlander *et al.*, 1995, Science, Vol. 270, p. 1500), arthritis (Peacock *et al.*, 1992, J. Exp. Med., Vol. 175, p. 1135; Peacock *et al.*, 1995, Cell. Immun., Vol. 160, p. 178) and hemangioma (Taraboletti *et al.*, 1995, J. Natl. Cancer Inst., Vol. 87, p. 293).

RTKs

10 Receptor tyrosine kinases (RTKs) are important in the transmission of biochemical signals across the plasma membrane of cells. These transmembrane molecules characteristically consist of an extracellular ligand-binding domain connected through a segment in the plasma membrane to an intracellular tyrosine kinase domain. Binding of ligand to the receptor results in stimulation of the receptor-associated tyrosine kinase activity that leads to phosphorylation 15 of tyrosine residues on both the receptor and other intracellular proteins, leading to a variety of cellular responses. To date, at least nineteen distinct RTK subfamilies, defined by amino acid sequence homology, have been identified.

FGFR

20 The fibroblast growth factor (FGF) family of signaling polypeptides regulates a diverse array of physiologic functions including mitogenesis, wound healing, cell differentiation and angiogenesis, and development. Both normal and malignant cell growth as well as proliferation are affected by changes in local concentration of these extracellular signaling 25 molecules, which act as autocrine as well as paracrine factors. Autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers and to a hormone independent state (Powers *et al.*, 2000, Endocr. Relat. Cancer, Vol. 7, pp. 165-197).

30 FGFs and their receptors are expressed at increased levels in several tissues and cell lines and overexpression is believed to contribute to the malignant phenotype. Furthermore, a number of oncogenes are homologues of genes encoding growth factor receptors, and there is a potential for aberrant activation of FGF-dependent signaling in human pancreatic cancer (Ozawa *et al.*, 2001, Teratog. Carcinog. Mutagen., Vol. 21, pp. 27-44).

35 The two prototypic members are acidic fibroblast growth factor (aFGF or FGF1) and basic fibroblast growth factors (bFGF or FGF2), and to date, at least twenty distinct FGF family members have been identified. The cellular response to FGFs is transmitted via four types of high affinity transmembrane tyrosine-kinase fibroblast growth factor receptors numbered 1 to 4 (FGFR-1 to FGFR-4). Upon ligand binding, the receptors dimerize and auto-or trans- 40 phosphorylate specific cytoplasmic tyrosine residues to transmit an intracellular signal that ultimately reaches nuclear transcription factor effectors.

Disruption of the FGFR-1 pathway should affect tumor cell proliferation since this kinase is activated in many tumor types in addition to proliferating endothelial cells. The over-

expression and activation of FGFR-1 in tumor-associated vasculature has suggested a role for these molecules in tumor angiogenesis.

5 FGFR-2 has high affinity for the acidic and/or basic fibroblast growth factors, as well as the keratinocyte growth factor ligands. FGFR-2 also propagates the potent osteogenic effects of FGFs during osteoblast growth and differentiation. Mutations in FGFR-2, leading to complex functional alterations, were shown to induce abnormal ossification of cranial sutures(craniosynostosis), implying a major role of FGFR signaling in intramembranous bone formation. For example, in Apert (AP) syndrome, characterized by premature cranial suture 10 ossification, most cases are associated with point mutations engendering gain-of-function in FGFR-2 (Lemonnier *et al.*, 2001, *J. Bone Miner. Res.*, Vol. 16, pp. 832-845).

15 Several severe abnormalities in human skeletal development, including Apert, Crouzon, Jackson-Weiss, Beare-Stevenson cutis gyrata, and Pfeiffer syndromes are associated with the occurrence of mutations in FGFR-2. Most, if not all, cases of Pfeiffer Syndrome (PS) are 20 also caused by de novo mutation of the FGFR-2 gene (Meyers *et al.*, 1996, *Am. J. Hum. Genet.*, Vol. 58, pp. 491-498; Plomp *et al.*, 1998, *Am. J. Med. Genet.*, Vol. 75, 245-251), and it was recently shown that mutations in FGFR-2 break one of the cardinal rules governing ligand specificity. Namely, two mutant splice forms of fibroblast growth factor receptor, FGFR2c and 25 FGFR2b, have acquired the ability to bind to and be activated by atypical FGF ligands. This loss of ligand specificity leads to aberrant signaling and suggests that the severe phenotypes of these disease syndromes result from ectopic ligand-dependent activation of FGFR-2 (Yu *et al.*, 2000, *Proc. Natl. Acad. Sci. U.S.A.*, Vol. 97, pp. 14536-14541).

25 Activating mutations of the FGFR-3 receptor tyrosine kinase such as chromosomal translocations or point mutations produce deregulated, constitutively active, FGFR-3 receptors which have been involved in multiple myeloma and in bladder and cervix carcinomas (Powers, C.J., *et al.*, 2000, *Endocr. Rel. Cancer*, Vol. 7, p. 165). Accordingly, 30 FGFR-3 inhibition would be useful in the treatment of multiple myeloma, bladder and cervix carcinomas.

VEGFR

35 Vascular endothelial growth factor (VEGF), a polypeptide, is mitogenic for endothelial cells *in vitro* and stimulates angiogenic responses *in vivo*. VEGF has also been linked to inappropriate angiogenesis (Pinedo, H.M., *et al.*, 2000, *The Oncologist*, Vol. 5 (90001), pp. 1-2). VEGFR(s) are protein tyrosine kinases (PTKs). PTKs catalyze the phosphorylation of 40 specific tyrosyl residues in proteins involved in the regulation of cell growth and differentiation. (Wilks, A.F., 1990, *Progress in Growth Factor Research*, Vol. 2, pp. 97-111; Courtneidge, S.A., 1993, *Dev. Suppl.*, pp. 57-64; Cooper, J.A., 1994, *Semin. Cell Biol.*, Vol. 5(6), pp. 377-387; Paulson, R.F., 1995, *Semin. Immunol.*, Vol. 7(4), pp. 267-277; Chan, A.C., 1996, *Curr. Opin. Immunol.*, Vol. 8(3), pp. 394-401).

Three PTK receptors for VEGF have been identified: VEGFR-1 (Flt-1), VEGFR-2 (Flk-1 or KDR), and VEGFR-3 (Flt-4). These receptors are involved in angiogenesis and participate in signal transduction (Mustonen, T., *et al.*, 1995, *J. Cell Biol.*, Vol. 129, pp. 895-898).

5 Of particular interest is VEGFR-2, which is a transmembrane receptor PTK expressed primarily in endothelial cells. Activation of VEGFR-2 by VEGF is a critical step in the signal transduction pathway that initiates tumour angiogenesis. VEGF expression may be constitutive to tumour cells and can also be upregulated in response to certain stimuli. One such stimuli is hypoxia, where VEGF expression is upregulated in both tumour and associated
10 host tissues. The VEGF ligand activates VEGFR-2 by binding with its extracellular VEGF binding site. This leads to receptor dimerization of VEGFRs and autophosphorylation of tyrosine residues at the intracellular kinase domain of VEGFR-2. The kinase domain operates to transfer a phosphate from ATP to the tyrosine residues, thus providing binding sites for signalling proteins downstream of VEGFR-2 leading ultimately to initiation of
15 angiogenesis (McMahon, G., 2000, *The Oncologist*, Vol. 5(90001), pp. 3-10).

Inhibition at the kinase domain binding site of VEGFR-2 would block phosphorylation of tyrosine residues and serve to disrupt initiation of angiogenesis.

20 TIE

Angiopoietin 1 (Ang1), a ligand for the endothelium-specific receptor tyrosine kinase TIE-2 is a novel angiogenic factor (Davis *et al.*, 1996, *Cell*, Vol. 87, pp. 1161-1169; Partanen *et al.*, 1992, *Mol. Cell Biol.*, Vol. 12, pp. 1698-1707; U.S. Patent Nos. 5,521,073; 5,879,672; 25 5,877,020; and 6,030,831). The acronym TIE represents "tyrosine kinase containing Ig and EGF homology domains". TIE is used to identify a class of receptor tyrosine kinases, which are exclusively expressed in vascular endothelial cells and early hemopoietic cells. Typically, TIE receptor kinases are characterized by the presence of an EGF-like domain and an immunoglobulin (IG) like domain, which consists of extracellular folding units, stabilized by 30 intra-chain disulfide bonds (Partanen *et al.*, 1999, *Curr. Topics Microbiol. Immunol.*, Vol. 237, pp. 159-172). Unlike VEGF, which functions during the early stages of vascular development, Ang1 and its receptor TIE-2 function in the later stages of vascular development, i.e., during vascular remodelling (remodelling refers to formation of a vascular lumen) and maturation (Yancopoulos *et al.*, 1998, *Cell*, Vol. 93, pp. 661-664; Peters, K. G., 1998, *Circ. Res.*, Vol. 35 83(3), pp. 342-343; Suri *et al.*, 1996, *Cell*, Vol. 87, pp. 1171-1180).

Consequently, inhibition of TIE-2 would be expected to serve to disrupt remodelling and maturation of new vasculature initiated by angiogenesis thereby disrupting the angiogenic process.

40

Eph

The largest subfamily of receptor tyrosine kinases (RTKs), the Eph family, and their ligands (ephrins), play important roles in physiologic and pathologic vascular processes. Both the 45 Ephs (receptors) and ephrins (ligands) are divided into two groups, A and B subfamilies (Eph

Nomenclature Committee, 1997). The binding of ephrin ligands to Eph receptors is dependent on cell-cell interactions. The interactions of ephrins and Ephs have recently been shown to function via bi-directional signalling. The ephrins binding to Eph receptors initiate phosphorylation at specific tyrosine residues in the cytoplasmic domain of the Eph receptors.

5 In response to Eph receptor binding, the ephrin ligand also undergoes tyrosine phosphorylation, so-called 'reverse' signalling (Holland, S.J., *et al.*, 1996, *Nature*, Vol. 383, pp. 722-725; Bruckner *et al.*, 1997, *Science*, Vol. 275, pp. 1640-1643).

Eph RTKs and their ephrin ligands play important roles in embryonic vascular development.

10 Disruption of specific Eph receptors and ligands (including ephrin-B2) leads to defective vessel remodelling, organisation, and sprouting resulting in embryonic death (Wang, H.U., *et al.*, 1998, *Cell*, Vol. 93, pp. 741-753; Adams, R.H., *et al.*, 1999, *Genes Dev*, Vol. 13, pp. 295-306; Gale and Yancopoulos, 1999, *Genes Dev*, Vol. 13, pp. 1055-1066; Helbling, P.M., *et al.*, 2000, *Development*, Vol. 127, pp. 269-278). Coordinated expression of the Eph/ephrin 15 system determines the phenotype of embryonic vascular structures: ephrin-B2 is present on arterial endothelial cells (ECs), whereas EphB4 is present on venous ECs (Gale and Yancopoulos, 1999, *Genes Dev*, Vol. 13, pp. 1055-1066; Shin, D., *et al.*, 2001, *Dev Biol*, Vol. 230, pp. 139-150). Recently, specific Ephs and ephrins have been implicated in tumour growth and angiogenesis.

20 The Ephs and ephrins have been found to be overexpressed in many human tumours. In particular, the role of EphB2 has been identified in small cell lung carcinoma (Tang, X.X., *et al.*, 1999, *Clin Cancer Res*, Vol. 5, pp. 455-460), human neuroblastomas (Tang, X.X., *et al.*, 1999, *Clin Cancer Res*, Vol. 5, pp. 1491-1496) and colorectal cancers (Liu, W., *et al.*, 2004, *Brit. J. Canc.*, Vol. 90, pp. 1620-1626), and higher expression levels of Ephs and ephrins, 25 including EphB2, have been found to correlate with more aggressive and metastatic tumours (Nakamoto, M. and Bergemann, A.D., 2002, *Microsc. Res Tech*, Vol. 59, pp. 58-67).

Consequently, inhibition of EphB2 would be expected to serve to disrupt angiogenesis, and in 30 particular in certain tumours where over-expression occurs.

The inventors have discovered compounds that, e.g., inhibit RAF (e.g., B-RAF) activity and/or are useful in the treatment of, e.g., proliferative disorders, cancer, etc.

35 SUMMARY OF THE INVENTION

One aspect of the invention pertains to certain aryl-quinolyl compounds (referred to herein as "AQ compounds"), as described herein.

40 Another aspect of the invention pertains to a composition (e.g., a pharmaceutical composition) comprising an AQ compound, as described herein, and a pharmaceutically acceptable carrier or diluent.

Another aspect of the invention pertains to method of preparing a composition (e.g., a pharmaceutical composition) comprising the step of admixing an AQ compound, as described herein, and a pharmaceutically acceptable carrier or diluent.

5 Another aspect of the present invention pertains to a method of inhibiting RAF (e.g., B-RAF) activity in a cell, *in vitro* or *in vivo*, comprising contacting the cell with an effective amount of an AQ compound, as described herein.

10 Another aspect of the present invention pertains to a method of inhibiting receptor tyrosine kinase (RTK) activity, such as FGFR, Tie, VEGFR and/or Eph activity, for example, FGFR-1, FGFR-2, FGFR-3, Tie2, VEGFR-2 and/or EphB2 activity, in a cell, *in vitro* or *in vivo*, comprising contacting the cell with an effective amount of an AQ compound, as described herein.

15 Another aspect of the present invention pertains to a method of regulating (e.g., inhibiting) cell proliferation (e.g., proliferation of a cell), inhibiting cell cycle progression, promoting apoptosis, or a combination of one or more these, *in vitro* or *in vivo*, comprising contacting a cell with an effective amount of an AQ compound, as described herein.

20 Another aspect of the present invention pertains to a method of treatment comprising administering to a subject in need of treatment a therapeutically-effective amount of an AQ compound, as described herein, preferably in the form of a pharmaceutical composition.

25 Another aspect of the present invention pertains to an AQ compound, as described herein, for use in a method of treatment of the human or animal body by therapy.

30 Another aspect of the present invention pertains to an AQ compound, as described herein, for the use in a method of treatment of the human or animal body by therapy wherein said compound is used in combination with other pharmaceutically active substances

35 Another aspect of the present invention pertains to use of an AQ compound, as described herein, in the manufacture of a medicament for use in treatment.

40 In one embodiment, the treatment is treatment of a disease or disorder (e.g., cancer) that is characterised by the up-regulation and/or activation of RAF (e.g., B-RAF), and/or is ameliorated by the inhibition of RAF (e.g., B-RAF).

45 In one embodiment, the treatment is treatment of a disease or disorder (e.g., cancer) that is characterised by the up-regulation and/or activation of a receptor tyrosine kinase (RTK), and/or is ameliorated by the inhibition of a receptor tyrosine kinase (RTK). Examples of RTKs include FGFR, Tie, VEGFR and/or Eph, for example, FGFR-1, FGFR-2, FGFR-3, Tie2, VEGFR-2 and/or EphB2.

50 In one embodiment, the treatment is treatment of a disease or disorder that is characterised by inappropriate, excessive, and/or undesirable angiogenesis.

In one embodiment, the treatment is treatment of a proliferative disorder.

In one embodiment, the treatment is treatment of cancer.

5

Another aspect of the present invention pertains to a kit comprising (a) an AQ compound, as described herein, preferably provided as a pharmaceutical composition and in a suitable container and/or with suitable packaging; and (b) instructions for use, for example, written instructions on how to administer the compound.

10

Another aspect of the present invention pertains to an AQ compound *obtainable* by a method of synthesis as described herein, or a method comprising a method of synthesis as described herein.

15

Another aspect of the present invention pertains to an AQ compound *obtained* by a method of synthesis as described herein, or a method comprising a method of synthesis as described herein.

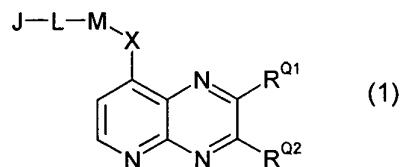
20

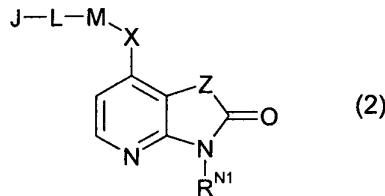
Another aspect of the present invention pertains to novel intermediates, as described herein, which are suitable for use in the methods of synthesis described herein.

Another aspect of the present invention pertains to the use of such novel intermediates, as described herein, in the methods of synthesis described herein.

25

As will be appreciated by one of skill in the art, features and preferred embodiments of one aspect of the invention will also pertain to other aspect of the invention.


DETAILED DESCRIPTION OF THE INVENTION


30 Compounds

One aspect of the present invention pertains to compounds selected from compounds of the following formulae and pharmaceutically acceptable salts, hydrates, and solvates thereof (for convenience, collectively referred to herein as "aryl-quinolyl compounds" and

35

"AQ compounds"):

wherein:

$-R^{Q1}$ is independently $-H$ or $-R^{Q1R}$;

5 wherein:

$-R^{Q1R}$ is independently:

$-R^1$, $-R^{1X}$, $-Cl$, $-OH$, $-OR^1$, $-OR^{1X}$, $-SH$, $-SR^1$, $-NH_2$, $-NHR^1$, $-NR^{12}$, or $-NR^{1NA}R^{1NB}$;

wherein:

10 each $-R^1$ is independently:

saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, or $-NR^{112}$;

saturated C_{3-6} cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, and $-NR^{112}$; or

15 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from $-R^{11}$;

and wherein:

each $-R^{1X}$, if present, is independently saturated aliphatic C_{1-4} alkyl substituted with 20 one or more groups selected from $-F$, $-Cl$, $-Br$, and $-I$;

and wherein:

$-NR^{1NA}R^{1NB}$ is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from 25 $-R^{11}$, $-CF_3$, $-F$, $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, and $-NR^{112}$;

wherein:

each $-R^{11}$ is independently saturated aliphatic C_{1-4} alkyl;

30 and wherein:

$-R^{Q2}$ is independently $-H$ or $-R^{Q2R}$;

wherein:

$-R^{Q2R}$ is independently:

35 $-R^2$, $-R^{2X}$, $-Cl$, $-OH$, $-OR^2$, $-OR^{2X}$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^{22}$, or $-NR^{2NA}R^{2NB}$;

wherein:

each $-R^2$ is independently:

- 12 -

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR²², -NH₂, -NHR²², or -NR²²₂;

saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR²², -NH₂, -NHR²², and -NR²²₂; or

5 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R²²;

and wherein:

each -R^{2X}, if present, is independently saturated aliphatic C₁₋₄alkyl substituted with 10 one or more groups selected from -F, -Cl, -Br, and -I;

and wherein:

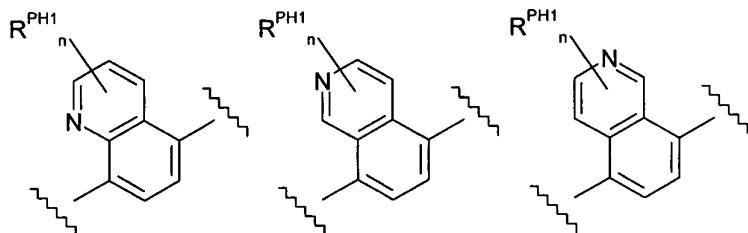
-NR^{2NA}R^{2NB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, 15 azepino, or diazepino, and is optionally substituted with one or more groups selected from -R²², -CF₃, -F, -OH, -OR²², -NH₂, -NHR²², and -NR²²₂;

wherein:

each -R²² is independently saturated aliphatic C₁₋₄alkyl;

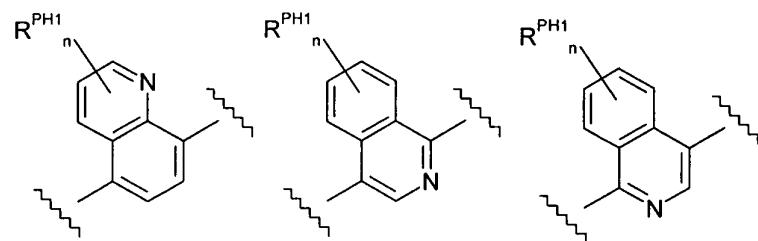
20 and wherein:

-R^{N1} is independently -H or saturated aliphatic C₁₋₄alkyl;

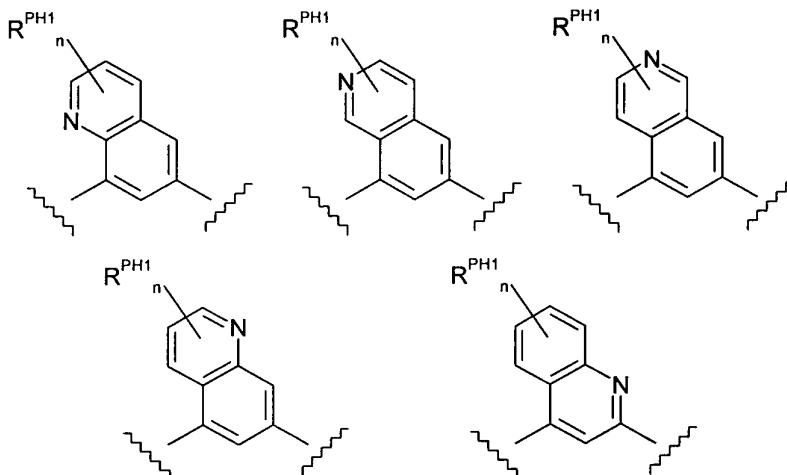

-Z- is independently -NR^{N2}- or -O-;

25 -R^{N2} is independently -H or saturated aliphatic C₁₋₄alkyl optionally substituted with one or more groups selected from -CF₃, -F, -OH, -OR³, -NH₂, -NHR³, and -NR³₂; wherein each -R³ is independently saturated aliphatic C₁₋₄alkyl;

30 and wherein:

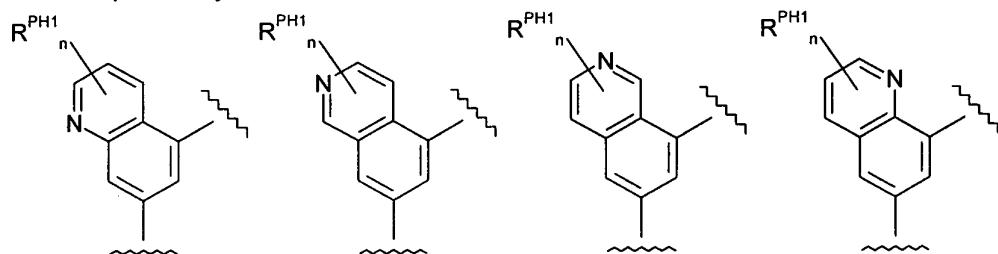

-X- is independently -O- or -S-;

-M- is independently selected from:



35

- 13 -



or -M- is independently selected from:

5

or -M- is independently selected from:

wherein:

each n is independently 0, 1 or 2; and
 10 each R^{PH1} is independently -F, -Cl, -Br, -I, -R^4, -OH, -OR^4, -SH, or -SR^4;
 wherein each -R^4 is independently saturated aliphatic C₁₋₄alkyl;

J-L- is independently selected from:

15 J-NR^{N3}-C(=Y)-NR^{N3}-,
 J-CH₂-NR^{N3}-C(=Y)-NR^{N3}-,
 J-NR^{N3}-C(=Y)-NR^{N3}-CH₂-,

20 J-NR^{N3}-C(=Y)-,
 J-CH₂-NR^{N3}-C(=Y)-,
 J-NR^{N3}-C(=Y)-CH₂-,
 J-CH₂-NR^{N3}-C(=Y)-CH₂-,

J-CH₂-CH₂-NR^{N3}-C(=Y)-,
 J-NR^{N3}-C(=Y)-CH₂-CH₂-,
 J-NR^{N3}-C(=Y)-CH₂-NR^{N3}-,
 5 J-NR^{N3}-CH₂-NR^{N3}-C(=Y)-,
 J-C(=Y)-NR^{N3}-,
 J-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-,
 10 J-CH₂-C(=Y)-NR^{N3}-CH₂-,
 J-CH₂-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-CH₂-,
 15 J-NR^{N3}-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-NR^{N3}-,
 J-C(=Y)-CH₂-NR^{N3}-,
 J-C(=Y)-CH₂-NR^{N3}-CH₂-,
 20 J-C(=Y)-CH₂-CH₂-NR^{N3}-,
 J-CH₂-C(=Y)-CH₂-NR^{N3}-,
 J-NR^{N3}-CH₂-C(=Y)-,
 J-NR^{N3}-CH₂-C(=Y)-CH₂-,
 J-NR^{N3}-CH₂-CH₂-C(=Y)-,
 25 J-CH₂-NR^{N3}-CH₂-C(=Y)-,
 J-NR^{N3}-S(=O)₂-NR^{N3}-,
 J-NR^{N3}-S(=O)₂-NR^{N3}-CH₂-,
 J-CH₂-NR^{N3}-S(=O)₂-NR^{N3}-,
 30 J-NR^{N3}-S(=O)₂-,
 J-NR^{N3}-S(=O)₂-CH₂-,
 J-CH₂-NR^{N3}-S(=O)₂-,
 J-CH₂-NR^{N3}-S(=O)₂-CH₂-,
 35 J-CH₂-CH₂-NR^{N3}-S(=O)₂-,
 J-NR^{N3}-S(=O)₂-CH₂-CH₂-,
 J-NR^{N3}-S(=O)₂-CH₂-NR^{N3}-,
 J-NR^{N3}-CH₂-NR^{N3}-S(=O)₂-,
 40 J-S(=O)₂-NR^{N3}-,
 J-S(=O)₂-NR^{N3}-CH₂-,
 J-CH₂-S(=O)₂-NR^{N3}-,
 J-CH₂-S(=O)₂-NR^{N3}-CH₂-,
 45 J-CH₂-CH₂-S(=O)₂-NR^{N3}-,

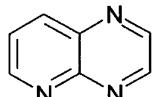
- 15 -

J-S(=O)₂-NR^{N3}-CH₂-CH₂-,

J-S(=O)₂-NR^{N3}-CH₂-NR^{N3}-, and
J-NR^{N3}-CH₂-S(=O)₂-NR^{N3}-;

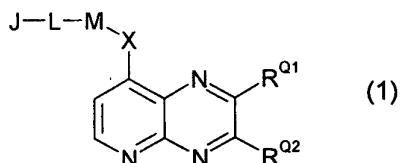
5

wherein:


each -R^{N3} is independently -H or saturated aliphatic C₁₋₄alkyl; and
each =Y is independently =O or =S; and

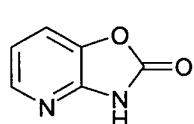
10

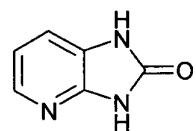
-J is independently phenyl or C₅₋₆heteroaryl, and is optionally substituted.


Pyrido[2,3-b]Pyrazines

15 In one embodiment, the compounds are related to pyrido[2,3-b]pyrazine:

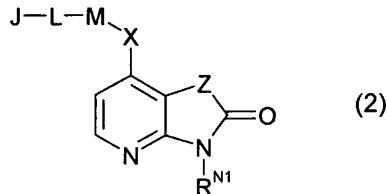
Pyrido[2,3-b]pyrazine


In one embodiment, the compounds are compounds selected from compounds of the following formula and pharmaceutically acceptable salts, hydrates, and solvates thereof:


20

3H-Oxazole[4,5-b]pyridine-2-ones and 1H-imidazo[4,5-b]pyridine-2-ones

In one embodiment, the compounds are related to 3H-oxazole[4,5-b]pyridine-2-one and/or 1H-imidazo[4,5-b]pyridine-2-one:


3H-Oxazolo[4,5-b]pyridin-2-one

1H-imidazo[4,5-b]pyridin-2-one

25

In one embodiment, the compounds are compounds selected from compounds of the following formula and pharmaceutically acceptable salts, hydrates, and solvates thereof:

The Group -R^{N1}

5

In one embodiment, -R^{N1}, if present, is independently -H or saturated aliphatic C₁₋₄alkyl.
 In one embodiment, -R^{N1}, if present, is independently -H or -Me.
 In one embodiment, -R^{N1}, if present, is independently -H.

10 The Group -Z-

In one embodiment, -Z-, if present, is independently -NR^{N2}- or -O-.
 In one embodiment, -Z-, if present, is independently -NR^{N2}-.
 In one embodiment, -Z-, if present, is independently -O-.

15

The Group -R^{N2}

In one embodiment, -R^{N2}, if present, is independently -H or saturated aliphatic C₁₋₄alkyl optionally substituted with one or more groups selected from -CF₃, -F, -OH, -OR³, -NH₂, 20 -NHR³, and -NR³₂; wherein each -R³ is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each -R³, if present, is independently saturated aliphatic C₁₋₄alkyl.
 In one embodiment, each -R³, if present, is independently saturated aliphatic C₁₋₃alkyl.
 In one embodiment, each -R³, if present, is independently -Me or -Et.

25

In one embodiment, -R^{N2}, if present, is independently -H or saturated aliphatic C₁₋₄alkyl.
 In one embodiment, -R^{N2}, if present, is independently -H or -Me.
 In one embodiment, -R^{N2}, if present, is independently -H.

30

The Group -R^{Q1}

In one embodiment, -R^{Q1}, if present, is independently -H or -R^{Q1R}.
 In one embodiment, -R^{Q1}, if present, is independently -H.
 In one embodiment, -R^{Q1}, if present, is independently -R^{Q1R}.

35

The Group -R^{Q2}

In one embodiment, -R^{Q2}, if present, is independently -H or -R^{Q2R}.
 In one embodiment, -R^{Q2}, if present, is independently -H.

- 17 -

In one embodiment, $-R^{Q2}$, if present, is independently $-R^{Q2R}$.

The Group $-R^{Q1R}$

5 In one embodiment, $-R^{Q1R}$, if present, is independently:

$-R^1$, $-R^{1X}$, $-Cl$, $-OH$, $-OR^1$, $-OR^{1X}$, $-SH$, $-SR^1$, $-NH_2$, $-NHR^1$, $-NR^1_2$, or $-NR^{1NA}R^{1NB}$.

In one embodiment, $-R^{Q1R}$, if present, is independently:

$-R^1$, $-R^{1X}$, $-Cl$, $-OR^1$, $-OR^{1X}$, $-SH$, $-SR^1$, $-NH_2$, $-NHR^1$, $-NR^1_2$, or $-NR^{1NA}R^{1NB}$.

10

In one embodiment, $-R^{Q1R}$, if present, is independently:

$-R^1$, $-Cl$, $-OH$, $-OR^1$, $-SH$, $-SR^1$, $-NH_2$, $-NHR^1$, $-NR^1_2$, or $-NR^{1NA}R^{1NB}$.

In one embodiment, $-R^{Q1R}$, if present, is independently:

15 $-R^1$, $-Cl$, $-OR^1$, $-SH$, $-SR^1$, $-NH_2$, $-NHR^1$, $-NR^1_2$, or $-NR^{1NA}R^{1NB}$.

In one embodiment, $-R^{Q1R}$, if present, is independently:

$-OH$, $-Me$, $-CF_3$, $-CH_2Br$, $-NH_2$, $-NHMe$, $-NMe_2$, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

20

In one embodiment, $-R^{Q1R}$, if present, is independently:

$-Me$, $-CF_3$, $-CH_2Br$, $-NH_2$, $-NHMe$, $-NMe_2$, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

25

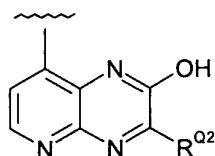
In one embodiment, $-R^{Q1R}$, if present, is independently:

$-OH$, $-Me$, $-NH_2$, $-NHMe$, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

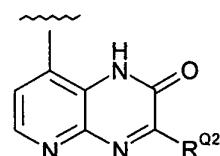
In one embodiment, $-R^{Q1R}$, if present, is independently:

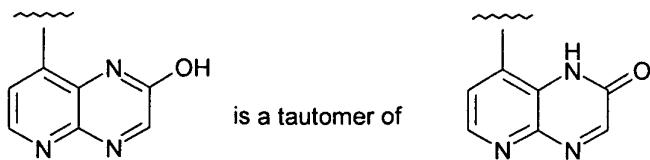
$-Me$, $-NH_2$, $-NHMe$, morpholino, piperidino, piperizino, or N-methyl-piperizino.

30


In one embodiment, $-R^{Q1R}$, if present, is independently $-OH$, $-Me$, or $-NH_2$.

In one embodiment, $-R^{Q1R}$, if present, is independently $-Me$ or $-NH_2$.


In one embodiment, $-R^{Q1R}$, if present, is independently $-Me$.


35

In one embodiment, $-R^{Q1R}$, if present, is $-OH$. In this case, tautomerisation is possible, and the two equivalent tautomers are shown below.

is a tautomer of

For the avoidance of doubt, unless otherwise specified, a reference to a particular tautomer is intended to encompass both that tautomer and corresponding equivalent tautomer(s).

5

The Group $-R^{Q2R}$

In one embodiment, $-R^{Q2R}$, if present, is independently:

$-R^2$, $-R^{2X}$, $-Cl$, $-OH$, $-OR^2$, $-OR^{2X}$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

10

In one embodiment, $-R^{Q2R}$, if present, is independently:

$-R^2$, $-R^{2X}$, $-Cl$, $-OR^2$, $-OR^{2X}$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

15

In one embodiment, $-R^{Q2R}$, if present, is independently:

$-R^2$, $-Cl$, $-OH$, $-OR^2$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

In one embodiment, $-R^{Q2R}$, if present, is independently:

$-R^2$, $-Cl$, $-OR^2$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

20

In one embodiment, $-R^{Q2R}$, if present, is independently:

$-OH$, $-Me$, $-CF_3$, $-CH_2Br$, $-NH_2$, $-NHMe$, $-NMe_2$, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

In one embodiment, $-R^{Q2R}$, if present, is independently:

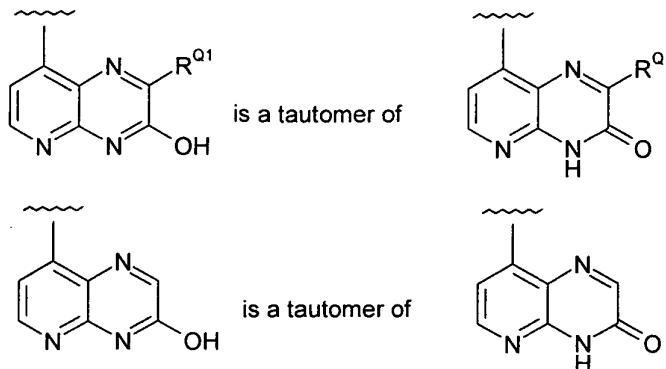
25 $-Me$, $-CF_3$, $-CH_2Br$, $-NH_2$, $-NHMe$, $-NMe_2$, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

In one embodiment, $-R^{Q2R}$, if present, is independently:

$-OH$, $-Me$, $-NH_2$, $-NHMe$, morpholino, piperidino, piperizino, or N-methyl-piperizino.

30

In one embodiment, $-R^{Q2R}$, if present, is independently:


$-Me$, $-NH_2$, $-NHMe$, morpholino, piperidino, piperizino, or N-methyl-piperizino.

In one embodiment, $-R^{Q2R}$, if present, is independently $-OH$, $-Me$, or $-NH_2$.

35 In one embodiment, $-R^{Q2R}$, if present, is independently $-Me$ or $-NH_2$.

In one embodiment, $-R^{Q2R}$, if present, is independently $-Me$.

In one embodiment, $-R^{Q2R}$, if present, is $-OH$. In this case, tautomerisation is possible, and the two equivalent tautomers are shown below.

5

For the avoidance of doubt, unless otherwise specified, a reference to a particular tautomer is intended to encompass both that tautomer and corresponding equivalent tautomer(s).

10 Some Combinations of the Groups $-R^{Q1}$ and $-R^{Q2}$: Not both are $-H$

In one embodiment:

$-R^{Q1}$, if present, is independently $-H$ or $-R^{Q1R}$; and
 $-R^{Q2}$, if present, is independently $-R^{Q2R}$;

15 or

$-R^{Q1}$, if present, is independently $-R^{Q1R}$; and
 $-R^{Q2}$, if present, is independently $-H$ or $-R^{Q2R}$.

20 Some Combinations of the Groups $-R^{Q1}$ and $-R^{Q2}$: At least one is $-OH$

20

In one embodiment:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$; and
 $-R^{Q2}$, if present, is independently $-H$ or $-R^{Q2R}$.

25

In one embodiment:

$-R^{Q1}$, if present, is independently $-H$ or $-R^{Q1R}$;
 $-R^{Q2}$, if present, is independently $-R^{Q2R}$; and
 $-R^{Q2R}$, if present, is independently $-OH$.

30

Some Combinations of the Groups $-R^{Q1}$ and $-R^{Q2}$: Exactly one is $-OH$: $-R^{Q1}$

In one embodiment:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$;
 $-R^{Q2}$, if present, is independently $-H$ or $-R^{Q2R}$; and

$-R^{Q2R}$, if present, is independently:
 $-R^2$, $-R^{2X}$, $-Cl$, $-OR^2$, $-OR^{2X}$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

In one embodiment:

5 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$;
 $-R^{Q2}$, if present, is independently $-H$ or $-R^{Q2R}$, and
 $-R^{Q2R}$, if present, is independently:
 $-R^2$, $-Cl$, $-OR^2$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

10

In one embodiment:

15 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$;
 $-R^{Q2}$, if present, is independently $-H$ or $-R^{Q2R}$, and
 $-R^{Q2R}$, if present, is independently:
 $-Me$, $-CF_3$, $-CH_2Br$, $-NH_2$, $-NHMe$, $-NMe_2$, morpholino, piperidino, or piperizino, or
N-methyl-piperizino.

In one embodiment:

20 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$;
 $-R^{Q2}$, if present, is independently $-H$ or $-R^{Q2R}$, and
 $-R^{Q2R}$, if present, is independently:
 $-Me$, $-NH_2$, $-NHMe$, morpholino, piperidino, piperizino, or N-methyl-piperizino.

25

In one embodiment:

30 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$; and
 $-R^{Q2}$, if present, is independently $-H$.

35

In one embodiment:

35 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$;
 $-R^{Q2}$, if present, is independently $-R^{Q2R}$, and
 $-R^{Q2R}$, if present, is independently:
 $-R^2$, $-R^{2X}$, $-Cl$, $-OR^2$, $-OR^{2X}$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

In one embodiment:

40 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-OH$;
 $-R^{Q2}$, if present, is independently $-R^{Q2R}$, and
 $-R^{Q2R}$, if present, is independently:
 $-R^2$, $-Cl$, $-OR^2$, $-SH$, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

In one embodiment:

- R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently -OH;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- 5 -R^{Q2R}, if present, is independently:
 - Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

In one embodiment:

- 10 -R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently -OH;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently:
 - Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino.

15

In one embodiment:

- R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently -OH;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- 20 -R^{Q2R}, if present, is independently -Me or -NH₂.

In one embodiment:

- R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently -OH;
- 25 -R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently -Me.

Some Combinations of the Groups -R^{Q1} and -R^{Q2}: Exactly one is -OH: -R^{Q2}

30 In one embodiment:

- R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R}, if present, is independently:
 - R¹, -R^{1X}, -Cl, -OR¹, -OR^{1X}, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};
 - R^{Q2}, if present, is independently -R^{Q2R}; and
 - 35 -R^{Q2R}, if present, is independently -OH.

In one embodiment:

- R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R}, if present, is independently:
 - R¹, -Cl, -OR¹, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};
 - R^{Q2}, if present, is independently -R^{Q2R}; and
 - R^{Q2R}, if present, is independently -OH.

In one embodiment:

- 45 -R^{Q1}, if present, is independently -H or -R^{Q1R};

- R^{Q1R}, if present, is independently:
- Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- 5 -R^{Q2R}, if present, is independently -OH.

In one embodiment:

- R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R}, if present, is independently:
- 10 -Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently -OH.

In one embodiment:

- 15 -R^{Q1}, if present, is independently -H;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently -OH.

In one embodiment:

- 20 -R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently:
- R¹, -R^{1X}, -Cl, -OR¹, -OR^{1X}, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};
- R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently -OH.

25 In one embodiment:

- R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently:
- R¹, -Cl, -OR¹, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};
- 30 -R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently -OH.

In one embodiment:

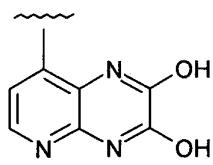
- 35 -R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently:
- Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino;
- R^{Q2}, if present, is independently -R^{Q2R}; and
- R^{Q2R}, if present, is independently -OH.

40 In one embodiment:

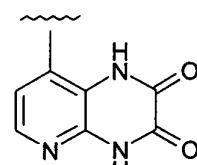
- R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R}, if present, is independently:
- Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino;
- 45 -R^{Q2}, if present, is independently -R^{Q2R}; and

$-R^{Q2R}$, if present, is independently $-OH$.

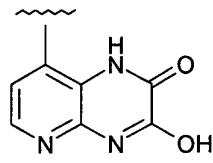
In one embodiment:

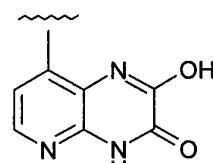

5 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-Me$ or $-NH_2$;
 $-R^{Q2}$, if present, is independently $-R^{Q2R}$; and
 $-R^{Q2R}$, if present, is independently $-OH$.

In one embodiment:


10 $-R^{Q1}$, if present, is independently $-R^{Q1R}$;
 $-R^{Q1R}$, if present, is independently $-Me$;
 $-R^{Q2}$, if present, is independently $-R^{Q2R}$; and
 $-R^{Q2R}$, if present, is independently $-OH$.

15 Some Combinations of the Groups $-R^{Q1}$ and $-R^{Q2}$: Both are $-OH$


In one embodiment, $-R^{Q1}$, if present, is independently $-R^{Q1R}$; $-R^{Q1R}$, if present, is independently $-OH$; $-R^{Q2}$, if present, is independently $-R^{Q2R}$; and $-R^{Q2R}$, if present, is independently $-OH$. In this case, tautomerisation is possible, and the equivalent tautomers are shown below.


is a tautomer of

is a tautomer of

is a tautomer of

For the avoidance of doubt, unless otherwise specified, a reference to a particular tautomer is intended to encompass both that tautomer and corresponding equivalent tautomer(s).

25

The Group $-R^1$

In one embodiment, each $-R^1$, if present, is independently:

30 saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, or $-NR^{11}2$;
 saturated C_{3-6} cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, and $-NR^{11}2$; or
 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from $-R^{11}$.

In one embodiment, each -R¹, if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR¹¹, -NH₂, -NHR¹¹, or -NR¹¹₂; or

5 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R¹¹.

In one embodiment, each -R¹, if present, is independently:

10 saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR¹¹, -NH₂, -NHR¹¹, or -NR¹¹₂.

In one embodiment, each -R¹, if present, is independently saturated aliphatic C₁₋₆alkyl.

In one embodiment, each -R¹, if present, is independently saturated aliphatic C₁₋₃alkyl.

15

The Group -R^{1X}

In one embodiment, each -R^{1X}, if present, is independently saturated aliphatic C₁₋₄alkyl substituted with one or more groups selected from -F, -Cl, -Br, and -I.

20

In one embodiment, each -R^{1X}, if present, is independently saturated aliphatic C₁₋₄alkyl substituted with one or more groups selected from -F or -Cl.

In one embodiment, each -R^{1X}, if present, is independently -CF₃ or -CH₂Br.

25 In one embodiment, each -R^{1X}, if present, is independently -CF₃.

The Group -R²

In one embodiment, each -R², if present, is independently:

30 saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR²², -NH₂, -NHR²², or -NR²²₂;

saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR²², -NH₂, -NHR²², and -NR²²₂; or

35 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R²².

In one embodiment, each -R², if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR²², -NH₂, -NHR²², or -NR²²₂; or

40 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R²².

In one embodiment, each -R², if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR²², -NH₂, -NHR²², or -NR²²₂.

45

In one embodiment, each $-R^2$, if present, is independently saturated aliphatic C_{1-6} alkyl.
 In one embodiment, each $-R^2$, if present, is independently saturated aliphatic C_{1-3} alkyl.

5 The Group $-R^{2X}$

In one embodiment, each $-R^{2X}$, if present, is independently saturated aliphatic C_{1-4} alkyl substituted with one or more groups selected from -F, -Cl, -Br, and -I.

10 In one embodiment, each $-R^{2X}$, if present, is independently saturated aliphatic C_{1-4} alkyl substituted with one or more groups selected from -F or -Cl.

In one embodiment, each $-R^{2X}$, if present, is independently $-CF_3$ or $-CH_2Br$.
 In one embodiment, each $-R^{2X}$, if present, is independently $-CF_3$.

15

The Group $-NR^{1NA}R^{1NB}$

In one embodiment, $-NR^{1NA}R^{1NB}$, if present, is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{11}$, $-CF_3$, -F, -OH, $-OR^{11}$, $-NH_2$, $-NHR^{11}_2$, and $-NR^{11}_2$.

In one embodiment, $-NR^{1NA}R^{1NB}$, if present, is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{11}$.

25

In one embodiment, $-NR^{1NA}R^{1NB}$, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{11}$.

The Group $-NR^{2NA}R^{2NB}$

30

In one embodiment, $-NR^{2NA}R^{2NB}$, if present, is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{22}$, $-CF_3$, -F, -OH, $-OR^{22}$, $-NH_2$, $-NHR^{22}_2$, and $-NR^{22}_2$.

35

In one embodiment, $-NR^{2NA}R^{2NB}$, if present, is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{22}$.

In one embodiment, $-NR^{2NA}R^{2NB}$, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{22}$.

The Group $-R^{11}$

In one embodiment, each $-R^{11}$, if present, is independently saturated aliphatic C_{1-4} alkyl.

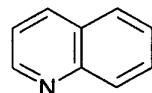
45

In one embodiment, each $-R^{11}$, if present, is independently saturated aliphatic C_{1-3} alkyl.

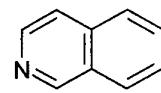
- 26 -

In one embodiment, each $-R^{11}$, if present, is independently -Me or -Et.

The Group -R²²

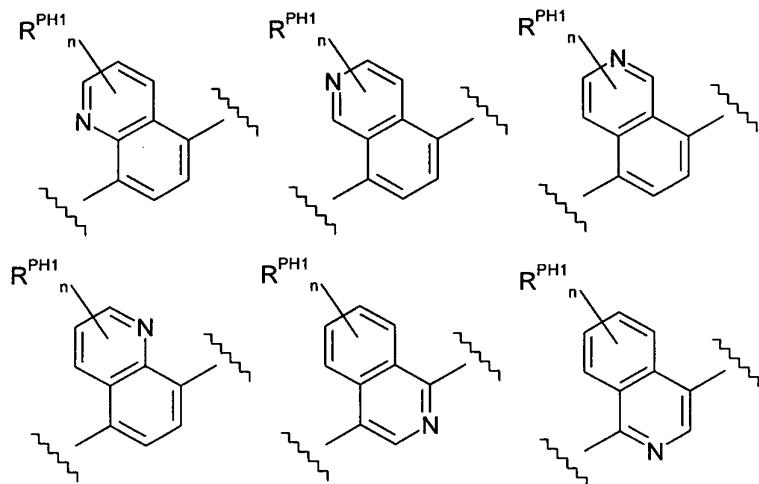

5 In one embodiment, each $-R^{22}$, if present, is independently saturated aliphatic C₁₋₄alkyl.
 In one embodiment, each $-R^{22}$, if present, is independently saturated aliphatic C₁₋₃alkyl.
 In one embodiment, each $-R^{22}$, if present, is independently -Me or -Et.

The Group -X-

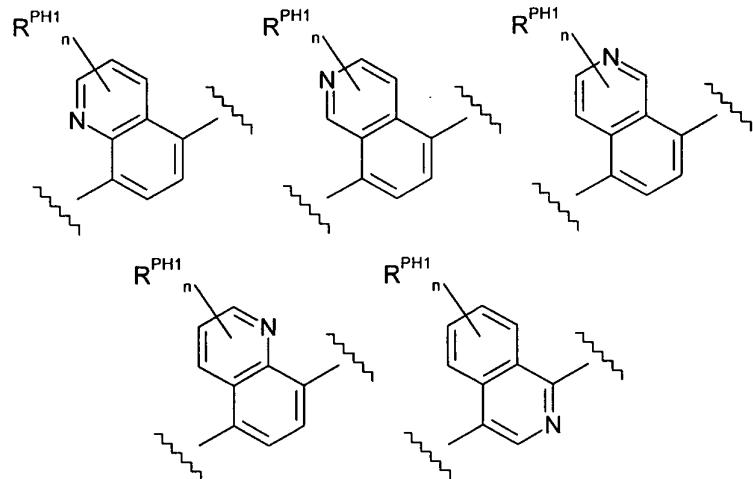

10 In one embodiment, -X- is independently -O- or -S-.
 In one embodiment, -X- is independently -O-.
 In one embodiment, -X- is independently -S-.

15 The Group -M-

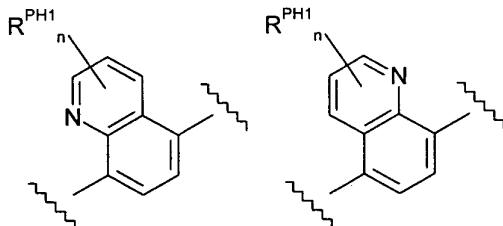
The group -M- is related to quinoline or isoquinoline.



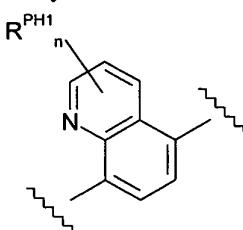
Quinoline


Isoquinoline

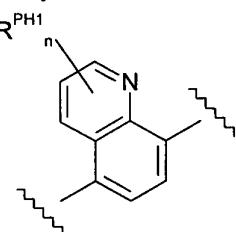
20 In one embodiment, -M- is independently selected from:



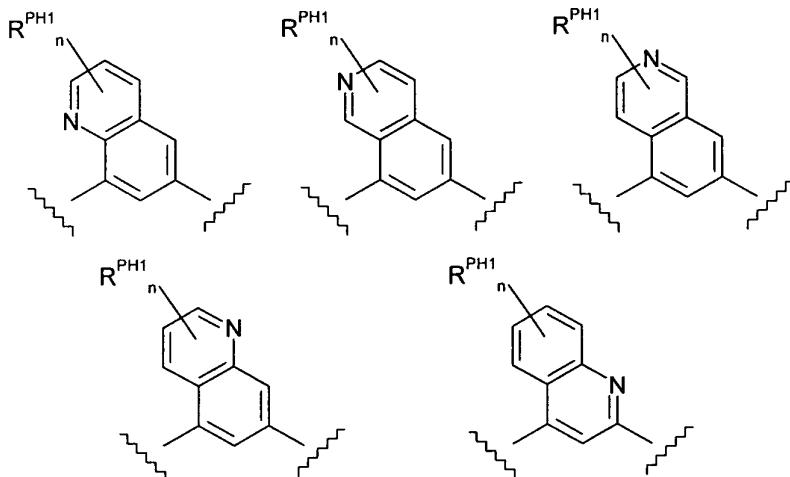
- 27 -


In one embodiment, -M- is independently selected from:

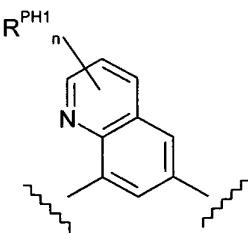
5 In one embodiment, -M- is independently selected from:



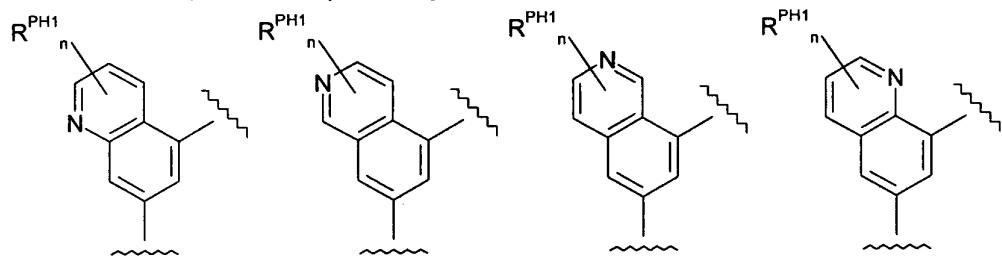
In one embodiment, -M- is independently:


10

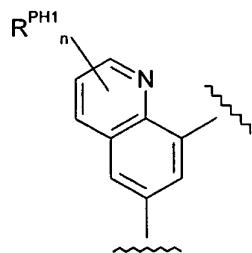
In one embodiment, -M- is independently:



- 28 -


In one embodiment, -M- is independently selected from:

5 In one embodiment, -M- is independently:



In one embodiment, -M- is independently selected from:

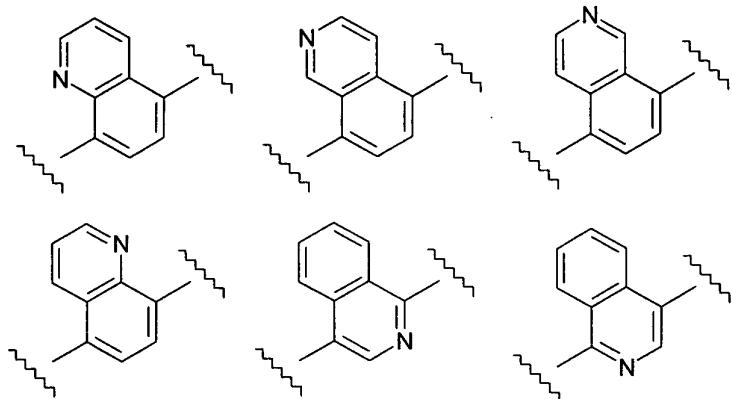
10

In one embodiment, -M- is independently:

In one embodiment, each n is independently 0, 1 or 2.

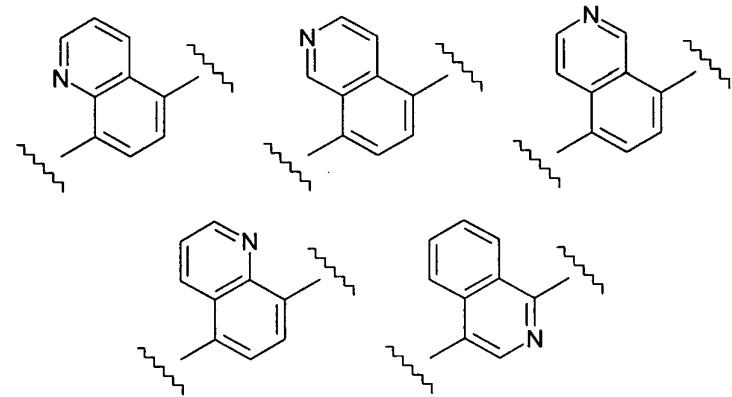
15 In one embodiment, each n is independently 0 or 1.

- 29 -

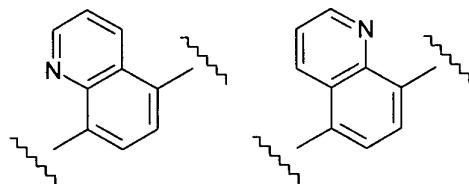

In one embodiment, each n is independently 1 or 2.

In one embodiment, each n is independently 1.

In one embodiment, each n is independently 2.

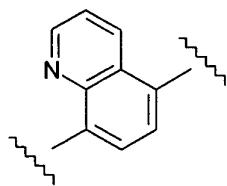

5 In one embodiment, each n is independently 0, as in the following embodiments.

In one embodiment, -M- is independently selected from:

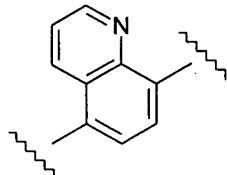


10

In one embodiment, -M- is independently selected from:

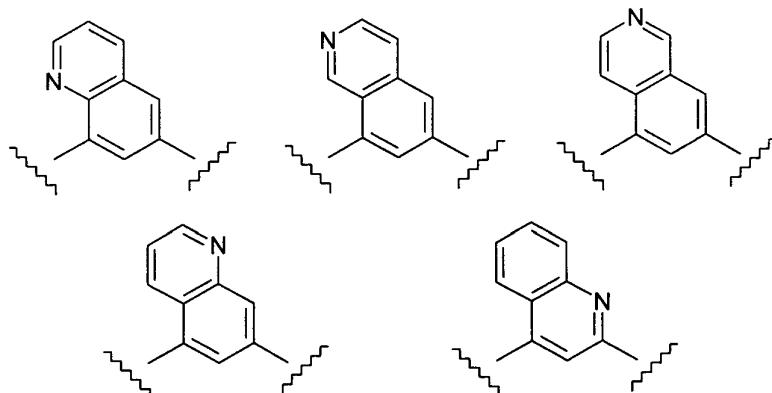


15 In one embodiment, -M- is independently selected from:

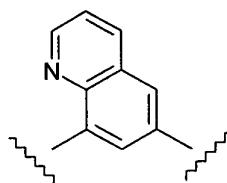


- 30 -

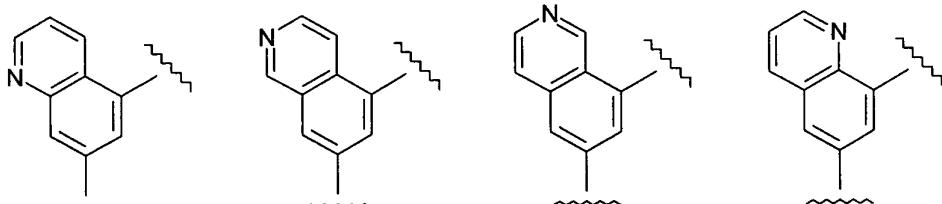
In one embodiment, -M- is independently selected from:



In one embodiment, -M- is independently selected from:

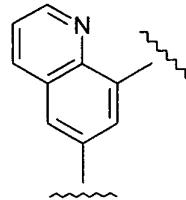

5

In one embodiment, -M- is independently selected from:



10

In one embodiment, -M- is independently selected from:


In one embodiment, -M- is independently selected from:

15

- 31 -

In one embodiment, -M- is independently selected from:

The Groups -R^{PH1}

5

In one embodiment, each R^{PH1}, if present, is independently -F, -Cl, -Br, -I, -R⁴, -OH, -OR⁴, -SH, or -SR⁴; wherein each -R⁴ is independently saturated aliphatic C₁₋₄alkyl.

10

In one embodiment, each R^{PH1}, if present, is independently -F, -Cl, -Br, -I, -R⁴, -OH, or -OR⁴.

10

The Groups -R⁴

In one embodiment, each -R⁴, if present, is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each -R⁴, if present, is independently saturated aliphatic C₁₋₃alkyl.

15

In one embodiment, each -R⁴, if present, is independently -Me.

The Group -L-

In one embodiment, J-L- is independently selected from:

20

J-NR^{N3}-C(=Y)-NR^{N3}-,
J-CH₂-NR^{N3}-C(=Y)-NR^{N3}-,
J-NR^{N3}-C(=Y)-NR^{N3}-CH₂-,

25

J-NR^{N3}-C(=Y)-,
J-CH₂-NR^{N3}-C(=Y)-,
J-NR^{N3}-C(=Y)-CH₂-,
J-CH₂-NR^{N3}-C(=Y)-CH₂-,
J-CH₂-CH₂-NR^{N3}-C(=Y)-,
30 J-NR^{N3}-C(=Y)-CH₂-CH₂-,

J-NR^{N3}-C(=Y)-CH₂-NR^{N3}-,
J-NR^{N3}-CH₂-NR^{N3}-C(=Y)-,

35

J-C(=Y)-NR^{N3}-,
J-CH₂-C(=Y)-NR^{N3}-,
J-C(=Y)-NR^{N3}-CH₂-,
J-CH₂-C(=Y)-NR^{N3}-CH₂-,
J-CH₂-CH₂-C(=Y)-NR^{N3}-,
40 J-C(=Y)-NR^{N3}-CH₂-CH₂-,

J-NR^{N3}-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-NR^{N3}-,

5 J-C(=Y)-CH₂-NR^{N3}-,
 J-C(=Y)-CH₂-NR^{N3}-CH₂-,
 J-C(=Y)-CH₂-CH₂-NR^{N3}-,
 J-CH₂-C(=Y)-CH₂-NR^{N3}-,

10 J-NR^{N3}-CH₂-C(=Y)-,
 J-NR^{N3}-CH₂-C(=Y)-CH₂-,
 J-NR^{N3}-CH₂-CH₂-C(=Y)-,
 J-CH₂-NR^{N3}-CH₂-C(=Y)-,

15 J-NR^{N3}-S(=O)₂-NR^{N3}-,
 J-NR^{N3}-S(=O)₂-NR^{N3}-CH₂-,
 J-CH₂-NR^{N3}-S(=O)₂-NR^{N3}-,

20 J-NR^{N3}-S(=O)₂-,
 J-NR^{N3}-S(=O)₂-CH₂-,
 J-CH₂-NR^{N3}-S(=O)₂-,
 J-CH₂-NR^{N3}-S(=O)₂-CH₂-,
 J-CH₂-CH₂-NR^{N3}-S(=O)₂-,
 J-NR^{N3}-S(=O)₂-CH₂-CH₂-,

25 J-NR^{N3}-S(=O)₂-CH₂-NR^{N3}-,
 J-NR^{N3}-CH₂-NR^{N3}-S(=O)₂-,

30 J-S(=O)₂-NR^{N3}-,
 J-S(=O)₂-NR^{N3}-CH₂-,
 J-CH₂-S(=O)₂-NR^{N3}-,
 J-CH₂-S(=O)₂-NR^{N3}-CH₂-,
 J-CH₂-CH₂-S(=O)₂-NR^{N3}-,
 J-S(=O)₂-NR^{N3}-CH₂-CH₂-,

35 J-S(=O)₂-NR^{N3}-CH₂-NR^{N3}-, and
 J-NR^{N3}-CH₂-S(=O)₂-NR^{N3}-;

wherein:

40 each -R^{N3} is independently -H or saturated aliphatic C₁₋₄alkyl; and
 each =Y is independently =O or =S.

- 33 -

In one embodiment, the group J-L- is independently selected from:

5 J-NR^{N3}-C(=Y)-NR^{N3}-,
 J-CH₂-NR^{N3}-C(=Y)-NR^{N3}-,
 J-NR^{N3}-C(=Y)-,
 J-C(=Y)-NR^{N3}-,
 J-NR^{N3}-CH₂-C(=Y)-NR^{N3}-,
 J-CH₂-NR^{N3}-C(=Y)-; and
 J-CH₂-C(=Y)-NR^{N3}-.

10 In one embodiment, the group J-L- is independently selected from:

15 J-NR^{N3}-C(=Y)-NR^{N3}-,
 J-CH₂-NR^{N3}-C(=Y)-NR^{N3}-, and
 J-NR^{N3}-C(=Y)-NR^{N3}-CH₂-.

In one embodiment, the group J-L- is independently selected from:

20 J-NR^{N3}-C(=Y)-NR^{N3}-, and
 J-CH₂-C(=Y)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-NR^{N3}-C(=Y)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-CH₂-C(=Y)-NR^{N3}-.

25 In one embodiment, the group J-L- is independently J-NR^{N3}-C(=Y)- or J-C(=Y)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-C(=Y)-NR^{N3}-.

30 In one embodiment, the group J-L- is independently J-NR^{N3}-C(=Y)-.

In one embodiment, the group J-L- is independently selected from:

35 J-NR^{N3}-C(=O)-NR^{N3}-, and
 J-CH₂-C(=O)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-NR^{N3}-C(=O)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-NH-C(=O)-NH-.

40 In one embodiment, the group J-L- is independently J-CH₂-C(=O)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-CH₂-C(=O)-NH-.

In one embodiment, the group J-L- is independently J-C(=O)-NR^{N3}-.

In one embodiment, the group J-L- is independently J-C(=O)-NH-.

- 34 -

In one embodiment, the group J-L- is independently J-NR^{N3}-C(=O)-.

In one embodiment, the group J-L- is independently J-NH-C(=O)-.

In one embodiment, the group J-L- is independently selected from:

5

A-NR^{N3}-S(=O)₂-NR^{N3}-,
 A-NR^{N3}-S(=O)₂-,
 A-S(=O)₂-NR^{N3}-,
 A-CH₂-NR^{N3}-S(=O)₂-NR^{N3}-, and
 10 A-CH₂-NR^{N3}-S(=O)₂-.

In one embodiment, the group J-L- is independently J-NR^{N3}-S(=O)₂- or J-S(=O)₂-NR^{N3}-.

In one embodiment, the group J-L- is independently J-S(=O)₂-NR^{N3}-.

15

In one embodiment, the group J-L- is independently J-S(=O)₂-NH-.

The Group -R^{N3}

In one embodiment, each -R^{N3}, if present, is independently -H or saturated aliphatic C₁₋₄alkyl.

20

In one embodiment, each -R^{N3}, if present, is independently -H or -Me.

In one embodiment, each -R^{N3}, if present, is independently -H.

The Group =Y

25

In one embodiment, each =Y, if present, is independently =O or =S.

In one embodiment, each =Y, if present, is independently =O ("ureas", "amides", etc.).

In one embodiment, each =Y, if present, is independently =S ("thioureas", "thioamides", etc.).

The Group -J

30

In one embodiment, -J is independently phenyl or C₅₋₆heteroaryl, and is optionally substituted.

In one embodiment, -J is independently phenyl, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, pyridazinyl,

35

and is optionally substituted.

In one embodiment, -J is independently phenyl, pyrazolyl, or pyridyl, and is optionally substituted.

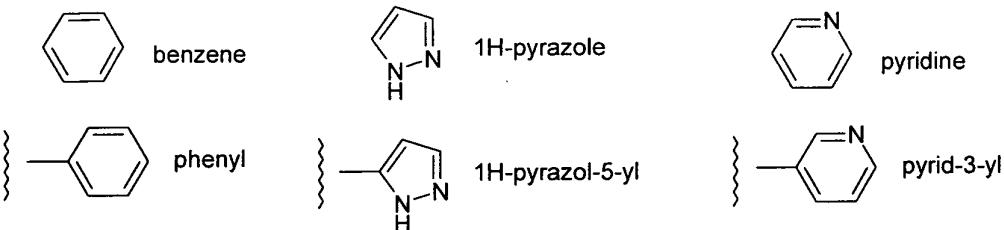
40

In one embodiment, -J is independently phenyl or pyrazolyl, and is optionally substituted.

In one embodiment, -J is independently phenyl, and is optionally substituted.

In one embodiment, -J is independently pyrazolyl, and is optionally substituted.

45


In one embodiment, -J is independently 1H-pyrazolyl, and is optionally substituted.

In one embodiment, -J is independently 1H-pyrazol-5-yl, and is optionally substituted.

In one embodiment, -J is independently pyridyl, and is optionally substituted.

In one embodiment, -J is independently pyrid-3-yl, and is optionally substituted.

5

Optional Substituents on the Group -J

10 In one embodiment, -J is independently optionally substituted.

In one embodiment, -J is independently unsubstituted.

In one embodiment, -J is optionally substituted with one or more substituents, -R^J.

15 In one embodiment, each -R^J, if present, is independently selected from:

- R^{JA1},
- F, -Cl, -Br, -I,
- CF₃, -OCF₃, -SCF₃,
- 20 -OH, -L^{JA}-OH, -O-L^{JA}-OH, -NH-L^{JA}-OH, -NR^{JA1}-L^{JA}-OH,
- OR^{JA1}, -L^{JA}-OR^{JA1}, -O-L^{JA}-OR^{JA1}, -NH-L^{JA}-OR^{JA1}, -NR^{JA1}-L^{JA}-OR^{JA1},
- SH, -SR^{JA1},
- CN,
- NO₂,
- 25 -NH₂, -NHR^{JA1}, -NR^{JA1}₂, -NR^{JA2}R^{JA3},
- L^{JA}-NH₂, -L^{JA}-NHR^{JA1}, -L^{JA}-NR^{JA1}₂, -L^{JA}-NR^{JA2}R^{JA3},
- O-L^{JA}-NH₂, -O-L^{JA}-NHR^{JA1}, -O-L^{JA}-NR^{JA1}₂, -O-L^{JA}-NR^{JA2}R^{JA3},
- NH-L^{JA}-NH₂, -NR^{JA1}-L^{JA}-NH₂, -NH-L^{JA}-NHR^{JA1}, -NR^{JA1}-L^{JA}-NHR^{JA1},
- NH-L^{JA}-NR^{JA1}₂, -NR^{JA1}-L^{JA}-NR^{JA1}₂,
- 30 -NH-L^{JA}-NR^{JA2}R^{JA3}, -NR^{JA1}-L^{JA}-NR^{JA2}R^{JA3},
- OC(=O)R^{JA1},
- C(=O)OH, -C(=O)OR^{JA1},
- C(=O)R^{JA1},
- C(=O)NH₂, -C(=O)NHR^{JA1}, -C(=O)NR^{JA1}₂, -C(=O)NR^{JA2}R^{JA3},
- 35 -NHC(=O)R^{JA1}, -NR^{JA1}(=O)R^{JA1},
- NHC(=O)OR^{JA1}, -NR^{JA1}(=O)OR^{JA1},
- OC(=O)NH₂, -OC(=O)NHR^{JA1}, -OC(=O)NR^{JA1}₂, -OC(=O)NR^{JA2}R^{JA3},
- NHC(=O)NH₂, -NHC(=O)NHR^{JA1},
- NHC(=O)NR^{JA1}₂, -NHC(=O)NR^{JA2}R^{JA3},

$-\text{NR}^{\text{JA}1}(\text{=O})\text{NH}_2$, $-\text{NR}^{\text{JA}1}(\text{=O})\text{NHR}^{\text{JA}1}$,
 $-\text{NR}^{\text{JA}1}(\text{=O})\text{NR}^{\text{JA}1}_2$, $-\text{NR}^{\text{JA}1}(\text{=O})\text{NR}^{\text{JA}2}\text{R}^{\text{JA}3}$,
 $-\text{NHS}(\text{=O})_2\text{R}^{\text{JA}1}$, $-\text{NR}^{\text{JA}1}\text{S}(\text{=O})_2\text{R}^{\text{JA}1}$,
 $-\text{S}(\text{=O})_2\text{NH}_2$, $-\text{S}(\text{=O})_2\text{NHR}^{\text{JA}1}$, $-\text{S}(\text{=O})_2\text{NR}^{\text{JA}1}_2$, $-\text{S}(\text{=O})_2\text{NR}^{\text{JA}2}\text{R}^{\text{JA}3}$,
 $-\text{S}(\text{=O})\text{R}^{\text{JA}1}$, $-\text{S}(\text{=O})_2\text{R}^{\text{JA}1}$, $-\text{OS}(\text{=O})_2\text{R}^{\text{JA}1}$, $-\text{S}(\text{=O})_2\text{OH}$, and $-\text{S}(\text{=O})_2\text{OR}^{\text{JA}1}$;
5

wherein:

each $-\text{L}^{\text{JA}}$ - is independently saturated aliphatic C_{1-5} alkylene;

in each group $-\text{NR}^{\text{JA}2}\text{R}^{\text{JA}3}$, $\text{R}^{\text{JA}2}$ and $\text{R}^{\text{JA}3}$, taken together with the nitrogen atom to which they are attached, form a 4-, 5-, 6-, or 7-membered non-aromatic ring having exactly 1 ring heteroatom or exactly 2 ring heteroatoms, wherein one of said exactly 2 ring heteroatoms is N, and the other of said exactly 2 ring heteroatoms is independently N or O;

each $-\text{R}^{\text{JA}1}$ is independently:

$-\text{R}^{\text{JB}1}$, $-\text{R}^{\text{JB}2}$, $-\text{R}^{\text{JB}3}$, $-\text{R}^{\text{JB}4}$, $-\text{R}^{\text{JB}5}$, $-\text{R}^{\text{JB}6}$, $-\text{R}^{\text{JB}7}$, $-\text{R}^{\text{JB}8}$,
 $-\text{L}^{\text{JB}}\text{-R}^{\text{JB}4}$, $-\text{L}^{\text{JB}}\text{-R}^{\text{JB}5}$, $-\text{L}^{\text{JB}}\text{-R}^{\text{JB}6}$, $-\text{L}^{\text{JB}}\text{-R}^{\text{JB}7}$, or $-\text{L}^{\text{JB}}\text{-R}^{\text{JB}8}$;

15 each $-\text{R}^{\text{JB}1}$ is independently saturated aliphatic C_{1-6} alkyl;

each $-\text{R}^{\text{JB}2}$ is independently aliphatic C_{2-6} alkenyl;

each $-\text{R}^{\text{JB}3}$ is independently aliphatic C_{2-6} alkynyl;

each $-\text{R}^{\text{JB}4}$ is independently saturated C_{3-6} cycloalkyl;

each $-\text{R}^{\text{JB}5}$ is independently C_{3-6} cycloalkenyl;

20 each $-\text{R}^{\text{JB}6}$ is independently non-aromatic C_{3-8} heterocyclyl;

each $-\text{R}^{\text{JB}7}$ is independently C_{6-10} carboaryl;

each $-\text{R}^{\text{JB}8}$ is independently C_{5-10} heteroaryl;

each $-\text{L}^{\text{JB}}$ - is independently saturated aliphatic C_{1-3} alkylene;

wherein:

25 each $-\text{R}^{\text{JB}4}$, $-\text{R}^{\text{JB}5}$, $-\text{R}^{\text{JB}6}$, $-\text{R}^{\text{JB}7}$, and $-\text{R}^{\text{JB}8}$ is optionally substituted, for example, with one or more substituents $-\text{R}^{\text{JC}1}$ and/or one or more substituents $-\text{R}^{\text{JC}2}$,

each $-\text{R}^{\text{JB}1}$, $-\text{R}^{\text{JB}2}$, $-\text{R}^{\text{JB}3}$, and $-\text{L}^{\text{JB}}$ - is optionally substituted, for example, with one or more substituents $-\text{R}^{\text{JC}2}$, and

wherein:

30 each $-\text{R}^{\text{JC}1}$ is independently saturated aliphatic C_{1-4} alkyl, phenyl, or benzyl;

each $-\text{R}^{\text{JC}2}$ is independently:

$-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$,

$-\text{CF}_3$, $-\text{OCF}_3$, $-\text{SCF}_3$,

$-\text{OH}$, $-\text{L}^{\text{JD}}\text{-OH}$, $-\text{O-L}^{\text{JD}}\text{-OH}$,

35 $-\text{OR}^{\text{JD}1}$, $-\text{L}^{\text{JD}}\text{-OR}^{\text{JD}1}$, $-\text{O-L}^{\text{JD}}\text{-OR}^{\text{JD}1}$,

$-\text{SH}$, $-\text{SR}^{\text{JD}1}$,

$-\text{CN}$,

$-\text{NO}_2$,

$-\text{NH}_2$, $-\text{NHR}^{\text{JD}1}$, $-\text{NR}^{\text{JD}1}_2$, $-\text{NR}^{\text{JD}2}\text{R}^{\text{JD}3}$,

40 $-\text{L}^{\text{JD}}\text{-NH}_2$, $-\text{L}^{\text{JD}}\text{-NHR}^{\text{JD}1}$, $-\text{L}^{\text{JD}}\text{-NR}^{\text{JD}1}_2$, $-\text{L}^{\text{JD}}\text{-NR}^{\text{JD}2}\text{R}^{\text{JD}3}$,

$-\text{C}(\text{=O})\text{OH}$, $-\text{C}(\text{=O})\text{OR}^{\text{JD}1}$,

$-\text{C}(\text{=O})\text{NH}_2$, $-\text{C}(\text{=O})\text{NHR}^{\text{JD}1}$, $-\text{C}(\text{=O})\text{NR}^{\text{JD}1}_2$, or $-\text{C}(\text{=O})\text{NR}^{\text{JD}2}\text{R}^{\text{JD}3}$,

wherein:

each $-\text{R}^{\text{JD}1}$ is independently saturated aliphatic C_{1-4} alkyl, phenyl, or benzyl;

45 each $-\text{L}^{\text{JD}}$ - is independently saturated aliphatic C_{1-5} alkylene; and

in each group $-NR^{JD2}R^{JD3}$, R^{JD2} and R^{JD3} , taken together with the nitrogen atom to which they are attached, form a 4-, 5-, 6-, or 7-membered non-aromatic ring having exactly 1 ring heteroatom or exactly 2 ring heteroatoms, wherein one of said exactly 2 ring heteroatoms is N, and the other of said exactly 2 ring heteroatoms is independently N or O.

5

In one embodiment, each $-R^J$, if present, is independently selected from:

- R^{JA1} ,
- F, -Cl, -Br, -I,
- CF_3 , - OCF_3 , - SCF_3 ,
- OH, - L^{JA} -OH, - $O-L^{JA}$ -OH, -NH- L^{JA} -OH, - $NR^{JA1}-L^{JA}$ -OH,
- OR^{JA1} , - L^{JA} - OR^{JA1} , - $O-L^{JA}$ - OR^{JA1} , -NH- L^{JA} - OR^{JA1} , - $NR^{JA1}-L^{JA}$ - OR^{JA1} ,
- SH, - SR^{JA1} ,
- CN,
- NO_2 ,
- NH_2 , - NHR^{JA1} , - NR^{JA1}_2 , - $NR^{JA2}R^{JA3}$,
- L^{JA} - NH_2 , - L^{JA} - NHR^{JA1} , - L^{JA} - NR^{JA1}_2 , - L^{JA} - $NR^{JA2}R^{JA3}$,
- $O-L^{JA}$ - NH_2 , - $O-L^{JA}$ - NHR^{JA1} , - $O-L^{JA}$ - NR^{JA1}_2 , - $O-L^{JA}$ - $NR^{JA2}R^{JA3}$,
- NH- L^{JA} - NH_2 , - $NR^{JA1}-L^{JA}$ - NH_2 , -NH- L^{JA} - NHR^{JA1} , - $NR^{JA1}-L^{JA}$ - NHR^{JA1} ,
- NH- L^{JA} - NR^{JA1}_2 , - $NR^{JA1}-L^{JA}$ - NR^{JA1}_2 ,
- NH- L^{JA} - $NR^{JA2}R^{JA3}$, - $NR^{JA1}-L^{JA}$ - $NR^{JA2}R^{JA3}$,
- $OC(=O)R^{JA1}$,
- $C(=O)OH$, - $C(=O)OR^{JA1}$,
- $C(=O)R^{JA1}$,
- $C(=O)NH_2$, - $C(=O)NHR^{JA1}$, - $C(=O)NR^{JA1}_2$, - $C(=O)NR^{JA2}R^{JA3}$,
- $NHC(=O)R^{JA1}$, - $NR^{JA1}(=O)R^{JA1}$,
- $NHC(=O)OR^{JA1}$, - $NR^{JA1}(=O)OR^{JA1}$,
- $OC(=O)NH_2$, - $OC(=O)NHR^{JA1}$, - $OC(=O)NR^{JA1}_2$, - $OC(=O)NR^{JA2}R^{JA3}$,
- $NHC(=O)NH_2$, - $NHC(=O)NHR^{JA1}$,
- $NHC(=O)NR^{JA1}_2$, - $NHC(=O)NR^{JA2}R^{JA3}$,
- $NR^{JA1}(=O)NH_2$, - $NR^{JA1}(=O)NHR^{JA1}$,
- $NR^{JA1}(=O)NR^{JA1}_2$, - $NR^{JA1}(=O)NR^{JA2}R^{JA3}$,
- $NHS(=O)_2R^{JA1}$, - $NR^{JA1}S(=O)_2R^{JA1}$,
- $S(=O)_2NH_2$, - $S(=O)_2NHR^{JA1}$, - $S(=O)_2NR^{JA1}_2$, - $S(=O)_2NR^{JA2}R^{JA3}$,
- $S(=O)R^{JA1}$, and - $S(=O)_2R^{JA1}$.

35

In one embodiment, each $-R^J$, if present, is independently selected from:

- R^{JA1} ,
- F, -Cl, -Br, -I,
- CF_3 , - OCF_3 , - SCF_3 ,
- OH, - L^{JA} -OH, - $O-L^{JA}$ -OH, -NH- L^{JA} -OH, - $NR^{JA1}-L^{JA}$ -OH,
- OR^{JA1} , - L^{JA} - OR^{JA1} , - $O-L^{JA}$ - OR^{JA1} , -NH- L^{JA} - OR^{JA1} , - $NR^{JA1}-L^{JA}$ - OR^{JA1} ,
- CN,
- NO_2 , - NHR^{JA1} , - NR^{JA1}_2 , - $NR^{JA2}R^{JA3}$,
- L^{JA} - NH_2 , - L^{JA} - NHR^{JA1} , - L^{JA} - NR^{JA1}_2 , - L^{JA} - $NR^{JA2}R^{JA3}$,
- $O-L^{JA}$ - NH_2 , - $O-L^{JA}$ - NHR^{JA1} , - $O-L^{JA}$ - NR^{JA1}_2 , - $O-L^{JA}$ - $NR^{JA2}R^{JA3}$,

$-\text{NH-L}^{\text{JA}}\text{-NH}_2$, $-\text{NR}^{\text{JA1}}\text{-L}^{\text{JA}}\text{-NH}_2$, $-\text{NH-L}^{\text{JA}}\text{-NHR}^{\text{JA1}}$, $-\text{NR}^{\text{JA1}}\text{-L}^{\text{JA}}\text{-NHR}^{\text{JA1}}$,
 $-\text{NH-L}^{\text{JA}}\text{-NR}^{\text{JA1}}_2$, $-\text{NR}^{\text{JA1}}\text{-L}^{\text{JA}}\text{-NR}^{\text{JA1}}_2$,
 $-\text{NH-L}^{\text{JA}}\text{-NR}^{\text{JA2}}\text{R}^{\text{JA3}}$, $-\text{NR}^{\text{JA1}}\text{-L}^{\text{JA}}\text{-NR}^{\text{JA2}}\text{R}^{\text{JA3}}$,
 $-\text{C(=O)NH}_2$, $-\text{C(=O)NHR}^{\text{JA1}}$, $-\text{C(=O)NR}^{\text{JA1}}_2$, $-\text{C(=O)NR}^{\text{JA2}}\text{R}^{\text{JA3}}$,
5 $-\text{NHS(=O)}_2\text{R}^{\text{JA1}}$, $-\text{NR}^{\text{JA1}}\text{S(=O)}_2\text{R}^{\text{JA1}}$,
 $-\text{S(=O)}_2\text{NH}_2$, $-\text{S(=O)}_2\text{NHR}^{\text{JA1}}$, $-\text{S(=O)}_2\text{NR}^{\text{JA1}}_2$, $-\text{S(=O)}_2\text{NR}^{\text{JA2}}\text{R}^{\text{JA3}}$,
 $-\text{S(=O)R}^{\text{JA1}}$, and $-\text{S(=O)}_2\text{R}^{\text{JA1}}$.

In one embodiment, each $-\text{R}^{\text{J}}$, if present, is independently selected from:

10 $-\text{R}^{\text{JA1}}$,
 $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$,
 $-\text{CF}_3$, $-\text{OCF}_3$, $-\text{SCF}_3$,
 $-\text{OH}$, $-\text{L}^{\text{JA}}\text{-OH}$, $-\text{O-L}^{\text{JA}}\text{-OH}$, $-\text{NH-L}^{\text{JA}}\text{-OH}$, $-\text{NR}^{\text{JA1}}\text{-L}^{\text{JA}}\text{-OH}$,
 $-\text{OR}^{\text{JA1}}$, $-\text{L}^{\text{JA}}\text{-OR}^{\text{JA1}}$, $-\text{O-L}^{\text{JA}}\text{-OR}^{\text{JA1}}$, $-\text{NH-L}^{\text{JA}}\text{-OR}^{\text{JA1}}$, $-\text{NR}^{\text{JA1}}\text{-L}^{\text{JA}}\text{-OR}^{\text{JA1}}$,
15 $-\text{CN}$,
 $-\text{NH}_2$, $-\text{NHR}^{\text{JA1}}$, $-\text{NR}^{\text{JA1}}_2$, $-\text{NR}^{\text{JA2}}\text{R}^{\text{JA3}}$,
 $-\text{C(=O)NH}_2$, $-\text{C(=O)NHR}^{\text{JA1}}$, $-\text{C(=O)NR}^{\text{JA1}}_2$, $-\text{C(=O)NR}^{\text{JA2}}\text{R}^{\text{JA3}}$,
 $-\text{S(=O)}_2\text{NH}_2$, $-\text{S(=O)}_2\text{NHR}^{\text{JA1}}$, $-\text{S(=O)}_2\text{NR}^{\text{JA1}}_2$, $-\text{S(=O)}_2\text{NR}^{\text{JA2}}\text{R}^{\text{JA3}}$.

20 In one embodiment, each $-\text{L}^{\text{JA}}\text{-}$, if present, is independently $-(\text{CH}_2)_{n2}-$, wherein $n2$ is independently 1 to 4.

In one embodiment, each $-\text{L}^{\text{JA}}\text{-}$, if present, is independently $-\text{CH}_2-$ or $-\text{CH}_2\text{CH}_2-$.

25 In one embodiment, each $-\text{NR}^{\text{JA2}}\text{R}^{\text{JA3}}$, if present, is independently azetidino, pyrrolidino, imidazolidino, pyrazolidino, piperidino, piperazino, morpholino, azepino, or diazepino, and is optionally substituted, for example, with one or more groups selected from $-\text{R}^{\text{J44}}$, $-\text{CF}_3$, $-\text{F}$, $-\text{OH}$, $-\text{OR}^{\text{J44}}$, $-\text{NH}_2$, $-\text{NHR}^{\text{J44}}$, and $-\text{NR}^{\text{J44}}_2$; wherein each $-\text{R}^{\text{J44}}$ is independently saturated aliphatic C_{1-4} alkyl.

30 In one embodiment, each $-\text{NR}^{\text{JA2}}\text{R}^{\text{JA3}}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted, for example, with one or more groups selected from $-\text{R}^{\text{J44}}$, $-\text{CF}_3$, $-\text{F}$, $-\text{OH}$, $-\text{OR}^{\text{J44}}$, $-\text{NH}_2$, $-\text{NHR}^{\text{J44}}$, and $-\text{NR}^{\text{J44}}_2$; wherein each $-\text{R}^{\text{J44}}$ is independently saturated aliphatic C_{1-4} alkyl.

35 In one embodiment, each $-\text{NR}^{\text{JA2}}\text{R}^{\text{JA3}}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted, for example, with one or more groups selected from $-\text{R}^{\text{J44}}$; wherein each $-\text{R}^{\text{J44}}$ is independently saturated aliphatic C_{1-4} alkyl.

40 In one embodiment, each $-\text{R}^{\text{JA1}}$, if present, is independently:
 $-\text{R}^{\text{JB1}}$, $-\text{R}^{\text{JB4}}$, $-\text{R}^{\text{JB6}}$, $-\text{R}^{\text{JB7}}$, $-\text{R}^{\text{JB8}}$,
 $-\text{L}^{\text{JB}}\text{-R}^{\text{JB4}}$, $-\text{L}^{\text{JB}}\text{-R}^{\text{JB6}}$, $-\text{L}^{\text{JB}}\text{-R}^{\text{JB7}}$, or $-\text{L}^{\text{JB}}\text{-R}^{\text{JB8}}$.

In one embodiment, each $-R^{JA1}$, if present, is independently:

$-R^{JB1}$, $-R^{JB7}$, $-R^{JB8}$,
 $-L^{JB}-R^{JB7}$, or $-L^{JB}-R^{JB8}$.

5 In one embodiment, each $-R^{JA1}$, if present, is independently:
 $-R^{JB1}$, $-R^{JB7}$, or $-L^{JB}-R^{JB7}$.

In one embodiment, each $-R^{JB2}$, if present, is independently allyl.

10 In one embodiment, each $-R^{JB3}$, if present, is independently propargyl.

In one embodiment, each $-R^{JB4}$, if present, is independently cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.

15 In one embodiment, each $-R^{JB4}$, if present, is independently cyclopropyl.

In one embodiment, each $-R^{JB6}$, if present, is independently azetidinyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, piperazinyl, morpholinyl, azepinyl, diazepinyl, tetrahydrofuranyl, tetrahydropyranyl, dioxanyl, and is optionally substituted.

20 In one embodiment, each $-R^{JB6}$, if present, is independently pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl, or tetrahydropyranyl, and is optionally substituted.

25 In one embodiment, each $-R^{JB7}$, if present, is independently phenyl, and is optionally substituted.

In one embodiment, each $-R^{JB8}$, if present, is independently C_{5-6} heteroaryl, and is optionally substituted.

30 In one embodiment, each $-R^{JB8}$, if present, is independently furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, or pyridazinyl, and is optionally substituted.

35 In one embodiment, each $-R^{JB8}$, if present, is independently C_{9-10} heteroaryl, and is optionally substituted.

40 In one embodiment, each $-R^{JB8}$, if present, is independently benzofuranyl, benzothienyl, benzopyrrolyl, benzimidazolyl, benzopyrazolyl, benzotriazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzoisothiazolyl, benzopyridyl, benzopyrimidinyl, or benzopyridazinyl, and is optionally substituted.

In one embodiment, each $-L^{JB}-$, if present, is independently $-CH_2-$ or $-CH_2CH_2-$.

In one embodiment, each $-L^{JB}-$, if present, is independently $-CH_2-$.

45 In one embodiment, each $-R^{JC1}$, if present, is independently saturated aliphatic C_{1-4} alkyl.

In one embodiment, each $-R^{JC2}$ is independently:

5 -F, -Cl, -Br, -I,
 -OH,
 -OR^{JD1},
 -CN,
 -NO₂,
 -NH₂, -NHR^{JD1}, -NR^{JD1}₂, or -NR^{JD2}R^{JD3}.

10 In one embodiment, each $-R^{JD1}$, if present, is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each $-L^{JD-}$, if present, is independently $-(CH_2)_{m2}-$, wherein m2 is independently 1 to 4.

15 In one embodiment, each $-L^{JD-}$, if present, is independently -CH₂- or -CH₂CH₂-.

In one embodiment, each $-NR^{JD2}R^{JD3}$, if present, is independently azetidino, pyrrolidino, imidazolidino, pyrazolidino, piperidino, piperazino, morpholino, azepino, or diazepino, and is optionally substituted, for example, with one or more groups selected from -R^{J55}, -CF₃, -F,
 20 -OH, -OR^{J55}, -NH₂, -NHR^{J55}, and -NR^{J55}₂; wherein each $-R^{J55}$ is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each $-NR^{JD2}R^{JD3}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted, for example, with one or more groups selected from -R^{J55}, -CF₃, -F, -OH, -OR^{J55}, -NH₂, -NHR^{J55}, and -NR^{J55}₂; wherein each $-R^{J55}$ is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each $-NR^{JD2}R^{JD3}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted, for example, with one or more groups selected from -R^{J55}; wherein each $-R^{J55}$ is independently saturated aliphatic C₁₋₄alkyl.

Some Preferred Optional Substituents on the Group -J

In one embodiment, each $-R^J$, if present, is independently selected from:

35 -R⁶,
 -F, -Cl, -Br, -I,
 -CF₃, -OCF₃, -SCF₃,
 -OH,
 -OR⁶,
 40 -CN,
 -NH₂, -NHR⁶, -NR⁶₂, -NR^{6NA}R^{6NB},
 -C(=O)NH₂, -C(=O)NHR⁶, -C(=O)NR⁶₂, -C(=O)NR^{6NA}R^{6NB},
 -S(=O)₂NH₂, -S(=O)₂NHR⁶, -S(=O)₂NR⁶₂, and -S(=O)₂NR^{6NA}R^{6NB};

wherein:

45 each $-R^6$ is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB};

saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, and -NR⁶⁶₂;

5 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R⁶⁶; or

phenyl or C₅₋₆heteroaryl, and is optionally substituted, for example, optionally substituted with one or more substituents independently selected from -F, -Cl, -Br, -I, -R⁶⁶, -OH, -OR⁶⁶, -CF₃, -OCF₃;

10 and wherein:

each -NR^{6NA}R^{6NB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R⁶⁶, -CF₃, -F, -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, and -NR⁶⁶₂;

wherein:

15 each -R⁶⁶ is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each -R⁶, if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB};

20 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R⁶⁶; or

phenyl or C₅₋₆heteroaryl, and is optionally substituted, for example, optionally substituted with one or more substituents independently selected from -F, -Cl, -Br, -I, -R⁶⁶, -OH, -OR⁶⁶, -CF₃, -OCF₃.

25

In one embodiment, each -R⁶, if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB}; or

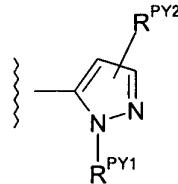
30 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R⁶⁶.

In one embodiment, each -R⁶, if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB}.

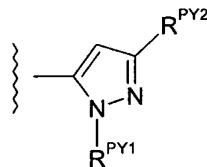
35

In one embodiment, each -R⁶, if present, is independently saturated aliphatic C₁₋₆alkyl.


In one embodiment, each -NR^{6NA}R^{6NB}, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from -R⁶⁶.

40

In one embodiment, each -R⁶⁶, if present, is independently saturated -Me or -Et.


Some Preferred Examples of the Group -J: Pyrazolyl

In one embodiment, -J is independently the following group, wherein each of R^{PY1} and R^{PY2} is independently a substituent as defined herein for - R^J :

5

In one embodiment, -J is independently the following group, wherein each of R^{PY1} and R^{PY2} is independently a substituent as defined herein for - R^J :

10

Some Preferred Examples of the Group -J: Pyrazolyl: The Group - R^{PY1}

In one embodiment:

- R^{PY1} is independently phenyl or C_{5-6} heteroaryl, and is optionally substituted, for example, with one or more substituents - R^{PZ1} ; or

- R^{PY1} is independently saturated aliphatic C_{1-6} alkyl, aliphatic C_{2-6} alkenyl, aliphatic C_{2-6} alkynyl, saturated C_{3-7} cycloalkyl, or saturated C_{3-7} cycloalkyl-saturated aliphatic C_{1-6} alkyl, and is optionally substituted, for example, with one or more substituents - R^{PZ2} .

20 Some Preferred Examples of the Group -J: Pyrazolyl: The Group - R^{PY1} : Aryl

In one embodiment, - R^{PY1} is independently phenyl or C_{5-6} heteroaryl, and is optionally substituted, for example, with one or more substituents - R^{PZ1} .

25 In one embodiment, - R^{PY1} is independently phenyl, furanyl, thiienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, or pyridazinyl, and is optionally substituted, for example, with one or more substituents - R^{PZ1} .

30 In one embodiment, - R^{PY1} is independently phenyl, thiienyl, pyridyl, and is optionally substituted, for example, with one or more substituents - R^{PZ1} .

In one embodiment, - R^{PY1} is independently phenyl or pyridyl, and is optionally substituted, for example, with one or more substituents - R^{PZ1} .

35 In one embodiment, - R^{PY1} is independently phenyl, and is optionally substituted, for example, with one or more substituents - R^{PZ1} .

In one embodiment, $-R^{PY1}$ is independently pyridyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ1}$.

5 In one embodiment, $-R^{PY1}$ is independently thienyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ1}$.

In one embodiment, each $-R^{PZ1}$, if present, is independently selected from:
- F , - Cl , - Br , - I , - R^{7A} , - OH , - OR^{7A} , and - $S(=O)_2R^{7A}$.

10 In one embodiment, each $-R^{PZ1}$, if present, is independently selected from:
- F , - Cl , - Br , - I , - R^{7A} , - OH , and - OR^{7A} .

In one embodiment, each $-R^{PZ1}$, if present, is independently selected from:
- R^{7A} , - OH , and - OR^{7A} .

15 In one embodiment, each $-R^{7A}$, if present, is independently saturated aliphatic C_{1-6} alkyl.
In one embodiment, each $-R^{7A}$, if present, is independently saturated aliphatic C_{1-4} alkyl.
In one embodiment, each $-R^{7A}$, if present, is independently - Me .

20 Some Preferred Examples of the Group -J: Pyrazolyl: The Group $-R^{PY1}$: Other

In one embodiment, $-R^{PY1}$ is independently saturated aliphatic C_{1-6} alkyl, aliphatic C_{2-6} alkenyl, aliphatic C_{2-6} alkynyl, saturated C_{3-7} cycloalkyl, or saturated C_{3-7} cycloalkyl-saturated aliphatic C_{1-6} alkyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ2}$.

25 In one embodiment, $-R^{PY1}$ is independently saturated aliphatic C_{1-6} alkyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ2}$.

30 In one embodiment, $-R^{PY1}$ is independently aliphatic C_{2-6} alkenyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ2}$.

In one embodiment, $-R^{PY1}$ is independently aliphatic C_{2-6} alkynyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ2}$.

35 In one embodiment, $-R^{PY1}$ is independently saturated C_{3-7} cycloalkyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ2}$.

In one embodiment, $-R^{PY1}$ is independently saturated C_{3-7} cycloalkyl-saturated aliphatic C_{1-6} alkyl, and is optionally substituted, for example, with one or more substituents $-R^{PZ2}$.

40 In one embodiment, each $-R^{PZ2}$, if present, is independently selected from:
- F , - Cl , - Br , - I , - OH , - OR^{7B} , - NH_2 , - NHR^{7B} , and - NR^{7B}_2 .

45 In one embodiment, each $-R^{PZ2}$, if present, is independently selected from:
- OH , - OR^{7B} , - NH_2 , - NHR^{7B} , and - NR^{7B}_2 .

In one embodiment, each $-R^{7B}$, if present, is independently saturated aliphatic C_{1-6} alkyl.
 In one embodiment, each $-R^{7B}$, if present, is independently saturated aliphatic C_{1-4} alkyl.
 In one embodiment, each $-R^{7B}$, if present, is independently -Me.

5

In one embodiment, $-R^{PY1}$ is independently saturated aliphatic C_{1-6} alkyl.

In one embodiment, $-R^{PY1}$ is -Me, -Et, -nPr, -iPr, -nBu, -iBu, -sBu, or -tBu.

10 In one embodiment, $-R^{PY1}$ is -Me.

In one embodiment, $-R^{PY1}$ is independently aliphatic C_{2-6} alkenyl.

In one embodiment, $-R^{PY1}$ is allyl.

15

In one embodiment, $-R^{PY1}$ is independently aliphatic C_{2-6} alkynyl.

In one embodiment, $-R^{PY1}$ is propargyl.

20 In one embodiment, $-R^{PY1}$ is independently saturated C_{3-7} cycloalkyl.

In one embodiment, $-R^{PY1}$ is independently cyclopropyl or cyclobutyl.

In one embodiment, $-R^{PY1}$ is independently cyclopropyl.

25

In one embodiment, $-R^{PY1}$ is independently saturated C_{3-7} cycloalkyl-saturated aliphatic C_{1-6} alkyl.

In one embodiment, $-R^{PY1}$ is independently cyclobutyl-methyl, cyclobutyl-ethyl, cyclopropyl-methyl, or cyclopropyl-ethyl.

Some Preferred Examples of the Group -J: Pyrazolyl: The Group $-R^{PY2}$

In one embodiment:

35 $-R^{PY2}$ is independently -F, -Cl, -Br, -I, $-R^8$, -OH, $-OR^8$, $-CF_3$, $-OCF_3$, $-SCF_3$, or optionally substituted phenyl, for example, phenyl optionally substituted with one or more substituents $-R^{PZ3}$;

wherein:

each $-R^8$ is independently saturated aliphatic C_{1-6} alkyl or saturated C_{3-6} cycloalkyl;

40 each $-R^{PZ3}$ is independently: -F, -Cl, -Br, -I, $-R^V$, -OH, $-OR^V$, $-NH_2$, $-NHR^V$, $-NR^V_2$, $-NR^{VNA}R^{VNB}$, -CN, $-S(=O)_2NH_2$, $-S(=O)_2NHR^V$, $-S(=O)_2NR^V_2$, $-S(=O)_2NR^{VNA}R^{VNB}$, or $-C(=O)NR^{VNA}R^{VNB}$;

wherein:

each $-R^V$ is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR^W, -NH₂, -NHR^W, and -NR^W₂;

saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR^W, -NH₂, -NHR^W, and -NR^W₂; or

5 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R^W;

and wherein:

-NR^{VNA}R^{VNB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from

10 -R^W, -CF₃, -F, -OH, -OR^W, -NH₂, -NHR^W, and -NR^W₂;

wherein:

each -R^W is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, R^{PY2} is independently -F, -Cl, -Br, -I, -R⁸, -OH, -OR⁸, -CF₃, -OCF₃, -SCF₃.

15

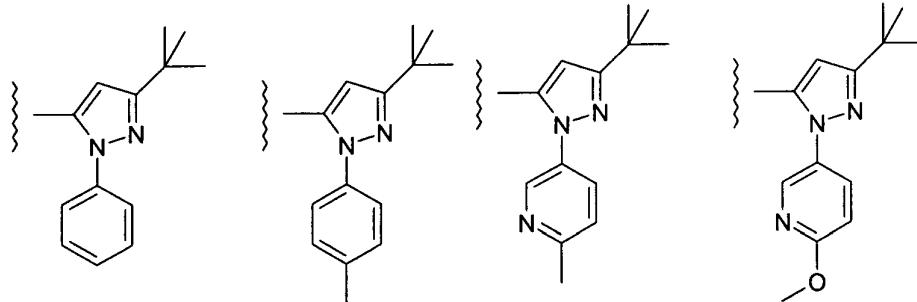
In one embodiment, -R^{PY2} is independently -R⁸ or -CF₃.

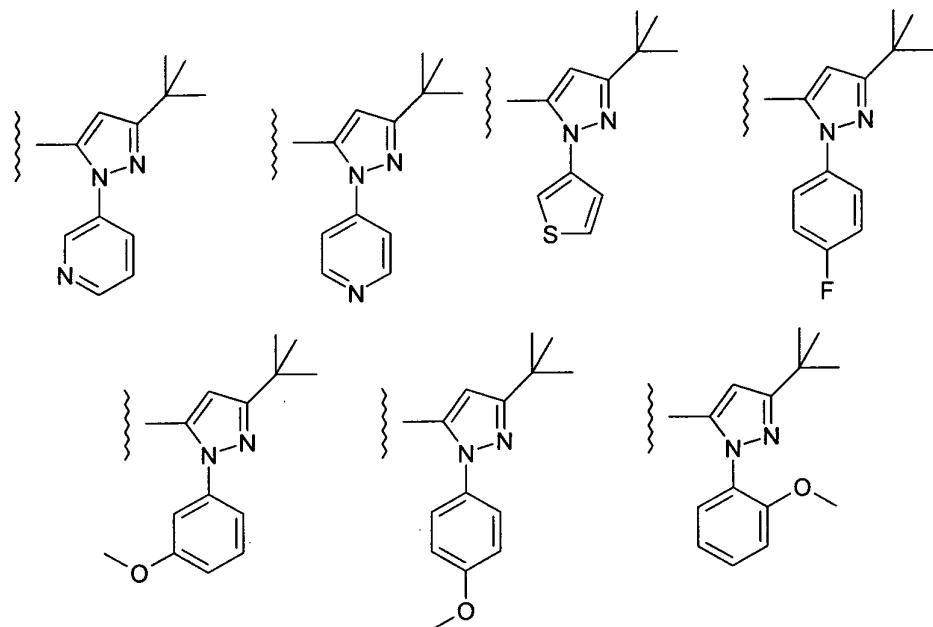
In one embodiment, -R^{PY2} is independently -R⁸.

20 In one embodiment, each -R⁸ is independently saturated aliphatic C₁₋₆alkyl.

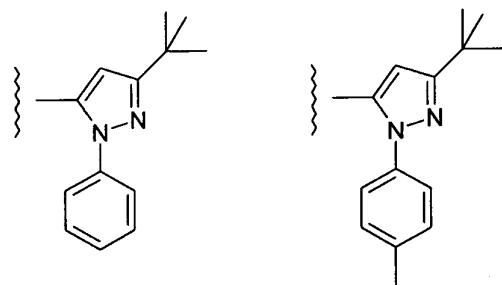
In one embodiment, each -R⁸ is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each -R⁸ is independently -tBu.

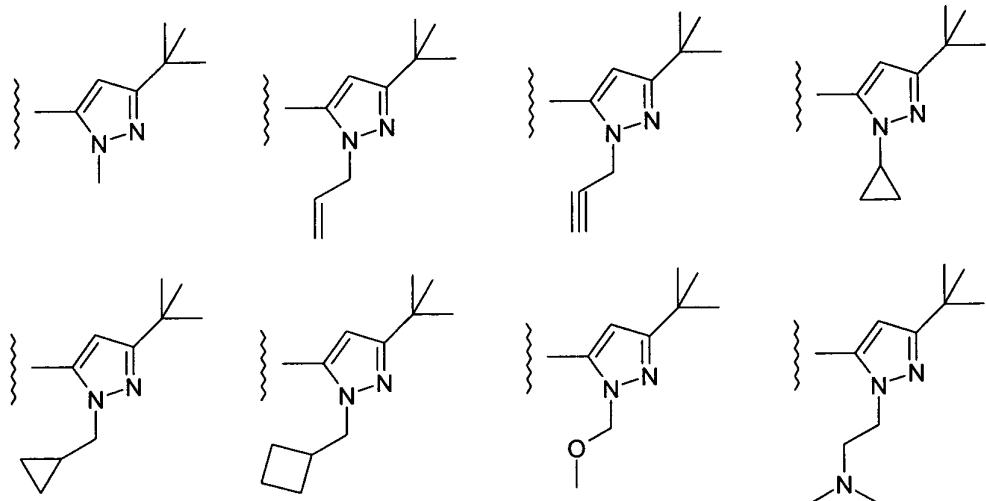

In one embodiment, -R^{PY2} is independently saturated aliphatic C₁₋₆alkyl.


25 In one embodiment, -R^{PY2} is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, -R^{PY2} is independently -tBu.


Some Preferred Examples of the Group -J: Pyrazolyl: Specific Examples

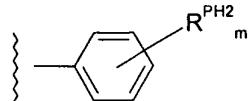
30 In one embodiment, -J is independently selected from:



In one embodiment, -J is independently selected from:

5

In one embodiment, -J is independently selected from:



10

Some Preferred Examples of the Group -J: Phenyl

In one embodiment, -J is independently the following group, wherein m is independently 0, 1, 2, or 3; and each $-R^{PH2}$ is independently a substituent as defined herein for $-R^J$:

5

In one embodiment, m is independently 0, 1, or 2.

In one embodiment, m is independently 1 or 2.

In one embodiment, m is independently 0.

10 In one embodiment, m is independently 1.

In one embodiment, m is independently 2.

In one embodiment, each $-R^{PH2}$ is independently:

-F, -Cl, -Br, -I, -R⁹, -OH, -OR⁹, -NH₂, -NHR⁹, -NR⁹₂, -NR^{9NA}R^{9NB}, -CF₃, -OCF₃, or

15 -SCF₃;

wherein:

each $-R^9$ is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB},

20 saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, and -NR⁹⁹₂;

azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R⁹⁹; or

25 phenyl or C₅₋₆heteroaryl, and is unsubstituted or substituted, for example, with one or more groups selected from -F, -Cl, -Br, -I, -R⁹⁹, -CF₃, -OH, -OR⁹⁹, -OCF₃, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB};

and wherein:

-NR^{9NA}R^{9NB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from

30 -R⁹⁹, -CF₃, -F, -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, and -NR⁹⁹₂;

wherein:

each $-R^{99}$ is independently saturated aliphatic C₁₋₄alkyl.

In one embodiment, each $-R^9$, if present, is independently:

35 saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB};

saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, and -NR⁹⁹₂; or

40 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R⁹⁹.

In one embodiment, each -R⁹, if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB}; or

5 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted, for example, with one or more groups selected from -R⁹⁹.

In one embodiment, each -R⁹, if present, is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted, for example, with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB}.

10

In one embodiment, each -R⁹, if present, is independently saturated aliphatic C₁₋₆alkyl.

In one embodiment, -NR^{9NB}R^{9NB}, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from -R⁹⁹.

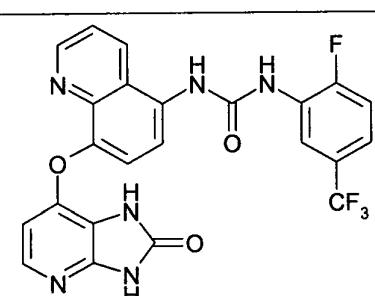
15

In one embodiment, each -R^{PH2} is independently -F, -Cl, -Br, -I, -R⁹, -OH, -OR⁹, -CF₃, -OCF₃, or -SCF₃.

In one embodiment, each -R^{PH2} is independently -F, -Cl, -tBu, -CF₃, -OCF₃, or -SCF₃.

20

Combinations


Each and every compatible combination of the embodiments described above is explicitly disclosed herein, as if each and every combination was individually and explicitly recited.

25

Examples of Specific Embodiments

In one embodiment, the compounds are selected from compounds of the following formulae and pharmaceutically acceptable salts, hydrates, and solvates thereof:

30

Compound	Synthesis	Structure
AA-001	14	

- 49 -

Compound	Synthesis	Structure
AA-002	15	
AA-003	16	
AA-004	17	
AA-005	18	
AA-006	19	

- 50 -

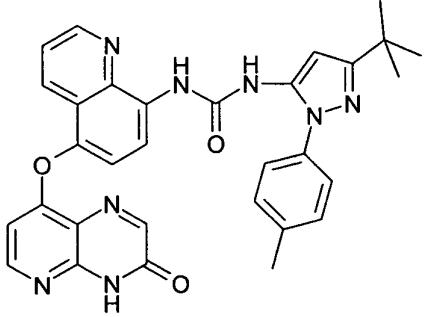
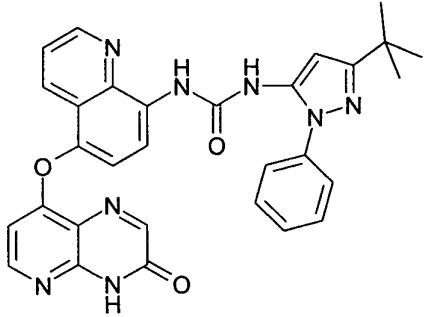
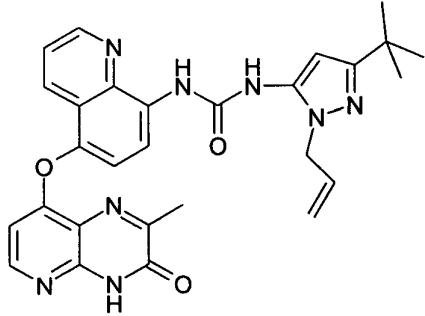
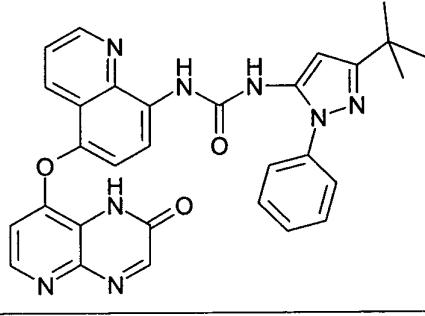
Compound	Synthesis	Structure
AA-007	20	
AA-008	21	
AA-009	22	
AA-010	23	
AA-011	24	

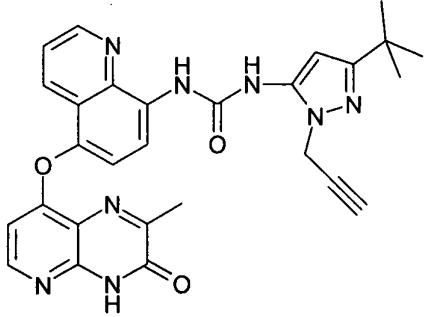
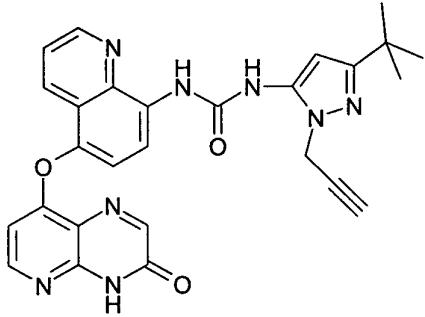
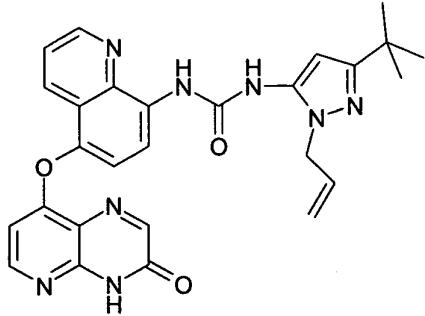
- 51 -

Compound	Synthesis	Structure
AA-012	25	
AA-013	26	
AA-014	27	
AA-015	29	

- 52 -

Compound	Synthesis	Structure
AA-016	36	
AA-017	40	
AA-018	37	





In one embodiment, the compounds are selected from compounds of the following formulae and pharmaceutically acceptable salts, hydrates, and solvates thereof:




Compound	Synthesis	Structure
BB-001	28	

- 53 -

Compound	Synthesis	Structure
BB-002	32	
BB-003	33	
BB-004	30	
BB-005	31	
BB-006	39	

- 54 -

Compound	Synthesis	Structure
BB-007	34	
BB-008	35	
BB-009	41	
BB-010	38	

Compound	Synthesis	Structure
BB-011	42	
BB-012	43	
BB-013	44	

Substantially Purified Forms

One aspect of the present invention pertains to AQ compounds, as described herein, in 5 substantially purified form and/or in a form substantially free from contaminants.

In one embodiment, the substantially purified form is at least 50% by weight, e.g., at least 60% by weight, e.g., at least 70% by weight, e.g., at least 80% by weight, e.g., at least 90% by weight, e.g., at least 95% by weight, e.g., at least 97% by weight, e.g., at least 98% by 10 weight, e.g., at least 99% by weight.

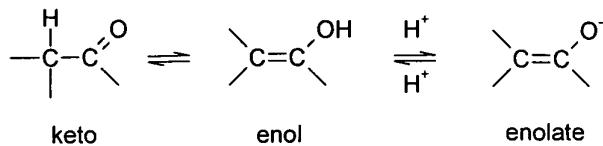
Unless specified, the substantially purified form refers to the compound in any stereoisomeric or enantiomeric form. For example, in one embodiment, the substantially purified form refers to a mixture of stereoisomers, i.e., purified with respect to other compounds. In one 15 embodiment, the substantially purified form refers to one stereoisomer, e.g., optically pure stereoisomer. In one embodiment, the substantially purified form refers to a mixture of enantiomers. In one embodiment, the substantially purified form refers to an equimolar mixture

of enantiomers (i.e., a racemic mixture, a racemate). In one embodiment, the substantially purified form refers to one enantiomer, e.g., optically pure enantiomer.

In one embodiment, the contaminants represent no more than 50% by weight, e.g., no more than 40% by weight, e.g., no more than 30% by weight, e.g., no more than 20% by weight, e.g., no more than 10% by weight, e.g., no more than 5% by weight, e.g., no more than 3% by weight, e.g., no more than 2% by weight, e.g., no more than 1% by weight.

Unless specified, the contaminants refer to other compounds, that is, other than stereoisomers or enantiomers. In one embodiment, the contaminants refer to other compounds and other stereoisomers. In one embodiment, the contaminants refer to other compounds and the other enantiomer.

In one embodiment, the substantially purified form is at least 60% optically pure (i.e., 60% of the compound, on a molar basis, is the desired stereoisomer or enantiomer, and 40% is the undesired stereoisomer or enantiomer), e.g., at least 70% optically pure, e.g., at least 80% optically pure, e.g., at least 90% optically pure, e.g., at least 95% optically pure, e.g., at least 97% optically pure, e.g., at least 98% optically pure, e.g., at least 99% optically pure.


20 Isomers

Certain compounds may exist in one or more particular geometric, optical, enantiomeric, diastereomeric, epimeric, atropic, stereoisomeric, tautomeric, conformational, or anomeric forms, including but not limited to, cis- and trans-forms; E- and Z-forms; c-, t-, and r- forms; 25 endo- and exo-forms; R-, S-, and meso-forms; D- and L-forms; d- and l-forms; (+) and (-) forms; keto-, enol-, and enolate-forms; syn- and anti-forms; synclinal- and anticinal-forms; α - and β -forms; axial and equatorial forms; boat-, chair-, twist-, envelope-, and halfchair-forms; and combinations thereof, hereinafter collectively referred to as "isomers" (or "isomeric forms").

30 Note that, except as discussed below for tautomeric forms, specifically excluded from the term "isomers," as used herein, are structural (or constitutional) isomers (i.e., isomers which differ in the connections between atoms rather than merely by the position of atoms in space). For example, a reference to a methoxy group, $-OCH_3$, is not to be construed as a reference to its structural isomer, a hydroxymethyl group, $-CH_2OH$. Similarly, a reference to ortho-chlorophenyl is not to be construed as a reference to its structural isomer, meta-chlorophenyl. However, a reference to a class of structures may well include structurally isomeric forms falling within that class (e.g., C_{1-7} alkyl includes n-propyl and iso-propyl; butyl includes n-, iso-, sec-, and tert-butyl; methoxyphenyl includes ortho-, meta-, and para-methoxyphenyl).

40 The above exclusion does not pertain to tautomeric forms, for example, keto-, enol-, and enolate-forms, as in, for example, the following tautomeric pairs: keto/enol (illustrated below), imine/enamine, amide/imino alcohol, amidine/amidine, nitroso/oxime, thioketone/enethiol, N-nitroso/hydroxyazo, and nitro/aci-nitro.

- 57 -

Note that specifically included in the term "isomer" are compounds with one or more isotopic substitutions. For example, H may be in any isotopic form, including ^1H , ^2H (D), and ^3H (T); C

5 may be in any isotopic form, including ^{12}C , ^{13}C , and ^{14}C ; O may be in any isotopic form, including ^{16}O and ^{18}O ; and the like.

Unless otherwise specified, a reference to a particular compound includes all such isomeric forms, including mixtures (e.g., racemic mixtures) thereof. Methods for the preparation

10 (e.g., asymmetric synthesis) and separation (e.g., fractional crystallisation and chromatographic means) of such isomeric forms are either known in the art or are readily obtained by adapting the methods taught herein, or known methods, in a known manner.

Salts

15

It may be convenient or desirable to prepare, purify, and/or handle a corresponding salt of the compound, for example, a pharmaceutically-acceptable salt. Examples of pharmaceutically acceptable salts are discussed in Berge *et al.*, 1977, "Pharmaceutically Acceptable Salts," *J. Pharm. Sci.*, Vol. 66, pp. 1-19.

20

For example, if the compound is anionic, or has a functional group which may be anionic (e.g., $-\text{COOH}$ may be $-\text{COO}^-$), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na^+ and K^+ , alkaline earth cations such as Ca^{2+} and Mg^{2+} , and other cations such as Al^{+3} . Examples of

25 suitable organic cations include, but are not limited to, ammonium ion (i.e., NH_4^+) and substituted ammonium ions (e.g., NH_3R^+ , NH_2R_2^+ , NHR_3^+ , NR_4^+). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and 30 tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is $\text{N}(\text{CH}_3)_4^+$.

If the compound is cationic, or has a functional group which may be cationic (e.g., $-\text{NH}_2$ may be $-\text{NH}_3^+$), then a salt may be formed with a suitable anion. Examples of suitable inorganic

35 anions include, but are not limited to, those derived from the following inorganic acids: hydrochloric, hydrobromic, hydroiodic, sulfuric, sulfurous, nitric, nitrous, phosphoric, and phosphorous.

40 Examples of suitable organic anions include, but are not limited to, those derived from the following organic acids: 2-acethoxybenzoic, acetic, ascorbic, aspartic, benzoic, camphorsulfonic, cinnamic, citric, edetic, ethanesulfonic, ethanesulfonic, fumaric, glucheptonic, gluconic, glutamic, glycolic, hydroxymaleic, hydroxynaphthalene carboxylic,

isethionic, lactic, lactobionic, lauric, maleic, malic, methanesulfonic, mucic, oleic, oxalic, palmitic, pamoic, pantothenic, phenylacetic, phenylsulfonic, propionic, pyruvic, salicylic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and valeric. Examples of suitable 5 polymeric organic anions include, but are not limited to, those derived from the following polymeric acids: tannic acid, carboxymethyl cellulose.

Unless otherwise specified, a reference to a particular compound also includes salt forms thereof.

10 Solvates and Hydrates

It may be convenient or desirable to prepare, purify, and/or handle a corresponding solvate of the compound. The term "solvate" is used herein in the conventional sense to refer to a complex of solute (e.g., compound, salt of compound) and solvent. If the solvent is water, the 15 solvate may be conveniently referred to as a hydrate, for example, a mono-hydrate, a di-hydrate, a tri-hydrate, etc.

Unless otherwise specified, a reference to a particular compound also includes solvate and hydrate forms thereof.

20

Chemically Protected Forms

It may be convenient or desirable to prepare, purify, and/or handle the compound in a chemically protected form. The term "chemically protected form" is used herein in the 25 conventional chemical sense and pertains to a compound in which one or more reactive functional groups are protected from undesirable chemical reactions under specified conditions (e.g., pH, temperature, radiation, solvent, and the like). In practice, well known chemical methods are employed to reversibly render unreactive a functional group, which otherwise would be reactive, under specified conditions. In a chemically protected form, one 30 or more reactive functional groups are in the form of a protected or protecting group (also known as a masked or masking group or a blocked or blocking group). By protecting a reactive functional group, reactions involving other unprotected reactive functional groups can be performed, without affecting the protected group; the protecting group may be removed, usually in a subsequent step, without substantially affecting the remainder of the molecule. 35 See, for example, Protective Groups in Organic Synthesis (T. Green and P. Wuts; 3rd Edition; John Wiley and Sons, 1999).

A wide variety of such "protecting," "blocking," or "masking" methods are widely used and well known in organic synthesis. For example, a compound which has two nonequivalent reactive 40 functional groups, both of which would be reactive under specified conditions, may be derivatized to render one of the functional groups "protected," and therefore unreactive, under the specified conditions; so protected, the compound may be used as a reactant which has effectively only one reactive functional group. After the desired reaction (involving the other functional group) is complete, the protected group may be "deprotected" to return it to its 45 original functionality.

For example, a hydroxy group may be protected as an ether (-OR) or an ester (-OC(=O)R), for example, as: a t-butyl ether; a benzyl, benzhydryl (diphenylmethyl), or trityl (triphenylmethyl) ether; a trimethylsilyl or t-butyldimethylsilyl ether; or an acetyl ester (-

5 OC(=O)CH₃, -OAc).

For example, an aldehyde or ketone group may be protected as an acetal (R-CH(OR)₂) or ketal (R₂C(OR)₂), respectively, in which the carbonyl group (>C=O) is converted to a diether (>C(OR)₂), by reaction with, for example, a primary alcohol. The aldehyde or ketone group is 10 readily regenerated by hydrolysis using a large excess of water in the presence of acid.

For example, an amine group may be protected, for example, as an amide (-NRCO-R) or a urethane (-NRCO-OR), for example, as: a methyl amide (-NHCO-CH₃); a benzyloxy amide (-NHCO-OCH₂C₆H₅, -NH-Cbz); as a t-butoxy amide (-NHCO-OC(CH₃)₃, -NH-Boc); a 2- 15 biphenyl-2-propoxy amide (-NHCO-OC(CH₃)₂C₆H₄C₆H₅, -NH-Bpoc), as a 9-fluorenylmethoxy amide (-NH-Fmoc), as a 6-nitroveratryloxy amide (-NH-Nvoc), as a 2-trimethylsilylethyoxy amide (-NH-Teoc), as a 2,2,2-trichloroethyoxy amide (-NH-Troc), as an allyloxy amide (-NH-Alloc), as a 2-(phenylsulfonyl)ethyoxy amide (-NH-Psec); or, in suitable cases (e.g., cyclic amines), as a nitroxide radical (>N-O•).

20 For example, a carboxylic acid group may be protected as an ester for example, as: an C₁₋₇alkyl ester (e.g., a methyl ester; a t-butyl ester); a C₁₋₇haloalkyl ester (e.g., a C₁₋₇trihaloalkyl ester); a triC₁₋₇alkylsilyl-C₁₋₇alkyl ester; or a C₅₋₂₀aryl-C₁₋₇alkyl ester (e.g., a benzyl ester; a nitrobenzyl ester); or as an amide, for example, as a methyl amide.

25 For example, a thiol group may be protected as a thioether (-SR), for example, as: a benzyl thioether; an acetamidomethyl ether (-S-CH₂NHC(=O)CH₃).

Prodrugs

30 It may be convenient or desirable to prepare, purify, and/or handle the compound in the form of a prodrug. The term "prodrug," as used herein, pertains to a compound which, when metabolised (e.g., *in vivo*), yields the desired active compound. Typically, the prodrug is inactive, or less active than the desired active compound, but may provide advantageous 35 handling, administration, or metabolic properties.

For example, some prodrugs are esters of the active compound (e.g., a physiologically acceptable metabolically labile ester). During metabolism, the ester group (-C(=O)OR) is 40 cleaved to yield the active drug. Such esters may be formed by esterification, for example, of any of the carboxylic acid groups (-C(=O)OH) in the parent compound, with, where appropriate, prior protection of any other reactive groups present in the parent compound, followed by deprotection if required.

45 Also, some prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as

in ADEPT, GDEPT, LIDEPPT, etc.). For example, the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester derivative.

Chemical Synthesis

5

Several methods for the chemical synthesis of AQ compounds of the present invention are described herein. These and/or other well known methods may be modified and/or adapted in known ways in order to facilitate the synthesis of additional compounds within the scope of the present invention.

10

Compositions

One aspect of the present invention pertains to a composition (e.g., a pharmaceutical composition) comprising an AQ compound, as described herein, and a pharmaceutically acceptable carrier, diluent, or excipient.

15

Another aspect of the present invention pertains to a method of preparing a composition (e.g., a pharmaceutical composition) comprising admixing an AQ compound, as described herein, and a pharmaceutically acceptable carrier, diluent, or excipient.

20

Uses

The compounds described herein are useful, for example, in the treatment of diseases and disorders that are ameliorated by the inhibition of RAF (e.g., B-RAF), such as, for example, proliferative disorders, cancer, etc.

Use in Methods of Inhibiting RAF (e.g., B-RAF)

One aspect of the present invention pertains to a method of inhibiting RAF (e.g., B-RAF) function, *in vitro* or *in vivo*, comprising contacting a RAF (e.g., B-RAF) with an effective amount of an AQ compound, as described herein.

One aspect of the present invention pertains to a method of inhibiting RAF (e.g., B-RAF) function in a cell, *in vitro* or *in vivo*, comprising contacting the cell with an effective amount of an AQ compound, as described herein.

In one embodiment, the method is performed *in vitro*.

In one embodiment, the method is performed *in vivo*.

40 One of ordinary skill in the art is readily able to determine whether or not, and/or the degree to which, a candidate compound inhibits RAF (e.g., B-RAF) function. Suitable assays for determining RAF (e.g., B-RAF) function inhibition are described herein and/or are known in the art.

B-RAF Assays:

B-raf kinase activity is measured using a 4-tiered cascade enzyme assay similar to that described by Marais R., *et al.*, 1997, *J. Biol. Chem.*, Vol. 272, pp. 4378–4383. B-Raf 5 containing the V600E mutation (Davies, H., *et al.*, 2002, *Nature*, Vol. 417, pp. 949-954) and an N-terminal MDRGSH6 tag is expressed in SF9 insect cells. Detergent soluble extracts from these cells are diluted 1:100 into an assay mixture containing GST-MEK-H6 (6.5 µg/ml) and GST-ERK-H6 (100 µg/ml) in a buffer containing 800µM ATP and appropriate 10 concentrations of inhibitor or diluent as control. The mixture is incubated for up to 10 minutes at 30°C to activate the ERK in a B-Raf dependent manner within the cascade. The reaction is then stopped by addition of 20 mM EDTA. The extent of activation of the GST-ERK is then 15 determined by adding a portion of this quenched reaction mixture to a further reaction mixture containing MBP and 100 µM ATP/gamma [³²P]ATP. After 12 minutes' incubation at 30°C, the incorporation of [³²P] into the MBP substrate, as a measure of B-raf activity, is determined by precipitation with phosphoric acid and isolation by filtration on p81 phosphocellulose paper. The % inhibition of the B-raf kinase activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the B-raf kinase activity (IC₅₀).

Alternatively, B-raf kinase activity is measured using a different 4-tiered cascade enzyme 20 assay. B-Raf containing the V600E mutation (Davies, H., *et al.*, 2002, *Nature*, Vol. 417, pp. 949-954) and an N-terminal MDRGSH6 tag is expressed in SF9 insect cells. Detergent soluble extracts from these cells are diluted 1:250 into an assay mixture containing GST-MEK-H6 (25 µg/ml), GST-ERK-H6 (281.25 µg/ml) and MBP in a buffer containing appropriate 25 concentrations of inhibitor or diluent as control. 0.03 µL (100 µM) ATP is added and the mixture is incubated for up to 10 minutes at 30°C to activate the ERK in a B-Raf dependent manner within the cascade. The extent of activation of the GST-ERK is then determined by adding 0.033 µL (100 µM) HOT ³²Pa. After 10 minutes' incubation at 30°C, the reaction is 30 stopped by isolation of a portion of the reaction mixture on p81 phosphocellulose paper and submersion of this paper in 0.4% orthophosphoric acid. Incorporation of [³²P] into the MBP substrate, as a measure of B-raf activity, is determined using a Packard Cernekov counter. The % inhibition of the B-raf kinase activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the B-raf kinase activity (IC₅₀).

C-RAF Assay:

35 C-raf (human) is diluted to a 10x working stock in 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM sodium vanadate, 0.1% β-mercaptoethanol, 1 mg/ml BSA. One unit equals the incorporation of 1 nmol of phosphate per minute into myelin basic protein per minute. In a final reaction volume of 25 µl, c-raf (5-10 mU) is incubated with 25 mM Tris pH 7.5, 0.02 mM EGTA, 40 0.66 mg/ml myelin basic protein, 10 mM MgAcetate, [γ -³³P-ATP] (specific activity approx 500 cpm/pmol, concentration as required) and appropriate concentrations of inhibitor or diluent as control. The reaction is initiated by the addition of Mg²⁺[γ -³³P-ATP]. After incubation for 40 minutes at room temperature, the reaction is stopped by the addition of 5 µl of a 3% phosphoric acid solution. 10 µl of the reaction is spotted onto a P30 filtermat and 45 washed 3 times for 5 minutes in 75 mM phosphoric acid and once in methanol prior to drying

and counting to determine the C-raf activity. The % inhibition of the C-raf kinase activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the C-raf kinase activity (IC₅₀).

5 **Selectivity:**

In one embodiment, the AQ compound selectively inhibits one RAF (e.g., B-RAF), over at least one other RAF (e.g., A-RAF and/or C-RAF).

10 For example, in one embodiment, the ratio of the IC₅₀ value for B-RAF to the IC₅₀ value for the other RAF (e.g., A-RAF and/or C-RAF) is at least 10, more preferably at least 100, most preferably at least 1000.

Use in Methods of Inhibiting Cell Proliferation, Etc.

15

The AQ compounds described herein, e.g., (a) regulate (e.g., inhibit) cell proliferation; (b) inhibit cell cycle progression; (c) promote apoptosis; or (d) a combination of one or more of these.

20 One aspect of the present invention pertains to a method of regulating (e.g., inhibiting) cell proliferation (e.g., proliferation of a cell), inhibiting cell cycle progression, promoting apoptosis, or a combination of one or more these, *in vitro* or *in vivo*, comprising contacting a cell with an effective amount of an AQ compound, as described herein.

25 In one embodiment, the method is a method of regulating (e.g., inhibiting) cell proliferation (e.g., proliferation of a cell), *in vitro* or *in vivo*, comprising contacting a cell with an effective amount of an AQ compound, as described herein.

In one embodiment, the method is performed *in vitro*.

30 In one embodiment, the method is performed *in vivo*.

In one embodiment, the AQ compound is provided in the form of a pharmaceutically acceptable composition.

35 Any type of cell may be treated, including but not limited to, lung, gastrointestinal (including, e.g., bowel, colon), breast (mammary), ovarian, prostate, liver (hepatic), kidney (renal), bladder, pancreas, brain, and skin.

40 One of ordinary skill in the art is readily able to determine whether or not a candidate compound regulates (e.g., inhibits) cell proliferation, etc. For example, assays which may conveniently be used to assess the activity offered by a particular compound are described herein.

45 For example, a sample of cells (e.g., from a tumour) may be grown *in vitro* and a compound brought into contact with said cells, and the effect of the compound on those cells observed.

As an example of "effect," the morphological status of the cells (e.g., alive or dead, etc.) may be determined. Where the compound is found to exert an influence on the cells, this may be used as a prognostic or diagnostic marker of the efficacy of the compound in methods of treating a patient carrying cells of the same cellular type.

5

Use in Methods of Therapy

Another aspect of the present invention pertains to an AQ compound, as described herein, for use in a method of treatment of the human or animal body by therapy.

10

Use in the Manufacture of Medicaments

Another aspect of the present invention pertains to use of an AQ compound, as described herein, in the manufacture of a medicament for use in treatment.

15

In one embodiment, the medicament comprises the AQ compound.

Methods of Treatment

20 Another aspect of the present invention pertains to a method of treatment comprising administering to a patient in need of treatment a therapeutically effective amount of an AQ compound, as described herein, preferably in the form of a pharmaceutical composition.

Conditions Treated - Conditions Ameliorated by the Inhibition of RAF

25

In one embodiment (e.g., of use in methods of therapy, of use in the manufacture of medicaments, of methods of treatment), the treatment is treatment of a disease or disorder that is characterised by the up-regulation and/or activation of RAF (e.g., B-RAF), and/or is ameliorated by the inhibition of RAF (e.g., B-RAF).

30

In one embodiment, the treatment is treatment of cancer that is characterised by the up-regulation and/or activation of RAF (e.g., B-RAF), and/or is ameliorated by the inhibition of RAF (e.g., B-RAF).

35

Conditions Treated - Conditions Ameliorated by the Inhibition of RTKs

In one embodiment (e.g., of use in methods of therapy, of use in the manufacture of medicaments, of methods of treatment), the treatment is treatment of a disease or disorder that is characterised by the up-regulation and/or activation of a receptor tyrosine kinase

40

(RTK), and/or is ameliorated by the inhibition of a receptor tyrosine kinase (RTK). Examples of RTKs include FGFR, Tie, VEGFR and/or Eph, for example, FGFR-1, FGFR-2, FGFR-3, Tie2, VEGFR-2 and/or EphB2.

In one embodiment, the treatment is treatment of cancer that is characterised by the up-regulation and/or activation of a receptor tyrosine kinase (RTK), and/or is ameliorated by the inhibition of a receptor tyrosine kinase (RTK).

5 Conditions Treated - Conditions characterised by Angiogenesis

In one embodiment (e.g., of use in methods of therapy, of use in the manufacture of medicaments, of methods of treatment), the treatment is treatment of a disease or disorder that is characterised by inappropriate, excessive, and/or undesirable angiogenesis (as "anti-angiogenesis agents"). Examples of such disorders are discussed herein.

Conditions Treated - Proliferative Disorders and Cancer

10 The AQ compounds are useful in the treatment of proliferative disorders (as "anti-proliferative agents"), cancer (as "anti-cancer agents"), etc.

In one embodiment (e.g., of use in methods of therapy, of use in the manufacture of medicaments, of methods of treatment), the treatment is treatment of a proliferative disorder.

15 20 The term "proliferative disorder," as used herein, pertains to an unwanted or uncontrolled cellular proliferation of excessive or abnormal cells which is undesired, such as, neoplastic or hyperplastic growth.

In one embodiment, the treatment is treatment of: a proliferative disorder characterised by 25 benign, pre-malignant, or malignant cellular proliferation, including but not limited to, neoplasms, hyperplasias, and tumours (e.g., histocytoma, glioma, astrocytoma, osteoma), cancers (see below), psoriasis, bone diseases, fibroproliferative disorders (e.g., of connective tissues), pulmonary fibrosis, atherosclerosis, smooth muscle cell proliferation in the blood vessels, such as stenosis or restenosis following angioplasty.

30 In one embodiment, the treatment is treatment of: cancer.

In one embodiment, the treatment is treatment of: lung cancer, small cell lung cancer, non-35 small cell lung cancer, gastrointestinal cancer, stomach cancer, bowel cancer, colon cancer, rectal cancer, colorectal cancer, thyroid cancer, breast cancer, ovarian cancer, endometrial cancer, prostate cancer, testicular cancer, liver cancer, kidney cancer, renal cell carcinoma, bladder cancer, pancreatic cancer, brain cancer, glioma, sarcoma, osteosarcoma, bone cancer, skin cancer, squamous cancer, Kaposi's sarcoma, melanoma, malignant melanoma, lymphoma, or leukemia.

40 In one embodiment, the treatment is treatment of:
a carcinoma, for example a carcinoma of the bladder, breast, colon (e.g., colorectal carcinomas such as colon adenocarcinoma and colon adenoma), kidney, epidermal, liver, lung (e.g., adenocarcinoma, small cell lung cancer and non-small cell lung carcinomas),

oesophagus, gall bladder, ovary, pancreas (e.g., exocrine pancreatic carcinoma), stomach, cervix, thyroid, prostate, skin (e.g., squamous cell carcinoma);
a hematopoietic tumour of lymphoid lineage, for example leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, or Burkett's lymphoma;
a hematopoietic tumor of myeloid lineage, for example acute and chronic myelogenous leukemias, myelodysplastic syndrome, or promyelocytic leukemia;
a tumour of mesenchymal origin, for example fibrosarcoma or habdomyosarcoma;
a tumor of the central or peripheral nervous system, for example astrocytoma,
10 neuroblastoma, glioma or schwannoma;
melanoma; seminoma; teratocarcinoma; osteosarcoma; xenoderoma pigmentoum; keratoctanthoma; thyroid follicular cancer; or Kaposi's sarcoma.

In one embodiment, the treatment is treatment of solid tumour cancer.

15

In one embodiment, the treatment is treatment of melanoma or malignant melanoma.

In one embodiment, the treatment is treatment of colorectal cancer.

20

The anti-cancer effect may arise through one or more mechanisms, including but not limited to, the regulation of cell proliferation, the inhibition of cell cycle progression, the inhibition of angiogenesis (the formation of new blood vessels), the inhibition of metastasis (the spread of a tumour from its origin), the inhibition of invasion (the spread of tumour cells into neighbouring normal structures), or the promotion of apoptosis (programmed cell death). The 25 AQ compounds of the present invention may be used in the treatment of the cancers described herein, independent of the mechanisms discussed herein.

Conditions Treated - Proliferative Disorders and Cancer Associated with RAF

30

Cancers with, for example, activating mutations of ras, raf and EGFR or over expression of ras, raf and EGFR including any of the isoforms thereof, may be particularly sensitive to inhibitors of RAF (e.g., B-RAF) activity. Patients with activating mutants of RAF (e.g., B-RAF) may also find treatment with inhibitors of RAF (e.g., B-RAF) activity particularly beneficial. Cancers with other abnormalities leading to an upregulated raf-MEK-ERK pathway signal may 35 also be particularly sensitive to treatment with inhibitors of RAF (e.g., B-RAF) activity. Examples of such abnormalities include constitutive activation of a growth factor receptor; overexpression of one or more growth factor receptors; and overexpression of one or more growth factors.

40

In one embodiment (e.g., of use in methods of therapy, of use in the manufacture of medicaments, of methods of treatment), the treatment is treatment of a proliferative disorder as described above, for example, cancer, that is characterised by:
(a) activating mutants of ras or raf;
(b) upregulation of ras or raf;
45 (c) upregulated raf-MEK-ERK pathway signals;

(d) upregulation of growth factor receptors, such as ERBB2 and EGFR.

In one embodiment, the proliferative disorder is characterised by cells which overexpress RAF (e.g., B-RAF) or express or overexpress mutant raf (e.g., B-RAF). In one embodiment, the 5 proliferative disorder is characterised by cells which overexpress raf (e.g., B-RAF). In one embodiment, the proliferative disorder is characterised by cells which express or overexpress mutant RAF (e.g., B-RAF). In one embodiment, the proliferative disorder is characterised by cells which overexpress RAF (e.g., B-RAF), or overexpress mutant RAF (e.g., B-RAF), as 10 compared to corresponding normal cells. In one embodiment, the overexpression is by a factor of 1.5, 2, 3, 5, 10, or 20.

In one embodiment (e.g., of use in methods of therapy, of use in the manufacture of medicaments, of methods of treatment), the treatment is treatment of a disease or disorder associated with a mutated form of RAF (e.g., B-RAF), such as, for example, the mutations 15 described in Wan, P., *et al.*, 2004, *Cell*, Vol. 116, pp. 855-867 and Stratton *et al.*, 2003, published international patent application publication number WO 03/056036.

Conditions Treated - Inflammation etc.

20 The AQ compounds are useful in the treatment of disorders associated with inflammation (as "anti-inflammation agents"), etc.

The function of inflammatory cells is controlled by many factors the effects of which are mediated by different signal transduction pathways. Although some key pro-inflammatory 25 functions are mediated by p38 Map kinase (e.g., TNF release), others are mediated by other pathways. The raf-MEK-ERK pathway, in particular, is an important activating and proliferative signal in many inflammatory cells. B and T lymphocytes, in particular, require activation of the raf-MEK-ERK pathway for clonal expansion and generation of effector populations (see, e.g., Cantrell, D.A., 2003, *Immunol Rev.*, Vol. 192, pp. 122-130; Genot, E. 30 and Cantrell, D.A., 2000, *Curr. Opin. Immunol.*, Vol. 12(3), pp. 289-294).

In one embodiment, the treatment is treatment of: inflammatory diseases, such as rheumatoid arthritis, osteoarthritis, rheumatoid spondylitis, gouty arthritis, traumatic arthritis, rubella arthritis, psoriatic arthritis, and other arthritic conditions; Alzheimer's disease; toxic shock syndrome, the inflammatory reaction induced by endotoxin or inflammatory bowel disease; 35 tuberculosis; atherosclerosis; muscle degeneration; Reiter's syndrome; gout; acute synovitis; sepsis; septic shock; endotoxic shock; gram negative sepsis; adult respiratory distress syndrome; cerebral malaria; chronic pulmonary inflammatory disease; silicosis; pulmonary sarcoidosis; bone resorption diseases; reperfusion injury; graft versus host reaction; allograft rejections; fever and myalgias due to infection, such as influenza, cachexia, in particular 40 cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome (AIDS); AIDS; ARC (AIDS related complex); keloid formation; scar tissue formation; Crohn's disease; ulcerative colitis; pyresis; chronic obstructive pulmonary disease (COPD); acute respiratory distress syndrome (ARDS); asthma; pulmonary fibrosis; bacterial 45 pneumonia.

In one preferred embodiment, the treatment is treatment of: arthritic conditions, including rheumatoid arthritis and rheumatoid spondylitis; inflammatory bowel disease, including Crohn's disease and ulcerative colitis; and chronic obstructive pulmonary disease (COPD).

5

In one preferred embodiment, the treatment is treatment of: an inflammatory disorder characterized by T-cell proliferation (T-cell activation and growth), for example, tissue graft rejection, endotoxin shock, and glomerular nephritis.

10 **Screening**

Prior to treatment, a patient may be screened to determine whether a disease or disorder from which the patient is or may be suffering is one which would be susceptible to treatment with a compound that inhibits RAF (e.g., B-RAF) activity or has activity against an RTK (e.g., FGFR-1, FGFR-2, FGFR-3, VEGFR-2, Tie2, EphB2).

15 For example, a biological sample taken from a patient may be analysed to determine whether a disease or disorder, such as cancer, that the patient is or may be suffering from is one which is characterised by elevated expression or activation of RAF (e.g., B-RAF), or an RTK (e.g., FGFR-1, FGFR-2, FGFR-3, VEGFR-2, Tie2, EphB2), or is the result of an activating mutation. Thus, the patient may be subjected to a diagnostic test to detect a marker characteristic of over-expression or activation of RAF (e.g., B-RAF) or an RTK (e.g., FGFR-1, FGFR-2, FGFR-3, VEGFR-2, Tie2, EphB2), or a mutation thereof.

20 25 As used herein, the term "marker" includes genetic markers (including, e.g., the measurement of DNA composition to identify mutations of raf, ras, MEK, ERK or a growth factor such as ERBB2 or EGFR) and markers which are characteristic of upregulation of raf, ras, MEK, ERK, growth factors receptors such as ERBB2 or EGFR including enzyme activity, enzyme levels, enzyme state (e.g. phosphorylated or not) and mRNA levels of the aforementioned proteins.

30 Methods for identification and analysis of mutations are well known. See, for example, *Anticancer Research*, 1999, Vol. 19(4A), pp. 2481-2483; *Clin. Chem.*, 2002, Vol. 48, p. 428; *Cancer Research*, 2003, Vol. 63(14), pp. 3955-3957.

35 The term "marker" further includes genetic markers including, for example, the measurement of DNA composition to identify mutations of RTKs, e.g., FGFR-1, FGFR-2, FGFR-3, VEGFR-2, Tie2, and EphB2. The term "marker" also includes markers that are characteristic of up-regulation of RTKs, including enzyme activity, enzyme levels, enzyme state (e.g., phosphorylated or not) and mRNA levels of the aforementioned proteins.

40 45 Upregulation includes elevated expression or over expression, including gene amplification (i.e., multiple gene copies), increased expression by a transcriptional effect, hyperactivity, and activation, including activation by mutations.

Other tumours that have an upregulated raf-MEK-ERK pathway signal may also be particularly sensitive to inhibitors of RAF (e.g., B-RAF) activity. A number of assays exist

which can identify tumours that exhibit upregulation in the raf-MEK-ERK pathway, including the commercially available MEK1/2 (MAPK Kinase) assay from Chemicon International.

Upregulation can result from over expression or activation of growth factor receptors such as ERBB2 and EGFR, or mutant ras or raf proteins.

5

Typical methods for screening for over expression, upregulation or mutants include, but are not limited to, standard methods such as reverse-transcriptase polymerase chain reaction (RT-PCR) or in-situ hybridisation.

10 In screening by RT-PCR, the level of mRNA for the aforementioned proteins in the tumour is assessed by creating a cDNA copy of the mRNA followed by amplification of the cDNA by PCR. Methods of PCR amplification, the selection of primers, and conditions for amplification, are known to a person skilled in the art. Nucleic acid manipulations and PCR are carried out by standard methods, as described, for example, in Ausubel, F.M. et al., eds., Current
15 Protocols in Molecular Biology, 2004 (John Wiley & Sons Inc.); Innis, M.A. et-al., eds., PCR
Protocols: A Guide to Methods and Applications, 1990 (Academic Press). Reactions and manipulations involving nucleic acid techniques are also described in Sambrook et al.,
Molecular Cloning: A Laboratory Manual, 3rd edition, 2001 (Cold Spring Harbor Laboratory
Press). Alternatively, a commercially available kit for RT-PCR (e.g., Roche Molecular
20 Biochemicals) may be used, or methodology as set forth in United States patents 4,666,828;
4,683,202; 4,801,531; 5,192,659, 5,272,057, 5,882,864, and 6,218,529.

An example of an in-situ hybridisation technique would be fluorescence in situ hybridisation (FISH) (see, e.g., Angerer, 1987, Meth. Enzymol., Vol. 152, p. 649). Generally, in situ

25 hybridization comprises the following major steps: (1) fixation of tissue to be analyzed; (2) prehybridization treatment of the sample to increase accessibility of target nucleic acid, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization, and (5) detection of the hybridized nucleic acid
30 fragments. The probes used in such applications are typically labeled, for example, with radioisotopes or fluorescent reporters. Preferred probes are sufficiently long, for example, from about 50, 100, or 200 nucleotides to about 1000 or more nucleotides, in order to enable specific hybridization with the target nucleic acid(s) under stringent conditions. Standard methods for carrying out FISH are described, for example, in Ausubel, F.M. et al., eds.,
35 Current Protocols in Molecular Biology, 2004 (John Wiley & Sons Inc.); Bartlett, John M. S.,
"Fluorescence In Situ Hybridization: Technical Overview," in: Molecular Diagnosis of Cancer, Methods and Protocols, 2nd ed. (Series: Methods in Molecular Medicine), March 2004,
pp. 77-88 (ISBN: 1-59259-760-2).

40 Alternatively, the protein products expressed from the mRNAs may be assayed by immunohistochemistry of tumour sections, solid phase immunoassay with microtiter plates, Western blotting, 2-dimensional SDS-polyacrylamide gel electrophoresis, ELISA, and other methods known in the art for detection of specific proteins. Detection methods would include the use of site specific antibodies, such as, phospho raf, phospho ERK, phospho MEK, or phosphotyrosine. In addition to tumour biopsies, other samples which could be utilised
45

include pleural fluid, peritoneal fluid, urine, stool biopsies, sputum, blood (isolation and enrichment of shed tumour cells).

5 In addition, mutant forms of raf, EGFR or ras can be identified by direct sequencing of, for example, tumour biopsies using PCR and methods to sequence PCR products directly, for example, using methods as described herein. These and other well-known techniques for detection of the over expression, activation, or mutations may be used.

10 Also, abnormal levels of proteins such as raf, ras and EGFR can be measured using standard enzyme assays, for example for raf those assays described herein.

15 Alternative methods for the measurement of the over expression or activation of FGFR, Tie, VEGFR or Eph kinases, in particular VEGFR including the isoforms thereof, include the measurement of microvessel density. This can be measured, for example, using methods described by Orre and Rogers, 1999, *Int. J. Cancer*, Vol. 84(2), pp. 101-108. Assay methods also include the use of markers; for example, in the case of VEGFR, markers include CD31, CD34 and CD105 (Mineo *et al.*, 2004, *J. Clin. Pathol.*, Vol. 57(6), pp. 591-597).

Treatment

20 The term "treatment," as used herein in the context of treating a disease or disorder, pertains generally to treatment and therapy, whether of a human or an animal (e.g., in veterinary applications), in which some desired therapeutic effect is achieved, for example, the inhibition of the progress of the disease or disorder, and includes a reduction in the rate of progress, a 25 halt in the rate of progress, alleviation of symptoms of the disease or disorder, amelioration of the disease or disorder, and cure of the disease or disorder. Treatment as a prophylactic measure (i.e., prophylaxis) is also included. For example, use with patients who have not yet developed the disease or disorder, but who are at risk of developing the disease or disorder, is encompassed by the term "treatment."

30 For example, treatment includes the prophylaxis of cancer, reducing the incidence of cancer, alleviating the symptoms of cancer, etc.

35 The term "therapeutically-effective amount," as used herein, pertains to that amount of a compound, or a material, composition or dosage form comprising a compound, which is effective for producing some desired therapeutic effect, commensurate with a reasonable benefit/risk ratio, when administered in accordance with a desired treatment regimen.

Combination Therapies

40 The term "treatment" includes combination treatments and therapies, in which two or more treatments or therapies are combined, for example, sequentially or simultaneously. For example, the compounds described herein may also be used in combination therapies, e.g., in conjunction with other agents, for example, cytotoxic agents, anticancer agents, etc.

45 Examples of treatments and therapies include, but are not limited to, chemotherapy

(the administration of active agents, including, e.g., drugs, antibodies (e.g., as in immunotherapy), prodrugs (e.g., as in photodynamic therapy, GDEPT, ADEPT, etc.); surgery; radiation therapy; photodynamic therapy; gene therapy; and controlled diets.

- 5 For example, it may be beneficial to combine treatment with a compound as described herein with one or more other (e.g., 1, 2, 3, 4) agents or therapies that regulates cell growth or survival or differentiation via a different mechanism, thus treating several characteristic features of cancer development.
- 10 One aspect of the present invention pertains to a compound as described herein, in combination with one or more additional therapeutic agents, as described below.

Examples of additional therapeutic agents that may be administered together (whether concurrently or at different time intervals) with the compounds described herein include:

- 15 (a) topoisomerase I inhibitors;
- (b) antimetabolites;
- (c) tubulin targeting agents;
- (d) DNA binder and topoisomerase II inhibitors;
- (e) alkylating agents;
- 20 (f) monoclonal antibodies;
- (g) anti-hormones;
- (h) signal transduction inhibitors;
- (i) proteasome inhibitors;
- (j) DNA methyl transferases;
- 25 (k) cytokines and retinoids.

The particular combination would be at the discretion of the physician who would select dosages using his common general knowledge and dosing regimens known to a skilled practitioner.

- 30 The agents (i.e., the compound described herein, plus one or more other agents) may be administered simultaneously or sequentially, and may be administered in individually varying dose schedules and via different routes. For example, when administered sequentially, the agents can be administered at closely spaced intervals (e.g., over a period of 5-10 minutes) or at longer intervals (e.g., 1, 2, 3, 4 or more hours apart, or even longer periods apart where required), the precise dosage regimen being commensurate with the properties of the therapeutic agent(s).

- 40 The agents (i.e., the compound described here, plus one or more other agents) may be formulated together in a single dosage form, or alternatively, the individual agents may be formulated separately and presented together in the form of a kit, optionally with instructions for their use.

Other Uses

The AQ compounds described herein may also be used as cell culture additives to inhibit RAF (e.g., B-RAF) function, e.g., to inhibit cell proliferation, etc.

5

The AQ compounds described herein may also be used as part of an *in vitro* assay, for example, in order to determine whether a candidate host is likely to benefit from treatment with the compound in question.

10

The AQ compounds described herein may also be used as a standard, for example, in an assay, in order to identify other compounds, other RAF (e.g., B-RAF) function inhibitors, other anti-proliferative agents, other anti-cancer agents, etc.

Kits

15

One aspect of the invention pertains to a kit comprising (a) an AQ compound as described herein, or a composition comprising an AQ compound as described herein, e.g., preferably provided in a suitable container and/or with suitable packaging; and (b) instructions for use, e.g., written instructions on how to administer the compound or composition.

20

The written instructions may also include a list of indications for which the active ingredient is a suitable treatment.

Routes of Administration

25

The AQ compound or pharmaceutical composition comprising the AQ compound may be administered to a subject by any convenient route of administration, whether systemically/peripherally or topically (i.e., at the site of desired action).

30

Routes of administration include, but are not limited to, oral (e.g., by ingestion); buccal; sublingual; transdermal (including, e.g., by a patch, plaster, etc.); transmucosal (including, e.g., by a patch, plaster, etc.); intranasal (e.g., by nasal spray); ocular (e.g., by eyedrops); pulmonary (e.g., by inhalation or insufflation therapy using, e.g., via an aerosol, e.g., through the mouth or nose); rectal (e.g., by suppository or enema); vaginal (e.g., by pessary);

35

parenteral, for example, by injection, including subcutaneous, intradermal, intramuscular, intravenous, intraarterial, intracardiac, intrathecal, intraspinal, intracapsular, subcapsular, intraorbital, intraperitoneal, intratracheal, subcuticular, intraarticular, subarachnoid, and intrasternal; by implant of a depot or reservoir, for example, subcutaneously or intramuscularly.

40

The Subject/Patient

The subject/patient may be a chordate, a vertebrate, a mammal, a placental mammal, a marsupial (e.g., kangaroo, wombat), a rodent (e.g., a guinea pig, a hamster, a rat, a mouse),

45

murine (e.g., a mouse), a lagomorph (e.g., a rabbit), avian (e.g., a bird), canine (e.g., a dog),

feline (e.g., a cat), equine (e.g., a horse), porcine (e.g., a pig), ovine (e.g., a sheep), bovine (e.g., a cow), a primate, simian (e.g., a monkey or ape), a monkey (e.g., marmoset, baboon), an ape (e.g., gorilla, chimpanzee, orangutang, gibbon), or a human.

5 Furthermore, the subject/patient may be any of its forms of development, for example, a foetus.

In one preferred embodiment, the subject/patient is a human.

10 Formulations

While it is possible for the AQ compound to be administered alone, it is preferable to present it as a pharmaceutical formulation (e.g., composition, preparation, medicament) comprising at least one AQ compound, as described herein, together with one or more other 15 pharmaceutically acceptable ingredients well known to those skilled in the art, including, but not limited to, pharmaceutically acceptable carriers, diluents, excipients, adjuvants, fillers, buffers, preservatives, anti-oxidants, lubricants, stabilisers, solubilisers, surfactants (e.g., wetting agents), masking agents, colouring agents, flavouring agents, and sweetening agents. The formulation may further comprise other active agents, for example, other therapeutic or 20 prophylactic agents.

Thus, the present invention further provides pharmaceutical compositions, as defined above, and methods of making a pharmaceutical composition comprising admixing at least one AQ compound, as described herein, together with one or more other pharmaceutically acceptable ingredients well known to those skilled in the art, e.g., carriers, diluents, 25 excipients, etc. If formulated as discrete units (e.g., tablets, etc.), each unit contains a predetermined amount (dosage) of the compound.

30 The term "pharmaceutically acceptable," as used herein, pertains to compounds, ingredients, materials, compositions, dosage forms, etc., which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of the subject in question (e.g., human) without excessive toxicity, irritation, allergic response, or other problem or complication, 35 commensurate with a reasonable benefit/risk ratio. Each carrier, diluent, excipient, etc. must also be "acceptable" in the sense of being compatible with the other ingredients of the formulation.

Suitable carriers, diluents, excipients, etc. can be found in standard pharmaceutical texts, for example, Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Company, Easton, Pa., 1990; and Handbook of Pharmaceutical Excipients, 5th edition, 2005.

40 The formulations may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the compound with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the compound with carriers (e.g., liquid 45 carriers, finely divided solid carrier, etc.), and then shaping the product, if necessary.

The formulation may be prepared to provide for rapid or slow release; immediate, delayed, timed, or sustained release; or a combination thereof.

5 Formulations may suitably be in the form of liquids, solutions (e.g., aqueous, non-aqueous), suspensions (e.g., aqueous, non-aqueous), emulsions (e.g., oil-in-water, water-in-oil), elixirs, syrups, electuaries, mouthwashes, drops, tablets (including, e.g., coated tablets), granules, powders, losenges, pastilles, capsules (including, e.g., hard and soft gelatin capsules), cachets, pills, ampoules, boluses, suppositories, pessaries, tinctures, gels, pastes, ointments, 10 creams, lotions, oils, foams, mists, or aerosols.

Formulations may suitably be provided as a patch, adhesive plaster, bandage, dressing, or the like which is impregnated with one or more compounds and optionally one or more other pharmaceutically acceptable ingredients, including, for example, penetration, permeation, and 15 absorption enhancers. Formulations may also suitably be provided in the form of a depot or reservoir.

20 The compound may be dissolved in, suspended in, or admixed with one or more other pharmaceutically acceptable ingredients. The compound may be presented in a liposome or other microparticulate which is designed to target the compound, for example, to blood components or one or more organs.

25 Formulations suitable for oral administration (e.g., by ingestion) include liquids, solutions (e.g., aqueous, non-aqueous), suspensions (e.g., aqueous, non-aqueous), emulsions (e.g., oil-in-water, water-in-oil), elixirs, syrups, electuaries, tablets, granules, powders, capsules, cachets, pills, ampoules, boluses.

30 Formulations suitable for buccal administration include mouthwashes, losenges, pastilles, as well as patches, adhesive plasters, depots, and reservoirs. Losenges typically comprise the compound in a flavored basis, usually sucrose and acacia or tragacanth. Pastilles typically comprise the compound in an inert matrix, such as gelatin and glycerin, or sucrose and acacia. Mouthwashes typically comprise the compound in a suitable liquid carrier.

35 Formulations suitable for sublingual administration include tablets, losenges, pastilles, capsules, and pills.

40 Formulations suitable for oral transmucosal administration include liquids, solutions (e.g., aqueous, non-aqueous), suspensions (e.g., aqueous, non-aqueous), emulsions (e.g., oil-in-water, water-in-oil), mouthwashes, losenges, pastilles, as well as patches, adhesive plasters, depots, and reservoirs.

45 Formulations suitable for non-oral transmucosal administration include liquids, solutions (e.g., aqueous, non-aqueous), suspensions (e.g., aqueous, non-aqueous), emulsions (e.g., oil-in-water, water-in-oil), suppositories, pessaries, gels, pastes, ointments, creams, lotions, oils, as well as patches, adhesive plasters, depots, and reservoirs.

Formulations suitable for transdermal administration include gels, pastes, ointments, creams, lotions, and oils, as well as patches, adhesive plasters, bandages, dressings, depots, and reservoirs.

5

Tablets may be made by conventional means, e.g., compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the compound in a free-flowing form such as a powder or granules, optionally mixed with one or more binders (e.g., povidone, gelatin, acacia, sorbitol,

10 tragacanth, hydroxypropylmethyl cellulose); fillers or diluents (e.g., lactose, microcrystalline cellulose, calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc, silica); disintegrants (e.g., sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose); surface-active or dispersing or wetting agents (e.g., sodium lauryl sulfate); preservatives (e.g., methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, sorbic

15 acid); flavours, flavour enhancing agents, and sweeteners. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the compound therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile.

20 Tablets may optionally be provided with a coating, for example, to affect release, for example an enteric coating, to provide release in parts of the gut other than the stomach.

Ointments are typically prepared from the compound and a paraffinic or a water-miscible ointment base.

25

Creams are typically prepared from the compound and an oil-in-water cream base. If desired, the aqueous phase of the cream base may include, for example, at least about 30% w/w of a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the compound through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide and related analogues.

35

Emulsions are typically prepared from the compound and an oily phase, which may optionally comprise merely an emulsifier (otherwise known as an emulgent), or it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabiliser. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabiliser(s) make up the so-called emulsifying wax, and the wax together with the oil and/or fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.

40

Suitable emulgents and emulsion stabilisers include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate and sodium lauryl sulfate. The choice of suitable oils

45

or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the compound in most oils likely to be used in pharmaceutical emulsion formulations may be very low. Thus the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or

5 other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required.

10 Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.

Formulations suitable for intranasal administration, where the carrier is a liquid, include, for example, nasal spray, nasal drops, or by aerosol administration by nebuliser, include aqueous or oily solutions of the compound.

Formulations suitable for intranasal administration, where the carrier is a solid, include, for example, those presented as a coarse powder having a particle size, for example, in the range of about 20 to about 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.

Formulations suitable for pulmonary administration (e.g., by inhalation or insufflation therapy) include those presented as an aerosol spray from a pressurised pack, with the use of a suitable propellant, such as dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane, carbon dioxide, or other suitable gases.

Formulations suitable for ocular administration include eye drops wherein the compound is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the compound.

30 Formulations suitable for rectal administration may be presented as a suppository with a suitable base comprising, for example, natural or hardened oils, waxes, fats, semi-liquid or liquid polyols, for example, cocoa butter or a salicylate; or as a solution or suspension for treatment by enema.

35 Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the compound, such carriers as are known in the art to be appropriate.

40 Formulations suitable for parenteral administration (e.g., by injection), include aqueous or non-aqueous, isotonic, pyrogen-free, sterile liquids (e.g., solutions, suspensions), in which the compound is dissolved, suspended, or otherwise provided (e.g., in a liposome or other microparticulate). Such liquids may additional contain other pharmaceutically acceptable ingredients, such as anti-oxidants, buffers, preservatives, stabilisers, bacteriostats, suspending agents, thickening agents, and solutes which render the formulation isotonic with

45

the blood (or other relevant bodily fluid) of the intended recipient. Examples of excipients include, for example, water, alcohols, polyols, glycerol, vegetable oils, and the like. Examples of suitable isotonic carriers for use in such formulations include Sodium Chloride Injection, Ringer's Solution, or Lactated Ringer's Injection. Typically, the concentration of the 5 compound in the liquid is from about 1 ng/ml to about 10 µg/ml, for example from about 10 ng/ml to about 1 µg/ml. The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions 10 may be prepared from sterile powders, granules, and tablets.

Dosage

It will be appreciated by one of skill in the art that appropriate dosages of the AQ compounds, 15 and compositions comprising the AQ compounds, can vary from patient to patient. Determining the optimal dosage will generally involve the balancing of the level of therapeutic benefit against any risk or deleterious side effects. The selected dosage level will depend on a variety of factors including, but not limited to, the activity of the particular AQ compound, the route of administration, the time of administration, the rate of excretion of the AQ compound, 20 the duration of the treatment, other drugs, compounds, and/or materials used in combination, the severity of the disease or disorder, and the species, sex, age, weight, condition, general health, and prior medical history of the patient. The amount of AQ compound and route of administration will ultimately be at the discretion of the physician, veterinarian, or clinician, although generally the dosage will be selected to achieve local concentrations at the site of 25 action which achieve the desired effect without causing substantial harmful or deleterious side-effects.

Administration can be effected in one dose, continuously or intermittently (e.g., in divided doses at appropriate intervals) throughout the course of treatment. Methods of determining 30 the most effective means and dosage of administration are well known to those of skill in the art and will vary with the formulation used for therapy, the purpose of the therapy, the target cell(s) being treated, and the subject being treated. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician, veterinarian, or clinician.

35 In general, a suitable dose of the AQ compound is in the range of about 10 µg to about 250 mg (more typically about 100 µg to about 25 mg) per kilogram body weight of the subject per day. Where the compound is a salt, an ester, an amide, a prodrug, or the like, the amount administered is calculated on the basis of the parent compound and so the actual weight to be 40 used is increased proportionately.

EXAMPLES

45 The following examples are provided solely to illustrate the present invention and are not intended to limit the scope of the invention, as described herein.

Chemical Synthesis

Several methods for the chemical synthesis of compounds of the present invention are
5 described herein. These and/or other well known methods may be modified and/or adapted
in known ways in order to facilitate the synthesis of additional compounds within the scope of
the present invention.

Descriptions of general laboratory methods and procedures, useful for the preparation of the
10 compounds described herein, are provided in Vogel's Textbook of Practical Organic
Chemistry, 5th Edition, 1989, (Editors: Furniss, B. S., Hannaford, A. J., Smith, P. W. G.,
Tatchell, A. R.) (published by Longmann, UK).

Methods for the synthesis of pyridine compounds in particular are described in Heterocyclic
15 Chemistry, 3rd Edition, 1998, Joule, J.A, Mills, R. and Smith, G.F. (published by Chapman &
Hall, UK).

The compounds described herein can be prepared via a key intermediate (2). This
intermediate can be prepared from commercially available starting material, 2-amino-3-nitro-
20 4-chloropyridine, (1), and optionally substituted amino-hydroxy-quinolines or amino-hydroxy-
isoquinolines. Compounds (2) are then protected selectively at the amino group, for example
as a BOC carbamate or trifluoroacetamide, to afford intermediates, (3). The intermediates,
(3), can also be obtained directly from 2-amino-3-nitro-4-chloropyridine, (1), and N-BOC-
25 protected amino-hydroxy-quinolines or amino-hydroxy-isoquinolines. The nitro group of the
protected intermediate, (3), may be reduced to an amino group with Pd/C and ammonium
formate or hydrogen, or with NiCl₂ and NaBH₄ to give the diamino intermediate (4). The same
method can be applied using any of the amino-hydroxy-quinolines or-isoquinolines shown in
Table 1 below. Intermediate (4) can be cyclised to give pyridoimidazolone (5) using
30 phosgene or triphosgene. Deprotection of (5) affords the key common intermediate (6). An
example of such a method is illustrated in the following scheme using 5-hydroxy-8-
aminoquinoline.

- 78 -

Scheme 1

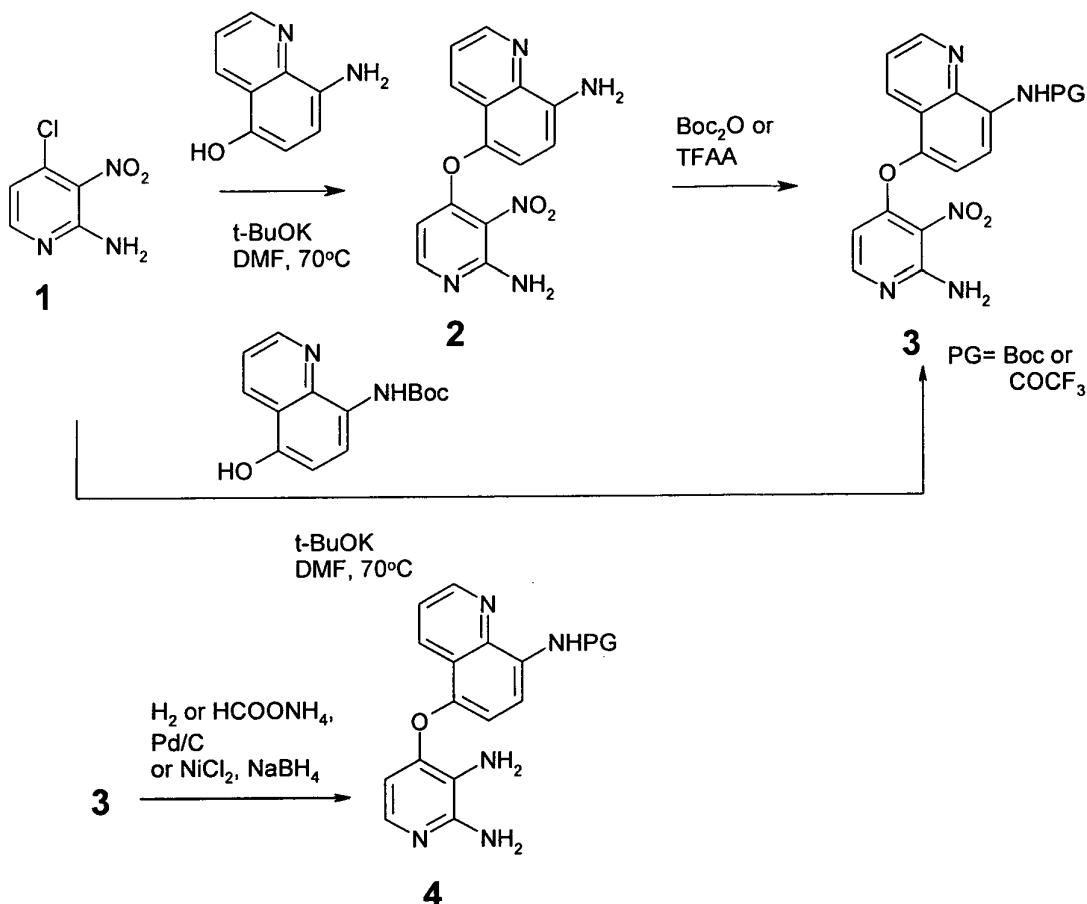
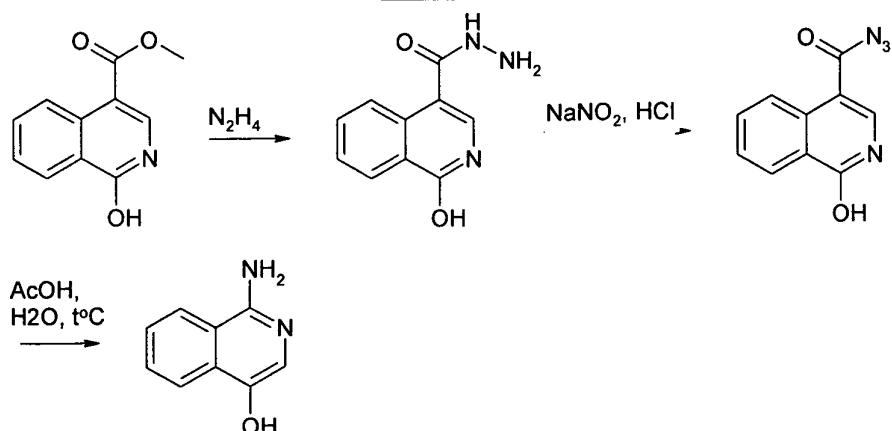


Table 1

Starting Material	Structure	Intermediate (4)
5-Amino-8-hydroxyquinoline		
5-Amino-8-hydroxyisoquinoline		

Table 1

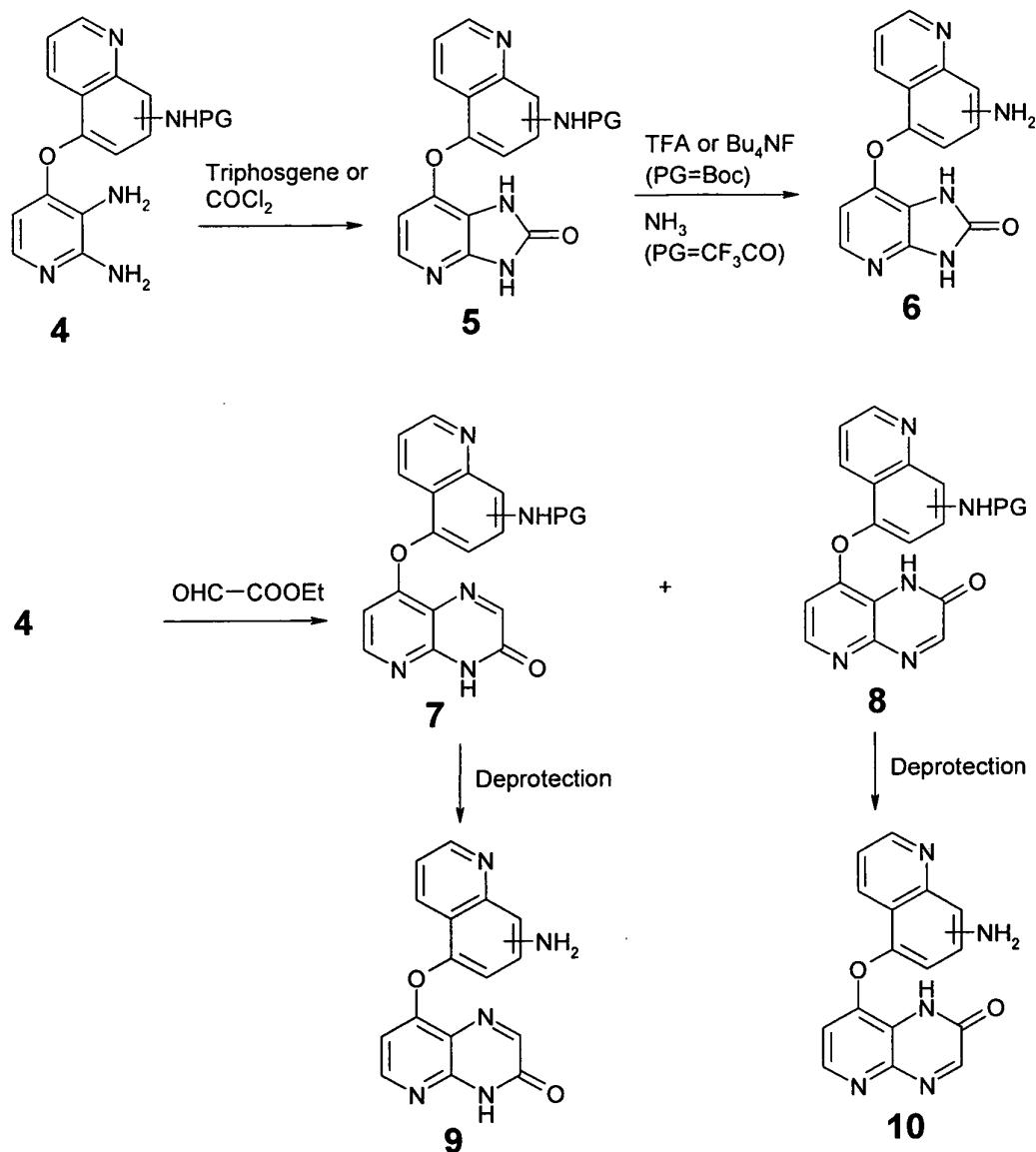
Starting Material	Structure	Intermediate (4)
8-Amino-5-hydroxy-isoquinoline		
8-Amino-5-hydroxy-quinoline		
1-Amino-4-hydroxy-isoquinoline		
2-amino-7-hydroxy-isoquinoline		
6-Amino-8-hydroxy-quinoline		


Table 1

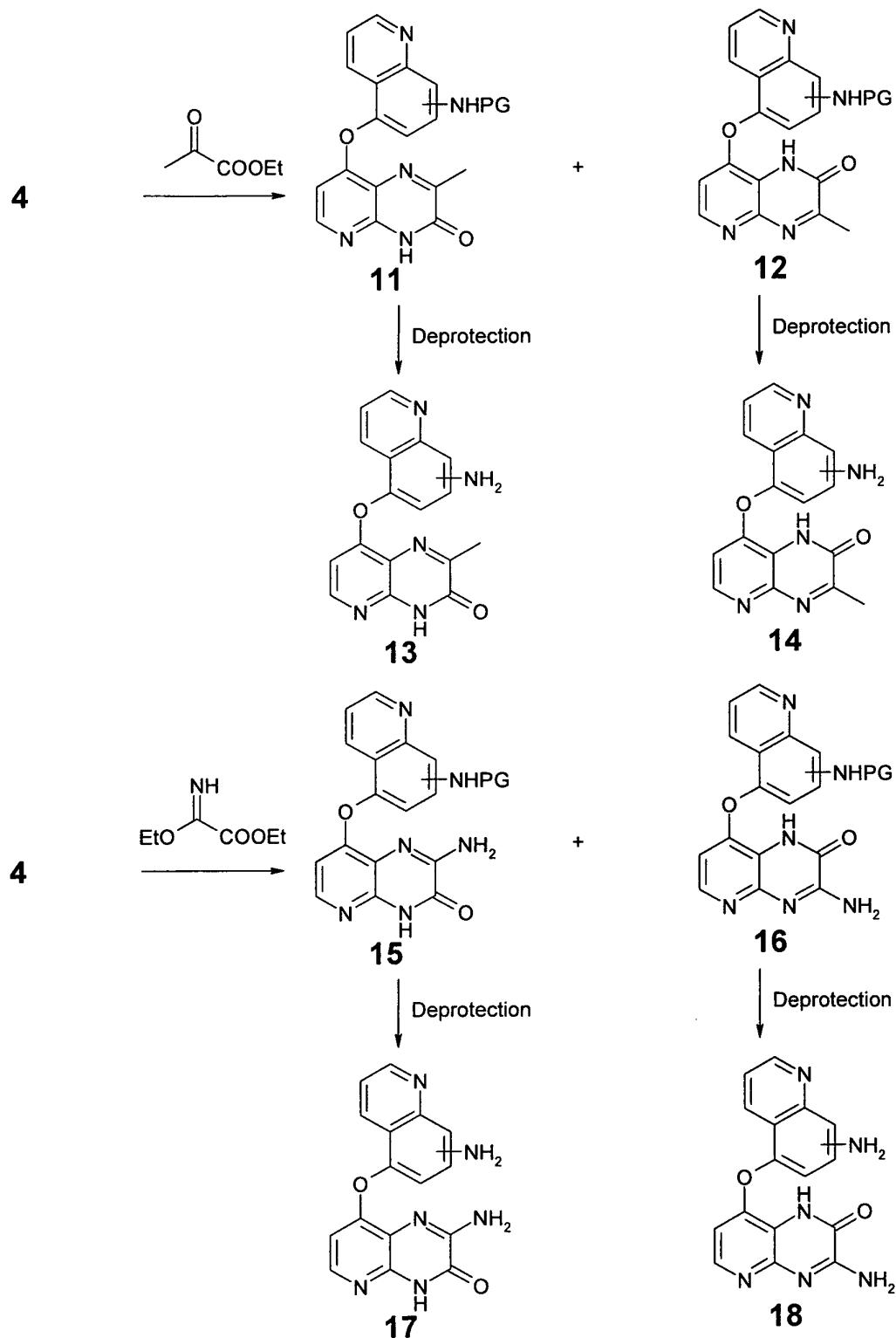
Starting Material	Structure	Intermediate (4)
8-Amino-6-hydroxy-quinoline		
2-Amino-4-hydroxy-quinoline		

All of the starting materials presented in Table 1 (above) are commercially available, except 1-amino-4-hydroxy-isoquinoline, which can be prepared, for example, as shown in the following scheme, and 1-hydroxy-4-amino-isoquinoline which can be prepared, for example, as shown 5 in the subsequent scheme.

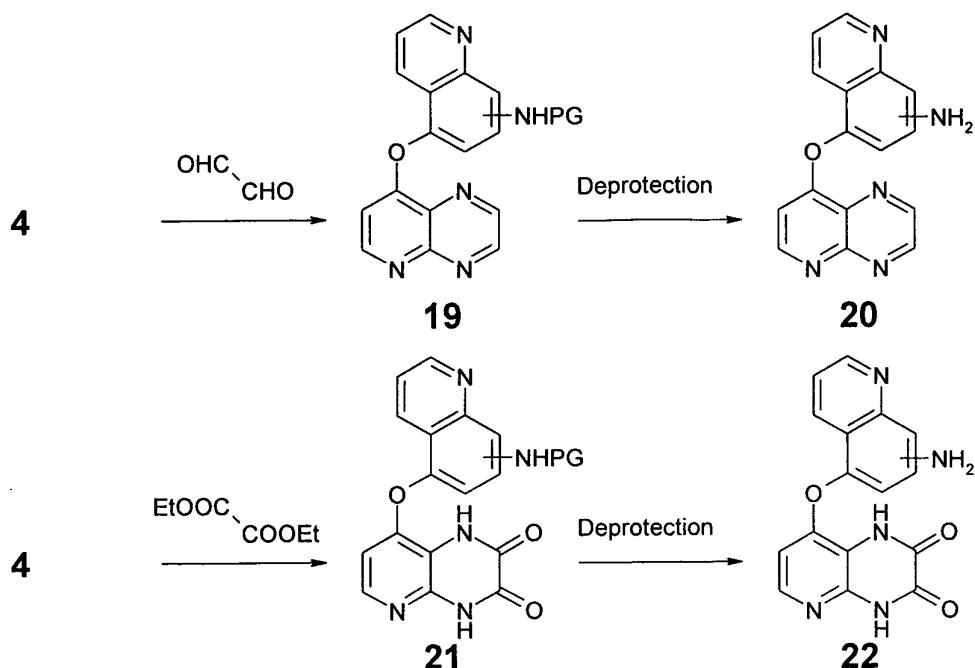
Scheme 2B



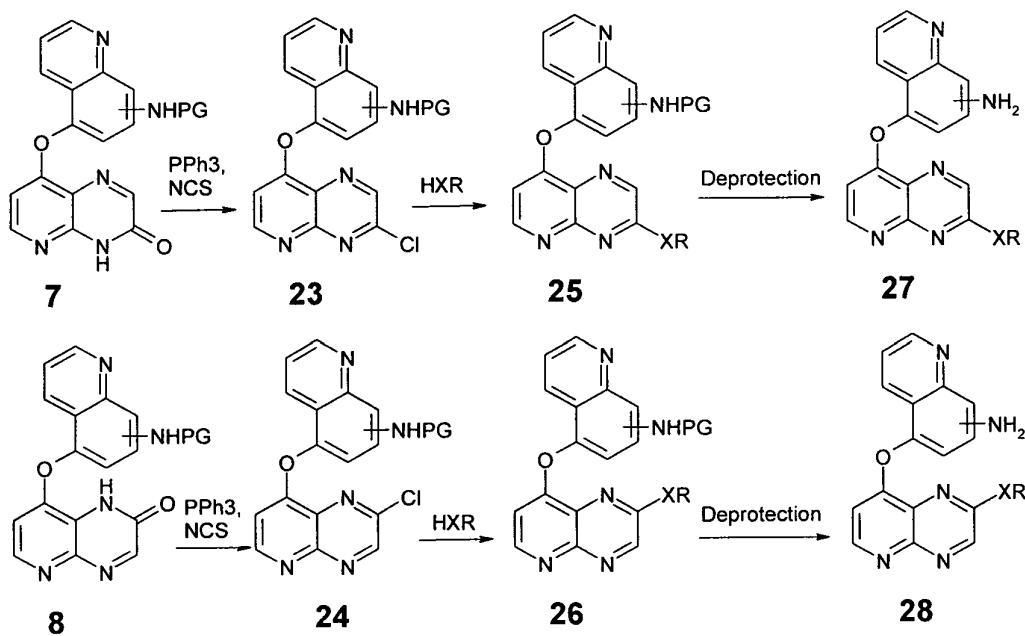
5 The following methods and schemes are illustrated using unsubstituted quinolinyl/isoquinolinyl
 10 groups, but it should be understood that these methods are also suitable for the preparation of
 compounds with substituted quinolinyl/isoquinolinyl groups.


15 Cyclisation of the diamino intermediate (4) to the bicyclic systems is exemplified for 8-amino-
 20 5-hydroxyquinoline in Scheme 3. Similar methods can be used with the other quinolines and
 isoquinolines described in Table 1 above. Intermediate (4) can be cyclised to
 25 pyridoimidazolone (5) using phosgene or triphosgene. Deprotection of (5) affords the key
 common intermediate (6). An example of such a method is illustrated in the following scheme
 using 5-hydroxy-8-aminoquinoline. Pyridopyrazinones can be obtained from intermediate (4)
 by reaction with ethyl glyoxylate, ethyl pyruvate or similar α -ketoesters. Both isomers (7) and
 30 (8) can be obtained from the reaction of (4) with ethyl glyoxalate. Deprotection of the
 protecting group (PG) with TFA or tetrabutyl ammonium fluoride (TBAF) (for Boc protecting
 group) or ammonia (for trifluoroacetamide) produces the common intermediates (9) or (10).
 Similarly, two isomers, (13) and (14), can be obtained from the reaction of (4) with ethyl
 35 pyruvate followed by deprotection. Amino-pyridopyrazinones (17) and (18) can be obtained
 from intermediate (4) by reaction with ethyl 2-ethoxy-2-iminoacetate and deprotection. The
 ratio of the two isomers can be influenced by the choice of solvents, so that one is obtained
 preferentially. Pyridopyrazines (20) can be obtained from intermediate (4) by reaction with
 40 glyoxal or 1,4-dioxane-2,3-diol followed by deprotection. Pyridopyrazin-diones (22) can be
 obtained from intermediate (4) by reaction with diethyloxalate or oxalyl chloride followed by
 deprotection.

- 82 -

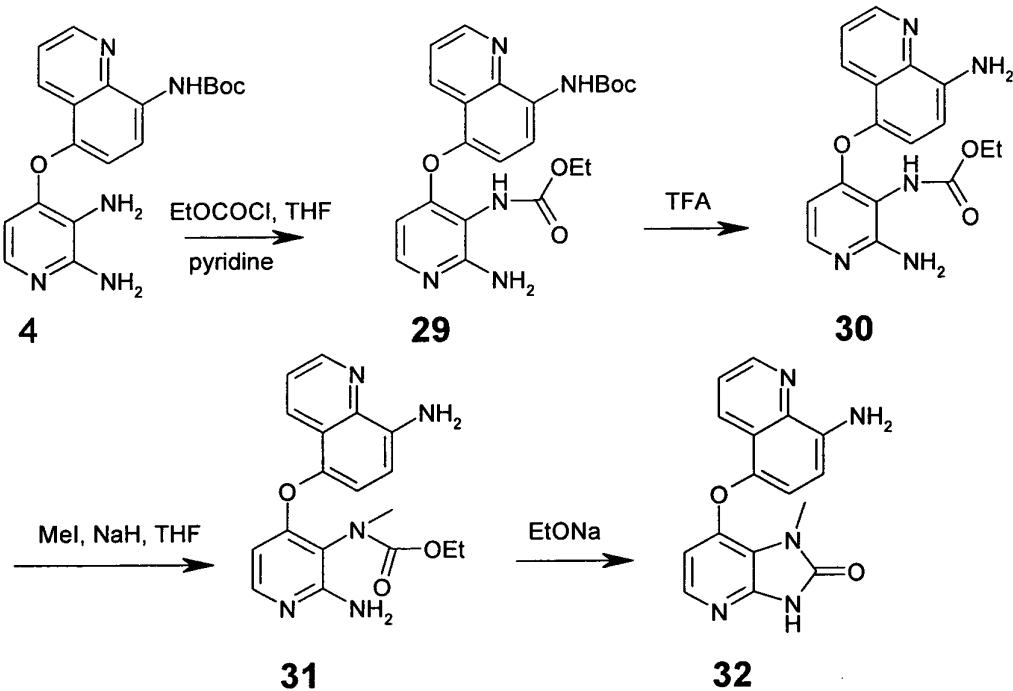

Scheme 3

- 83 -


- 84 -

Substituted pyridopyrazines (27) and (28) can be obtained from intermediates (7) and (8).

5 The carbonyl group of the pyrazinone can be converted to give the chloropyrazine intermediates (23) or (24) with PPh_3 and N-chlorosuccinimide, and then the chloro group substituted with ammonia, primary or secondary amine, alcohols and thiols to afford amines, ethers and thioethers (25) or (26). Deprotection affords the common intermediates (27) or (28). See, for example, the following scheme.

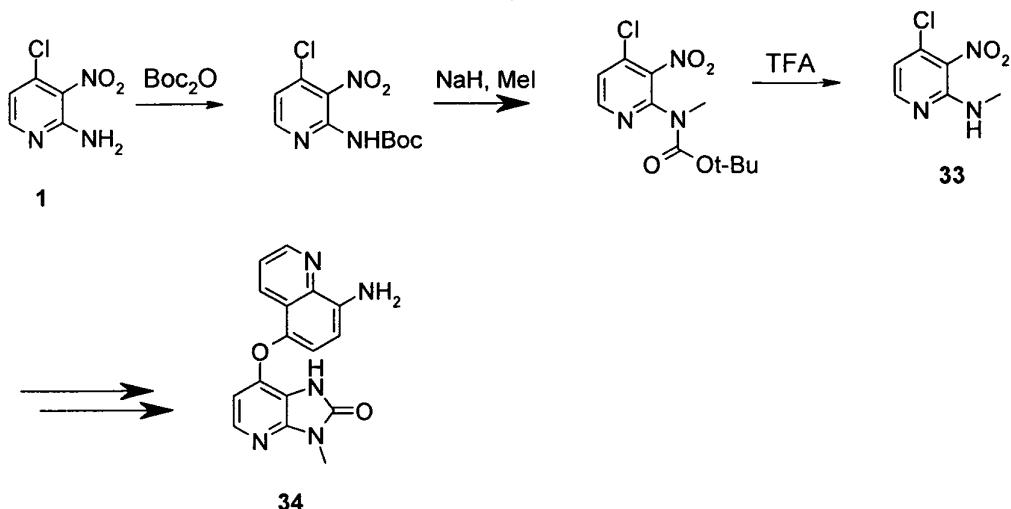

10

Scheme 4

In another approach, the key intermediate (32) is prepared starting from intermediate (4). The more nucleophilic 3-amino group on the pyridine is selectively converted to a carbamate, the BOC group is deprotected, and the carbamate is alkylated. The ring closure under basic conditions affords imidazo[4,5-b]pyridine-2-one.

For example, intermediate (4) is converted to ethyl carbamate (29) and the BOC group is removed with TFA to afford (30). Deprotonation of the acidic carbamate proton with NaH creates an anion on N-3 that is alkylated to afford the intermediate (31). Intermediate (31) is cyclised to the common intermediate (32) in the presence of base. An example of such a method is illustrated in the following scheme.

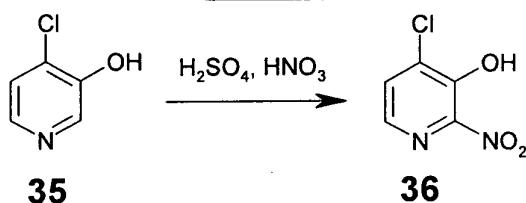
Scheme 5

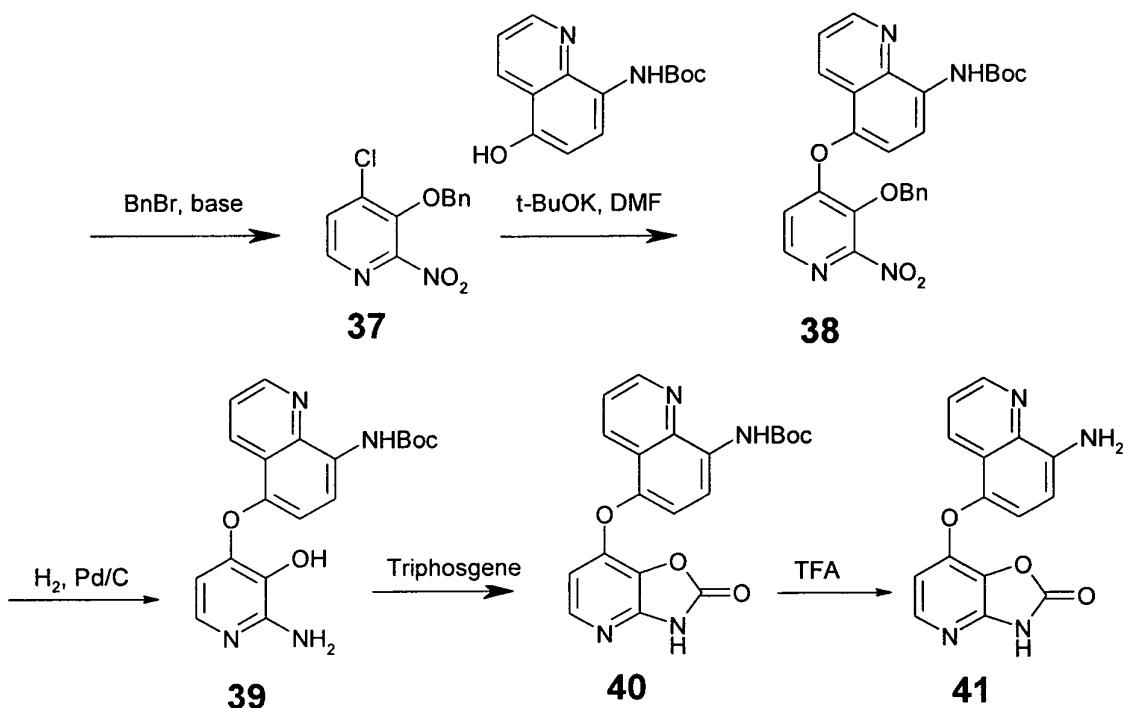

15

In another approach, compounds substituted at the N-2 position (with respect to the pyridine ring) can be obtained by alkylation of the amino group of the starting material.

For example, 2-amino-3-nitro-4-chloropyridine, (1), is Boc-protected at the amino group, methylated with MeI and NaH and the Boc protection removed to afford (33). Intermediate (33) can be used similarly to intermediate 1 to afford the common intermediate (34), using the same method described in Scheme 1 above. An example of such a method is illustrated in the following scheme.

- 86 -


Scheme 6


In another approach, another key intermediate is prepared from the commercially available reagent 3-hydroxy-4-chloropyridine. The reagent is nitrated, the hydroxyl group is protected as benzyl ether, and the chloro group is replaced with a BOC-protected hydroxyl-amino-quinoline/isoquinoline. The benzyl group is removed concomitant with the reduction of the nitro function. Then, the ring is closed using triphosgene, phosgene or carbonyldiimidazole, and the initial amino group is deprotected to give the desired intermediate pyridoimidazolone.

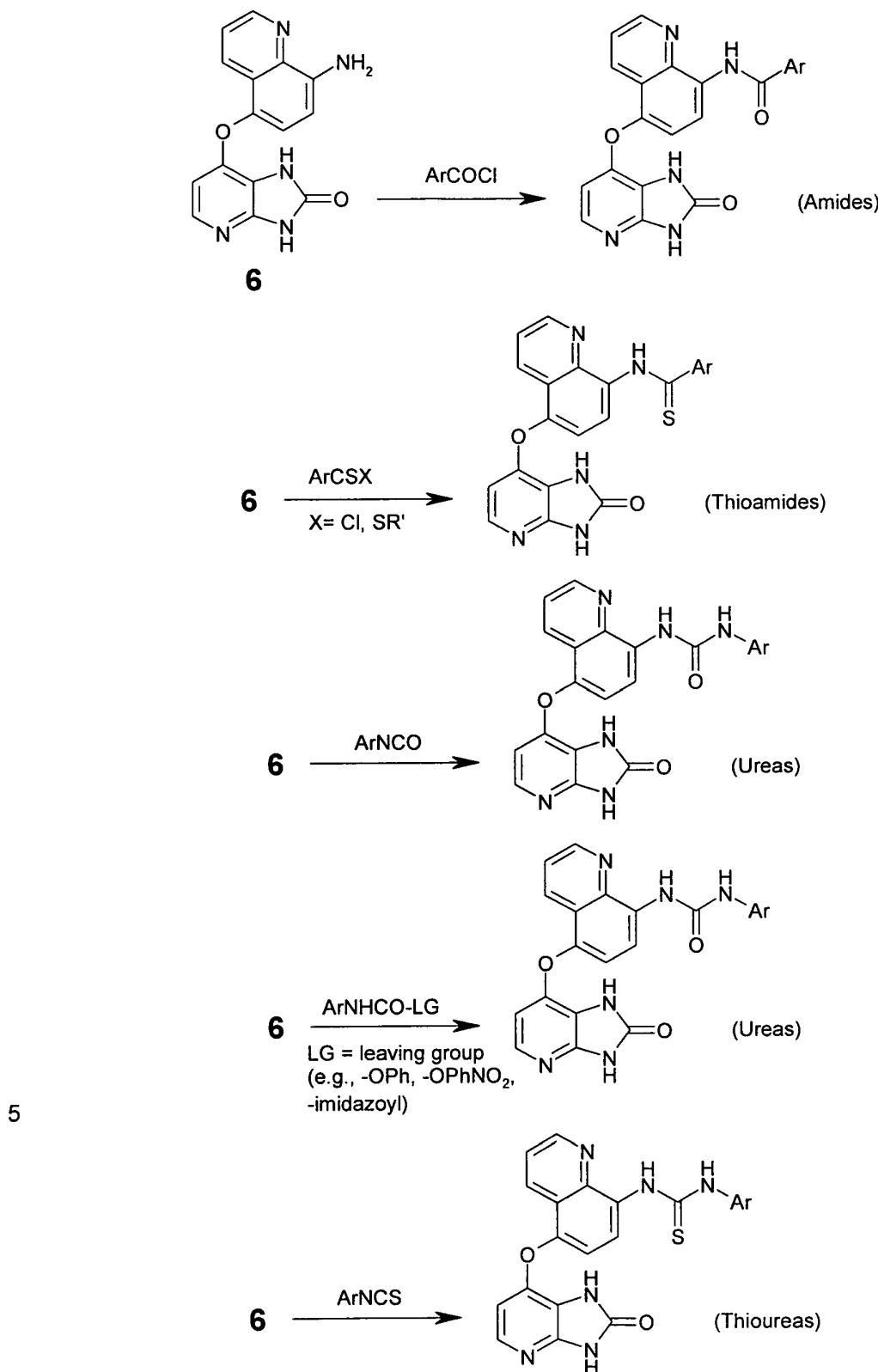
For example, 3-hydroxy-4-chloropyridine (35) is nitrated selectively in the 2-position, then the phenol protected as Bn ether to afford (37). Displacement of the 4-chloro with 8-N-BOC-amino-5-hydroxyquinoline yields (38). This intermediate is then reduced to convert the nitro group to amino simultaneously with the removal of benzyl protection to generate (39). Ring closure with triphosgene followed by deprotection with TFA affords the common intermediate (41). See, for example, the following scheme.

Scheme 7

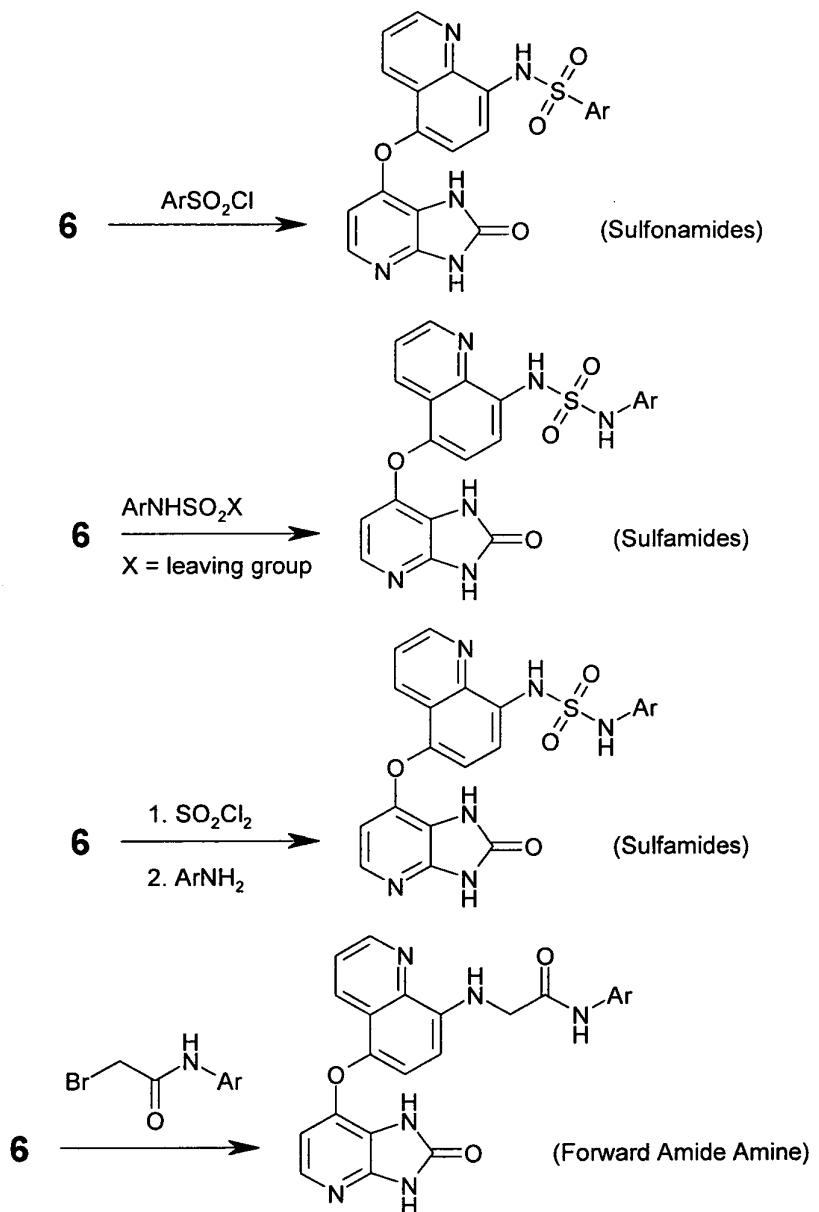
- 87 -

The key intermediates (6), (9), (10), (13), (14), (17), (18), (20), (22), (27), (28), (32), (34), and

5 (41) may then be used to prepare a range of compounds with different linker groups, L, and different terminal groups, A. This is exemplified below with intermediate (6), but it is applicable to any of the key intermediates shown above.


For example, the intermediate (6) can be reacted with activated carboxylic acids or acid

10 chloride to afford amides (NHCO); with activated thioacetic acids to afford thioamide (NHCS); with isocyanates to afford ureas (NHCONH); with activated carbamates to afford ureas (NHCONH); with isothiocyanates to afford thioureas (NHCSNH); with sulfonyl chlorides to afford sulfonamides (SO_2NH); with activated sulfamoyl derivatives to afford sulfamides (NHSO_2NH); with haloacetic amide to afford glycinamides (NHCH_2CONH).


15 Examples of such methods are exemplified in the following scheme with one of the quinoline groups. It should be understood that all of the other examples of common intermediates with quinoline and isoquinoline rings as described in Table 1 above and with bicyclic rings as in intermediates (9), (10), (13), (14), (17), (18), (20), (22), (27), (28), (32), (34), and (41) can be
20 used in the same way.

- 88 -

Scheme 8

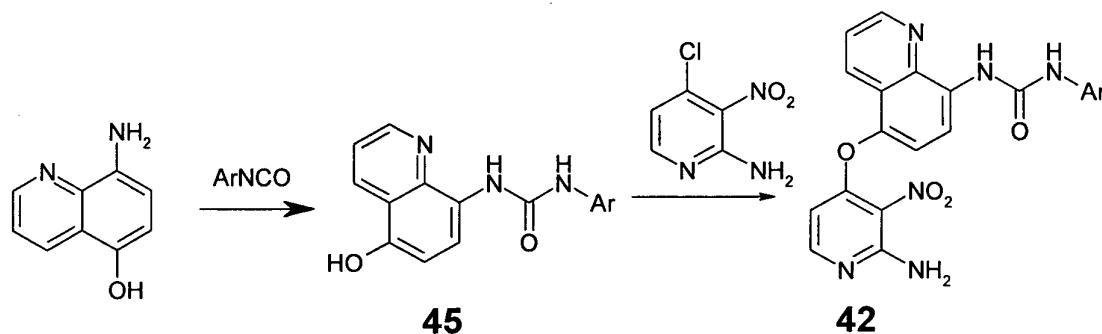
- 89 -

5

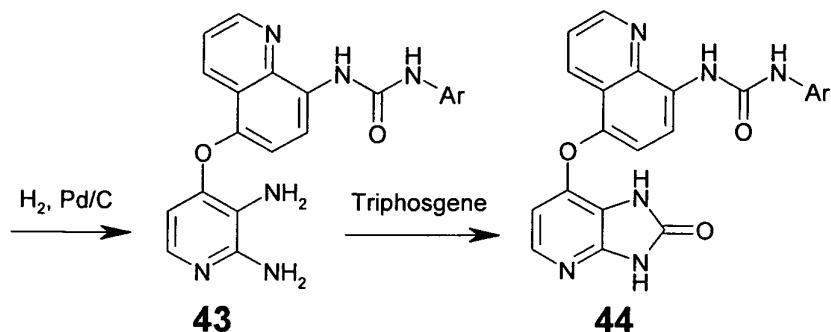
In another approach, the key intermediate (2) is first converted to a urea, thiourea, amide, thioamide, sulfonamide, or sulfamide, using a method as described in the Scheme 8 above, and then converted to any of the bicyclic systems described in Scheme 3 above. This approach is exemplified for a urea linker (L), 8-amino-5-hydroxyquinoline, and

10 imidazo[4,5-b]pyridine-2-one bicyclic system in the following scheme. Any of the linkers L shown in Scheme 8, any of the quinoline/isoquinolines presented in Table 1 above, and any of the bicyclic systems described in Scheme 3 may be substituted. For example, the reaction of (2) with isocyanates produces ureas (42). Reduction of nitro group followed by cyclisation of (43) to imidazolones affords the final product (44). An example of such a method is

15 illustrated in the following scheme.


- 90 -

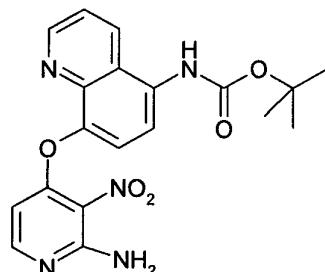
Scheme 9



5 In another approach, the hydroxyl-aminoquinoline or hydroxyl-aminoisoquinoline (as shown in Table 1 above) is first converted to a urea, thiourea, amide, thioamide, sulfonamide, or sulfamide, using a method as described above, and then reacted with 2-amino-3-nitro-4-chloropyridine (1), to form intermediate (42). This intermediate is then converted to target compounds by reduction and cyclisation, for example, as described above in Scheme 8. For 10 example, the reaction of 8-amino-5-hydroxyquinoline with isocyanates produces ureas (45). Reaction of the hydroxyl group with 2-amino-3-nitro-4-chloropyridine (1) generates 15 intermediate (42). Reduction of nitro group to give intermediate (43) followed by cyclisation to imidazolones affords the target compound (44). An example of such a method is illustrated in the following scheme. Alternatively, any of the linker groups, L, shown in Scheme 8 above, any of the quinolines or isoquinolines shown in Table 1 above, and any of the bicyclic systems described in Scheme 3 above, may be used, alone or in combination.

Scheme 10

- 91 -

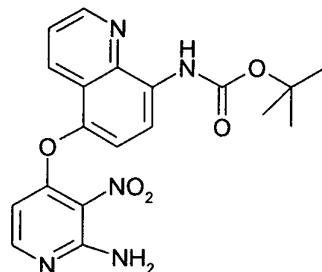


Chemical Synthesis

5 All starting materials, reagents and solvents for reactions were reagent grade and used as purchased. Chromatography solvents were HPLC grade and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) analysis using Merck silica gel 60 F-254 thin layer plates. Flash column chromatography was carried out on Merck silica gel 60 (0.015-0.040 mm) or in disposable Isolute Flash Si and Si II silica gel columns. Preparative TLC was performed on either Macherey-Nagel [809 023] pre-coated TLC plates SIL G-25 UV₂₅₄ or Analtech [2015] pre-coated preparative TLC plates, 2000 µm with UV₂₅₄. LCMS analyses were performed on a Micromass LCT / Water's Alliance 2795 HPLC system with a Discovery 5 µm, C18, 50 mm x 4.6 mm i.d. column from Supelco at a temperature of 22°C using the following solvent systems: Solvent A: Methanol; Solvent B: 0.1% formic acid in water at a flow rate of 1 mL/min. Gradient starting with 10% A / 90% B from 0 - 0.5 minutes then 10% A / 90% B to 90% A / 10% B from 0.5 minutes to 6.5 minutes and continuing at 90% A / 10% B up to 10 minutes. From 10-10.5 minutes the gradient reverted back to 10% A / 90% where the concentrations remained until 12 minutes. UV detection was at 254 nm and ionisation was positive or negative ion electrospray. Molecular weight scan range is 50-1000. Samples were supplied as 1 mg/mL in DMSO or methanol with 3 µL injected on a partial loop fill. NMR spectra were recorded in DMSO-d₆ on a Bruker Advance 500 MHz spectrometer.

Synthesis 1

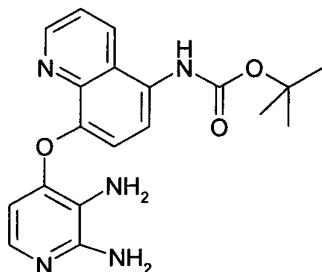
25 4-(5-N-BOC-amino-quinolinyl-8-oxy)-5-nitro-6-amino-pyridine (3a)

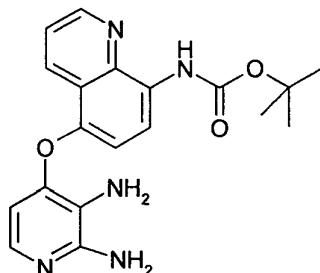


To 400 mg (2.32 mmol) of 5-N-BOC-amino-8-hydroxy-quinoline dissolved in 30 mL DMF (dry), were added under stirring and argon atmosphere, 360 mg (3.20 mmol) tert-BuOK. After 30 minutes, 400 mg (2.32 mmol) 2-amino-3-nitro-4-chloropyridine were added at once and the reaction mixture heated at 85°C (bath) for 5 hours. After cooling, 200 mL AcOEt were added

and the solution extracted with 2 x 200 mL brine. The solution was dried (MgSO_4) and evaporated under vacuum. The residue was purified on an Isolute column (Flash Si II; 50 g, 170 mL) eluted with AcOEt . The title compound was obtained as a yellow solid: 0.534 g. Yield: 58%. ^1H NMR (500 MHz, DMSO-d_6) δ : 1.51 (s, 9H, $\text{C}(\text{CH}_3)_3$), 5.65 (d, 1H, H_{Pyr} , $J=5.6$ Hz), 7.14 (s, 2H, NH_2), 7.58-7.61 (m, 1H, H_{Arom}), 7.64 (d, 1H, H_{Arom} , $J=8.3$ Hz), 7.74 (d, 1H, H_{Arom} , $J=8.3$ Hz), 7.82 (d, 1H, H_{Pyr}), 8.53-8.55 (m, 1H, H_{Arom}), 8.84-8.86 (m, 1H, H_{Arom}), 9.51 (s, 1H, NH); LC-MS, $t_{\text{R}} = 6.51$ min, m/z : 397.1 (M^+), calcd for $\text{C}_{19}\text{H}_{19}\text{N}_5\text{O}_5$.

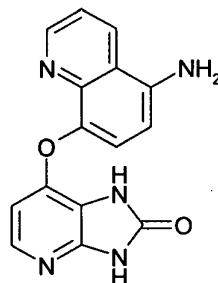
Synthesis 2


10 4-(8-N-BOC-amino-quinolinyl-5-oxy)-5-nitro-6-amino-pyridine (**3b**)


Starting from 1.2 g (4.61 mmol) 8-N-BOC-amino-5-hydroxy-quinoline and using the same procedure as described for (**3a**), 1.048 g of the title compound were obtained after purification by chromatography. Yield: 57%. ^1H NMR (500 MHz, DMSO-d_6) δ : 1.54 (s, 9H, $\text{C}(\text{CH}_3)_3$), 5.89 (d, 1H, H_{Pyr} , $J=5.6$ Hz), 7.24 (s, 2H, NH_2), 7.48 (d, 1H, $J=8.4$ Hz, H_{Arom}), 7.69-7.72 (m, 1H, H_{Arom}), 7.92 (d, 1H, H_{Pyr}), 8.28-8.32 (m, 2H, H_{Arom}), 8.96-8.97 (m, 2H, $\text{NH} + \text{H}_{\text{Arom}}$); LC-MS, $t_{\text{R}} = 8.39$ min, m/z : 397.1 (M^+), calcd for $\text{C}_{19}\text{H}_{19}\text{N}_5\text{O}_5$.

Synthesis 3

20 4-(5-N-BOC-amino-quinolinyl-8-oxy)-5,6-diamino-pyridine (**4a**)


2.5 g (6.29 mmol) 4-(5-N-BOC-amino-quinolinyl-8-oxy)-5-nitro-6-amino-pyridine (**3a**) dissolved in 300mL AcOEt:EtOH 1:1, were hydrogenated at room temperature in the presence of 480 mg Pd/C 10% catalyst. After 18 hours, the catalyst was filtered and the solvent evaporated under vacuum. The residue thus obtained was purified on an Isolute column (Flash Si II; 50 g/170 mL) using AcOEt:EtOH 9:1 as eluent. After evaporation of the solvent, 1.120 g of the title compound were obtained. Yield: 49%. ^1H NMR (500 MHz, DMSO-d_6) δ : 1.50 (s, 9H, $\text{C}(\text{CH}_3)_3$), 4.48 (s, 2H, NH_2), 5.51 (s, 2H, NH_2), 5.78 (d, 1H, H_{Pyr} , $J=5.7$ Hz), 7.15 (m, 1H, $J=5.6$ Hz, H_{Arom}), 7.31 (d, 1H, H_{Arom} , $J=8.3$ Hz), 7.58 (m, 2H, $\text{H}_{\text{Pyr}} + \text{H}_{\text{Arom}}$), 8.45 (m, 1H, H_{Arom}), 8.86-8.88 (m, 1H, H_{Arom}), 9.33 (s, 1H, NH); LC-MS, $t_{\text{R}} = 3.89$ min, m/z : 367.1 (M^+), calcd for $\text{C}_{19}\text{H}_{21}\text{N}_5\text{O}_3$.

Synthesis 44-(8-N-BOC-amino-quinolinyl-5-oxy)-5,6-diamino-pyridine (**4b**)

5 1.037 g (2.61 mmol) 4-(8-N-BOC-amino-quinolinyl-5-oxy)-5-nitro-6-amino-pyridine (**3b**) dissolved in 200 mL AcOEt:EtOH 1:1 were hydrogenated using a hydrogenation cube and a Pd/C 10% cartridge. The flow rate was 1 mL/min. After solvent evaporation, 0.941 g of the title compound were obtained. Yield: 98%. ¹H NMR (500 MHz, DMSO-d₆) δ: 1.53 (s, 9H, C(CH₃)₃), 4.60 (s, 2H, NH₂), 5.65 (s, 2H, NH₂), 5.92 (d, 1H, H_{Py}, J=5.7 Hz), 7.11 (d, 1H, J= 8.5 Hz, H_{Arom}), 7.19 (d, 1H, H_{Py}, J= 5.6 Hz), 7.67 (m, 1H, H_{Arom}), 8.19 (d, 1H, J= 8.5 Hz, H_{Arom}), 8.43 (m, 1H, H_{arom}), 8.87 (s, 1H, NH), 8.94 (m, 1H, H_{Arom}); LC-MS, *t*_R = 5.02 min, *m/z*: 367.1 (M)⁺, calcd for C₁₉H₂₁N₅O₃.

10

15

Synthesis 54-(5-Amino-quinolinyl-8-oxy)-pyridine-5,6-imidazolone (**6a**)

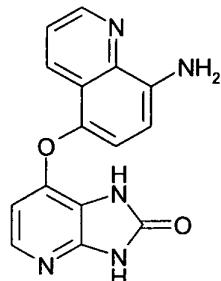
Cyclisation: 1.071 g (2.92 mmol) **4a** and 1.370 mL (16.9 mmol) pyridine were dissolved in 50 mL THF dry, under stirring and argon atmosphere. The reaction mixture was cooled (ice bath) and a solution of 0.893 g (3.0 mmol) triphosgene in 20 mL dry THF was added dropwise over 1 hour. The reaction mixture was allowed to reach room temperature and then stirred for an additional 16 hours. The reaction mixture was evaporated under vacuum, 4-5 mL acetone were added, followed by 50 mL H₂O. The precipitate was filtered, dried and redissolved in 50 mL dry THF and 1.3 mL pyridine. The solution was refluxed for 24 hours and the same work up repeated. 0.769 g of 4-(5-N-BOC-amino-quinolinyl-8-oxy)-pyridine-5,6-imidazolone, **5a**, was obtained.

20

25

Deprotection: 0.769 g of **5a** were dissolved at room temperature in 15 mL TFA and stirred for 2.5 hours. The solution was evaporated under vacuum and 2 x 10 mL AcOEt was added, and the solution was evaporated again under vacuum. The oily residue was dissolved in 20 mL H₂O and adjusted to pH 7.5-8.0 with Na₂CO₃ solution. The precipitate was filtered, washed (H₂O) and dried, providing 0.520 g of the title compound. Yield: 61% (over 2 steps). ¹H NMR (500

30

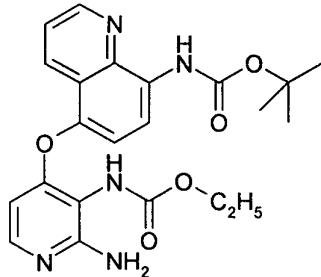

- 94 -

MHz, DMSO-d₆) δ: 5.89 (d, 1H, H_{Pyr}, J=5.7 Hz), 6.04 (s, 2H, NH₂), 6.72 (d, 1H, J= 8.2 Hz, H_{Arom}), 7.37 (d, 1H, H_{Arom}, J= 8.2 Hz), 7.41-7.44 (m, 1H, H_{Arom}), 7.54 (d, 1H, H_{Pyr}), 8.58 (m, 1H, H_{Arom}), 8.70 (m, 1H, H_{arom}), 11.18 (s, 1H, NH), 11.21 (s, 1H, NH); LC-MS, *t*_R = 2.63 min, m/z: 293.1 (M)⁺, calcd for C₁₅H₁₁N₅O₂.

5

Synthesis 6

4-(8-Amino-quinolinyl-5-oxy)-pyridine-5,6-imidazolone (**6b**)



Cyclisation: 370 mg (1.0 mmol) **4b** and 0.470 mL (5.85 mmol) pyridine were dissolved in 20 mL THF dry, under stirring and argon atmosphere. The reaction mixture was cooled (ice bath) and a solution of 300 mg (1.01 mmol) triphosgene in 5 mL dry THF was added dropwise over 1 hour. The reaction mixture was allowed to reach room temperature and then stirred for an additional 16 hours. The reaction mixture was evaporated under vacuum, 4 mL acetone were added, followed by 50 mL H₂O. The precipitate was filtered, dried and redissolved in 20 mL dry THF and 0.5 mL pyridine. The solution was refluxed for 24 hours and the same work up repeated. 368 mg of 4-(8-N-BOC-amino-quinolinyl-5-oxy)-pyridine-5,6-imidazolone, **5b**, was obtained.

Deprotection: 300 mg of **5b** were dissolved at room temperature in 10 mL TFA and stirred for 2.5 hours. The solution was evaporated under vacuum and 2 x 10 mL AcOEt was added and the solution evaporated again under vacuum. The oily residue was dissolved in 20 mL H₂O and adjusted to pH 7.5-8.0 with Na₂CO₃ solution. The precipitate was filtered, washed (H₂O) and dried, resulting in 275 mg of the title compound. Yield: 94% (over 2 steps). ¹H NMR (500 MHz, DMSO-d₆) δ: 5.99 (s, 2H, NH₂), 6.11 (d, 1H, H_{Pyr}, J=5.9 Hz), 6.87 (d, 1H, J= 8.2 Hz, H_{Arom}), 7.22 (d, 1H, H_{Arom}, J= 8.2 Hz), 7.49-7.51 (m, 1H, H_{Arom}), 7.64 (d, 1H, H_{Pyr}), 8.10 (d, 1H, J= 7.5 Hz, H_{Arom}), 8.79 (d, 1H, J= 1.8 Hz, H_{arom}), 11.26 (s, 1H, NH), 11.31 (s, 1H, NH).

Synthesis 7

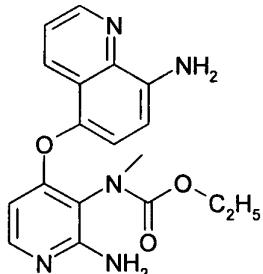
4-(8-N-BOC-amino-quinolinyl-5-oxy)-5-N-carbamoylethyl -6-amino- pyridine (**29**)

30

- 95 -

To a solution containing 900 mg (2.45 mmol) 4-(8-N-BOC-amino-quinolinyl-5-oxy)-5,6-diamino-pyridine, **4b**, and 2.8 mL pyridine, in 25 mL THF (extra dry), under stirring, argon atmosphere and at 0°C, 1.52 mL ethylchloroformate were added at once. After 30 minutes, the reaction mixture was allowed to reach room temperature and was stirred for an extra 18 hours. The reaction mixture was evaporated to dryness and the resulted solid partitioned between AcOEt (30 mL) and a solution of Na₂CO₃ (30 mL). The organic layer was washed with brine (2 x 30 mL), dried and evaporated under vacuum. The residue was purified by flash chromatography, using an Isolute column (Flash Si II; 50g/170 mL), to give 805 mg of the title compound. Yield: 75%. ¹H NMR (500 MHz, DMSO-d₆) δ: 1.17 (t, 3H, J= 3.4 Hz, CH₃), 1.54 (s, 9H, C(CH₃)₃), 4.04 (q, 2H, CH₂), 5.71 (d, 1H, H_{Py}, J=5.7 Hz), 5.86 (s, 1H, H_{Arom}), 7.29 (d, 1H, J= 8.3 Hz, H_{Arom}), 7.62 (d, 1H, H_{Py}), 7.65-7.67 (m, 1H, H_{Arom}), 8.25 (d, 1H, J= 8.3 Hz, H_{Arom}), 8.40 (s, broad, 2H, 2xNH), 8.93 (d, 1H, J= 1.8 Hz, H_{arom}).

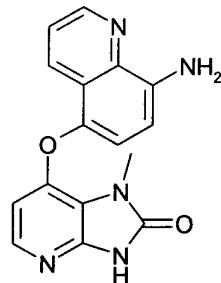
Synthesis 8


15 4-(8-Amino-quinolinyl-5-oxy)-5-N-carbamoylethyl,6-amino-pyridine (**30**)

850 mg 4-(8-N-BOC-amino-quinolinyl-5-oxy)-5-N-carbamoylethyl,6-amino-pyridine (**17**) were dissolved in 15 mL TFA at room temperature under stirring. After 2.5 hours, the solution was evaporated under vacuum and 2 x 10 mL AcOEt were added and the solutions evaporated again under vacuum. The oily residue was dissolved in 20 mL H₂O and adjusted to pH 7.5-8.0 with Na₂CO₃ solution. The precipitate was filtered, washed (H₂O), dried, and recrystallised from AcOEt giving 500 mg of the title compound. Yield: 77%. ¹H NMR (500 MHz, DMSO-d₆) δ: 1.16 (t, 3H, J= 3.4 Hz, CH₃), 4.04 (q, 2H, CH₂), 5.60 (d, 1H, H_{Py}, J=5.7 Hz), 5.92 (s, 2H, NH₂), 5.86 (s, 2H, NH₂), 6.85 (d, 1H, J= 8.2 Hz, H_{Arom}), 7.08 (d, 1H, J= 8.2 Hz, H_{Arom}), 7.42-7.48 (m, 1H, H_{Arom}), 7.57 (d, 1H, H_{Py}), 8.25 (s, broad, 1H, NH), 8.77 (m, 1H, H_{arom}).

Synthesis 9

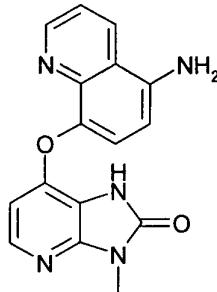
4-(8-Amino-quinolinyl-5-oxy)-5-N-carbamoylethyl-N-methyl,6-amino-pyridine (**31**)


- 96 -

To a solution containing 485 mg (1.45 mmol) 4-(8-amino-quinolinyl-5-oxy)- 5-N-carbamoylethyl-6-amino-pyridine (**18**) in 20 mL DMF dry, under stirring and argon, at 0°C, 78 mg (1.93 mmol) NaH in mineral oil 60% was added at once. The reaction mixture was stirred for 40 minutes, then 100 μ L (1.61 mmol) methyl iodide were added at once. After 30 minutes, 5 the reaction mixture was allowed to reach room temperature and was stirred for an extra 16 hours. At the end, the reaction mixture was diluted with 100 mL AcOEt and extracted with brine (2 x 100 mL). The organic layer was dried and evaporated to 4-5 mL, to yield a precipitate as a yellow solid. After recrystallisation of the precipitate from AcOEt, 140 mg of the title compound were obtained. Yield: 27%. 1 H NMR (500 MHz, DMSO-d₆) δ : 1.15 (t, 3H, J= 3.4 Hz, CH₃), 3.36 (s, 3H, CH₃), 4.04 (q, 2H, CH₂), 5.56 (d, 1H, H_{Pyrr}, J=5.8 Hz), 5.95 (s, 10 2H, NH₂), 5.99 (s, 1H, NH₂), 6.20 (s, 1H, H_{Arom}), 7.07 (d, 1H, J= 8.3 Hz, H_{Arom}), 7.08 (d, 1H, J= 8.2 Hz, H_{Arom}), 7.48-7.51 (m, 1H, H_{Arom}), 7.58 (d, 1H, H_{Pyrr}), 7.74 (s, 1H, H_{Arom}), 8.78 (m, 1H, H_{Arom}).

15

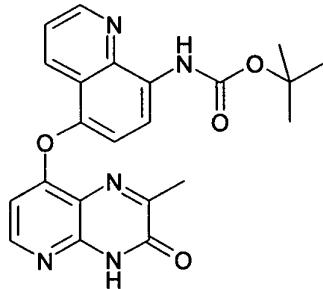
Synthesis 10


4-(8-Amino-quinolinyl-5-oxy)-pyridine-5-N-methyl-6-imidazolone (**32**)

140 mg (0.4 mmol) of 4-(8-amino-quinolinyl-5-oxy)-5-N-carbamoylethyl-N-methyl-6-amino-pyridine (**19**) suspended in 5 mL of a solution of NaOEt/EtOH 1.0 M in a microwave tube. The 20 sample was heated in a microwave oven for 60 minutes, at 100°C (150 W) under stirring. After cooling, the reaction mixture was evaporated under vacuum, the residue was dissolved in 20 mL H₂O and AcOH was added to pH 5.5-6.0. The precipitate was filtered and dried resulting in 98 mg of the title compound. Yield: 80%. 1 H NMR (500 MHz, DMSO-d₆) δ : 3.60 (s, 3H, CH₃), 5.98 (s, 2H, NH₂), 6.13 (d, 1H, H_{Pyrr}, J=5.7 Hz), 6.88 (d, 1H, J= 8.2 Hz, H_{Arom}), 25 7.21 (d, 1H, J= 8.2 Hz, H_{Arom}), 7.49-7.51 (m, 1H, H_{Arom}), 7.65 (d, 1H, H_{Pyrr}), 8.22-8.24 (m, 1H, H_{Arom}), 8.80 (m, 1H, H_{Arom}), 11.4 (s, 1H, NH).

Synthesis 11

4-(5-Amino-quinolinyl-8-oxy)-pyridine-5,6-N-methyl-imidazolone (**34**)

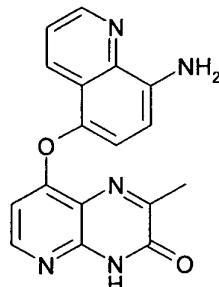

- 97 -

Cyclisation: 500 mg (1.30 mmol) 4-(5- amino-quinolinyl-8-oxy)-5,6-N-methyl-diamino-pyridine-and 630 μ L (16.9 mmol) pyridine were dissolved in 25 mL THF dry, under stirring and argon atmosphere. The reaction mixture was cooled (ice bath) and a solution of 401 mg (1.35 mmol) triphosgene in 10 mL dry THF was added dropwise over 1 hour. The reaction 5 mixture was allowed to reach room temperature and then stirred for an additional 16 hours. The reaction mixture was evaporated under vacuum, 4-5 mL acetone were added followed by 50 mL H₂O. The precipitate was filtered, dried, giving 512 mg (yield 96%) of 4-(5-N-BOC- amino-quinolinyl-8-oxy)-pyridine-5,6N-methyl-imidazolone. ¹H NMR (500 MHz, DMSO-d₆) δ : 1.53 (s, 9H), 3.33 (s, 3H), 6.39 (d, 1H, J = 5.9 Hz), 7.35 (d, 1H, J = 8.5 Hz), 7.67-7.769 (m, 1H), 7.80 (d, 1H, J = 5.9 Hz), 8.25 (d, 1H, J = 8.5 Hz), 8.39 (d, 1H, J = 8.0 Hz), 8.89-9.02 (m, 2H), 11.18 (s, 1H, NH), 11.54 (s, 1H, NH). HRMS: (M+H)⁺ calcd for C₂₁H₂₁N₅O₄ 408.1666, found: 408.1666.

Deprotection: 4-(5-N-BOC-amino-quinolinyl-8-oxy)-pyridine-5,6N-methyl-imidazolone (100 15 mg, 0.21 mmol) were dissolved in 8 mL TBAF solution in THF 1.0 M, and refluxed for 48 hours. The solvent was evaporated under vacuum, 20 mL H₂O was added and the precipitate filtered and dried, resulting in 71 mg of the title compound. Yield: 93%. ¹H NMR (500 MHz, DMSO-d₆) δ : 3.32 (s, 3H), 5.99 (s, 2H, NH₂), 6.17 (d, 1H, J = 6.0 Hz), 6.88 (d, 1H, J = 8.3 Hz), 7.22 (d, 1H, J = 8.3 Hz), 7.47-7.751 (m, 1H), 7.72 (d, 1H, J = 6.0 Hz), 8.09 (d, 1H, J = 5.8 Hz), 8.79-8.82 (m, 1H), 11.54 (s, 1H, NH), 11.54 (s, 1H, NH). HRMS: (M+H)⁺ calcd for C₁₆H₁₄N₅O₂ 308.1142, found: 308.1144.

Synthesis 12

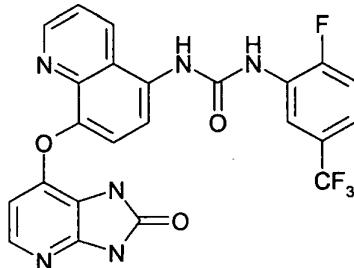
5-(8-BOC-amino-quinolinyl-5-oxy)-pyridin-[2,3]-3-methylpyrazin-2-one (11)



25 To 500 mg (1.36 mmol) of 4-(8-BOC-amino-quinolinyl-5-oxy)-5,6-diaminopyridine dissolved in 15 mL EtOH under stirring and at reflux, 246 μ L (2.22 mmol) of ethyl piruvate was added at once. The reaction was continued for another 2 hour, and then allowed to reach room temperature. The solid thus formed was filtered to give 230 mg (yield, 40%) of the title 30 compound as a white solid. ¹H NMR (500 MHz, DMSO-d₆) δ 1.55 (s, 9H), 2.46 (s, 3H), 6.41 (d, 1H, J = 5.7 Hz), 7.47 (d, 1H, J = 8.5 Hz), 7.64-7.67 (m, 1H), 8.19 (d, 1H, J = 5.7 Hz), 8.26-8.28 (m, 1H), 8.58 (d, 1H, J = 8.6 Hz), 8.31 (d, 1H, J = 8.6 Hz), 8.96-8.98 (m, 1H), 8.99 (s, 1H, NH), 12.80 (s, 1H). LC-MS, *t*_R = 2.67 min, m/z: 420.2 (M+H)⁺, calcd for C₂₂H₂₁N₅O₄; HRMS: (M+H)⁺ calcd for C₂₂H₂₁N₅O₄, 420.1666, found: 420.1664.

- 98 -

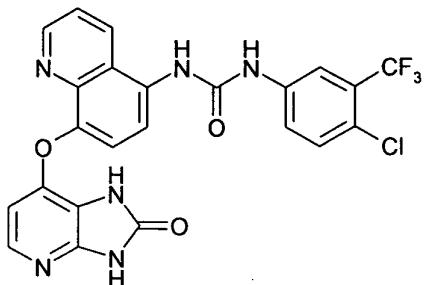
Synthesis 13


5-(8-Amino-quinolinyl-5-oxy)-pyridin-[2,3]-3-methylpyrazin-2-one (13)

5 To 200 mg (0.48 mmol) of 4-(8-BOC-amino-quinolinyl-5-oxy)-5,6-diamino pyridine dissolved in 5 mL TBAF and refluxed for 24 hours. The solvent was evaporated under vacuum and 10 mL of water added. The titled compound precipitated as a white solid, 100 mg (yield, 65%). ¹H NMR (500 MHz, DMSO-d₆) δ 2.48 (s, 3H), 6.04 (s, 2H, NH₂), 6.27 (d, 1H, J = 5.7 Hz), 6.91 (d, 1H, J = 8.3 Hz), 7.25 (d, 1H, J = 8.3 Hz), 7.46-7.48 (m, 1H), 8.01 (d, 1H, J = 8.5 Hz), 8.13 (d, 1H, J = 5.7 Hz), 8.80 (m, 1H), 12.73 (s, 1H). LC-MS, *t*_R = 1.67 min, m/z: 320 (M+H)⁺, calcd for C₁₇H₁₃N₅O₂; HRMS: (M+H)⁺ calcd for C₁₇H₁₃N₅O₂, 320.1142, found: 320.1157.

Synthesis 14

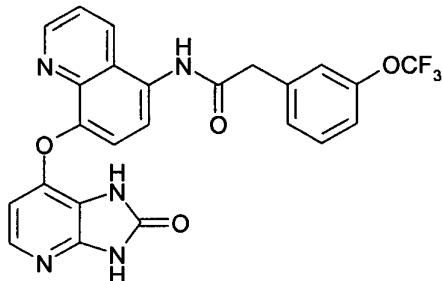
4-[(5-Amino-quinolinyl-8-oxy)carbonylamino-(2-fluoro-5-trifluoromethylphenyl)]-pyridin-5,6-imidazolone (AA-001)


15 To 40 mg (0.14 mmol) of 4-(5-amino-quinolinyl-8-oxy)-pyridin-5,6-imidazolone, **6a**, dissolved in 5 mL of THF, were added under stirring and inert atmosphere 24 μL (33 mg, 0.16 mmol) of 2-fluoro-3-trifluoromethyl-phenyl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated, the solid residue triturated with Et₂O and filtered. 33.4 mg (yield, 48%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 6.01 (d, 1H, H_{Pyrr}, J=5.9 Hz), 7.37-7.72 (m, 5H, H_{Pyrr} + H_{Arom}), 8.11 (d, 1H, J=8.4 Hz, H_{Arom}), 8.64 (d, 1H, J=6.8 Hz, H_{Arom}), 8.67 (d, 1H, H_{Arom}, J= 7.2 Hz), 8.89 (d, 1H, J= 5.4 Hz, H_{Arom}), 9.34 (s, 1H, NH_{urea}), 9.50 (s, 1H, NH_{urea}), 11.26 (s, 1H, NH), 11.31 (s, 1H, NH); LC-MS, *t*_R = 4.71 min, m/z: 498.1 (M)⁺, calcd for C₂₃H₁₄N₆O₃F₄.

25

Synthesis 15

4-[(8-Oxy-quinolinyl-5-amino)carbonylamino-(3-trifluoromethyl-4-chloro-phenyl)]-pyridin-5,6-imidazolone (AA-002)


- 99 -

To 40 mg (0.14 mmol) of 4-(5-amino quinolinyl-8-oxy)-pyridin-5,6-imidazolone, **6a**, dissolved in 5 mL of THF, were added under stirring and inert atmosphere 36 mg (0.16 mmol) of 3-trifluoromethyl-4-chloro-phenyl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated, the solid residue triturated with Et₂O and filtered. 49 mg (yield, 68%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ: 6.02 (d, 1H, H_{Pyrr}, J=5.9 Hz), 7.36-7.77 (m, 5H, H_{Pyrr} + H_{Arom}), 7.97 (d, 1H, J=8.4 Hz, H_{Arom}), 8.16 (d, 1H, J=2.8 Hz, H_{Arom}), 8.55 (d, 1H, H_{Arom}, J= 7.2 Hz), 8.87 (d, 1H, J= 2.8 Hz, H_{Arom}), 9.09 (s, 1H, NH_{urea}), 9.50 (s, 1H, NH_{urea}), 11.26 (s, 1H, NH), 11.31 (s, 1H, NH); LC-MS, *t*_R = 4.89 min, m/z: 515.1 (M)⁺, calcd for C₂₃H₁₄N₆O₃ClF₃.

Synthesis 16

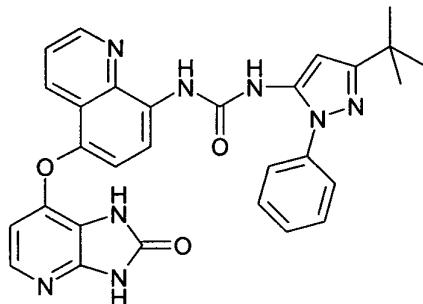
4-[(8-Oxy-quinolinyl-5-amino)carbonyl-methyl-(3-trifluoro methoxy-phenyl)]-pyridin-5,6-imidazolone (AA-003)

To 50 mg (0.17 mmol) of 4-(5-amino quinolinyl-8-oxy)-pyridin-5,6-imidazolone, **6a**, dissolved in 7 mL of dioxane (dry), were added under stirring and inert atmosphere 96 μL (0.20 mmol) of 3-trifluoromethoxy-phenyl-methylene-carbonyl chloride and 150 μL triethylamine. The reaction mixture was stirred at 80°C for 20 hours. The solvent was evaporated under vacuum, the residue washed with 5 mL water, dried and triturated with Et₂O and filtered. 39 mg (yield, 46%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 3.93 (s, 2H, CH₂), 6.00 (d, 1H, H_{Pyrr}, J=5.9 Hz), 7.25-7.81 (m, 8H, H_{Pyrr} + H_{Arom}), 8.53 (d, 1H, H_{Arom}, J= 8.3 Hz), 8.86 (d, 1H, J= 2.8 Hz, H_{Arom}), 10.41 (s, 1H, NH_{amide}), 11.31 (s, 1H, NH), 11.36 (s, 1H, NH); LC-MS, *t*_R = 4.32 min, m/z: 479.1 (M)⁺, calcd for C₂₄H₁₆N₅O₄F₃; HRMS: (M+H)⁺ calcd for C₂₄H₁₇N₅O₄F₃, 496.1233, found: 496.1228.

- 100 -

Synthesis 17

4-[(8-Oxy-quinolinyl-5-amino)carbonyl-methyl-(3-trifluoromethyl-phenyl)]-pyridin-5,6-imidazolone (AA-004)

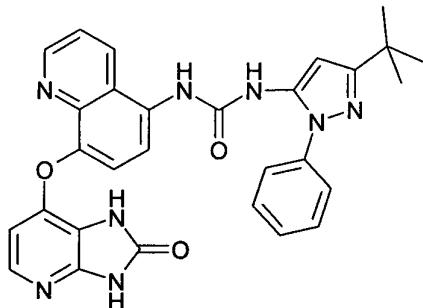

5 To 50 mg (0.17 mmol) of 4-(5-amino-quinolinyl-8-oxy)-pyridin-5,6-imidazolone, **6a**, dissolved in 7 mL of dioxane (dry), were added under stirring and inert atmosphere 80 μ L (0.20 mmol) of 3-trifluoromethyl-phenyl-methylene-carbonyl chloride and 150 μ L triethylamine. The reaction mixture was stirred at 80°C for 20 hours. The solvent was evaporated under vacuum, the residue washed with 5 mL water, dried and triturated with Et₂O and filtered. 53 mg (yield, 65%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ : 3.99 (s, 2H, CH₂), 6.00 (d, 1H, H_{Py}, J=5.9 Hz), 7.53-7.82 (m, 8H, H_{Py} + H_{Arom}), 8.57 (d, 1H, H_{Arom}, J= 8.3 Hz), 8.86 (d, 1H, J= 1.2 Hz, H_{Arom}), 10.43 (s, 1H, NH_{amide}), 11.30 (s, 1H, NH), 11.36 (s, 1H, NH); LC-MS, *t*_R = 4.21 min, m/z: 479.1 (M)⁺, calcd for C₂₄H₁₆N₅O₃F₃; HRMS: (M+H)⁺ calcd for C₂₄H₁₇N₅O₃F₃, 480.1283, found: 480.1292.

10

15

Synthesis 18

4-[(5-Oxy-quinolinyl-8-amino)carbonyl-amino-(1-N-phenyl-3-t-butyl-pyrazol-5-yl)]-pyridin-5,6-imidazolone (AA-005)

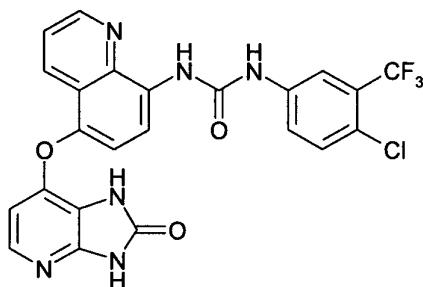

20 To 50 mg (0.17 mmol) of 4-(8-amino-quinolinyl-5-oxy)-pyridin-5,6-imidazolone, **6b**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere, 1.0 mL solution containing 0.19 mmol of 1-N-phenyl-3-t-butyl-pyrazol-5-yl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated under vacuum, the residue washed with 5 mL water, dried and triturated with Et₂O and filtered. 57 mg (yield, 63%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 1.30 (s, 9H, t-Bu), 6.30 (d, 1H, H_{Py}, J=5.9 Hz), 6.43 (s, 1H, H_{Pyrazol}), 7.33-7.71 (m, 8H, H_{Py} + H_{Arom}), 8.37 (d, 1H, H_{Arom}), 8.52 (d, 1H, H_{Arom}, J=8.6 Hz), 9.08 (d, 1H, H_{Arom}), 9.57 (s, 1H, NH_{urea}), 9.94 (s, 1H, NH_{urea}), 11.27 (s, 1H, NH), 11.39 (s, 1H, NH); LC-MS, *t*_R = 5.12 min, m/z: 534.2 (M)⁺, calcd for C₂₉H₂₇N₈O₃; HRMS: (M+H)⁺ calcd for C₂₉H₂₇N₈O₃, 535.2206, found: 535.2208.

25

30

Synthesis 19

4-[(8-Oxy-quinolinyl-5-amino)carbonyl- amino-(1-N-phenyl-3-t-butyl-pyrazol-5-yl)]-pyridin-5,6-imidazolone (AA-006)

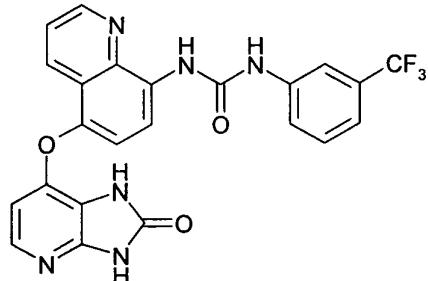

5 To 40 mg (0.14 mmol) of 4-(5-amino-quinolinyl-8-oxy)-pyridin-5,6-imidazolone, **6a**, dissolved in 5 mL THF (dry), was added under stirring and inert atmosphere 1.0 mL solution containing 0.19 mmol of 1-N-phenyl-3-t-butyl-pyrazol-5-yl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 65 mg (yield, 87%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ: 1.29 (s, 9H, t-Bu), 5.99 (d, 1H, H_{Pyr}, J=5.9 Hz), 6.41 (s, 1H, H_{Pyrazol}), 7.44-7.63 (m, 8H, H_{Pyr} + H_{Arom}), 7.93 (d, 1H, H_{Arom}, J=8.3 Hz), 8.43 (d, 1H, H_{Arom}), 8.76 (s, 1H, NH_{urea}), 8.85 (d, 1H, H_{Arom}), 9.20 (s, 1H, NH_{urea}), 11.24 (s, 1H, NH), 11.30 (s, 1H, NH); LC-MS, t_R = 4.63 min, m/z: 534.2 (M)⁺, calcd for C₂₉H₂₇N₈O₃; HRMS: (M+H)⁺ calcd for C₂₉H₂₇N₈O₃, 535.2206, found: 535.2202.

10

15

Synthesis 20

4-[(5-Oxy-quinolinyl-8-amino)carbonylamino-(3-trifluoromethyl-4-chloro-phenyl)]-pyridin-5,6-imidazolone (AA-007)

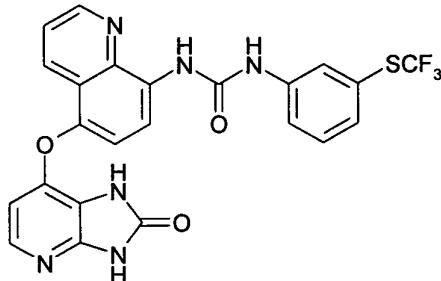

20 To 50 mg (0.17 mmol) of 4-(8-amino quinolinyl-5-oxy)-pyridin-5,6-imidazolone, **6b**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere 40 mg (0.18 mmol) of 3-trifluoromethyl-4-chloro-phenyl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 66 mg (yield, 75%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ: 6.33 (d, 1H, H_{Pyr}, J=5.9 Hz), 7.37 (d, 1H, H_{Arom}), 7.64-7.72 (m, 6H, H_{Pyr} + H_{Arom}), 8.17 (d, 1H, J=2.2 Hz, H_{Arom}), 8.41 (d, 1H, H_{Arom}), 8.56 (d, 1H, J=8.5 Hz, H_{Arom}), 9.02 (d, 1H, J=1.8 Hz, H_{Arom}), 9.75 (s, 1H, NH_{urea}), 10.33 (s, 1H, NH_{urea}), 11.28 (s, 1H, NH), 11.40 (s, 1H, NH); LC-MS, t_R = 5.44 min, m/z: 514.1 (M)⁺, calcd for C₂₃H₁₄N₆O₃ClF₃; HRMS: (M+H)⁺ calcd for C₂₃H₁₅N₆O₃ClF₃, 515.0846, found: 515.0845.

25

30

Synthesis 21

4-[(5-Oxy-quinolinyl-8-amino)carbonylamino-(3-trifluoromethyl-phenyl)]-pyridin-5,6-imidazolone (AA-008)

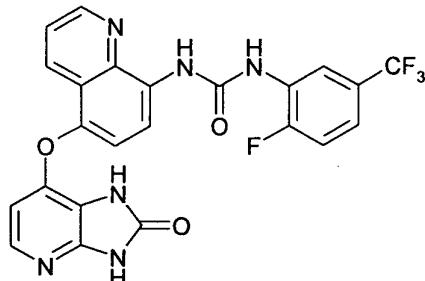

5 To 50 mg (0.17 mmol) of 4-(8-amino-quinolinyl-5-oxy)-pyridin-5,6-imidazolone, **6b**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere 24 mg (0.18 mmol) of 3-trifluoromethyl-phenyl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 54 mg (yield, 66 %) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 6.32 (d, 1H, H_{Pyr}, J=5.9 Hz), 7.37-7.72 (m, 6H, H_{Pyr} + H_{Arom}), 8.09 (s, 1H, H_{Arom}), 8.40 (d, 1H, J=8.2 Hz, H_{Arom}), 8.57 (d, 2H, H_{Arom}), 9.01 (d, 1H, J=2.9 Hz, H_{Arom}), 9.75 (s, 1H, NH_{urea}), 10.22 (s, 1H, NH_{urea}), 11.28 (s, 1H, NH), 11.40 (s, 1H, NH); LC-MS, *t*_R = 5.17 min, m/z: 480.1 (M)⁺, calcd for C₂₃H₁₆N₆O₃F₃; HRMS: (M+H)⁺ calcd for C₂₃H₁₆N₆O₃F₃, 481.1236, found: 481.1237.

10

15

Synthesis 22

4-[(5-Oxy-quinolinyl-8-amino)carbonylamino-(3-trifluoromethyl thio-phenyl)]-pyridin-5,6-imidazolone (AA-009)

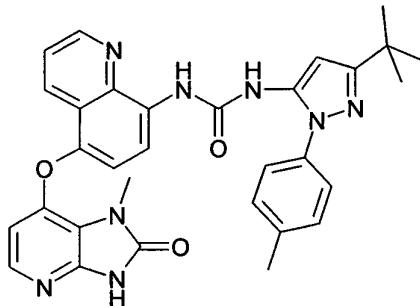


To 50 mg (0.17 mmol) of 4-(8-amino-quinolinyl-5-oxy)-pyridin-5,6-imidazolone, **6b**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere, 40 mg (0.18 mmol) of 3-trifluoromethylthio-phenyl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 61 mg (yield, 70 %) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ: 6.32 (d, 1H, H_{Pyr}, J=5.9 Hz), 7.35-7.72 (m, 6H, H_{Pyr} + H_{Arom}), 8.06 (s, 1H, H_{Arom}), 8.40 (d, 1H, J=8.2 Hz, H_{Arom}), 8.57 (d, 2H, H_{Arom}), 9.01 (d, 1H, J=2.9 Hz, H_{Arom}), 9.74 (s, 1H, NH_{urea}), 10.16 (s, 1H, NH_{urea}), 11.28 (s, 1H, NH), 11.40 (s, 1H, NH); LC-MS, *t*_R = 5.39 min, m/z: 512.1 (M)⁺, calcd for C₂₃H₁₆N₆O₃SF₃; HRMS: (M+H)⁺ calcd for C₂₃H₁₆N₆O₃SF₃, 513.0951, found: 513.0957.

- 103 -

Synthesis 23

4-[(5-Oxy-quinolinyl-8-amino)carbonylamino-(2-fluoro-5-trifluoromethyl-phenyl)]-pyridin-5,6-imidazolone AA-010

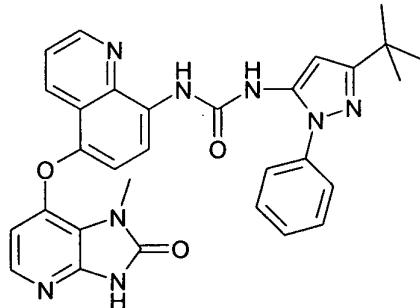


5 To 50 mg (0.17 mmol) of 4-(8-amino-quinolinyl-5-oxy)-pyridin-5,6-imidazolone, **6b**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere 37 μ L (0.18 mmol) of 2-fluoro-5-trifluoromethyl-phenyl isocyanate. The reaction mixture was stirred at 40°C for 20 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 63 mg (yield, 74 %) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ : 6.33 (d, 1H, H_{Pyr}, J=5.9 Hz), 7.35-7.72 (m, 5H, H_{Pyr} + H_{Arom}), 8.40 (d, 1H, J=5.4 Hz, H_{Arom}), 8.52 (d, 2H, H_{Arom}), 8.70 (d, 1H, J=6.7 Hz, H_{Arom}), 9.02 (d, 1H, J=2.8 Hz, H_{Arom}), 10.10 (s, 1H, NH_{urea}), 10.33 (s, 1H, NH_{urea}), 11.28 (s, 1H, NH), 11.40 (s, 1H, NH); LC-MS, *t*_R = 5.20 min, m/z: 498.1 (M)⁺, calcd for C₂₃H₁₄N₆O₃F₄; HRMS: (M+H)⁺ calcd for C₂₃H₁₅N₆O₃F₄, 499.1143, found: 499.1142.

15

Synthesis 24

4-[(5-Oxy-quinolinyl-8-amino)carbonyl-amino-(1-N-p-tolyl-3-t-butyl-pyrazol-5-yl)]-pyridin-5-N-methyl,6-imidazolone (AA-011)

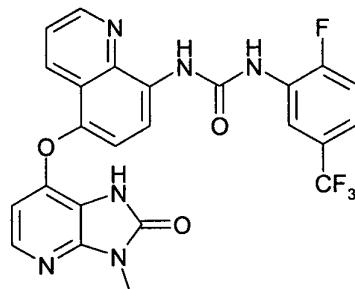


20 To 40 mg (0.13 mmol) of 4-(8-amino-quinolinyl-5-oxy)-pyridin-5-N-methyl,6-imidazolone, **32**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere 1.0 mL (0.18 mmol) of a solution of 1N-p-tolyl-3-t-butyl-pyrazol-5-yl isocyanate in DCM. The reaction mixture was stirred at 40°C for 18 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 55 mg (yield, 75 %) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ : 1.29 (s, 9H, t-Bu), 2.37 (s, 1H, C-CH₃), 3.54 (s, 3H, N-CH₃), 6.30 (d, 1H, H_{Pyr}, J=5.9 Hz), 6.41 (s, 1H, H_{Pyrazol}), 7.34-7.70 (m, 6H, H_{Pyr} + H_{Arom}), 7.73 (d, 1H, H_{Arom}), 8.52-8.54 (2xd, 2H, H_{Arom}), 8.95 (d, 1H, J=8.6 Hz, H_{Arom}), 9.51 (s, 1H, NH_{urea}), 9.95 (s, 1H, NH_{urea}), 11.64 (s, 1H, NH); LC-MS, *t*_R = 5.39 min, m/z: 562.2 (M)⁺, calcd for C₃₁H₃₀N₆O₃; HRMS: (M+H)⁺ calcd for C₃₁H₃₁N₆O₃, 563.2513, found: 563.2510.

30

Synthesis 25

4-[(5-Oxy-quinolinyl-8-amino)carbonyl-amino-(1-N-phenyl-3-t-butyl-pyrazol-5-yl)]-pyridin-5-N-methyl,6-imidazolone (AA-012)

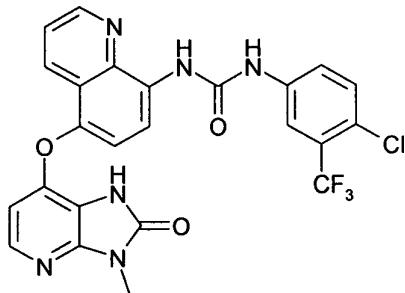


5 To 40 mg (0.13 mmol) of 4-(8-amino-quinolinyl-5-oxy)-pyridin-5-N-methyl,6-imidazolone, **32**, dissolved in 6 mL of THF (dry), were added under stirring and inert atmosphere 1.0 mL (0.18 mmol) of a solution of 1N-phenyl-3-t-butyl-pyrazol-5-yl isocyanate in DCM. The reaction mixture was stirred at 40°C for 18 hours. The solvent was evaporated under vacuum, the residue triturated with Et₂O and filtered. 55 mg (yield, 75 %) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ: 1.30 (s, 9H, t-Bu), 3.54 (s, 3H, N-CH₃), 6.31 (d, 1H, H_{Py}, J=5.9 Hz), 6.43 (s, 1H, H_{Pyrazol}), 7.34-7.70 (m, 7H, H_{Py} + H_{Arom}), 7.73 (d, 1H, H_{Arom}), 8.52-8.54 (2xd, 2H, H_{Arom}), 8.95 (d, 1H, J=8.6 Hz, H_{Arom}), 9.58 (s, 1H, NH_{urea}), 9.95 (s, 1H, NH_{urea}), 11.64 (s, 1H, NH); LC-MS, t_R = 5.29 min, m/z: 548.2 (M)⁺, calcd for C₃₀H₂₈N₈O₃; HRMS: (M+H)⁺ calcd for C₃₀H₂₉N₈O₃, 549.2357, found: 549.2353.

15

Synthesis 26

5-[(8-Amino-quinolinyl-5-oxy)carbonyl-amino-3-(2-fluoro-5-trifluoromethyl-phenyl)]-pyridin-[2,3]1-N-methylimidazol-2-one (AA-013)

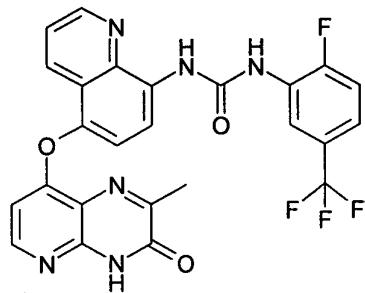


20 Using the same method with 50 mg (0.16 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-1N-methylpyrazin-2-one, and 43 μL (0.21 mmol) of 2-fluoro-5-trifluoromethyl-phenyl-isocyanate, 56 mg (yield, 68%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 3.34 (s, 3H), 6.39 (d, 1H, J = 5.9 Hz), 7.37 (d, 1H, J = 8.6 Hz), 7.38-7.42 (m, 1H), 7.49 (t, 1H, J = 9.4 Hz), 7.66-7.72 (m, 1H), 7.54 (m, 1H), 7.65-7.69 (m, 1H), 7.80 (d, 1H, J = 5.9 Hz), 8.39 (dd, 1H, J = 10.1 Hz), 8.59 (d, 1H, J = 8.6 Hz), 8.68-8.72 (m, 1H), 8.97-9.02 (m, 1H), 9.02-9.04 (m, 1H), 10.10 (s, 1H), 10.33 (s, 1H), 11.56 (s, 1H). LC-MS, t_R = 2.80 min, m/z: 512.1 M⁺, calcd for C₂₄H₁₆F₄N₆O₃; HRMS: (M+H)⁺ calcd for C₂₄H₁₇F₄N₆O₃, 513.1293, found: 513.1299.

- 105 -

Synthesis 27

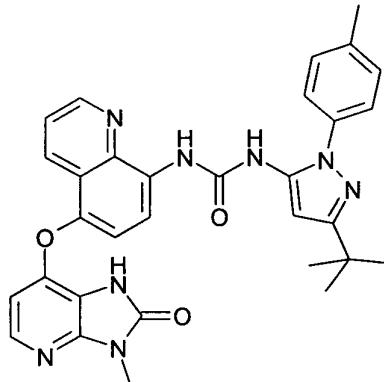
5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-3-(2-trifluoromethyl-3-chloro-phenyl)]-pyridin-[2,3]1-N-methylimidazol-2-one (AA-014)

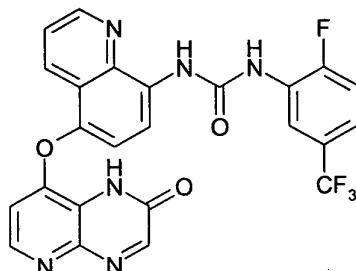


5 Using the same method with 50 mg (0.16 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-1N-methylpyrazin-2-one, and 47 mg (0.21 mmol) of 2-trifluoromethyl-3-chloro-phenyl-isocyanate, 63 mg (yield, 75%) of the title compound were obtained. ^1H NMR (500 MHz, DMSO- d_6) δ 3.34 (s, 3H), 6.39 (d, 1H, J = 5.9 Hz), 7.37 (d, 1H, J = 8.6 Hz), 7.59-7.72 (m, 3H), 7.80 (d, 1H, J = 5.9 Hz), 8.17 (d, 1H, J = 2.5 Hz), 8.40 (dd, 1H, J = 10.1 Hz), 8.56 (d, 1H, J = 8.6 Hz), 9.00-9.04 (m, 1H), 9.76 (s, 1H), 10.34 (s, 1H), 11.56 (s, 1H). LC-MS, t_{R} = 2.98 min, m/z: 528.1 M^+ , calcd for $\text{C}_{24}\text{H}_{16}\text{ClF}_3\text{N}_6\text{O}_3$; HRMS: ($\text{M}+\text{H}$) $^+$ calcd for $\text{C}_{24}\text{H}_{17}\text{ClF}_3\text{N}_6\text{O}_3$, 529.0997, found: 529.1009.

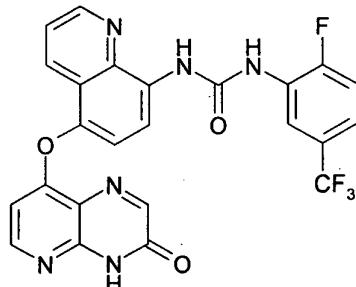
10

Synthesis 28


15 5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-(2-fluoro-5-trifluoromethylphenyl)]-pyridin-[2,3]-3-methylpyrazin-2-one (BB-001)


Method A: To 40 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-3-methylpyrazin-2-one (13), dissolved in 5 mL of DMSO, were added under stirring and inert atmosphere 29 μL (0.20 mmol) of 2-fluoro-3-trifluoromethyl-phenyl isocyanate. The reaction mixture was stirred at room temperature for 18 hours. 15 mL AcOEt were added to the reaction mixture. The solution washed with brine (2 x 20 mL), the organic layer dried (MgSO_4) and evaporated under vacuum. The solid residue thus obtained was triturated with Et_2O and filtered. 53 mg (yield, 77%) of the title compound were obtained. ^1H NMR (500 MHz, DMSO- d_6) δ 2.47 (s, 3H), 6.42 (d, 1H, J = 5.7 Hz), 7.48 (d, 1H, J = 8.6 Hz), 7.48-7.53 (m, 2H), 7.65-7.68 (m, 1H), 8.20 (d, 1H, J = 5.7 Hz), 8.28 (dd, 1H, J = 1.6 Hz, J_0 = 8.5 Hz), 8.64 (d, 1H, J = 8.6 Hz), 9.03-9.05 (m, 1H), 10.13 (s, 1H), 10.38 (s, 1H), 12.79 (s, 1H). LC-MS, t_{R} = 2.83 min, m/z: 525.2 ($\text{M}+\text{H}$) $^+$, calcd for $\text{C}_{25}\text{H}_{16}\text{F}_4\text{N}_6\text{O}_3$; HRMS: ($\text{M}+\text{H}$) $^+$ calcd for $\text{C}_{25}\text{H}_{16}\text{F}_4\text{N}_6\text{O}_3$, 525.1293, found: 525.1295.

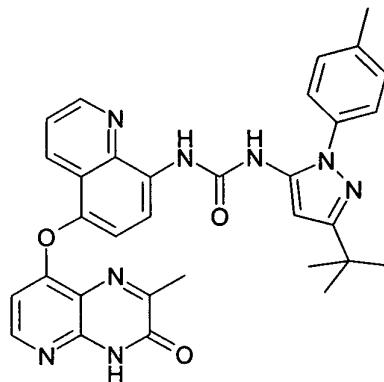
20


25

Synthesis 295-[(8-Amino-quinolinyl-5-oxy)carbonylamino-3-(2-trifluoromethyl-3-chloro-phenyl)]-pyridin-[2,3]1-N-methylimidazol-2-one (AA-015)

5 Using the same method with 50 mg (0.16 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-1N-methylpyrazin-2-one, and 0.21 mmol of 1-N-p-tolyl-3-t-butyl-imidazol-5-yl-isocyanate, 68 mg (yield, 76%) of the title compound were obtained. ^1H NMR (500 MHz, DMSO- d_6) δ 1.29 (s, 9H), 2.38 (s, 3H), 3.33 (s, 3H), 6.36 (d, 1H, J = 5.9 Hz), 6.40 (s, 1H), 7.31-7.35 (m, 3H), 7.41 (d, 2H, J = 8.4 Hz), 7.63-7.68 (m, 1H), 7.79 (d, 1H, J = 5.9 Hz), 8.36 (dd, 1H, J = 10.1 Hz), 8.53 (d, 1H, J = 8.6 Hz), 8.93-8.96 (m, 1H), 9.52 (s, 1H), 9.95 (s, 1H), 11.55 (s, 1H). LC-MS, t_{R} = 2.76 min, m/z: 562.2 M^+ , calcd for $\text{C}_{31}\text{H}_{30}\text{N}_8\text{O}_3$; HRMS: $(\text{M}+\text{H})^+$ calcd for $\text{C}_{31}\text{H}_{31}\text{N}_8\text{O}_3$, 563.2527, found: 563.2513.

Synthesis 305-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(2-fluoro-5-trifluoromethyl-phenyl)]-pyridin-[2,3]pyrazin-3-one (BB-004)


To 30 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-pyrazin-3-one, dissolved in 5 mL DMSO, 27 μL (0.18 mmol) of 2-fluoro-5-trifluoromethyl-phenyl-isocyanate, were added 20 and the solution stirred for 18 hours at room temperature. The reaction mixture was diluted with 20 mL AcOEt, washed with 20 mL citric acid solution, then with 20 mL NaHCO_3 solution and finally with brine (2x20 mL). The organic layer was dried (MgSO_4), and evaporated to dryness to give 27 mg (yield, 41%) of the title compound. ^1H NMR (500 MHz, DMSO- d_6) δ 6.79 (d, 1H, J = 5.4 Hz), 7.40-7.45 (m, 1H), 7.48-7.55 (m, 2H), 7.65-7.71 (m, 1H), 8.28 (d, 1H, J = 5.3 Hz), 8.41 (dd, 1H, J = 8.5 Hz), 8.46 (s, 1H), 8.64 (d, 1H, J = 8.6 Hz), 8.71 (d, 1H, J = 7.3 Hz), 9.02-9.05 (m, 1H), 10.13 (s, 1H), 10.38 (s, 1H), 12.76 (s, 1H). LC-MS, t_{R} = 2.65 min, m/z: 511.1 ($\text{M}+\text{H})^+$, calcd for $\text{C}_{24}\text{H}_{14}\text{F}_4\text{N}_6\text{O}_3$.

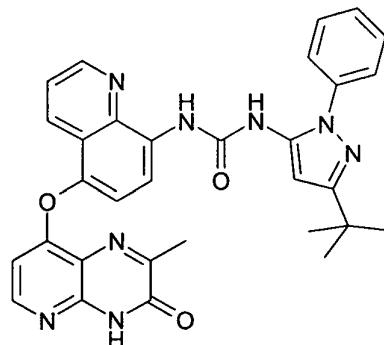
Synthesis 315-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(2-fluoro-5-trifluoromethyl-phenyl)]-pyridin-[2,3]pyrazin-2-one (BB-005)

5 To 30 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-pyrazin-2-one, dissolved in 5 mL DMSO, 27 μ L (0.18 mmol) of 2-fluoro-5-trifluoromethyl-phenyl-isocyanate, were added and the solution stirred for 18 hours at room temperature. The reaction mixture was diluted with 20 mL AcOEt, washed with 20 mL citric acid solution, then with 20 mL NaHCO₃ solution and finally with brine (2x20 mL). The organic layer was dried (MgSO₄), and evaporated to dryness to give 25 mg (yield, 38%) of the title compound. ¹H NMR (500 MHz, DMSO-d₆) δ 6.49 (d, 1H, *J* = 5.7 Hz), 7.46-7.50 (m, 1H), 7.55-7.64 (m, 2H), 7.69-7.71 (m, 1H), 8.21 (s, 1H), 8.28-8.32 (m, 2H), 8.64 (d, 1H, *J* = 8.6 Hz), 8.70 (dd, 1H, *J* = 7.2 Hz), 9.03-9.06 (m, 1H), 10.13 (s, 1H), 10.38 (s, 1H), 12.94 (s, 1H). LC-MS, *t*_R = 2.73 min, *m/z*: 511.1 (M+H)⁺, calcd for C₂₄H₁₄F₄N₆O₃; HRMS: (M+H)⁺ calcd for C₂₄H₁₅F₄N₆O₃, 511.1136, found 511.1139.

10

15

Synthesis 325-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-N-p-tolyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-3-methylpyrazin-2-one (BB-002)

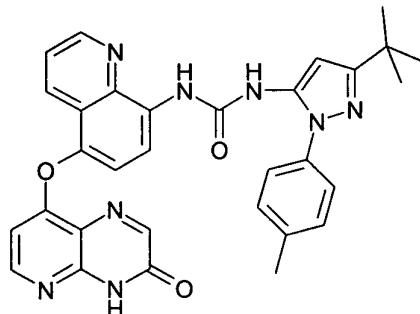

20 Using a method analogous to Method A, with 40 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-3-methylpyrazin-2-one (13), and 0.2 mmol of 1-p-tolyl-3-t-butyl-imidazolyl-5-isocyanate, 63 mg (yield, 84%) of the title compound were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 1.30 (s, 9H), 2.38 (s, 3H), 2.47 (s, 3H), 6.40 (d, 1H, *J* = 5.7 Hz), 6.41 (s, 1H), 7.34 (d, 2H, *J* = 8.2 Hz), 7.41-7.45 (m, 3H), 7.62-7.65 (m, 1H), 8.19 (d, 1H, *J* = 5.7 Hz), 8.24 (dd, 1H, *J* = 1.6 Hz, *J*_o = 8.5 Hz), 8.58 (d, 1H, *J* = 8.6 Hz), 8.85-8.87 (m, 1H), 9.54 (s, 1H), 9.99 (s, 1H), 12.75 (s, 1H). LC-MS, *t*_R = 2.85 min, *m/z*: 575.2 (M+H)⁺, calcd for C₃₂H₃₀N₈O₃; HRMS: (M+H)⁺ calcd for C₃₂H₃₀N₈O₃, 575.2513, found: 575.2520.

25

- 108 -

Synthesis 33

5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-N-p-phenyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-3-methylpyrazin-2-one (BB-003)

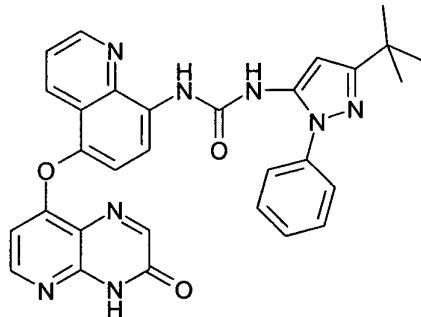


5 Using a method analogous to Method A, with 40 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-3-methylpyrazin-2-one (13), and 0.2 mmol of 1-p-tolyl-3-t-butyl-imidazolyl-5-isocyanate, 49 mg (yield, 67%) of the title compound were obtained. ^1H NMR (500 MHz, DMSO-d₆) δ 1.31 (s, 9H), 2.47 (s, 3H), 6.40 (d, 1H, J = 5.7 Hz), 6.44 (s, 1H), 7.34 (d, 1H, J = 8.6 Hz), 7.54-7.56 (m, 3H), 7.62-7.65 (m, 1H), 8.18 (d, 1H, J = 5.7 Hz), 8.27 (dd, 1H, J = 1.6 Hz, J_0 = 8.5 Hz), 8.58 (d, 1H, J = 8.6 Hz), 8.85-8.87 (m, 1H), 9.61 (s, 1H), 9.99 (s, 1H), 12.78 (s, 1H). LC-MS, t_{R} = 2.78 min, m/z: 561.2 (M+H)⁺, calcd for C₃₁H₂₈N₈O₃; HRMS: (M+H)⁺ calcd for C₃₁H₂₈N₈O₃, 561.2357, found: 561.2356.

10

Synthesis 34

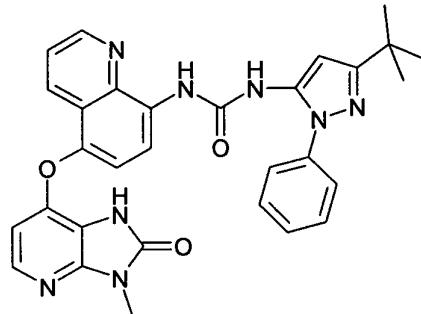
15 5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-N-p-tolyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-pyrazin-2-one (BB-007)



20 Using the same method with 30 mg (0.10 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-pyrazin-2-one, and 0.18 mmol of 1-p-tolyl-3-t-butyl-imidazolyl-5-isocyanate, 38 mg (yield, 70 %) of the title compound were obtained. ^1H NMR (500 MHz, DMSO-d₆) δ 1.29 (s, 9H), 6.42 (s, 1H), 6.46 (d, 2H, J = 8.3 Hz), 6.46 (d, 2H, J = 8.3 Hz), 7.42 (d, 2H), 7.47 (d, 1H, J = 8.6 Hz), 7.62-7.66 (m, 1H), 8.22-8.29 (m, 2H), 8.58 (d, 1H, J = 8.6 Hz), 8.95-9.00 (m, 1H), 9.58 (s, 1H), 10.02 (s, 1H), 12.98 (s, 1H). LC-MS, t_{R} = 2.78 min, m/z: 561.2 (M+H)⁺, calcd for C₃₁H₂₈N₈O₃; HRMS: (M+H)⁺ calcd for C₃₁H₂₉N₈O₃, 561.2357, found: 561.2366.

- 109 -

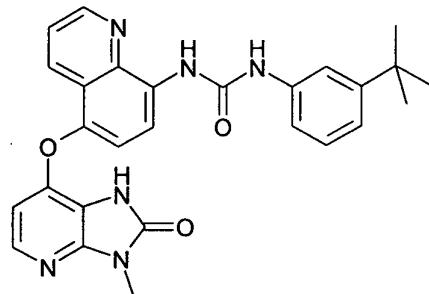
Synthesis 35


5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-N-phenyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]pyrazin-2-one (BB-008)

5 Using the same method with 30 mg (0.10 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-pyrazin-2-one, and 0.18 mmol of 1-phenyl-3-t-butyl-imidazolyl-5-isocyanate, 35 mg (yield, 64 %) of the title compound were obtained. ^1H NMR (500 MHz, DMSO- d_6) δ 1.29 (s, 9H), 6.44 (s, 1H), 6.47 (d, 1H, J = 5.7 Hz), 7.38 (t, 1H, J = 6.6 Hz), 7.46 (d, 1H, J = 8.7 Hz), 7.52-7.58 (m, 4H), 7.61-7.67 (m, 1H), 8.23 (s, 1H), 8.27 (d, 1H, J = 5.7 Hz), 8.57 (d, 1H, J = 8.6 Hz),
10 8.95-8.97 (m, 1H), 9.61 (s, 1H), 9.99 (s, 1H), 12.92 (s, 1H). LC-MS, t_R = 2.70 min, m/z: 546.2 M^+ , calcd for $\text{C}_{30}\text{H}_{26}\text{N}_8\text{O}_3$; HRMS: ($\text{M}+\text{H}$) $^+$ calcd for $\text{C}_{30}\text{H}_{27}\text{N}_8\text{O}_3$, 547.2201, found: 547.2201.

Synthesis 36

15 5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-phenyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]1-N-methylimidazol-2-one (AA-016)

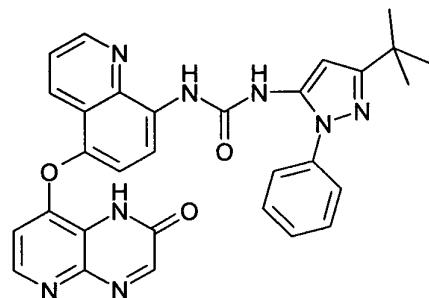

Using the same method with 50 mg (0.16 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-1N-methylpyrazin-2-one, and 0.21 mmol of 1-phenyl-3-t-butyl-imidazolyl-5-isocyanate, 60 mg (yield, 68%) of the title compound were obtained. ^1H NMR (500 MHz, DMSO- d_6) δ 1.30 (s, 9H), 3.34 (s, 3H), 6.36 (d, 1H, J = 5.9 Hz), 6.43 (s, 1H), 7.35 (d, 1H, J = 8.6 Hz), 7.36-7.42 (m, 1H), 7.50-7.57 (m, 4H), 7.64-7.68 (m, 1H), 7.79 (d, 1H, J = 5.9 Hz), 8.36 (dd, 1H, J = 10.1 Hz), 8.53 (d, 1H, J = 8.6 Hz), 8.94-9.00 (m, 1H), 9.58 (s, 1H), 9.95 (s, 1H), 11.55 (s, 1H). LC-MS, t_R = 3.20 min, m/z: 549.2 ($\text{M}+\text{H}$) $^+$, calcd for $\text{C}_{30}\text{H}_{29}\text{N}_8\text{O}_3$; HRMS: ($\text{M}+\text{H}$) $^+$ calcd for $\text{C}_{30}\text{H}_{29}\text{N}_8\text{O}_3$, 549.2357, found: 549.2356.

25

- 110 -

Synthesis 37

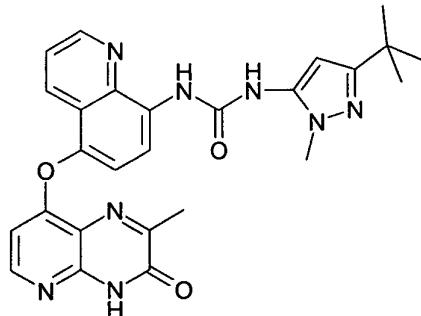
5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-3-(t-butyl-phenyl)]-pyridin-[2,3]1-N-methylimidazol-2-one (AA-018)



5 Using the same method with 50 mg (0.16 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-1N-methylpyrazin-2-one, and 0.21 mmol of 1-t-butyl-phenyl-3-isocyanate, 63 mg (yield, 81%) of the title compound were obtained. ^1H NMR (500 MHz, DMSO- d_6) δ 1.30 (s, 9H), 3.34 (s, 3H), 6.36 (d, 1H, J = 5.9 Hz), 7.03 (d, 1H, J = 8.7 Hz), 7.23 (t, 1H, J = 7.9 Hz), 7.34-7.41 (m, 2H), 7.54 (m, 1H), 7.65-7.69 (m, 1H), 7.79 (d, 1H, J = 5.9 Hz), 8.36 (dd, 1H, J = 10.1 Hz), 8.58 (d, 1H, J = 8.6 Hz), 8.97-9.02 (m, 1H), 9.67 (s, 1H), 9.82 (s, 1H), 11.56 (s, 1H). LC-MS, t_R = 3.30 min, m/z: 487.2 ($M+\text{H}$) $^+$, calcd for $C_{27}\text{H}_{27}\text{N}_6\text{O}_3$; HRMS: ($M+\text{H}$) $^+$ calcd for $C_{27}\text{H}_{27}\text{N}_6\text{O}_3$, 483.2139, found: 483.2143.

10

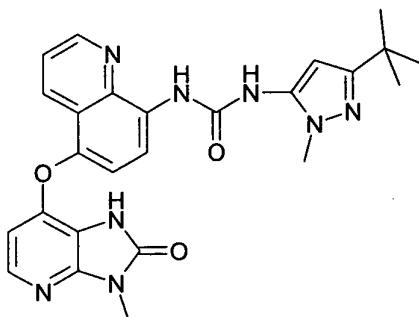
Synthesis 38


15 5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-phenyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]pyrazin-3-one (BB-010)

To 30 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-pyrazin-3-one, dissolved in 5 mL DMSO, 55 mg (0.20 mmol) of 1-phenyl-3-t-butyl-imidazolyl-5-isocyanate, were added 20 and the solution stirred for 18 hours at room temperature. The reaction mixture was diluted with 20 mL AcOEt, washed with 20 mL citric acid solution, then with 20 mL NaHCO_3 solution and finally with brine (2x20 mL). The organic layer was dried (MgSO_4), and evaporated to dryness to give 33 mg (yield, 46%) of the title compound. ^1H NMR (500 MHz, DMSO- d_6) δ 1.31 (s, 9H), 6.43 (s, 1H), 6.77 (d, 1H, J = 5.3 Hz), 7.49 (d, 2H, J = 8.6 Hz), 7.51-7.57 (m, 3H), 7.63-7.68 (m, 1H), 8.28 (d, 1H, J = 5.3 Hz), 8.38 (dd, 1H, J = 8.5 Hz), 8.58 (d, 1H, J = 8.6 Hz), 8.95-8.99 (m, 1H), 9.61 (s, 1H), 9.99 (s, 1H), 12.75 (s, 1H). LC-MS, t_R = 2.78 min, m/z: 546.2 ($M+\text{H}$) $^+$, calcd for $C_{30}\text{H}_{26}\text{N}_8\text{O}_3$; HRMS: ($M+\text{H}$) $^+$ calcd for $C_{30}\text{H}_{27}\text{N}_8\text{O}_3$ 547.2200, found: 547.2197.

Synthesis 39

5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-methyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-3-methylpyrazin-2-one (BB-006)


5 To 40 mg (0.13 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-3-methylpyrazin-2-one, dissolved in 5 mL DMSO, 55 mg (0.2 mmol) of 1-methyl-3-t-butyl-imidazolyl-5-N-phenyl carbamate, were added and the solution stirred for 18 hours at room temperature. The reaction mixture was diluted with 20 mL AcOEt, washed with 20 mL citric acid solution, then with 20 mL NaHCO₃ solution and finally with brine (2x20 mL). The organic layer was dried (MgSO₄) and evaporated to dryness to give 39 mg (yield, 67%) of the title compound. After chromatography on Isolute column (Flash Si II, 10 g; eluent: AcOEt:EtOH 4:1) 17 mg were obtained. ¹H NMR (500 MHz, DMSO-d₆) δ 1.23 (s, 9H), 2.47 (s, 3H), 3.68 (s, 3H), 6.16 (s, 1H), 6.41 (d, 1H, J = 5.6 Hz), 7.47 (d, 1H, J = 8.6 Hz), 7.64-7.70 (m, 1H), 8.19 (d, 1H, J = 5.6 Hz), 8.27 (dd, 1H, J = 9.9 Hz), 8.60 (d, 1H, J = 8.6 Hz), 9.00-9.04 (m, 1H), 9.65 (s, 1H), 9.97 (s, 1H), 12.80 (s, 1H). LC-MS, *t*_R = 2.60 min, *m/z*: 499.2 (M+H)⁺, calcd for C₂₆H₂₇N₈O₃; HRMS: (M+H)⁺ calcd for C₂₆H₂₇N₈O₃, 499.2201, found: 499.2200.

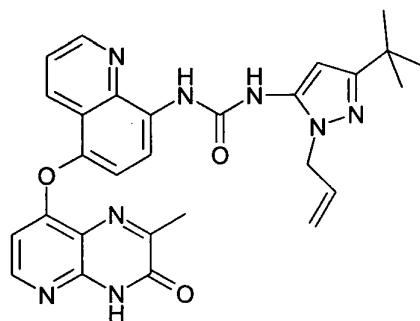
10

15

Synthesis 40

5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-methyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-1-N-methylimidazol-2-one (AA-017)

20 To 50 mg (0.16 mmol) of 5-(8-amino-quinolinyl-5-oxy)-pyridin-[2,3]-1N-methylimidazol-2-one, dissolved in 6 mL DMSO, 55 mg (0.2 mmol) of 1-methyl-3-t-butyl-imidazolyl-5-N-phenyl carbamate, were added and the solution stirred for 18 hours at room temperature. The reaction mixture was diluted with 20 mL AcOEt, washed with 20 mL citric acid solution, then with 20 mL NaHCO₃ solution and finally with brine (2x20 mL). The organic layer was dried (MgSO₄) and evaporated to dryness to give 40 mg (yield, 54%) of the title compound. ¹H NMR (500 MHz, DMSO-d₆) δ 1.22 (s, 9H), 2.49 (s, 3H), 2.67 (s, 3H), 6.16 (s, 1H), 6.36 (d, 1H, J = 5.9 Hz), 7.38 (d, 1H, J = 8.6 Hz), 7.67-7.71 (m, 1H), 7.79 (d, 1H, J = 5.9 Hz), 8.77 (dd,

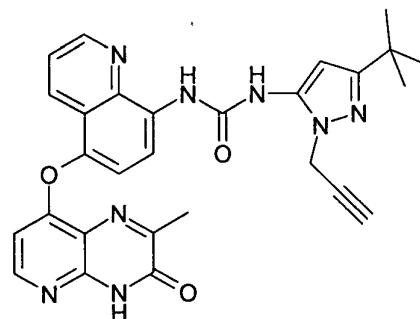

25

1H, $J = 10.1$ Hz), 8.55 (d, 1H, $J = 8.6$ Hz), 8.98-9.02 (m, 1H), 9.67 (s, 1H), 9.96 (s, 1H), 11.61 (s, 1H). LC-MS, $t_R = 2.78$ min, m/z: 487.2 ($M+H$)⁺, calcd for C₂₅H₂₆N₈O₃; HRMS: ($M+H$)⁺ calcd for C₂₅H₂₆N₈O₃, 487.2201, found: 487.2192.

5

Synthesis 41

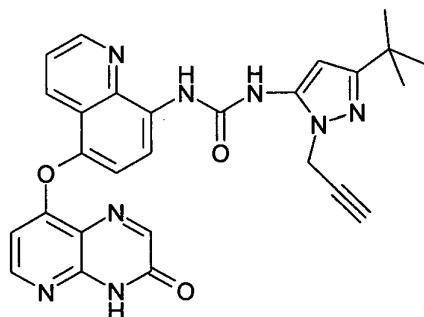
5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-allyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-3-methylpyrazin-2-one (BB-009)



3-tert-butyl-1-(allyl)-1H-pyrazole-5-carboxylic acid (65.2 mg, 0.313 mmol) was added under stirring and argon to dry triethylamine (0.044 mL, 0.313 mmol) and dry DMF (1.5 mL) to give a colorless solution. The solution was cooled to 0°C, DPPA (0.067 mL, 0.313 mmol) was added at once and the solution was stirred at 0°C for an additional 30 minutes and then at room temperature for 1 hour. Then, 8-(8-amino-quinolyl-5-oxy)pyrido[2,3-b]-2-methylpyrazin-3(4H)-one (50 mg, 0.157 mmol) was added at once and the solution was heated to 100°C for 30 minutes. The reaction mixture was allowed to reach room temperature, then 10 mL AcOEt added and the solution washed with (2x10 mL) brine. The organic layer was dried (MgSO₄) and concentrated using a rotary evaporator. The solid residue resulted was triturated with Et₂O and filtered giving 38 mg (yield, 46.5%) of the title compound. ¹H NMR (500 MHz, DMSO-d₆) δ 1.24 (s, 9H), 4.67 (d, 2H, $J = 4.9$ Hz), 4.94 (d, 1H, $J = 17.1$ Hz), 5.13 (d, 1H, $J = 10.3$ Hz), 5.92-6.04 (m, 1H), 6.22 (s, 1H), 6.41 (d, 1H, $J = 5.7$ Hz), 7.46 (d, 1H, $J = 8.6$ Hz), 7.62-7.71 (m, 1H), 8.19 (d, 1H, $J = 5.7$ Hz), 8.27 (d, 1H, $J = 7.1$ Hz), 8.60 (d, 1H, $J = 8.6$ Hz), 8.95-9.02 (m, 1H), 9.57 (s, 1H), 9.96 (s, 1H), 12.80 (s, 1H). LC-MS, $t_R = 2.70$ min, m/z: 524.2 M⁺, calcd for C₂₈H₂₈N₈O₃; HRMS: ($M+H$)⁺ calcd for C₃₁H₂₉N₈O₃, 525.2357, found: 525.2356.

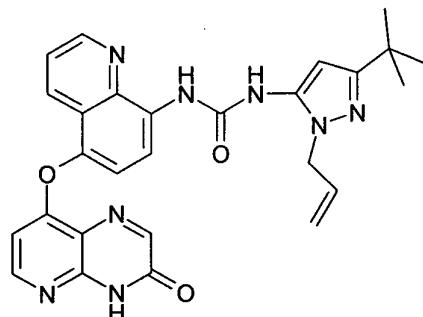
25

Synthesis 42


5-[(8-Amino-quinolinyl-5-oxy)carbonylamino-5-(1-propargyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]-3-methylpyrazin-2-one (BB-011)

3-tert-butyl-1-(propargyl)-1H-pyrazole-5-carboxylic acid (64.6 mg, 0.313 mmol) was added under stirring and argon to dry triethylamine (0.044 mL, 0.313 mmol) and dry DMF (1 mL) to give a colorless solution. The solution was cooled to 0°C, DPPA (0.067 mL, 0.313 mmol) was added at once and the solution was stirred at 0°C for an additional 30 minutes and then at room temperature for 1 hour. Then, 8-(8-amino-quinolyl-5-oxy)pyrido[2,3-b]-2-methylpyrazin-3(4H)-one (50 mg, 0.157 mmol) was added at once and the solution was heated to 100°C for 30 minutes. The reaction mixture was allowed to reach room temperature, then 10 mL AcOEt added and the solution washed with (2x10 mL) brine. The organic layer was dried (MgSO_4) and concentrated using a rotary evaporator. The solid residue resulted was triturated with Et_2O and filtered giving 58 mg (71%) of the desired compound. ^1H NMR (500 MHz, DMSO- d_6) δ 1.24 (s, 9H), 2.47 (s, 3H), 4.90 (s, 2H), 6.23 (s, 1H), 6.41 (d, 1H, J = 5.7 Hz), 7.47 (d, 1H, J = 8.6 Hz), 7.65-7.71 (m, 1H), 7.95 (s, 1H), 8.19 (d, 1H, J = 5.7 Hz), 8.28 (d, 1H, J = 8.5 Hz), 8.61 (d, 1H, J = 8.5 Hz), 8.90-9.07 (m, 1H), 9.78 (s, 1H), 9.99 (s, 1H), 12.80 (s, 1H). LC-MS, t_R = 2.59 min, m/z: 522.2 M^+ , calcd for $\text{C}_{28}\text{H}_{26}\text{N}_8\text{O}_3$; HRMS: ($\text{M}+\text{H}$) $^+$ calcd for $\text{C}_{28}\text{H}_{27}\text{N}_8\text{O}_3$, 523.2201, found: 523.2200.

Synthesis 43


5-[(8-amino-quinolinyl-5-oxy)carbonylamino-5-(1-propargyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]pyrazin-2-one (BB-012)

Using the same method as for BB-009, 3-tert-butyl-1-(propargyl)-1H-pyrazole-5-carboxylic acid (135 mg, 0.655 mmol), dry triethylamine (0.091 mL, 0.655 mmol) and dry DMF (2.5 mL) were reacted with DPPA (0.141 mL, 0.655 mmol) and then with 4-(8-amino-quinazolyl-5-oxy)pyrido[2,3-b]pyrazin-3(4H)-one (100 mg, 0.328 mmol). After trituration with Et_2O , a solid resulted (110 mg) which was purified using preparative HPLC on silica to give the title compound. ^1H NMR (500 MHz, DMSO- d_6) δ 1.24 (s, 9H), 4.89 (s, 2H), 6.24 (s, 1H), 6.48 (d, 1H, J = 5.7 Hz), 7.49 (d, 1H, J = 8.6 Hz), 7.65-7.71 (m, 1H), 8.24-8.30 (m, 3H), 8.61 (d, 1H, J = 8.6 Hz), 9.01-9.04 (m, 1H), 9.82 (s, 1H), 10.02 (s, 1H), 12.99 (s, 1H). LC-MS, t_R = 2.58 min, m/z: 509.2 ($\text{M}+\text{H}$) $^+$, calcd for $\text{C}_{27}\text{H}_{24}\text{N}_8\text{O}_3$; HRMS: ($\text{M}+\text{H}$) $^+$ calcd for $\text{C}_{27}\text{H}_{24}\text{N}_8\text{O}_3$, 509.2044, found: 509.2032.

Synthesis 44

5-[(8-amino-quinolinyl-5-oxy)carbonylamino-5-(1-allyl-3-t-butyl-imidazolyl)]-pyridin-[2,3]pyrazin-2-one (BB-013)

5 3-tert-butyl-1-(allyl)-1H-pyrazole-5-carboxylic acid (135 mg, 0.655 mmol), dry triethylamine (0.091 mL, 0.655 mmol) and dry DMF (2.5 mL) were reacted with DPPA (0.141 mL, 0.655 mmol) and then to 4-(8-amino-quinazolyl-5-oxy)pyrido[2,3-b]pyrazin-3(4H)-one (100 mg, 0.328 mmol). After trituration with Et₂O a solid resulted (100 mg) which was purified using preparative HPLC on silica to give 18 mg (yield, 22%) of the title compound. ¹H NMR (500 MHz, DMSO-d₆) δ 1.24 (s, 9H), 4.66 (d, 2H, J = 4.8 Hz), 4.92 (d, 1H, J = 17.1 Hz), 5.13 (d, 1H, J = 10.3 Hz), 5.92-6.02 (m, 1H), 6.22 (s, 1H), 6.48 (d, 1H, J = 5.7 Hz), 7.48 (d, 1H, J = 8.6 Hz), 7.61-7.69 (m, 1H), 8.24-8.29 (m, 3H), 8.61 (d, 1H, J = 8.6 Hz), 8.97-9.03 (m, 1H), 9.60 (s, 1H), 9.99 (s, 1H), 12.98 (s, 1H). LC-MS, *t*_R = 2.89 min, m/z: 511.1 (M+H)⁺, calcd for C₂₇H₂₆N₈O₃; HRMS: (M+H)⁺ calcd for C₂₇H₂₆N₈O₃, 511.2201, found: 511.2189.

10

15

Biological MethodsBiological Methods - DELFIA Kinase Assay

20 Compounds were assessed by a kinase assay performed according to the following protocol.

The following reagents were prepared:

DELFIA Kinase Buffer (DKB):

25

Reagent	Stock Concentration	Volume per mL (μL)	Volume per 10 mL plate (μL)
20 mM MOPS pH 7.2	0.2 M	100	1000
0.5 M EGTA pH 8.0	0.5 M	10	100
10 mM MgCl ₂	1 M	10	100
0.1% β-mercaptoethanol	-	1	10
25 mM β-glycerophosphate	0.5 M	50	500
Water	100%	829	8290

MOPS = 3-[N-Morpholino] propanesulfonic acid (Sigma M3183).

EGTA = Ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (Sigma E3889).

DKB1 (DKB with B-RAF and MEK protein):

Combine 4950 µL of DKB and 50 µL of 2.5 mg/ml GST-MEK stock (to give 1 mg of MEK per 40 µL). Then add 22.5 µL of B-RAF to give ~0.2 µL of B-RAF per 40 µL.

5

DKB2 (DKB with MEK protein):

Combine 4950 µL of DKB and 50 µL of 2.5 mg/ml GST-MEK stock (to give 1 mg of MEK per 40 µL). Use 500 µL of this for the blow out (BO) and the empty vector (EV) control.

10 **ATP:**

100 mM stock, dilute to 500 µM to give 100 µM final concentration in assay.

Inhibitors (Test Compounds):

100 mM stock, dilute to 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001mM in DMSO in drug plate, resulting in concentration of 100, 30, 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001 µM in the assay.

Primary antibody:

Phospho-MEK1/2 CST #9121S diluted 1:1000 in DELFIA assay buffer (AB). Preincubate antibody in the AB for 30 minutes at room temperature prior to use.

Secondary antibody:

Anti-rabbit-Eur labelled secondary Perkin Elmer #AD0105 diluted 1:1000 in DELFIA assay buffer (AB). Preincubate antibody in the AB for 30 minutes at room temperature prior to use. (Primary and secondary antibodies were incubated together.)

Tween:

0.1% Tween 20 in water.

30 **Assay Buffer:**

DELFIA assay buffer Perkin Elmer #4002-0010.

Enhancement Solution:

DELFIA enhancement solution Perkin Elmer #4001-0010.

35

Assay Plates:

96 well glutathione-coated black plate Perbio #15340.

Procedure:

40

1. Preblock wells with 5% milk in TBS for 1 hour.

2. Wash wells with 3 x with 200 µL TBS.

- 116 -

3. Plate out 40 μ L of DKB1 for all inhibitors (test compounds), DMSO control, and optionally other control compounds.
4. Plate out 40 μ L of DKB2 for BO and EV wells.
5. Add inhibitors (test compounds) at 0.5 μ L per well according to desired plate layout.
6. Add 0.5 μ L DMSO to vehicle control wells.
10. 7. Add 2 μ L of B-RAF to BO and EV wells.
8. Pre-incubate with inhibitors (test compounds) for 10 minutes at room temperature with shaking.
15. 9. Add 10 μ L of 500 μ M ATP stock, in DKB, to give 100 μ M assay concentration.
10. Seal plates with TopSeal and incubate at room temperature with shaking for 45 minutes.
11. Wash plates 3 x with 200 μ L 0.1% Tween20/Water to terminate reaction.
20. 12. Add 50 μ L per well of antibody mix and incubate for 1 hour at room temperature with shaking.
13. Wash plates 3 x with 200 μ L 0.1% Tween20/Water.
25. 14. Add 100 μ L DELFIA enhancement solution per well, cover in foil, and incubate at room temperature for 30 minutes with shaking.
15. Read on Victor using Europium protocol.
30. Values for the blank (Empty Vector) are subtracted from all values. The DMSO controls are set as 100% activity and assay points (the response) are calculated as a percentage of the DMSO control. Data are plotted using Graphpad Prism software and a non-linear regression line is calculated using a variable slope sigmoidal dose-response equation ($Y = Bottom + (Top - Bottom) / (1 + 10^{((LogEC50 - X) * HillSlope)})$) where X is the logarithm of concentration. Y is the response). The IC50 generated by this procedure is the concentration of the drug that produces a percentage control fluorescence value midway between the saturation, and zero-effect plateaus. Three independent assays are usually performed and the mean IC50 is reported.
40. Biological Methods - Cell Based Phosho-ERK Assay

Compounds were assessed using a cell-based assay which was performed according to the following protocol.

45

Day 0:

Plate out 16,000 cells/well in 99 μ L medium in a 96-well plate.

Day 1:

- 5 1. Add 1 μ L inhibitor to the cells (total 1 μ L solution).
2. Incubate the cells with test compound for 6 hours at 37°C.
3. Aspirate off the solution from all of the wells.
4. Fixate the cells with 100 μ L 4% formaldehyde/0.25% Triton X-100 PBS per well.
5. Incubate the plate for 1 hour at 4°C.
- 10 6. Aspirate off the fixing solution and add 300 μ L TBS per well.
7. Leave the plate overnight at 4°C.

Day 2:

1. Wash the plate 2x with 200 μ L PBS per well.
- 15 2. Block with 100 μ L 5% dried milk in TBS.
3. Incubate the plate for 20 minutes at 37°C.
4. Wash the plate 2x with 0.1% tween/H₂O.
5. Add 50 μ L of 3 μ g/mL primary antibody pERK (Sigma M8159), diluted in 5% milk powder/TBS, to each well.
- 20 6. Incubate the plate for 2 hours at 37°C.
7. Wash the plate 3x with 0.1% tween/H₂O.
8. Add 50 μ L of 0.45 μ g/mL secondary Europium-labelled anti-mouse antibody (Perkin Elmer) to each well.
9. Incubate the plate for 1 hour at 37°C.
- 25 10. Wash the plate 3x with 0.1% tween/H₂O.
11. Add 100 μ L enhancement solution (Perkin Elmer) to each well.
12. Leave the plate for approximately 10 minutes at room temperature before gently shaking the plate.
13. Read Europium Time Resolved Fluorescence in Victor2.
- 30 14. Wash the plate 2x with 0.1% tween/H₂O.
15. Measure the protein concentration with BCA (Sigma) by adding 200 μ L of solution per well.
16. Incubate the plate for 30 minutes at 37°C.
17. Read absorbance levels at 570 nm in a plate reader.

35

Note that Europium counts are normalised for protein levels by dividing counts by absorbance.

Values for the blank (no cells) are subtracted from all values. The DMSO controls are set as 40 100% activity and assay points (the response) are calculated as a percentage of the DMSO control. Data are plotted using Graphpad Prism software and a non-linear regression line is calculated using a variable slope sigmoidal dose-response equation ($Y=Bottom + (Top-Bottom)/(1+10^{((LogEC50-X)*HillSlope)})$ where X is the logarithm of concentration. Y is the response). The IC50 generated by this procedure is the concentration of the drug that 45 produces a percentage control fluorescence value midway between the saturation, and

zero-effect plateaus. Three independent assays are usually performed and the mean IC50 is reported.

Biological Methods - SRB Cell Proliferation Assay (SRB GI₅₀)

5

Cultures of WM266.4 melanoma cells are routinely cultured in DMEM/10% foetal bovine serum, at 37°C, in 5% CO₂ water saturated atmosphere. Cultures are maintained in exponential growth phase by sub-culturing before having become confluent (3-5 day intervals). Single cell suspensions are prepared by harvesting an 80 cm² tissue culture flask with 5 mL commercial trypsin EDTA. After 5 minutes, the detached cells are mixed with 5 mL fully complemented culture medium and centrifugally pelleted (1000 rpm for 7 minutes). After aspirating the supernatant, the cell pellet is re-suspended in 10mL fresh medium and the cells fully disaggregated by drawing the whole volume up/down 5 times through a 19-gauge needle. The concentration of the cells is determined using a haemocytometer (1/10 dilution).

10

with 5 mL commercial trypsin EDTA. After 5 minutes, the detached cells are mixed with 5 mL fully complemented culture medium and centrifugally pelleted (1000 rpm for 7 minutes). After aspirating the supernatant, the cell pellet is re-suspended in 10mL fresh medium and the cells fully disaggregated by drawing the whole volume up/down 5 times through a 19-gauge needle. The concentration of the cells is determined using a haemocytometer (1/10 dilution). A suitable volume to give at least a 2-fold excess for the number of tests being conducted, typically 100-200 mL, is prepared by diluting the cell suspension to 10,000 /mL, and 100 µL/well dispensed into 96 well plates using a programmable 8-channel peristaltic pump, giving 1000 cells/well, leaving column 12 blank. The plates are returned to the incubator for 24 hours to allow the cells to re-attach.

15

20 The compounds being tested are prepared at 20 mM in dimethylsulphoxide. Aliquots (200 µL) are diluted into 20 mL culture medium giving 200 µM, and 10 serial dilutions of 3x performed by transferring 5 mL to 10 mL. Aliquots (100 µL) of each dilution are added to the wells, using an 8-channel pipettor, thus performing a final further 2x dilution, and giving doses ranging from 100 µM to 0.005 µM. Column 11 receives plain culture medium only. Each compound is tested in quadruplicate, each replicate being the average of four wells, and two plates per compound.

25

30 After a further 6 days growth, the plates are emptied, and the cells are fixed in 10% trichloroacetic acid for 10 minutes on ice. After thorough rinsing in running tap water, the plates are dried, and stained by adding 50 µL of a solution of 0.1% sulphorhodamine-B in 1% acetic acid, for 10 minutes at room temperature. The stain is poured out and the plates thoroughly rinsed under a stream of 1% acetic acid, thus removing unbound stain, and dried. The bound stain is taken into solution by addition of 150 µL Tris buffer pH 8, followed by 10 minutes on a plate-shaker (approximately 500 rpm). The absorbance at 540 nm in each well (being proportional to the number of cells present) is determined using a plate reader.

35

40 After averaging the results in rows A-D and E-H, the blank value (row 12) is subtracted, and results expressed as percentage of the untreated value (row 11). The 10 values so derived (in quadruplicate) are plotted against the logarithm of the drug concentration, and analysed by non-linear regression to a four parameter logistic equation, setting constraints if suggested by inspection. The GI₅₀ generated by this procedure is the concentration of the drug that produces a percentage control A₅₄₀ midway between the saturation, and zero-effect plateaus.

Biological Methods - BRAF Cell Based IP Assay

Compounds were assessed using a cell-based assay which was performed according to the following protocol.

5

WM266.4 cells were seeded at 10^6 cells per 10 cm dish in DMEM/10% FCS medium. The next day, cells were treated with a range of concentrations of the test compound for 6 hours and then lysed in NP40 buffer.

10 Lysates were incubated with 20 μ L of anti-BRAF antibody (Santa-Cruz F-7) for 1 hour at 4°C. Protein G sepharose beads were washed in PBS three times and 20 μ L of beads were added to the lysates and incubated at 4°C for 2-3 hours. Beads were then collected by centrifugation and washed in 1M KCl buffer, 0.1M KCl buffer, and then salt-free buffer.

15 Beads were dried and incubated with MEK and ERK GST-fusion proteins in kinase buffer (MKK buffer) for 10 minutes at 30°C. The reaction was stopped with 20 μ L of kill buffer. Beads were centrifuged and the supernatant (25 μ L) was removed to a fresh tube.

20 The final reaction was started by the addition of 5 μ L of each supernatant to 25 μ L of A/MBP buffer for 10 minutes at 30°C. The reaction was terminated by spotting 20 μ L onto P81 paper and immersed in 0.4% orthophosphoric acid.

25 The incorporation of radio-labelled ATP into the MBP substrate was determined by Cerenkov counting. Values for the blank (no BRAF) were subtracted from all values. The DMSO controls were set as 100% activity and assay points (the response) were calculated as a percentage of the DMSO control. Data were plotted using Graphpad Prism software and a non-linear regression line was calculated using a variable slope sigmoidal dose-response equation ($Y=Bottom + (Top-Bottom)/(1+10^{((LogEC50-X)*HillSlope)})$ where X is the logarithm of concentration and Y is the response). The IC50 generated by this procedure is the 30 concentration of the drug that produces a percentage value midway between the saturation, and zero effect plateaus.

NP40 Buffer		
Final Conc.	Stock	Volume for 10 mL (mL)
50 mM Tris pH 7.5	1 M	0.5
150 mM NaCl	5 M	0.3
0.5% NP40	10%	0.5
5 mM NaF	0.5 M	0.1
0.2 mM Na ₃ VO ₄	20 mM	0.1
Water	100%	8.5

* Add EDTA-free mini complete tablet before use

- 120 -

KCl Wash Buffers				
Components	Stock	Final Conc.		
		1 M KCl (mL)	0.1 M KCl (mL)	KCl-free (mL)
		Volume for 20 mL		
30 mM Tris pH 7.5	1 M	0.6	0.6	0.6
0.1 mM EDTA	0.5 M	0.004	0.004	0.004
0.1% TX-100	10%	0.2	0.2	0.2
0.2 mM Na ₃ VO ₄	20 mM	0.2	0.2	0.2
5 mM NaF	0.5 M	0.2	0.2	0.2
10% glycerol	50%	4	4	-
KCl	2 M	10	1	-
0.3% β-ME	100%	0.060	0.060	0.060
Water	100%	4.74	13.74	18.74

MKK Buffer		
Final Conc.	Stock	Volume for 1 mL (mL)
30 mM Tris pH 7.5	1 M	30
0.1 mM EDTA	0.5 M	0.2
10 mM MgCl ₂	1 M	10
0.1% TX-100	10%	10
5 mM NaF	0.5 M	10
0.2 mM Na ₃ VO ₄	20 mM	10
800 mM ATP	100 mM	8
0.3% β-Me	100%	3
6.5 mg/mL GST-MEK	6.5 mg/mL	1
100 mg/mL GST-ERK	20 mg/mL	5
Water	100%	913

Kill Buffer		
Final Conc.	Stock	Volume for 1 mL (mL)
30 mM Tris pH 7.5	1 M	30
6 mM EDTA	0.5 M	12
0.1% TX-100	10%	10
5 mM NaF	0.5 M	10
0.2 mM Na ₃ VO ₄	20 mM	10
0.3% b-Me	100%	3
Water	100%	913

A/MBP Buffer		
Final Conc.	Stock	Volume for 1 mL (mL)
50 mM Tris pH 7.5	1 M	50
0.1 mM EDTA	0.5 M	0.2
10 mM MgCl ₂	1 M	10
0.1% TX-100	10%	10
5 mM NaF	0.5 M	10
0.2 mM Na ₃ VO ₄	20 mM	10
100 μM ATP	100 mM	1
0.3% β-Me	100%	3
1 mg/mL MBP	36.5 mg/mL	30
160 mg/mL BSA	20 mg/mL	8
500 μM ³² P-ATP	100 mM	5
Water	100%	878

Biological Results

The following compounds were tested in the "DELFIA Kinase Assay" described above:

5 AA-001 through AA-018 and BB-001 through BB-013.

The following compounds have an IC₅₀ BRAF of less than or equal to 1.0 μM:

AA-001, AA-002, AA-005, AA-007, AA-008, AA-009, AA-010, AA-012, AA-013, AA-014,

AA-017, AA-018, BB-001, BB-003, BB-004, BB-005, BB-006, BB-007, BB-008, BB-009,

10 BB-011, BB-012, BB-013.

One compound, compound AA-012, has an IC₅₀ BRAF of 1.0 μM.

15

The following compounds were tested in the "Cell Based Phospho-ERK Assay" described above: AA-001 through AA-018 and BB-001 through BB-013.

The following compounds have an IC₅₀ pERK of less than or equal to 10 μM:

20 AA-005, AA-006, AA-007, AA-008, AA-009, AA-010, AA-011, AA-012, AA-013, AA-014, AA-015, AA-016, AA-017, AA-018, BB-001, BB-002, BB-003, BB-004, BB-005, BB-006, BB-007, BB-008, BB-009, BB-010, BB-011, BB-012, BB-013.

One compound, compound AA-012, has an IC₅₀ ppERK of 0.19 μM.

25

The following compounds were tested in the "SRB Cell Proliferation Assay" described above: AA-001 through AA-018 and BB-001 through BB-013.

30

- 122 -

The following compounds have a GI50 SRB of less than or equal to 10 μ M:

AA-001, AA-005, AA-006, AA-007, AA-008, AA-009, AA-010, AA-011, AA-012, AA-014, AA-015, AA-016, AA-017, AA-018, BB-001, BB-002, BB-003, BB-004, BB-005, BB-006, BB-007, BB-008, BB-009, BB-010, BB-011, BB-012, BB-013.

5

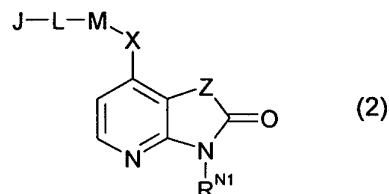
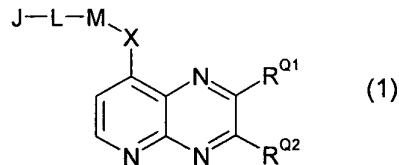
One compound, compound AA-012, has a GI50 SRB of 0.11 μ M.

* * *

10 The following compounds were tested in the "BRAF Cell Based IP Assay" described above:
AA-011, AA-012, BB-003, BB-007, BB-008.

The following compounds have an IC50 BRAF IP of less than or equal to 1.0 μ M:
AA-011, AA-012, BB-003, BB-007, BB-008.

15



One compound, compound AA-012, has an IC50 BRAF IP of 0.21 μ M.

* *, *

20 The foregoing has described the principles, preferred embodiments, and modes of operation of the present invention. However, the invention should not be construed as limited to the particular embodiments discussed. Instead, the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope
25 of the present invention.

CLAIMS

1. A compound selected from compounds of the following formulae and pharmaceutically acceptable salts, hydrates, and solvates thereof:

5 wherein:

-R^{Q1} is independently -H or -R^{Q1R};

wherein:

-R^{Q1R} is independently:

10 -R¹, -R^{1X}, -Cl, -OH, -OR¹, -OR^{1X}, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or
-NR^{1NA}R^{1NB};

wherein:

each -R¹ is independently:

15 saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR¹¹, -NH₂, -NHR¹¹, or -NR¹¹₂;
saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR¹¹, -NH₂, -NHR¹¹, and -NR¹¹₂; or
20 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from -R¹¹;

and wherein:

each -R^{1X}, if present, is independently saturated aliphatic C₁₋₄alkyl substituted with one or more groups selected from -F, -Cl, -Br, and -I;

25

and wherein:

-NR^{1NA}R^{1NB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R¹¹, -CF₃, -F, -OH, -OR¹¹, -NH₂, -NHR¹¹, and -NR¹¹₂;

30

wherein:

each -R¹¹ is independently saturated aliphatic C₁₋₄alkyl;

and wherein:

- 124 -

$-R^{Q2}$ is independently -H or $-R^{Q2R}$;

wherein:

$-R^{Q2R}$ is independently:

5 $-R^2$, $-R^{2X}$, -Cl, -OH, $-OR^2$, $-OR^{2X}$, -SH, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or
 $-NR^{2NA}R^{2NB}$;

wherein:

each $-R^2$ is independently:

10 saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, $-OR^{22}$, $-NH_2$, $-NHR^{22}$, or $-NR^{22}_2$;
saturated C_{3-6} cycloalkyl, and is unsubstituted or substituted with one or more groups selected from -OH, $-OR^{22}$, $-NH_2$, $-NHR^{22}$, and $-NR^{22}_2$; or
15 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from $-R^{22}$;

and wherein:

each $-R^{2X}$, if present, is independently saturated aliphatic C_{1-4} alkyl substituted with one or more groups selected from -F, -Cl, -Br, and -I;

20

and wherein:

$-NR^{2NA}R^{2NB}$ is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{22}$, $-CF_3$, -F, -OH, $-OR^{22}$, $-NH_2$, $-NHR^{22}$, and $-NR^{22}_2$;

25

wherein:

each $-R^{22}$ is independently saturated aliphatic C_{1-4} alkyl;

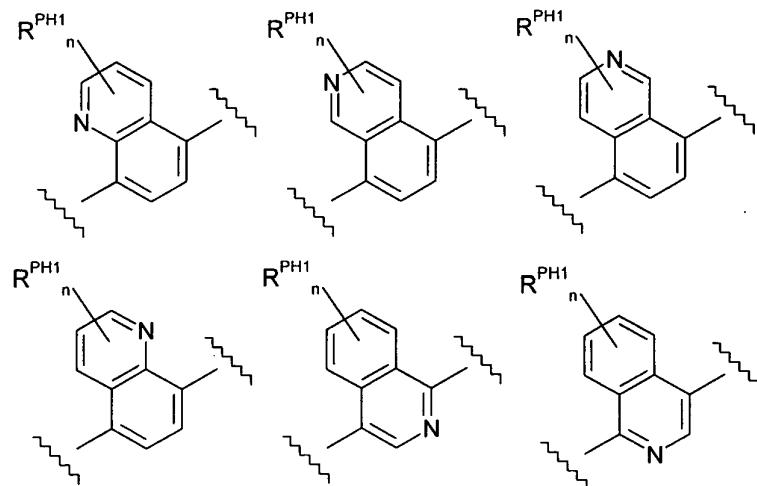
and wherein:

30

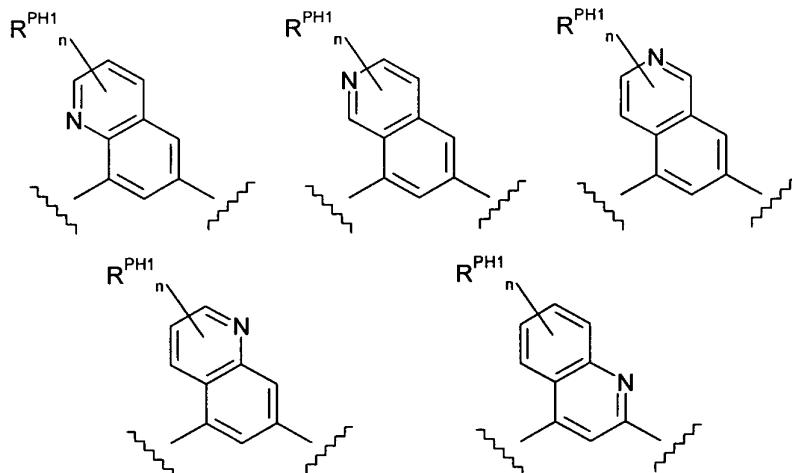
$-R^{N1}$ is independently -H or saturated aliphatic C_{1-4} alkyl;

$-Z-$ is independently $-NR^{N2}-$ or $-O-$;

35

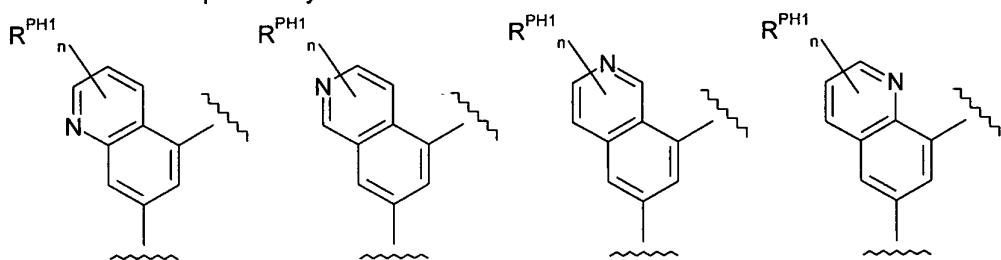

$-R^{N2}$ is independently -H or saturated aliphatic C_{1-4} alkyl optionally substituted with one or more groups selected from $-CF_3$, -F, -OH, $-OR^3$, $-NH_2$, $-NHR^3$, and $-NR^3_2$; wherein each $-R^3$ is independently saturated aliphatic C_{1-4} alkyl;

and wherein:


40

$-X-$ is independently $-O-$ or $-S-$;

-M- is independently selected from:



or -M- is independently selected from:

5

or -M- is independently selected from:

10

wherein:

each n is independently 0, 1 or 2; and

each R^{PH1} is independently -F, -Cl, -Br, -I, -R^4, -OH, -OR^4, -SH, or -SR^4;

wherein each -R^4 is independently saturated aliphatic C₁₋₄alkyl;

J-L- is independently selected from:

5 J-NR^{N3}-C(=Y)-NR^{N3}-,
 J-CH₂-NR^{N3}-C(=Y)-NR^{N3}-,
 J-NR^{N3}-C(=Y)-NR^{N3}-CH₂-,

10 J-NR^{N3}-C(=Y)-,
 J-CH₂-NR^{N3}-C(=Y)-,
 J-NR^{N3}-C(=Y)-CH₂-,
 J-CH₂-NR^{N3}-C(=Y)-CH₂-,
 J-CH₂-CH₂-NR^{N3}-C(=Y)-,
 J-NR^{N3}-C(=Y)-CH₂-CH₂-,

15 J-NR^{N3}-C(=Y)-CH₂-NR^{N3}-,
 J-NR^{N3}-CH₂-NR^{N3}-C(=Y)-,

20 J-C(=Y)-NR^{N3}-,
 J-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-,
 J-CH₂-C(=Y)-NR^{N3}-CH₂-,
 J-CH₂-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-CH₂-,

25 J-NR^{N3}-CH₂-C(=Y)-NR^{N3}-,
 J-C(=Y)-NR^{N3}-CH₂-NR^{N3}-,

30 J-C(=Y)-CH₂-NR^{N3}-,
 J-C(=Y)-CH₂-NR^{N3}-CH₂-,
 J-C(=Y)-CH₂-CH₂-NR^{N3}-,
 J-CH₂-C(=Y)-CH₂-NR^{N3}-,

35 J-NR^{N3}-CH₂-C(=Y)-,
 J-NR^{N3}-CH₂-C(=Y)-CH₂-,
 J-NR^{N3}-CH₂-CH₂-C(=Y)-,
 J-CH₂-NR^{N3}-CH₂-C(=Y)-,

40 J-NR^{N3}-S(=O)₂-NR^{N3}-,
 J-NR^{N3}-S(=O)₂-NR^{N3}-CH₂-,
 J-CH₂-NR^{N3}-S(=O)₂-NR^{N3}-,

45 J-NR^{N3}-S(=O)₂-,
 J-NR^{N3}-S(=O)₂-CH₂-,
 J-CH₂-NR^{N3}-S(=O)₂-,
 J-CH₂-NR^{N3}-S(=O)₂-CH₂-,
 J-CH₂-CH₂-NR^{N3}-S(=O)₂-,

- 127 -

J-NR^{N3}-S(=O)₂-CH₂-CH₂-,

J-NR^{N3}-S(=O)₂-CH₂-NR^{N3}-,
J-NR^{N3}-CH₂-NR^{N3}-S(=O)₂-,

5

J-S(=O)₂-NR^{N3}-,
J-S(=O)₂-NR^{N3}-CH₂-,
J-CH₂-S(=O)₂-NR^{N3}-,
J-CH₂-S(=O)₂-NR^{N3}-CH₂-,
J-CH₂-CH₂-S(=O)₂-NR^{N3}-,
10 J-S(=O)₂-NR^{N3}-CH₂-CH₂-,

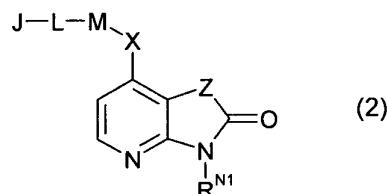
10

J-S(=O)₂-NR^{N3}-CH₂-NR^{N3}-, and
J-NR^{N3}-CH₂-S(=O)₂-NR^{N3}-;

15


wherein:

each -R^{N3} is independently -H or saturated aliphatic C₁₋₄alkyl; and
each =Y is independently =O or =S; and


20

-J is independently phenyl or C₅₋₆heteroaryl, and is optionally substituted.

2. A compound according to claim 1, wherein the compound is selected from compounds of the following formula and pharmaceutically acceptable salts, hydrates, and solvates thereof:

5 3. A compound according to claim 1, wherein the compound is selected from compounds of the following formula and pharmaceutically acceptable salts, hydrates, and solvates thereof:

* * *

10 4. A compound according to any one of claims 1 to 3, wherein -R^N1, if present, is independently -H or -Me.

5. A compound according to any one of claims 1 to 3, wherein -R^N1, if present, is independently -H.

15

* * *

6. A compound according to any one of claims 1 to 5, wherein -Z-, if present, is independently -NR^N2-.

20

7. A compound according to any one of claims 1 to 5, wherein -Z-, if present, is independently -O-.

25

8. A compound according to any one of claims 1 to 7, wherein each -R^3, if present, is independently saturated aliphatic C₁₋₃alkyl.

9. A compound according to any one of claims 1 to 7, wherein each -R^3, if present, is independently -Me or -Et.

30

10. A compound according to any one of claims 1 to 7, wherein -R^N2, if present, is independently -H or saturated aliphatic C₁₋₄alkyl.

11. A compound according to any one of claims 1 to 7, wherein -R^N2, if present, is independently -H or -Me.

12. A compound according to any one of claims 1 to 7, wherein $-R^{N2}$, if present, is independently -H.

5

* * *

13. A compound according to any one of claims 1 to 12, wherein $-R^{Q1}$, if present, is independently -H.

10

14. A compound according to any one of claims 1 to 12, wherein $-R^{Q1}$, if present, is independently $-R^{Q1R}$.

15. A compound according to any one of claims 1 to 14, wherein $-R^{Q2}$, if present, is independently -H.

15

16. A compound according to any one of claims 1 to 14, wherein $-R^{Q2}$, if present, is independently $-R^{Q2R}$.

* * *

20

17. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently $-R^1$, $-R^{1X}$, -Cl, -OR¹, -OR^{1X}, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB}.

25

18. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently $-R^1$, -Cl, -OH, -OR¹, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB}.

19. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently $-R^1$, -Cl, -OR¹, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB}.

30

20. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -OH, -Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

35

21. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

40

22. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -OH, -Me, -NH₂, -NHMe, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

45

23. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino.

24. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -OH, -Me, or -NH₂.

5 25. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -Me or -NH₂.

26. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is independently -Me.

10 27. A compound according to any one of claims 1 to 16, wherein $-R^{Q1R}$, if present, is -OH.

* * *

15 28. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -R², -R^{2X}, -Cl, -OR², -OR^{2X}, -SH, -SR², -NH₂, -NHR², -NR²₂, or -NR^{2NA}R^{2NB}.

20 29. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -R², -Cl, -OH, -OR², -SH, -SR², -NH₂, -NHR², -NR²₂, or -NR^{2NA}R^{2NB}.

30 30. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -R², -Cl, -OR², -SH, -SR², -NH₂, -NHR², -NR²₂, or -NR^{2NA}R^{2NB}.

25 31. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -OH, -Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, piperizino, or N-methyl-piperizino.

30 32. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, piperizino, or N-methyl-piperizino.

35 33. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -OH, -Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino.

34. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino.

40 35. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -OH, -Me, or -NH₂.

36. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -Me or -NH₂.

37. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is independently -Me.

5 38. A compound according to any one of claims 1 to 27, wherein $-R^{Q2R}$, if present, is -OH.

39. A compound according to any one of claims 1 to 16, wherein:

10 $-R^{Q1}$, if present, is independently -H or $-R^{Q1R}$; and

$-R^{Q2}$, if present, is independently $-R^{Q2R}$;

or:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$; and

$-R^{Q2}$, if present, is independently -H or $-R^{Q2R}$.

15

40. A compound according to any one of claims 1 to 16, wherein:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$;

$-R^{Q1R}$, if present, is independently -OH; and

$-R^{Q2}$, if present, is independently -H or $-R^{Q2R}$.

20

41. A compound according to any one of claims 1 to 16, wherein:

$-R^{Q1}$, if present, is independently -H or $-R^{Q1R}$;

$-R^{Q2}$, if present, is independently $-R^{Q2R}$; and

$-R^{Q2R}$, if present, is independently -OH.

25

42. A compound according to any one of claims 1 to 16, wherein:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$;

$-R^{Q1R}$, if present, is independently -OH;

$-R^{Q2}$, if present, is independently -H or $-R^{Q2R}$; and

$-R^{Q2R}$, if present, is independently:

$-R^2$, $-R^{2X}$, -Cl, $-OR^2$, $-OR^{2X}$, -SH, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

43. A compound according to any one of claims 1 to 16, wherein:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$;

$-R^{Q1R}$, if present, is independently -OH;

$-R^{Q2}$, if present, is independently -H or $-R^{Q2R}$; and

$-R^{Q2R}$, if present, is independently:

$-R^2$, -Cl, $-OR^2$, -SH, $-SR^2$, $-NH_2$, $-NHR^2$, $-NR^2_2$, or $-NR^{2NA}R^{2NB}$.

40 44. A compound according to any one of claims 1 to 16, wherein:

$-R^{Q1}$, if present, is independently $-R^{Q1R}$;

$-R^{Q1R}$, if present, is independently -OH;

$-R^{Q2}$, if present, is independently -H or $-R^{Q2R}$; and

$-R^{Q2R}$, if present, is independently:

-Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

45. A compound according to any one of claims 1 to 16, wherein:

5 -R^{Q1}, if present, is independently -R^{Q1R};
 -R^{Q1R}, if present, is independently -OH;
 -R^{Q2}, if present, is independently -H or -R^{Q2R}; and
 -R^{Q2R}, if present, is independently:
 -Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino.

10

46. A compound according to any one of claims 1 to 16, wherein:

 -R^{Q1}, if present, is independently -R^{Q1R};
 -R^{Q1R}, if present, is independently -OH; and
 -R^{Q2}, if present, is independently -H.

15

47. A compound according to any one of claims 1 to 16, wherein:

 -R^{Q1}, if present, is independently -R^{Q1R};
 -R^{Q1R}, if present, is independently -OH;
 -R^{Q2}, if present, is independently -R^{Q2R}; and
 -R^{Q2R}, if present, is independently:
 -R², -R^{2X}, -Cl, -OR², -OR^{2X}, -SH, -SR², -NH₂, -NHR², -NR²₂, or -NR^{2NA}R^{2NB}.

48. A compound according to any one of claims 1 to 16, wherein:

 -R^{Q1}, if present, is independently -R^{Q1R};
 -R^{Q1R}, if present, is independently -OH;
 -R^{Q2}, if present, is independently -R^{Q2R}; and
 -R^{Q2R}, if present, is independently:
 -R², -Cl, -OR², -SH, -SR², -NH₂, -NHR², -NR²₂, or -NR^{2NA}R^{2NB}.

30

49. A compound according to any one of claims 1 to 16, wherein:

 -R^{Q1}, if present, is independently -R^{Q1R};
 -R^{Q1R}, if present, is independently -OH;
 -R^{Q2}, if present, is independently -R^{Q2R}; and
 -R^{Q2R}, if present, is independently:

35

 -Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino.

50. A compound according to any one of claims 1 to 16, wherein:

 -R^{Q1}, if present, is independently -R^{Q1R};
 -R^{Q1R}, if present, is independently -OH;
 -R^{Q2}, if present, is independently -R^{Q2R}; and
 -R^{Q2R}, if present, is independently:
 -Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino.

51. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R} , if present, is independently -OH;
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -Me or -NH₂.

52. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};
- R^{Q1R} , if present, is independently -OH;
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -Me.

53. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R} , if present, is independently:
- R^1 , - R^{1X} , -Cl, -OR¹, -OR^{1X}, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -OH.

20 54. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R} , if present, is independently:
- R^1 , -Cl, -OR¹, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -OH.

55. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R} , if present, is independently:
-Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino, or N-methyl-piperizino;
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -OH.

35 56. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -H or -R^{Q1R};
- R^{Q1R} , if present, is independently:
-Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino;
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -OH.

57. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -H;
- R^{Q2} , if present, is independently - R^{Q2R} ; and
- R^{Q2R} , if present, is independently -OH.

58. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently:

-R¹, -R^{1X}, -Cl, -OR¹, -OR^{1X}, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};

-R^{Q2}, if present, is independently -R^{Q2R}; and

-R^{Q2R}, if present, is independently -OH.

59. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently:

-R¹, -Cl, -OR¹, -SH, -SR¹, -NH₂, -NHR¹, -NR¹₂, or -NR^{1NA}R^{1NB};

-R^{Q2}, if present, is independently -R^{Q2R}; and

-R^{Q2R}, if present, is independently -OH.

15 60. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently:

-Me, -CF₃, -CH₂Br, -NH₂, -NHMe, -NMe₂, morpholino, piperidino, or piperizino,

20 or N-methyl-piperizino;

-R^{Q2}, if present, is independently -R^{Q2R}; and

-R^{Q2R}, if present, is independently -OH.

61. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently:

-Me, -NH₂, -NHMe, morpholino, piperidino, piperizino, or N-methyl-piperizino;

-R^{Q2}, if present, is independently -R^{Q2R}; and

-R^{Q2R}, if present, is independently -OH.

30 62. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently -Me or -NH₂;

-R^{Q2}, if present, is independently -R^{Q2R}; and

-R^{Q2R}, if present, is independently -OH.

35 63. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently -Me;

-R^{Q2}, if present, is independently -R^{Q2R}; and

-R^{Q2R}, if present, is independently -OH.

40 64. A compound according to any one of claims 1 to 16, wherein:

-R^{Q1}, if present, is independently -R^{Q1R};

-R^{Q1R}, if present, is independently -OH;

- 135 -

$-R^{Q2}$, if present, is independently $-R^{Q2R}$; and
 $-R^{Q2R}$, if present, is independently $-OH$.

5

65. A compound according to any one of claims 1 to 64, wherein each $-R^1$, if present, is independently:

saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, or $-NR^{11}2$; or

10 10. A compound according to any one of claims 1 to 64, wherein each $-R^1$, if present, is independently:

azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from $-R^{11}$.

66. A compound according to any one of claims 1 to 64, wherein each $-R^1$, if present, is independently:

saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{11}$, $-NH_2$, $-NHR^{11}$, or $-NR^{11}2$.

67. A compound according to any one of claims 1 to 64, wherein each $-R^1$, if present, is independently saturated aliphatic C_{1-6} alkyl.

20

68. A compound according to any one of claims 1 to 67, wherein each $-R^{1X}$, if present, is independently saturated aliphatic C_{1-4} alkyl substituted with one or more groups selected from $-F$ or $-Cl$.

69. A compound according to any one of claims 1 to 67, wherein each $-R^{1X}$, if present, is independently $-CF_3$ or $-CH_2Br$.

30 70. A compound according to any one of claims 1 to 67, wherein each $-R^{1X}$, if present, is independently $-CF_3$.

35 71. A compound according to any one of claims 1 to 70, wherein each $-R^2$, if present, is independently:

saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{22}$, $-NH_2$, $-NHR^{22}$, or $-NR^{22}2$; or

40 40. A compound according to any one of claims 1 to 70, wherein each $-R^2$, if present, is independently:

azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from $-R^{22}$.

72. A compound according to any one of claims 1 to 70, wherein each $-R^2$, if present, is independently:

saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{22}$, $-NH_2$, $-NHR^{22}$, or $-NR^{22}2$.

45

73. A compound according to any one of claims 1 to 70, wherein each -R², if present, is independently saturated aliphatic C₁₋₆alkyl.

5

* * *

74. A compound according to any one of claims 1 to 73, wherein each -R^{2X}, if present, is independently saturated aliphatic C₁₋₄alkyl substituted with one or more groups selected from -F or -Cl.

10

75. A compound according to any one of claims 1 to 73, wherein each -R^{2X}, if present, is independently -CF₃ or -CH₂Br.

15

76. A compound according to any one of claims 1 to 73, wherein each -R^{2X}, if present, is independently -CF₃.

* * *

77. A compound according to any one of claims 1 to 76, wherein -NR^{1NA}R^{1NB}, if present, is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R¹¹.

78. A compound according to any one of claims 1 to 76, wherein -NR^{1NA}R^{1NB}, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from -R¹¹.

79. A compound according to any one of claims 1 to 78, wherein -NR^{2NA}R^{2NB}, if present, is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R²².

30

80. A compound according to any one of claims 1 to 78, wherein -NR^{2NA}R^{2NB}, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from -R²².

35

* * *

81. A compound according to any one of claims 1 to 80, wherein each -R¹¹, if present, is independently saturated aliphatic C₁₋₃alkyl.

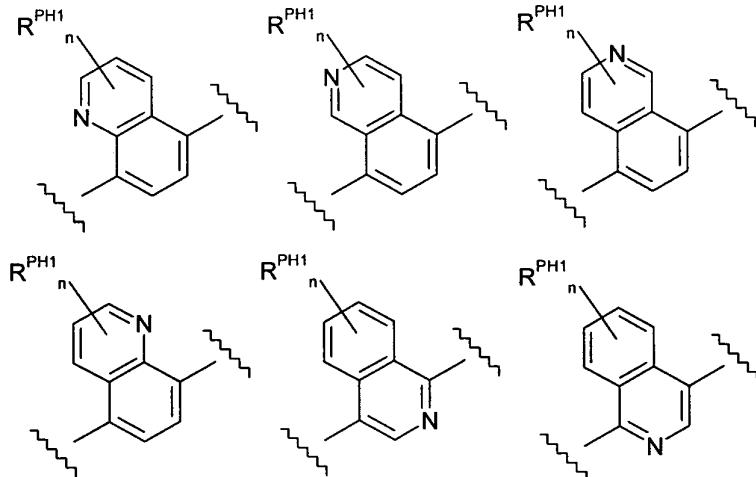
40 82. A compound according to any one of claims 1 to 80, wherein each -R¹¹, if present, is independently -Me or -Et.

* * *

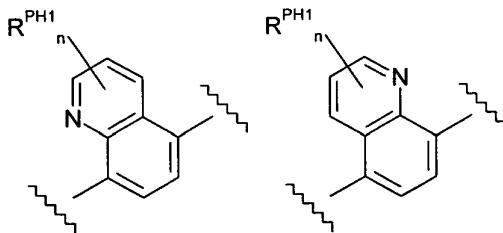
- 137 -

83. A compound according to any one of claims 1 to 82, wherein each $-R^{22}$, if present, is independently saturated aliphatic C_{1-3} alkyl.

84. A compound according to any one of claims 1 to 82, wherein each $-R^{22}$, if present, is independently -Me or -Et.

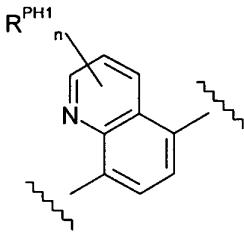

* * *

85. A compound according to any one of claims 1 to 84, wherein $-X-$ is independently -O-.

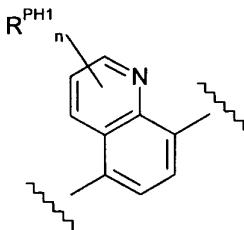

86. A compound according to any one of claims 1 to 84, wherein $-X-$ is independently -S-.

* * *

87. A compound according to any one of claims 1 to 86, wherein $-M-$ is independently selected from:

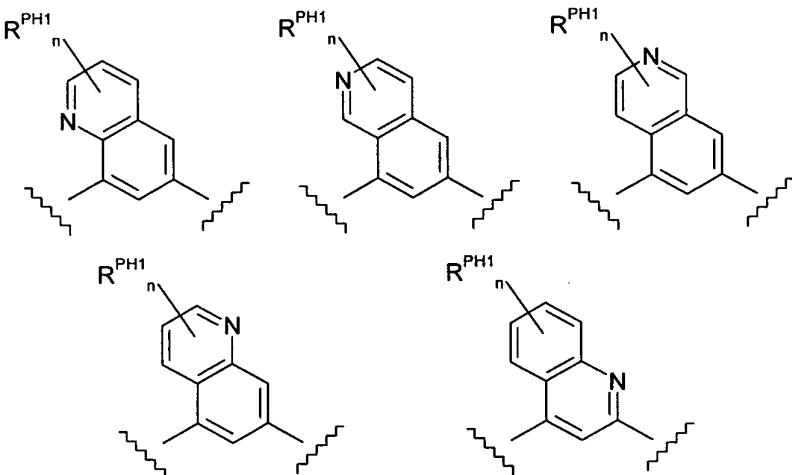


88. A compound according to any one of claims 1 to 86, wherein $-M-$ is independently selected from:

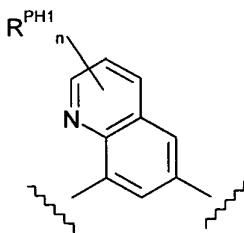


- 138 -

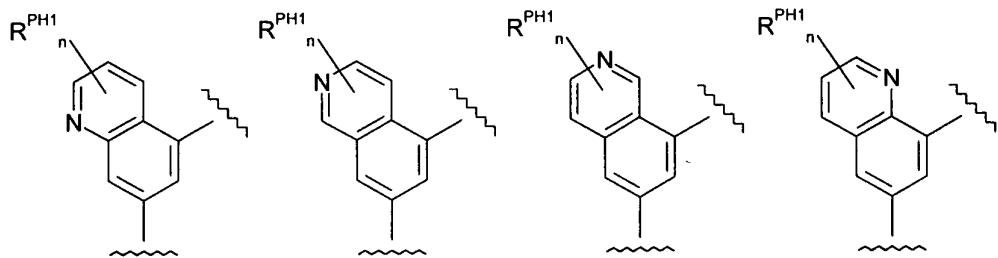
89. A compound according to any one of claims 1 to 86, wherein -M- is independently:



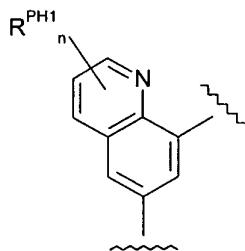
90. A compound according to any one of claims 1 to 86, wherein -M- is independently:


5

91. A compound according to any one of claims 1 to 86, wherein -M- is independently selected from:


10

92. A compound according to any one of claims 1 to 86, wherein -M- is independently:



- 139 -

93. A compound according to any one of claims 1 to 86, wherein -M- is independently selected from:

5 94. A compound according to any one of claims 1 to 86, wherein -M- is independently:

* * *

10 95. A compound according to any one of claims 1 to 94, wherein each n is independently 0, 1 or 2.

96. A compound according to any one of claims 1 to 94, wherein each n is independently 0.

15 97. A compound according to any one of claims 1 to 96, wherein each R^{PH1}, if present, is independently -F, -Cl, -Br, -I, -R^4, -OH, or -OR^4.

20 98. A compound according to any one of claims 1 to 97, wherein each -R^4, if present, is independently saturated aliphatic C₁₋₃alkyl.

99. A compound according to any one of claims 1 to 97, wherein each -R^4, if present, is independently -Me.

100. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently selected from:

5 $J-NR^{N3}-C(=Y)-NR^{N3}-$,
 $J-CH_2-NR^{N3}-C(=Y)-NR^{N3}-$,
 $J-NR^{N3}-C(=Y)-$,
 $J-C(=Y)-NR^{N3}-$,
 $J-NR^{N3}-CH_2-C(=Y)-NR^{N3}-$,
 $J-CH_2-NR^{N3}-C(=Y)-$; and
 $J-CH_2-C(=Y)-NR^{N3}-$.

10

101. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently selected from:

15 $J-NR^{N3}-C(=Y)-NR^{N3}-$,
 $J-CH_2-NR^{N3}-C(=Y)-NR^{N3}-$, and
 $J-NR^{N3}-C(=Y)-NR^{N3}-CH_2-$.

102. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently selected from:

20 $J-NR^{N3}-C(=Y)-NR^{N3}-$, and
 $J-CH_2-C(=Y)-NR^{N3}-$.

103. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-NR^{N3}-C(=Y)-NR^{N3}-$.

25

104. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-CH_2-C(=Y)-NR^{N3}-$.

105. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-NR^{N3}-C(=Y)-$ or $J-C(=Y)-NR^{N3}-$.

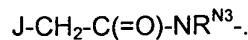
30

106. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-C(=Y)-NR^{N3}-$.

35

107. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-NR^{N3}-C(=Y)-$.

108. A compound according to any one of claims 1 to 107, wherein each =Y, if present, is independently =O.


40

109. A compound according to any one of claims 1 to 107, wherein each =Y, if present, is independently =S.

110. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently selected from:

45

$J-NR^{N3}-C(=O)-NR^{N3}-$, and

111. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{NR}^{N3-}\text{C}(=\text{O})-\text{NR}^{N3-}$.

5 112. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{NH-C}(=\text{O})-\text{NH-}$.

10 113. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{CH}_2-\text{C}(=\text{O})-\text{NR}^{N3-}$.

114. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{CH}_2-\text{C}(=\text{O})-\text{NH-}$.

15 115. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{C}(=\text{O})-\text{NR}^{N3-}$.

116. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{C}(=\text{O})-\text{NH-}$.

20 117. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{NR}^{N3-}\text{C}(=\text{O})-$.

118. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{NH-C}(=\text{O})-$.

25 119. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently selected from:
30 $A-\text{NR}^{N3-}\text{S}(=\text{O})_2\text{NR}^{N3-}$,
 $A-\text{NR}^{N3-}\text{S}(=\text{O})_2-$,
 $A-\text{S}(=\text{O})_2\text{NR}^{N3-}$,
 $A-\text{CH}_2\text{NR}^{N3-}\text{S}(=\text{O})_2\text{NR}^{N3-}$, and
 $A-\text{CH}_2\text{NR}^{N3-}\text{S}(=\text{O})_2-$.

35 120. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{NR}^{N3-}\text{S}(=\text{O})_2-$ or $J-\text{S}(=\text{O})_2\text{NR}^{N3-}$.

121. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{S}(=\text{O})_2\text{NR}^{N3-}$.

40 122. A compound according to any one of claims 1 to 99, wherein the group J-L- is independently $J-\text{S}(=\text{O})_2\text{NH-}$.

123. A compound according to any one of claims 1 to 122, wherein each -R^{N3} , if present, is independently -H or -Me .

45

124. A compound according to any one of claims 1 to 122, wherein each $-R^{N3}$, if present, is independently -H.

5

* * *

125. A compound according to any one of claims 1 to 124, wherein -J is independently phenyl, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, pyridazinyl, and is optionally substituted.

10

126. A compound according to any one of claims 1 to 124, wherein -J is independently phenyl, pyrazolyl, or pyridyl, and is optionally substituted.

15

127. A compound according to any one of claims 1 to 124, wherein -J is independently phenyl or pyrazolyl, and is optionally substituted.

128. A compound according to any one of claims 1 to 124, wherein -J is independently phenyl, and is optionally substituted.

20

129. A compound according to any one of claims 1 to 124, wherein -J is independently pyrazolyl, and is optionally substituted.

130. A compound according to any one of claims 1 to 124, wherein -J is independently 1H-pyrazolyl, and is optionally substituted.

25

131. A compound according to any one of claims 1 to 124, wherein -J is independently 1H-pyrazol-5-yl, and is optionally substituted.

30

132. A compound according to any one of claims 1 to 124, wherein -J is independently pyridyl, and is optionally substituted.

133. A compound according to any one of claims 1 to 124, wherein -J is independently pyrid-3-yl, and is optionally substituted.

35

* * *

134. A compound according to any one of claims 1 to 133, wherein -J is optionally substituted with one or more substituents, $-R^J$, wherein each $-R^J$, if present, is independently selected from:

40

 $-R^{JA1}$, $-F$, $-Cl$, $-Br$, $-I$, $-CF_3$, $-OCF_3$, $-SCF_3$, $-OH$, $-L^{JA}-OH$, $-O-L^{JA}-OH$, $-NH-L^{JA}-OH$, $-NR^{JA1}-L^{JA}-OH$,

45

 $-OR^{JA1}$, $-L^{JA}-OR^{JA1}$, $-O-L^{JA}-OR^{JA1}$, $-NH-L^{JA}-OR^{JA1}$, $-NR^{JA1}-L^{JA}-OR^{JA1}$,

-SH, -SR^{JA1},
 -CN,
 -NO₂,
 -NH₂, -NHR^{JA1}, -NR^{JA1}₂, -NR^{JA2}R^{JA3},
 5 -L^{JA}-NH₂, -L^{JA}-NHR^{JA1}, -L^{JA}-NR^{JA1}₂, -L^{JA}-NR^{JA2}R^{JA3},
 -O-L^{JA}-NH₂, -O-L^{JA}-NHR^{JA1}, -O-L^{JA}-NR^{JA1}₂, -O-L^{JA}-NR^{JA2}R^{JA3},
 -NH-L^{JA}-NH₂, -NR^{JA1}-L^{JA}-NH₂, -NH-L^{JA}-NHR^{JA1}, -NR^{JA1}-L^{JA}-NHR^{JA1},
 -NH-L^{JA}-NR^{JA1}₂, -NR^{JA1}-L^{JA}-NR^{JA1}₂,
 -NH-L^{JA}-NR^{JA2}R^{JA3}, -NR^{JA1}-L^{JA}-NR^{JA2}R^{JA3},
 10 -OC(=O)R^{JA1},
 -C(=O)OH, -C(=O)OR^{JA1},
 -C(=O)R^{JA1},
 -C(=O)NH₂, -C(=O)NHR^{JA1}, -C(=O)NR^{JA1}₂, -C(=O)NR^{JA2}R^{JA3},
 -NHC(=O)R^{JA1}, -NR^{JA1}(=O)R^{JA1},
 15 -NHC(=O)OR^{JA1}, -NR^{JA1}(=O)OR^{JA1},
 -OC(=O)NH₂, -OC(=O)NHR^{JA1}, -OC(=O)NR^{JA1}₂, -OC(=O)NR^{JA2}R^{JA3},
 -NHC(=O)NH₂, -NHC(=O)NHR^{JA1},
 -NHC(=O)NR^{JA1}₂, -NHC(=O)NR^{JA2}R^{JA3},
 20 -NR^{JA1}(=O)NH₂, -NR^{JA1}(=O)NHR^{JA1},
 -NR^{JA1}(=O)NR^{JA1}₂, -NR^{JA1}(=O)NR^{JA2}R^{JA3},
 -NHS(=O)₂R^{JA1}, -NR^{JA1}S(=O)₂R^{JA1},
 -S(=O)₂NH₂, -S(=O)₂NHR^{JA1}, -S(=O)₂NR^{JA1}₂, -S(=O)₂NR^{JA2}R^{JA3},
 -S(=O)R^{JA1}, -S(=O)₂R^{JA1}, -OS(=O)₂R^{JA1}, -S(=O)₂OH, and -S(=O)₂OR^{JA1};

wherein:

25 each -L^{JA}- is independently saturated aliphatic C₁₋₅alkylene;
 n each group -NR^{JA2}R^{JA3}, R^{JA2} and R^{JA3}, taken together with the nitrogen atom
 to which they are attached, form a 4-, 5-, 6-, or 7-membered non-aromatic ring having
 exactly 1 ring heteroatom or exactly 2 ring heteroatoms, wherein one of said exactly 2
 ring heteroatoms is N, and the other of said exactly 2 ring heteroatoms is
 30 independently N or O;
 each -R^{JA1} is independently:
 -R^{JB1}, -R^{JB2}, -R^{JB3}, -R^{JB4}, -R^{JB5}, -R^{JB6}, -R^{JB7}, -R^{JB8},
 -L^{JB}-R^{JB4}, -L^{JB}-R^{JB5}, -L^{JB}-R^{JB6}, -L^{JB}-R^{JB7}, or -L^{JB}-R^{JB8};
 each -R^{JB1} is independently saturated aliphatic C₁₋₆alkyl;
 35 each -R^{JB2} is independently aliphatic C₂₋₆alkenyl;
 each -R^{JB3} is independently aliphatic C₂₋₆alkynyl;
 each -R^{JB4} is independently saturated C₃₋₆cycloalkyl;
 each -R^{JB5} is independently C₃₋₆cycloalkenyl;
 each -R^{JB6} is independently non-aromatic C₃₋₈heterocyclyl;
 40 each -R^{JB7} is independently C₆₋₁₀carboaryl;
 each -R^{JB8} is independently C₅₋₁₀heteroaryl;
 each -L^{JB}- is independently saturated aliphatic C₁₋₃alkylene;

wherein:

45 each -R^{JB4}, -R^{JB5}, -R^{JB6}, -R^{JB7}, and -R^{JB8} is optionally substituted with one or
 more substituents -R^{JC1} and/or one or more substituents -R^{JC2},

each $-R^{JB1}$, $-R^{JB2}$, $-R^{JB3}$, and $-L^{JB-}$ is optionally substituted with one or more substituents $-R^{JC2}$, and

wherein:

each $-R^{JC1}$ is independently saturated aliphatic C₁₋₄alkyl, phenyl, or benzyl;

5 each $-R^{JC2}$ is independently:

-F, -Cl, -Br, -I,

-CF₃, -OCF₃, -SCF₃,

-OH, $-L^{JD-}OH$, $-O-L^{JD}OH$,

$-OR^{JD1}$, $-L^{JD-}OR^{JD1}$, $-O-L^{JD}OR^{JD1}$,

-SH, $-SR^{JD1}$,

-CN,

-NO₂,

-NH₂, $-NHR^{JD1}$, $-NR^{JD1}2$, $-NR^{JD2}R^{JD3}$,

$-L^{JD-NH_2}$, $-L^{JD-NHR^{JD1}}$, $-L^{JD-NR^{JD1}2}$, $-L^{JD-NR^{JD2}R^{JD3}}$,

$-C(=O)OH$, $-C(=O)OR^{JD1}$,

10 $-C(=O)NH_2$, $-C(=O)NHR^{JD1}$, $-C(=O)NR^{JD1}2$, or $-C(=O)NR^{JD2}R^{JD3}$;

15 wherein:

each $-R^{JD1}$ is independently saturated aliphatic C₁₋₄alkyl, phenyl, or benzyl;

each $-L^{JD-}$ is independently saturated aliphatic C₁₋₅alkylene; and

20 in each group $-NR^{JD2}R^{JD3}$, R^{JD2} and R^{JD3} , taken together with the nitrogen atom to which they are attached, form a 4-, 5-, 6-, or 7-membered non-aromatic ring having exactly 1 ring heteroatom or exactly 2 ring heteroatoms, wherein one of said exactly 2 ring heteroatoms is N, and the other of said exactly 2 ring heteroatoms is independently N or O.

25

135. A compound according to claim 134, wherein each $-R^J$, if present, is independently selected from:

$-R^{JA1}$,

-F, -Cl, -Br, -I,

30 -CF₃, -OCF₃, -SCF₃,

-OH, $-L^{JA-OH}$, $-O-L^{JA-OH}$, $-NH-L^{JA-OH}$, $-NR^{JA1-L^{JA}-OH}$,

$-OR^{JA1}$, $-L^{JA-OR^{JA1}}$, $-O-L^{JA-OR^{JA1}}$, $-NH-L^{JA-OR^{JA1}}$, $-NR^{JA1-L^{JA}-OR^{JA1}}$,

-SH, $-SR^{JA1}$,

-CN,

-NO₂,

-NH₂, $-NHR^{JA1}$, $-NR^{JA1}2$, $-NR^{JA2}R^{JA3}$,

$-L^{JA-NH_2}$, $-L^{JA-NHR^{JA1}}$, $-L^{JA-NR^{JA1}2}$, $-L^{JA-NR^{JA2}R^{JA3}}$,

$-O-L^{JA-NH_2}$, $-O-L^{JA-NHR^{JA1}}$, $-O-L^{JA-NR^{JA1}2}$, $-O-L^{JA-NR^{JA2}R^{JA3}}$,

$-NH-L^{JA-NH_2}$, $-NR^{JA1-L^{JA}-NH_2}$, $-NH-L^{JA-NHR^{JA1}}$, $-NR^{JA1-L^{JA}-NHR^{JA1}}$,

35 $-NH-L^{JA-NR^{JA1}2}$, $-NR^{JA1-L^{JA}-NR^{JA1}2}$,

$-NH-L^{JA-NR^{JA2}R^{JA3}}$, $-NR^{JA1-L^{JA}-NR^{JA2}R^{JA3}}$,

$-OC(=O)R^{JA1}$,

$-C(=O)OH$, $-C(=O)OR^{JA1}$,

$-C(=O)R^{JA1}$,

40 $-C(=O)NH_2$, $-C(=O)NHR^{JA1}$, $-C(=O)NR^{JA1}2$, $-C(=O)NR^{JA2}R^{JA3}$,

45

- 145 -

-NHC(=O)R^{JA1}, -NR^{JA1}(=O)R^{JA1},
 -NHC(=O)OR^{JA1}, -NR^{JA1}(=O)OR^{JA1},
 -OC(=O)NH₂, -OC(=O)NHR^{JA1}, -OC(=O)NR^{JA1}₂, -OC(=O)NR^{JA2}R^{JA3},
 -NHC(=O)NH₂, -NHC(=O)NHR^{JA1},
 5 -NHC(=O)NR^{JA1}₂, -NHC(=O)NR^{JA2}R^{JA3},
 -NR^{JA1}(=O)NH₂, -NR^{JA1}(=O)NHR^{JA1},
 -NR^{JA1}(=O)NR^{JA1}₂, -NR^{JA1}(=O)NR^{JA2}R^{JA3},
 -NHS(=O)₂R^{JA1}, -NR^{JA1}S(=O)₂R^{JA1},
 10 -S(=O)₂NH₂, -S(=O)₂NHR^{JA1}, -S(=O)₂NR^{JA1}₂, -S(=O)₂NR^{JA2}R^{JA3},
 -S(=O)R^{JA1}, and -S(=O)₂R^{JA1}.

136. A compound according to claim 134, wherein each -R^J, if present, is independently selected from:

-R^{JA1},
 15 -F, -Cl, -Br, -I,
 -CF₃, -OCF₃, -SCF₃,
 -OH, -L^{JA}-OH, -O-L^{JA}-OH, -NH-L^{JA}-OH, -NR^{JA1}-L^{JA}-OH,
 -OR^{JA1}, -L^{JA}-OR^{JA1}, -O-L^{JA}-OR^{JA1}, -NH-L^{JA}-OR^{JA1}, -NR^{JA1}-L^{JA}-OR^{JA1},
 -CN,
 20 -NH₂, -NHR^{JA1}, -NR^{JA1}₂, -NR^{JA2}R^{JA3},
 -L^{JA}-NH₂, -L^{JA}-NHR^{JA1}, -L^{JA}-NR^{JA1}₂, -L^{JA}-NR^{JA2}R^{JA3},
 -O-L^{JA}-NH₂, -O-L^{JA}-NHR^{JA1}, -O-L^{JA}-NR^{JA1}₂, -O-L^{JA}-NR^{JA2}R^{JA3},
 -NH-L^{JA}-NH₂, -NR^{JA1}-L^{JA}-NH₂, -NH-L^{JA}-NHR^{JA1}, -NR^{JA1}-L^{JA}-NHR^{JA1},
 -NH-L^{JA}-NR^{JA1}₂, -NR^{JA1}-L^{JA}-NR^{JA1}₂,
 25 -NH-L^{JA}-NR^{JA2}R^{JA3}, -NR^{JA1}-L^{JA}-NR^{JA2}R^{JA3},
 -C(=O)NH₂, -C(=O)NHR^{JA1}, -C(=O)NR^{JA1}₂, -C(=O)NR^{JA2}R^{JA3},
 -NHS(=O)₂R^{JA1}, -NR^{JA1}S(=O)₂R^{JA1},
 -S(=O)₂NH₂, -S(=O)₂NHR^{JA1}, -S(=O)₂NR^{JA1}₂, -S(=O)₂NR^{JA2}R^{JA3},
 -S(=O)R^{JA1}, and -S(=O)₂R^{JA1}.
 30

137. A compound according to claim 134, wherein each -R^J, if present, is independently selected from:

-R^{JA1},
 -F, -Cl, -Br, -I,
 35 -CF₃, -OCF₃, -SCF₃,
 -OH, -L^{JA}-OH, -O-L^{JA}-OH, -NH-L^{JA}-OH, -NR^{JA1}-L^{JA}-OH,
 -OR^{JA1}, -L^{JA}-OR^{JA1}, -O-L^{JA}-OR^{JA1}, -NH-L^{JA}-OR^{JA1}, -NR^{JA1}-L^{JA}-OR^{JA1},
 -CN,
 -NH₂, -NHR^{JA1}, -NR^{JA1}₂, -NR^{JA2}R^{JA3},
 40 -C(=O)NH₂, -C(=O)NHR^{JA1}, -C(=O)NR^{JA1}₂, -C(=O)NR^{JA2}R^{JA3},
 -S(=O)₂NH₂, -S(=O)₂NHR^{JA1}, -S(=O)₂NR^{JA1}₂, -S(=O)₂NR^{JA2}R^{JA3}.
 45

138. A compound according to any one of claims 134 to 137, wherein each -L^{JA}, if present, is independently -(CH₂)_{n2}-, wherein n2 is independently 1 to 4.

139. A compound according to any one of claims 134 to 137, wherein each $-L^{JA_1}$, if present, is independently $-CH_2-$ or $-CH_2CH_2-$.

140. A compound according to any one of claims 134 to 139, wherein each $-NR^{JA_2}R^{JA_3}$, if present, is independently azetidino, pyrrolidino, imidazolidino, pyrazolidino, piperidino, piperazino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{JA_4}$, $-CF_3$, $-F$, $-OH$, $-OR^{JA_4}$, $-NH_2$, $-NHR^{JA_4}$, and $-NR^{JA_4}R^{JA_2}$; wherein each $-R^{JA_4}$ is independently saturated aliphatic C_{1-4} alkyl.

141. A compound according to any one of claims 134 to 139, wherein each $-NR^{JA_2}R^{JA_3}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{JA_4}$, $-CF_3$, $-F$, $-OH$, $-OR^{JA_4}$, $-NH_2$, $-NHR^{JA_4}$, and $-NR^{JA_4}R^{JA_2}$; wherein each $-R^{JA_4}$ is independently saturated aliphatic C_{1-4} alkyl.

142. A compound according to any one of claims 134 to 139, wherein each $-NR^{JA_2}R^{JA_3}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{JA_4}$; wherein each $-R^{JA_4}$ is independently saturated aliphatic C_{1-4} alkyl.

143. A compound according to any one of claims 134 to 142, wherein each $-R^{JA_1}$, if present, is independently:
 $-R^{JB_1}$, $-R^{JB_4}$, $-R^{JB_6}$, $-R^{JB_7}$, $-R^{JB_8}$,
 $-L^{JB}-R^{JB_4}$, $-L^{JB}-R^{JB_6}$, $-L^{JB}-R^{JB_7}$, or $-L^{JB}-R^{JB_8}$.

144. A compound according to any one of claims 134 to 142, wherein each $-R^{JA_1}$, if present, is independently:
 $-R^{JB_1}$, $-R^{JB_7}$, $-R^{JB_8}$,
 $-L^{JB}-R^{JB_7}$, or $-L^{JB}-R^{JB_8}$.

145. A compound according to any one of claims 134 to 142, wherein each $-R^{JA_1}$, if present, is independently:
 $-R^{JB_1}$, $-R^{JB_7}$, or $-L^{JB}-R^{JB_7}$.

146. A compound according to any one of claims 134 to 145, wherein each $-R^{JB_2}$, if present, is independently allyl.

147. A compound according to any one of claims 134 to 145, wherein each $-R^{JB_3}$, if present, is independently propargyl.

148. A compound according to any one of claims 134 to 147, wherein each $-R^{JB_4}$, if present, is independently cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.

149. A compound according to any one of claims 134 to 147, wherein each $-R^{JB_4}$, if present, is independently cyclopropyl.

150. A compound according to any one of claims 134 to 149, wherein each $-R^{JB6}$, if present, is independently azetidinyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, piperazinyl, morpholinyl, azepinyl, diazepinyl, tetrahydrofuranyl, tetrahydropyranyl, dioxanyl, and is optionally substituted.

5

151. A compound according to any one of claims 134 to 149, wherein each $-R^{JB6}$, if present, is independently pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl, or tetrahydropyranyl, and is optionally substituted.

10

152. A compound according to any one of claims 134 to 151, wherein each $-R^{JB7}$, if present, is independently phenyl, and is optionally substituted.

15

153. A compound according to any one of claims 134 to 152, wherein each $-R^{JB8}$, if present, is independently C_{5-6} heteroaryl, and is optionally substituted.

20

154. A compound according to any one of claims 134 to 152, wherein each $-R^{JB8}$, if present, is independently furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, or pyridazinyl, and is optionally substituted.

155. A compound according to any one of claims 134 to 152, wherein each $-R^{JB8}$, if present, is independently C_{9-10} heteroaryl, and is optionally substituted.

25

156. A compound according to any one of claims 134 to 152, wherein each $-R^{JB8}$, if present, is independently benzofuranyl, benzothienyl, benzopyrrolyl, benzoimidazolyl, benzopyrazolyl, benzotriazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzoisothiazolyl, benzopyridyl, benzopyrimidinyl, or benzopyridazinyl, and is optionally substituted.

30

157. A compound according to any one of claims 134 to 156, wherein each $-L^{JB-}$, if present, is independently $-CH_2-$ or $-CH_2CH_2-$.

35

158. A compound according to any one of claims 134 to 156, wherein each $-L^{JB-}$, if present, is independently $-CH_2-$.

159. A compound according to any one of claims 134 to 158, wherein each $-R^{JC1}$, if present, is independently saturated aliphatic C_{1-4} alkyl.

40

160. A compound according to any one of claims 134 to 159, wherein each $-R^{JC2}$ is independently: $-F$, $-Cl$, $-Br$, $-I$, $-OH$, $-OR^{JD1}$, $-CN$, $-NO_2$, $-NH_2$, $-NHR^{JD1}$, $-NR^{JD1}R^{JD2}$, or $-NR^{JD2}R^{JD3}$.

45

161. A compound according to any one of claims 134 to 160, wherein each $-R^{JD1}$, if present, is independently saturated aliphatic C_{1-4} alkyl.

162. A compound according to any one of claims 134 to 161, wherein each $-L^{JD}$, if present, is independently $-(CH_2)_{m2}-$, wherein $m2$ is independently 1 to 4.

5 163. A compound according to any one of claims 134 to 161, wherein each $-L^{JD}$, if present, is independently $-CH_2-$ or $-CH_2CH_2-$.

10 164. A compound according to any one of claims 134 to 163, wherein each $-NR^{JD2}R^{JD3}$, if present, is independently azetidino, pyrrolidino, imidazolidino, pyrazolidino, piperidino, piperazino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from $-R^{J55}$, $-CF_3$, $-F$, $-OH$, $-OR^{J55}$, $-NH_2$, $-NHR^{J55}$, and $-NR^{J55}2$; wherein each $-R^{J55}$ is independently saturated aliphatic C_{1-4} alkyl.

15 165. A compound according to any one of claims 134 to 163, wherein each $-NR^{JD2}R^{JD3}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{J55}$, $-CF_3$, $-F$, $-OH$, $-OR^{J55}$, $-NH_2$, $-NHR^{J55}$, and $-NR^{J55}2$; wherein each $-R^{J55}$ is independently saturated aliphatic C_{1-4} alkyl.

20 166. A compound according to any one of claims 134 to 163, wherein each $-NR^{JD2}R^{JD3}$, if present, is independently pyrrolidino, piperidino, piperazino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{J55}$; wherein each $-R^{J55}$ is independently saturated aliphatic C_{1-4} alkyl.

25

* * *

167. A compound according to any one of claims 1 to 133, wherein $-J$ is optionally substituted with one or more substituents, $-R^J$, wherein each $-R^J$, if present, is independently selected from:

30 $-R^6$,
 $-F$, $-Cl$, $-Br$, $-I$,
 $-CF_3$, $-OCF_3$, $-SCF_3$,
 $-OH$,
 $-OR^6$,
 $-CN$,

35 $-NH_2$, $-NHR^6$, $-NR^62$, $-NR^{6NA}R^{6NB}$,
 $-C(=O)NH_2$, $-C(=O)NHR^6$, $-C(=O)NR^62$, $-C(=O)NR^{6NA}R^{6NB}$,
 $-S(=O)_2NH_2$, $-S(=O)_2NHR^6$, $-S(=O)_2NR^62$, and $-S(=O)_2NR^{6NA}R^{6NB}$;

40 wherein:
each $-R^6$ is independently:
saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{66}$, $-NH_2$, $-NHR^{66}$, $-NR^{66}2$, or $-NR^{6NA}R^{6NB}$;
saturated C_{3-6} cycloalkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{66}$, $-NH_2$, $-NHR^{66}$, and $-NR^{66}2$;

azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from -R⁶⁶; or

5 phenyl or C₅₋₆heteroaryl, and is optionally substituted with one or more substituents independently selected from -F, -Cl, -Br, -I, -R⁶⁶, -OH, -OR⁶⁶, -CF₃, -OCF₃;

and wherein:

10 each -NR^{6NA}R^{6NB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R⁶⁶, -CF₃, -F, -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, and -NR⁶⁶₂;

wherein:

15 each -R⁶⁶ is independently saturated aliphatic C₁₋₄alkyl.

168. A compound according to claim 167, wherein each -R⁶, if present, is independently: saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB};

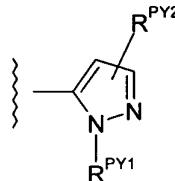
20 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from -R⁶⁶; or phenyl or C₅₋₆heteroaryl, and is optionally substituted with one or more substituents independently selected from -F, -Cl, -Br, -I, -R⁶⁶, -OH, -OR⁶⁶, -CF₃, -OCF₃.

169. A compound according to claim 167, wherein each -R⁶, if present, is independently: saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB}; or

25 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from -R⁶⁶.

170. A compound according to claim 167, wherein each -R⁶, if present, is independently: saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR⁶⁶, -NH₂, -NHR⁶⁶, -NR⁶⁶₂, or -NR^{6NA}R^{6NB}.

30


171. A compound according to claim 167, wherein each -R⁶, if present, is independently saturated aliphatic C₁₋₆alkyl.

35 172. A compound according to any one of claims 167 to 171, wherein each -NR^{6NA}R^{6NB}, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from -R⁶⁶.

40 173. A compound according to any one of claims 167 to 172, wherein each -R⁶⁶, if present, is independently saturated -Me or -Et.

- 150 -

174. A compound according to any one of claims 1 to 124, wherein -J is independently the following group:

wherein:

5 -R^{PY1} is independently phenyl or C₅₋₆heteroaryl, and is optionally substituted with one or more substituents -R^{PZ1}; or

10 -R^{PY1} is independently saturated aliphatic C₁₋₆alkyl, aliphatic C₂₋₆alkenyl, aliphatic C₂₋₆alkynyl, saturated C₃₋₇cycloalkyl, or saturated C₃₋₇cycloalkyl-saturated aliphatic C₁₋₆alkyl, and is optionally substituted with one or more substituents -R^{PZ2};

15 each -R^{PZ1}, if present, is independently selected from -F, -Cl, -Br, -I, -R^{7A}, -OH, -OR^{7A}, and -S(=O)₂R^{7A};

 each -R^{7A} is independently saturated aliphatic C₁₋₆alkyl;

 each -R^{PZ2}, if present, is independently selected from -F, -Cl, -Br, -I, -OH, -OR^{7B}, -NH₂, -NHR^{7B}, and -NR^{7B}₂; and

 each -R^{7B}, if present, is independently saturated aliphatic C₁₋₆alkyl;

and wherein:

20 -R^{PY2} is independently -F, -Cl, -Br, -I, -R⁸, -OH, -OR⁸, -CF₃, -OCF₃, -SCF₃, or phenyl optionally substituted with one or more substituents -R^{PZ3};

wherein:

25 each -R⁸ is independently saturated aliphatic C₁₋₆alkyl or saturated C₃₋₆cycloalkyl;

 each -R^{PZ3} is independently -F, -Cl, -Br, -I, -R^V, -OH, -OR^V, -NH₂, -NHR^V, -NR^V₂, -NR^{VNA}R^{VNB}, -CN, -S(=O)₂NH₂, -S(=O)₂NHR^V, -S(=O)₂NR^V₂, -S(=O)₂NR^{VNA}R^{VNB}, or -C(=O)NR^{VNA}R^{VNB};

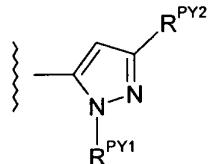
wherein:

30 each -R^V is independently:

 saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR^W, -NH₂, -NHR^W, and -NR^W₂;

 saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR^W, -NH₂, -NHR^W, and -NR^W₂; or

 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from -R^W;


and wherein:

35 -NR^{VNA}R^{VNB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R^W, -CF₃, -F, -OH, -OR^W, -NH₂, -NHR^W, and -NR^W₂;

wherein:

40 each -R^W is independently saturated aliphatic C₁₋₄alkyl.

175. A compound according to claim 174, wherein -J is independently:

5

176. A compound according to claim 174 or 175, wherein -R^{PY1} is phenyl or C₅₋₆heteroaryl, and is optionally substituted with one or more substituents -R^{PZ1}.

10

177. A compound according to claim 174 or 175, wherein -R^{PY1} is independently phenyl, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, or pyridazinyl, and is optionally substituted with one or more substituents -R^{PZ1}.

15

178. A compound according to claim 174 or 175, wherein -R^{PY1} is independently phenyl, pyridyl or thienyl, and is optionally substituted with one or more substituents -R^{PZ1}.

179. A compound according to claim 174 or 175, wherein -R^{PY1} is independently phenyl or pyridyl, and is optionally substituted with one or more substituents -R^{PZ1}.

20

180. A compound according to claim 174 or 175, wherein -R^{PY1} is independently phenyl, and is optionally substituted with one or more substituents -R^{PZ1}.

181. A compound according to claim 174 or 175, wherein -R^{PY1} is independently phenyl or pyridyl, and is optionally substituted with one or more substituents -R^{PZ1}.

25

182. A compound according to claim 174 or 175, wherein -R^{PY1} is independently phenyl or thienyl, and is optionally substituted with one or more substituents -R^{PZ1}.

30

183. A compound according to any one of claims 174 to 182, wherein each -R^{PZ1}, if present, is independently selected from -F, -Cl, -Br, -I, -R^{7A}, -OH, and -OR^{7A}.

184. A compound according to any one of claims 174 to 182, wherein each -R^{PZ1}, if present, is independently selected from -R^{7A}, -OH, and -OR^{7A}.

35

185. A compound according to any one of claims 174 to 184, wherein each -R^{7A}, if present, is independently saturated aliphatic C₁₋₄alkyl.

186. A compound according to any one of claims 174 to 184, wherein each -R^{7A}, if present, is independently -Me.

187. A compound according to claim 174 or 175, wherein -R^{PY1} is independently saturated aliphatic C₁₋₆alkyl, aliphatic C₂₋₆alkenyl, aliphatic C₂₋₆alkynyl, saturated C₃₋₇cycloalkyl, or saturated C₃₋₇cycloalkyl-saturated aliphatic C₁₋₆alkyl, and is optionally substituted with one or more substituents -R^{PZ2}.

5 188. A compound according to claim 174 or 175, wherein -R^{PY1} is independently saturated aliphatic C₁₋₆alkyl, and is optionally substituted with one or more substituents -R^{PZ2}.

10 189. A compound according to claim 174 or 175, wherein -R^{PY1} is independently aliphatic C₂₋₆alkenyl, and is optionally substituted with one or more substituents -R^{PZ2}.

190. A compound according to claim 174 or 175, wherein -R^{PY1} is independently aliphatic C₂₋₆alkynyl, and is optionally substituted with one or more substituents -R^{PZ2}.

15 191. A compound according to claim 174 or 175, wherein -R^{PY1} is independently saturated C₃₋₇cycloalkyl, and is optionally substituted with one or more substituents -R^{PZ2}.

192. A compound according to claim 174 or 175, wherein -R^{PY1} is independently saturated C₃₋₇cycloalkyl-saturated aliphatic C₁₋₆alkyl, and is optionally substituted with one or 20 more substituents -R^{PZ2}.

193. A compound according to any one of claims 187 to 192, wherein each -R^{PZ2}, if present, is independently selected from -OH, -OR^{7B}, -NH₂, -NHR^{7B}, and -NR^{7B}₂.

25 194. A compound according to any one of claims 187 to 193, wherein each -R^{7B}, if present, is independently saturated aliphatic C₁₋₄alkyl.

195. A compound according to any one of claims 187 to 193, wherein each -R^{7B}, if present, is independently -Me.

30 196. A compound according to claim 174 or 175, wherein -R^{PY1} is independently saturated aliphatic C₁₋₆alkyl.

197. A compound according to claim 174 or 175, wherein -R^{PY1} is -Me, -Et, -nPr, -iPr, -nBu, -iBu, -sBu, or -tBu.

35 198. A compound according to claim 174 or 175, wherein -R^{PY1} is independently aliphatic C₂₋₆alkenyl.

199. A compound according to claim 174 or 175, wherein -R^{PY1} is allyl.

40 200. A compound according to claim 174 or 175, wherein -R^{PY1} is independently aliphatic C₂₋₆alkynyl.

45 201. A compound according to claim 174 or 175, wherein -R^{PY1} is propargyl.

202. A compound according to claim 174 or 175, wherein $-R^{PY1}$ is independently saturated C₃₋₇cycloalkyl.

5 203. A compound according to claim 174 or 175, wherein $-R^{PY1}$ is independently cyclopropyl or cyclobutyl.

204. A compound according to claim 174 or 175, wherein $-R^{PY1}$ is independently cyclopropyl.

10 205. A compound according to claim 174 or 175, wherein $-R^{PY1}$ is independently saturated C₃₋₇cycloalkyl-saturated aliphatic C₁₋₆alkyl.

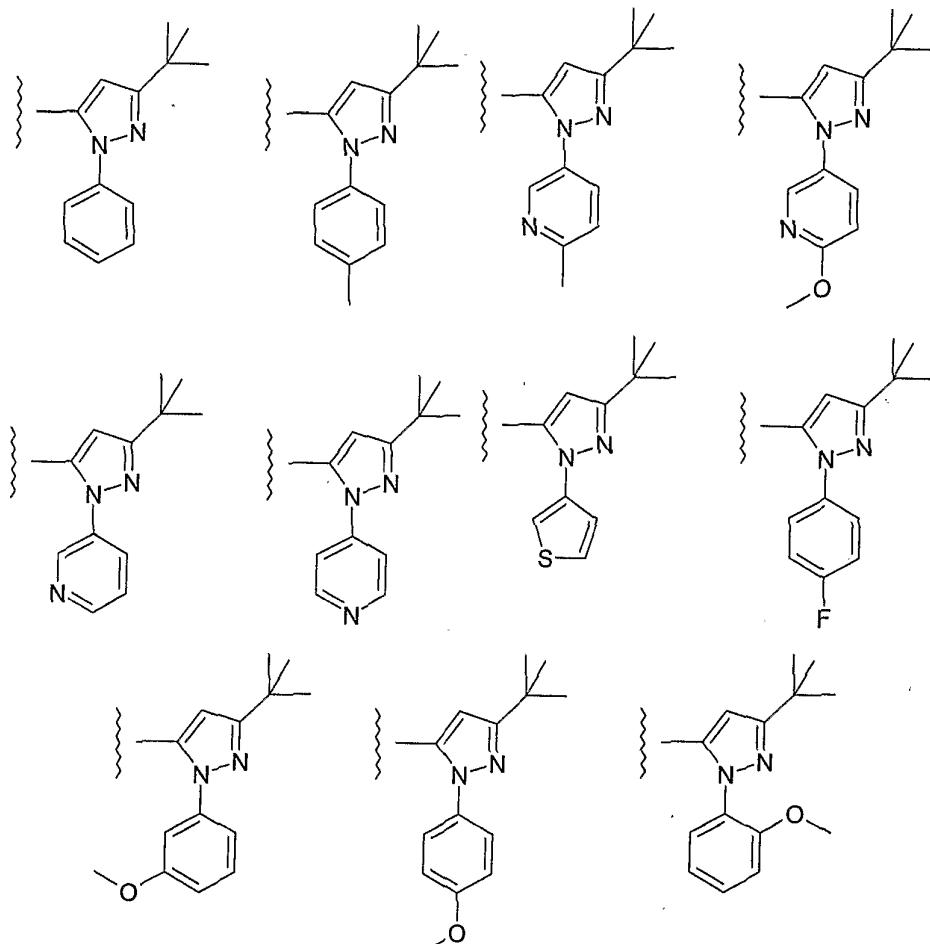
15 206. A compound according to claim 174 or 175, wherein $-R^{PY1}$ is independently cyclobutyl-methyl, cyclobutyl-ethyl, cyclopropyl-methyl, or cyclopropyl-ethyl.

* * *

207. A compound according to any one of claims 174 to 206, wherein $-R^{PY2}$ is independently -F, -Cl, -Br, -I, -R⁸, -OH, -OR⁸, -CF₃, -OCF₃, -SCF₃.

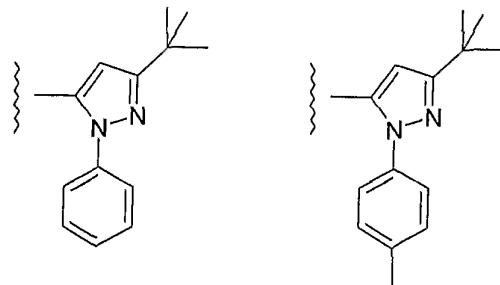
208. A compound according to any one of claims 174 to 206, wherein $-R^{PY2}$ is independently -R⁸ or -CF₃.

209. A compound according to any one of claims 174 to 206, wherein $-R^{PY2}$ is independently -R⁸.

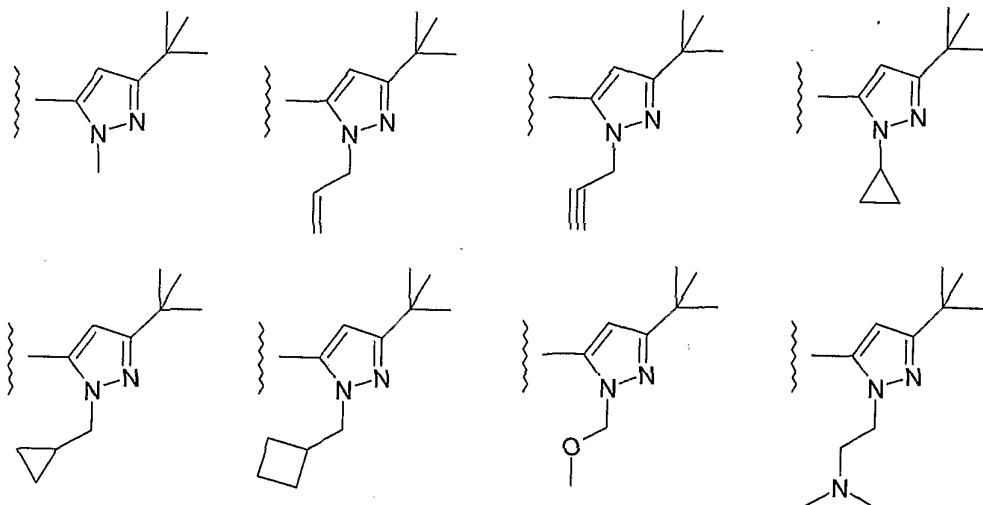

210. A compound according to any one of claims 174 to 209, wherein each $-R^8$ is independently saturated aliphatic C₁₋₆alkyl.

30 211. A compound according to any one of claims 174 to 206, wherein $-R^{PY2}$ is independently saturated aliphatic C₁₋₄alkyl.

212. A compound according to any one of claims 174 to 206, wherein $-R^{PY2}$ is independently -tBu.

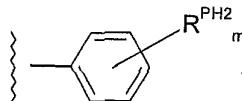

* * *

213. A compound according to any one of claims 1 to 124, wherein -J is independently selected from:


5

214. A compound according to any one of claims 1 to 124, wherein -J is independently selected from:

10


215. A compound according to any one of claims 1 to 124, wherein -J is independently selected from:

5

* * *

216. A compound according to any one of claims 1 to 124, wherein -J is independently:

10

wherein:

m is independently 0, 1, 2, or 3;

each R^{PH2} is independently

-F, -Cl, -Br, -I, -R⁹, -OH, -OR⁹, -NH₂, -NHR⁹, -NR⁹₂, -NR^{9NA}R^{9NB}, -CF₃, -OCF₃, or -SCF₃;

15

wherein:

each -R⁹ is independently:

saturated aliphatic C₁₋₆alkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB};

20

saturated C₃₋₆cycloalkyl, and is unsubstituted or substituted with one or more groups selected from -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, and -NR⁹⁹₂;

azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from -R⁹⁹; or

25

phenyl or C₅₋₆heteroaryl, and is unsubstituted or substituted with one or more groups selected from -F, -Cl, -Br, -I, -R⁹⁹, -CF₃, -OH, -OR⁹⁹, -OCF₃, -NH₂, -NHR⁹⁹, -NR⁹⁹₂, and -NR^{9NA}R^{9NB};

30

and wherein:

-NR^{9NA}R^{9NB} is independently azetidino, pyrrolidino, piperidino, piperizino, morpholino, azepino, or diazepino, and is optionally substituted with one or more groups selected from -R⁹⁹, -CF₃, -F, -OH, -OR⁹⁹, -NH₂, -NHR⁹⁹, and -NR⁹⁹₂;

wherein:

each $-R^{99}$ is independently saturated aliphatic C_{1-4} alkyl.

217. A compound according to claim 216, wherein m is independently 0, 1, or 2.

5

218. A compound according to claim 216, wherein m is independently 1 or 2.

10 219. A compound according to any one of claims 216 to 218, wherein each $-R^9$ is independently:

saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{99}$, $-NH_2$, $-NHR^{99}$, $-NR^{99}_2$, and $-NR^{9NA}R^{9NB}$;

saturated C_{3-6} cycloalkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{99}$, $-NH_2$, $-NHR^{99}$, and $-NR^{99}_2$; or

15 azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from $-R^{99}$.

220. A compound according to any one of claims 216 to 218, wherein each $-R^9$, if present, is independently:

20 saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{99}$, $-NH_2$, $-NHR^{99}$, $-NR^{99}_2$, and $-NR^{9NA}R^{9NB}$; or

azetidinyl, pyrrolidinyl, or piperidinyl, and is unsubstituted or substituted with one or more groups selected from $-R^{99}$.

221. A compound according to any one of claims 216 to 218, wherein each $-R^9$, if present, is independently:

25 saturated aliphatic C_{1-6} alkyl, and is unsubstituted or substituted with one or more groups selected from $-OH$, $-OR^{99}$, $-NH_2$, $-NHR^{99}$, $-NR^{99}_2$, and $-NR^{9NA}R^{9NB}$.

222. A compound according to any one of claims 216 to 218, wherein each $-R^9$, if present, is independently saturated aliphatic C_{1-6} alkyl.

30 223. A compound according to any one of claims 216 to 222, wherein $-NR^{9NB}R^{9NB}$, if present, is independently pyrrolidino, piperidino, piperizino, or morpholino, and is optionally substituted with one or more groups selected from $-R^{99}$.

35

224. A compound according to any one of claims 216 to 218, wherein each R^{PH2} is independently $-F$, $-Cl$, $-Br$, $-I$, $-R^9$, $-OH$, $-OR^9$, $-CF_3$, $-OCF_3$, or $-SCF_3$.

40

225. A compound according to any one of claims 216 to 218, wherein each R^{PH2} is independently $-F$, $-Cl$, $-tBu$, $-CF_3$, $-OCF_3$, or $-SCF_3$.

- 157 -

226. A compound according to claim 1, selected from the following compounds, and pharmaceutically acceptable salts, hydrates, and solvates thereof: Compound Nos. AA-001 through AA-018 and BB-001 through BB-013.

5

* * *

227. A pharmaceutical composition comprising a compound according to any one of claims 1 to 226, and a pharmaceutically acceptable carrier or diluent.

10

228. A method of preparing a pharmaceutical composition comprising the step of admixing a compound according to any one of claims 1 to 226, and a pharmaceutically acceptable carrier or diluent.

* * *

15

229. A compound according to any one of claims 1 to 226, for use in a method of treatment of the human or animal body by therapy.

20

230. A compound according to any one of claims 1 to 226, for use in a method of treatment of a disease or disorder that is ameliorated by the inhibition of RAF (e.g., B-RAF) function.

231. A compound according to any one of claims 1 to 226, for use in a method of treatment of a proliferative disorder.

25

232. A compound according to any one of claims 1 to 226, for use in a method of treatment of cancer.

* * *

30

233. Use of a compound according to any one of claims 1 to 226, in the manufacture of a medicament for the treatment of a disease or disorder that is ameliorated by the inhibition of RAF (e.g., B-RAF) function.

35

234. Use of a compound according to any one of claims 1 to 226, in the manufacture of a medicament for the treatment of a proliferative disorder.

235. Use of a compound according to any one of claims 1 to 226, in the manufacture of a medicament for the treatment of cancer.

40

* * *

- 158 -

236. A method of treatment of a disease or disorder that is ameliorated by the inhibition of RAF (e.g., B-RAF) function comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound according to any one of claims 1 to 226.

5

237. A method of treatment of a proliferative disorder comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound according to any one of claims 1 to 226.

10 238. A method of treatment of cancer comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound according to any one of claims 1 to 226.

* * *

15 239. A method of inhibiting RAF (e.g., B-RAF) function, *in vitro* or *in vivo*, comprising contacting a RAF (e.g., B-RAF) with an effective amount of a compound according to any one of claims 1 to 226.

20 240. A method of inhibiting RAF (e.g., B-RAF) function in a cell, *in vitro* or *in vivo*, comprising contacting the cell with an effective amount of a compound according to any one of claims 1 to 226.

25 241. A method of inhibiting cell proliferation, inhibiting cell cycle progression, promoting apoptosis, or a combination of one or more these, *in vitro* or *in vivo*, comprising contacting the cell with an effective amount of a compound according to any one of claims 1 to 226.