(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 02/39260 A2

(51) International Patent Classification’: GO6F 9/00 (US). WANG, Ho; 2317 Waterway Bend, Austin, TX
78728 (US).

(43) International Publication Date
16 May 2002 (16.05.2002)

(21) International Application Number: PCT/US01/45518 .
(74) Agent: ENDERS, William, W.; O’Keefe, Egan & Peter-

man, LLP, 1101 Capital of Texas Highway South, Building

(22) International Filing Date: C, Suite 200, Austin, TX 78746 (US).

2 November 2001 (02.11.2001)
(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(25) Filing Language: English AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(26) Publication Language: English GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(30) Priority Data: MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,

60/246.443 7 November 2000 (07.11.2000) US SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
09/797,197 1 March 2001 (01.03.2001) US Zw.

(84) Designated States (regional): ARIPO patent (GH, GM,

(71) Applicant: SURGIENT NETWORKS, INC. [US/US]; KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

8303 Mopac, Suite C300, Austin, TX 78746 (US). patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

(72) Inventors: RICHTER, Roger, K.; 15248 Faubion Trail, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

Leander, TX 78641 (US). HERNANDEZ, Gustavo, G.; CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
3500 Greystone Drive, Apartment #108, Austin, TX 78731 TG).

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR THE ORDER SERIALIZATION OF INFORMATION IN A NETWORK PRO-
CESSING ENVIRONMENT

e — 1010

_ - 106 ~~
- %goa |O?OA\/
1062 //
1200
/
/
/ \
! \
I050A (10508 \ 1022
I
i
/ 1024
NETWORK — |
1030 ¢ 1023

/
/

(g 10308 ~
< Content 10308 ~ Content

1090 Sy - 1090
< e
o
o l092—)
a Content l‘vl 100
«
g (57) Abstract: A multi-processor network processing environment is provided in which parallel processing may occur. In one

embodiment, a network processor having multiple processor cores may be utilized. Parallel processing at the front end of the network
processor is encouraged while still maintaining ordered serialization between the input and the output of the network processor. The
disclosed order serialization techniques obtain the benefits of parallel processing at the front end of the system while minimizing
blocking times at the output.

w0 02/39260 A2 LN OR AN OO A RO

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

1

METHODS AND SYSTEMS FOR THE ORDER SERIALIZATION OF
INFORMATION IN A NETWORK PROCESSING ENVIRONMENT

BACKGROUND OF THE INVENTION
The present invention relates generally to network connected computing systems, and

more particularly to order serialization in a multi-processor network processing environment.

A wide variety of computing systems may be connected to computer networks. These
systems may include network endpoint systems and network intermediate node systems.
Servers and clients are typical examples of network endpoint systems. Network switches and
routers are typical examples of network intermediate node systems. Many other types of

mnetwork endpoint systems and network intermediate node systems also exist.

As the desire for increased network bandwidth, speed and general performance is
always present, many different techniques have been utilized to achieve such goals. A
common technique to address network bottlenecks is to simply provide more network
connected resources. One scenario is to deploy a set of autonomous computing systems that
all run in parallel 'behind' a network device that distributes the workload or data to the set of
systems utilizing load-balancing schemes. For example, in an internet data center
environment the set of computer systems may be coupled to a load-balancing network switch
that distributes network traffic/data to the set of systems operating as servers. Thus, in this
server environment the server compute bottleneck is often dealt with by merely adding more
servers that are operating in parallel and are coupled to a load-balancing network switch.
This has been called a "rack and stack" or "server farm" solution. This solution addresses
network performance problems that have developed due to a lack of computing power
available in server systems with respect to multi-gigabit media rates available in current
networks. In such solutions parallel processing is utilized to increase the overall system

performance.

Presently, network and computer technologies use parallel and distributed processing
techniques to increase overall throughput and enhance performance in a wide variety of other
applications. Some technologies presently deployed for parallel/distributed processing range
from hardware-centric solutions to software-centric solutions. Examples of some current

implementations are: Symmetric Multi-Processing (SMP) in the personal computer and work

10

15

20

25

30

WO 02/39260 “T/US01/45518

2

station-based server arena, fault tolerant processor arrays in high-end, non-stop servers, and
distributed computing software systems such as distributed computing environment (DCE).
These solutions process data in a distributed and parallel manner to minimize latency,

maximize throughput, and optimize efficient use of computing resources.

Parallel processing may also occur within an individual package (i.e. chip, chipset or
I/O board) utilized in a network connected device. Thus, in a single package, multiple
"processing cores" may be provided with each core operating in parallel to address the
necessary processing rates. One such device utilizing multiple processor cores is the network
processor. In some examples, network processors may have four, eight, sixteen or more
processor cores operating in parallel. Typically network processors are designed for the
specialized function of performing tasks at a network intermediate node. Network processors
are often utilized in network switches and routers to forward network traffic at the
intermediate node. Network processors typically include multiple processor cores that
operate in parallel, with some special purpose cores, to achieve the forwarding functionality.
The use of the parallel processing cores allows several processing units within the network
processor to process data simultaneously. The use and configuration of network processors

are described in more detail below.

In a typical network processor application, workloads that are presented to a network
processor are assigned to a processing core in a sequential or round robin manner. The
workloads typically exit the processor cores in the same sequence as the workloads are
presented to the network processor, or in other words, the arrival order and the departure
order of workloads are generally the same. Because the sequence of the workloads is
maintained, the workloads do not become de-sequenced. The arrival and departure orders are
maintained in typically network processor applications because of the nature of the
application. In the typical network switching environment the tasks being performed on each
data packet arriving at the network processor are the same. For example, the network
processor may merely look at the header of each packet and then forward the packet. Thus
the amount of time required for processing each data packet (a workload) is relatively

constant.

The multiple processor cores of the network processor may each individually "grab" a

data packet and process the packet with the time for each packet being constant and

10

15

20

25

30

WO 02/39260 "T/US01/45518

3

independent of which processor core performs the processing. Because the time for each
packet is constant, the output results for the stream of packets presented to the processor
cores will be provided in an order sequence that matches the order sequence that the packets
were input to the network processor. In other words, if the input sequence of the packet
stream is Packet A, Packet B, Packet C, and Packet D, the output sequence of the network
processor will be Results for Packet A, Results for Packet B, Results for Packet C and Results
for Packet D. These sequences will be maintained even if each packet is processed by a

different processing core.

It will be understood that the maintenance of the input/output order sequence in the
typical network processor application generally inherently occurs because the time to perform
each workload is the same. Thus as task are assigned from one processor core to the next, the
order sequence is maintained not because of any programming or circuitry techniques
employed with the network processor, but rather, as a result of the tasks the network
processor typically performs. Furthermore, although a network processor generally maintains
the order sequence of workloads it is not a requirement for most network processor
applications that strict order sequence be maintained. Most network protocols anticipate that
data packets may become de-sequenced as transmission occurs across a network. Thus at the
network endpoint (such as a server) it is anticipated that the packets may be re-sequenced
upon arrival at the network endpoint. However, within most endpoint devices strict order
sequence of workloads is typically required. De-sequencing in network endpoint devices

significantly reduces the efficiency and performance of the network endpoint device.

The workloads performed at a network endpoint are very different from the workloads
performed at a switching, or routing, device. Generally the workloads performed at the
network endpoint may vary greatly from data packet to data packet. For example, some data
packet related tasks may include checksum computation and verification, packet replication,
network header rebuilding, etc. and may require lengthier processing for larger data packets
or shorter processing for smaller data packets. As such, two data packets having varying
sizes and sent by the same node sequentially may be require different processing times. The
parallel operation of the multiple cores of the network processor has a high probability of de-
sequencing these types of workloads. The inability to maintain proper data packet
sequencing for varying tasks is one reason that network processors have been considered

inappropriate for use at network endpoints.

10

15

20

25

30

35

WO 02/39260 PCT/US01/45518

The network processor approach to processing provides a cost effective solution, and
greater throughput for certain applications, but does not account for enforcing arrival-
departure order dependencies that may be needed in other applications, for example endpoint
node processing. It would be desirable to combine the benefits of a network processor with
the ability to maintain order sequences. Furthermore it would be desirable to achieve this
combination with standard commercially available network processors. Additionally it
would be highly desirable to maintain order sequence dependencies in a highly efficient

manner so as not to reduce the throughput benefits of a network processor.

SUMMARY OF THE INVENTION

A multi-processor network processing environment is provided in which parallel
processing may occur. In one embodiment, a network processor having multiple processor
cores may be utilized. Parallel processing at the front end of the network processor is
encouraged while still maintaining ordered serialization between the input and the output of
the network processor. The disclosed order serialization techniques obtain the benefits of
parallel processing at the front end of the system while minimizing blocking times at the

output.

As each new data packet arrives at the network processor, the network processor is
programmed to assign the packet to a particular processor core in some known sequence of
processor cores. The network processor is also programmed to provide the output of each
processor core as the network processor output in the same sequence of processor cores. In

this manner, the input/output order serialization is maintained.

Thus, multiple data packets of information may be communicated to a network
processing system and one or more processing cores may process the data packets in a
parallel processing manner that maintains order serialization even though the packets may
require varying processing times. This technique allows a network processor to be suitable
for use in a network endpoint system. The sequence that is utilized for providing workloads
to the processor cores and determine the output order of the workload results from the

processor cores may be managed through the use of a processing output token.

The sequence at which packets are assigned to processor cores and which the outputs

are obtained may be a static sequence or a dynamic sequence. An exemplary static sequence

10

15

20

25

30

WO 02/39260 PCT/US01/45518
s .

may be a round robin sequence. A static sequence may also be a user defined sequence list.
A dynamic sequence may also be utilized. Each of the various sequences may be utilized in
conjunction with a processing token. The processor token may be utilized to manage the

output order of the workload results from the various processing cores.

DESCRIPTION OF THE FIGURES
FIG. 1A is a representation of components of a content delivery system according to

one embodiment of the disclosed content delivery system.

FIG. 1B is a representation of data flow between modules of a content delivery
system of FIGURE 1A according to one embodiment of the disclosed content delivery

system.

FIG. 1C is a simplified schematic diagram showing one possible network content

delivery system hardware configuration.

FIG. 1D is a simplified schematic diagram showing a network content delivery engine
configuration possible with the network content delivery system hardware configuration of
FIG. 1C.

FIG. 1E is a simplified schematic diagram showing an alternate network content
delivery engine configuration possible with the network content delivery system hardware

configuration of FIG. 1C.

FIG. 1F is a simplified schematic diagram showing another alternate network content
delivery engine configuration possible with the network content delivery system hardware
configuration of FIG. 1C.

FIGS. 1G-1J illustrate exemplary clusters of network content delivery systems.

FIG. 2 is a simplified schematic diagram showing another possible network content

delivery system configuration.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

6

FIG. 2A is a simplified schematic diagram showing a network endpoint computing

system.

FIG. 2B is a simplified schematic diagram showing a network endpoint computing

system.
FIG. 3 is a functional block diagram of an exemplary network processor.

FIG. 4 is a functional block diagram of an exemplary interface between a switch

fabric and a processor.
FIG..5 is a block diagram of a network processor having multiple processor cores.

FIG. 6 is a network connected system utilizing the order serialization techniques

disclosed herein.

FIG. 7 is one method for processing information utilizing the order serialization

techniques disclosed herein.

FIG. 8 illustrates one embodiment of a processing output token according to the

present invention.

FIG. 9 is one method for processing information utilizing the order serialization

techniques disclosed herein.

FIG. 10 is one method for processing information utilizing the order serialization

techniques disclosed herein.

FIGS. 11A and 11B illustrate exemplary network processors utilizing multiple input

and/or output queues.

FIG. 12 illustrates a distributed computer environment in which the present invention

may be utilized.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

DETAILED DESCRIPTION

Disclosed herein are systems and methods for operating network connected
computing systems. The network connected computing systems disclosed provide a more
efficient use of computing system resources and provide improved performance as compared
to traditional network connected computing systems. Network connected computing systems
may include network endpoint systems. The systems and methods disclosed herein may be
particularly beneficial for use in network endpoint systems. Network endpoint systems may
include a wide variety of computing devices, including but not limited to, classic' general
purpose servers, specialized servers, network appliances, storage area networks or other
storage medium, content delivery systems, corporate data centers, application service
providers, home or laptop computers, clients, any other device that operates as an endpoint

network connection, etc.

Other network connected systems may be considered a network intermediate node
system. Such systems are generally connected to some node of a network that may operate in
some other fashion than an endpoint. Typical examples include network switches or network
routers. Network intermediate node systems may also include any other devices coupled to

intermediate nodes of a network.

Further, somé devices may be considered both a network intermediate node system
and a network endpoint system. Such hybrid systems may perform both endpoint

functionality and intermediate node functionality in the same device. For example, a network

-switch that also performs some endpoint functionality may be considered a hybrid system.

As used herein such hybrid devices are considered to be a network endpoint system and are

also considered to be a network intermediate node system.

For ease of understanding, the systems and methods disclosed herein are described
with regards to an illustrative network connected computing system. In the illustrative
example the system is a network endpoint system optimized for a content delivery
application. Thus a content delivery system is provided as an illustrative example that
demonstrates the structures, methods, advantages and benefits of the network computing
system and methods disclosed herein. Content delivery systems (such as systems for serving
streaming content, HTTP content, cached content, etc.) generally have intensive input/output

demands.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

It will be recognized that the bardware and methods discussed below may be
incorporated into other hardware or applied to other applications. For example with respect
to hardware, the disclosed system and methods may be utilized in network switches. Such
switches may be considered to be intelligent or smart switches with expanded functionality
beyond a traditional switch. Referring to the content delivery application described in more
detail herein, a network switch may\ be configured to also deliver at least some content in
addition to traditional switching functionality. Thus, though the system may be considered
primarily a network switch (or some other network intermediate node device), the system
may incorporate the hardware and methods disclosed herein. Likewise a network switch
performing applications other than content delivery may utilize the systems and methods
disclosed herein. The nomenclature used for devices utilizing the concepts of the present
invention may vary. The network switch or router that includes the content delivery system
disclosed herein may be called a network content switch or a network content router or ‘the
like. Independent of the nomenclature assigned to a device, it will be recognized that the

network device may incorporate some or all of the concepts disclosed herein.

The disclosed hardware and methods also may be utilized in storage area networks,
network attached storage, channel attached storage systems, disk arrays, tape storage systems,
direct storage devices or other storage systems. In this case, a storage system having the
traditional storage system functionality may also include additional functionality utilizing the
hardware and methods shown herein. Thus, although the system may primarily be
considered a storage system, the system may still include the hardware and methods disclosed
herein. The disclosed hardware and methods of the present invention also may be utilized in
traditional personal computers, portable computers, servers, workstations, mainframe
computer systems, or other computer systems. In this case, a computer system having the
traditional computer system functionality associated with the particular type of computer
system may also include additional functionality utilizing the hardware and methods shown
herein. Thus, although the system may primarily be considered to be a particular type of

computer system, the system may still include the hardware and methods disclosed herein.

As mentioned above, the benefits of the present invention are not limited to any
specific tasks or applications. The content delivery applications described herein are thus

illustrative only. Other tasks and applications that may incorporate the principles of the

10

15

20

25

30

WO 02/39260 PCT/US01/45518
9

present invention include, but are not limited to, database management systems, application
service providers, corporate data centers, modeling and simulation systems, graphics
‘rendering systems, other complex computational analysis systems, etc. Although the
principles of the present invention may be described with respect to a specific application, it
will be recognized that many other tasks or applications performed with the hardware and

methods.

Disclosed herein are systems and methods for delivery of content to computer-based
networks that employ functional multi-processing using a “staged pipeline” content delivery
environment to optimize bandwidth utilization and accelerate content delivery while allowing
greater determination in the data traffic management. The disclosed systems may employ
individual modular processing engines that are optimized for different layers of a software
stack. Each individual processing engine may be provided with one or more discrete
subsystem modules configured to run on their own optimized platform and/or to function in
parallel with one or more other subsystem modules across a high speed distributive
interconnect, such as a switch fabric, that allows peer-to-peer communication between
individual subsystem modules. The use of discrete subsystem modules that are distributively
interconnected in this manner advantageously allows individual resources (e.g., processing
resources, memory resources) to be deployed by sharing or reassignment in order to
maximize acceleration of content delivery by the content delivery system. The use of a
scalable packet-based interconnect, such as a switch fabric, advantageously allows the
installation of additional subsystem modules without significant degradation of system
performance. Furthermore, policy enhancement/enforcement may be optimized by placing

intelligence in each individual modular processing engine.

The network systems disclosed herein may operate as network endpoint systems.
Examples of network endpoints include, but are not limited to, servers, content delivery
systems, storage systems, application service providers, database management systems,
corporate data center servers, etc. A client system is also a network endpoint, and its
resources may typically range from those of a general purpose computer to the simpler
resources of a network appliance. The various processing units of the network endpoint

system may be programmed to achieve the desired type of endpoint.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

10

Some embodiments of the network endpoint systems disclosed herein are network
endpoint content delivery systems. The network endpoint content delivery systems may be
utilized in replacement of or in conjﬁnction with traditional network servers. A "server" can
be any device that delivers content, services, or both. For example, a content delivery server
receives requests for content from remote browser clients via the network, accesses a file
system to retrieve the requested content, and delivers the content to the client. As another
example, an applications server may be programmed to execute applications software on
behalf of a remote client, thereby creating data for use by the client. Various server

appliances are being developed and often perform specialized tasks.

As will be described more fully below, the network endpoint system disclosed herein
may include the use of network processors. Though network processors conventionally are
designed and utilized at intermediate network nodes, the network endpoint system disclosed

herein adapts this type of processor for endpoint use.

The network endpoint system disclosed may be construed as a switch based
computing system. The system may further be characterized as an asymmetric multi-

processor system configured in a staged pipeline manner.

EXEMPLARY SYSTEM OVERVIEW

FIG. 1A is a representation of one embodiment of a content delivery system 1010, for

example as may be employed as a network endpoint system in connection with a network
1020. Network 1020 may be any type of computer network suitable for linking computing
systems. Content delivery system 1010 may be coupled to one or more networks including,
but not limited to, the public internet, a private intranet network (e.g., linking users and hosts
such as employees of a corporation or institution), a wide area network (WAN), a local area
network (LAN), a wireless network, any other client based network or any other network
environment of connected computer systems or online users. Thus, the data provided from
the network 1020 may be in any networking protocol. In one embodiment, network 1020
may be the public internet that serves to provide access to content delivery system 1010 by
multiple online users that utilize internet web browsers on personal computers operating
through an internet service provider. In this case the data is assumed to follow one or more of
various Internet Protocols, such as TCP/IP, UDP, HTTP, RTSP, SSL, FIP, etc. However,

the same concepts apply to networks using other existing or future protocols, such as IPX,

10

15

20

25

30

WO 02/39260 PCT/US01/45518

11

SNMP, NetBios, Ipv6, etc. The concepts may also apply to file protocols such as network
file system (NFS) or common internet file system (CIFS) file sharing protocol.

Examples of content that may be delivered by content delivery system 1010 include,
but are not limited to, static content (e.g., web pages, MP3 files, HTTP object files, audio
stream files, video stream files, efc.), dynamic content, efc. In this regard, static content may
be defined as content available to content delivery system 1010 via attached storage devices
and as content that does not generally require any processing before delivery. Dynamic
content, on the other hand, may be defined as content that either requires processing before
delivery, or resides remotely from content delivery system 1010. As illustrated in FIG. 1A,
content sources may include, but are not limited to, one or more storage devices 1090
(magnetic disks, optical disks, tapes, storage area networks (SAN’s), etc.), other content
sources 1100, third party remote content feeds, broadcast sources (live direct audio or video
broadcast feeds, efc.), delivery of cached content, combinations thereof, efc. Broadcast or
remote content may be advantageously received through second network connection 1023
and delivered to network 1020 via an accelerated flowpath through content delivery system
1010. As discussed below, second network connection 1023 may be connected to a second
network 1024 (as shown). Alternatively, both network connections 1022 and 1023 may be
connected to network 1020.

As shown in FIG. 1A, one embodiment of content delivery system 1010 includes
multiple system engines 1030, 1040, 1050, 1060, and 1070 communicatively coupled via
distributive interconnection 1080. In the exemplary embodiment provided, these system
engines operate as content delivery engines. As used herein, "content delivery engine"
generally includes any hardware, software or hardware/software combination capable of
performing one or more dedicated tasks or sub-tasks associated with the delivery or
transmittal of content from one or more content sources to one or more networks. In the
embodiment illustrated in FIG. 1A content delivery processing engines (or “processing
blades™) include network interface processing engine 1030, storage processing engine 1040,
network transport / protocol processing engine 1050 (referred to hereafter as a transport
processing engine), system management processing engine 1060, and application processing
engine 1070. Thus configured, content delivery system 1010 is capable of providing multiple

dedicated and independent processing engines that are optimized for networking, storage and

10

15

20

25

30

WO 02/39260 PCT/US01/45518

12

application protocols, each of which is substantially self-contained and therefore capable of

functioning without consuming resources of the remaining processing engines.

It will be understood with benefit of this disclosure that the particular number and
identity of content delivery engines illustrated in FIG. 1A are illustrative only, and that for
any given content delivery system 1010 the number and/or identity of content delivery
engines may be varied to fit particular needs of a given application or installation. Thus, the
number of engines employed in a given content delivery system may be greater or fewer in
number than illustrated in FIG. 1A, and/or the selected engines may include other types of
content delivery engines and/or may not include all of the engine types illustrated in FIG. 1A.
In one embodiment, the content delivery system 1010 may be implemented within a single

chassis, such as for example, a 2U chassis.

Content delivery engines 1030, 1040, 1050, 1060 and 1070 are present to
independently perform selected sub-tasks associated with content delivery from content
sources 1090 and/or 1100, it being understood however that in other embodiments any one or
more of such subtasks may be combined and performed by a single engine, or subdivided to
be performed by more than one engine. In one embodiment, each of engines 1030, 1040,
1050, 1060 and 1070 may employ one or more independent processor modules (e.g., CPU
modules) having independent processor and memory subsystems and suitable for
performance of a given function/s, allowing independent operation without interference from
other engines or modules. Advantageously, this allows custom selection of particular
processor-types based on the particular sub-task each is to perform, and in consideration of
factors such as speed or efficiency in performance of a given subtask, cost of individual
processor, etc. The processors utilized may be any processor suitable for adapting to
endpoint processing. Any "PC on a board" type device may be used, such as the x86 and
Pentium processors from Intel Corporation, the SPARC processor from Sun Microsystems,
Inc., the PowerPC processor from Motorola, Inc. or any other microcontroller or
microprocessor. In addition, network processors (discussed in more detail below) may also
be utilized. The modular multi-task configuration of content delivery system 1010 allows the
number and/or type of content delivery engines and processors to be selected or varied to fit

the needs of a particular application.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

13

The configuration of the content delivery system described above provides scalability
without having to scale all the resources of a system. Thus, unlike the traditional rack and
stack systems, such as server systems in which an entire server may be added just to expand
one segment of system resources, the content delivery system allows the particular resources
needed to be the only expanded resources. For example, storage resources may be greatly

expanded without having to expand all of the traditional server resources.

DISTRIBUTIVE INTERCONNECT

Still referring to FIG. 1A, distributive interconnection 1080 may be any multi-node
I/O interconnection hardware or hardware/software system suitable for distributing
functionality by selectively interconnecting two or more content delivery engines of a content
delivery system including, but not limited to, high speed interchange systems such as a switch
fabric or bus architecture. Examples of switch fabric architectures include cross-bar switch
fabrics, Ethernet switch fabrics, ATM switch fabrics, etc. Examples of bus architectures
include PCI, PCI-X, S-Bus, Microchannel, VME, etc. Generally, for purposes of ;chis
description, a "bus" is any system bus that carries data in a manner that is visible to all nodes
on the bus. Generally, some sort of bus arbitration scheme is implemented and data may be
carried in parallel, as n-bit words. As distinguished from a bus, a switch fabric establishes
independent paths from node to node and data is specifically addressed to a particular node
on the switch fabric. Other nodes do not see the data nor are they blocked from creating their
own paths. The result is a simultaneous guaranteed bit rate in each direction for each of the

switch fabric's ports.

The use of a distributed interconnect 1080 to connect the various processing engines
in lieu of the network connections used with the switches of conventional multi-server
endpoints is beneficial for several reasons. As compared to network connections, the
distributed interconnect 1080 is less error prone, allows more deterministic content delivery,
and provides higher bandwidth connections to the various processing engines. The distributed
interconnect 1080 also has greatly improved data integrity and throughput rates as compared

to network connections.

Use of the distributed interconnect 1080 allows latency between content delivery
engines to be short, finite and follow a known path. Known maximum latency specifications

are typically associated with the various bus architectures listed above. Thus, when the

10

15

20

25

30

WO 02/39260 PCT/US01/45518

14

employed interconnect medium is a bus, latencies fall within a known range. In the case of a
switch fabric, latencies are fixed. Further, the connections are "direct", rather than by some
undetermined path. In general, the use of the distributed interconnect 1080 rather than
network connections, permits the switching and interconnect capacities of the content

delivery system 1010 to be predictable and consistent.

One example interconnection system suitable for use as distributive interconnection
1080 is an 8/16 port 28.4 Gbps high speed PRIZMA-E non-blocking switch fabric switch
available from IBM. It will be understood that other switch fabric configurations having
greater or lesser numbers of ports, throughput, and capacity are also possible. Among the
advantages offered by such a switch fabric interconnection in comparison to shared-bus
interface interconnection technology are throughput, scalability and fast and efficient
communication between individual discrete content delivery engines of content delivery
system 1010. In the embodiment of FIG. 1A, distributive interconnection 1080 facilitates
parallel and independent operation of each engine in its own optimized environment without
bandwidth interference from other engines, while at the same time providing peer-to-peer
communication between the engines on an as-needed basis (e.g., allowing direct

communication between any two content delivery engines 1030, 1040, 1050, 1060 and 1070).

" Moreover, the distributed interconnect may directly transfer inter-processor communications

between the various engines of the system. Thus, communication, command and control
information may be provided between the various peers via the distributed interconnect. In
addition, communication from one peer to multiple peers may be implemented through a
broadcast communication which is provided from one peer to all peers coupled to the
interconnect. The interface for each peer may be standardized, thus providing ease of design

and allowing for system scaling by providing standardized ports for adding additional peers.

NETWORK INTERFACE PROCESSING ENGINE

As illustrated in FIG. 1A, network interface processing engine 1030 interfaces with
network 1020 by receiving and processing requests for content and delivering requested
content to network 1020. Network interface processing engine 1030 may be any hardware or
hardware/software subsystem suitable for connections utilizing TCP (Transmission Control
Protocol) IP (Internet Protocol), UDP (User Datagram Protocol), RTP (Real-Time Transport
Protocol), Internet Protocol (IP), Wireless Application Protocol (WAP) as well as other

networking protocols. Thus the network interface processing engine 1030 may be suitable

10

15

20

25

30

WO 02/39260 PCT/US01/45518

15

for handling queue management, buffer management, TCP connect sequence, checksum, IP
address lookup, internal load balancing, packet switching, ete. Thus, network interface
processing engine 1030 may be employed as illustrated to process or terminate one or more
layers of the network protocol stack and to perform look-up intensive operations, offloading
these tasks from other content delivery processing engines of content delivery system 1010.
Network interface processing engine 1030 may also be employed to load balance among
other content deliyery processing engines of content delivery system 1010. Both of these
features serve to accelerate content delivery, and are enhanced by placement of distributive
interchange and protocol termination processing functions on the same board. Examples of
other functions that may be performed by network interface processing engine 1030 include,

but are not limited to, security processing.

With regard to the network protocol stack, the stack in traditional systems may often
be rather large. Processing the entire stack for every request across the distributed
interconnect may significantly impact performance. As described herein, the protocol stack
has been segmented or “split” between the network interface engine and the transport
processing engine. An abbreviated version of the protocol stack is then provided across the
interconnect. By utilizing this functionally split version of the protocol stack, increased
bandwidth may be obtained. In this manner the communication and data flow through the
content delivery system 1010 may be accelerated. The use of a distributed interconnect (for
example a switch fabric) further enhances this acceleration as compared to traditional bus

interconnects.

The network interface processing engine 1030 may be coupled to the network 1020
through a Gigabit (Gb) Ethernet fiber front end interface 1022. One or more additional Gb
Ethernet interfaces 1023 may optionally be provided, for example, to form a second interface
with network 1020, or to form an interface with a second network or application 1024 as
shown (e.g., to form an interface with one or more server/s for delivery of web cache content,
etc.). Regardless of whether the network connection is via Ethernet, or some other means, the
network connection could be of any type, with other examples being ATM, SONET, or
wireless. The physical medium between the network and the network processor may be

copper, optical fiber, wireless, etc.

10

15

20

25

30

WO 02/39260 PCT/US01/45518
16

In one embodiment, network interface processing engine 1030 may utilize a network
processor, although it will be understood that in other embodiments a network processor may
be supplemented with or replaced by a general purpose processor or an embedded
microcontroller. The network processor may be one of the various types of specialized
processors that have been designed and marketed to switch network traffic at intermediate
nodes. Consistent with this conventional application, these processors are designed to
process high speed streams of network packets. In conventional operation, a network
processor receives a packet from a port, verifies fields in the packet header, and decides on an
outgoing port to which it forwards the packet. The processing of a network processor may be
considered as "pass through" processing, as compared to the intensive state modification
processing performed by general purpose processors. A typical network processor has a
number of processing elements, some operating in parallel and some in pipeline. Often a
characteristic of a network processor is that it may hide' memory access latency needed to
perform lookups and modifications of packet header fields. A network processor may also
have one or more network interface controllers, such as a gigabit Ethernet controller, and are

generally capable of handling data rates at "wire speeds".

Examples of network processors include the C-Port processor manufactured by
Motorola, Inc., the IXP1200 processor manufactured by Intel Corporation, the Prism
processor manufactured by SiTera Inc., and others manufactured by MMC Networks, Inc.
and Agere, Inc. These processors are programmable, usually with a RISC or augmented RISC

instruction set, and are typically fabricated on a single chip.

The processing cores of a network processor are typically accompanied by special
purpose cores that perform specific tasks, such as fabric interfacing, table lookup, queue
management, and buffer management. Network processors typically have their memory
management optimized for data movement, and have multiple I/O and memory buses. The
programming capability of network processors permit them to be programmed for a variety
of tasks, such as load balancing, network protocol processing, network security policies, and
QoS/CoS support. These tasks can be tasks that would otherwise be performed by another
processor. For example, TCP/IP processing may be performed by a network processor at the
front end of an endpoint system. Another type of processing that could be offloaded is
execution of network security policies or protocols. A network processor could also be used

for load balancing. Network processors used in this manner can be referred to as “network

10

15

20

25

30

WO 02/39260 PCT/US01/45518

17

accelerators” because their front end “look ahead” processing can vastly increase network
response speeds. Network processors perform look ahead processing by operating at the
front end of the network endpoint to process network packets in order to reduce the workload
placed upon the remaining endpoint resources. Various uses of network accelerators are
described in the following concurrently filed U.S. patent applications: no. 09/797,412
entitled “Network Transport Accelerator,” by Bailey et. al; no. 09/797,507 entitled “Single
Chassis Network Endpoint System With Network Processor For Load Balancing,” by Richter
et. al; and no. 09/797,411 entitled “Network Security Accelerator,” by Canion et. al; the

disclosures of which are all incorporated herein by reference.

FIG. 3 illustrates one possible general configuration of a network processor. As
illustrated, a set of traffic processors 21 operate in parallel to handle transmission and receipt
of network traffic. .= These processors may be general purpose microprocessors or state
machines. Various core processors 22 - 24 handle special tasks. For example, the core
processors 22 - 24 may handle lookups, checksums, and buffer management. A set of serial
data processors 25 provide Layer 1 network support. Interface 26 provides the physical
interface to the network 1020. A general purpose bus interface 27 is used for downloading
code and configuration tasks. A specialized interface 28 may be specially programmed to

optimize the path between network processor 12 and distributed interconnection 1080.

As mentioned above, the network processors utilized in the content delivery system
1010 are utilized for endpoint use, rather than conventional use at intermediate network
nodes. In one embodiment, network interface processing engine 1030 may utilize a
MOTOROLA C-Port C-5 network processor capable of handling two Gb Ethernet interfaces
at wire speed, and optimized for cell and packet processing. This network processor may
contain sixteen 200 MHz MIPS processors for cell/packet switching and thirty-two serial
processing engines for bit/byte processing, checksum generation/verification, etc. Further
processing capability may be provided by five co-processors that perform the following
network specific tasks: supervisor/executive, switch fabric interface, optimized table lookup,
queue management, and buffer management. The network processor may be coupled to the
network 1020 by using a VITESSE GbE SERDES (serializer-deserializer) device (for
example the VSC7123) and an SFP (small form factor pluggable) optical transceiver for LC

fiber connection.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

18

TRANSPORT / PROTOCOL PROCESSING ENGINE
Referring again to FIG. 1A, transport processing engine 1050 may be provided for

performing network transport protocol sub-tasks, such as processing content requests
received from network interface engine 1030. Although named a "transport" engine for
discussion purposes, it will be recognized that the engine 1050 performs transport and
protocol processing and the term transport processing engine is not meant to limit the
functionality of the engine. In this regard transport processing engine 1050 may be any
hardware or hardware/software subsystem suitable for TCP/UDP processing, other protocol
processing, transport processing, efc. In one embodiment transport engine 1050 may be a
dedicated TCP/UDP processing module based on an INTEL PENTIUM III or MOTOROLA
POWERPC 7450 based processor running the Thread-X RTOS environment with protocol
stack based on TCP/IP technology.

As compared to traditional server type computing systems, the transport processing
engine 1050 may off-load other tasks that traditionally a main CPU may perform. For
example, the performance of server CPUs significantly decreases when a large amount of
network connections are made merely because the server CPU regularly checks each
connection for time outs. The transport processing engine 1050 may perform time out checks
for each network connection, session management, data reordering and retransmission, data
queueing and flow control, packet header generation, etc. off-loading these tasks from the
application processing engine or the network interface processing engine. The transport
processing engine 1050 may also handle error checking, likewise freeing up the resources of

other processing engines.

NETWORK INTERFACE / TRANSPORT SPLIT PROTOCOL
The embodiment of FIG. 1A contemplates that the protocol processing is shared

between the transport processing engine 1050 and the network interface engine 1030. This
sharing technique may be called “split protocol stack” processing. The division of tasks may
be such that higher tasks in the protocol stack are assigned to the transport processor engine.
For example, network interface engine 1030 may processes all or some of the TCP/IP
protocol stack as well as all protocols lower on the network protocol stack. Another approach

could be to assign state modification intensive tasks to the transport processing engine.

10

15

20

25

30

WO 02/39260 PCT/US01/45518
19

In one embodiment related to a content delivery system that receives packets, the
network interface engine performs the MAC header identification and verification, IP header
identification and verification, IP header checksum validation, TCP and UDP header
identification and validation, and TCP or UDP checksum validation. It also may perform the
lookup to determine the TCP connection or UDP socket (protocol session identifier) to which
a received packet belongs. Thus, the network interface engine verifies packet lengths,
checksums, and validity. For transmission of packets, the network interface engine performs
TCP or UDP checksum generation, IP header generation, and MAC header generation, IP
checksum generation, MAC FCS/CRC generation, etc.

Tasks such as those described above can all be performed rapidly by the parallel and
pipeline processors within a network processor. The “fly by” processing style of a network
processor. permits it to look at each byte of a packet as it passes through, using registers and
other alternatives to memory access. The network processor’s “stateless forwarding”
operation is best suited for tasks not involving complex calculations that require rapid

updating of state information.

An appropriate internal protocol may be provided for exchanging information
between the network interface engine 1030 and the transport engine 1050 when setting up or
terminating a TCP and/or UDP connections and to transfer packets between the two engines.
For example, where the distributive interconnection medium is a switch fabric, the internal
protocol may be implemented as a set of messages exchanged across the switch fabric. These
messages indicate the arrival of new inbound or outbound connections and contain inbound
or outbound packets on existing connections, along with identifiers or tags for those
‘connections. The internal protocol may also be used to transfer identifiers or tags between
the transport engine 1050 and the application processing engine 1070 and/or the storage
processing engine 1040. These identifiers or tags may be used to reduce or strip or accelerate

a portion of the protocol stack.

For example, with a TCP/IP connection, the network interface engine 1030 may
receive a request for a new connection. The header information associated with the initial
request may be provided to the transport processing engine 1050 for processing. Thét result
of this processing may be stored in the resources of the transport processing engine 1050 as

state and management information for that particular network session. The transport

10

15

20

25

30

WO 02/39260 PCT/US01/45518

20

processing engine 1050 then informs the network interface engine 1030 as to the location of
these results. Subsequent packets related to that connection that are processed by the network
interface engine 1030 may have some of the header information stripped and replaced with an
identifier or tag that is provided to the transport processing engine 1050. The identifier or tag
may be a pointer, index or any other mechanism that provides for the identification of the
location in the transport processing engine of the previously setup state and management
information (or the corresponding network session). In this manner, the transport processing
engine 1050 does not have to process the header information of every packet of a connection.
Rather, the transport interface engine merely receives a contextually meaningful identifier or

tag that identifies the previous processing results for that connection.

In one embodiment, the data link, network, transport and session layers (layers 2-5) of
a packet may be replaced by identifier or tag information. For packets related to an
established connection the transport processing engine does not have to perform intensive
processing with regard to these layers such as hashing, scanning, look up, etc. operations.
Rather, these layers’ have already been converted (or processed) once in the transport
processing engine and the transport processing engine just receives the identifier or tag
provided from the network interface engine that identifies the location of the conversion

results.

In this manner an identifier or tag is provided for each packet of an established
connection so that the more complex data computations of converting header information
may be replaced with a more simplistic analysis of an identifier or tag. The delivery of
content is thereby accelerated, as the time for packet processing and the amount of system
resources for packet processing are both reduced. The functionality of network processors,
which provide efficient parallel processing of packet headers, is well suited for enabling the
acceleration described herein. In addition, acceleration is further provided as the physical

size of the packets provided across the distributed interconnect may be reduced.

Though described herein with reference to messaging between the network interface
engine and the transport processing engine, the use of identifiers or tags may be utilized
amongst all the engines in the modular pipelined processing described herein. Thus, one
engine may replace packet or data information with contextually meaningful information that

may require less processing by the next engine in the data and communication flow path. In

10

15

20

25

30

WO 02/39260 PCT/US01/45518

21

addition, these techniques may be utilized for a wide variety of protocols and layers, not just

the exemplary embodiments provided herein.

With the above-described tasks being performed by the network interface engine, the
transport engine may perform TCP sequence number processing, acknowledgement and
retransmission, segmentation and reassembly, and flow control tasks. These tasks generally
call for storing and modifying connection state information on each TCP and UDP
connection, and therefore are considered more appropriate for the processing capabilities of

general purpose processors.

As will be discussed with references to alternative embodiments (such as FIGS. 2 and
2A), the transport engine 1050 and the network interface engine 1030 may be combined into
a single engine. Such a combination may be advantageous as communication across the

switch fabric is not necessary for protocol processing. However, limitations of many

‘commercially available network processors make the split protocol stack processing

described above desirable.

APPLICATION PROCESSING ENGINE
Application processing engine 1070 may be provided in content delivery system 1010

for application processing, and may be, for example, any hardware or hardware/software
subsystem suitable for session layer protocol processing (e.g., HTTP, RTSP streaming, efc.)
of content requests received from network transport proéessing engine 1050. In one
embodiment application processing engine 1070 may be a dedicated application processing
module based on an INTEL PENTIUM III processor running, for example, on standard x86
OS systems (e.g., Linux, Windows NT, FreeBSD, etc.). Application processing engine 1070
may be utilized for dedicated application-only processing by virtue of the off-loading of all
network protocol and storage processing elsewhere in content delivery system 1010. In one
embodiment, processor programming for application processing engine 1070 may be
generally similar to that of a conventional server, but without the tasks off-loaded to network
interface processing engine 1030, storage processing engine 1040, and transport processing

engine 1050.

STORAGE MANAGEMENT ENGINE

10

15

20

25

30

WO 02/39260 PCT/US01/45518

22

Storage management engine 1040 may be any hardware or hardware/software
subsystem suitable for effecting delivery of requested content from content sources (for
example content sources 1090 and/or 1100) in response to processed requests received from
application processing engine 1070. It will also be understood that in various embodiments a
storage management engine 1040 may be employed with content sources other than disk
drives (e.g., solid state storage, the storage systems described above, or any other media
suitable for storage of data) and may be programmed to request and receive data from these

other types of storage.

.In one embodiment, processor programming for storage management engine 1040
may be optimized for data retrieval using techniques such as caching, and may include and
maintain a disk cache to reduce the relatively long time often required to retrieve data from
content sources, such as disk drives. Requests received by storage management engine 1040
from application processing engine 1070 may contain information on how requested data is
to be formatted and its destination, with this information being comprehensible to transport
processing engine 1050 and/or network interface processing engine 1030. The storage
management engine 1040 may utilize a disk cache to reduce the relatively long time it may
take to retrieve data stored in a storage medium such as disk drives. Upon receiving a
request, storage management engine 1040 may be programmed to first determine whether the
requested data is cached, and then to send a request for data to the appropriate content source
1090 or 1100. Such a request may be in the form of a conventional read request. The
designated content source 1090 or 1100 responds by sending the requested content to storage
management engine 1040, which in turn sends the content to transport processing engine

1050 for forwarding to network interface processing engine 1030.

Based on the data contained in the request received from application processing
engine 1070, storage processing engine 1040 sends the requested content in proper format
with the proper destination data included. Direct communication between storage processing
engine 1040 and transport processing engine 1050 enables application processing engine
1070 to be bypassed with the requested content. Storage processing engine 1040 may also be
configured to write data to content sources 1090 and/or 1100 (e.g., for storage of live or

broadcast streaming content).

10

15

20

25

30

WO 02/39260 PCT/US01/45518

23

In one embodiment storage management engine 1040 may be a dedicated block-level
cache processor capable of block level cache processing in support of thousands of
concurrent multiple readers, and direct block data switching to network interface engine
1030. In this regard storage management engine 1040 may utilize a POWER PC 7450
processor in conjunction with ECC memory and a LSI SYMFC929 dual 2GBaud fibre
channel controller for fibre channel interconnect to content sources 1090 and/or 1100 via dual
fibre channel arbitrated loop 1092. It will be recognized, however, that other forms of
interconnection to storage sources suitable for retrieving content are also possible. Storage
management engine 1040 may include hardware and/or software for running the Fibre
Channel (FC) protocol, the SCSI (Small Computer Systems Interface) protocol, iSCSI

protocol as well as other storage networking protocols.

Storage management engine 1040 may employ any suitable method for caching data,
including simple computational caching algorithms such as random removal (RR), first-in
first-out (FIFO), predictive read-ahead, over buffering, etc. algorithms. Other suitable
caching algorithms include those that consider one or more factors in the manipulation of
content stored within the cache memory, or which employ multi-level ordering, key based
ordering or function based calculation for replacement. In one embodiment, storage
management engine may implement a layered multiple LRU (LMLRU) algorithm that uses
an integrated block/buffer management structure including at least two layers of a
configurable number of multiple LRU queues and a two-dimensional positioning algorithm
for data blocks in the memory to reflect the relative priorities of a data block in the memory
in terms of both recency and frequency. Such a caching algorithm is described in further
detail in concurrently filed U.S. patent application no. 09/797,198 entitled “Systems and
Methods for Management of Memory” by Qiu et. al, the disclosure of which is incorporated

herein by reference.

For increasing delivery efficiency of continuous content, such as streaming
multimedia content, storage management engine 1040 may employ caching algorithms that
consider the dynamic characteristics of continuous content. Suitable examples include, but
are not limited to, interval caching algorithms. In one embodiment, improved caching
performance of continuous content may be achieved using an LMLRU caching algorithm that
weighs ongoing viewer cache value versus the dynamic time-size cost of maintaining

particular content in cache memory. Such a caching algorithm is described in further detail in

10

15

20

25

30

WO 02/39260 PCT/US01/45518

24

concurrently filed U.S. patent application no. 09/797,201 entitled “Systems and Methods for
Management of Memory in Information Delivery Environments” by Qiu et. al, the disclosure

of which is incorporated herein by reference.

SYSTEM MANAGEMENT ENGINE

System management (or host) engine 1060 may be present to perform system
management functions related to the operation of content delivery system 1010. Examples of
system management functions include, but are not limited to, content provisioning/updates,
comprehensive statistical data gathering and logging for sub-system engines, collection of
shared user bandwidth utilization and content utilization data that may be input into billing
and accounting systems, “on the fly” ad insertion into delivered content, customer
programmable sub-system level quality of service (“QoS”) parameters, remote management
(e.g., SNMP, web-based, CLI), health monitoring, clustering controls, remote/local disaster
recovery functions, predictive performance and capacity planning, etc. In one embodiment,
content delivery bandwidth utilization by individual content suppliers or users (e.g.,
individual supplier/user usage of distributive interchange and/or content delivery engines)
may be tracked and logged by system management engine 1060, enabling an operator of the
content delivery system 1010 to charge each content supplier or user on the basis of content

volume delivered.

System management engine 1060 may be any hardware or hardware/software
subsystem suitable for performance of one or more such system management engines and in
one embodiment may be a dedicated application processing module based, for example, on
an INTEL PENTIUM III processor running an x86 OS. Because system management engine
1060 is provided as a discrete modular engine, it may be employed to perform system
management functions from within content delivery system 1010 without adversely affecting
the performance of the system. Furthermore, the system management engine 1060 may
maintain information on processing engine assignment and content delivery paths for various
content delivery applications, substantially eliminating the need for an individual processing

engine to have intimate knowledge of the hardware it intends to employ.

Under manual or scheduled direction by a user, system management processing
engine 1060 may retrieve content from the network 1020 or from one or more external

servers on a second network 1024 (e.g., LAN) using, for example, network file system (NFS)

10

15

20

25

30

WO 02/39260 PCT/US01/45518

25

or common internet file system (CIFS) file sharing protocol. Once content is retrieved, the
content delivery system may advantageously maintain an independent copy of the original
content, and therefore is free to employ any file system structure that is beneficial, and need

not understand low level disk formats of a large number of file systems.

Management interface 1062 may be provided for interconnecting system management
engine 1060 with a network 1200 (e.g., LAN), or connecting content delivery system 1010 to
other network appliances such as other content delivery systems 1010, servers, computers,
etc. Management interface 1062 may be by any suitable network interface, such as 10/100
Ethernet, and may support communications such as management and origin traffic. Provision
for one or more terminal management interfaces (not shown) for may also be provided, such
as by RS-232 port, etc. The management interface may be utilized as a secure port to provide
system management and control information to the content delivery system 1010. For
example, tasks which may be accomplished through the management interface 1062 include
reconfiguration of the allocation of system hardware (as discussed below with reference to
FIGS. 1C-1F), programming the application processing engine, diagnostic testing, and any
other management or control tasks. Though generally content is not envisioned being
provided through the management interface, the identification of or location of files or
systems containing content may be received through the management interface 1062 so that
the content delivery system may access the content through the other higher bandwidth

interfaces.

MANAGEMENT PERFORMED BY THE NETWORK INTEFACE

Some of the system management functionality may also be performed directly within
the network interface processing engine 1030. In this case some system policies and filters
may be executed by the network interface engine 1030 in real-time at wirespeed. These
polices and filters may manage some traffic / bandwidth management criteria and various
service level guarantee policies. Examples of such system management functionality of are
described below. It will be recognized that these functions may be performed by the system

management engine 1060, the network interface engine 1030, or a combination thereof.

For example, a content delivery system may contain data for two web sites. An
operator of the content delivery system may guarantee one web site (“the higher quality site”)

higher performance or bandwidth than the other web site "(“the lower quality site”),

10

15

20

25

30

WO 02/39260 PCT/US01/45518
26

presumably in exchange for increased compensation from the higher quality site. The
network interface processing engine 1030 may be utilized to determine if the bandwidth
limits for the lower quaﬁly site have been exceeded and reject additional data requests related
to the lower quality site. Alternatively, requests related to the lower quality site may be
rejected to ensure the guaranteed performance of the higher quality site is achieved. In this
manner the requests may be rejected immediately at the interface to the external network and
additional resources of the content delivery system need not be utilized. In another example,
storage service providers may use the content delivery system to charge content providers
based on system bandwidth of downloads (as opposed to the traditional storage area based
fees). For billing purposes, the network interface engine may monitor the bandwidth use
related to a content provider. The network interface engine may also reject additional
requests related to content from a content provider whose bandwidth limits have been
exceeded. Again, in this manner the requests may be rejected immediately at the interface to
the external network and additional resources of the content delivery system need not be
utilized.

Additional system management functionality, such as quality of service (QoS)
functionality, also may be performed by the network interféce engine. A request from the
external network to the content delivery system may seek a specific file and also may contain
Quality of Service (QoS) parameters. In one example, the QoS parameter may indicate the
priority of service that a client on the external network is to receive. The network interface
engine may recognize the QoS data and the data may then be utilized when managing the
data and communication flow through the content delivery system. The request may be
transferred to the storage management engine to access this file via a read queue, e.g.,
[Destination IP][Filename][File Type (CoS)][Transport Priorities (QoS)]. All file read
requests may be stored in a read queue. Based on CoS/QoS policy parameters as well as
buffer status within the storage management engine (empty, full, near empty, block seq#,
etc), the storage management engine may prioritize which blocks of which files to access
from the disk next, and transfer this data into the buffer memory location that has been
assigned to be transmitted to a specific IP address. Thus based upon QoS data in the request
provided to the content delivery system, the data and communication traffic through the
system may be prioritized. The QoS and other policy priorities may be applied to both

incoming and outgoing traffic flow. Therefore a request having a higher QoS priority may

10

15

20

25

30

WO 02/39260 PCT/US01/45518
27

be received after a lower order priority request, yet the higher priority request may be served

data before the lower priority requést.

The network interface engine may also be used to filter requests that are not supported
by the content delivery system. For example, if a content delivery system is configured only
to accept HTTP requests, then other requests such as FTP, telnet, etc. may be rejected or
filtered. This filtering may be applied directly at the network interface engine, for example
by programming a network processor with the appropriate system policies. Limiting
undesirable traffic directly at the network interface offloads such functions from the other
processing modules and improves system performance by limiting the consumption of system
resources by the undesirable traffic. It will be recognized that the filtering example described

herein is merely exemplary and many other filter criteria or policies may be provided.

MULTI-PROCESSOR MODULE DESIGN

As illustrated in FIG. 1A, any given processing engine of content delivery system

1010 may be optionally provided with multiple processing modules so as to enable parallel or
redundant processing of data and/or communications. For example, two or more individual
dedicated TCP/UDP processing modules 1050a and 1050b may be provided for transport
processing engine 1050, two or more individual application processing modules 1070a and
1070b may be provided for network application processing engine 1070, two or more
individual network interface processing modules 1030a and 1030b may be provided for
network interface processing engine 1030 and two or more individual storage management
processing modules 1040a and 1040b may be provided for storage management processing
engine 1040. Using such a configuration, a first content request may be processed between a
first TCP/UDP processing module and a first application processing module via a first switch
fabric path, at the same time a second content request is processed between a second
TCP/UDP processing module and a second application processing module via a second
switch fabric path. Such parallel processing capability may be employed to accelerate

content delivery.

Alternatively, or in combination with parallel processing capability, a first TCP/UDP
processing module 1050a may be backed-up by a second TCP/UDP processing module
1050b that acts as an automatic failover spare to the first module 1050a. In those

embodiments employing multiple-port switch fabrics, various combinations of multiple

10

15

20

25

30

WO 02/39260 PCT/US01/45518

28

modules may be selected for use as desired on an individual system-need basis (e.g., as may
be dictated by module failures and/or by anticipated or actual bottlenecks), limited only by
the number of available ports in the fabric. This feature offers great flexibility in the
operation of individual engines and discrete processing modules of a content delivery system,
which may be translated into increased content delivery acceleration and reduction or

substantial elimination of adverse effects resulting from system component failures.

In yet other embodimenté, the processing modules may be specialized to specific
applications, for example, for processing and delivering HTTP content, processing and
delivering RTSP content, or other applications. For example, in such an embodiment an
application processing module 1070a and storage processing module 1040a may be specially
programmed for processing a first type of request received from a network. In the same
system, application processing module 1070b and storage processing module 1040b may be
specially programmed to handle a second type of request different from the first type.
Routing of requests to the appropriate respective application and/or storage modules may be
accomplished using a distributive interconnect and may be controlled by transport and/or
interface processing modules as requests are received and processed by these modules using

policies set by the system management engine.

Further, by employing processing modules capable of performing the function of
more than one engine in a content delivery system, the assigned functionality of a given
module may be changed on an as-needed basis, either manually or automatically by the
system management engine upon the occurrence of given parameters or conditions. This
feature may be achieved, for example, by using similar hardware modules for different
content delivery engines (e.g., by employing PENTIUM III based processors for both
network transport processing modules and for application processing modules), or by using
different hardware modules capable of performing the same task as another module through
software programmability (e.g., by employing a POWER PC processor based module for
storage management modules that are also capable of functioning as network transport
modules). In this regard, a content delivery system may be configured so that such
functionality reassignments may occur during system operation, at system boot-up or in both
cases. Such reassignments may be effected, for example, using software so that in a given
content delivery system every content delivery engine (or at a lower level, every discrete

content delivery processing module) is potentially dynamically reconfigurable using software

10

15

20

25

30

WO 02/39260 PCT/US01/45518

29

commands. Benefits of engine or module reassignment include maximizing use of hardware
resources to deliver content while minimizing the need to add expensive hardware to a

content delivery system.

Thus, the system disclosed herein allows various levels of load balancing to satisfy a
work request. At a system hardware level, the functionality of the hardware may be assigned
in a manner that optimizes the system performance for a given load. At the processing
engine level, loads may be balanced between the multiple processing modules of a given

processing engine to further optimize the system performance.

CLUSTERS OF SYSTEMS

The systems described herein may also be clustered together in groups of two or more
to provide additional processing power, storage connections, bandwidth, etc. Communication
between two individual systems each configured similar to content delivery system 1010 may
be made through network interface 1022 and/or 1023. Thus, one content delivery system
could communicate with another content delivery system through the network 1020 and/or
1024. For example, a storage unit in one content delivery system could send data to a
network interface engine of another content delivery system. As an example, these
communications could be via TCP/IP protocols. Alternatively, the distributed interconnects
1080 of two content delivery systems 1010 may communicate directly. For example, a
connection may be made directly between two switch fabrics, each switch fabric being the

distributed interconnect 1080 of separate content delivery systems 1010.

FIGS. 1G-1J illustrate four exemplary clusters of content delivery systems 1010. It
will be recognized that many other cluster arrangements may be utilized including more or
less content delivery systems. As shown in FIGS. 1G-1J, each content delivery system may
be configured as described above and include a distributive interconnect 1080 and a network
interface processing engine 1030. Interfaces 1022 may connect the systems to a network
1020. As shown in FIG. 1G, two content delivery systems may be coupled together through
the interface 1023 tha"c is connected to each system’s network interface processing engine
1030. FIG. 1H shows three systems coupled together as in FIG. 1G. The interfaces 1023 of
each system may be coupled directly together as shown, may be coupled together through a

network or may be coupled through a distributed interconnect (for example a switch fabric).

10

15

20

25

30

WO 02/39260 PCT/US01/45518
30

FIG. 11 illustrates a cluster in which the distributed interconnects 1080 of two systems
are directly coupled together through an interface 1500. Interface 1500 may be any
communication connection, such as a copper connection, optical fiber, wireless connection,
etc. Thus, the distributed interconnects of two or more systems may directly communicate
without communication through the processor engines of the content delivery systems 1010.
FIG. 17 illustrates the distributed interconnects of three systems directly communicating
without first requiring communication through the processor engines of the content delivery
systems 1010. As shown in FIG. 1J, the interfaces 1500 each communicate with each other
through another distributed interconnect 1600. Distributed interconnect 1600 may be a

switched fabric or any other distributed interconnect.
The clustering techniques described herein may also be implemented through the use
of the management interface 1062. Thus, communication between multiple content delivery

systems 1010 also may be achieved through the management interface 1062

EXEMPLARY DATA AND COMMUNICATION FLOW PATHS

FIG. 1B illustrates one exemplary data and communication flow path configuration
among modules of one embodiment of content delivery system 1010. The flow paths shown
in FIG. 1B are just one example given to illustrate the significant improvements in data
processing capacity and content delivery acceleration that may be realized using multiple
content delivery engines that are individually optimized for different layers of the software
stack and that are distributively interconnected as disclosed herein. The illustrated
embodiment of FIG. 1B employs two network application processing modules 1070a and
1070b, and two network transport processing modules 1050a and 1050b that are
communicatively coupled with single storage management processing module 1040a and
single network interface processing module 1030a. The storage management processing
module 1040a is in turn coupled to content sources 1090 and 1100. In FIG. 1B, inter-
processor command or control flow (i.e. incoming or received data request) is represented by
dashed lines, and delivered content data flow is represented by solid lines. Command and
data flow between modules may be accomplished through the distributive interconnection

1080 (not shown), for example a switch fabric.

As shown in FIG. 1B, a request for content is received and processed by network

interface processing module 1030a and then passed on to either of network transport

10

15

20

25

30

WO 02/39260 PCT/US01/45518

31

processing modules 1050a or 1050b for TCP/UDP processing, and then on to respective
application processing modules 1070a or 1070b, depending on the transport processing
module initially selected. After processing by the appropriate network application processing
module, the request is passed on to storage management processor 1040a for processing and
retrieval of the requested content from appropriate content sources 1090 and/or 1100.
Storage management processing module 1040a then forwards the requested content directly
to one of network transport processing modules 1050a or 1050b, utilizing the capability of
distributive interconnection 1080 to bypass network application processing modules 1070a
and 1070b. The requested content may then be transferred via the network interface
processing module 1030a to the external network 1020. Benefits of bypassing the application
processing modules with the delivered content include accelerated delivery of the requested
content and offloading of workload from the application processing modules, each of which
translate into greater processing efficiency and content delivery throughput. In this regard,
throughput is generally measured in sustained data rates passed through the system and may
be measured in bits per second. Capacity may be measured in terms of the number of files
that may be partially cached, the number of TCP/IP connections per second as well as the
number of concurrent TCP/IP connections that méy be maintained or the number of
simultaneous streams of a certain bit rate. In an alternative embodiment, the content may be
delivered from the storage management processing module to the application processing
module rather than bypassing the application processing module. This data flow may be
advantageous if additional processing of the data is desired. For example, it may be desirable

to decode or encode the data prior to delivery to the network.

To implement the desired command and content flow paths between multiple
modules, each module may be provided with means for identification, such as a component
ID. Components may be affiliated with content requests and content delivery to effect a
desired module routing. The data-request generated by the network interface engine may
include pertinent information such as the component ID of the various modules to be utilized
in processing the request. For example, included in the data request sent to the storage
management engine may be the component ID of the transport engine that is designated to
receive the requested content data. When the storage management engine retrieves the data
from the storage device and is ready to send the data to the next engine, the storage

management engine knows which component ID to send the data to.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

32

As further illustrated in FIG. 1B, the use of two network transport modules in
conjunction with two network application processing modules provides two parallel
processing paths for network transport and network application processing, allowing
simultaneous processing of separate content requests and simultaneous delivery of separate
content through the paréllel processing paths, further increasing throughput/capacity and
accelerating content delivery. Any two modules of a given engine may communicate with
separate modules of another engine or may communicate with the same module of another
engine. This is illustrated in FIG. 1B where the transport modules are shown to communicate
with separate application modules and the application modules are shown to communicate

with the same storage management module.

FIG. 1B illustrates only one exemplary embodiment of module and processing flow
path configurations that may be employed using the disclosed method and system. Besides
the embodiment illustrated in FIG. 1B, it will be understood that multiple modules may be
additionally or alternatively employed for one or more other network content delivery
engines (e.g., storage management processing engine, network interface processing engine,
system management processing engine, efc.) to create other additional or alternative parallel
processing flow paths, and that any number of modules (e.g., greater than two) may be
employed for a given processing engine or set of processing engines so as to achieve more
than two parallel processing flow paths. For example, in other possible embodiments, two or
more different network transport processing engines may pass content requests to the same

application unit, or vice-versa.

Thus, in addition to the processing flow paths illustrated in FIG. 1B, it will be
understood that the disclosed distributive interconnection system may be employed to create
other custom or optimized processing flow paths (e.g., by bypassing and/or interconnecting
any given number of processing engines in desired sequence/s) to fit the requirements or
desired operability of a given content delivery application. For example, the content flow
path of FIG. 1B illustrates an exemplary application in which the content is contained in
content sources 1090 and/or 1100 that are coupled to the storage processing engine 1040.
However as discussed above with reference to FIG. 1A, remote and/or live broadcast content
may be provided to the content delivery system from the networks 1020 and/or 1024 via the
second network interface connection 1023. In such a situation the content may be received

by the network interface engine 1030 over interface connection 1023 and immediately re-

10

15

20

25

30

WO 02/39260 PCT/US01/45518

33

broadcast over interface connection 1022 to the network 1020. Altemnatively, content may be
proceed through the network interface connection 1023 to the network transport engine 1050
prior to returning to the network interface engine 1030 for re-broadcast over interface
connection 1022 to the network 1020 or 1024. In yet another alternative, if the content
requires some manner of application processing (for example encoded content that may need
to be decoded), the content may proceed all the way to the application engine 1070 for
processing. After application processing the content may then be delivered through the

network transport engine 1050, network interface engine 1030 to the network 1020 or 1024.

In yet another embodiment, at least two network interface modules 1030a and 1030b
may be provided, as illustrated in FIG. 1A. In this embodiment, a first network interface
engine 1030a may receive incoming data from a network and pass the data directly to the
second network interface engine 1030b for transport back out to the same or different
network. For example, in the remote or live broadcast application describéd above, first
network interface engine 1030a may receive content, and second network interface engine
1030b provide the content to the network 1020 to fulfill requests from one or more clients for
this content. Peer-to-peer level communication between the two network interface engines
allows first network interface engine 1030a to send the content directly to second network
interface engine 1030b via distributive interconnect 1080. If necessary, the content may also
be routed through transport processing engine 1050, or through transport processing engine

1050 and application processing engine 1070, in a manner described above.

Still yet other applications may exist in which the content required to be delivered is
contained both in the attached content sources 1090 or 1100 and at other remote content
sources. For example in a web caching application, not all content may be cached in the
attached content sources, but rather some data may also be cached remotely. In such an
application, the data and communication flow may be a combination of the various flows
described above for content provided from the content sources 1090 and 1100 and for content

provided from remote sources on the networks 1020 and/or 1024.

The content delivery system 1010 described above is configured in a peer-to-peer
manner that allows the various engines and modules to communicate with each other directly
as peers through the distributed interconnect. This is contrasted with a traditional server

architecture in which there is a main CPU. Furthermore unlike the arbitrated bus of

10

15

20

25

30

WO 02/39260 PCT/US01/45518
34

traditional servers, the distributed interconnect 1080 provides a switching means which is not
arbitrated and allows multiple simultaneous coﬁqmunications between the various peers. The
data and communication flow may by-pass unnecessary peers such as the return of data from
the storage management processing engine 1040 directly to the network interface processing

engine 1030 as described with reference to FIG. 1B.

Communications between the various processor engines may be made through the use
of a standardized internal protocol. Thus, a standardized method is provided for routing
through the switch fabric and communicating between any two of the processor engines
which operate as peers in the peer to peer environment. The standardized internal protocol
provides a mechanism upon which the external network protocols may "ride" upon or be
incorporated within. In this manner additional internal protocol layers relating to internal
communication and data exchange may be added to the external protocol layers. The
additional internal layers may be provided in addition to the external layers or may replace
some of the external protocol layers (for example as described above portions of the external

headers may be replaced by identifiers or tags by the network interface engine).

The standardized internal protocol may consist of a system of message classes, or
types, where the different classes can independently include fields or layers that are utilized
to identify the destination processor engine or processor module for communication, control,
or data messages provided to the switch fabric along with information pertinent to the
corresponding message class. The standardized internal protocol may also include fields or
layers that identify the priority that a data packet has within the content delivery system.
These priority levels may be set by éach processing engine based upon system-wide policies.
Thus, some traffic within the content delivery system may be prioritized over other traffic
and this priority level may be directly indicated within the internal protocol call scheme
utilized to enable communications within the system. The prioritization helps enable the
predictive traffic flow between engines and end-to-end through the system such that service

level guarantees may be supported.

Other internally added fields or layers may include processor engine state, system
timestamps, specific message class identifiers for message routing across the switch fabric
and at the receiving processor engine(s), system keys for secure control message exchange,

flow control information to regulate control and data traffic flow and prevent congestion, and

10

15

20

25

30

WO 02/39260 PCT/US01/45518

35

specific address tag fields that allow hardware at the receiving processor engines to move

specific types of data directly into system memory.

In one embodiment, the internal protocol may be structured as a set, or system of
messages with common system defined headers that allows all processor engines and,
potentially, processor engine switch fabric attached hardware, to interpret and process
messages efficiently and intelligently. This type of design allows each processing engine, and
specific functional entities within the processor engines, to have their own specific message
classes optimized functionally for the exchanging their specific types control and data
information. Some message classes that may be employed are: System Control messages for
system management, Network Interface to Network Transport messages, Network Transport
to Application Interface messages, File System to Storage engine messages, Storage engine to
Network Transport messages, etc. Some of the fields of the standardized message header may
include message priority, message class, message class identifier (subtype), message size,
message options and qualifier fields, message context identifiers or tags, etc. In addition, the
system statistics gathering, management and control of the various engines may be performed

across the switch fabric connected system using the messaging capabilities.

By providing a standardized internal protocol, overall system performance may be
improved. In particular, communication speed between the processor engines across the
switch fabric may be increased. Further, communications between any two processor engines
may be enabled. The standardized protocol may also be utilized to reduce the processing
loads of a given engine by reducing the amount of data that may need to be processed by a

given engine.

The internal protocol may also be optimized for a particular system application,
providing further performance improvements. However, the standardized internal
communication protocol may be general enough to support encapsulation of a wide range of
networking and storage protocols. Further, while internal protocol may run on PCI, PCI-X,
ATM, IB, Lightening I/O, the internal protocol is a protocol above these transport-level
standards and is optimal for use in a switched (non-bus) environment such as a switch fabric.
In addition, the internal protocol may be utilized to communicate devices (or peers)
connected to the system in addition to those described herein. For example, a peer need not

be a processing engine. In one example, a peer may be an ASIC protocol converter that is

10

15

20

25

30

WO 02/39260 PCT/US01/45518

36

coupled to the distributed interconnect as a peer but operates as a slave device to other master
devices within the system. The internal protocol may also be as a protocol communicated

between systems such as used in the clusters described above.
Thus a system has been provided in which the networking / server clustering / storage
networking has been collapsed into a single system utilizing a common low-overhead internal

communication protocol / transport system.

CONTENT DELIVERY ACCELERATION

As described above, a wide range of techniques have been provided for accelerating
content delivery from the content delivery system 1010 to a network. By accelerating the
speed at which content may be delivered, a more cost effective and higher performance
system may be provided. These techniques may be utilized separately or in various

combinations.

One content acceleration technique involves the use of a multi-engine system with
dedicated engines for varying processor tasks. Each engine can perform operations
independently and in parallel with the other engines without the other engines needing to
freeze or halt operations. The engines do not have to compete for resources such as memory,
I/O, processor time, etc. but are provided with their own resources. Each engine may also be
tailored in hardware and/or software to perform specific content delivery task, thereby
providing increasing content delivery speeds while requiring less system resources. Further,
all data, regardless of the flow path, gets processed in a staged pipeline fashion such that each
engine continues to process its layer of functionality after forwarding data to the next engine /

layer.

Content acceleration is also obtained from the use of multiple processor modules
within an engine. In this manner, parallelism may be achieved within a specific processing
engine. Thus, multiple processors responding to different content requests may be operating

in parallel within one engine.

Content acceleration is also provided by utilizing the multi-engine design in a peer to
peer environment in which each engine may communicate as a peer. Thus, the

communications and data paths may skip unnecessary engines. For example, data may be

10

15

20

25

30

WO 02/39260 PCT/US01/45518

37

communicated directly from the storage processing engine to the transport processing engine

without have to utilize resources of the application processing engine.

Acceleration of content delivery is also achieved by removing or stripping the
contents of some protocol layers in one processing engine and replacing those layers with
identifiers or tags for use with the next processor engine in the data or communications flow
path. Thus, the processing burden placed on the subsequent engine may be reduced. In
addition, the packet size transmitted across the distributed interconnect may be reduced.
Moreover, protocol processing may be off-loaded from the storage and/or application

processors, thus freeing those resources to focus on storage or application processing.

Content acceleration is also provided by using network processors in a network
endpoint system. Network processors generally are specialized to perform packet analysis
functions at intermediate network nodes, but in the content delivery system disclosed the
network processors have been adapted for endpoint functions. Furthermore, the parallel
processor configurations within a network processor allow these endpoint functions to be

performed efficiently.

In addition, content acceleration has been provided through the use of a distributed
interconnection such as a switch fabric. A switch fabric allows for parallel communications
between the various engines and helps to efficiently implement some of the acceleration

techniques described herein.

It will be recognized that other aspects of the content delivery system 1010 also
provide for accelerated delivery of content to a network conmnection. Further, it will be
recognized that the techniques disclosed herein may be equally applicable to other network

endpoint systems and even non-endpoint systems.

EXEMPLARY HARDWARE EMBODIMENTS
FIGS. 1C-1F illustrate just a few of the many multiple network content delivery

engine configurations possible with one exemplary hardware embodiment of content delivery
system 1010. In each illustrated configuration of this hardware embodiment, content delivery
system 1010 includes processing modules that may be configured to operate as content

delivery engines 1030, 1040, 1050, 1060, and 1070 communicatively coupled via distributive

10

15

20

25

30

WO 02/39260 PCT/US01/45518
38

interconnection 1080. As shown in FIG. 1C, a single processor module may operate as the
network interface processing engine 1030 and a single processor module may operate as the
system management processing engine 1060. Four processor modules 1001 may be
configured to operate as either the transport processing engine 1050 or the application
processing engine 1070. Two processor modules 1003 may operate as either the storage
processing engine 1040 or the transport processing engine 1050. The Gigabit (Gb) Ethernet
front end interface 1022, system management interface 1062 and dual fibre channel arbitrated

loop 1092 are also shown.

As mentioned above, the distributive interconnect 1080 may be a switch fabric based
interconnect. As shown in FIG. 1C, the interconnect may be an IBM PRIZMA-E
eight/sixteen port switch fabric 1081. In an eight port mode, this switch fabric is an 8 x 3.54
Gbps fabric and in a sixteen port mode, this switch fabric is a 16 x 1.77 Gbps fabric. The
eight/sixteen port switch fabric may be utilized in an eight port mode for performance
optimization. The switch fabric 1081 may be coupled to the individual processor modules
through interface converter circuits 1082, such as IBM UDASL switch interface circuits. The
interface converter circuits 1082 convert the data aligned serial link interface (DASL) to a
UTOPIA (Universal Test and Operations PHY Interface for ATM) parallel interface. FPGAs
(field programmable gate array) may be utilized in the processor modules as a fabric interface
on the processor modules as shown in FIG. 1C. These fabric interfaces provide a 64/66Mhz
PCI interface to the interface converter circuits 1082. FIG. 4 illustrates a functional block
diagram of such a fabric interface 34. As explained below, the interface 34 provides an
interface between the processor module bus and the UDASL switch interface converter
circuit 1082. As shown in FIG. 4, at the switch fabric side, a physical connection interface 41
provides connectivity at the physical level to the switch fabric. An example of interface 41 is
a parallel bus interface complying with the UTOPIA standard. In the example of FIG. 4,
interface 41 is a UTOPIA 3 interface providing a 32-bit 110 Mhz connection. However, the
concepts disclosed herein are not protocol dependent and the switch fabric need not comply

with any particular ATM or non ATM standard.

Still referring to FIG. 4, SAR (segmentation and reassembly) unit 42 has appropriate
SAR logic 42a for performing segmentation and reassembly tasks for converting messages to
fabric cells and vice-versa as well as message classification and message class-to-queue

routing, using memory 42b and 42¢ for transmit and receive queues. This permits different

10

15

20

25

© 30

WO 02/39260 PCT/US01/45518

39

classes of messages and permits the classes to have different priority. For example, control
messages can be classified separately from data messages, and given a different priority. All
fabric cells and the associated messages may be self routing, and no out of band signaling is

required.

A special memory modification scheme permits one processor module to write
directly into memory of another. This feature is facilitated by switch fabric interface 34 and
in particular by its message classification capability. Commands and messages follow the
same path through switch fabric interface 34, but can be differentiated from other control and
data messages. In this manner, processes executing on processor modules can communicate

directly using their own memory spaces.

Bus interface 43 permits switch fabric interface 34 to communicate with the processor
of the processor module via the module device or I/O bus. An example of a suitable bus

architecture is a PCI architecture, but other architectures could be used. Bus interface 43 is a

‘master/target device, permitting interface 43 to write and be written to and providing

appropriate bus control. The logic circuitry within interface 43 implements a state machine

that provides the communications protocol, as well as logic for configuration and parity.

Referring again to FIG. 1C, network processor 1032 (for example a MOTOROLA C-
Port C-5 network processor) of the network interface processing engine 1030 may be
coupled directly to an interface converter circuit 1082 as shown. As mentioned above and
further shown in FIG. 1C, the network processor 1032 also may be coupled to the network
1020 by using a VITESSE GbE SERDES (serializer-deserializer) device (for example the
VSC7123) and an SFP (small form factor pluggable) optical transceiver for LC fibre

connection.

The processor modules 1003 include a fibre channel (FC) controller as mentioned
above and further shown in FIG. 1C. For example, the fibre channel controller may be the
LSI SYMFC929 dual 2GBaud fibre channel controller. The fibre channel controller enables
communication with the fibre channel 1092 when the processor module 1003 is utilized as a
storage processing engine 1040. Also illustrated in FIGS. 1C-1F is optional adjunct
processing unit 1300 that employs a POWER PC processor with SDRAM. The adjunct

processing unit is shown coupled to network processor 1032 of network interface processing

10

15

20

25

30

WO 02/39260 PCT/US01/45518

40

engine 1030 by a PCI interface. Adjunct processing unit 1300 may be employed for

monitoring system parameters such as temperature, fan operation, system health, etc.

As shown in FIGS. 1C-1F, each processor module of content delivery engines 1030,
1040, 1050, 1060, and 1070 is provided with its own synchronous dynamic random access
memory (“SDRAM?”) resources, enhancing the independent operating capabilities of each
module. The memory resources may be operated as ECC (error correcting code) memory.
Network interface processing engine 1030 is also provided with static random access memory
(“SRAM™). Additional memory circuits may also be utilized as will be recognized by those
skilled in the art. For example, additional memory resources (such as synchronous SRAM
and non-volatile FLASH and EEPROM) may be provided in conjunction with the fibre
channel controllers. In addition, boot FLASH memory may also be provided on the of the

processor modules.

The processor modules 1001 and 1003 of FIG. 1C may be configured in alternative
manners to implement the content delivery processing engines such as the network interface
processing engine 1030, storage processing engine 1040, transport processing engine 1050,
system management processing engine 1060, and application processing engine 1070.
Exemplary configurations are shown in FIGS. 1D-1F, however, it will be recognized that

other configurations may be utilized.

As shown in FIG. 1D, two Pentium III based processing modules may be utilized as
network application processing modules 1070a and 1070b of network application processing
engine 1070. The remaining two Pentium IIl-based processing modules are shown in FIG.
1D configured as network transport / protocol processing modules 1050a and 1050b of
network transport / protocol processing engine 1050. The embodiment of FIG. 1D also
includes two POWER PC-based processor modules, configured as storage management
processing modules 1040a and 1040b of storage management processing engine 1040. A
single MOTOROLA C-Port C-5 based network processor is shown employed as network
interface processing engine 1030, and a single Pentium III-based processing module is shown

employed as system management processing engine 1060.

In FIG. 1E, the same hardware embodiment of FIG. I1C is shown alternatively

configured so that three Pentium IIl-based processing modules function as network

10

15

20

25

30

WO 02/39260 PCT/US01/45518

41

application processing modules 1070a, 1070b and 1070c of network application processing
engine 1070, and so that the sole remaining Pentium IIl-based processing module is
configured as a network transport processing module 1050a of network transport processing

engine 1050. As shown, the remaining processing modules are configured as in FIG. 1D.

In FIG. 1F, the same hardware embodiment of FIG. 1C is shown in yet another
alternate configuration so that three Pentium III-based processing modules function as
application processing modules 1070a, 1070b and 1070c of network application processing
engine 1070. In addition, the network transport processing engine 1050 includes one
Pentium IIl-based processing module that is configured as network transport processing
module 1050a, and one POWER PC-based processing module that is configured as network
transport processing module 1050b. The remaining POWER PC-based processor module is
configured as storage management processing module 1040a of storage management

processing engine 1040.

It will be understood with benefit of this disclosure that the hardware embodiment and
multiple engine configurations thereof illustrated in FIGS. 1C-1F are exemplary only, and
that other hardware embodiments and engine configurations thereof are also possible. It will
further be understood that in addition to changing the assignments of individual processing
modules to particular processing engines, distributive interconnect 1080 enables the various
processing flow paths between individual modules employed in a particular engine
configuration in a manner as described in relation to FIG. 1B. Thus, for any given hardware
embodiment and processing engine configuration, a number of different processing flow
paths may be employed so as to optimize system performance to suit the needs of particular

system applications.

SINGLE CHASSIS DESIGN

As mentioned above, the content delivery system 1010 may be implemented within a

single chassis, such as for example, a 2U chassis. The system may be expanded further while
still remaining a single chassis system. In particular, utilizing a multiple processor module or
blade arrangement connected through a distributive interconnect (for example a switch
fabric) provides a system that is easily scalable. The chassis and interconnect may be
configured with expansion slots provided for adding additional processor modules.

Additional processor modules may be provided to implement additional applications within

10

15

20

25

30

WO 02/39260 PCT/US01/45518
42

the same chassis. Alternatively, additional processor modules may be provided to scale the
bandwidth of the network commection. Thus, though describe with respect to a 1Gbps
Ethernet connection to the external network, a 10 Gbps, 40 Gbps or more connection may be
established by the system through the use of more network interface modules. Further,
additional processor modules may be added to address a system's particular bottlenecks
without having to expand all engines of the system. The additional modules may be added
during a systems initial configuration, as an upgrade during system maintenance or even hot

plugged during system operation.

ALTERNATIVE SYSTEMS CONFIGURATIONS

Further, the network endpoint system techniques disclosed herein may be
implemented in a variety of alternative configurations that incorporate some, but not
necessarily all, of the concepts disclosed herein. For example, FIGS. 2 and 2A disclose two
exemplary alternative configurations. It will be recognized, however, that mahy other
alternative configurations may be utilized while still gaining the benefits of the inventions-

disclosed herein.

FIG. 2 is a ‘more generalized and functional representation of a content delivery
system showing how such a system may be alternately configured to have one or more of the
features of the content delivery system embodiments illustrated in FIGS. 1A-1F. FIG. 2
shows content delivery system 200 coupled to network 260 from which content requests are
received and to which content is delivered. Content sources 265 are shown coupled to
content delivery system 200 via a content delivery flow path 263 that may be, for example, a
storage area network that links multiple content sources 265. A flow path 203 may be
provided to network connection 272, for example, to couple content delivery system 200 with

other network appliances, in this case one or more servers 201 as illustrated in FIG. 2.

In FIG. 2 .content delivery system 200 is configured with multiple processing and
memory modules that are distributively interconnected by inter-process communications path
230 and inter-process data movement path 235. Inter-process communications path 230 is
provided for receiving and distributing inter-processor command communications between
the modules and network 260, and interprocess data movement path 235 is provided for
receiving and distributing inter-processor data among the separate modules. As illustrated in

FIGS. 1A-1F, the functions of inter-process communications path 230 and inter-process data

10

15

20

25

30

WO 02/39260 PCT/US01/45518

43

movement path 235 may be together handled by a single distributive interconnect 1080 (such
as a switch fabric, for example), however, it is also possible to separate the communications

and data paths as illustrated in FIG. 2, for example using other interconnect technology.

FIG. 2 illustrates a single networking subsystem processor module 205 that is
provided to perform the combined functions of network interface processing engine 1030 and
transport processing engine 1050 of FIG. 1A. Communication and content delivery between

network 260 and networking subsystem processor module 205 are made through network

- connection 270. For certain applications, the functions of network interface processing

engine 1030 and transport processing engine 1050 of FIG. 1A may be so combined into a
single module 205 of FIG. 2 in order to reduce the level of communication and data traffic
handled by communications path 230 and data movement path 235 (or single switch fabric),
without adversely impacting the resources of application processing engine or subsystem
module. If such a modification were made to the system of FIG. 1A, content requests may be
passed directly from the combined interface/transport engine to network application
processing engine 1070 via distributive interconnect 1080. Thus, as previously described the
functions of two or more separate content delivery system engines may be combined as
desired (e.g., in a single module or in multiple modules of a single processing blade), for

example, to achieve advantages in efficiency or cost.

In the embodiment of FIG. 2, the function of network application processing engine
1070 of FIG. 1A is performed by application processing subsystem module 225 of FIG. 2 in
conjunction with application RAM subsystem module 220 of FIG. 2. System monitor
module 240 communicates with server/s 201 through flow path 203 and Gb Ethernet network
interface connection 272 as also shown in FIG. 2. The system monitor module 240 may
provide the function of the system management engine 1060 of FIG. 1A and/or other system
policy / filter functions such as may also be implemented in the network interface processing

engine 1030 as described above with reference to FIG. 1A.

Similarly, the function of network storage management engine 1040 is performed by
storage subsystem module 210 in conjunction with file system cache subsystem module 215.
Communication and content delivery between content sources 265 and storage subsystem
module 210 are shown made directly through content delivery flowpath 263 through fibre

channel interface connection 212. Shared resources subsystem module 255 is shown

10

15

20

25

30

WO 02/39260 PCT/US01/45518

44

provided for access by each of the other subsystem modules and may include, for example,

additional processing resources, additional memory resources such as RAM, efc.

Additional processing engine capability (e.g., additional system management
processing capability, additional application processing capability, additional storage
processing capability, encryption / decryption processing capability, compression /
decompression processing capability, encoding / decoding capability, other processing
capability, efc.) may be provided as desired and is represented by other subsystem module
275. Thus, as previously described the functions of a single network processing engine may
be sub-divided between separate modules that are distributively interconnected. The sub-
division of network processing engine tasks may also be made for reasons of efficiency or
cost, and/or may be taken advantage of to allow resources (e.g., memory or processing) to be
shared among separate modules. Further, additional shared resources may be made available

to one or more separate modules as desired.

Also illustrated in FIG. 2 are optional monitoring agents 245 and resources 250. In
the embodiment of FIG. 2, each monitoring agent 245 may be provided to monitor the
resources 250 of its respective processing subsystem module, and may track utilization of
these resources both within the overall system 200 and within its respective processing
subsystem module. Examples of resources that may be so monitored and tracked include, but
are not limited to, processing engine bandwidth, Fibre Channel bandwidth, number of
available drives, IOPS (input/output operations per second) per drive and RAID (redundant
array of inexpensive discs) levels of storage devices, memory available for caching blocks of
data, table lookup engine bandwidth, availability of RAM for connection control structures
and outbound network bandwidth availability, shared resources (such as RAM) used by
streaming application on a per-stream basis as well as for use with connection control
structures and buffers, bandwidth available for message passing between subsystems,

bandwidth available for passing data between the various subsystems, etc.

Information gathered by monitoring agents 245 may be employed for a wide variety
of purposes including for billing of individual content suppliers and/or users for pro-rata use
of one or more resources, resource use analysis and optimization, resource health alarms, efc.
In addition, monitoring agents may be employed to enable the deterministic delivery of

content by system 200 as described in concurrently filed, co-pending United States patent

10

15

20

25

30

WO 02/39260 PCT/US01/45518
45

application number 09/797,200 entitled “Systems and Methods for the Deterministic

Management of Information,” which is incorporated herein by reference.

In operation, content delivery system 200 of FIG. 2 may be configured to wait for a
request for content or services prior to initiating content delivery or performing a service. A
request for content, such as a request for access to data, may include, for example, a request
to start a video stream, a request for stored data, efc. A request for services may include, for
example, a request for to run an application, to store a file, efc. A request for content or
services may be received from a variety of sources. For example, if content delivery system
200 is employed as a stream server, a request for content may be received from a client
system attached to a computer network or communication network such as the Internet. In a
larger system environment, e.g., a data center, a request for content or services may be
received from a separate subcomponent or a system management processing engine, that is
responsible for performance of the overall system or from a sub-component that is unable to
process the current request. Similarly, a request for content or services may be received by a
variety of components of the receiving system. For example, if the receiving system is a
stream server, networking subsystem processor module 205 might receive a content request.
Alternatively, if the receiving system is a component of a larger system, e.g., a data center,

system management processing engine may be employed to receive the request.

Upon receipt of a request for content or services, the request may be filtered by
system monitor 240. Such filtering may serve as a screening agent to filter out requests that
the receiving system is not capable of processing (e.g., requests for file writes from read-only
system embodiments, unsupported protocols, content/services unavailable on system 200,
etc.). Such requests may be rejected outright and the requestor notified, may be re-directed to
a server 201 or other content delivery system 200 capable of handling the request, or may be

disposed of any other desired manner.

Referring now in more detail to one embodiment of FIG. 2 as may be employed in a
stream server configuration, networking processing subsystem module 205 may include the
hardware and/or software used to run TCP/IP (Transmission Control Protocol/Internet
Protocol), UDP/IP (User Datagram Protocol/Internet Protocol), RTP (Real-Time Transport
Protocol), Internet Protocol (IP), Wireless Application Protocol (WAP) as well as other

networking protocols. Network interface connections 270 and 272 may be considered part of

10

15

20

25

30

WO 02/39260 PCT/US01/45518

46

networking subsystem processing module 205 or as separate components. Storage subsystem
module 210 may include hardware and/or software for running the Fibre Channel (FC)
protocol, the SCSI (Small Computer Systems Interface) protocol, iSCSI protocol as well as
other storage networking protocols. FC interface 212 to content delivery flowpath 263 may
be considered part of storage subsystem module 210 or as a separate component. File system
cache subsystem module 215 may include, in addition to cache hardware, one or more cache

management algorithms as well as other software routines.

Application RAM subsystem module 220 may function as a memory allocation
subsystem and application processing subsystem module 225 may function as a stream-
serving application processor bandwidth subsystem. Among other services, application RAM
subsystem module 220 and application processing subsystem module 225 may be used to
facilitate such services as the pulling of content from storage and/or cache, the formatting of
content into RTSP (Real-Time Streaming Protocol) or another streaming protocol as well the

passing of the formatted content to networking subsystem 205.

As previously described, system monitor module 240 may be included in content
delivery system 200 to manage one or more of the subsystem processing modules, and may

also be used to facilitate communication between the modules.

In part to allow communications between the various subsystem modules of content
delivery system 200, inter-process communication path 230 may be included in content
delivery system 200, and may be provided with its own monitoring agent 245. Inter-process
communications path 230 may be a reliable protocol path employing a reliable IPC (Inter-
process Communications) protocol. To allow data or information to be passed between the
various subsystem modules of content delivery system 200, inter-process data movement path
235 may also be included in content delivery system 200, and may be provided with its own
monitoring agent 245. As previously described, the functions of inter-process
communications path 230 and inter-process data movement path 235 may be together
handled by a single distributive interconnect 1080, that may be a switch fabric configured to
support the bandwidth of content being served.

In one embodiment, access to content source 265 may be provided via a content

delivery flow path 263 that is a fibre channel storage area network (SAN), a switched

10

15

20

25

30

WO 02/39260 PCT/US01/45518

47

technology. In addition, network connectivity may be provided at network connection 270
(e.g., to a front end network) and/or at network connection 272 (e.g., to a back end network)
via switched gigabit Ethernet in conjunction with the switch fabric internal communication
system of content delivery system 200. As such, that the architecture illustrated in FIGURE

2 may be generally characterized as equivalent to a networking system.

One or more shared resources subsystem modules 255 may also be included in a
stream server embodiment of content delivery system 200, for sharing by one or more of the
other subsystem modules. Shared resources subsystem module 255 may be monitored by the
monitoring agents 245 of each subsystem sharing the resources. The monitoring agents 245
of each subsystem module may also be capable of tracking usage of shared resources 255.
As previously described, shared resources may include RAM (Random Access Memory) as

well as other types of shared resources.

Each monitoring agent 245 may be present to monitor one or more of the resources
250 of its subsystem processing module as well as the utilization of those resources both
within the overall system and within the respective subsystem processing module. For
example, monitoring agent 245 of storage subsystem module 210 may be configured to
monitor and track usage of such resources as processing engine bandwidth, Fibre Channel
bandwidth to content delivery flow path 263, number of storage drives attached, number of
input/output operations per second (IOPS) per drive and RAID levels of storage devices that
may be employed as content sources 265. Ménitoring agent 245 of file system cache
subsystem module 215 may be employed monitor and track usage of such resources as
processing engine bandwidth and memory employed for caching blocks of data. Monitoring
agent 245 of networking subsystem processing module 205 may be employed to monitor and
track usage of such resources as processing engine bandwidth, table lookup engine
bandwidth, RAM employed for connection control structures and outbound network
bandwidth availability. Monitoring agent 245 of application processing subsystem module
225 may be employed to monitor and track usage of processing engine bandwidth.
Monitoring agent 245 of application RAM subsystem module 220 may be employed to
monitor and track usage of shared resource 255, such as RAM, which may be employed by a
streaming application on a per-stream basis as well as for use with connection control
structures and buffers. Monitoring agent 245 of inter-process communication path 230 may

be employed to monitor and track usage of such resources as the bandwidth used for message

10

15

20

25

30

WO 02/39260 PCT/US01/45518

48

passing between subsystems while monitoring agent 245 of inter-process data movement path
235 may be employed to monitor and track usage of bandwidth employed for passing data

between the various subsystem modules.

The discussion concerning FIG. 2 above has generally been oriented towards a system

designed to deliver streaming content to a network such as the Internet using, for example,

" Real Networks, Quick Time or Microsoft Windows Media streaming formats. However, the

disclosed systems and methods may be deployed in any other type of system operable to
deliver content, for example, in web serving or file serving system environments. In such
environments, the principles may generally remain the same. However for application
processing embodiments, some differences may exist in the protocols used to communicate
and the method by which data delivery is metered (via streaming protocol, versus TCP/IP

windowing).

FIG. 2A illustrates an even more generalized network endpoint computing system that
may incorﬁorate at least some of the concepts disclosed herein. As shown in Figure 2A, a
network endpoint system 10 may be coupled to an external network 11. The external
network 11 may include a network switch or router coupled to the front end of the endpoint
system 10. The endpoint system 10 may be alternatively coupled to some other intermediate
network node of the external network. The system 10 may further include a network engine
9 coupled to an interconnect medium 14. The network engine 9 may include one or more
network processors. The interconnect medium 14 may be coupled to a plurality of processor
units 13 through interfaces 13a. Each processor unit 13 may optionally be couple to data
storage (in the exemplary embodiment shown each unit is couple to data storage). More or

less processor units 13 may be utilized than shown in FIG. 2A.

The network engine 9 may be a processor engine that performs all protocol stack
processing in a single processor module or alternatively may be two processor modules (such
as the network interface engine 1030 and transport engine 1050 described above) in which
split protocol stack processing techniques are utilized. Thus, the functionality and benefits of
the content delivery system 1010 described above may be obtained with the system 10. The
interconnect medium 14 may be a distributive interconnection (for example a switch fabric)
as described with reference to FIG. 1A. All of the various computing, processing,

communication, and control techniques described above with reference to FIGS. 1A-1F and 2

10 °

15

20

25

30

WO 02/39260 PCT/US01/45518
49

may be implemented within the system 10. It will therefore be recognized that these
techniques may be utilized with a wide variety of hardware and computing systems and the -

techniques are not limited to the particular embodiments disclosed herein.

The system 10 may consist of a variety of hardware configurations. In one
configuration the network engine 9 may be a stand-alone device and each processing unit 13
may be a separate server. In another configuration the network engine 9 may be configured
within the same chassis as the processing units 13 and each processing unit 13 may be a
separate server card or other computing system. Thus, a network engine (for example an
engine containing a network processor) may provide transport acceleration and be combined
with multi-server functionality within the system 10. The system 10 may also include shared
management and interface components. Alternatively, each processing unit 13 may be a
processing engine such as the transport processing engine, application engine, storage engine,
or system management engine of FIG. 1A. In yet another alternative, each processing unit
may be a processor module (dr processing blade) of the processor engines shown in the
system of FIG. 1A.

FIG. 2B illustrates yet another use of a network engine 9. As shown in FIG. 2B, a
network engine 9 may be added to a network interface card 35. The network interface card
35 may further include the interconnect medium 14 which may be similar to the distributed
interconnect 1080 described above. The network interface card may be part of a larger
computing system such as a server. The network interface card may couple to the larger
system through the interconnect medium 14. In addition to the functions described above, the

network engine 9 may perform all traditional functions of a network interface card.

It will be recognized that all the systems described above (FIGS. 1A, 2, 2A, and 2B)
utilize a network engine between the external network and the other processor units that are
appropriate for the function of the particular network node. The network engine may

. therefore offload tasks from the other processors. The network engine also may perform
“look ahead processing” by performing processing on a request before the request reaches
whatever processor is to perform whatever processing is appropriate for the network node. In
this manner, the system operations may be accelerated and resources utilized more

efficiently.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

50

ORDER SERIALIZATION

The systems described above may be implemented with order serialization techniques

applied to the network processor(s) contained within the network interface engine. The order
serialization techniques described herein may also be implemented in many other parallel
processing environments. The techniques are particularly appropriate for use with the
multiple processing cores of a network processor and therefore are described for illustrative
purposes with reference to a network processor. As described above and utilized herein, a
network processor may include any of the wide variety of commercially available network
processors, may include a network processor utilized in conjunction with another type of
processor, or may include a general processor configured to provide the specialized

functionality equivalent, or similar, to a network processor.

FIG. 5 illustrates a simplified network processor 5000 having a plurality of processor
cores 5002. For ease of illustration the network processor 5000 is shown with four processor
cores 5002. Each processor core may be assigned an identifier, for example a number 1, 2, 3,
and 4 respectively as is shown. A input stream of workloads to be processed by the network
processor 5000 is shown as data packets 5010A, 5010B, 5010C and 5010D contained within
the input data stream or input data queue 5010. After processing, these data packets are
provided as an output stream of processing results 5020. The output results are shown as
5020A, 5020B, 5020C, and 5020D which correspond to the results for each data packet
50104, 5010B, 5010C and 5010D respectively. The output results are provided in the output
data stream or output data queue 5020. In the illustration of FIG. 5, the first data packet
provided to the network processor is packet 5010A and the last packet is 5010D. Similarly,
the first output result from the network processor is 5020A and the last output is 5020D. As
shown in FIG. 5, input/output order serialization or arrival-departure order has been

maintained.

The order serialization techniques described herein allow for parallel processing of
the input data packets 5010A, 5010B, 5010C and 5010D by the processor cores 5002. The
output stream or queue 5020 may be maintained in serial order with respect to the input
stream or queue 5010 even though the processing times for each data packet may be vary
significantly. Thus, the benefits of parallel processing at the front end of the network

processor may be obtained while still achieving an order serialized back end output. In this

10

15

20

25

30

WO 02/39260 PCT/US01/45518

51

manner a network processor may be now suitable for use in a network endpoint system, such
as the systems of FIGS. 1A, 2 and 2A described above.

To better understand the order serialization techniques disclosed herein, the
techniques will first be generally discussed with reference to the simplified network processor
5000 shown in FIG. 5. As each new data packet arrives at the network processor 5000, the
network processor 5000 is programmed to assign the packet to a one of the processor cores
5002. The particular processor core assigned the packet is determined accord{ng to some
known sequence of the processor cores. The network processor is also programmed to
provide the output of each processor core as the network processor output in the same
sequence of processor cores. In this manner, the input/output order serialization is

maintained.

An exemplary sequence of processor core assignments is a simple round robin
assignment technique according to the processor core identifier. For example with reference
to FIG. 5, the first data packet to arrive at the network processor is assigned to processor core
number 1, the second data packet to arrive at the network processor is assigned to processor
core number 2, the third data packet to arrive at the network processor is assigned to
processor core number 3, the fourth data packet to arrive at the network processor is assigned
to processor core number 4, the fifth data packet to arrive at the network processor is
assigned to processor core number 1, etc. A predetermined sequence such as described above
may be considered a simple static assignment sequence. The predetermined or static
sequence may be established at system boot up time, during system maintenance, or at other
times. The round-robin sequence for accessing the input data may be implemented with a
hardware latch so that input data from a network or queue is received in the desired ordered.
Minimal input delivery order enforcement (on the order of a few nanoseconds or
microseconds headstart in processing) may be used to allow each processor core to start

somewhat in advance of another.

Output results provided from the network processor may then be obtained by
obtaining an output result from each processor core in the same sequence that the input data
packets were provided to the processor cores. Thus with respect to the example above, the
network processor outputs may be provided by first obtaining a processor result from

processor core number 1, then obtaining a processor result from processor core number 2,

10

15

20

25

30

WO 02/39260 PCT/US01/45518
52

then obtaining a processor result from processor core number 3, then obtaining a processor
result from processor core number 4, then obtaining a processor result from processor core
number 1, etc. In this manner, the order serialization may be maintained between the input
and the output of the network processor while still utilizing the parallel processing structure
of the network processor. Thus, multiple data packets of information may be communicated
to a network processing system and one or more processing cores may process the data
packets in a parallel processing manner that maintains order serialization even though the
packets may require varying processing times. This technique allows a network processor to

be suitable for use in a network endpoint system.

The sequence that is utilized for providing workloads to the processor cores and
determine the output order of the workload results from the processor cores may be managed
through the use of a processing output token. More particularly, the input sequence for the
assignment of workloads to processing tasks may be a known sequence (for example the
round robin sequence identified above) that may be hardware or software based. The
processing output token is then utilized for providing output data from the appropriate
processing core by maintaining a value within the token that corresponds to, or identifies, the

processing core that should provide the next output.

In operation, upon one of the processing cores finishing processing, the processing
core may access the processing output token to determine if the value of the token indicates
that the particular processing core is valid to provide output data. Thus, if processing core
number 1 has completed processing for a workload, processing core number 1 may access the
processing output token to determine the value of the token. The value of the token may be a
number, an address or any other means that identifies a specific processor core. If the value
of the token identifies processor core number 1, then the processed information from
processor core number 1 may be provided as an oﬁtput of the network processor or
communicated, queued, stored transferred, etc. as is appropriate for the application. The
processing core number 1 may then update the processing output token to the next processor
value, for example processing core number 2 in the example discussed above. In this
manner, a single processing core may be operable to exclusively update the processing output
token to the next processor core. As such, a single processing core may exclusively access the
processing token, read the value of the processing token, output/input content if it is the valid

processing core, update the processing token, and release the processing token for subsequent

10

15

20

25

30

WO 02/39260 PCT/US01/45518
53

access by other processing cores. The token may be based upon a single-writer, multiple-

reader algorithm which allows only the valid processor core to modify the token.

A processor core may complete a workload prior to the proper time for the network
processor to provide the output from the particular processor core. Thus, upon a processing
core accessing the processing output token, the value within the processing output token may
not be valid for the accessing processing core. In one embodiment, the processor core may

“stall” and refrain from further processing. While the processor core is stalled, the processor
core may keep monitoring the processing output token until the token identifies that

particularly processor core.

In an alternative embodiment, the processing core may receive and/or process
additional information until a valid value for the processing core is provided by the
processing output token. Thus, a processor core may begin processing a second data packet
prior to providing the output of the first data packet to the network processor output. In this
case, the processor core may have internal memory (or an assigned portion of system
memory) that is utilized to store the processed data. The processor core output may be
provided from this memory in a first-in-first -out (FIFO) fashion. In this manner, processing
cores provide efficient utilization within a network processing system while providing

ordering or serialization of processed information through use of a processing output token.

Thus, through the use of a processing output token, parallel processing by the
processor cores may be optimélly utilized. At the input, the processor cores do not have to be
latched but rather operate in a nearly continuous manner. Order enforcement is provided at
the final stage(s) of processing through the use of the processing output token. In this manner
a network endpoint may advantageously utilize the parallel processing benefits of a network

processor while still maintaining the order serialization required in endpoint processing.

It will be recognized that many other methods may be utilized to track the input /
output sequence to maintain order serialization and the concepts of the present invention are

not limited to a particular processing output token method.

FIG. 6 illustrates one embodiment of a network processing system operable to process

information using a network processor. A network processing system, illustrated generally at

10

15

20

25

30

WO 02/39260 PCT/US01/45518

54

100, includes a network processor 101 which may include several processing cores coupled
to a network 103 through a communication port 102. The system may also include memory
105 and a processing output token 104. Processing output token 104 may include a value that
corresponds to or identifies a processor core within the network processor 101 as described
above. Processing output token 104 may be stored within a memory location accessible by
the processing cores of the network processor 101 and may include data identifying a
processor core. The processor output token may also be stored as a list within a memory
location within memory 105, as a variable associated with each processing core, as a
hardware latch associated with a data bus or any other hardware of software configuration

which may be operable to provide a processing output token 104.

Memory 105 may include one or more types of memory such as random access
memory (RAM), read only memory (ROM), electrically erasable programmable read only
memory (EEPROM), or other types of memory operable to store information. Additionally,
memory 105 may be configured in many ways such as buffer memory, cache memory, FIFO
memory, or other memory configurations operable to store information. Memory 105 may
also include other types of information storage mediums which may include peripheral
devices such as hard disk drives, tape drives, etc. or other mediums which may be located

proximal or distal to system 100.

The network processing system 100 may be any network endpoint system or network
intermediate node system. For example, the network processing system 100 may be a portion

of the systems described above with reference to FIGS. 1A-1F, 2 and 2A.

During use, processing output token 104 may be initialized to a state that identifies
the processing core within the network processor 101 that corresponds to the first processor
core of the workload input sequence. Information may be received from network 103 or
another processor and a processing core may process the received information. For example,
a data packet of informatibn may be received by system 100 and a process routine may be
deployed by a processor core within network processor 101. Such processes may include, but
are not limited to, checksum computations and verification, packet replication, network
header rebuilding, any other processes described above with reference to a network

processor, etc.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

35

Upon the processor core finishing the processing of the data packet, the processor
core determines if the value within processing output token 104 is the same as the processor
core's identifier. If the value in the processing output token corresponds to the particular core
(i.e. the data is valid for the accessing processing core), the processor core outputs the
processed information and updates processing output token 104 to the next processor
identifier. In one embodiment, the identifier stored within the processing output token 104
may not be valid for the processing core accessing the processing output token 104. As such,
the invalid processing core may stall or may continue to process additional information or
data packets until the identifier of the processing outpuf token 104 is valid for the processing
core. As such, System 100 allows for an ordered serialization of information through the use
of a processing output token 104 that has a processing order or sequence which may be
updated by a valid processor core within network processor 101. The system thereby
increases processing efficiency and provides efficient processing of network communicated

information even if the processing times for individual packets varies significantly.

FIG. 7 illustrates one embodiment of a method for a processing system using a simple
static processing sequence, such as a round robin sequence. The simple static sequence may
be implemented through an algorithm contained in logic, a state machine, etc. The method
begins at step 2000. At step 2010, a processor, such as a processing core within a network
processor, accesses an input data queue and dequeues and processes information, data
packets, etc., described collectively as data units. The processor cores may access the input
queue according to the established static processing sequence. For example, the processor
cores may access the input queue in a round robin fashion such as described above. Upon
processing a data unit, the method proceeds to step 2020 where the processor core "latches" a
data memory bus or data line and reads the processor core identifier associated with the

processing output token.

Upon reading the identifier within the processing output token, the method proceeds
to step 2030 where the method determines if the valid processor core identified within the
token is the processor core accessing the processing output token. If the processor core
reading the token is not the identified processor core, the method proceeds to step 2040 where
the method releases the token (i.e. "de-latch" the database) and proceeds to step 2010 where
the processing core accesses/dequeues/processes additional data unit(s) or to step 2020 where

the method again reads the identifier in the processing output token (a stall).

10

15

20

25

30

WO 02/39260 PCT/US01/45518
56

If at step 2030, the processor core identified within the token is the same as the
processor core accessing the token, the method proceeds to step 2050 where the method
outputs the data unit(s) processed by the processor core. The data unit(s) may then be placed
within an output queue or queues. The method then proceeds to step 2060 where the method
updates the processor core identifier within the token to the next appropriate processor core
identifier and to step 2070 where the method releases the processing output token. Upon
releasing the token, the method proceeds to step 2010 where the method again accesses the

input quene and dequeues and processes data unit(s) using the processor core.

The processor cores may access the input queue according to processing sequences
different from the round robin sequence described above. For example another static
processing sequence may be based upon a user or system defined sequence list. The
sequence list may be provided at system boot up time, during system maintenance or at other
times. In this case, the data within the processing output token corresponds to the defined
sequence list. The processing output token may be realized as a fixed list located within a
memory location accessible by a processing core. The processing output token may include
multiple fields containing the data of the list. Each field may contain the identifier for a
particular processor core. In addition, a mechanism may also be provided to indicate which
particular field is the current valid field that contains the identifier for the current valid
processor core. This mechanism may be a pointer, an index system, etc. For illustrative
purposes, a pointer will be described, however, the use of a list is not limited to any particular
method of indicating the valid field. Upon determining that a processing core is valid, the

processor core may output data and update the index / pointer accordingly.

FIG. 8 illustrates one embodiment of a processing output token for use with a static
processing sequence based upon a user defined sequence list. This type of sequence may be
considered a static list sequence. The processing output token, illustrated generally at 400
may be realized as a fixed list located within a memory location accessible by the processor
cores. Processing token 400 generally illustrates a list of processor core identifiers (in this
case core numbers) associated with a plurality of processing cores for a network processor.
Array 401 includes a first field 402, a second identifier field 403, a third field 404, a fourth
field 405, a fifth field 406 a, and sixth field 407. The number of fields shown is provided for

illustrative purposes and more or less fields may be utilized. As shown in FIG. 8, the

10

15

20

25

30

WO 02/39260 PCT/US01/45518
57

processor core identifiers contained in the fields 402, 403, 404, 405, 406 and 407 contain
processor core numbers 1, 3, 2, 4, 5, and 6 respectively. The sequence of the cores as shown

in FIG. 8 is merely illustrative and many other sequences may be provided in the list.

During use, a processing core may finish processing information and access
processing output token 400 to determine a valid processor core for outputting or queuing
information to / from the network processor. To identify the current valid processor core, the
processing token includes a pointer 408 that may point to one of the fields in the memory. As
mentioned above, an index or any other mechanism may also be used to select the valid field.
A latch may be placed on processing output token 400 (for example on the pointer 408) and,
upon determining a valid processor core, the valid processor core may output the information
or data unit(s). Upon outputting the information on data unit(s), the processing output token
400 may be updated by the processor core updating the pointer 408. The network processing
core may then release processing token 400 by releasing the pointer 408 to allow other
network processing cores to access processing token 400. As used herein the term latch may
be construed as any mechanism which prevents other processor cores from changing the
processing output token while one core is utilizing the token. For example, the token update
operation can be done atomically in a memory location (e.g. a memory field that can be
updated in a single write cycle). In this case the "latch" may actually be a null operation.

This scenario requires no special "latching" operation or hardware.

In the pointer example, the processing output token 400 may be updated by
incrementing the pointer 408 so that the pointer 408 points to the next field. Thus for the
example shown in FIG. 8, when the pointer 408 points to the field 402 the valid processor
core for outputting data is processor core number 1. After processor core number 1 outputs
data, the pointer is moved to the field 403 which identifies processor core number 3 as valid
for outputting data. In this fashion the pointer may be incremented by each valid processor
core until processor core 6 outputs valid data. The pointer may be configured so that after the
pointer has reached the bottom of the list the pointer wraps around to the top of the list. Thus
in the example, processor core number 6 will increment the pointer which returns the pointer

408 back to the position of pointing to field 402.

As in the embodiments discussed above, a metwork processing core may finish

processing information prior to the processor core being a valid processor core for

10

15

20

25

30

WO 02/39260 PCT/US01/45518

58

outputting/queuing information. As such, the processor core may stall awaiting it to become
valid or the processor core may queue and process additional information until a valid

processing value is provided by processing token 400.

FIGURE 9 illustrates a method for processing information via a network processing
system using a user or system defined static list sequence such as described above. The
method begins at step 500. The method proceeds to step 501 where a processing core
associated with a network processor accesses an input buffer or queue, dequeues information
or data unit(s), and processes data unit(s) using the processing core. The method then
proceeds to step 502 where the processing core latches the processing output token by
latching the pointer and determines which field is then valid, i.e., which field is currently
being pointed to. The processor core may latch the processing output token to provide
exclusive access to read and modify the output token. The processor core may then read
which field that the pointer is pointing to (or read which field the index is then selecting if an
index is used). The method then proceeds to step 503 where the processor core identified in
the pointed to field is read. Using the list of FIG. 8 as an example, if the pointer points to the
processor core identifier field 406, the processor core number 6 will be the valid processor
core read in step 503. Upon determining the valid processor core, the method proceeds to
step 504 where the method determines if the processor core identifier matches that of the
processing core currently accessing the processor output token. If the identifiers do not
match, the method proceeds to step 505 where the processing core releases the token and then
to step 501 where the method may access the input queue/dequeue/process data unit(s) or to
step 502 where the method latches the processor output token and reads the valid field again.
When utilizes a pointer or index it will be recognized that only the token pointer field or

index field needs to be latched or atomically modified.

If at step 504 the processor core identifier matches the identifier of the processor core
accessing the processing output token, the method proceeds to step 506 where the method
outputs the processed data units to an output queue and to step 507 where the token is
updated (i.e. the token pointer or index is incremented) to the next field in the list. The
method then proceeds to step 508 where the processing output token is released and to step
501 where the processor core may access the input queue(s), dequeue, and process data
unit(s) again. As such, an ordered serialization of data may be maintained using a processing

output token thereby providing efficient use of a network processor.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

59

In another embodiment, a processing output token may be implemented as a dynamic
processing output token that expands and compresses based upon the number of processors or
processor cores processing information. In this example, the sequence that processor cores
are assigned an input workload is not static or predetermined but rather dynamic. In the
dynamic input processing sequence each processing core may accept or “grab” a workload
when the processing core has the resources to accept additional workloads. Order
enforcement hardware at the input for assignment workloads to processor cores is therefore
not necessary. The processing output token in this case is configured as a logical or literal

queue that may expand and contract.

When the first workload is accepted by a processor core, the identity of the processor
core is placed in an element or field that is enqueuned to the token queue which acts as a FIFO
queue. For each successive workload, the identity of the processor core that accepted the
workload is placed in a field that is similarly enqueued to the token queue. In this manner the
order that the processor cores accept workloads may be tracked, with the processor core
identity associated with the most recent workload accepted being enqueued in a field at the
bottom of the queue and the processor core identity associated with the oldest workload

accepted being enqueued in a field at the head or top of the queue.

With this dynamic approach, the processor core that is valid to provide an output is
identified at the head or top of the queue. Thus, if a processor core is ready to provide an
output result, the processor core may compare its identity to the identity contained at the head
of the queue. After the processor core that is valid has delivered its processed data, the
processor core may update the processing output token by removing (i.e. dequeueing its

identity from the head or top of the queue.

FIG. 10 illustrates one embodiment of a method for processing information via a
network processing environment using a dynamic processing output token. The method
begins at step 700. At step 701, a processing core accesses a data input queue(s) and
dequeues information or data unit(s). The method proceeds to step 702 where the method
latches on output token queue and enqueues or adds the processor core identity to the field at
the bottom of the processing output token quene. The method then proceeds to step 703

where the processing output token is released. The method then proceeds to step 704 where

10

15

20

25

30

WO 02/39260 PCT/US01/45518
60

the method processes data unit(s) using the processor core. Upon completing processing the
data unit(s), the method proceeds to step 705 where the method latches and accesses the
processing output token queue and reads the queue head field (or element) to obtain a
processor identity. The method then proceeds to step 706 where the method determines if the
processor identity within the queue head element is corresponds to the processor core

accessing the processing output token.

If the processor core identity in the token queue head element does not correspond to
the inquiring processing core, the method proceeds to step 707 where the method releases the
token and then returns to either step 701 where the processing core
accesses/dequeues/processes data unit(s) or stalls by returning to step 705 where the output

token queue head element is read again.

If at step 706 the processor core identity in the queue head element corresponds to the
inquiring processing core, the method proceeds to step 708 where the processor core outputs
the data unit(s). The method then proceeds to step 709 whe;re the processing core dequeues
the current queue head element from the processing output token and to step 710 where the
method releases the token. The method then proceeds to step 701 where the processing core

may access the input queue, dequeue and process additional data unit(s).

The methods described above have included steps described in terms including
latching and releasing the processing output token. Generally such steps are utilized to block
manipulation of the processing output token or put a “lock” on the token when one core is
accessing the token. Such steps may be implemented with a wide range of hardware and/or
software techniques. For example, as used herein the term latch may be construed as any
mechanism which prevents other processor cores from changing the processing output token
while one core is utilizing the token. For example, the token update operation can be done
atomically in a memory location (e.g. a memory field that can be updated in a single write
cycle). In this case the "latch" may actually be a null operation. This scenario requires no
special "latching" operation or hardware. Thus if a system is configured such that access to
the processing output token by two processor cores will not overlap, the latch and release

steps may even be omitted.

10

15

© 20

25

30

WO 02/39260 PCT/US01/45518
61

The methods described above have been shown and discussed with respect to one
processor core. It will be recognized, however, that each processor core may implement
these methods in parallel. In this manner, a processor core may access a processing token in

~ a substantially isolated manner thereby allowing a valid processing core to automatically
update the processing token for all of the processing cores associated with a network

processor while parallel processing is still enabled.

The above examples have also been described with reference to a network processor
having multiple processing cores. It will be recognized that the principles disclosed herein
may also be applied to separate processors operating in parallel. In such a case, the
techniques described above are applicable if one assumes each processor core may be a

separate processor.

Examples described above have provided with reference to a network processor
containing a single data input queue and a single data output queue, for example the data
input queue 5010 and data output queue 5020 of FIG. 5. It will be recognized that the
techniques described herein may be equally applied to processor systems that have more than
one data input queue and/or more than one data output queue. FIG. 11 illustrates a network
processor 5000 having multiple cores. As shown in FIG. 11A, three data input queues 5010
may be provided and one data output queue 5020 is provided. The queues 5010 and 5020
may be implemented in memory within the network processor 5000. In one exemplary use,
each data input queue 5010 is provided as a separate queue for data received from a separate
network source. Utilizing the processing token techniques described above, order
serialization may be maintained between the input order that the processor cores access data
from the input queues 5010 and the output order that the processor cores provide the data to
the output queue 5020. Thus, no matter which input queue that data is obtained or “grabbed”
from by a processor core, the processor core results will be provided at the output in the same

sequence that the data was obtained or “grabbed.”

FIG. 11B illustrates another embodiment of multiple input and output queues. FIG.
11B is similar to FIG. 11A except in this system a single data input queue 5010 is provided
and multiple data output queues 5020 are provided. An exemplary use of such a system may
be an application in which the incoming data includes some indicator or tag which the

processor will recognize as being affiliated specifically with one of the output queues. The

10

15

20

25

30

WO 02/39260 PCT/US01/45518

62

processing results for the data will then be directed to the appropriate output queue affiliated
with the data. Order serialization between the input and the output of the system of FIG. 11B
may be obtained by utilizing the processing output token techniques described above. The
dynamic list or queue serialization technique described above may be particularly useful for
systems such as shown in FIG. 11B. It will be recognized that many other arrangements of
multiple input and/or output queues may be utilized in addition to the examples shown

herein.

The examples described above have been made with reference to a single network
processor that has multiple processor cores. Such a system may be considered to be a
“tightly bound™ or highly embedded system. In the tightly bound system a discrete number
of processor cores are generally located on a single integrated circuit and are architecturally
tightly connected to each other through on-chip data buses that provide internal

communication paths between the processing cores and/or shared memory.

The techniques described above may also be implemented with “less than tightly
bound” systems. Such systems may include multiple processors, with the processors
operating in a symmetrical or asymmetrical multi-processing fashion. The individual
processors may be relatively tightly coupled by a system bus and may share common
memory The processing output token in these systems may include processor identities for
each of the processors. Thus, a single processing output token méy be utilized for multiple

Processors.

The order serialization techniques provided herein may also be utilized in a "loosely-
bound" processing environment which may include one or more separate network systems.
In a loosely-bound processing environment one or more systems may have a network
processor. The systems may communicate with each other via a network or switch and may
require some messaging or state mechanisms for one system to access information from
another. In such a system, each network processor may include several processing cores that
may utilize a common processing output token. The processing output token may be stored
proximal to each system within an atomically updated memory location accessible by each
system. As such, each processing core associated with each system may access the
processing output token to determine a valid processor core. Upon determining a valid

processor core, the processor core may update the processing output token.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

63

FIG. 12 illustrates a “loosely coupled” distributive processing network for processing
information that may utilize the order serialization techniques described herein. The
distributed processing network, illustrated generally at 600, includes a processing Node A
601, a processing Node B 602, processing Node C 603, or other processing Nodes N 604
communicatively coupled via a network 605. In one embodiment, one or more processing
Nodes may include a network processor having a plurality of processing cores operable to
process information communicated via network 605. Alternatively, each node may contain a
processing unit other than a network processor. A common token 610 may be provided or
alternatively tokens 612 may be provided at each node. The tokens 612 may be stored in
memory locations that are accessible by each node. In yet another alternative, one token 612
may be provided to act as common token 610 which can be passed from node to node, or be
granted to the requesting node(s) by a "token sequence" (which could be one of the

designated nodes).

The techniques described above for order serialization may be implemented in the
distributive processing network through the use of tokens 610 or 612. As such, upon a
network processor or processing core within a node completing processing, the associated
processing core may access the commonly accessible memory location to determine if a valid

processor identifier for that processing core is within the processing token.

If multiple tokens 612 are utilized, one token may be provided the initial identifier
value, initial static token list or initial dynamic token list. After output data is provided, the
token may be released and the token data may be either passed on to token memory location
of the next node in the processing sequence or the token data may be made available so that
the next node may grab the data and place it in the next nodes token memory location. The
token values could include a node network address and a processor ID pair, or just a node

network address, or some other value.

It will be understood with benefit of this disclosure that although specific exemplary
embodiments of hardware and software have been described herein, other combinations of
hardware and/or software may be employed to achieve one or more features of the disclosed
systems and methods. Furthermore, it will be understood that operating environment and

application code may be modified as necessary to implement one or more aspects of the

WO 02/39260 PCT/US01/45518
64

disclosed technology, and that the disclosed systems and methods may be implemented using
other hardware models as well as in environments where the application and operating

system code may be controlled.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

65

WHAT IS CLAIMED IS:
1. A network processing system comprising:
a network processor having a plurality of processing cores, the processing cores
operable to process information in a substantially parallel manner; and
a processor value associated with each of the processing cores, the processor value

operable to identify each processing core for communicating the information.

2. The system of Claim 1, further comprising a processing token operably coupled to the
network processor, the processing token including a valid processor value associated with

one of the processing cores.

3. The system of Claim 2, wherein the processing token comprises a hardware latch

deployable by the processing cores.

4. The system of Claim 2, wherein the processing token may be updated by a processing

core associated with the valid processor value.

5. The system of Claim 2, wherein the processing token may be exclusively accessed by

a processing core within the network processor.

6. The system of Claim 2, wherein the processing token maintains a processing order

associated with processing information using the network processor.

7. The system of Claim 2, further comprising memory operably coupled to the network
processor, the memory operable to store the processor values associated with each of the
processing cores.

8. The system of Claim 7, wherein the memory comprises the processing token.

9. The system of Claim 7, wherein the memory comprises a list of the processor values,

the list having a reference identifying the valid processor value.

10

15

20

25

30

WO 02/39260 PCT/US01/45518
66

10. The system of Claim 1, further comprising plural network processors operably

coupled to the network processor.

11. The system of Claim 10, wherein the plural network processors comprise distributed

network processors.

12. The system of Claim 1, wherein the processing cores comprise processes operably

associated with the network processor.

13. A method for processing information in a network environment comprising:
processing information using a network processor having a plurality of processing
cores;
determining a valid processor value operably associated with communicating the
information; and
communicating the processed information from the network processor in response to

determining the valid processor value.

14. The method of Claim 13, wherein the processing further comprises:
accessing a processing input queue including data packets; and

dequeueing at least one data packet from the processing input queue.

15. The method of Claim 13, further comprising accessing a processing token associated

with providing the valid processor value.

16. The method of Claim 15, further comprising latching the processing token to

determine the valid processing value.

17. The method of Claim 16, further comprising releasing the processing token upon

determining the valid processor value.

18. The method of Claim 16, further comprising:
updating the processing token to a next processor value; and

releasing the processing token.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

19.

20.

21.

22,

23.

67

The method of Claim 18, further comprising:
queuing the information within an output queue; and

communicating the information from the output queue to a communication medium.

The method of Claim 18, further comprising:
dequeueing the information from an input queue; and

processing the information using the processing core.

A parallel network processing system comprising:

a plurality of processing cores operable to process information in a substantially
parallel manner;

a processor value associated with each of the processing cores, the processor value
identifying each processing core;

a processing token operably associated with the processing cores, the processing
token operable to identify a processing core to communicate information;

wherein the processing token is operable to be updated by a valid processing core; and

output memory coupled to the plurality of processing cores, the output memory

operable to store the information based on the valid processing core.

A method of operating a network processor comprising

providing a plurality of processor cores within the network processor;

receiving multiple incoming data packets within the network processor;

performing parallel processing on at least a portion of the data packets with the
multiple processor cores, the processing times for a plurality of the incoming

" data packets varying;

providing processor core processing output results which are to be forwarded for
additional processing; and

maintaining order serialization of the processor core output results with respect to the
order of the multiple incoming data packets,

wherein the order serialization is maintained even though the processing times vary.

The method of claim 22, the maintaining step comprising determining if an individual

processor core is a currently valid processor core.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

68

24. The method of claim 23, further comprising stalling the processing of one of the

processor cores if the processor core is not a currently valid processor core.

25. The method of claim 23, further comprising processing additional data in one of the

processor cores if the processor core is not a currently valid processor core.

26. The method of claim 22, wherein the order serialization is performed by accessing a

processor output token.
27. The method of claim 26, further comprising inhibiting changes by one processor core
to the processor output token when another one processor core is accessing the processor

output token.

28. The method of claim 27, further comprising latching the processor output token to

achieve the inhibiting.

29. The method of claim 27, further comprising utilizing a currently valid processor core

to update the processor output token.

30. The method of claim 26, further comprising utilizing a currently valid processor core

to update the processor output token.

31. The method of claim 30, wherein a static sequence is utilized to order serialize the

output results.

32. The method of claim 30, wherein a dynamic sequence is utilized to order serialize the

output results.

33. The method of claim 22, wherein a static sequence is utilized to order serialize the

output results.

34. The method of claim 33, wherein the static sequence is a logical based sequence.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

69

35. The method of claim 34, wherein the static sequence is a round robin sequence.
36. The method of claim 34, wherein the sequence is a defined list sequence.

37. The method of claim 22, wherein a dynamic output sequence is utilized to order

serialize the output results.

38. A method of operating a network endpoint system, comprising:

providing a processor engine, the processor engine comprising a plurality of processor
cores;

receiving an incoming data stream from a network connection;

assigning portions of the incoming data stream to the plurality of processor cores for
processing;

processing the portions of the incoming data stream within the processor cores to
provide output data which is to further processed by other resources of the
network endpoint system; and |

providing the output data from the processor cores in an order serialized manner

- which corresponds order of the incoming data streams.

39. The method of claim 38, the providing step comprising determining if an individual

processor core is a currently valid processor core.

40. The method of claim 39, further comprising stalling the processing of one of the

processor cores if the processor core is not a currently valid processor core.

41. The method of claim 39, further comprising processing additional data in one of the

processor cores if the processor core is not a currently valid processor core.

42. The method of claim 38, wherein the order serialization is performed by accessing a

processor output token.

43. The method of claim 42, further comprising inhibiting changes by one processor core
to the processor output token when another one processor core is accessing the processor

output token.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

70

44, The method of claim 43, further comprising latching the processor output token to
achieve the inhibiting.

45. The method of claim 43, further comprising utilizing a currently valid processor core

to update the processor output token.

46. The method of claim 42, further comprising utilizing a currently valid processor core

to update the processor output token.

47. The method of claim 42, wherein processing times for the plurality of processor cores

to process the data packets varies.

48. The method of claim 42, wherein a static sequence is utilized to order serialize the

output resglts.

49. The method of claim 48, wherein the static sequence is a logical based sequence.
50. The method of claim 49, wherein the static sequence is a round robin sequence.
51. The method of claim 49, wherein the sequence is a defined list sequence.

52. The method of claim 42, wherein a dynamic sequence is utilized to order serialize the

output results.

53. The method of claim 38, wherein a static output sequence is utilized to order serialize

the output results.

54. The method of claim 38, wherein a dynamic output sequence is utilized to order

serialize the output results.

55. A method of operating a network processor comprising:

10

15

20

25

30

WO 02/39260 PCT/US01/45518
71

receiving input data by the network processor in the form of a plurality of data
packets to be processed at least in part by the network processor, the network
processor providing output data to be subject to additional processing;

assigning the data packets to multiple processor cores within the network processor so
that parallel processing of the data packets may be performed;

processing the data packets at least in part with the processor cores;

determining if output results of an individual processor core may be provided for
further processing, the determining being based upon an output sequence; and

providing the output results of the individual processor core based upon the
determining step,

wherein the output results of a plurality of the processor cores are provided in an

output order corresponding to the order of the input data.

56. The method of claim 55, the determining step comprising determining if the

individual processor core is a currently valid processor core.

57. The method of claim 56, further comprising stalling the processing of one of the

processor cores if the processor core is not a currently valid processor core.

58. The method of claim 56, further comprising processing additional data in one of the

processor cores if the processor core is not a currently valid processor core.

59. The method of claim 55 wherein the ordering is performed by accessing a processor

output token.

60. The method of claim 59, further comprising inhibiting changes by one processor core
to the processor output token when another one processor core is accessing the processor

output token.

61. The method of claim 60, further comprising latching the processor output token to
achieve the inhibiting.

62. The method of claim 60, further comprising utilizing a currently valid processor core

to update the processor output token.

WO 02/39260 PCT/US01/45518
12

63. The method of claim 59, further comprising utilizing a currently valid processor core

to update the processor output token.

5 64. A method of operating a network processor comprising:

receiving incoming data packets in an incoming data order;

processing incoming data packets in a parallel processihg manner with a plurality of
processor cores within the network processor;

generating processing results with the processor cores, the processor results for a

10 plurality of the incoming data packets being generated in a time order that

varies from the incoming data order; and

order serializing the output results provided from the plurality of prdcessor cores, the
order serialization being with respect to the incoming data order; and

forwarded the output results so that additional processing may be performed upon the

15 output results.

65. The method of claim 64, wherein the processing times for the plurality of processor

cores to process the data packets varies.

20 66. The method of claim 64, wherein a static sequence is utilized to order serialize the

output results.

67. The method of claim 66, wherein the static sequence is a logical based sequence.
25 68. The method of claim 67, wherein the static sequence is a round robin sequence.

69. The method of claim 66, wherein the sequence is a defined list sequence.

70. The method of claim 64, wherein a dynamic sequence is utilized to order serialize the

30 output results.

71. A method of configuring an endpoint system, comprising:
providing a network interface processing engine to receive an incoming data stream

from a network;

10

15

20

25

30

WO 02/39260 PCT/US01/45518

72.

73

providing a plurality of processor cores with the network interface processing engine;

providing at least one system processing engine t§ perform endpoint functions in
response to the incoming data stream;

providing an interconnection coupling the network interface processing engine and
the at least one system processing engine;

processing the incoming data stream with the plurality of processor cores in a parallel
manner;

generating processor results from the incoming data stream in the plurality of
processor cores in a time sequence that does not correspond to an input
sequence of the incoming data stream; and

ordering an output sequence of the processor results from the plurality of processor
cores such that a network interface processing engine output data stream is
order serialized with resi)ect to the input sequence of the incoming data

stream.

The method of claim 71, wherein the processing times for the plurality of processor

cores to process the data packets varies.

73. | The method of claim 71 wherein the output sequence is a static sequence.

74. The method of claim 73, wherein the static sequence is a logical based sequence.
75. The method of claim 74, wherein the static sequence is a round robin sequence.

76. The method of claim 73, wherein the sequence is a defined list sequence.

77. The method of claim 71, wherein the sequence is a dynamic sequence.

78. The method of claim 71 wherein the ordering is performed by accessing a processor
output token.

79. The method of claim 71, the ordering step further comprising determining, when

processing results are available from one of the processor cores, if that processor core is a

currently valid processor core.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

74

80. The method of claim 79, further comprising stalling the processing of one of the

processor cores if the processor core is not a currently valid processor core.

81. The method of claim 79, further comprising processing additional data in one of the

processor cores if the processor core is not a currently valid processor core.

82. A network processor, comprising:

an input, the input provided to receive an input data stream;

a plurality of processor cores, the processor cores be configured to process data
packets and then forward the data packets for additional processing, the
processor cores coupled to the input; and

a processor output token coupled to the plurality of processor cores so that the
plurality of processor cores utilize the processor output token to determine an
output sequence for the processor cores,

wherein the output sequence of the processor cores is order serialized with respect to

the input data stream.

83. The network processor of claim 82, wherein the processing times for the plurality of

processor cores to process the data packets varies.
84. The network processor of claim 82 wherein the output sequence is a static sequence.

85. The network processor of claim 84, wherein the static sequence is a logical based

sequence.

86. The network processor of claim 85, wherein the static sequence is a round robin

sequence.
87. The network processor of claim 84, wherein the sequence is a defined list sequence.

88. The network processor of claim 87, wherein the processor output token comprises

memory fields containing processor core identifiers.

10

15

20

25

30

WO 02/39260 PCT/US01/45518

75

89. The network processor of claim 88, wherein the processor output token further

comprises a field identifier.

90. The network processor of claim 89, wherein the field identifier is a pointer.

91. - The network processor of claim 89, wherein the field identifier is an index.

92. The network processor of claim 82, wherein the sequence is a dynamic sequence.

93. The network processor of claim 92, wherein the processor output token comprises a

queue containing processor core identifiers.
94. The network processor of claim 93, wherein the queue size may vary.

95. A network connectable computing system, the system being configured to be
connected on at least one end to a network, the system comprising:

a network interface engine comprising at least one network processor having a
plurality of processor cores, the network interface engine coupling an input
data stream from the network to the computing system;

at least one system processor engine providing system functionality processing; and

a distributed interconnection between the at least one system processor engine and the
network interface engine,

wherein processor results from the plurality of processor cores are provided in a time
sequence that is different from an input sequence of the incoming data stream;
and order serialization is applied within the network interface engine such that
a network interface processing engine output data stream is order serialized

with respect to the input sequence of the incoming data stream.

96. The system of claim 95, wherein the network processor analyzes headers of the data

packets provided to the computing system.
97. The system of claim 95, wherein the system is an intermediate network node system.

98. The system of claim 97, wherein the system is a network switch.

10

15

20

25

WO 02/39260 PCT/US01/45518

76

99. The system of claim 95, wherein the system is a network endpoint system.

100. The system of claim 95, wherein the system is a network endpoint system having at

least one server or at least one server card.

101. The system of claim 95, wherein the system is incorporated into a network interface

card.
102. The system of claim 100, wherein the system is a content delivery system.
103. The system of claim 102, wherein the distributed interconnection is a switch fabric.

104. The system of claim 95, wherein system is an asymmetric multi-processing system

having a plurality of system processor engines.

105. The system of claim 95, wherein the plurality of system processor engines are

configured to perform separate tasks.

106. The system of claim 105, wherein the distributed interconnection is a switch fabric

and the task specific processor engines include storage or application processor engines.

107. The system of claim 106, wherein the task specific processor engines include storage

and application processors.

PCT/US01/45518

WO 02/39260

1/23

OGOl

LHOdSNVHL /

00c¢i

PCT/US01/45518

WO 02/39260

2/23

H0G50l— L1HOdSNYH.L

VOZOl~ FOVAHYILNI MHOM L3N

~"/N

V/
80.0I—~] ° NOILVDI1ddY

/N

N
AN
N

AN
N

A

1dOdSNVYYL —VOSOI

_
_
!
_
\Z

VOvrOl——q-

JOVYHOLS

324N0S
OO0~ N3N0 \

<

NOILVOI1ddV —~—V0.0]|
P

\\\

324N0S

LN3LINOD 060l

WO 02/39260 PCT/US01/45518
3/23
Fle.ICc | FIG.IC" | FlG. 1C"
T e ryyvann B
300~ Adjunct | _SDRAM | —f o
| Processor T
{ Power PC P
I
L] - — —
My . T T T T T
, Network [sDRAM] [sRAM | | :
] Interface BU; ' o
| Mgt | TLU | PCl |Fabric]UAESML—:
l Unit XP | |]
] I
{ 1032 P14 [cps-s [cPe-i2 CPI3- |} | 1082
1022{ RX | TX |RX|TX [RX|TX |RX |TX : |
| SDP|SDP | SDP|SDP|SDP|SDP|SDP|SDP) |
| gibt>Ee || GbE — ! E
|| Teve | LEHY o
e - |
CSiorageNetwork e g
ge/Network
'003\1' Transport Subsystem 1 POWER PC H IO(82
Fc | ! I
b | sFp | Dual PCI R ETYY
FC SDRAM : [L N
‘T—'] FC Controller L— grD',gX&/ FPGA l i UDASL
092! SFP |
- T 1|
e |
{_S’romqe/Nefwork _} |
| Transport Subsystem 2 Power PC IIIO)BZ
|| dFp]]
T — FC | SORAM | DualPCl} '] 1BM ||
1092 Fc | _|Controller gggg;{ FPGA| [TT|UDASL
| | SFP I
L= . _ |
—CIOOE’) | Lo]

WO 02/39260 PCT/US01/45518
4/23

1010
T T T ee—— T T T
Switch Fabric | Hard Disk |
RJ 45
4 ~losl ; | | . 10/100 {
. | [| '
| IBM | FPG Per_l’ruum D8.9
UDASL [~ ; A 18492 | pentam] (Serid! |
L N l 1 Host | l
1082 a SDRAM | Subsystem 1062
A o = —
I ____________
| 1BM ! lr g"{“df'gm | |Pentium —]|
UDASL| 11| |FPGA Chllps?ei' 1 l
1082 : | Application/Network |SDRAM ~
 LTransport Subsystem 1 |
Prilz?nb:E IBM { l[— ~~~~~~ P:’;.“*U—m—— :e;iu: —}
8 Port |ubasL| | T| |FPGA (‘?r:i';‘g:* = ' 100!
wiiC .
Fabric | | } ‘ {\)
1082 1| Application/Network [SPRAM |
I Transport Subsystem 2 |
o 2RI
- T o] |
| IBM ! A | [Pentium
UDASL| 1] |FPGA g;:gg:f i {,\IJOOI
] | [
1082 : | Application/Network [SDRAM :
 LTransport Subsystemd _l
T cerin] e
] iBM h Pentium !
|UDASL{ | || |FPGA| |- g;;;’)g:f B ;\'90'
] N |
- losz2 'Appllca'rlon/Nefwork SDRAM {
(Transport Subsystem 4 _ |

WO 02/39260 PCT/US01/45518
5/23
Fic.ID | F1G.1D' | FiG.1D"
rm——— == ' |
300— Adjunct [_SDRAM | e
| Processor T
| Power PC |
| |
L] L —
IOBOJ |
., T] |
| Network [sDrRAM| [SRAM | | |
| Interface Bu'f : o
l Unit X P | l]
] | 1 na
! 1032 CP1-4 |CP5-8 |CP9-I2 CPH;@ | 1082
I
1022 l RX | TX {RX|TX|RX|TX|RX [TX || |
| SDP|SDP |SDP|SDP |SOP|SDP|SDP|SDP| |
| f_f,bbE GbE p—o! | !
Ibre —
| Tovr [L2 L
e e I |
“Storage/Network ———— -11 }
'O4OA"! Transport Subsystem 1 POWER PC it IO(82‘:
FC ' |
| | sep | Dual PC] I 18M
: FC | SDRAM Hpu el | il i
—r'"Jl Fc |_|Controller 28&2:{ FPGA if UDASL
\9g) Lsfp | /™ ™ = T Y - |
I
M tnvmma INatwml T 1
Storage/Network | |
: Transport Subsystem 2 Power PC ;1'0182 '
| e ' i
SFP Dual PCI
111 N FC ISDRAM }- : | | I1BM 1|
1092 Fc 1 |controller gg‘g/‘i"M/ FPGA { { UDASL
| | SFP [
L = S —— —————— = — — — — "‘IJI
\ \ ‘ Lo
10408 1040

WO 02/39260 PCT/US01/45518
6/23
1010
060
_____ o %0
Switch Fabric || Hard Disk |
RJ45 '
4q 108l | | | 10/100 :
| | Penti D89
: UDIESML Ly} |FPGA Bﬁ"dlqu‘?m ; Serial |
l | Chipset | Pentium |
\ | [%1 Host lI [
lo82 L SDRAM | Subsystem 1062
T —— e
1BM || {— Pentium} |pentium —} 1970
UDASL H FPGA cm'ps?ef i 10704
! l H_
!
1082 : | Application/Network |SDRAM I
(LTransport Subsystem 4 |
IBM W—m — — |
PrizmaE iBM | Pen{jmm Pentium| | (10708
8 Port | |upasL| || |FPGA Bridge I M
Switch i Chipset |
Fabric | , ‘ I
1082 If| Application/Network [SDRAM |
l LTmnsporf Subsystem 2 |
e e
+ = " o 71950
iBM | 1]l 3 Penti l
UDASL [T1[]] |FPeA ?;l’gg:f =T [/950A
|
1 1
1082 !}|Application/Network |[SDRAM :
} I Transport Subsystem3]
H— ——————— P—;n_f—iu_r;l____—.]
H IBM : Penti !
UDASL[[[T] |FPGA g;;ggz,{* i r'\OEOB
] I |
. losz2 'Appllcahon/Nefwork SDRAM }
Transport Subsystem 4 _ __ |

WO 02/39260
7/23

PCT/US01/45518

FIGIE | FIG.IE' | FIG.IE!
r . e
1300~ Adjunct | _SDRAM | _], !
| Processor I
l Power PC b
] ‘ I
——————— -—— — |
Rt I ——
| Network [spram| [sram] | {
| Interface Bulf ' o
PCI L IBM | L
: rcjir?if* TLU XCP Fabric ; TlubAsLl
- T
_ B
{ 1032 CPI-4 |CP5-8 |CPS-I2/CPI3- || | 1082
I
1022 { RX| TX |RX | TX |RX| TXIRX |TX || |
| SDP|SDP |SDP|SDP|SDP |SDP|SDP|SDP| |
| Fibre || SPE | l
|| TCVR PHY b
o o _
|
1040A| | Storage/Network _H
\—'i Transport Subsystem 1 POWER PC it 10(82 |
FC i |
| | sep [| |{Dual PC1 Il | 18M
FC SDRAM - Brid - - i
‘—r——{ Fc |_|Controller erle:{ FPGA N UDASL
1092 SFP |
. - T — il
__________________ |
r—S’rorclqe/Ne\‘wc)rk < _} |
| Transport Subsystem 2 Power PC |||O)82
SFP || j Dual PCI
~h FC | SDRAM [HDualPCL] || IBM 1]
10921 [Fc | |controller Bridas/I—1 | FPGA| [T]T|uDASL
| LsFP B _;I
N e — — — — — —||
Llo40B Llo40 L ——

FIG. E

WO 02/39260 PCT/US01/45518
8/23
1010
60
. _.eso. __ _______ 108
. B -]
Switch Fabric I | Hard Disk |
RJ45
9 108 | | | 10/100 :
IBM Pentium D89
—lupasL | |TPC Heridge , Serial | |
l | Chipset| Pcﬂ"lfllum - '
\ 1 | Host II [
sz i SORAM | Subsystem | 1062
T | I_: —_—
L oBM L gf,”g“e”“ || Pentium —11 1070
UDASL|]I | [FPGA Chipset 1 |
i
! l |
107
1082 ; lAppllc:oﬂon/t\le’rwork SDRAM %\OJ OA
|Tronsport Subsystem 4 |
IBM : {— —————— Pe—m‘:m ~~~~~ l
PrizmaE IBM 11 Pentium| |
8 Port | lupasL| [T |FPGA CB;i‘[‘)’g:t B 1
wITC
Fabric 1 ! : l l1~~IO7OB
1082 1| Application/Network [SDRAM i
l { Transport Subsystem 2 |
FIERARL A
= e ~ — B
IBM |1 E‘i’i';“:em_Penfium L11070C
UDASL| ||| |FPGA Chipg” tH {,.\)
] N I
1082 !||Application/Network |SDRAM :
{ I Transport Subsystem3]
_— = 711050
+ iBM |]l Penfium| |pentium| |
UDASL[[[|] [FPGA g;:gng“ i ILLOJSOA
] i T
. losz 'Appllcm‘lon/Ne’rwork SDRAM ;
Transport Subsystem 4 _ |

WO 02/39260 PCT/US01/45518
9/23

FIG.IF | FIG.IF' | FIG.IF!

, T T T
300~ Adjunct [_SDRAM R :
| Processor T
: Power PC |
I
N 1
|O30_1 |
T T T T T T T T
| Nefwork | SDRAM| [SRAM | | :
[Interface Bulf ' | :
) . PCI H IBM .
| ggi{ TLU Fabric TupasLl”
|] - = | | |
[
! 1032 CPI-4 |CP5-8 |CP9-I2 CPIBIé | 1082
1022 l RX | TX |RX|TX [RX|TX [RX {TX : :
| SDP|SDP!SDP|SDP [SDP|SDP|SDP|SDP |
GbE T |
e - GbE |
1020) {Fibre (-
020 [Feve [1L PHY -
T |
|
'04%_ r—S’r—c_)—r—c;je_]N_é—f\;;r? _________ jl {
1 Transport Subsystem f POWER PC 082 !
10401 I :
~ l e D lP(l:lA | (
SFP || ug IBM
FC SDRAM Brid] Hy |
—(——{ Fc |_|Controller SD'R;]\:{ FPGA I UDASL
IOS%L SFP _Jll
____________ S —
{—Sfomqe/Nefwork _} | ,
| Transport Subsystem 2 Power PC IIIOJBZ :
|| £C ' !
SFP |] | Dual PCI |
= FC SDRAM : m l IBM s
1092 e |controlter oS |FPeA Tjuoast
| | SFP
e I
—R 10508 L

WO 02/39260 PCT/US01/45518
10/23
1010
060
o _gqles0 19
. 1 -]
Switch Fabric [| Hard Disk — I
4 ~108] ; | | 10/100 {
.] [
IBM Pentium D89
[jUDASL Ly FPea Bridge . Serial | |
| | Chipset Penl’ﬂum '
\ I | | Host Il l |
o8z 1 SDRAM | Subsystem 1062
| [—1.1070
| M) Pentium| lpentium| ||~
ubAsL| I]I'] |FPGA Chipse t il |
il
‘ '] 1070A
1
1082 : Application/Network |SDRAM A
*Tronspor’r Subsystem 1 |
| S s
IBM N — |
Prizma€{ | 1BM |1}l ger"itj'”cm | _|Pentium| |
8 Port [|upAsL| ||I| | FPGA Chi 9 t i1 ! 4
Switch | ipse L| 10708
Fabric \ I T
1082 1} Application/Networlk SDRAM l
| } Transport Subsystem 2 |
SRl S R P A AL
= H—— — ~ T 1
HE:R g"r');"’em_Penfiunx 1| 1070C
UDASL|]|} |FPGA Chi'pgef i IL\)
] H [
(082 !||Application/Network [SDRAM :
} ITransport Subsystem3]
H— ——————— P:n—f—iu;_——_—_‘
u IBM . Pentium| |
[|upAsL| (]| |FPGA g;;gng" iR ;.\'OJSOA
) i : 1
. loB2 hiapplication/Network |[SDRAM { 1050
(Transport Subsystem 4 j1 5

WO 02/39260 PCT/US01/45518
11/23

/IOIO

(080

FIG 16

@)
7 S
3
9 .

WO 02/39260 PCT/US01/45518
12/23

1022~

IOIO\

FIG. 1H

WO 02/39260 PCT/US01/45518
13/23

/IOIO

500—
FIG 11

O
©
o

WO 02/39260 PCT/US01/45518
14/23

1022 ——

1030

ISOOJ

LISOO

1600
080
1010
A

O
©
Q

IOIO/

FIG 1J

PCT/US01/45518

WO 02/39260

15/23

¢ 9l

SEC~ bz 1uaby buriojiuop | saoinosay Moz | 10
Y4Dd }USWSAOQ DD SS22014-49)U| _ |
gee 022 502 - 102
N N N °
$924N0S3Yy $924N0S9Yy $304N0S3Y
A 7 7 7 cle
Ove osz | S¥el||osz | S¥e || |osz | SFC <
A0} IUOW jusaby juaby juaby 399 10¢
waysAs buriojiuop buliojiuon buriojiuon <Oz
wajlsAsqns waishsqn
mc_wmuuwi ' En<m wa}shsqns
uo1}paljddy uo14poijddy buiyiomyan $92icqz
$324N0S3Y $924N0S3}Y $924n0S3y
-) f /
Sse osz | ¥ ose | “F¢ || |ose | SF¢
$324n0s3y Tuaby Luaby juaby W 04—~ g5z
pa4bys butio}iuon buliojiuop buiaojiuopn 1 ¢92
swaysAsqns | | {watsAsgns ayan) wajshksqns cle
124}0 wa}sis a9} aboioys
< N N —~ 00<
0L | glez Siz 012 |02
L U}Dd SUOI}DIIUNWWOY) SS32044-JajU| 3
~~] wﬂw
G2 | Juaby buiiojiuon sa04nos3y 0S2

PCT/US01/45518

WO 02/39260

16/23

1O03INNOJYILNI

WNId3anw

b1

m\(

3INIONZ
HHOM L3N

dc Old

SEC~— A¥VvO 3OVJ4ILNI MHOML3N
DI~
39VHOLS | LINN| 471 L123INNOD
v.ivad 9NISS3ID0Hd —43LN|
e/ DEI~
JOVHOLS LINN| 3/1 1D3NNOD 4 WNIQ3IN INION3
vivg <> 9NISS300Hd —Y3LNI JINOILOINNODT 7] MHOM L3N
m_L lmm.._.Z_ m{w
JOVHOLS LINN| 4/1 LO3NNOD b1
VIvaS ONISS3D08d - 93 LNI
- TN S—0]

WO 02/39260

17/23

/IZ

PCT/US01/45518

5| PHYSICAL INTERFACE
TO NETWORK

4

28 27
A [
FABRIC/BUS GENERAL PURPOSE
INTERFACE CODE/BUS AND BOOT I/F
NETWORK TRAFFIC LOOKUP
PROCESSORS ENGINE CORE
21 PROCESSOR
20 23
CHECKSUM
ENGINE CORE
PROCESSOR
(*24
BUFFER MGMT
CORE
PROCESSOR
25~

P

TO ROUTER FIG. 3
42 34
4gb 4%0

.32, | |pHysicaL| U 1) JPCi| 64,

—ARX >
TO 7 TO -
SWITCH T 4¢ ; PROCESS-
FABRIC | 4 43 | ING UNIT

WO 02/39260 PCT/US01/45518
18/23

— 5010

>WO|o

5002 — 5002

| |2]3] 4 [~5000

5002— 5002
D
C | -5020
B
A FIG. 5
100 105
— I
MEMORY FIG. 6
NETWORK<>|COMMUNICATION| . | NETWORK | _/PROCESSING
] R PORT PROCESSOR TOKEN
103 (C
102 10l 104
400
408—> (|PROCESSOR | +—402

PROCESSOR 3 4—403
PROCESSOR 2 —404
PROCESSOR 4 +405
PROCESSOR 5 ——406
F1G. 8 I PROCESSOR 6 4407

40l

WO 02/39260 PCT/US01/45518
19/23

FIG. 7

BEGIN —2000

\
ACCESS INPUT QUEUE(S),

| DEQUEUEAND PROCESS DATA €777 §
UNIT(S) —2010 g
\
DU <
LATCH* AND READ OUTPUT TOKEN
2020
C 2040
ISTHE PROCESSOR VALUEINTHE |_NO_
TOKEN THE SAME AS 7 RELEASE TOKEN*

THIS PROCESSOR'S ID VALUE? __J—2030

YES

OQUTPUT DATA UNIT(S) —2050

v

UPDATE TOKEN VALUE TO NEXT
APPROPRIATE PROCESSOR VALUE }~2060

Vi
RELEASE TOKEN* —~2070

WO 02/39260 PCT/US01/45518
20/23

BEGIN 500
N
[ACCESS NPUT QUEUES), e
DEQUEUE AND PROCESS DATA =
UNIT(S) - 501
LATOH* OUTPUTTOKENAND | OR
DETERMINE VALID FIELD
502
READ PROCESSOR CORE
IDENTIFIER IN FIELD 503
(505
IS THE PROCESSOR NO '
IDENTIFIED THE SAME AS RELEASE TOKEN*
THIS PROCESSOR'S ID VALUE? __|504
YES

OUTPUT PROCESSED DATA UNIT(S) }—506

Vi
UPDATE TOKEN VALUE —507

Vi
RELEASE TOKEN* —508

WO 02/39260

21/23

FIG. 10

BEGIN 700

ACCESS INPUT QUEUE(S),
DEQUEUE AND PROCESS DATA
UNIT(S)

[ATCH THE OUTPUT TOKEN QUEUE
ENQUEUE PROCESSOR ID
VALUE

—702

\/

RELEASE TOKEN

—703

Vi

PROCESS THE DATA UNIT(S)

—704

\V/

LATCH AND

PCT/US01/45518

ACCESS THE OUTPUTTOKEN QUEVE | OR
AND PEEK AT THE TOKEN QUEUE
HEAD ELEMENT 705 (707
N
IS THE PROCESSOR VALUE INTHE |_NO_ ‘
TOKEN QUEUE HEAD ELEMENT ” RELEASE TOKEN
THIS PROCESSOR'S ID VALUE? __}~706
YES
OUTPUT DATA UNIT(S) 708
\/
DEQUEUE CURRENT TOKEN QUEUE
HEAD ELEMENT 709
RELEASE TOKEN 710

N

PCT/US01/45518

WO 02/39260

22/23

dl

BOIE

0c0S

)

0206 0¢20&
)

vyl ¢e|2 || —o00s

010G

Vil 9Ol4

0c0G8—

p|elz| 1 Fooos

O_Omv 0106~ 0Ol10S

PCT/US01/45518

WO 02/39260

23/23

5 3QON N JAON Sl 914
- —— " = ="
m_w\JermV_E _ |NIMNOL 219
c09—~ |40SS3004d 40SS3008d| —+09
MYOM L3N MHOMLIN
|
019 — zmxof G09 ~<—009
H0SS3004d H0SS3004d
209—] | AYOML3IN NJOMLIN | L~ 09
=" | |
2191 zmxo.r | Euxoﬁ\/lm_w
m_ 3QON Vv 300N

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

