<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K 38/16, C12P 21/02, C12N 15/00, 15/01, 15/09, 15/12, 15/63, 15/70, 15/79, C07K 14/705, C07H 21/04</td>
<td></td>
</tr>
<tr>
<td>(21) International Application Number: PCT/US98/01880</td>
<td></td>
</tr>
<tr>
<td>(22) International Filing Date: 29 January 1998 (29.01.98)</td>
<td></td>
</tr>
<tr>
<td>(30) Priority Data: 60/036,594 31 January 1997 (31.01.97) US</td>
<td></td>
</tr>
<tr>
<td>(71) Applicant: BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, Princeton, NJ 08543–4000 (US).</td>
<td></td>
</tr>
<tr>
<td>(54) Title: SOLUBLE CTLA4 MUTANT MOLECULES AND USES THEREOF</td>
<td></td>
</tr>
<tr>
<td>(57) Abstract</td>
<td></td>
</tr>
</tbody>
</table>

This invention provides soluble CTLA4 mutant molecules which bind with greater avidity to the CD86 antigen than wildtype CTLA4.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>BS</th>
<th>Spain</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GE</td>
<td>Georgia</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GH</td>
<td>Ghana</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GI</td>
<td>Georgia</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Sroega</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOLUBLE CTLA4 MUTANT MOLECULES AND USES THEREOF

Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

BACKGROUND OF THE INVENTION

T cell activation in the absence of costimulation results in an aborted or anergic T cell response (Schwartz, R.H. (1992) Cell 71:1065-1068). One key costimulatory signal is provided by interaction of T cell surface receptors CD28 and CTLA4 with B7 (also known as B7-1 and B7-2, or CD80 and CD86, respectively) related molecules on APC (P. Linsley and J. Ledbetter (1993) Annu. Rev. Immunol. 11:191-212).

The molecule now known as CD80 (B7-1) was originally described as a human B cell-associated activation antigen (Yokochi, T. et al. (1981) J. Immunol. 128:823-827; Freeman, G.J. et al. (1989) J. Immunol. 142:2714-2722), and subsequently identified as a counterreceptor for the related T cell molecules CD28 and CTLA4 (Linsley, P., et

This molecule, now known as CD86 (Caux, C., et al. (1994) J. Exp. Med. 180:1841-1848), but also called B7-0 (Azuma et al., 1993, supra) or B7-2 (Freeman et al., 1993a, supra), shares about 25% sequence identity with CD80 in its extracellular region (Azuma et al., 1993, supra, Freeman et al., 1993a, supra, 1993b, supra). CD86-transfected cells trigger CD28-mediated T cell responses (Azuma et al., 1993, supra; Freeman et al., 1993a, 1993b, supra).

Peach et al., (J. Exp. Med. (1994) 180:2049-2058)

identified regions in the CTLA4 extracellular domain which are important for strong binding to CD80. Specifically, a hexapeptide motif (MYPPPY) in the complementarity determining region 3 (CDR3)-like region was identified as fully conserved in all CD28 and CTLA4 family members.

Alanine scanning mutagenesis through the motif in CTLA4 and at selected residues in CD28Ig reduced or abolished binding to CD80.

Chimeric molecules interchanging homologous regions of CTLA4 and CD28 were also constructed. Molecules HS4, HS4-A and HS4-B were constructed by grafting CDR3-like regions of CTLA4 which also included a portion carboxy terminally extended to include certain nonconserved amino acid residues onto CD28Ig. These homologue mutants showed higher binding avidity to CD80 than did CD28.
In another group of chimeric homologue mutants, the CDR1-like region of CTLA4, which is not conserved in CD28 and is predicted to be spatially adjacent to the CDR3-like region was grafted, into HS4 and HS4-A. These chimeric homologue mutant molecules (designated HS7 and HS8) demonstrated even greater binding avidity for CD80.

Chimeric homologue mutant molecules were also made by grafting into HS7 and HS8 the CDR2-like region of CTLA4, but this combination did not further improve the binding avidity for CD80. Thus, the MYPPPY motif of CTLA4 and CD28 were determined to be critical for binding to CD80, but certain non-conserved amino acid residues in the CDR1-and CDR3-like regions of CTLA4 were also responsible for increased binding avidity of CTLA4 with CD80.

CTLA4Ig was shown to effectively block CD80-associated T cell co-stimulation but was not as effective at blocking CD86-associated responses. Soluble CTLA4 mutant molecules having a higher avidity for CD86 than wild type CTLA4 were constructed as possibly better able to block the priming of antigen specific activated cells than CTLA4Ig.

Site-directed mutagenesis and a novel screening procedure were used to identify several mutations in the extracellular domain of CTLA4 that preferentially improve binding avidity for CD86. These molecules will provide better pharmaceutical compositions for immune suppression and cancer treatment than previously known soluble forms of CTLA4.
SUMMARY OF THE INVENTION

The invention provides soluble CTLA4 mutant molecules which bind with greater avidity to the CD86 antigen than wildtype CTLA4.

In one embodiment, the CTLA4 mutant molecule is designated LEA29Y. LEA29Y binds ~2-fold more avidly than wildtype CTLA4Ig (hereinafter referred to as CTLA4Ig) to CD86. This stronger binding results in LEA29Y being up to 10-fold more effective than CTLA4Ig at blocking immune responses.

In another embodiment, the CTLA4 mutant molecule is designated L106E. L1063 also binds more avidly than CTLA4Ig to CD86.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Equilibrium binding analysis of LEA29Y, L106E, and wild-type CTLA4Ig to CD86Ig. LEA29Y binds more strongly to CD86Ig than does L106E or CTLA4Ig. Equilibrium binding constants (Kd) were determined and shown in Table 1. The lower Kd of LEA29Y (2.6) than L106E (3.4) or CTLA4Ig (5.2) indicates higher binding avidity to CD86Ig. All three molecules have similar equilibrium binding constants to CD80Ig.

Figure 2: FACS assay showing LEA29Y and L106E bind more strongly to CHO cells stably transfected with human CD86 than does CTLA4Ig. Binding of each protein to human CD80-transfected CHO cells is equivalent.
Figure 3: In vitro functional assays showing that LEA29Y is ~10-fold more effective than CTLA4Ig at inhibiting proliferation of CD86 + PMA treated human T cells. Inhibition of CD80 + PMA stimulated proliferation by CTLA4Ig and LEA29Y is more equivalent.

Figure 4: LEA29Y is ~10-fold more effective than CTLA4Ig at inhibiting IL-2, IL-4, and K-interferon cytokine production of allostimulated human T cells.

Figure 5: LEA29Y is 5-7-fold more effective than CTLA4Ig at inhibiting IL-2, IL-4, and K-interferon cytokine production of allostimulated human T cells.

Figure 6: LEA29Y is ~10-fold more effective than CTLA4Ig at inhibiting proliferation of PHA-stimulated monkey PBMC's.

Figure 7: depicts the complete amino acid sequence encoding a soluble CTLA4 molecule.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITION

As used in this application, the following words or phrases have the meanings specified.

As used herein "CTLA4 mutant molecule" is a molecule having at least an extracellular domain of CTLA4 or any portion thereof which recognizes and binds CD86. The molecule is mutated so that it exhibits a higher avidity for CD86 than wildtype CTLA4. It may include a biologically or chemically active non-CTLA4 molecule therein or attached thereto. The
molecule may be soluble (i.e., circulating) or bound to a surface.

As used herein "wildtype CTLA4" is naturally occurring CTLA4 or the CTLA4Ig described in Linsley et al. (1989), supra.

In order that the invention herein described may be more fully understood, the following description is set forth.

COMPOSITIONS OF THE INVENTION

The invention provides soluble CTLA4 mutant molecules which bind with a higher avidity to CD86 than CTLA4Ig. Soluble CTLA4 mutant molecules having a higher avidity for CD86 than wild type CTLA4 should be better able to block the priming of antigen specific activated cells than CTLA4Ig.

In one embodiment of the invention, the soluble CTLA4 mutant molecule has an amino acid sequence shown in Figure 7. Specifically, the amino acid at position 29 designated Xaa is selected from the group consisting of alanine, leucine, phenylalanine, tryptophan and tyrosine. Further, the amino acid at position 106 designated Yaa is selected from the group consisting of glutamic acid and leucine.

In another embodiment, the soluble CTLA4 mutant molecule comprises the 187 amino acids shown in SEQ ID NO 1 beginning with alanine at position 1 and ending with asparagine at position 187. In that embodiment Xaa is tyrosine and Yaa is glutamic acid (designated herein as LEA29Y). Alternatively, Xaa is alanine and Yaa is glutamic acid (designated herein as L106E).

The invention further provides a soluble CTLA4 mutant molecule having a first amino acid sequence corresponding to the extracellular domain of CTLA4 mutant as shown in
Figure 7 and a second amino acid sequence corresponding to a moiety that alters the solubility, affinity and/or valency of the CTLA4 mutant molecule for binding to the CD86 antigen.

In accordance with the practice of the invention, the moiety can be an immunoglobulin constant region or portion thereof. For in vivo use, it is preferred that the immunoglobulin constant region does not elicit a detrimental immune response in the subject. For example, in clinical protocols, it is preferred that mutant molecules include human or monkey immunoglobulin constant regions. One example of a suitable immunoglobulin region is human C(gamma)1. Other isotypes are possible. Further, other weakly or non-immunogenic immunoglobulin constant regions are possible.

The invention further provides soluble mutant CTLA4Ig fusion proteins preferentially reactive with the CD86 antigen compared to wildtype CTLA4, the protein having a first amino acid sequence consisting of the extracellular domain of CTLA4 mutant as shown in Figure 7 and a second amino acid sequence consisting of the hinge, CH2 and CH3 regions of a human immunoglobulin, e.g., Cγ1.

The present invention also provides a soluble CTLA4 mutant receptor protein having the amino acid sequence depicted in Figure 7 (SEQ ID NO: 1) which preferentially recognizes and binds CD86 with an avidity of at least five times that of wild type CTLA4.

Additionally, the invention provides a soluble CTLA4 mutant molecule comprising the 187 amino acids shown in SEQ ID NO 1
beginning with alanine at position 1 and ending with asparagine at position 187.

Further, the invention provides a soluble CTLA4 mutant molecule having (a) a first amino acid sequence of a membrane glycoprotein, e.g., CD28, CD86, CD80, CD40, and gp39, which blocks T cell proliferation fused to a second amino acid sequence; (b) the second amino acid sequence being a fragment of the extracellular domain of mutant CTLA4 which blocks T cell proliferation as shown in Figure 7; and (c) a third amino acid sequence which acts as an identification tag or enhances solubility of the molecule. For example, the third amino acid sequence can consist essentially of amino acid residues of the hinge, CH2 and CH3 regions of a non-immunogenic immunoglobulin molecule. Examples of suitable immunoglobulin molecules include but are not limited to human or monkey immunoglobulin, e.g., C(gamma)1. Other isotypes are possible.

The invention further provides nucleic acid molecules encoding the amino acid sequence corresponding to the soluble mutant CTLA4 molecules of the invention. In one embodiment, the nucleic acid molecule is a DNA (e.g., CDNA)
or a hybrid thereof. Alternatively, the molecules is RNA or a hybrid thereof.

Additionally, the invention provides a plasmid which comprises the cDNA of the invention. Also, a host vector system is provided. This system comprises the plasmid of invention in a suitable host cell. Examples of suitable host cells include but are not limited to bacterial cells and eucaryotic cells.

The invention further provides methods for producing a protein comprising growing the host vector system of the invention so as to produce the protein in the host and recovering the protein so produced.

Additionally, the invention provides a method for regulating functional CTLA4 and CD28 positive T cell interactions with CD86 and/or CD80 positive cells. The method comprises contacting the CD80 and/or CD86 positive cells with the soluble CTLA4 mutant molecule of the invention so as to form CTLA4/CD80 and/or CTLA4/CD86 complexes, the complexes interfering with reaction of endogenous CTLA4 antigen with CD80 and/or CD86. In one embodiment of the invention, the soluble CTLA4 mutant molecule is a fusion protein that contains at least a portion of the extracellular domain of mutant CTLA4. In another embodiment, the soluble CTLA4 mutant molecule is CTLA4Ig fusion protein having a first amino acid sequence containing amino acid residues from about position 1 to about position 125 of the amino acid sequence corresponding to the extracellular domain of CTLA4 and a second amino acid sequence containing amino acid residues corresponding to the hinge, CH2 and CH3 regions of human immunoglobulin gamma, e.g., Cγ1 as shown in SEQ ID NO 1.

In accordance with the practice of the invention, the CD86 positive cells are contacted with fragments or derivatives
of the soluble CTLA4 mutant molecule. Alternatively, the soluble CTLA4 mutant molecule is a CD28Ig/CTLA4Ig fusion protein hybrid having a first amino acid sequence corresponding to a portion of the extracellular domain of CD28 receptor fused to a second amino acid sequence corresponding to a portion of the extracellular domain of CTLA4 mutant receptor (SEQ ID NO 1) and a third amino acid sequence corresponding to the hinge, CH2 and CH3 regions of human immunoglobulin Gγ1.

The present invention further provides a method for treating immune system diseases mediated by CD28 and/or CTLA4 positive cell interactions with dendritic cells with CD86/CD80 positive cells. In one embodiment, T cell interactions are inhibited.

This method comprises administering to a subject the soluble CTLA4 mutant molecule of the invention to regulate T cell interactions with the CD80 and/or CD86 positive cells. In accordance with the practice of the invention, the soluble CTLA4 mutant molecule can be CTLA4Ig fusion protein. Alternatively, the soluble CTLA4 mutant molecule is a mutant CTLA4 hybrid having a membrane glycoprotein joined to mutant CTLA4.

The present invention also provides method for inhibiting graft versus host disease in a subject. This method comprises administering to the subject the soluble CTLA4 mutant molecule of the invention together with a ligand reactive with IL-4.

The invention encompasses the use of mutant CTLA4 molecules together with other immunosuppressants, e.g., cyclosporin (Mathiesen, Prolonged Survival and Vascularization of Xenografted Human Glioblastoma Cells in the Central Nervous System).

Expression of CTIA4 mutant molecules in Prokaryotic Cells

Expression of CTLA4 mutant molecules in prokaryotic cells is preferred for some purposes.

Prokaryotes most frequently are represented by various strains of bacteria. The bacteria may be a gram positive or a gram negative. Typically, gram-negative bacteria such as *E. coli* are preferred. Other microbial strains may also be used.

Sequences encoding CTLA4 mutant molecules can be inserted into a vector designed for expressing foreign sequences in procaryotic cells such as *E. coli*. These vectors can include commonly used procaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter systems (Chang et al., Nature 198:1056 (1977)), the tryptophan (trp) promoter system (Goeddel et al., Nucleic Acids Res. 8:4057 (1980)) and the lambda derived P_L promoter and N-gene ribosome binding site (Shimatake et al., Nature 292:128 (1981)).
Such vectors will also include origins of replication and selectable markers, such as a beta-lactamase or neomycin phosphotransferase gene conferring resistance to antibiotics so that the vectors can replicate in bacteria and cells carrying the plasmids can be selected for when grown in the presence of ampicillin or kanamycin.

Expression of CTLA4 mutant molecules in Eukaryotic Cells

In accordance with the practice of the invention, eukaryotic cells are also suitable host cells.

Examples of eukaryotic cells include any animal cell, whether primary or immortalized, yeast (e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Pichia pastoris), and plant cells. Myeloma, COS and CHO cells are examples of animal cells that may be used as hosts. Exemplary plant cells include tobacco (whole plants or tobacco callus), corn, soybean, and rice cells. Corn, soybean, and rice seeds are also acceptable.

Sequences encoding the CTLA4 mutant molecules can be inserted into a vector designed for expressing foreign sequences in a eukaryotic host. The regulatory elements of
the vector can vary according to the particular eukaryotic host.

Commonly used eukaryotic control sequences include promoters and control sequences compatible with mammalian cells such as, for example, CMV promoter (CDM8 vector) and avian sarcoma virus (ASV) (πLN vector). Other commonly used promoters include the early and late promoters from Simian Virus 40 (SV 40) (Fiers, et al., Nature 273:113 (1973)), or other viral promoters such as those derived from polyoma, Adenovirus 2, and bovine papilloma virus. An inducible promoter, such as hMTII (Karin, et al., Nature 299:797-802 (1982)) may also be used.

Vectors for expressing CTLA4 mutant molecules in eukaryotes may also carry sequences called enhancer regions. These are important in optimizing gene expression and are found either upstream or downstream of the promoter region.

Sequences encoding CTLA4 mutant molecules can integrate into the genome of the eukaryotic host cell and replicate as the host genome replicates. Alternatively, the vector carrying CTLA4 mutant molecules can contain origins of replication allowing for extrachromosomal replication.

For expressing the sequences in *Saccharomyces cerevisiae*, the origin of replication from the endogenous yeast plasmid, the 2μ circle could be used. (Broach, Meth. Enz. 101:307 (1983). Alternatively, sequences from the yeast genome capable of promoting autonomous replication could be used (see, for example, Stinchcomb et al., Nature 282:39 (1979));
Tschemper et al., Gene 10:157 (1980); and Clarke et al., Meth. Enz. 101:300 (1983)).

Transcriptional control sequences for yeast vectors include promoters for the synthesis of glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 2:149 (1968); Holland et al., Biochemistry 17:4900 (1978)). Additional promoters known in the art include the CMV promoter provided in the CDM8 vector (Toyama and Okayama, FEBS 268:217-221 (1990); the promoter for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073 (1980)), and those for other glycolytic enzymes.

Other promoters are inducible because they can be regulated by environmental stimuli or the growth medium of the cells. These inducible promoters include those from the genes for heat shock proteins, alcohol dehydrogenase 2, isocitrytochrome C, acid phosphatase, enzymes associated with nitrogen catabolism, and enzymes responsible for maltose and galactose utilization.

Regulatory sequences may also be placed at the 3' end of the coding sequences. These sequences may act to stabilize messenger RNA. Such terminators are found in the 3' untranslated region following the coding sequences in several yeast-derived and mammalian genes.

Exemplary vectors for plants and plant cells include but are not limited to Agrobacterium T1 plasmids, cauliflower mosaic virus (CaMV), tomato golden mosaic virus (TGMV).
General aspects of mammalian cell host system transformations have been described by Axel (U.S. Patent No. 4,399,216 issued Aug. 16, 1983). Mammalian cells be transformed by methods including but not limited to, transfection in the presence of calcium phosphate, microinjection, electroporation, or via transduction with viral vectors.

Methods for introducing foreign DNA sequences into plant and yeast genomes include (1) mechanical methods, such as microinjection of DNA into single cells or protoplasts, vortexing cells with glass beads in the presence of DNA, or shooting DNA-coated tungsten or gold spheres into cells or protoplasts; (2) introducing DNA by making protoplasts permeable to macromolecules through polyethylene glycol treatment or subjection to high voltage electrical pulses (electroporation); or (3) the use of liposomes (containing cDNA) which fuse to protoplasts.

Identification and Recovery of CTLA4 mutant molecules

Expression of CTLA4 mutant molecules is detected by Coomassie stained SDS-PAGE and immunoblotting using antibodies that bind CTLA4. Protein recovery is effected by standard protein purification means, e.g., affinity chromatography or ion-exchange chromatography, to yield substantially pure product (R. Scopes Protein Purification, Principles and Practice, Third Edition Springer-Verlag (1994)).
CTLA4 Ig CODON-BASED MUTAGENESIS

In one embodiment, site-directed mutagenesis and a novel screening procedure were used to identify several mutations in the extracellular domain of CTLA4 that improve binding avidity for CD86, while only marginally altering binding to CD80. In this embodiment, mutations were carried out in residues in the CDR1 loop (serine 25 to arginine 33, the C' strand (alanine 49 and threonine 51), the F strand (lysine 95, glutamic acid 97 and leucine 98), and in CDR3 at positions methionine 99 through tyrosine 104, tyrosine 105 through glycine 109 and in the G strand at positions glutamine 114, tyrosine 116 and isoleucine 118. These sites were chosen based on studies of chimeric CD28/CTLA4 fusion proteins (J. Exp. Med., 1994, 180:2049-2058), and on a model predicting which amino acid residue side chains would be solvent exposed, and a lack of amino acid residue identity or homology at certain positions between CD28 and CTLA4. Also, any residue which is spatially in close proximity (5 to 20 Angstrom Units) to the identified residues are considered part of the present invention.

To synthesize and screen soluble CTLA4 mutant molecules with altered affinities for CD86, a two-step strategy was adopted. The experiments entailed first generating a library of mutations at a specific codon of an extracellular portion of CTLA4 and then screening these by BIAcore analysis to identify mutants with altered reactivity to CD80 or CD86.
Advantages of the Invention:

Soluble CTLA4 mutant molecules having a higher avidity for CD86 than wild type CTLA4 should be better able to block the priming of antigen specific activated cells than CTLA4Ig.

Further, production costs for CTLA4Ig are very high. High avidity mutant CTLA4Ig molecules that have more potent immunosuppressive properties could be used in the clinic at considerably lower doses than CTLA4Ig to achieve similar levels of immunosuppression. Soluble CTLA4 mutant molecules, e.g., LEA29Y, could be very cost effective.

The following example is presented to illustrate the present invention and to assist one of ordinary skill in making and using the same. This example is not intended in any way to otherwise limit the scope of the invention.

EXAMPLE 1

Current in vitro and in vivo studies indicate that CTLA4Ig by itself is unable to completely block the priming of antigen specific activated T cells. In vitro studies with CTLA4Ig and either monoclonal antibody specific for CD80 or CD86 measuring inhibition of T cell proliferation indicate that anti-CD80 monoclonal antibody did not augment CTLA4Ig inhibition. However, anti-CD86 monoclonal antibody did, indicating that CTLA4Ig was not as effective at blocking CD86 interactions. These data support earlier findings by Linsley et al. (Immunity, 1994, 1:793-801) showing inhibition of CD80-mediated cellular responses required approximately 100 fold lower CTLA4Ig concentrations than
for CD86-mediated responses. Based on these findings, it was surmised that soluble CTLA4 mutant molecules having a higher avidity for CD86 than wild type CTLA4 should be better able to block the priming of antigen specific activated cells than CTLA4Ig.

To this end, site-directed mutagenesis and a novel screening procedure were used to identify several mutations in the extracellular domain of CTLA4 that improve binding avidity for CD86, while only marginally altering binding to CD80. Mutations were carried out in residues in the CDR1 loop (serine 25 to arginine 33, the C' strand (alanine 49 and threonine 51), the F strand (lysine 95, glutamic acid 97 and leucine 98), and in CDR3 at positions methionine 99 through tyrosine 104, tyrosine 105 through glycine 109 and in the G strand at positions glutamine 114, tyrosine 116 and isoleucine 118. These sites were chosen based on studies of chimeric CD28/CTLA4 fusion proteins (J. Exp. Med., 1994, 180:2049-2058), and on a model predicting which amino acid residue side chains would be solvent exposed, and a lack of amino acid residue identity or homology at certain positions between CD28 and CTLA4.

Methods:

CTLA4Ig codon based mutagenesis:

Mutagenic oligonucleotide PCR primers were designed for random mutagenesis of a specific codon by allowing any base at positions 1 and 2 of the codon, but only guanine or thymine at position 3 (XXG/T). In this manner, a specific codon encoding an amino acid could be randomly mutated to
code for each of the 20 amino acids. PCR products encoding mutations in close proximity to the CDR3-like loop of CTLA4Ig (MYPPPY), were digested with SacI/XbaI and subcloned into similarly cut CTLA4Ig IIIN expression vector. For mutagenesis in proximity to the CDR1-like loop of CTLA4Ig, a silent NheI restriction site was first introduced 5' to this loop, by PCR primer-directed mutagenesis. PCR products were digested with NheI/XbaI and subcloned into similarly cut CTLA4Ig expression vector.

Plasmid miniprep cDNA preparation:

Ninety six transformed bacterial colonies, each representing a single mutant at a specific site were grown and cDNA robotically prepared using a Biorobot 9600 (Qiagen).

COS cell transfection:

COS cells grown in 24 well tissue culture plates were transiently transfected with mutant CTLA4Ig and culture media collected 3 days later.

BIAcore analysis:

Conditioned COS cell culture media was allowed to flow over BIAcore biosensor chips derivitized with CD86Ig or CD80Ig, and mutant molecules were identified with off rates slower than that observed for wild type CTLA4Ig. cDNA corresponding to selected media samples were sequenced and enough DNA prepared to perform larger scale COS cell transient transfection, from which mutant CTLA4Ig protein
was prepared following protein A purification of culture media.

BIAcore analysis conditions and equilibrium binding data analysis were performed as described in J. Greene et al. (1996) JBC 271(42):26762.

BIAcore Data Analysis: Senosorgram baselines were normalized to zero response units (RU) prior to analysis. Samples were run over mock derivatized flow cells to determine background RU values due to bulk refractive index differences between solutions. Equilibrium dissociation constants (K_d) were calculated from plots of R_eq versus C, where R_eq is the steady-state response minus the response on a mock-derivatized chip, and C is the molar concentration of analyte. Binding curves were analyzed using commercial nonlinear curve-fitting software (Prism, GraphPAD Software).

Experimental data were first fit to a model for a single ligand binding to a single receptor (1-site model, i.e., a simple langmuir system, A+BÑAB), and equilibrium association constants (K_d=[A][B]/[AB]) were calculated from the equation \(R = R_{\text{max}}C/(K_d+C) \). Subsequently, data were fit to the simplest two-site model of ligand binding (i.e., to a receptor having two non-interacting independent binding sites as described by the equation \(R = R_{\text{max1}}C/(K_{d1}+C) + R_{\text{max2}}C/(K_{d2}+C) \).

The goodness-of-fits of these two models were analyzed visually by comparison with experimental data and statistically by an F test of the sums-of-squares. The
simpler one-site model was chosen as the best fit unless the two-site model fit significantly better \((p<0.1)\).

Association and disassociation analyses were performed using BIA evaluation 2.1 Software (Pharmacia). Association rate constants \(k_{on}\) were calculated in two ways, assuming both homogenous single-site interactions and parallel two-site interactions. For single-site interactions, \(k_{on}\) values were calculated according to the equation \(R_t = R_{eq}(1-e^{-ks(t-t_0)})\), where \(R_t\) is a response at a given time, \(t\); \(R_{eq}\) is the steady-state response; \(t_0\) is the time at the start of the injection; and \(k_s = \frac{dR}{dt} = k_{on} C k_{off}\), where \(C\) is a concentration of analyte, calculated in terms of monomeric binding sites. For two-site interactions \(k_{on}\) values were calculated according to the equation \(R_t = R_{eq1}(1-e^{-ks1(t-t_0)}) + R_{eq2}(1-e^{-ks2(t-t_0)})\). For each model, the values of \(k_{on}\) were determined from the calculated slope (to about 70% maximal association) of plots of \(k_s\) versus \(C\).

Dissociation data were analyzed according to one site (\(AB=\text{A+B}\)) or two sites (\(A_iB_j=A_i+B_j\)) models, and rate constants \(k_{off}\) were calculated from best fit curves. The binding site model was used except when the residuals were greater than machine background \((2-10\text{RU},\ \text{according to machine})\), in which case the two-binding site model was employed. Half-times of receptor occupancy were calculated using the relationship \(t_{1/2} = 0.693/k_{off}\).

Flow Cytometry:

Murine MAb L307.4 (anti-CD80) was purchased from Becton Dickinson (San Jose, California) and IT2.2 (anti-B7-
Q(CD86), from Pharmingen (San Diego, California). For immunostaining, CD80 and/or CD86 +CHO cells were removed from their culture vessels by incubation in phosphate-buffered saline containing 10mM EDTA. CHO cells (1-10 x 10^5) were first incubated with MAbs or immunoglobulin fusion proteins in DMEM containing 10% fetal bovine serum (FBS), then washed and incubated with fluorescein isothiocyanate-conjugated goat anti-mouse or anti-human immunoglobulin second step reagents (Tago, Burlingame, California). Cells were given a final wash and analyzed on a FACScan (Becton Dickinson).

FACS analysis (Fig. 2) of CTLA4Ig and mutant molecules binding to stably transfected CD80+ and CD86+CHO cells was performed as described herein.

CD80+ and CD86+ CHO cells were incubated with increasing concentrations of CD28Ig, washed and bound immunoglobulin fusion protein was detected using fluorescein isothiocyanate-conjugated goat anti-human immunoglobulin. Binding of CTLA4Ig was also measured using the same procedure.

In Figure 2 LEA29Y (circles) and L106E (triangle) CHO cells (1.5x10^5) were incubated with the indicated concentrations of CTLA4Ig (closed square) for 2 hr. at 23°C, washed, and incubated with fluorescein isothiocyanate-conjugated goat anti-human immunoglobulin antibody. Binding on a total of 5,000 viable cells was analyzed (single determination) on a FACScan, and mean fluorescence intensity (MFI) was determined from data histograms using PC-LYSYS. Data have been corrected for background fluorescence measured on
cells incubated with second step reagent only (MFI = 7). Control L6 MAb (80 μg/ml) gave MFI < 30. This is representative of four independent experiments.

5 Functional assays:

Human CD4+ T cells were isolated as described herein.

CD4+ T cells were isolated by immunomagnetic negative selection (Linsley et al., 1992 "Coexpression and functional cooperativity of CTLA4 and CD28 on activated T lymphocytes" J. Exp. Med. 176:1595-1604).

Inhibition of PMA plus CD80-CHO or CD86-CHO T cell stimulation (Fig. 3) was performed. For stimulation assays, PHA blasts (Linsley et al., 1991 "Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and IL-2 mRNA accumulation" J. Exp. Med. 173:561-570) were cultured at 4 x 10^4/well with or without irradiated CHO cell stimulators. CD4+ T cells (8-10 x 10^4/well) were cultured in the presence of 1 nM PMA with or without irradiated CHO cell stimulators. Proliferative responses were measured by the addition of 1 μCi/well of [^3H]thymidine during the final 7 hr. of a 72 hr. culture. Il-2 production in conditioned medium (collected after 24 hr. stimulation) was measured by enzyme immunoassay (Biosource, Camarillo, California).

Figures 4 and 5 show inhibition of allostimulated human T cells prepared above, and allostimulated with a human B LCL line called PM. T cells at 3.0x10^4/well and PM at
8.0x10^3/well. Primary allostimulation for 6 days then cells pulsed with ³H-thymidine for 7 hours before incorporation of radiolabel was determined. Secondary allostimulation performed as follows. Seven day primary allostimulated T cells were harvested over LSM (Ficol) and rested for 24 hours. T cells then restimulated (secondary) by adding PM in same ratio as above. Stimulate 3 days, pulse with radiolabel and harvest as above. To measure cytokine production (Fig. 5), duplicate secondary allostimulation plates were set up. After 3 days, culture media was assayed using Biosource kits using conditions recommended by manufacturer.

Monkey MLR (Fig. 6). PBMC's from 2 monkeys purified over LSM and mixed (3.5x10^4 cells/well from each monkey) with 2ug/ml PHA. Stimulated 3 days then pulsed with radiolabel 16h before harvesting.

<table>
<thead>
<tr>
<th></th>
<th>CD80Ig (Kd)</th>
<th>CD86Ig (Kd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLA4Ig</td>
<td>0.925±0.025</td>
<td>5.2±1.38</td>
</tr>
<tr>
<td>L106E</td>
<td>0.84±0.04</td>
<td>3.4±0.35</td>
</tr>
<tr>
<td>LEA29Y</td>
<td>1.26±0.34</td>
<td>2.6±0.71</td>
</tr>
</tbody>
</table>

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANTS: Peach, Robert J.
 Namura, Joseph R.
 Linsley, Peter S.
 Bajorath, Jurgen

10 (ii) TITLE OF INVENTION: SOLUBLE CTLA4 MUTANT MOLECULES
 AND USES THEREOF

(iii) NUMBER OF SEQUENCES: 1

15 (iv) CORRESPONDENCE ADDRESS:
 (A) ADDRESSEE: Bristol-Myers Squibb Company
 (B) STREET: P.O. Box 4000
 (C) CITY: Princeton,
 (D) STATE: New Jersey
 (E) COUNTRY: United States
 (F) ZIP: 08543-4000

(v) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:
 (A) APPLICATION NUMBER:
 (B) FILING DATE:
 (C) CLASSIFICATION:
(viii) ATTORNEY/AGENT INFORMATION:
 (A) NAME: Sorrentino, Joseph M.
 (B) REGISTRATION NUMBER: 32,598
 (C) REFERENCE/DOCKET NUMBER: ON0152a

(ix) TELECOMMUNICATION INFORMATION:
 (A) TELEPHONE: (609) 252-3953
 (B) TELEFAX: (609) 252-4526

(1) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 561 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 1..561

(x) SEQUENCE DESCRIPTION: SEQ ID NO:1:
GCA ATG CAC GTG GCC CAG CCT GCT GTG GTA CTG GCC AGC AGC CGA
G3C 48
Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala Ser Ser Arg
Gly
5 1 5 10 15
ATC GCC AGC TTT GTG TGT GAG TAT GCA TCT CCA GGC Xaa GCC ACT
GAG 96
Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly Xaa Ala Thr
10 Glu
20 25 30
GTC CGG GTG ACA GTG CTT CGG CAG CCT GAC AGC CAG GTG ACT GAA
GTC 144
15 Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln Val Thr Glu
Val
35 40 45
TGT GCG GCA ACC TAC ATG ATG GGG AAT GAG TTG ACC TTC CTA GAT
GAT 192
Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr Phe Leu Asp
Asp
50 55 60
25 TCC ATC TGC ACG GCC ACC TCC AGT GGA AAT CAA GTG AAC CTC ACT
ATC 240
Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val Asn Leu Thr
Ile
65 70 75
30 80
CA A GGA CTG AGG GCC ATG GAC ACG GGA CTC TAC ATC TGC AAG GTG
GAG 288
35 Gln Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile Cys Lys Val
Glu
85 90 95
- 28 -
| 5 | CTC ATG TAC CCA CCG CCA TAC TAC CTG **Yaa** ATA GGC AAC GGA ACC CAG 336
| | Leu Met Tyr Pro Pro Pro Tyr Tyr Leu **Yaa** Ile Gly Asn Gly Thr
| | Gln
| | 100 105 110
| 10 | ATT TAT GTA ATT GAT CCA GAA CCG TGC CCA GAT TCT GAC TTC CTC 384
| | Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser Asp Phe Leu Leu
| | 115 120 125
| 15 | TGG ATC CTT GCA GCA GTT AGT TCG GGG TTG TTT TTT TAT AGC TTT
| | Trp Ile Leu Ala Ala Val Ser Ser Gly Leu Phe Phe Tyr Ser Phe Leu
| | 130 135 140
| 20 | CTC ACA GCT GTT TCT TTG AGC AAA ATG CTA AAG AAA AGA AGC CCT CTT 480
| | Leu Thr Ala Val Ser Leu Ser Lys Met Leu Lys Lys Arg Ser Pro Leu
| | 145 150 155
| 25 | 160
| 30 | ACA ACA GGG GTC TAT GTG AAA ATG CCC CCA ACA GAG CCA GAA TGT GAA 528
| | Thr Thr Gly Val Tyr Val Lys Met Pro Pro Thr Glu Pro Glu Cys Glu
| | 165 170 175
| 35 | AAG CAA TTT CAG CCT TAT TTT ATT CCC ATC AAT 561
| | Lys Gln Phe Gln Pro Tyr Phe Ile Pro Ile Asn
| | 180 185
What is claimed is:

1. A soluble CTLA4 mutant molecule which binds CD86, the CTLA4 mutant molecule having an amino acid sequence shown in Figure 7, wherein the amino acid at position 29 designated Xaa is selected from the group consisting of alanine and tyrosine, and wherein the amino acid at position 106 designated Yaa is selected from the group consisting of glutamic acid, asparagine, aspartic acid, glutamine, isoleucine, leucine, and threonine.

2. The soluble CTLA4 mutant molecule of claim 1 comprising the 187 amino acids shown in SEQ ID NO 1 beginning with alanine at position 1 and ending with asparagine at position 187.

3. The soluble CTLA4 mutant molecule of claim 1, wherein Xaa is alanine and Yaa is glutamic acid.

4. The soluble CTLA4 mutant molecule of claim 1, wherein Xaa is tyrosine and Yaa is glutamic acid.

5. A soluble CTLA4 mutant molecule having
 (a) a first amino acid sequence corresponding to the extracellular domain of CTLA4 mutant as shown in Figure 7; and
 (b) a second amino acid sequence corresponding to a moiety that alters the solubility, affinity and/or valency of the CTLA4 mutant molecule for binding to the CD86 antigen.

6. The soluble CTLA4 mutant molecule of claim 5, wherein the moiety is an immunoglobulin constant region.
7. A soluble mutant CTLA4Ig fusion protein reactive with the CD86 antigen, said protein having a first amino acid sequence consisting of the extracellular domain of CTLA4 mutant as shown in Figure 7 and a second amino acid sequence consisting of the hinge, CH2 and CH3 regions of human immunoglobulin G1.

8. A soluble CTLA4 mutant receptor protein having the amino acid sequence depicted in Figure 7 which recognizes and binds a CD86 antigen.

9. A soluble CTLA4 mutant molecule comprising the 187 amino acids shown in SEQ ID NO 1 beginning with alanine at position 1 and ending with asparagine at position 187.

10. A nucleic acid molecule encoding the amino acid sequence corresponding to the soluble mutant CTLA4 of claim 1.

11. A cDNA of claim 10.

12. A plasmid which comprises the cDNA of claim 11.

13. A host vector system comprising a plasmid of claim 12 in a suitable host cell.

14. The host vector system of claim 13, wherein the suitable host cell is a bacterial cell.

15. The host vector system of claim 13, wherein the suitable host cell is a eucaryotic cell.
16. A method for producing a protein comprising growing the host vector system of claim 13 so as to produce the protein in the host and recovering the protein so produced.

17. A method for regulating functional CTLA4 positive T cell interactions with CD80 and CD86 positive cells comprising contacting the CD80 and CD86 positive cells with the soluble CTLA4 mutant molecule of claim 1 so as to form CTLA4/CD80 and/or CTLA4/CD86 complexes, the complexes interfering with reaction of endogenous CTLA4 antigen with CD80 and CD86.

18. The method of claim 17, wherein the soluble CTLA4 mutant molecule is a fusion protein that contains at least a portion of the extracellular domain of mutant CTLA4.

19. The method of claim 17, wherein the soluble CTLA4 mutant molecule is CTLA4Ig fusion protein having a first amino acid sequence containing amino acid residues from about position 1 to about position 125 of the amino acid sequence corresponding to the extracellular domain of CTLA4 and a second amino acid sequence containing amino acid residues corresponding to the hinge, CH2 and CH3 regions of human immunoglobulin C\(\gamma\)1 as shown in SEQ ID NO 1.

20. The method of claim 17, wherein the CD86 positive cells are contacted with fragments or derivatives of the soluble CTLA4 mutant molecule.

21. The method of claim 20, wherein the CD86 positive cells are B cells.
22. The method of claim 17, wherein the interaction of the CTLA4-positive T cells with the CD80 and CD86 positive cells is inhibited.

23. A method for treating immune system diseases mediated by T cell interactions with CD80 and CD86 positive cells comprising administering to a subject the soluble CTLA4 mutant molecule of claim 1 to regulate T cell interactions with the CD86 positive cells.

24. The method of claim 23, wherein the soluble CTLA4 mutant molecule is CTLA4Ig fusion protein.

25. The method of claim 23, wherein the soluble CTLA4 mutant molecule is a mutant CD28Ig/CTLA4Ig fusion protein hybrid.

26. The method of claim 23, wherein said T cell interactions are inhibited.

27. A method for inhibiting graft versus host disease in a subject which comprises administering to the subject the soluble CTLA4 mutant molecule of claim 1 and a ligand reactive with IL-4.
FIG. 7

SUBSTITUTE SHEET (RULE 26)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : Please See Extra Sheet.
US CL : Please See Extra Sheet.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 424/185.1, 192.1, 195.11, 810; 435/69.1, 69.7, 325, 320.1; 514/12; 530/350, 395, 808, 868

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
MEDLINE, BIOSIS, CAPLUS, APS, WPIDS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>PEACH et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med. 01 December 1994, Vol 180, pages 2049-2058, see entire document.</td>
<td>1-27</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

Date of the actual completion of the international search
16 MARCH 1998

Date of mailing of the international search report
08 MAY 1998

Authorized officer
EVELYN RABIN

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet)(July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):
A61K 38/16; C12P 21/02; C12N 15/00, 15/01, 15/09, 15/12, 15/63, 15/70, 15/79; C07K 14/705; C07H 21/04

A. CLASSIFICATION OF SUBJECT MATTER:
US CL.:
424/185.1, 192.1, 195.11, 810; 435/69.1, 69.7, 325, 320.1; 514/12; 530/350, 395, 808, 868; 536/23.1