METHOD AND APPARATUS FOR COLLECTING VAGINAL FLUID AND EXFOLIATED VAGINAL CELLS FOR DIAGNOSTIC PURPOSES

Inventors: Robert L. Buck, Lake Oswego; William H. Fleming, Hillsboro, both of Oreg.

Assignee: A. Fem Medical Corporation, Portland, Oreg.

Filed: May 17, 1996

References Cited

U.S. PATENT DOCUMENTS

2,566,190 8/1951 Greiner et al.
2,905,169 9/1959 Nieburgs 128/759
3,547,930 12/1970 Blomqvist et al.
4,142,476 3/1979 Hirschman .
4,175,561 11/1979 Hirschman .
4,294,253 10/1981 Fineke .
4,385,392 6/1986 Johnson et al.
4,627,849 12/1986 Walton et al.
4,648,867 3/1987 Conner et al.
4,944,734 7/1990 Wallach .
5,190,533 3/1993 Blackburn .

OTHER PUBLICATIONS

A drawing from Puget Plastics Corporation with a handwritten heading "Device of Freund (Microbyx)". Apr. 10, 1995.

ABSTRACT

There provided a method and apparatus for collecting vaginal fluid and exfoliated vaginal cells for medical diagnostic purposes. An absorbent media is placed interabially or intravaginally. Fluid is collected within the absorbent media. The absorbent media is removed, and the fluid is extracted therefrom. For intravaginal collection, the absorbent media may be placed in a housing having fluid receiving apertures therein. Medical diagnostic testing is performed on the extracted fluid.

11 Claims, 4 Drawing Sheets
OTHER PUBLICATIONS

METHOD AND APPARATUS FOR COLLECTING VAGINAL FLUID AND EXFOLIATED VAGINAL CELLS FOR DIAGNOSTIC PURPOSES

BACKGROUND OF THE INVENTION

This invention relates to medical diagnostic testing.

More particularly, it relates to the collection of vaginal fluids and exfoliated vaginal cells for diagnostic purposes.

Currently, the vast majority of clinical diagnostic testing of biological fluids utilize serum and urine. It is believed that the United States Food and Drug Administration has approved a clinical diagnostic test which utilizes any biological fluid other than whole blood, serum, plasma, saliva or urine. Tears and sweat are other fluids being used for various non-FDA approved diagnostic purposes, although such uses have been very limited. These fluids are very different in composition and their uses in clinical medicine.

The use of gynecological tissue for cancer diagnostic purposes has been limited to the traditional PAP Test Cervical Scraping (PTCS method of collection) and the subsequent histological smears for cervical cancer screening. A chemical or immunochemical analysis of non-menstrual vaginal fluid, menstrual fluid and/or the cellular extracts of menstrual fluid for the purpose of disease detection or patient well-being have not been exploited by the general medical community.

There have been a number of articles written by Dr. Matthew Freund and others which suggest that one may collect a large quantity of cervical and endometrial cells from menstrual fluids rather than through the traditional PTCS method. Dr. Freund found that both ectocervical and other cells collected from the menstrual fluid flow are well preserved for standard laboratory cytological procedures. They are similar in appearance to cells collected by current clinical methods, and give similar reactions to chemicals and stains, and may be analyzed by the same procedures as cervical smears for PAP testing.

OBJECTS OF THE INVENTION

It is therefore one object of this invention to provide an improved method for collecting vaginal fluid and vaginal cells for diagnostic purposes.

It is another object of this invention to provide a non-invasive method for collecting vaginal fluid and vaginal cells for diagnostic purposes.

It is still another object of this invention to provide an over-the-counter kit for collecting vaginal fluid and vaginal cells for diagnostic purposes.

SUMMARY OF THE INVENTION

In accordance with one form of this invention, there is provided a method for collecting vaginal fluid and exfoliated vaginal cells in menstrual fluid for medical diagnostic purposes. An absorbent media is placed interlabially or intravaginally. Fluid is collected within the absorbent media. The absorbent media is removed, and the fluid is extracted therefrom. For intravaginal collection, the absorbent media may be placed in a housing having fluid receiving apertures prior to insertion into the vagina. Medical diagnostic testing is performed on the extracted fluid.

Preferably the absorbent media used to collect vaginal fluid is an interlabia pad, such as the pads described in U.S. Pat. Nos. 3,726,277; 3,983,873; and 4,196,562 issued to Hirschman and licensed to Athena Medical Corporation, assignee of the present invention, or the pad described in U.S. Pat. No. 4,995,150 issued to Gerstenberger et al and assigned to Athena Medical Corporation. The Hirschman and Gerstenberger et al patents hereby are incorporated herein by reference.

It is preferred that the absorbent media used to collect exfoliated vaginal cells from menstrual fluid be of a shape similar to a tampon, but of a different construction and composition. Preferably, the tampon shaped device includes an absorbent core which is at least partially surrounded by a porous matrix.

Over-the-counter kits may be provided so that the collection of the fluids may be done by the consumer in the privacy of her home.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is set forth in the appended claims. The invention itself, however, together with further objects and advantages thereof may be better understood in reference to the accompanying drawings in which:

FIG. 1 is a pictorial view of a fluid collection device which may be used in accordance with this invention and is particularly useful in the collection of vaginal fluid;

FIG. 2 is a pictorial view of a fluid collection device which may be used in accordance with this invention and is particularly useful in the collection of vaginal cells from menstrual fluid;

FIG. 3 is a sectional view of the device of FIG. 2;

FIG. 4 is a partial pictorial view of the device of FIG. 2 with a portion of the outer matrix removed;

FIG. 5 is a pictorial view of a collection kit in accordance with the present invention;

FIG. 6 is a pictorial view of another collection kit in accordance with the present invention;

FIG. 7 is a pictorial view of a housing for the fluid collection device shown in FIG. 1 or FIG. 2;

FIG. 8 is an exploded partial sectional view of the housing of FIG. 7.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Vaginal fluid and vaginal cells originating from intravaginal secretions, such as menstrual fluid, can be used to monitor several important clinical parameters, including cervical cancer, candida, chlamydia, trichomonas, bacterial vaginosis, i.e. gardnerella, and the sexually transmitted diseases, including HIV, syphilis, gonorrhea, human papilloma virus, and herpes infections. In addition, the fluid extract can be useful in measuring certain metabolic clinical parameters that have traditionally been limited to blood collections. Such parameters can be glucose, cholesterol, pituitary hormones, thyroid hormones, steroid hormones, therapeutic drugs, drugs of abuse, nutritional markers (pre-albumin, etc.), fetal disease markers during pregnancy (placental protein markers) and levels of certain unknown metabolites that may be characterized by immunochemical (ELISA, RIA, FPFA, EMIT) or physical (NMR, HPLC, HPCE, HPTLC, GC-MS or FTR) diagnostic techniques.

The fluid collection apparatus of the subject invention may be an interlabia pad constructed in accordance with U.S. Pat. Nos. 3,726,277 and 3,983,873 issued to Hirschman. The pad is formed from a fluid absorbent material.
preferably rayon, which has better properties for sample collection than compacted cellulose, which is used in tampons. Other natural or synthetic fibers with similar hydrodynamic properties to rayon could be used. The pad is adapted to be inserted into the interlabial space by the user for absorbing vaginal discharges. The pad is securely retained in place despite substantial increases in its weight due to the absorption of vaginal fluids. The pad has been found to be safe and extremely comfortable for the user and is non-invasive.

Referring now more particularly to FIG. 1, there is provided a pad 15 which is made of a fluid absorbent material and which is preferably rayon, which has better properties for sample collection than compacted cellulose, which is used in tampons. The pads 15 are preferably included as a part of a vaginal fluid collection kit 26, as shown in FIG. 5, containing shipping tubes 28, mailing labels 30 and instructions 32, and sample vials 36 and 38, containing an extraction buffer and/or preservative solution. The top of the sample vial is sealable. Device 24 and cups are received in box 33. Device 24 is inserted into the vaginal tract or labia and allowed to collect/absorb for short periods or overnight. Device 24 is then removed by the user and placed in sample vial 36 containing the extraction buffer and preservative solution. The vial containing the specimen is then sealed and mailed to a testing laboratory. This technique is also a non-invasive, convenient, simple and private method of sample collection. It is believed that the quantity of cells collected is greater and the collection is more consistent than that for the PTCS method. Use of the extraction buffer, preservative buffer, or both will vary depending on the types of test to be performed.

Device 24 is particularly adapted to collect exfoliated cells or other specimen materials from vaginal fluid. Device 24 is also preferably included in an exfoliated cell collection kit 34, as shown in FIG. 6. Kit 34 includes device 24 and sample vials 36 and 38, containing an extraction buffer and/or preservative solution. The top of the sample vial is sealable. Device 24 and cups are received in box 30. Device 24 is inserted into the vaginal tract or labia and allowed to collect/absorb for short periods or overnight. Device 24 is then removed by the user and placed in sample vial 36 containing the extraction buffer and preservative solution. The vial containing the specimen is then sealed and mailed to a testing laboratory. This technique is also a non-invasive, convenient, simple and private method of sample collection. It is believed that the quantity of cells collected is greater and the collection is more consistent than that for the PTCS method. Use of the extraction buffer, preservative buffer, or both will vary depending on the types of tests to be performed.

Additional material needed for mailing of biohazardous material may be added to the kit. Instructions which contain a patient information sheet to be filled out by the user to be mailed with the sample may also be added to the kit.

Both the PTCS and blood collection methods require a trained health professional to collect the samples and do not offer the advantages of privacy and non-invasiveness, as set forth above. In addition, when used for cervical cancer detection, the quality of cells obtained by the method of this invention is comparable to or greater than that of the PTCS for diagnosing cervical cancer. Furthermore, it is believed that the consistency of the sample collection is inherently superior to the method of this invention over PTCS. The PTCS method can vary significantly in quality and quantity due to technique variations between health care technicians and the anatomical differences among patients. These variations in sample collection using the PTCS method are believed to be the main reason for the high false negative rate among cervical cancer tests. The method of this invention does not rely on technique dependent procedures to obtain a representative sample, and as such, is less likely to allow a false negative test to occur. In addition, the fluid sample contains certain cellular molecular components, i.e. hemoglobin, that can be measured and then used as internal qualitative markers to address sample adequacy and standardization issues.

Thus there is provided a simple, inexpensive and convenient method for the collection of vaginal fluid and vaginal cells for diagnostic purposes. The method is non-invasive and kits may be purchased by the consumer over the counter, resulting in far less expense and inconvenience to the consumer. In addition, it is believed that the diagnostic accuracy will be greatly enhanced, particularly for cervical cancer detection.

From the foregoing description of the preferred embodiments of the invention, it will be apparent that many
modifications may be made therein. It will be understood, however, that these embodiments of the invention are exemplifications of the invention only and that the invention is not limited thereto. It is to be understood therefore that it is intended in the appended claims to cover all modifications that fall within the true spirit and scope of the invention.

We claim:

1. A kit for collecting vaginal fluid and/or exfoliated vaginal cells comprising:
 a housing; said housing receiving at least one fluid absorbent media; said fluid absorbent media being an interlabial pad; said housing further receiving at least one container; said container for receiving said interlabial pad after said interlabial pad has absorbed an amount of fluid and/or exfoliated cells for delivery of said saturated interlabial pad to a medical diagnostic facility.

2. A kit as set forth in claim 1, wherein said container includes an amount of extraction solution.

3. A kit as set forth in claim 2, wherein said container includes an amount of preservative.

4. A method for collecting vaginal fluid and/or exfoliated vaginal cells for diagnostic purposes comprising the steps of:
 placing a fluid absorbent media inside an elongated container; said container having a plurality of fluid receiving apertures therein; said container including a removable upper portion so as to facilitate the placing of the fluid absorbent media within said container and removal of said fluid absorbent media from said container.
 placing said container intravaginally;
 collecting fluid in the absorbent media;
 removing said container from the vagina;
 extracting fluid from the absorbent media by compressing said fluid absorbent media within said container so that fluid flows from the container through said at least one aperture;
 performing medical diagnostic testing on the extracted fluid.

5. A method as set forth in claim 4, wherein said upper portion includes an aperture therein whereby a rod may be inserted therethrough for compressing said fluid absorbent media thereby extracting the fluid from the absorbent media.

6. An apparatus for collecting vaginal fluid comprising:
 a housing; said housing including a lower portion having at least one aperture wherein permitting vaginal fluid to enter into said housing; said housing further including an upper portion forming a removable cap; said housing adapted to receive a fluid absorbent media; said cap having an opening therein; said lower portion includes a plurality of apertures therein.

7. An apparatus for collecting vaginal fluid comprising:
 a housing; said housing including a lower portion having at least one aperture wherein permitting vaginal fluid to enter into said housing; said housing further including an upper portion forming a removable cap; said housing adapted to receive a fluid absorbent media; said cap having an opening therein; a rod; said rod adapted to be received through said opening in said cap for compressing the fluid absorbent media thereby causing said fluid from said fluid absorbent media to flow out of said housing through said at least one aperture in said lower portion.

8. An apparatus as set forth in claim 7, further including a plate; said plate being located between said opening in said cap and the fluid absorbent media; said rod contacting said plate for compressing the fluid absorbent media.

9. An apparatus as set forth in claim 6, wherein said lower portion includes a plurality of apertures therein.

10. A method for collecting vaginal fluid and/or exfoliated vaginal cells for diagnostic purposes utilizing an interlabial pad comprising the steps of:
 removing the upper portion of a container;
 placing the interlabial pad inside the container;
 placing the container containing said interlabial pad intravaginally; said container having a plurality of fluid receiving apertures therein;
 collecting fluid in the interlabial pad;
 removing the container containing said interlabial pad from the vagina;
 extracting fluid from the interlabial pad;
 performing medical diagnostic testing on the extracted fluid.

11. A kit for collecting vaginal fluid and/or exfoliated vaginal cells comprising:
 a housing; said housing receiving at least one fluid absorbent media; said fluid absorbent media including an inner core and an outer covering; said outer covering having a visible matrix of pores wherein vaginal cells may be collected in said visible matrix of pores; said housing further receiving at least one container; said container for receiving said absorbent media after said absorbent media has absorbed an amount of fluid for delivery of said saturated absorbent media to a medical diagnostic facility.

* * * * *
It is certified that an error appears in the above-indicated patent and that said Letters Patent is hereby corrected as shown below:

Column 5, Lines 25, 26, 27, 29, 30, 31, 32, 34, 36 and 37, delete all occurrences of "container" and insert therefor -- kit container --.

Column 6, Lines 25, 26, 27, 28 and 31, delete all occurrences of "container" and insert therefor -- housing --.

Column 6, Lines 38 and 43, delete all occurrences of "housing" and insert therefor -- kit container --.

Column 6, Lines 43 and 44, add -- media -- prior to all occurrences of "container".
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the drawings, Sheet 3, the reference numeral "40" should be applied to the box in Figure 5 and in Figure 6.

Column 4, Line 2, delete first occurrence of "33" and insert therefor -- 40 --.

Column 5, Lines 10 and 12, delete all occurrences of "housing" and insert therefor -- kit container --.

Column 5, Lines 13, 18 and 20, insert -- pad -- prior to all occurrences of "container".

Signed and Sealed this Twentieth Day of March, 2001

Nicholas P. Godici
Attest:

Nicholas P. Godici
Acting Director of the United States Patent and Trademark Office