wo 2015/105671 A1 |]I NF 10 000000 0RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é 0 00 O OO 0 0T

International Bureau) L.
_").//)/ (10) International Publication Number

WO 2015/105671 A1l

\

(43) International Publication Date
16 July 2015 (16.07.2015) WIPOIPCT

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO6F 12/08 (2006.01) GO6F 3/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. L DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
PCT/US2014/071581 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
19 December 2014 (19.12.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
14/150,302 8 January 2014 (08.01.2014) Us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
(71) Applicant: NETAPP, INC. [US/US]; 495 East Java Drive, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Sunnyvale, California 94089 (US). DK, FE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG).
(74) Agent: REINEMANN, Michael R.; Cesari and McKenna, Published:
LLP, 88 Black Falcon Avenue, Boston, Massachusetts :
02210 (US). — with international search report (Art. 21(3))

(72) Inventor: KIMMEL, Jeffrey S.; 495 East Java Drive,
Sunnyvale, California 94089 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(54) Title: NVRAM CACHING AND LOGGING IN A STORAGE SYSTEM

(57) Abstract: Non-volatile random access memory (NVRAM) caching and
logging may be configured to deliver low latency acknowledgements of in-
put/output (I/O) requests, such as write requests, while avoiding loss of data
associated with the requests that may occur as a result of power failures.
Write data associated with one or more write requests may be received at a
node of a cluster. The write data may be stored in a portion of an NVRAM

300
/

ADMINISTRATION
310

'\é' ROTOCOLLAVER U5 ER DTS configured as, e.g., a persistent writ.e-back cache of the node, while paramet-
2 1 320 ers of the request may be stored in another portion of the NVRAM con-
A) figured as one or more logs, e.g., NVLogs. The write data may be organized
(IB PERSISTENCE 4 into separate variable length blocks or extents and "written back" out-of-
N L%R order from the write back cache to storage devices, such as solid state drives
N (SSDs). The write data may be preserved in the write-back cache until each
E VOLUME LAYER extent is safely and successfully stored on SSD (i.e., in the event of power
R — loss), or operations associated with the write request are sufficiently logged
v EXTENT STORE on NVLog, to thereby provide efficient recovery when attempting to restore
L[W the write data preserved in the cache to the SSDs.
RAID LAYER
.. 30
370 STORA%%LAYER
— T EXTENT STORE LOG
i CHECKPOINT{'1 | ___ (METADATA)
OPERATING SYSTEM e AR o6 |
KE;Q':I‘EL (METADATA)

STORAGE ARRAY 150
FIG. 3 =

WO 2015/105671 PCT/US2014/071581

10

15

20

25

NVRAM CACHING AND LOGGING IN A STORAGE SYSTEM

BACKGROUND

Technical Field

The present disclosure relates to storage systems and, more specifically, to
caching and logging of data, including metadata, in non-volatile random access

memory (NVRAM) of a storage system.

Background Information

A storage system typically includes one or more storage devices, such as solid
state drives (SSDs) embodied as flash storage devices, into which information may be
entered, and from which the information may be obtained, as desired. The storage
system may logically organize the information stored on the devices as storage
containers, such as files or logical units (I.LUNs). Fach storage container may be
implemented as a set of data structures, such as data blocks that store data for the
storage containers and metadata blocks that describe the data of the storage
containers. For example, the metadata may describe, e.g., identify, storage locations

on the devices for the data.

Some types of SSDs, especially those with NAND flash components, move
data among those components at the granularity of a page, e.g., 8 KB. In contrast, the
size and alignment of writes from a storage system to SSDs may need to be more
flexible in order to maximize capacity and media wear efficiency, for example to
accommodate misaligned write accesses, to allow for data compression to arbitrary
sizes, or to incorporate a small amount of storage system metadata contiguous with
the data. Additionally, deferred processing of write requests may be advantageous in
order to improve performance and wear efficiency, e.g., batching writes to improve
Redundant Array of Independent Disk (RAID) efficiency, or evaluating opportunities
for data de-duplication. Thus, fast and efficient acknowledgement of the I/O requests
by the storage system prior to writing data to SSDs is desirable so as to reduce latency

from the perspective of a host.

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

However, data associated with an I/0 request may be lost when power is
interrupted on the storage system. This is particularly problematic when the I/O
request, e.g., a write request, from the host has been acknowledged by the storage
system and write data associated with the request has been sent to the one or more
storage devices prior to a power loss, i.e., the storage device has buffered the data but
power is interrupted prior to permanent storage on the device. Enterprise grade SSDs
may include a feature that permits some or all of the buffered data to be stored to its
flash storage device components even when power fails, e.g., by providing internal
capacitors or batteries. But lower cost consumer grade SSDs have no such feature, so
that data may be lost when power fails. Thus, there is a need to provide low latency

for I/0O requests to a storage system using low cost storage while avoiding data loss.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments herein may be better
understood by referring to the following description in conjunction with the
accompanying drawings in which like reference numerals indicate identically or
functionally similar elements, of which:

Fig. 1 is a block diagram of a plurality of nodes interconnected as a cluster;

Fig. 2 is a block diagram of a node;

Fig. 3 is a block diagram of a storage input/output (I/O) stack of the node;

Fig. 4 illustrates a write path of the storage 1/0 stack;

Fig. 5 illustrates a read path of the storage /O stack;

Fig. 6 is a block diagram of a persistent write-back cache of the storage I/O
stack;

Fig. 7 is a block diagram of a non-volatile random access memory (NVRAM)
log of the storage I/O stack; and

Fig. 8 illustrates data and metadata paths of the storage I/O stack.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The embodiments described herein provide non-volatile random access
memory (NVRAM) caching and logging configured to deliver low latency
acknowledgements of input/output (I/0) requests, such as write requests, while

avoiding loss of data associated with the requests that may occur as a result of power

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

failures. Write data associated with one or more write requests may be received at a
storage system, which is illustratively embodied as a node of a cluster. The write data
may be stored in a portion of an NVRAM configured as, e.g., a persistent write-back
cache of the node, while parameters of the request may be stored in another portion of
the NVRAM configured as a log, e.g., a NVLog. The write data may be organized
into separate variable length blocks or extents and “written back™ out-of-order from
the write-back cache to storage devices, such as solid state drives (SSDs).
[lustratively, the storage devices may be consumer grade SSDs serviced by other
nodes in the cluster. The write data may be preserved in the persistent write-back
cache until each extent is safely and successfully stored on SSD (i.e., in the event of
power loss), or operations associated with the write request are sufficiently logged on
NVLog, to thereby provide efficient recovery when attempting to restore the write

data preserved in the cache to the SSDs.

Description

Storage Cluster

Fig. 1 is a block diagram of a plurality of nodes 200 interconnected as a cluster
100 and configured to provide storage service relating to the organization of
information on storage devices. The nodes 200 may be interconnected by a cluster
interconnect fabric 110 and include functional components that cooperate to provide a
distributed storage architecture of the cluster 100, which may be deployed in a storage
area network (SAN). As described herein, the components of each node 200 include
hardware and software functionality that enable the node to connect to one or more
hosts 120 over a computer network 130, as well as to one or more storage arrays 150
of storage devices over a storage interconnect 140, to thereby render the storage

service in accordance with the distributed storage architecture.

Each host 120 may be embodied as a general-purpose computer configured to
interact with any node 200 in accordance with a client/server model of information
delivery. That is, the client (host) may request the services of the node, and the node
may return the results of the services requested by the host, by exchanging packets
over the network 130. The host may issue packets including file-based access
protocols, such as the Network File System (NEFS) protocol over the Transmission

Control Protocol/Internet Protocol (TCP/IP), when accessing information on the node

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

in the form of storage containers such as files and directories. However, in an
embodiment, the host 120 illustratively issues packets including block-based access
protocols, such as the Small Computer Systems Interface (SCSI) protocol
encapsulated over TCP (iSCSI) and SCSI encapsulated over FC (FCP), when
accessing information in the form of storage containers such as logical units (LUNS).
Notably, any of the nodes 200 may service a request directed to a storage container

stored on the cluster 100.

Fig. 2 is a block diagram of a node 200 that is illustratively embodied as a
storage system having one or more central processing units (CPUs) 210 coupled to a
memory 220 via a memory bus 215. The CPU 210 is also coupled to a network
adapter 230, storage controllers 240, a cluster interconnect interface 250 and a non-
volatile random access memory (NVRAM 280) via a system interconnect 270. The
network adapter 230 may include one or more ports adapted to couple the node 200 to
the host(s) 120 over computer network 130, which may include point-to-point links,
wide area networks, virtual private networks implemented over a public network
(Internet) or a local area network. The network adapter 230 thus includes the
mechanical, electrical and signaling circuitry needed to connect the node to the
network 130, which illustratively embodies an Ethernet or Fibre Channel (FC)

network.

The memory 220 may include memory locations that are addressable by the
CPU 210 for storing software programs and data structures associated with the
embodiments described herein. The CPU 210 may, in turn, include processing
elements and/or logic circuitry configured to execute the software programs, such as a
storage input/output (I/0) stack 300, and manipulate the data structures. Illustratively,
the storage I/0O stack 300 may be implemented as a set of user mode processes that
may be decomposed into a plurality of threads. An operating system kernel 224,
portions of which are typically resident in memory 220 (in-core) and executed by the
processing elements (i.e., CPU 210), functionally organizes the node by, inter alia,
invoking operations in support of the storage service implemented by the node and, in
particular, the storage I/0 stack 300. A suitable operating system kernel 224 may
include a general-purpose operating system, such as the UNIX® series or Microsoft
Windows® series of operating systems, or an operating system with configurable

functionality such as microkernels and embedded kernels. However, in an

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

embodiment described herein, the operating system kernel is illustratively the Linux®
operating system. It will be apparent to those skilled in the art that other processing
and memory means, including various computer readable media, may be used to store

and execute program instructions pertaining to the embodiments herein.

Each storage controller 240 cooperates with the storage 1/0 stack 300
executing on the node 200 to access information requested by the host 120. The
information is preferably stored on storage devices such as solid state drives (SSDs)
260, illustratively embodied as flash storage devices, of storage array 150. In an
embodiment, the flash storage devices may be based on NAND flash components,
e.g., single-layer-cell (SLC) flash, multi-layer-cell (MLC) flash or triple-layer-cell
(TLC) flash, although it will be understood to those skilled in the art that other non-
volatile, solid-state electronic devices (e.g., drives based on storage class memory
components) may be advantageously used with the embodiments described herein.
Accordingly, the storage devices may or may not be block-oriented (i.e., accessed as
blocks). The storage controller 240 includes one or more ports having 1/0 interface
circuitry that couples to the SSDs 260 over the storage interconnect 140, illustratively
embodied as a serial attached SCSI (SAS) topology. Alternatively, other point-to-
point I/O interconnect arrangements, such as a conventional serial ATA (SATA)
topology or a PCI topology, may be used. The system interconnect 270 may also
couple the node 200 to a local service storage device 248, such as an SSD configured
to locally store cluster-related configuration information, e.g., as cluster database

(DB) 244, which may be replicated to other nodes 200 in the cluster 100.

The cluster interconnect interface 250 may include one or more ports adapted
to couple the node 200 to the other node(s) of the cluster 100. In an embodiment,
Ethernet may be used as the clustering protocol and interconnect fabric media,
although it will be apparent to those skilled in the art that other types of protocols and
interconnects, such as Infiniband, may be utilized within the embodiments described
herein. The NVRAM 280 may include a back-up battery or other built-in last-state
retention capability (e.g., non-volatile semiconductor memory such as storage class
memory) that is capable of maintaining data in light of a failure to the node and
cluster environment. Illustratively, a portion of the NVRAM 280 may be configured
as one or more non-volatile logs (NVLogs 285) configured to temporarily record

(“log™) I/O requests, such as write requests, received from the host 120.

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

Storage 1/0O Stack

Fig. 3 is a block diagram of the storage I/O stack 300 that may be
advantageously used with one or more embodiments described herein. The storage
I/O stack 300 includes a plurality of software modules or layers that cooperate with
other functional components of the nodes 200 to provide the distributed storage
architecture of the cluster 100. In an embodiment, the distributed storage architecture
presents an abstraction of a single storage container, i.e., all of the storage arrays 150
of the nodes 200 for the entire cluster 100 organized as one large pool of storage. In
other words, the architecture consolidates storage, i.e., the SSDs 260 of the arrays
150, throughout the cluster (retrievable via cluster-wide keys) to enable storage of the
LUNs. Both storage capacity and performance may then be subsequently scaled by
adding nodes 200 to the cluster 100.

[lustratively, the storage I/O stack 300 includes an administration layer 310, a
protocol layer 320, a persistence layer 330, a volume layer 340, an extent store layer
350, a Redundant Array of Independent Disks (RAID) layer 360, a storage layer 365
and a NVRAM (storing NVLogs) “layer” interconnected with a messaging kernel
370. The messaging kernel 370 may provide a message-based (or event-based)
scheduling model (e.g., asynchronous scheduling) that employs messages as
fundamental units of work exchanged (i.e., passed) among the layers. Suitable
message-passing mechanisms provided by the messaging kernel to transfer
information between the layers of the storage 1/0 stack 300 may include, e.g., for
intra-node communication: i) messages that execute on a pool of threads, ii) messages
that execute on a single thread progressing as an operation through the storage 1/0
stack, iii) messages using an Inter Process Communication (IPC) mechanism, and
e.g., for inter-node communication: messages using a Remote Procedure Call (RPC)
mechanism in accordance with a function shipping implementation. Alternatively, the
storage I/O stack 300 may be implemented using a thread-based or stack-based
execution model without messages. In one or more embodiments, the messaging
kernel 370 allocates processing resources from the operating system kernel 224 to
execute the messages. Each storage /O stack layer may be implemented as one or
more instances (i.e., processes) executing one or more threads (e.g., in kernel or user
space) that process the messages passed between the layers such that the messages

provide synchronization for blocking and non-blocking operation of the layers.

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

In an embodiment, the protocol layer 320 may communicate with the host 120
over the network 130 by exchanging discrete frames or packets configured as I/O
requests according to pre-defined protocols, such as iSCSI and FCP. An /O request,
e.g., a read or write request, may be directed to a LUN and may include I/O
parameters such as, inter alia, a LUN identifier (ID), a logical block address (LBA) of
the LUN, a length (i.e., amount of data) and, in the case of a write request, write data.
The protocol layer 320 receives the I/0 request and forwards it to the persistence layer
330, which records the request into a persistent write-back cache 600, illustratively
embodied as a log whose contents can be replaced randomly, e.g., under some random
access replacement policy rather than only in serial fashion, and returns an
acknowledgement to the host 120 via the protocol layer 320. In one or more
embodiments, only I/O requests that modify the LLUN, e.g., write requests, are logged.
Notably, the I/0 request may be logged at the node receiving the I/O request, or in an
alternative embodiment in accordance with the function shipping implementation, the

I/O request may be logged at another node.

Hlustratively, dedicated logs may be maintained by the various layers of the
storage I/O stack 300. For example, a dedicated log 335 may be maintained by the
persistence layer 330 to record the I/O parameters of an I/O request as equivalent
internal, i.e., storage 1/O stack, parameters, e.g., volume 1D, offset, and length. In the
case of a write request, the persistence layer 330 may also cooperate with the
NVRAM 280 to implement the write-back cache 600 configured to store the write
data associated with the write request. In an embodiment, the write-back cache may
be structured as a log. Notably, the write data for the write request may be physically
stored in the cache 600 such that the log 335 contains the reference to the associated
write data. It will be understood to persons skilled in the art that other variations of
data structures may be used to store or maintain the write data in NVRAM including
data structures with no logs. In an embodiment, a copy of the write-back cache may
also be maintained in the memory 220 to facilitate direct memory access to the
storage controllers. In other embodiments, caching may be performed at the host 120
or at a receiving node in accordance with a protocol that maintains coherency between

the write data stored at the cache and the cluster.

In an embodiment, the administration layer 310 may apportion the LUN into

multiple volumes, each of which may be partitioned into multiple regions (e.g.,

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

allotted as disjoint block address ranges), with each region having one or more
segments stored as multiple stripes on the array 150. A plurality of volumes
distributed among the nodes 200 may thus service a single LUN, i.e., each volume
within the LUN services a different LBA range (i.e., offset and length, hereinafter
offset range) or set of ranges within the LUN. The protocol layer 320 may implement
a volume mapping technique to identify a volume to which the I/O request is directed
(i.e., the volume servicing the offset range indicated by the parameters of the I/O
request). [lustratively, the cluster database 244 may be configured to maintain one or
more associations (e.g., key-value pairs) for each of the multiple volumes, e.g., an
association between the LUN ID and a volume, as well as an association between the
volume and a node ID for a node managing the volume. The administration layer 310
may also cooperate with the database 244 to create (or delete) one or more volumes
associated with the LUN (e.g., creating a volume ID/LLUN key-value pair in the
database 244). Using the LUN ID and LBA (or LBA range), the volume mapping
technique may provide a volume ID (e.g., using appropriate associations in the cluster
database 244) that identifies the volume and node servicing the volume destined for
the request, as well as translate the LBA (or LBA range) into an offset and length
within the volume. Specifically, the volume ID is used to determine a volume layer
instance that manages volume metadata associated with the LBA or LBA range. As
noted, the protocol layer 320 may pass the I/O request (i.e., volume ID, offset and
length) to the persistence layer 330, which may use the function shipping (e.g., inter-
node) implementation to forward the I/O request to the appropriate volume layer

instance executing on a node in the cluster based on the volume ID.

In an embodiment, the volume layer 340 may manage the volume metadata
by, e.g., maintaining states of host-visible containers, such as ranges of LUNs, and
performing data management functions, such as creation of snapshots and clones, for
the LUNS in cooperation with the administration layer 310. The volume metadata is
illustratively embodied as in-core mappings from LUN addresses (i.e., LBAs) to
durable extent keys, which are unique cluster-wide IDs associated with SSD storage
locations for extents within an extent key space of the cluster-wide storage container.
That is, an extent key may be used to retrieve the data of the extent at an SSD storage
location associated with the extent key. Alternatively, there may be multiple storage

containers in the cluster wherein each container has its own extent key space, e.g.,

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

where the administration layer 310 provides distribution of extents among the storage
containers. [llustratively, an extent is a variable length block of data that provides a
unit of storage on the SSDs that need not be aligned on any specific boundary, i.e., it
may be byte aligned. Accordingly, an extent may be an aggregation of write data from
a plurality of write requests to maintain such alignment. Illustratively, the volume
layer 340 may record the forwarded request (e.g., information or parameters
characterizing the request), as well as changes to the volume metadata, in dedicated
log 345 maintained by the volume layer. Subsequently, the contents of the volume
layer log 345 may be written to the storage array 150 in accordance with retirement of
log entries, while a checkpoint (e.g., synchronization) operation that stores in-core
metadata on the array 150. That is, the checkpoint operation (checkpoint) ensures that
a consistent state of metadata, as processed in-core, is committed to (i.e., stored on)
the storage array 150; whereas the retirement of log entries ensures that the entries
accumulated in the volume layer log 345 synchronize with the metadata checkpoints
committed to the storage array 150 by, e.g., retiring those accumulated log entries that
are prior to the checkpoint. In one or more embodiments, the checkpoint and

retirement of log entries may be data driven, periodic or both.

In an embodiment, the extent store layer 350 is responsible for storing extents
on the SSDs 260 (i.e., on the storage array 150) and for providing the extent keys to
the volume layer 340 (e.g., in response to a forwarded write request). The extent store
layer 350 is also responsible for retrieving data (e.g., an existing extent) using an
extent key (e.g., in response to a forwarded read request). The extent store layer 350
may be responsible for performing de-duplication and compression on the extents
prior to storage. The extent store layer 350 may maintain in-core mappings (e.g.,
embodied as hash tables) of extent keys to SSD storage locations (e.g., offset on an
SSD 260 of array 150). The extent store layer 350 may also maintain a dedicated log
355 of entries that accumulate requested “put” and “delete” operations (i.e., write
requests and delete requests for extents issued from other layers to the extent store
layer 350), where these operations change the in-core mappings (i.e., hash table
entries). Subsequently, the in-core mappings and contents of the extent store layer log
355 may be written to the storage array 150 in accordance with a “fuzzy” checkpoint
390 (i.e., checkpoints with incremental changes recorded in one or more log files) in

which selected in-core mappings, less than the total, are committed to the array 150 at

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

10

various intervals (e.g., driven by an amount of change to the in-core mappings, size
thresholds of log 355, or periodically). Notably, the accumulated entries in log 355
may be retired once all in-core mappings have been committed to include the changes

recorded in those entries.

In an embodiment, the RAID layer 360 may organize the SSDs 260 within the
storage array 150 as one or more RAID groups (e.g., sets of SSDs) that enhance the
reliability and integrity of extent storage on the array by writing data “stripes” having
redundant information, i.e., appropriate parity information with respect to the striped
data, across a given number of SSDs 260 of each RAID group. The RAID layer 360
may also store a number of stripes (e.g., stripes of sufficient depth), e.g., in
accordance with a plurality of contiguous range write operations, so as to reduce data
relocation (i.e., internal flash block management) that may occur within the SSDs as a
result of the operations. In an embodiment, the storage layer 365 implements storage
I/O drivers that may communicate directly with hardware (e.g., the storage controllers
240 and cluster interface 250) cooperating with the operating system kernel 224, such

as a Linux virtual function I/O (VFIO) driver.

Write Path

Fig. 4 illustrates an I/O (e.g., write) path 400 of the storage I/O stack 300 for
processing an /O request, e.g., a SCSI write request 410. The write request 410 may
be issued by host 120 and directed to a LUN stored on the storage array 150 of the
cluster 100. Iustratively, the protocol layer 320 receives and processes the write
request by decoding 420 (e.g., parsing and extracting) fields of the request, e.g., LUN
ID, LBA and length (shown at 413), as well as write data 414. The protocol layer 320
may use the results 422 from decoding 420 for a volume mapping technique 430
(described above) that translates the LUN ID and LBA range (i.e., equivalent offset
and length) of the write request to an appropriate volume layer instance, i.e., volume
ID (volume 445), in the cluster 100 that is responsible for managing volume metadata
for the LBA range. In an alternative embodiment, the persistence layer 330 may
implement the above-described volume mapping technique 430. The protocol layer
then passes the results 432, e.g., volume ID, offset, length (as well as write data), to
the persistence layer 330, which records the request in the persistence layer log 335

and returns an acknowledgement to the host 120 via the protocol layer 320. The

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

11

persistence layer 330 may aggregate and organize write data 414 from one or more
write requests into a new extent 470 and perform a hash computation, i.e., a hash
function, on the new extent to generate a hash value 472 in accordance with an extent

hashing technique 474.

The persistence layer 330 may then pass the write request with aggregated
write data including, e.g., the volume ID, offset and length, as parameters 434 to the
appropriate volume layer instance. In an embodiment, message passing of the
parameters 432 (received by the persistence layer) may be redirected to another node
via the function shipping mechanism, e.g., RPC, for inter-node communication.
Alternatively, message passing of the parameters 432 may be via the IPC mechanism,

e.g., message threads, for intra-node communication.

In one or more embodiments, a bucket mapping technique 476 is provided that
translates the hash value 472 to an instance of an appropriate extent store layer (e.g.,
extent store instance 478) that is responsible for storing the new extent 470. Note, the
bucket mapping technique may be implemented in any layer of the storage I/O stack
300 above the extent store layer 350. In an embodiment, for example, the bucket
mapping technique may be implemented in the persistence layer 330, the volume
layer 340, or a layer that manages cluster-wide information, such as a cluster layer
(not shown). The persistence layer 330 may then pass the hash value 472 and the new
extent 470 to the appropriate volume layer instance and onto the appropriate extent
store instance via an extent store put operation. The extent hashing technique 474
may embody an approximately uniform hash function to ensure that any random
extent to be written may have an approximately equal chance of falling into any
extent store instance 478, i.e., hash buckets are distributed across extent store
instances of the cluster 100 based on available resources. As a result, the bucket
mapping technique 476 provides load-balancing of write operations (and, by
symmetry, read operations) across nodes 200 of the cluster, while also leveling flash

wear in the SSDs 260 of the cluster.

In response to the put operation, the extent store instance may process the hash
value 472 to perform an extent metadata selection technique 480 that (i) selects an
appropriate hash table 482 (e.g., hash table 482a) from a set of hash tables
(illustratively in-core) within the extent store instance 478, and (ii) extracts a hash

table index 484 from the hash value 472 to index into the selected hash table and

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

12

lookup a table entry having an extent key 475 identifying a storage location 490 on
SSD 260 for the extent. Accordingly, the extent store layer 350 may contain
computer executable instructions executed by the CPU 210 to perform operations that
implement the metadata selection technique 480 described herein. If a table entry
with a matching key is found, the SSD location 490 mapped from the extent key 475
is used to retrieve an existing extent (not shown) from SSD. The existing extent is
then compared with the new extent 470 to determine whether their data is identical. If
the data is identical, the new extent 470 is already stored on SSD 260 and a de-
duplication opportunity (denoted de-duplication 452) exists such that there is no need
to write another copy of the data. Accordingly, a reference count (not shown) in the
table entry for the existing extent is incremented and the extent key 475 of the
existing extent is passed to the appropriate volume layer instance for storage within an
entry (denoted as volume metadata entry 446) of a dense tree metadata structure (e.g.,
dense tree 444a), such that the extent key 475 is associated an offset range (e.g., offset

range 440a) of the volume 445.

However, if the data of the existing extent is not identical to the data of the
new extent 470, a collision occurs and a deterministic algorithm is invoked to
sequentially generate as many new candidate extent keys (not shown) mapping to the
same bucket as needed to either provide de-duplication 452 or produce an extent key
that is not already stored within the extent store instance. Notably, another hash table
(e.g. hash table 482n) of extent store instance 478 may be selected by a new candidate
extent key in accordance with the extent metadata selection technique 480. In the
event that no de-duplication opportunity exists (i.e., the extent is not already stored)
the new extent 470 is compressed in accordance with compression technique 454 and
passed to the RAID layer 360, which processes the new extent 470 for storage on SSD
260 within one or more stripes 464 of RAID group 466. The extent store instance
may cooperate with the RAID layer 360 to identify a storage segment 460 (i.e., a
portion of the storage array 150) and a location on SSD 260 within the segment 460 in
which to store the new extent 470. Illustratively, the identified storage segment is a
segment with a large contiguous free space having, e.g., location 490 on SSD 260b for

storing the extent 470.

In an embodiment, the RAID layer 360 then writes the stripes 464 across the
RAID group 466, illustratively as a full write stripe 462. The RAID layer 360 may

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

13

write a series of stripes 464 of sufficient depth to reduce data relocation that may
occur within flash-based SSDs 260 (i.e., flash block management). The extent store
instance then (i) loads the SSD location 490 of the new extent 470 into the selected
hash table 482n (i.e., as selected by the new candidate extent key), (ii) passes a new
extent key (denoted as extent key 475) to the appropriate volume layer instance for
storage within an entry (also denoted as volume metadata entry 446) of a dense tree
444 managed by that volume layer instance, and (iii) records a change to metadata of
the selected hash table in the extent store layer log 355. Illustratively, the volume
layer instance selects dense tree 444a spanning an offset range 440a of the volume
445 that encompasses the offset range of the write request. As noted, the volume 445
(e.g., an offset space of the volume) is partitioned into multiple regions (e.g., allotted
as disjoint offset ranges); in an embodiment, each region is represented by a dense
tree 444. The volume layer instance then inserts the volume metadata entry 446 into
the dense tree 444a and records a change corresponding to the volume metadata entry
in the volume layer log 345. Accordingly, the I/O (write) request is sufficiently stored
on SSD 260 of the cluster.

Read Path

Fig. 5 illustrates an I/O (e.g., read) path 500 of the storage 1/O stack 300 for
processing an I/O request, e.g., a SCSI read request 510. The read request 510 may
be issued by host 120 and received at the protocol layer 320 of a node 200 in the
cluster 100. IMustratively, the protocol layer 320 processes the read request by
decoding 420 (e.g., parsing and extracting) fields of the request, e.g., LUN ID, LBA,
and length (shown at 513), and uses the results 522, e.g., LUN ID, offset, and length,
for the volume mapping technique. That is, the protocol layer 320 may implement the
volume mapping technique 430 (described above) to translate the LUN ID and LBA
range (i.e., equivalent offset and length) of the read request to an appropriate volume
layer instance, i.e., volume ID (volume 445), in the cluster 100 that is responsible for
managing volume metadata for the LBA (i.e., offset) range. The protocol layer then
passes the results 532 to the persistence layer 330, which may search the write-back
cache 600 to determine whether some or all of the read request can be serviced from
its cached data. If the entire request cannot be serviced from the cached data, the
persistence layer 330 may then pass the remaining portion of the request including,

e.g., the volume ID, offset and length, as parameters 534 to the appropriate volume

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

14

layer instance in accordance with the function shipping mechanism(e.g., RPC, for
inter-node communication) or the IPC mechanism(e.g., message threads, for intra-

node communication).

The volume layer instance may process the read request to access a dense tree
metadata structure (e.g., dense tree 444a) associated with a region (e.g., offset range
440a) of a volume 445 that encompasses the requested offset range (specified by
parameters 534). The volume layer instance may further process the read request to
search for (lookup) one or more volume metadata entries 446 of the dense tree 444a to
obtain one or more extent keys 475 associated with one or more extents 470 within
the requested offset range. Illustratively, each dense tree 444 may be embodied as
multiple levels of a search structure with possibly overlapping offset range entries at
each level. The entries, i.e., volume metadata entries 446, provide mappings from
host-accessible LUN addresses, i.e., LBAs (offsets), to durable extent keys. The
various levels of the dense tree may have volume metadata entries 446 for the same
offset, in which case the higher level has the newer entry and is used to service the
read request. A top level of the dense tree 444 is illustratively resident in-core and a
page cache 448 may be used to access lower levels of the tree. If the requested range
or portion thereof is not present in the top level, a metadata page associated with an
index entry at the next lower tree level is accessed. The metadata page (i.e., in the
page cache 448) at the next level is then searched (e.g., a binary search) to find any
overlapping entries. This process is then iterated until one or more volume metadata
entries 446 of a level are found to ensure that the extent key(s) 475 for the entire
requested read range are found. If no metadata entries exist for the entire or portions
of the requested read range, then the missing portion(s) are zero filled. Once found,
each extent key 475 is processed by the volume layer 340 to, e.g., implement the
bucket mapping technique 476 that translates the extent key to an appropriate extent
store instance 478 responsible for storing the requested extent 470. Note that, in an
embodiment, each extent key 475 may be substantially identical to the hash value 472
associated with the extent 470, i.e., the hash value as calculated during the write
request for the extent, such that the bucket mapping 476 and extent metadata selection
480 techniques may be used for both write and read path operations. Note also that
the extent key 475 may be derived from the hash value 472. The volume layer 340

may then pass the extent key 475 (i.e., the hash value from a previous write request

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

15

for the extent) to the appropriate extent store instance 478 (via an extent store get
operation), which performs an extent key-to-SSD mapping to determine the location

on SSD 260 for the extent.

In response to the get operation, the extent store instance may process the
extent key 475 (i.e., the hash value 472) to perform the extent metadata selection
technique 480 that (i) selects an appropriate hash table (e.g., hash table 482a) from a
set of hash tables within the extent store instance 478, and (ii) extracts a hash table
index 484 from the extent key 475 (i.e., the hash value 472) to index into the selected
hash table and lookup a table entry having a matching extent key 475 that identifies a
storage location 490 on SSD 260 for the extent 470. That is, the SSD location 490
mapped to the extent key 475 may be used to retrieve the existing extent (denoted as
extent 470) from SSD 260 (e.g., SSD 260b). The extent store instance then
cooperates with the RAID layer 360 to access the extent on SSD 260b and retrieve the
data contents in accordance with the read request. Illustratively, the RAID layer 360
may read the extent in accordance with an extent read operation 468 and pass the
extent 470 to the extent store instance. The extent store instance may then
decompress the extent 470 in accordance with a decompression technique 456,
although it will be understood to those skilled in the art that decompression can be
performed at any layer of the storage 1/0 stack 300. The extent 470 may be stored in
a buffer (not shown) in memory 220 and a reference to that buffer may be passed back
through the layers of the storage I/O stack. The persistence layer may then load the
extent into a read cache 580 (or other staging mechanism) and may extract
appropriate read data 512 from the read cache 580 for the LBA range of the read
request 510. Thereafter, the protocol layer 320 may create a SCSI read response 514,

including the read data 512, and return the read response to the host 120.

Persistent Write-back Cache

A write request 410 (including write data 414) received at the persistence layer
330 is illustratively stored in the NVRAM 280. Storage of write request 410 (i.e.,
write parameters 413 and write data 414) in the NVRAM 280 enables immediate, i.e.,
low latency, acknowledgement to the host 120 of successful receipt and storage of the
write data on the cluster 100. The write request 410 may be stored in NVRAM in the
form of a log, e.g., dedicated log 335 of NVLogs 285; however, in an embodiment,

the write data is illustratively stored in the NVRAM in the form of the persistent

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

16

write-back cache 600. The write data 414 is thereafter preserved in the cache 600
until written to the storage array 150 (i.e., SSD 260) in according to a “write-back”

operation (as opposed to a checkpoint).

[lustratively, the write-back cache 600 is configured to write the data back to
SSD quickly, primarily because there is no need to achieve read caching or cache hits
on subsequent write requests. However, write-back of the write data from the cache
600 to the SSD 260 may occur due to cache pressure or to capture a point-in-time
image of a storage container. Nevertheless, a reason for maintaining the write data in
the persistent write-back cache 600 for some period of time is that the write data may
be part of sequential write requests that are contiguous, i.e., within a continuous LBA
range, and thus may be combined into one or more variable length extents 470. The
extents (i.e., write data) can then be “written back™ to the storage array 150 in any
order that is convenient. Preserving such flexibility enables use of the persistent write-
back cache 600 to impose a degree of regularity on an incoming stream of write
requests 410 received at the storage 1/0O stack 300. It should be noted that any protocol
ordering in the incoming stream may be reflected in the contents of the write-back
cache. As a result, out-of-order write back from the write-back cache to SSD is

permitted, so long as data in the cache is faithfully preserved.

Fig. 6 is a block diagram of the persistent write-back cache 600 of the storage
I/O stack 300 that may be advantageously used with one or more embodiments
described herein. The write-back cache 600 illustratively includes a plurality of
entries, i.e., cache lines 610a-c, configured to store write data 414a-d of write requests
410a-d. For example, assume the write requests are associated with an incoming
stream of odd-sized, sequential write requests 410a-d that manifest as two 512 byte
write requests (e.g., write data 414a, 414b of write requests 410a, 410b), followed by
a 16 KB write request (e.g., write data 414c of write request 410c) and a 256 KB write
request (e.g., write data 414d of write request 410d). The persistent write-back cache
600 may store the write data in cache lines 610a-c prior to collecting and organizing
the data into more regularly aligned, e.g., on 16 KB boundaries, extents 470a-d of
write data that are thereafter written to SSD 260. [lustratively, an extent 470a may be
formed by combining the write data, e.g., 414a and 414b, from write requests 410a
and 410b, whereas an extent 470b may be formed from the write data 414c of write

request 410c. Additionally, the write data 414d from write request 410d may be split

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

17

into two or more extents 470c and 470d, e.g., based on a maximum extent size 630.
The extents 470a-d may then be written back to the storage array 150 in any
convenient order. Notably, the extents (write data) are not retired, e.g., evicted or
deleted, from the cache 600 until the write data is safely stored on the array.
Accordingly, a property of the persistent write-back cache 600 of the storage I/O stack
300 is that write data is generally not retired from the cache until the persistence layer
330 receives confirmation (e.g., from the extent store layer 350) that the write data

(extent) is successfully stored on SSD 260 of the storage array.

Advantageously, use of the persistent write-back cache 600 within the storage
17O stack 300 enables flexibility of how the data is written back to SSD 260, as
opposed to a log which typically compels write-back in approximately the same order
in which the write requests were received. For example, if the write data 414a-d were
stored in the persistence layer log 335, the persistence layer 330 may be compelled to
“write-back™, i.e., push or copy, the write data to the volume layer 340 in
approximately the same order in which the write requests were received to allow
reuse of the log space. This is because log space is typically allocated, filled,
checkpointed and freed sequentially, whereas lines within the persistent write-back
cache 600 may be allocated, filled, written-back, and freed in any pattern (i.e., order)

convenient to the storage system.

Atomicity of Data

In one or more embodiments, the persistence layer 330 may cooperate with the
NVRAM 280 to provide atomicity for write data, e.g., write data 414a-d, that could be
fragmented into multiple extents and stored across different boundaries of logical
constituents of a LUN, e.g., volumes, regions, and/or stripes. If the write data could
cross one of the logical boundaries, it may be desirable to provide atomicity for that
data without having synchronization among instances of the volume layer 340 and
instances of other layers (e.g., the extent store layer 350) representing those different
constituents. For example, each extent storage operation may follow a write path (i.e.,
its extent store layer “put” operation and associated volume layer offset range
operation) that is independent from the path followed by other layer operations. The
persistence layer 330 may provide such an atomic function, i.e., as viewed by the host

120, by hiding those boundaries and enabling atomicity in spite of the fact that there is

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

18

no coordination among the different constituents of the LUN, e.g., instances of lower

layers of the storage I/0O stack 300.

More generally, if write data 414 could be fragmented at lower layers of the
storage I/O stack (e.g., RAID layer 360, extent store layer 350 or volume layer 340)
and it is desirable to preserve atomicity for some portion (i.e., atomic units) of the
data, the NVRAM 280 facilitates such preservation, e.g., via write-back cache 600 of
the persistence layer by allowing the atomic units to commit into NVRAM rather than
having to implement a type of two-phase commit of lower-level portions of the data
that constitute the atomic units. That is, persistent caching and logging (e.g., via
NVRAM 280 and NVLogs 285) of operations at the persistence layer obviates
synchronization of lower-level operations, allowing simplification and a greater

degree of parallelism among instances of lower layers of the storage /O stack 300.

For example, assume a write request 410 that changes a database block of a
LUN arrives at the node 200 at an arbitrary alignment with respect to, e.g., a database
requirement for write atomicity. In typical deployments, the database block may be
sized between 4 KB and 64 KB but, in general, is power of 2 in size (any arbitrary
512 byte alignment boundary may be chosen). Assume further that write data 414 of
the write request forms one or more 64 KB extents, each of which is to be processed
atomically. If, for example, 192 KB of write data is received at the node, the write
data could include three 64 KB blocks or a series of 4 KB blocks. Regardless of its
size, if the write data includes uniform-sized database blocks of a power of 2 size no
greater than 64 KB, and if atomicity is maintained for each 64 KB portion of the write
data, it can be ensured that every database block within the write data is also written
atomically, i.e., all or nothing, within a subunit (64 KB portion) of the write data. That
is, if the write data is multiple megabytes in length, the atomic guarantee only extends
to each “64KB-aligned-modulo-at-the-beginning-of-the-write-data” portion of data.
Accordingly, the alignment requirement commences from the beginning of the write
request and not from the beginning the LUN. By atomically writing 64 KB portions
into the NVRAM 280 maintained by the persistence layer 330, e.g., into the persistent
write-back cache 600, fragments of those portions can be written back to the
underlying volumes at different times without any coordinated atomic push-back

among the volumes (i.e., because the portions are individually preserved in the

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

19

persistent write-back cache). As long as the portions are atomically stored when

recorded by the persistence layer 330, the atomicity requirement can be achieved.

NVRAM Logging

In addition to providing atomicity of write data, the persistence layer 330 may
cooperate with the NVRAM 280 to hide latencies associated with underlying
operations (e.g., data and metadata path operations) within the storage I/O stack 300.
To that end, the persistence layer 330 may cooperate with the NVRAM to employ a
log for recording an I/O request 410 issued by the host 120. Fig. 7 is a block diagram
of an NVRAM log 700 that may be advantageously used with one or more
embodiments described herein. Illustratively, the NVRAM log 700 may be a
dedicated log of the NVLogs 285 and, thus, provides an exemplary embodiment of
the persistence layer log 335, the volume layer log 345 and/or the extent storage layer
log 355. In an embodiment, the dedicated NVRAM log 700 is illustratively
configured as a circular log of records or entries 770 and includes a magic number
762 that ensures the correctness (validity) of the log, a version 764 that identifies a
version of the log, a head (pointer) 766 configured to point to (reference) a head entry
at a beginning of the circular log and a tail (pointer) 768 configured to reference a tail

entry at an end of the circular log.

Each entry 770 may further include, inter alia, a type 771 of I/O request (e.g.
write request), a size 772 of the entry and a sequence number 773. Illustratively, the
sequence number 773 (e.g., a monotonically increasing value) facilitates matching of
entries within the log 700 to allow retirement of the entries when all write data
associated with the request is safely stored on the storage array 150. Thus, the
sequence number 773 may be a time-stamp or other value that is advantageously
employed when the write data is split into multiple extents 470 and written to the
storage array out-of-order. For example, a log entry 770 may be retired when all
extents associated with the write data 414 of the write request 410 have been
successfully stored on SSD 260 of the array 150. The entry 770 may also include a
volume ID 774 that identifies a volume destined for the request (and a node servicing
the volume), as well as I/O request parameters 432 such as offset 775 (i.e., LBA) and
length 776 (i.e., write data length). In the case of the persistence layer log 335, a
write cache pointer 777 is provided to reference the write data 414 stored in the write-

back cache 600. Alternatively, the log 700 may contain the write data, such that the

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

20

log subsumes the write-back cache 600 . A checksum 778 may also be provided to

ensure that the information of the entry is stored without error.

In one or more embodiments, the volume layer 340 and extent store layer 350
may employ the NVRAM 280 to optimize both (i) latency of metadata changes
(updates), as well as (ii) write amplification costs associated with the metadata
updates. That is, the extent store layer 350 may use its dedicated log 355 of the
NVLogs 285 to record metadata updates to hash table 482, whereas the volume layer
350 may use its dedicated log 345 of the NVLogs 285 to record volume metadata

updates to the dense tree 444 (via volume metadata entry 446).

Specifically, the volume layer 340 may record write requests (i.e., parameters
432, such as offset and length, along with extent key 475) on the dense tree 444. The
recorded metadata may be checkpointed by a merge operation from the in-core dense
tree metadata structure to a corresponding dense tree metadata structure on SSD (on-
flash). Updates to the in-core dense tree 444 may also be logged onto the dedicated
log 345 of NVLogs 285 and then pushed (written) to SSD as the log fills. Writing of
the log entries to SSD 260 may be effected by a change log operation, i.e., copying
operation, that records insertions and deletions performed on the in-core dense tree
444. Such log writing may be separate and different from a merge operation between
the in-core mappings and on-flash mappings of the dense tree, which is a checkpoint.
Accordingly, once the merge (checkpoint) of the in-core dense tree 444 is performed,
the entries of the dedicated log 345 may be retired (e.g., deleted, marked reusable, or a
marker written to the log expiring previous entries) because they have been merged

onto SSD 260.

Similarly, the extent store layer 350 records updates to the in-core hash tables
482 in the dedicated log 355. Subsequently, those in-core mappings, i.e., hash tables,
may be written to the storage array 150 in accordance with the fuzzy checkpoint 390
in which selected in-core mappings, less than the total, are committed to the array 150
at various intervals (e.g., driven by an amount of change to the in-core mappings, size
thresholds of log 355, or periodically). Notably, the accumulated entries in log 355
may be retired once all in-core mappings have been committed and then,

illustratively, for those entries prior to the first interval.

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

21

Accordingly, a metadata path through the storage I/0 stack 300 involves
storage of metadata in entries 770 of the dedicated logs, as well as checkpoints of in-
core mappings, i.e., entries of hash tables 482 of the extent store layer 350 and entries
of dense trees 444 of the volume layer 340. In addition, a data path through the
storage I/O stack 300 involves storage of write data in the persistence write-back
cache 600, where the write data is organized as one or more extents 470 and provided,
e.g., via a memory reference such as a pointer or data message, to the extent store
layer 350 and to the RAID layer 360, where each extent 470 is safely stored on SSD
260.

Power Loss Resilient Paths

Fig. 8 illustrates data and metadata paths 800 of the storage I/O stack 300. In
an embodiment, write data 414 of write request 410 is stored in the persistent write-
back cache 600 by a persistence layer instance 331. The write data is then formed
into an extent 470 (and a hash value 472) and passed to an extent store layer instance
351a for storage on the array 150. As described previously, the extent store instance
processes the hash value 472 to index into a hash table 482 to either determine an
existing table entry (e.g., a possible de-duplication opportunity) or a free entry.
[lustratively, if no de-duplication opportunity exists (or the hash value indexes to a
free entry), the extent 470 (i.e., write data 414) is passed to a RAID layer instance
361a within a full stripe write 462, and the RAID layer instance subsequently reports
completion of the write, e.g., via return parameters or callback 860, to the extent store
layer instance 351a (i.e., extent store instance). The extent store instance may then
load the extent location into a field of an entry of the hash table 482 (LOCATION
490) and record the table entry in the dedicated extent log 355.

Subsequently, the extent store layer instance 351a may issue a callback 862 to
the persistence layer instance 331, which may use the callback to “complete”, e.g.
delete, evict or mark removable, the write data 414 from the persistent write-back
cache 600. At that point, the write data 414 of extent 470 has been provided to the
SSD 260 of the storage array 150a and has been acknowledged either as stored on

flash components of the SSD 260 or stored in a non-volatile buffer within the SSD.

Alternatively, the persistent layer instance 331 may wait until an appropriate

volume layer instance 341 has inserted (committed) the extent key 475 and write

WO 2015/105671 PCT/US2014/071581

10

15

20

25

30

22

parameters 432 (e.g., offset and length) into the dense tree 444 and recorded that
volume metadata in the dedicated volume layer log 345. Notably, the volume
metadata is not written into the volume layer 340 that resolves the extent 470 for
holding the write data until the extent is actually at the SSD 260. That is, the volume
layer instance 341 may not store any useful metadata until it is provided the extent
key 475 for the extent 470, and the extent store layer instance 351 does not provide
the volume layer instance with the extent key 475 until it has resolved a potential de-
duplication opportunity. Once the extent key 475 and write parameters 432 are
committed into the dense tree 444, the volume layer instance 341 may issue a callback
864 to the persistence store layer instance 331 informing that instance that the write

request 410 is “complete.”

In an embodiment, the dedicated logs 345 and 355 may be stored on a
different storage array 150b via a different extent storage layer instance 351b from
that used to store the write data 414 of extent 470, i.e., storage array 150a via extent
store instance 351a. In other words, the path for (write) data may differ from the path
for metadata. Nevertheless, even if appropriate log entries in the dedicated logs 345
and 355 are not immediately stored on the flash components of the SSD 260 (or
power is lost) the log entries are preserved in NVRAM 280, e.g., in NVlogs 285.
Similarly, the write data 414 of the extent 470 is preserved in NVRAM 280, e.g., in
persistent write-back cache 600. Thus, the preserved write data and metadata may be
replayed to recover failure of either storage array 150a or 150b (e.g. power loss to the
SSD 260) to enable successful storage of the write data (and/or metadata) to the flash
components of their respective SSDs. Correspondingly, there is no particular motive
to quickly write the extent 470 (write data 414) from the persistent write-back cache
600 to SSD, provided there is sufficient storage capacity in the write-back cache 600
to accommodate the write data awaiting storage on SSD. As a result, disjoint
operations between instances of layers of the storage I/O stack 300 may be performed

in parallel.

The foregoing description has been directed to specific embodiments. It will
be apparent, however, that other variations and modifications may be made to the
described embodiments, with the attainment of some or all of their advantages. For
instance, it is expressly contemplated that the components and/or elements described

herein can be implemented as software encoded on a tangible (non-transitory)

WO 2015/105671 PCT/US2014/071581
23

computer-readable medium (e.g., disks and/or CDs) having program instructions
executing on a computer, hardware, firmware, or a combination thereof. Accordingly
this description is to be taken only by way of example and not to otherwise limit the
scope of the embodiments herein. Therefore, it is the object of the appended claims to
5 cover all such variations and modifications as come within the true spirit and scope of

the embodiments herein.

What is claimed is:

WO 2015/105671 PCT/US2014/071581

10

11

12

13

14

15

16

17

18

19

20

21

22

24

CLAIMS

1. A method comprising:

receiving at a storage system a plurality of 1/O requests each having data;

in response to receiving each of the plurality of I/O requests, returning a
respective acknowledgement;

organizing the data of the plurality of I/O requests into a plurality of
extents, the organizing to include combining the data of two or
more first /O requests of the plurality of I/O requests into a first
extent, forming the data of a second I/O request of the plurality of
I/O requests into a second extent, and splitting the data of a third
I/O request of the plurality of I/O requests into two or more third
extents;

storing the extents in a first order in a persistent memory cache of the
storage system;

writing the plurality of extents in a second order from the persistent
memory cache to one or more solid state drives (SSDs) attached to
the storage system, wherein the second order differs from the first
order;

receiving a confirmation that each of the plurality of extents was
successfully stored in the one or more SSDs; and

deleting each of the plurality of extents in the persistent memory cache
when each respective extent is confirmed to be successfully stored

in the one or more SSDs.

2. The method of claim 1 wherein the plurality of extents have a variable size,

such that at least one extent has a different size from at least one other extent.

3. The method of claim 1 or 2 wherein the two or more first I/O requests have

data that is within a continuous logical block address range.

4. The method of any preceding claim further comprising atomically storing each

extent of the plurality of extents in the one or more SSDs.

WO 2015/105671 PCT/US2014/071581
25

1 5. The method of any preceding claim further comprising:

2 recording a parameter of each I/O request of the plurality of I/O requests in a

3 respective entry of a first non-volatile log of the storage system, thereby avoiding loss
4 of the parameter included in each I/O request when power is lost to the one or more

5 SSDs.

1 6. The method of claim 5 further comprising:

2 recording an offset included in the parameter of each I/O request in a

3 respective entry of a second non-volatile log of the storage system;
4 and

5 storing the entries of the second non-volatile log on the one or more SSDs.

1. The method of claim 6 wherein the plurality of extents is stored on a first
2 subset of the one or more SSDs, wherein the entries of the second non-volatile log are
3 stored on a second subset of the one or more SSDs, and wherein the first subset is

4 different than the second subset.

1 8. The method of any of claims 5 to 7 wherein each entry of the first non-volatile

2 log includes a pointer to the persistent memory cache.

1 9. The method of claim 8 wherein deleting each of the plurality of extents in the
2 persistent cache occurs in response to recording the pointer to the persistent memory

3 cache in a third non-volatile log of the storage system.

110, The method of any preceding claim wherein the third I/O request is split based

2 on amaximum extent size.

1 11 A computer program comprising instructions in computer-readable form,
2 wherein the instructions when executed by the storage system cause the storage

3 system to perform the method of any preceding claim.

1 12 A computer program product comprising the computer program of claim 11

2 stored on a non-transient computer readable medium.

WO 2015/105671

PCT/US2014/071581
26

1 13, A system comprising:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

a first storage array having one or more solid state drives (SSDs);

a first node connected to a non-volatile memory via a system bus, the first

node being attached to the first storage array,

the first node configured to receive a plurality of input/output (I/0)
requests each having data,

the first node further configured to acknowledge each of the plurality
of I/0 requests,

the first node further configured to organize the data of the plurality of
I/O requests into a plurality of extents, by combining the data of
two or more first I/O requests of the plurality of I/O requests into a
first extent, forming the data of a second I/O request of the
plurality of I/O requests into a second extent, and splitting the data
of a third I/O request of the plurality of I/O requests into two or
more third extents,

the first node further configured to store the plurality of extents in a
cache in a first order, the cache being stored in the non-volatile
memory,

the first node further configured to write the plurality of extents in a
second order from the cache to the first storage array, wherein the
second order differs from the first order,

the first node further configured to receive a confirmation that each of
the plurality of extents was successfully stored in the first storage

array, and

25 the first node further configured to delete the plurality of extents from the cache when

26 each respective extent is confirmed to be successfully stored in the first storage array.

1 14, The system of claim 13 wherein the plurality of extents have a variable size,

2 such that at least one extent has a different size from at least one other extent.

115, The system of claim 13 or 14 wherein the two or more first I/O requests have

2 data that is within a continuous logical block address range.

WO 2015/105671 PCT/US2014/071581
27

1 16. The system of any of claims 13 to 15 wherein the first node is further
2 configured to atomically store each extent of the plurality of extents in the first

3 array.

1 17, The system of any of claims 13 to 16 wherein the first node is further
2 configured to record a parameter of each I/O request of the plurality of I/O requests in
3 arespective entry of a first non-volatile log stored in the non-volatile memory,

4 thereby avoiding loss of the parameter when power is lost to the first node.

1 18. The system of claim 17 wherein each entry of the first non-volatile log

2 includes a pointer to the cache.

1 19. The system of claim 17 or 18 further comprising:

2 a second node configured to receive an offset included in the parameter of
3 a given /O request from the first node,

4 the second node further configured to record the offset in an entry of a
5 second non-volatile log, and

6 a third node further configured to store the entry of the second non-
7 volatile log on a second storage array attached to the second node,
8 the second storage array having one or more SSDs.

1 20. The system of claim 19 wherein the third node is different from the first node

2 and the second node.

1 21, The system of any of claims 13 to 20, wherein the third I/O request is split

2 based on a maximum extent size.

1 22 A system comprising:

2 a first storage array having one or more solid state drives (SSDs);

3 a first node having a non-volatile memory connected to a processor via a

4 bus, the first node attached to the first storage array; and

5 a storage I/O stack executing on the processor of the first node, the storage

6 I/O stack when executed operable to:

WO 2015/105671

10
11
12
13
14
15
16
17
18
19
20
21
2
23

24

PCT/US2014/071581
28

receive a plurality of I/0 requests each having data and a parameter,

organize the data of the plurality of I/O requests into units by
combining the data of two or more first I/O requests of the plurality
of I/0 requests into a first unit, forming the data of a second /O
request of the plurality of I/O requests into a second unit, and
splitting the data of a third I/O request of the plurality of I/O
requests into two or more third units,

atomically store the plurality of units in the non-volatile memory in a
first order,

pass the plurality of units in a first path of the storage I/O stack to the
first storage array for storage on the one or more SSDs in a second
order, wherein the second order differs from the first order,

pass the parameters in a second path of the storage I/O stack, wherein
the first path differs from the second path, for storage in a second
storage array attached to a second node, and
receive confirmation that each unit is stored on the one or more
SSDs in the first storage array prior to marking the respective unit

released in the non-volatile memory.

PCT/US2014/071581

WO 2015/105671

1/8

og\\

051
AVHY
IDVIOLS

00¢
300N

I ©OId

oyl
LOANNOOYILNI
J9VHOLS

0l
LO3INNOOYILNI
¥31SN10

0zl
1SOH

05}
AV
I9YHOLS

002
3QON

0zl
LSOH

PCT/US2014/071581

WO 2015/105671

2/8

¢ Old

05}
\
ss | a
(s)aaon ass d S8
y31SNTO
WOX4/0L 0% b~ —0v) A@on
_ — NOY4/01L
- 1574 _
0S¢ oz SOOTAN o7 ——
JOV4HTLN] — | 052
LOINNOOMALNI mwmmw%%o 082 N_wm,mm_%_%o Y3aldvay
¥31SNT10 NYSHAN MHYOMLIN
1 | |
_
02
1OINNODYAINI WILSAS
—
—— TANYIN WILSAS
0lg 00e ONILYHIdO
Ndd /
Gz MOVLS O/
A JOVHOLS
002

14

\llV}

vz
ga
¥3LSNTO

\\nll!.lll}

==

022 AHOWAN

FIG. 3

WO 2015/105671 PCT/US2014/071581
3/8
/300
) _| ADMINISTRATION
) g 310
A
M
E PROTOCOL LAYER CLUSTER DATABASE
g -t > 32—0 Zﬂ- |
A ‘‘‘‘‘‘ ~
G 335
| PERSISTENCE X \
| WVER |t J :
N 330 WL U 00,
G —] I
E 3457 i i \
K VOLUMELAYER |*— |! [| “
S e 340 U \
R i l\\\ \
N 355 1N\ \
E EXTENT STORE . BN \
L J— LAYER < ; =(. .J\: \\\ \\
350 - T~ J N
i : : \\\ ~\\ ‘I
| NVLOGS | SN
P N RAID LAYER \ 285 / N !
«—r 360 S \| | :
NVRAM 280 | I |
RE
370 STORAGE LAYER "
< g _3@ (' ____________________ h | | |
- .| EXTENTSTORELOG i}/ |!
Y CHECKPOINTA'1 | ___ (METADATA) | }I
390 | jet o]
OPERATING SYSTEM I VOLUME LAYER LOG i |/ }
KERNEL ! (METADATA) L]
22_4 b o o e e A }

I
AN

STORAGE ARRAY 150
Y

7

WO 2015/105671

LAYER HOST

PERSISTENCE PROTOCOL
LAYER

VOLUME LAYER

EXTENT STORE
LAYER

RAID LAYER

320

330

340

350

360

120

PCT/US2014/071581

}

~ 4/8 400
WRITE REQUEST 410 Wi
<
(LUNID,LBA,LENGTH 413) (_ WRITEDATA 414)
‘ i
[DECODE 420]
! LUN ID, OFFSET, LENGTH P-422
7
[VOLUME MAPPING 430] p———— YTENT
\
- | VOLUME ID, OFFSET, LENGTH |~432 | (WRITEDATA M 470
+ 470
1 | VOLUME ID, OFFSET, LENGTH | 434 [EXTENT HASHING 4747
L ——
R [BUCKET MAPPING 476 |
e talaiatat Salatulaialatie]
' DENSE TREE DENSETREE | [\")
I SE l
| OFFSE] RANGE OFFSEISANGE '+ | [GFFsET, LENGTH
| et EXTENT KEY 475 |}--1---
1 DENSE TREE \ 1| VOLUME METADATA
|/ DENSE TREE/ ™= it | ENTRY
! : i 446
i VOLUME 445 ! |
[EXTENT METADATA SELECTION 480 Jo—r | HASH VALUE 472
EXTENT ST?%E INSTANCE [HASH TABLE INDEX 484 1< !
ST oot N EXTENT 470
| | .-r[[LOCATION 490, KEY 475 |~—
T s A |
1) 1 { i R
i — HASH TABLE 482a f’i.’iﬁ%’fl}ﬁ_ﬁ-ﬁ?i’i i
! i
\| HASHTABLE 48 |[MEMOR ~ [DEDUPLICATION 452] y
|| e J [COMPRESSION 454]
€ e . SEGMENT
; 5 EXTENT 470 € \{ FULL STRIPE
I — L | WRITE 462
S R L
i ISSDZ@@I ‘ssoml . -lssmggql
: 466 FIG. 4

PERSISTENCE PROTOCOL

EXTENT STORE

WO 2015/105671 PCT/US2014/071581

, 5/8
_ READ REQUEST 510
B — 500
27 |\(" LUNID,LBA,LENGTH 513) r'e
y
_ [DECODE 420] READ RESPONSE 514
g LUN ID, OFFSET, LENGTH
= * (READDATA 512)
[VOLUME MAPPING 430] 522 ‘
* | VOLUME ID, OFFSET, LENGTH |532 | rmms 701 READ
. : ’ EXTENT 470 | i CACHE J~—
b Y 580
5| | VOLUME ID, OFFSET, LENGTH |>534
\ 4)
______________ * VOLUME METADATA ENTRY
D R T———) 446
' DENSETREE !
| oPENErANGE OFFSETRANGE || |XEESELLENGHH
e | 2400 4402 | [EXTENTKEY 475 |
= | e
I 1
LLI%* I] A
=] | DENSE TREE,) DENSE TREE i
2 | 444a I, | PAGE CACHE
S | : i 448
I
! VOLUME 445 ! !
------------------------------- EXTENT KEY 475
[BUCKET MAPPING 476 J«———— | (HASHVALUE 472)
EXTENT STORE INSTANCE [EXTENT METADATA
478~ | SELECTION 480
——————————————————— "'V"'"'"""—"\\
o] { | LOCATION 490, KEY 485 |«—HASH TABLE INDEX 484]+—
i R e e | -
| [T1] HASHTABLE 482a | EXTENT 470 [
' I (I W 4
\| |HASHTABLE 482n |(MEMORY);
\ oo J [DECOMPRESSION 456]
s T SEGMENT
Ll A S
- EXTENT 470 € | EXTENT
581 | ‘::::::::rj __________________________ /| READ s‘a@.&}
I
= ! |SSD 260a| ISSD 260b| | . |SSD 260n|
| —— = "\—466 FIG. 5

WO 2015/105671

PCT/US2014/071581

6/8

WRITE REQUEST 410a

LUNTD, LEA, [ENGTH) (WRITE DATA 414@]

WRITE REQUEST 410b

UN ID, LBA, LENGTH™\ (WRITE DATA 414b) |

L
2413

(WRITEREQUEST 410c

LUN D, LEA, LENGTH ™ (WRITE DATA 414@]
C }—=—={" WRITEREQUEST 410d

\ /QUN ID, LBA, LENGTH)(WRITE DATA 414d)

\
\
\

\ DATAPATH ,.’
NVRAM 280 \ ,
610a- WRITE DATA_41day | WRITE DATA 41db [/ =~ |~ BACK
: ’ ! 7 [T cACHE
P @ e | 630~ 600
610b WRITE DATA 41de
/ A o
61061 WRITE DATA 44d |
. i L { /!
{ . i
! /// \ /
" - ‘/@‘ CI(DI /@
i 7\ ;o /
r’ // /// \ ,II II ///
EXTENT 470a] /! [/
!
EXTENT 47b |} ! /
EXTENT 470c y
'\ T| EXTENT 4704
|
\ !
<1 L
260a " ~o_ -7 260n
\ - /
ARRAY

150

T o

FIG.

WO 2015/105671 PCT/US2014/071581

718
E’N\TL’ééé“ w5 T 1,
]
| N |
| LOG 700 i
' |
‘ |
[
| MAGIC 762 i p -
]
| VERSION 764 | | ! SIZE 2
|
| |qHEaD zes) | | SEQUENCE 773
b | NUMBER
A 768 VOLUMEID 774 (432)
| A _
{ i -
i A / OFFSET 775 (432)
/1%
i {| | ENTRY 770 LENGTH 776 (432)
t
| : WRITECACHE 777
B | POINTER
! [
i ‘\‘ | CHECKSUM 778
\ . |
- | :
|) ! :
| Y ENTRY 770 i
|
N J
L i

O il VA P T Mt Wt V. P W S Wt by e St

FIG. 7

WO 2015/105671 PCT/US2014/071581

8/8

— 800

PROTOCOL WRITE REQUEST 410

LAYER'3N2§TANCE (LUND, LBA, LENGTH 413") ("WRITE DATA 414)

— —
. —

.—-
—— -

=
| META-DATA L_____-/‘\ 1 DATAPATH 1 WRITE
\ PAH PERSISTENCE Bk
]] { ! CACHE
| | LAYERINSTANCE \)
| l K A e ——————
‘ ! DELETE | VRITE DATA 414)
| I CACHEENTRY | -« \
1 , ’/ [—
! | 4
|84 /1 8 o
l \'7’ '\/ E \ :
OFFSET LENGTH 432 | LA < :
;o Te=IT N L '
‘ | [exenrey as| (EENT A0
|
I
|

I HASH VALUE 472

VOLUME LAYER
lNSéfﬁ\g\lCE

- v o o ik ot Tt ok s ot e et G S

.'
I I~ \]
I'LEXTENTLOG 355 ! I

!

i

{

]

EXTENT
STORE LAYER
INSTANCE

KEY, LOCATION

KEY, LOCATION -

HIXXIE
[VOLUME LOG %SJ

|
EXTENT STORE —
LAYER INSTANCE

351b

|

!
|
!

RAID LAYER
INSTANCE

RAID LAYER
INSTANCE
361b

!
2606 e 260n

\
ARRAY
150 ﬁg] FIG. 8 [15'@ '“SSD]

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/071581

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/08 GO6F3/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 17 July 2003 (2003-07-17)
figure 3

paragraphs [0010],
[0035],

[0017],
[0044] - [0045],

[0032] -
[0048],

X US 2003/135729 Al (MASON ROBERT S [US] ET 1-22

[0051]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 March 2015

Date of mailing of the international search report

10/04/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Filip, Liviu

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2014/071581
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2003135729 Al 17-07-2003 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

