(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102345624 B
(45) 授权公告日 2015.05.20

(21) 申请号 201110204429.9
(22) 申请日 2011.07.11
(30) 优先权数据
 202010010623.0 2010.07.24 DE

(73) 专利权人 依必安 - 派特穆尔芬根股份有限
 两合公司
 地址 德国穆尔芬根

(72) 发明人 托马斯・赫利 阿尔弗雷德・科文

(74) 专利代理机构 北京金信知识产权代理有限
 公司 11225
 代理人 黄威 张小花

(51) Int. Cl.
 F04D 29/00(2006.01)

(56) 对比文件
 DE 3311660 A1, 1984.10.04, 全文。
 DE 3545680 A1, 1987.06.25, 全文。

(54) 发明名称
 风扇护栅装置

(57) 摘要
 本发明涉及一种风扇护栅装置 (1)，包括具有
 通风口 (4) 的盖件 (2) 以及护栅 (6)。护栅 (6)
 布置于通风口 (4) 的区域内并且通过多个沿周边
 分布的卡合连接件 (8) 与盖件 (2) 相连能够
 相互连接，从而封闭通风口防止其被接触到。每一
 个卡合连接件 (8) 均由布置于通风口 (4) 之中的
 卡凸 (10) 以及布置于护栅 (6) 上的卡合件 (12)
 构成。卡合杆 (12) 被布置在护栅 (6) 的外边缘
 上，其在护栅平面内，护栅 (6) 在每一个卡合杆
 (12) 的区域内能够弹性变形，从而使得每一个卡
 合杆 (12) 能够在护栅 (6) 局部弹性变形的情况下
 相对于其对应的卡凸 (10) 径向移动，以便使卡合
 连接件 (8) 卡合或松开（双箭头 14）。
1. 风扇护栅装置(1)，包括：具有通风口(4)的覆盖件(2)以及护栅(6)，护栅(6)布置于通风口(4)的区域之内，并且通过多个沿周边分布的卡合连接件(8)与覆盖件(2)相连或者能够相连从而使封闭通风口以防止通风口被接触到，其中，每一个所述卡合连接件(8)均由布置于所述通风口(4)之中的卡凸(10)和布置于护栅(6)上的卡合件(12)构成，其中，与呈圆状的所述通风口(4)相适配的所述护栅(6)是由置于中心的中间部分(26)以及多个同心圆环形保护支承件(28)构成。

其特征在于，所述卡合件(12)沿径向向外指向地布置在所述护栅(6)的外缘上并落在护栅平面上，其中，所述护栅(6)在每一个卡合件(12)的区域内被构造得能够弹性变形，从而使得每一个卡合件(12)能够在所述护栅(6)局部弹性变形但各卡合件自身没有弹性变形的情况下相对于其对应的卡凸(10)径向移动，以便使所述卡合连接件(8)卡合或松开，其中，所述护栅(6)在每一个卡合件(12)的区域内均具有径向向外延伸的卡合支杆(30)，该卡合支杆与所述中间部分(26)在径向上间隔开，并终止于其中一个保护支承件(28)。

2. 根据权利要求1所述的护栅装置，其特征在于，所述覆盖件(2)的通风口(4)具有从外侧向内侧逐渐变窄的喷嘴状开口边缘(16)，该开口边缘具有纵剖面倾斜的表面。

3. 根据权利要求2所述的护栅装置，其特征在于，所述开口边缘(16)具有纵剖面凸形弯曲的表面。

4. 根据权利要求1或2所述的护栅装置，其特征在于，所述护栅(6)在每一个卡合件(12)均具有径向向外伸出的叉状末段(18)，该叉状末段沿周向在两侧上围住所述覆盖件(2)上的相应卡凸(10)。

5. 根据权利要求2或3所述的护栅装置，其特征在于，每一个卡合件(12)在其自由端区域内均具有与所述覆盖件(2)的所述通风口(4)的所述开口边缘(16)的表面轮廓相适配的支撑轮廓(20)。

6. 根据权利要求2或3所述的护栅装置，其特征在于，所述护栅(6)沿周向在每两个相邻卡合件(12)之间均具有径向的支撑段(22)，该支撑段以其端部的接触轮廓(24)在径向和轴向上紧贴所述覆盖件(2)的所述通风口(4)的所述开口边缘(16)。

7. 根据权利要求6所述的护栅装置，其特征在于，在所述护栅(6)处在卡合状态时，所述支撑段(22)利用弹性接触力能够在径向和轴向上都无间隙地紧贴在所述开口边缘(16)上。

8. 根据权利要求1所述的护栅装置，其特征在于，每一个卡合件(12)及其对应的卡凸(10)一方面通过斜面且另一方面通过卡合面相互作用，这样，在通过轴向接合运动进行接合从而实现卡合时，通过斜面会使得每一个卡合件(12)自动发生弹性径向运动，并且在卡合之后通过卡合面能够确保在轴向上实现形锁合。

9. 根据权利要求6所述的护栅装置，其特征在于，每一个支撑段(22)均由所述护栅(6)上的沿径向向内延伸至所述中间部分(26)的支撑(32)的径向自由凸出端构成。

10. 根据权利要求1所述的护栅装置，其特征在于，所述护栅(6)被构造成一体式的塑料模制件。

11. 根据权利要求1所述的护栅装置，其特征在于，所述护栅(6)至少部分是由金属构成的。
12. 根据权利要求11所述的护栅装置，其特征在于，所述护栅(6)至少部分是由金属丝构成的。

13. 根据权利要求1所述的护栅装置，其特征在于，所述护栅(6)具有至少三个径向对称地分布于周边上的卡合件(12)。

14. 根据权利要求13所述的护栅装置，其特征在于，所述护栅(6)具有四个径向对称地分布于周边上的卡合件(12)。

15. 根据权利要求1所述的护栅装置，其特征在于，所述中间部分(26)为圆盘形或者环形。
风扇护栅装置

技术领域
[0001] 本发明涉及一种风扇护栅装置。该护栅装置包括：布置于旋转风扇叶轮前端或后端且具有通风口的覆盖件；以及护栅，其布置于该通风口的区域之内并且通过多个沿周边分布的卡合连接件与覆盖件相连或者能够相连，从而封闭通风口以防止该通风口被接触到，其中，所述每一个卡合连接件均由固定安置于通风口中的卡凸和布置于护栅上的卡合件构成。

背景技术
[0002] DE20208002356U1 公开了带有上述类型护栅之护栅装置的压缩风扇的不同实施方式。这种公知的压缩风扇具有一个带进风口的面板作为覆盖件，所述进风口是用或者可以用护栅遮盖住，以防止接触到旋转风扇部件。在这种情况下，可用卡夹件将护栅与面板卡合在一起。按照第一种实施方式，护栅在其外缘上具有轴向凸出且能够与面板的卡凸卡合在一起的卡合件。护栅仅以凸出的卡合件略微伸入到开口区域之中，因此护栅本身明显高出开口平面。在这种情况下，固定只是依赖轴向凸出的卡合件的弹簧弹性实现的。作为这种可卡合的实施方式的替代方案，按照另一种实施方式，护栅也可以与面板构造成一体，从而也处在开口平面之中。

发明内容
[0003] 本发明的基本目的是改进上述类型的护栅装置，从而在护栅不突出的情况下确保将护栅以卡合的方式可靠地，尤其是无缝地固定在覆盖件的通风口之中。所述护栅应能够简单、快速地安装，特别是也能够简单、快速地拆卸。
[0004] 根据本发明，上述目的是通过以下特征实现的：风扇护栅装置，包括：具有通风口的覆盖件以及护栅，护栅布置于通风口的区域之内，并且通过多个沿周边分布的卡合连接件与覆盖件相连或者能够相连从而封闭通风口以防止通风口被接触到，其中，每一个所述卡合连接件均由布置于所述通风口之中的卡凸和布置于护栅上的卡合件构成，其中，与呈圆形的所述通风口相适配的所述护栅是由置于中心的中心部分以及多个同心圆形保护支承件构成。
[0005] 其特征在于，所述卡合件仅沿径向向向外指向地布置于所述护栅的外缘上并落在护栅平面内，其中，所述护栅在每一个卡合件的区域被构造成能够弹性变形，从而使得每一个卡合件能够在所述护栅局部弹性变形但各卡合件自身没有弹性变形的情况下相对于其对应的卡凸径向移动，以便使所述卡合连接件卡合或松开，其中，所述护栅在每一个卡合件的区域中均具有径向向内延伸的卡合支杆，该卡合支杆与所述中间部分在径向上间隔开，并终止于其中一个保护支承件。本发明的有益实施方式包含在各从属权利要求以及以下说明之中。
[0006] 与此相应，在本发明中是这样设计的，即，将护栅外缘的卡合件仅沿径向向外指向的方式布置在护栅平面内，护栅在每一卡合件的区域内被构造成能够弹性变形，这样，每一
个卡合件能够在护栅局部弹性变形的情况下相对于其所属的卡凸径向移动，以使卡合连接件卡合、松开。这样，有利的是能够将护栅沿轴向插入通风口的入口区域中，此时，由于轴向的插入运动，因此使得各个卡合连接件可以通过手施加轴向压力而卡合到一起。在这种情况下，各卡合件在其自身没有弹性变形，而只是在其邻近之护栅区域发生变形的情况下，各自整个地径向移动，然后以形锁合方式沿径向向外倒钩住卡凸实现锁合。利用相反的运动方向可以有利地松开卡合连接，方法是：在每一个卡合件区域内手动施加径向向内作用的分离力，使得卡合件径向向内运动，从而松开形锁合的卡合连接。利用这种方式可以将各个卡合连接依次松开，直至拆下整个护栅。

[0007] 采用本发明可以实现一些重要的优点，尤其是通过在各个卡合件区域中配置大小合适的径向弹力能够实现非常好、非常可靠的固定，而所述弹力的大小可以由依赖于材料及形状的护栅变形特性来预先确认。此外，通过这种将护栅压入到通风口的入口区域中的结构，并结合卡合连接的设计方式，还可以实现有利于流动的特性，尤其也可用于没有护栅的应用，因通风口几乎没有向外凸出的部分。

[0008] 按照本发明的优选实施方式，从周向上看，护栅在两个相邻卡合件之间均有一个径向支撑段，该径向支撑段以其端部接触轮廓在径向和轴向上紧贴在覆盖件的通风口边缘。在这种情况，当护栅处在卡合状态时，所述支撑段优选利用弹性接触力以在轴向和径向上无间隙的方式紧贴在通风口的边缘上。所述弹性接触力同样可以通过护栅本身的局部弹性变形而产生，即，插入护栅时，其支撑段首先发生接触，并且只有在继续压入，护栅弹性变形之后，卡合件才会与相应的卡凸实现卡合。这样，通过弹性预紧就达到了没有间隙的效果，从而还避免了运行过程中出现噪音（振动）。

[0009] 在说明部分中还将解释其它的特殊实施特征。

附图说明

[0010] 下面将根据附图中示出的优选实施例对本发明进行详细解释。在附图中：
[0011] 图 1 是根据本发明的护栅装置在其部件处在连接、卡合状态下的立体图，
[0012] 图 2 是根据本发明的护栅装置沿着图 1 中的剖切线 II-III 切开一半后的立体图，
[0013] 图 3 是图 2 中的区域 III 的局部放大图，
[0014] 图 4 是护栅的单独俯视图，
[0015] 图 5 是将护栅沿图 4 中的剖切面 V-V 剖开后的对角剖面图，以及
[0016] 图 6 是图 4 所示护栅的立体图。

具体实施方式

[0017] 不同附图中的相同部件始终使用相同的附图标记。

[0018] 首先，如图 1 至 3 所示，根据本发明的护栅装置 1 包括具有圆形通风口 4 的覆盖件 2。覆盖件 2 被布置在旋转风扇叶轮（图中没有绘出）的前端。所述通风口 4 构成由风扇叶轮吸入空气的进风口。当然也可以选择将覆盖件 2 布置在风扇叶轮的后端，这样，通风口 4 将构成一个排风口。图中没有绘出的风扇叶轮可以构造成轴流式风扇、径流式风扇或者斜流式风扇。
[0019] 为了由于安全原因而封闭通风口 4，以防旋转着的风扇叶轮被意外接触到，可在通风口 4 区域内的覆盖件 2 上安装护栅 6。为此，配置了多个，更确切地说，尤其是至少三个沿周边分布的卡合连接件 8。每一个卡合连接件 8 均由一个固定安装于通风口 4 区域之内的卡凸 10 和一个安置于护栅 6 上的卡合件 12 构成。

[0020] 按照本发明，这里是这样设计的，即，卡合件 12 需沿轴向从护栅 6 上凸出，实际上，它被设置在护栅 6 的外边缘且落在护栅平面内。但是，术语“护栅平面”并不意味着整个护栅 6 必须精确地处在一个平面中，其实，护栅 6 也可以具有整体上略呈凸形地向外隆起的护栅形状。重要的是，须使卡合件 12 从护栅 6 的外边缘出发，仅沿径向向外指的方向布置。

[0021] 此外，按照本发明，进一步这样设计，即，把护栅 6 构造成至少能够在每一个卡合件 12 区域内适当弹性变形，从而使得每一个卡合件 12 能够在护栅 6 局部弹性变形而本身并不变形的情况下相对于相应的卡凸 10 沿径向移动，以便使卡合连接件 8 卡合或松开。在图 2 和 3 中分别以双箭头 14 示出了所述径向移动。

[0022] 覆盖件 2 的通风口 4 优选呈圆形，其优选构造有一个从外侧向内侧（该内侧朝向风扇叶片）逐渐收缩的喷嘴状开口边缘 16。该开口边缘 16 尤其具有纵剖面呈凸起状弯曲延伸的表面。该开口边缘也可以是一锥状的斜面。在这样情况下，卡凸 10 被布置在开口边缘 16 逐渐变窄的区域之中。这样，护栅 6 既能在径向上，还能在轴向上支撑在开口边缘 16 上。

[0023] 为此，一方面这样设计，即使得每一个卡合件 12 均具有沿径向向外伸出的叉状未段 18，该未段沿径向将覆盖件 2 的相应卡凸 10 的两侧围住。这样就防止了护栅 6 围绕开口轴线旋转。在叉状未段 18 的自由端区域内，每一个卡合件 12 均具有与通风口 4 的边缘 16 的表面轮廓相适配的支撑轮廓 20，从而使得未段 18 能够通过其支撑轮廓 20 沿径向和轴向方向支撑在开口边缘 16 上。

[0024] 另一方面，为了无障碍地支撑护栅 6，沿周向在每两个相邻卡合件 12 之间均布置一径向支撑段 22，该支撑段 22 具有用以在径向和轴向上紧贴在通风口 4 的边缘 16 上的端部接触轮廓 24。所述支撑段 22 相对于卡合件 12 优选这样布置，即使得支撑段 22 在护栅 6 处在卡合状态时，利用弹性接触力无间隙地在轴向和径向上紧贴开口边缘 16。所述接触力是通过护栅 6 在局部上的略微变形（轴向弯曲）而产生的。为使支撑段 22 贴紧，在开口边缘 16 区域内优选不设置向外凸出的额外部件，而且，开口边缘 16 在这些直接贴紧支撑段 22 的区域内表面光滑，这是有利于流动的，对于没有护栅 6 的覆盖件 2 也如此。

[0025] 按照另一合适的实施方式，与圆形通风口 4 相适配的护栅 6 由置于中心的、尤其是圆盘形的中间部分 26 以及多个彼此间相隔一定径向安全距离的同心圆环或圆环形保护支承件 28 构成。作为圆盘形中间部分 26 的替换方案，其也可以被设计成环形。护栅 6 在每一个卡合件 12 的区域内均具有沿径向向外延伸的卡合支撑杆 30，该卡合支撑杆终止于其中一个在径向上与中间部分 26 相隔一定距离的保护支撑件 28。因此，每一卡合支撑杆 30 并不延伸至中间部分 26，这样，与卡合支撑杆 30 相连或者通过卡合支撑杆 30 连接在一起的保护支承件在一定的径向力的作用下可以在径向上发生变形。在这里，所需径向力的大小取决于取决于护栅 6 的各保护支承件 28 受材料的形状或形状决定的弹性之外，还取决于与相应卡合支撑杆 30 相连的保护支撑件 28 的数量。在图中示出的优选实施例中，每一个卡合件 12 均通过卡合支撑杆 30 与五个保护支撑件 28 相连，因此，径向弹力是由五个保护支撑件 28 共同变形。
而产生的，这样，通过参与弹性变形的保护支件 28 的数量就可以预先确定径向弹力的大小。

[0026] 还需要提及的是：每一个卡合件 12 和它对应的卡凸 10 在形成连接的过程中通过斜面（图中未标出）相互起作用，从而在通过轴向接合运动进行卡合时，能够在护棚 6 局部弹性变形的情况下使每一个卡合件 12 自动发生弹性径向运动。这样，在卡合状态下就会在轴向上实现形锁合，这是因为，卡凸 10 与卡合件 12 的卡合面之间的夹切角（Hinterschneidungswinkel）大于 / 等于 90°。

[0027] 按照另一种优选实施方式，每一个支撑段 22 均是由护棚 6 上的沿径向向内延伸至中间部分 26 的支杆 32 的径向自由凸出端构成的。这样，就会使得护棚 6 具有很高的径向稳定性，尤其是在整数个支撑段 22 和支杆 32 径向对称分布时。之所以如此，是因为每个支撑 32 在同一条径线上相互对置，因而在该径线上方向上可能几乎没有径向方向上的弹性变形。

[0028] 将护棚 6 构造成一体式的塑料模制件是符合条件的。作为替换方案，护棚 6 可以至少部分由金属、尤其是金属丝构成。

[0029] 覆盖件 2 优选也是塑料模制件，此时，卡凸 10 被一体式地模制而成。如图 1 至 3 所示，覆盖件 2 可以整体构造成环形，并具有同样也呈圆形的外轮廓（“薄壁环”），或者可以将其设计成具有任意形状，例如矩形或者正方形外轮廓的壳体 / 壳壁部件，并且其外轮廓在必要时可以具有倒圆角或者斜角（例如在作为“面板”时）。

[0030] 护棚 6 具有至少三个、尤其四个（如图所示）径向对称地分布于周上的卡合件 12。相应地，这种设计方案也适用于卡合支杆 30、支撑段 22 和支杆 32 的数量和布置。

[0031] 圆形或圆环形保护支件 28 的数量取决于需覆盖的通风口 4 的大小以及相邻保护支件 28 之间的最大安全距离。在附图所示的实施例中，以中间部分 26 为中心，围绕着设置有七个保护支件 28，每一个卡合件 12 均通过其对应的卡合支杆 30 与五个外侧保护支件 28 相连。当然，也可以采用与这种优选实施方式不同的任意其它实施方式。

[0032] 就此而言，本发明并不限于所述的实施例，而是也包括所有在本发明的意义上起相同作用的实施方式。需要明确强调的是，这些实施例并不限于组合运用所有特征。实际上，每一个子特征在与其它子特征分开时仍具有发明意义。此外，本发明迄今为止也不限于权利要求 1 中所限定的特征组合，其也可以被定义为已全部公布的各个特征中的某些特征的其他任意组合。这就意味着，原则上并在实践中，权利要求 1 中述及的每一个单一特征均可删去，或者说，均可由至少一个在本发明申请书中其他地方所公开的某个单一特征替代。就此而言，权利要求 1 仅应被理解成对一个发明的一种最初表达尝试。
图1
图 3
图4

图5
图6