（54）发明名称
一种聚乙炔化合物、含其中的萃取物及其应用

（57）摘要
本发明关于一种聚乙炔化合物及其应用。该聚乙炔化合物是从樟芝子实体中分离而得到，且具有抑制一氧化氮产生的效果。因此该聚乙炔化合物可应用于制备具有抗炎效果的药物组合物。本发明并表明樟芝子实体中具有代表意义生理代谢的物质，其可应用于评估樟芝的质量。
1. 一种聚乙炔化合物，其特征在于，其具有下列式 I 的结构式：

![结构式 I](image1)

(Ⅰ)。

2. 如权利要求 1 所述的化合物，其特征在于，其中所述 R₁ 及所述 R₂ 独立为相同或不相同的烷氧基。

3. 如权利要求 2 所述的化合物，其特征在于，其中所述烷氧基为 C₁ ～ C₄ 的烷氧基。

4. 如权利要求 1 所述的化合物，其特征在于，其具有下列式 II 的结构式：

![结构式 II](image2)

(Ⅱ)。

5. 一种樟芝萃取物，其特征在于，其包含具有下列式 II 的结构式的聚乙炔化合物：

![结构式 II](image3)

(Ⅱ)。

6. 如权利要求 5 所述的萃取物，其特征在于，其萃取自樟芝的子实体。

7. 一种药物组合物，其特征在于，包含：
 有效量的活性成份；及
 医药可接受的载体；其中
 所述活性成份为如权利要求 1 所述的聚乙炔化合物或如权利要求 5 所述的樟芝萃取物。

8. 如权利要求 7 所述的药物组合物，其特征在于，其包含：
 0.1 ～ 95wt% 的所述活性成份；及
 0.1 ～ 95wt% 的所述医药可接受的载体。
9. 如权利要求7所述的药物组合物，其特征在于，其用于抑制发炎反应。
10. 如权利要求7所述的药物组合物，其特征在于，其用于抑制一氧化氮的产生。
11. 如权利要求7所述的药物组合物，其特征在于，其中医药可接受的载体为乳糖、淀粉、纤维素衍生物、硬脂酸镁、硬脂酸、水、合适油、生理食盐水、右旋糖水溶液或其组合。
12. 如权利要求7所述的药物组合物，其特征在于，其为胶囊、锭剂、散剂、液体剂型、悬浮液或注射剂型。
13. 一种评估樟芝质量的方法，其特征在于，其包含以下步骤：
 a. 取得一个干燥的樟芝子实体；
 b. 取得所述樟芝子实体的酒精萃取物，及
 c. 分析所述酒精萃取物中三萜类化合物、聚乙炔化合物及苯环类化合物的含量，以决定樟芝的质量；
 其中所述聚乙炔化合物包含具有下列式II的结构式的化合物：

 (II)

14. 如权利要求13所述的方法，其特征在于，其中所述三萜类化合物包含樟芝酸K、樟芝酸C、樟芝酸B、去氢硫色多孔菌酸、樟芝酸B、樟芝酸G、樟芝酸A、15-醋酸基-去氢硫色多孔菌酸、去氢硫色酸。
15. 如权利要求13所述的方法，其特征在于，其中所述聚乙炔化合物进一步包含安馨A。
16. 如权利要求13所述的方法，其特征在于，其中所述苯环类化合物包含1,4-二甲氧基-2,3-亚甲二氧基-5-甲苯、2,2’5,5’-四甲氧基-3,4,3’,4’-双亚甲二氧基-6,6’-二甲基联苯基。
17. 如权利要求13所述的方法，其特征在于，其中所述步骤b包含使所述干燥的樟芝子实体与75wt%酒精混合，且其萃取时间为60~120分钟。
18. 如权利要求13所述的方法，其特征在于，其中所述分析的方法为高能液态层析。
19. 如权利要求18所述的方法，其特征在于，其中所述高压液相层析法的固定相为碳18管柱，流动相为水、甲醇及乙腈的混合物。
一种聚乙炔化合物、含其中的萃取物及其应用

技术领域
[0001] 本发明涉及一种聚乙炔化合物及其应用，尤其涉及一种从樟芝中萃取所得到的聚乙炔化合物及其应用。

背景技术
[0002] 牛樟芝（Antrodia cinnamomea），又称樟芝，属真菌目（Aphyllophorales）、多孔菌科（Polyporaceae）的多年生真菌，为台湾特产真菌。樟芝仅能寄生在牛樟树（Cinnamomum kanehirai Hay）的中空腐朽心材内壁上。由于牛樟树是数量非常稀少的台湾保护树种，且樟芝的生长速度缓慢，使得樟芝的数目也非常的稀少。虽然在市场需求的驱使下，目前研究已能突破樟芝仅能寄生在牛樟树上的限制，但樟芝的价格仍然因其备受瞩目的药用价值而居高不下。
[0003] 台湾传统医学上认为樟芝具有治疗肝病、高血压、腹痛及癌症等疾病的潜力。科学上也对于樟芝所含的复杂成分具有极大的兴趣。目前已知樟芝所含的生理活性成分包括：三萜类化合物（triterpenoids）、多糖体（polysaccharides，如β-D-葡聚糖）、腺苷（adenosine）、维生素（如维生素B、烟碱酸）、超氧化物歧化酶（superoxide dismutase，SOD）、核酸、固醇类以及血压稳定物质（如antodia acid）等，其中又以针对三萜类化合物的研究最多。然而，即便越来越多研究致力于开发樟芝中具有药用价值的成份，目前仍没有完整地研究出樟芝的生长及成熟过程中的代谢体。
[0004] 一般认为樟芝子实体是其中最具药用价值的部位，但目前尚未建立研究樟芝子实体生理组成及完善的实验方法。为了实现将樟芝妥善地应用在药物制备上的目的，通过充分地分析樟芝子实体的生理组成，应该可以更完整地了解樟芝所含的各种化合物，以及各种化合物的独特疗效与用途。

发明内容
[0005] 本发明的一个目的为提供一种新颖的化合物，其是从樟芝中萃取而得，且具有药用价值。
[0006] 本发明的另一个目的为提供一种药物组合物，其具有自樟芝中萃取而得的活性成份，从而能够实现将樟芝的特性妥善应用的目的。
[0007] 本发明的又一个目的为提供一种评估樟芝质量的方法，其通过了解樟芝生长及成熟过程中的代谢体，以确定出具有指标意义的生理代谢物质，并进而了解樟芝的生长质量及状态。
[0008] 为达到以上目的，本发明提供一种聚乙炔化合物，其具有下列式 I 的结构式：
较佳地，所述 R₁ 及所述 R₂ 为相同或不相同的烷氨基。

较佳地，所述烷氨基为 C₁～C₄ 的烷氨基。

较佳地，所述聚乙炔化合物，其具有下列式(Ⅱ)的结构式：

较佳地，所述聚乙炔化合物，其包含具有下列式(Ⅱ)的结构式的聚乙炔化合物：

较佳地，所述萃取物萃取自樟芝的子实体。

本发明又提供一种药物组合物，其包含：有效量的活性成份；及医药可接受的载体；其中所述活性成份为所述聚乙炔化合物或所述樟芝萃取物。

较佳地，所述药物组合物包含 0.1～95wt% 的所述活性成份；及 0.1～95wt% 的所述医药可接受的载体。

较佳地，所述药物组合物用于抑制发炎反应。

较佳地，所述药物组合物用于抑制一氧化氮的产生。

较佳地，所述医药可接受的载体为乳糖、淀粉、纤维素衍生物、硬脂酸镁、硬脂酸、水、适台油、生理食盐水、右旋糖水溶液或其组合。
发明还提供了一种评估标准的方法，其包含以下步骤：(a) 取得一个干燥的
樟芝子实体；(b) 取得所述樟芝子实体的酒精萃取物；及(c) 分析所述酒精萃取物中三萜类化合物、聚乙炔化合物及苯环类化合物的含量，以决定樟芝的质量；
其中所述聚乙炔化合物包含具有下列式 II 的结构式的化合物：

(II).

较佳地，所述三萜类化合物包含樟芝酸 K、樟芝酸 C、樟芝酸 H、去氢硫色多孔菌酸、
樟芝酸 B、樟芝酸 G、樟芝酸 A、15- 醋酸基 - 去氢硫色多孔菌酸、去氢硫色孔酸。
较佳地，所述聚乙炔化合物进一步包含阿卓凯因 A。较佳地，所述苯环类化合物包含 1, 4- 二甲氧基 - 2, 3- 亚甲二氧基 - 5- 甲苯及 2,
2', 5, 5'- 四甲氧 - 3, 4, 3', 4'- 二亚甲二氧基 - 6, 6'- 二甲基联苯。
较佳地，所述步骤 b 包含使所述干燥的樟芝子实体与 75wt% 酒精混合，且其萃取
时间为 60 ～ 120 分钟。
较佳地，所述分析的方法为高效液相层析。
较佳地，所述高压液相层析法的固定相为碳 18 管柱，流动相为水、甲醇及乙腈的
混合物。
综上所述，本发明关于一种从樟芝中萃取所得到的聚乙炔化合物、含其中的萃取
物，以及以该化合物或该萃取物作为活性成分的药物组合物。本发明发现该聚乙炔化合物
具有抑制一氧化氮产生的能力，进而达到抗发炎的效果。另一方面，本发明通过研究樟芝生长及成熟过程中的代谢体，而决定了具有代表意义的生理代谢物质，进而归纳出一种通过
分析该等具有代表意义的生理代谢物质以评估樟芝质量的方法。

附图说明
图 1 是本发明的 AC-3-9、AC-5-9、AC-7-9 及 AC-9-9 的萃取物的 HPLC 分析图谱。
图 2 是 AC-9-3、AC-9-6、AC-9-9 及 AC-9-12 的萃取物的 HPLC 分析图谱。
图 3 是本发明实施例三所得到的化合物对一氧化氮的抑制活性。

具体实施方式
虽然目前已有多种樟芝所含的化合物获得实验上的确认，但目前尚未建立研究樟
芝子实体的生理组成的完善实验方法。本发明通过分析樟芝子实体的生理组成而确立了具
有代表意义的生理代谢物质，并进而归纳出评估樟芝质量的方法。在所述具有代表意义的
生理代谢物质中，本发明还发现了一种新颖的化合物，并进而测试其可能具有的药用价值。

[0037] 本发明的聚乙炔化合物具有下列式 I 的结构式：

\[
\begin{align*}
&\text{R}_1 \\
&\text{R}_2
\end{align*}
\]

（1）。

[0039] 所述 R₁ 及所述 R₂ 为相同或不相同的烷氧基；较佳地，所述烷氧基为 C₁～C₄ 的烷氧基。

[0040] 本发明所述的樟芝萃取物，更明确地是指樟芝子实体的萃取物。本发明的樟芝萃取物的萃取方法，简单地说，首先将干燥的樟芝子实体材料与 75wt% 酒精充分混合以进行萃取 60～120 分钟。混合的方式无须特别限制，举例如说，可使用超音波震荡器来提高混合的效率。接着，将所得到的粗萃物干燥后，再以甲醇回溶。最后，使溶有所述粗萃物的甲醇溶液通过固相萃取管柱（SPE cartridge；Sep-Pak C18，Water Co., Milford, MA USA），即获得本实施例的樟芝子实体萃取物。

[0041] 本发明所述的“医药可接受”是指经临床试验不会对被施予的个体产生影响其生理正常反应的状态，尤其不得与携带的活性成分产生不良反应。所谓不良反应包括使所述活性成分的效力耗减、消失或与所述活性成分产生交互作用而产生对被施予的个体有害的物质。

[0042] 本发明所述的“医药可接受的载体”包括，但不限于：乳糖、淀粉、纤维素衍生物、硬脂酸镁、硬脂酸、水、合适油、理食盐水、右旋糖水溶液或其组合。本发明的药物组合物可为胶囊、锭剂、散剂、液体剂型、悬浮液或注射剂型。更明确地，依据本发明的药物组合物的形式，可选择适用的医药可接受的载体。举例来说，胶囊形式下，通常采用的载体如：乳糖、淀粉、纤维素衍生物、硬脂酸镁、硬脂酸或其组合。

[0043] 较佳地，本发明的药物组合物含 0.1～95wt% 的活性成分；及 0.1～95wt% 的医药可接受的载体。所述活性成分为本发明的聚乙炔化合物或含其中樟芝萃取物。本发明的药物组合物可视情况添加医药可接受的安定剂、防腐剂、抗氧化剂或其组合。所属领域具有通常知识者应该可以了解，本发明的药物组合物的剂量可随各种因素变化，如：投药模式与途径，接受者的年龄、健康与体重，症状的性质与程度，疗程治疗的种类，治疗频率，及所需效果可做出对应的调整。

[0044] 本发明所述的“质量”，是指樟芝的成熟度，及其中所含的具有药用价值的成分的含量。所谓成熟度是指该樟芝的实体处于：已产生足够量的具有药用价值的成分，且这些成分的含量在该个体中的含量已趋稳定；状态。本发明所谓的“评估樟芝的质量”是指衡量所取得的樟芝的成熟情况，或衡量所取得的樟芝子实体或樟芝子实体萃取物，即其来源的樟芝成熟度。

[0045] 实施例一：本发明所用的樟芝
本发明所使用的樟芝是从国立中兴大学所取得，共取得 AC-3、AC-5、AC-7 及 AC-9 四个品系。为实验所需，分别将此四个品系培养在牛樟树 (Cinnamomum kanehirai) 上 9 个月，以获得 AC-3-9、AC-5-9、AC-7-9 及 AC-9-9 四个品系；其中 AC-9 除了培养 9 个月的品系之外，还取得培养 3 个月、6 个月及 12 个月的品系：AC-9-3、AC-9-6、AC-9-12。

实施例二：取得樟芝子实体萃取物

在进行萃取步骤之前，首先测试不同萃取时间的效率，以最佳化萃取效果。为了测试最佳的萃取时间，将新鲜的 AC-9-9 樟芝子实体干燥 72 个小时后，再将粉碎为平均粒径低于 0.7mm 的粉末量取 5 克的子实体粉末，并将其置于锥形瓶 (flask:250mL) 中与 100mL 的 75wt% 酒精 (EtOH) 混合。将装有子实体粉末和酒精的锥形瓶置于超音波震荡器中震荡 (Branson 5510, Branson Ultrasonic, Ontario, Canada)，以达到充分混合的目的。分别使子实体粉末和 75wt% 酒精混合 10、20、30、60、120 分钟后 (萃取时间)，使其倾倒 (decant)，并用真空过滤。接着，再在旋转蒸发器中浓缩及干燥。不同萃取时间所得到的产率系列在下表一中，其中所示的数据是以平均值 ± 标准差的方式呈现 (n = 3)。

表一：萃取时间与产率

<table>
<thead>
<tr>
<th>萃取时间(分钟)</th>
<th>产率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>27.75 ± 2.95a</td>
</tr>
<tr>
<td>20</td>
<td>28.25 ± 1.41a</td>
</tr>
<tr>
<td>30</td>
<td>28.84 ± 1.36a</td>
</tr>
<tr>
<td>60</td>
<td>31.34 ± 2.19b</td>
</tr>
<tr>
<td>120</td>
<td>31.91 ± 4.16b</td>
</tr>
</tbody>
</table>

标示“a”的数据与标示“b”的数据具有统计意义上的差异

由表一的数据可知，产率原则上随着萃取时间增加而增加，而呈现为 10、20、30 与 60、120 两个群组。考虑产率及时间效率，本发明即采用 60 分钟为最佳萃取时间。

实施例三：分析实施例二所得到的樟芝 AC-9-9 的萃取物的组成

为了更完整地了解樟芝子实体萃取物中所含的成分，本实施例使用高压液相层析法 (HPLC) 来进一步分离实施例一中所得到的萃取物。

本实施例中采用的高压液相层析法为 Agilent 1100 HPLC 系统，并搭载紫外光检测器 (UV detector)。固定相为键合 18 管柱 (Luna C18 column; 250 × 10.0mm，Phenomenex，Torrance CA)。流动相则由以下三种溶液混合而成：(A) 水；(B) 甲醇 (MeOH)；(C) 乙腈 (acetonitrile)。层析梯度 (gradient elution profile) 如下所述：0～5 分钟，A：B：C = 40：30：30(isocratic)；5～95 分钟，A：B：C = 40：30：30 至 A：B：C = 10：10：80(linear gradient)；95～105 分钟，A：B：C = 10：10：80 至 A：B：C = 0：0：100(linear gradient)；105～115 分钟，C 为 100% (isocratic)。流速在 0～
95 分钟为 0.5mL/min，在 95 ～ 115 分钟为 1.0mL/min。检测波长为 254nm。

在实施例一的萃取物中共分离出 13 种化合物，其保留时间（retention time）分别为：17.9 分钟（化合物 a）；20.8 分钟（化合物 b）；38.1 分钟（化合物 c）；41.2 分钟（化合物 d）；42.1 分钟（化合物 e）；46.1 分钟（化合物 f）；48.7 分钟（化合物 g）；51.8 分钟（化合物 h）；53.4 分钟（化合物 i）；55.0 分钟（化合物 j）；67.8 分钟（化合物 k）；73.2 分钟（化合物 l）；102.7 分钟（化合物 m）。进一步借助光谱分析辨识化合物 a ～ m 如下表二所示：

表二：化合物 a ～ m

化合物 a	(R,S)-樟芝酸 K (antcin K)
化合物 b	1,4-dimethoxy-2,3-methylenedioxy-5-methylbenzene
化合物 c	(R,S)-樟芝酸 C (antcin C)
化合物 d	安卓凯因 A (antrocamphin A)
化合物 e	2,2',5,5'-四甲氧基-3,4,3',4'-双亚甲二氧基-6,6'-二甲基联苯基 (2,2',5,5'-tetramethoxy-3,4,3',4'-bimethylenedioxy-6,6'-dimethylbiphenyl)
化合物 f	(R,S)-樟芝酸 H (antcin H)
化合物 g	去氢硫色多孔菌酸 (dehydrodsulfurenic acid)
化合物 h	antrocamphin C (新化合物)
化合物 i	(R,S)- 樟芝酸 B (antcin B)
化合物 j	(R,S)- 樟芝酸 G (antcin G)
化合物 k	(R,S)- 樟芝酸 A (antcin A)
化合物 l	15-醋酸基-去氢硫色多孔菌酸 (15-Acetyl-dehydrodsulphurenic acid)
化合物 m	去氢酸酸 (Dehydroeburicoic acid)

由表二可知，化合物 a、c、f、g、i、k、l、m 属三萜及固醇类化合物 (triterpenoids and steroids)；化合物 d、h 属聚乙炔化合物 (polyacetylenes)；化合物 b、e 属苯环类化合物 (benzenoids)。值得注意的是，本发明在分离中分离出新化合物 h。经电喷雾质谱仪 (ESI-MS) 分析化合物 h 应具有 C_{13}H_{20}O 的化学式 (m/z 260)，经高分辨电子轰击质谱 (HREIMS) 分析化合物 h 应具有 C_{13}H_{20}O 的化学式 (m/z 260.1042[M]^+)，计算值为 260.1049。化合物 h 具有 15 个碳信号，其中包含 6 个芳香碳 (aromatic carbon) (δ_c = 139.8, 139.5, 137.1, 136.2, 127.9, 109.8)，2 个供氢碳 (acylenic carbon) (δ_c = 97.5, 83.5)，2 个烯烃碳 (olefinic carbon) (δ_c = 127.2, 121.1)，2 个甲氧基 (methoxy group) (δ_c = 60.4, 60.0)，2 个甲基碳 (methyl carbon) (δ_c = 23.6, 13.9) 及 1 个甲基碳 (methylene carbon) (δ_c = 101.4)。

在核磁共振光谱下 (H NMR)，化合物 h 表现出 2 个甲氧基 (δ_H = 3.98, s, 3H；3.87, s, 3H)，1 个亚甲二氧基质子 (methylenedioxy proton) (δ_H = 5.98, s, 2H)；2 个乙烯基质子 (vinyl proton) (δ_H = 5.38, br s, 1H；5.27, br s, 1H) 及 2 个甲基基质子 (methyl
proton) (δ H = 2.27, s, 3H; 2.01, s, 3H)。根据 13C 及 1H NMR 核磁共振光谱所测得的碳和质子的数
目与经 HREIMS 所测得的结果一致。除了甲氧基的数目以及亚甲二氧基之外，化合物 h 的 13C 及 1H NMR 核磁共振光谱类似于安卓因 A。这个新分离的化合物 h 命名为安卓因 C (antrocamin C)。

[0062] 安卓凯因 C, 具有下列式 II 的结构式, 为黄色粉末, HREIMS m/z 260.1042,
[M]+C13H16O4 (分子量的计算值为 260.1049)。EI MS (70eV) m/z (relint): 260 (100) [M]+,
245 (28), 216 (17), 146 (7), 128 (6), 117 (6), 116 (8), 115 (14), 104 (14), 103 (11), 91 (10),
77 (10)。1H NMR δ (600MHz, CDCl3): 5.94 (2H, s, COCH2OC), 5.38 (1H, br s, Ha-4’), 3.27 (1H,
br s, Hn-4’), 3.98 (3H, s, OCH3-5), 3.87 (3H, s, OCH3-6), 2.27 (3H, s, CH3-3), 2.01 (3H, s,
CH3-3’). 13C NMR δ (125MHz, CDCl3): 139.8 (C-5), 139.5 (C-1), 137.1 (C-2), 136.2 (C-6),
127.9 (C-3), 127.2 (C-3’), 121.1 (C-4’), 109.8 (C-4), 101.4 (COCH2OC), 97.5 (C-2’),
83.5 (C-1’), 60.4 (OCH3-5), 60.0 (OCH3-6), 23.6 (OCH3-3’), 13.9 (CH3-3)。

[0063]

(II)

[0064] 实施例四：分析实施例二所得到的梓芯取代物的组成
[0065] 如同实施例一中所述的，依据不同的来源、培养时间和培养条件，本发明共使用了
AC-3-9, AC-5-9, AC-7-9, AC-9-3, AC-9-6, AC-9-9, AC-9-12, AC-9-9-CC, AC-9-9-CK 的 9 个
品系进行试验。在实施例二中，本发明已分析了 AC-9-9 梓芯子实体萃取物的组成。在此实
施例中，本发明再分析其它试验品系的子实体萃取物的组成，以期在能找出具有代表意义的
生理活性物质。

[0066] 使用如同实施例三所述的高压液相层析分析 AC-3-9, AC-5-9, AC-7-9 梓芯子实
体萃取物的组成，并与 AC-9-9 所得到的结果相互比较，如图 1 所示。由图中可知，AC-3-9,
AC-7-9, AC-9-9 的萃取物所含的组成物种类和比例都非常接近，其中以化合物 1 为萃取物
中含量最多的成份。虽然 AC-5-9 的萃取物的组成与所述三种品系的萃取物的组成较为不
同，但同样含有实施例三中所分析出来的该 13 种化合物，其中以化合物 5 为含量最多的成
份。下表三显示 AC-3-9, AC-5-9, AC-7-9 及 AC-9-9 萃取物中所含该 13 种化合物的含量。

[0067] 表三：AC-3-9, AC-5-9, AC-7-9 及 AC-9-9 的萃取物的成分组成

[0068]
<table>
<thead>
<tr>
<th>化合物</th>
<th></th>
<th>含量 (mg/每克干燥的子实体)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC-3-9</td>
<td>AC-5-9</td>
<td>AC-7-9</td>
<td>AC-9-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1.956±0.154b</td>
<td>0.191±0.013a</td>
<td>3.250±0.110c</td>
<td>4.319±0.587d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td><0.001a</td>
<td><0.001a</td>
<td><0.001a</td>
<td>0.001±0.000b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1.265±0.104a</td>
<td>0.820±0.063a</td>
<td>0.917±0.015a</td>
<td>1.537±1.020a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td><0.001a</td>
<td>0.044±0.005b</td>
<td>0.083±0.002c</td>
<td>0.046±0.005d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.013±0.000a</td>
<td>0.238±0.001d</td>
<td>0.216±0.001c</td>
<td>0.081±0.007b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>3.319±0.304b</td>
<td>0.072±0.005a</td>
<td>3.760±0.273c</td>
<td>3.921±0.162c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>1.226±0.032a</td>
<td>7.866±0.224c</td>
<td>2.816±0.298b</td>
<td>1.389±0.077a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>0.772±0.002c</td>
<td>5.390±0.003d</td>
<td>0.286±0.002a</td>
<td>0.426±0.040b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>3.127±0.408a</td>
<td>2.889±0.364a</td>
<td>5.787±0.501b</td>
<td>3.381±0.364a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td><0.001a</td>
<td>0.002±0.000b</td>
<td>0.010±0.002d</td>
<td>0.006±0.000c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0.635±0.051a</td>
<td>0.767±0.002b</td>
<td>1.153±0.089d</td>
<td>0.983±0.059c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>0.008±0.010a</td>
<td>0.232±0.021c</td>
<td>0.225±0.026c</td>
<td>0.073±0.020b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>2.402±0.191c</td>
<td>6.284±0.492d</td>
<td>1.921±0.220ab</td>
<td>1.683±1.187a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

所有成份的含量都以标准线性方程式 (standard linear equation) 计算而得，其中 y 值为波峰的面积，x 值为受分析的材料的浓度。在每一栏中，分别以不同的标示 (a, b, c, d) 显示具有统计差异的数值 (p<0.05).

[0070] 此外，再同样使用如同实施例三的高压液相层析法分析 AC-9-3, AC-9-6, AC-9-12 樟芝子实体萃取物的组成，并与 AC-9-9 所得到的结果相互比较，如图 2 所示。由图中可知，在将 AC-9 品系培养在牛樟树 (Cinnamomum kanehirai)3～12 个月的过程中，樟芝子实体的组成会随着时间而有所不同。AC-9-3 的子实体的成份组成较为单纯，仅有代表化合物 g 和化合物 m 的两个峰值。而随着时间增长，樟芝子实体的成份组成逐渐丰富而趋向实施例三中所分析出来的该 13 种生理代谢物质。这个实验结果意味着，出现并含有稳定含量的该 13 种生理代谢物质可代表樟芝的成熟度。下表四中表明了 AC-9-3, AC-9-6, AC-9-9 及 AC-9-12 的萃取物中所含该 13 种化合物的含量。

[0071] 表四:AC-9-3, AC-9-6, AC-9-9 及 AC-9-12 的萃取物的成分组成
说明书

[0073]

<table>
<thead>
<tr>
<th>化合物</th>
<th>含量 (mg/每克干燥的子实体)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC-9-3</td>
</tr>
<tr>
<td>a</td>
<td><0.001a</td>
</tr>
<tr>
<td>b</td>
<td><0.001a</td>
</tr>
<tr>
<td>c</td>
<td><0.001a</td>
</tr>
<tr>
<td>d</td>
<td><0.001a</td>
</tr>
<tr>
<td>e</td>
<td>0.841±0.001d</td>
</tr>
<tr>
<td>f</td>
<td><0.001a</td>
</tr>
<tr>
<td>g</td>
<td>10.312±0.511c</td>
</tr>
<tr>
<td>h</td>
<td><0.001a</td>
</tr>
<tr>
<td>i</td>
<td><0.001a</td>
</tr>
<tr>
<td>j</td>
<td>0.011±0.001b</td>
</tr>
<tr>
<td>k</td>
<td>0.103±0.002a</td>
</tr>
<tr>
<td>l</td>
<td>0.032±0.042a</td>
</tr>
<tr>
<td>m</td>
<td>18.058±1.351c</td>
</tr>
</tbody>
</table>

所有成份的含量都以标准线性方程式 (standard linear equation) 计算而得，其中 y 值为波峰的面积，x 值为受分析的材料的浓度。在每一栏中，分别以不同的标示 (a, b, c, d) 显示具有统计差异的数值 (p<0.05)。

[0074]

由此实施例的结果可知，实施例三中所分析得到的该13种化合物，是樟芝成熟过程中具有代表意义的生理代谢物质。这些物质在不同品系中具有类似的含量，更重要的是其多数具有极具潜力的药用价值。若据此分析一个被分离的樟芝萃取物中含有的13种化合物的含量，便可快速地了解所得得到的樟芝萃取物的质量。

[0075]

实施例五：分析实施例三所分离得到的化合物的药用价值

[0076]

台湾传统医学及学术上的研究对于樟芝的药用价值已多有琢磨，在本实施例中，探讨实施例二中所得到的化合物抗发炎 (anti-inflammation) 的功效。

[0077]

本实施例中利用脂多糖 (LPS) 诱导发炎的小鼠巨噬细胞分析法，并搭配格雷斯反应 (Greiss reaction)，以测定亚硝酸盐的方式来间接测定一氧化氮 (NO) 的产量。由于一氧化氮是参与发炎反应的重要因子，因此通过了解一氧化氮的产量，可以评估发炎反应的程度。
[0078] 简单地说，将预先培养在 75cm² 的培养盘中的小鼠巨噬细胞 (RAW 264.7 cell)，以 2×10⁵ cells/well 的密度培养在 96 孔盘，所使用的培养液为 DMEM 佐以 10% FBS、100 units/mL 的盘尼西林 (penicillin) 及 100 µg/mL 的链霉素 (streptomycin)，培养环境为 37℃、5% CO₂ 的细胞培养箱。接着，分别使正常贴附的细胞在添加或不添加实施例二所得到的化合物的情况下，经或不经 LPS（1 µg/mL）处理。然后，利用格雷氏反应测定经培养细胞后的培养液的上澄清液中的亚硝酸盐浓度。

[0079] 实验结果如图 3 中所示，其中，以 IC₅₀ 的方式显示各化合物抑制 NO 产生能力。IC₅₀ 表示 50% 的抑制浓度，即 50% 的自由基已被受测样本捕捉。由图中数据可知，实施例二中得到的化合物都展现了抑制 NO 的产生，即，抗发炎的效果。除了化合物 b、e、g、m 的 IC₅₀ 大于 20 µg/mL（约在 20 ～ 35 µg/mL）以外，其它化合物的 IC₅₀ 皆小于 20 µg/mL。新分离的化合物 h 与其结构上的类似物安卓凯因 A 都展现了优异的抗发炎能力。

[0080] 此外，还以 MTT 试验测试各化合物的生物毒性，实验结果显示，在 5 ～ 40 µg/mL 的剂量下，各化合物都不会对生物产生毒性。

[0081] 以上所有这些实施例仅是范例性的，并不对本发明的范围构成任何限制。本领域技术人员应该理解的是，在不偏离本发明的精神和范围内可以对本发明技术方案的细节和形式进行修改或替换，但这些修改和替换均落入本发明的保护范围内。
对一氧化氮的抑制活性 IC₅₀ (μg/mL)

图 3