

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-535230
(P2004-535230A)

(43) 公表日 平成16年11月25日(2004.11.25)

(51) Int.C1.⁷

F 1

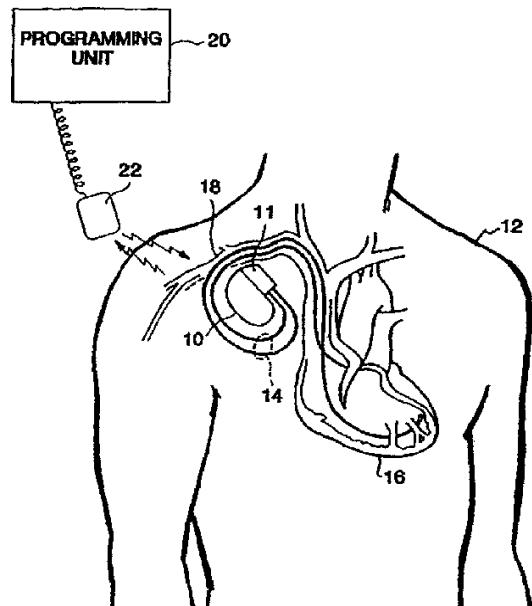
テーマコード(参考)

A61N 1/05
A61B 5/0402
A61B 5/0408
A61B 5/0478
A61B 5/0492

A 6 1 N 1/05
A 6 1 N 1/365
A 6 1 B 5/04 3 0 0 J
A 6 1 B 5/04 3 1 0 N

4 C 0 2 7
4 C 0 5 3

審査請求 未請求 予備審査請求 有 (全 57 頁) 最終頁に続く


(21) 出願番号	特願2003-501543 (P2003-501543)	(71) 出願人	591007804 メドトロニック・インコーポレーテッド アメリカ合衆国ミネソタ州55432, ミネアポリス, メドトロニック・パークウェイ 710
(86) (22) 出願日	平成14年3月20日 (2002.3.20)	(74) 代理人	100089705 弁理士 社本 一夫
(85) 翻訳文提出日	平成15年11月28日 (2003.11.28)	(74) 代理人	100076691 弁理士 増井 忠式
(86) 國際出願番号	PCT/US2002/008888	(74) 代理人	100075270 弁理士 小林 泰
(87) 國際公開番号	W02002/098507	(74) 代理人	100080137 弁理士 千葉 昭男
(87) 國際公開日	平成14年12月12日 (2002.12.12)	(74) 代理人	100096013 弁理士 富田 博行
(31) 優先権主張番号	09/870,097		
(32) 優先日	平成13年5月30日 (2001.5.30)		
(33) 優先権主張國	米国(US)		
(81) 指定國	EP(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), CA, JP		
(特許庁注: 以下のものは登録商標)			
PE N T I UM			

最終頁に続く

(54) 【発明の名称】皮下検知フィードスルー／電極組み立て品

(57) 【要約】

大電力出力回路および小電力制御回路を駆動するデュアルセル電源を有する埋め込み可能な医療デバイス。電源は、第1高レートセルと、第1高レートセルのレート能力より低いレート能力を有する第2低レートセルとを含む。第1および第2セルは、回路要素によって、出力回路および制御回路に接続される。一実施形態において、回路要素は、第1および第2セルを、出力回路および制御回路に並列に接続し、一時的大電力パルス中に、制御回路から第1高レートセルを選択的に切り離すようにする切換え回路を含む。別の実施形態において、第1および第2セルは、單一ケース内に形成され、出力回路および制御回路に並列に接続される。別の実施形態において、陰極の少なくとも40%が消費される、前もって選択された電圧ベースERIまでは、時間に対して最小の依存性を示すレート能力を有することを特徴とする、第1高レートセルは、陽極で制限される。

【特許請求の範囲】**【請求項 1】**

埋め込み可能医療デバイス(IMD)の回路と電気結合するためのフィードスルーに組み込まれた、生理的信号を検出するための少なくとも1つの電極を含み、該電極が前記フィードスルーと組み合わされている、埋め込み可能医療デバイスであって、該フィードスルーは、

該 IMD の周縁部に一致するフェルール内に配設された前記電極と、前記検知電極と前記フェルールの間の絶縁体手段と、前記電極と前記回路の間の電気結合手段と、を備える埋め込み可能医療デバイス。

10

【請求項 2】

前記電極は、該埋め込み可能医療デバイスのほぼ扁平の露出した周縁部と一体にされた、実質的に平坦な端部を含み、該埋め込み可能医療デバイスと気密封止を形成する請求項1に記載の埋め込み可能医療デバイス。

【請求項 3】

複数の電極は、該埋め込み可能医療デバイスの前記露出した周縁部のまわりに分散して、アレイを形成する請求項2に記載の埋め込み可能医療デバイス。

20

【請求項 4】

ろう付けは、前記電極、前記フェルール、および前記絶縁体を接続して、前記気密封止を形成する請求項2に記載の埋め込み可能医療デバイス。

【請求項 5】

1つまたは複数の電極が、埋め込み可能医療デバイス(IMD)の外周の周縁部のまわりに配設されている検知電極システムであって、

フィードスルー導体と一体にされた第1端部と、

該第1端部の部分を収容するための開口を有する絶縁体手段と、

前記第1端部を前記絶縁体に、また、前記絶縁体をフェルールに、密閉し、一体に接続するろう付け手段と、

前記フェルールを貫通して延在する、大表面積を形成する第2端部と、を備え、

前記第1端部は、前記 IMD 内の回路に電気結合しており、前記第2端部は、前記大表面積を介して取得された生理的信号を処理するための検知を行う検知電極システム。

30

【請求項 6】

複数の電極は、前記第2端部の前記大表面積が前記埋め込み可能医療デバイスの周縁部と面で一致した状態で、前記埋め込み可能医療デバイスの外周の周縁部に分散する請求項5に記載の検知電極システム。

【請求項 7】

前記絶縁手段および前記ろう付け手段は、共にガラス構造で置き換える請求項5に記載の検知電極システム。

【請求項 8】

前記第2端部は、前記埋め込み可能医療デバイスが埋め込まれる患者の体液内に延在する請求項5に記載の検知電極システム。

40

【請求項 9】

体にさらされるハウジング外壁、および前記ハウジングによって支持された少なくとも2つの検知電極の間で検出された体の電気信号を処理する、前記ハウジング内の検知回路要素を収容するハウジング内壁を有する密閉ハウジングを有する埋め込み可能医療デバイス(IMD)であって、

少なくとも1つの検知電極は、前記ハウジング第1側面と前記ハウジング第2側面の間に延在するように取り付けられた電気フィードスルーを備え、該フィードスルーは、フェルールであって、フェルール第1端部とフェルール第2端部の間に延在する内部フェルール面を有する、フェルールと、導電性フィードスルーピンであって、フィードスルーピン第

50

1端部とフィードスルーピン第2端部の間に延在する、導電性フィードスルーピンと、前記フィードスルーピンと前記フェルール内壁の間に延び、前記フィードスルーピンを支持する電気的絶縁体とを備えており、

前記ハウジングを通して前記フィードスルーピンを延在させるように前記フェルール壁第1端部を取り付ける手段であって、それによって、前記フィードスルーピン第1端部を体にさらし、前記ハウジング内に前記フィードスルーピン第2端部を密閉して収容する、取り付ける手段と、

前記フィードスルーピン第2端部を前記検知回路要素と電気結合する手段であって、それによって、前記フィードスルーピン第1端部が、前記検知回路要素と結合した第2検知電極と協働する第1検知電極として機能することが可能になり、体の電気信号の検知が可能になる、電気結合する手段と、

をさらに備える埋め込み可能医療デバイス。

【請求項 10】

各フィードスルーにおいて、

前記フェルール第1端部は、前記ハウジング外壁と面一に搭載され、前記フェルール第2端部は、前記ハウジング内に延在し、

前記絶縁体は、前記ハウジング内で、前記フェルール内壁と前記フィードスルーピンの間に延在するように搭載され、前記フェルール内の凹所に置かれた前記フィードスルーピン第1端部を、前記フェルール第1端部から離して支持する請求項9に記載の埋め込み可能医療デバイス。

【請求項 11】

各フィードスルーにおいて、

前記フィードスルーピンは、前記絶縁体を貫通して延在するピン直径を有し、

前記フィードスルーピンは、該フィードスルーピン第1端部で拡大した電極直径を有し、拡大した電極表面積を提供する請求項10に記載の埋め込み可能医療デバイス。

【請求項 12】

前記フィードスルーピン第1端部は、焼結、スパッタリング、めっき、CVD、およびPVDからなるグループから選択される表面処理を受ける請求項10に記載の埋め込み可能医療デバイス。

【請求項 13】

前記フィードスルーは、前記フェルールと前記フィードスルーピンの間に搭載された容量性フィルタをさらに備える請求項10に記載の埋め込み可能医療デバイス。

【請求項 14】

各フィードスルーにおいて、

前記フィードスルーフェルールは、前記フェルール第1端部と前記フェルール第2端部の間で形状が円筒形であり、あるフェルール直径を有し、

前記フィードスルーピンは、前記フィードスルーピン第1端部において、前記フェルール直径未満の拡大した電極直径を有し、拡大した電極表面積を形成する請求項10に記載の埋め込み可能医療デバイス。

【請求項 15】

前記拡大した電極表面積は、焼結、スパッタリング、めっき、CVD、およびPVDからなるグループから選択される表面処理によって大きくなる請求項14に記載の埋め込み可能医療デバイス。

【請求項 16】

前記フィードスルーは、前記フェルール内壁と前記フィードスルーピンの間に搭載された平円盤状容量性フィルタをさらに備える請求項14に記載の埋め込み可能医療デバイス。

【請求項 17】

各フィードスルーにおいて、

前記フェルール第1端部は、前記ハウジング外壁と面一に搭載され、前記フェルール第2端部は、前記ハウジング内に延在し、

10

20

30

40

50

前記絶縁体は、前記ハウジング内で、前記フェルール内壁と前記フィードスルーピンの間に延在するように搭載され、前記フェルール第1端部を過ぎて前記ハウジングの露出した外壁の外に延びる前記フィードスルーピン第1端部を支持する請求項9に記載の埋め込み可能医療デバイス。

【請求項18】

各フィードスルーにおいて、

前記フィードスルーピンは、前記絶縁体を貫通して延在する直径を有し、

前記フィードスルーピンは、前記フィードスルーピン第1端部で拡大した電極直径を有する拡大した電極を有し、前記ハウジング外壁を超えて外に延びる拡大した電極表面積を提供する請求項17に記載の埋め込み可能医療デバイス。

10

【請求項19】

前記フィードスルーピン第1端部は、焼結、スパッタリング、めっき、CVD、およびPVDからなるグループから選択される表面処理を受ける請求項18に記載の埋め込み可能医療デバイス。

【請求項20】

前記フィードスルーは、前記フェルールと前記フィードスルーピンの間に搭載された容量性フィルタをさらに備える請求項18に記載の埋め込み可能医療デバイス。

【請求項21】

前記ハウジング外壁を超えて外に延びる前記拡大した電極を前記フェルール第1端部および前記ハウジング外壁から分離する分離手段をさらに備える請求項18に記載の埋め込み可能医療デバイス。

20

【請求項22】

各フィードスルーにおいて、

前記フィードスルーフェルールは、前記フェルール第1端部と前記フェルール第2端部の間で形状が円筒形であり、あるフェルール直径を有し、

前記フィードスルーピンは、前記絶縁体を通して延びるピン直径を有し、

前記フィードスルーピンは、前記フィードスルーピン第1端部において、前記フェルール直径を超える電極直径を有する拡大した電極を有し、前記ハウジング外壁を超えて外に延びる拡大した電極表面積を形成する請求項18に記載の埋め込み可能医療デバイス。

30

【請求項23】

前記ハウジング外壁を超えて外に延びる前記拡大した電極を前記フェルール第1端部および前記ハウジング外壁から電気的に絶縁する絶縁手段をさらに備える請求項22に記載の埋め込み可能医療デバイス。

【請求項24】

前記拡大した電極表面積は、焼結、スパッタリング、めっき、CVD、およびPVDからなるグループから選択される表面処理によって大きくなる請求項22に記載の埋め込み可能医療デバイス。

【請求項25】

前記フィードスルーは、前記フェルール内壁と前記フィードスルーピンの間に搭載された平円盤状容量性フィルタをさらに備える請求項22に記載の埋め込み可能医療デバイス。

40

【請求項26】

前記フィードスルーピン第1端部は、焼結、スパッタリング、めっき、CVD、およびPVDからなるグループから選択される表面処理を受ける請求項9に記載の埋め込み可能医療デバイス。

【請求項27】

複数の検知電極が、それぞれ、フィードスルーピン第1端部の選択された対から検出された複数の電気信号を処理するための、前記検知回路要素とそれぞれ電気的に接続された同じ複数の前記フィードスルーで構成される請求項9に記載の埋め込み可能医療デバイス。

【請求項28】

複数の検知電極が、それぞれ、フィードスルーピン第1端部の選択された対から検出され

50

た複数の電気信号を処理するための、前記検知回路要素とそれぞれ電気的に接続された同じ複数の前記フィードスルーラーで構成され、

前記ハウジングは、外周について周縁部が接合した、一対の対向する主ハウジング壁を備え、前記複数のフィードスルーラーのそれぞれのフェルールは、前記ハウジングの前記外周にわたる開口に取り付けられる請求項9に記載の埋め込み可能医療デバイス。

【請求項29】

各フィードスルーラーにおいて、

前記フィードスルーピンは、前記絶縁体を通して延びるピン直径を有し、

前記フィードスルーピンは、前記フィードスルーピン第1端部において、拡大した電極直径を有し、拡大した電極表面積を形成する請求項9に記載の埋め込み可能医療デバイス。

10

【請求項30】

前記ハウジングは、外周について周縁部が接合した、一対の対向する主ハウジング壁を備え、前記フィードスルーラーの前記フェルールは、前記ハウジングの前記外周にわたる開口に取り付けられる請求項9に記載の埋め込み可能医療デバイス。

【請求項31】

前記フィードスルーピン第1端部は、焼結、スパッタリング、めっき、CVD、およびPVDからなるグループから選択される表面処理を受ける請求項9に記載の埋め込み可能医療デバイス。

【請求項32】

各フィードスルーラーは、前記フェルールと前記フィードスルーピンの間に搭載された容量性フィルタをさらに備える請求項9に記載の埋め込み可能医療デバイス。

20

【請求項33】

前記絶縁体は、前記フィードスルーピンの長さの一部と前記フェルール内面の少なくとも一部の間に延在し、該間で固着して、前記フェルールに対して前記ピンの気密封止を形成する電気的絶縁ガラスをさらに備える請求項9に記載の埋め込み可能医療デバイス。

【請求項34】

前記絶縁体は、前記フィードスルーピンの長さの一部と前記フェルール内面の少なくとも一部の間に延在し、該間でろう付けによって固着して、前記フェルールに対して前記ピンの気密封止を形成する電気的絶縁ガラスをさらに備える請求項9に記載の埋め込み可能医療デバイス。

30

【請求項35】

前記絶縁体は、前記フィードスルーピンの長さの第1の部分と前記フェルール内面の第1の部分の間に延在し、前記フィードスルーラーはさらに、

前記フェルール内面の第2の部分と前記フィードスルーピンの間に搭載された容量性フィルタと、

前記絶縁体の密閉漏れ試験に役立つ、前記容量性フィルタと前記絶縁体の間のポリアミドディスクとを備える請求項9に記載の埋め込み可能医療デバイス。

【請求項36】

形状記憶合金を実装して、前記フィードスルーラーと前記検知電極の間での組み立ての容易さを提供する請求項9に記載の埋め込み可能医療デバイス。

40

【請求項37】

前記形状記憶合金は、前記フィードスルーラーと前記検知電極を支持して、小型組み立て品を形成するように構成される請求項36に記載の埋め込み可能医療デバイス。

【請求項38】

前記フィードスルーラーおよび前記電極は、溶接プロセスおよび機械的形成プロセスのうちの1つを用いて一体に取り付けられている請求項9に記載の埋め込み可能医療デバイス。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、包括的に、埋め込み可能ペースメーカーに関し、より詳細には、埋め込まれたペ

50

ースメーカーからの心電計データおよび波形トレースを検知し、取得し、格納するように実施される皮下電極に関する。より詳細には、本発明は、ペースメーカー回路要素への電気接続を容易にするフィードスルーを有する、こうした電極の製造および組み立て品を含む種々の実施形態に関する。

【背景技術】

【0002】

心電図（ECG）信号は、一般に、人の心臓の電気伝導系の状態を確定するために医療において用いられる。実践されているように、ECG記録デバイスは、一般に、患者の体の上で配列された皮膚電極に接続したECGリード線によって患者に取り付けられて、12個の可能なベクトルのうちの任意の1つのベクトルの心臓波形を表す記録が得られる。

10

【0003】

初めて心臓ペースメーカーが埋め込まれて以来、精巧でプログラム可能な心臓ペースメーカー、および不整脈を検出し、適切な治療を提供するように考えられたペースメーカー・カーディオバータ・ディフィブリレータ（PCD）不整脈制御デバイスの発達に伴って、埋め込み可能IMD技術が進歩した。適切な治療の送出を引き起こさせるための、種々の不整脈エピソードの検出および不整脈エピソードの間の弁別は大きな関心事である。埋め込みの処方および埋め込みデバイスのプログラミングは、PQRST心電図（ECG）および電位図（EGM）の解析に基づく。こうした解析の場合、波形は、通常、系(system)のP波およびR波に分離され、P波およびR波は、それぞれ、心房および心室の脱分極を検出すると考えられている。こうした系は、心臓において、P波およびR波の発生を検出すること、P波およびR波の繰り返しのレート、規則正しさ、レート変動の始まり、P波およびR波の形態、およびP波およびR波によって表される脱分極の伝搬方向を解析することを採用する。埋め込み医療デバイス内で、こうしたEGMデータを検出し、解析し、格納することは、当技術分野ではよく知られている。一方、ECGトレース（複数可）の収集および使用は、概して、1つの種類または他の種類の(one sort or another)表面電極によって患者に取り付けられた外部ECG記録機器の使用に限定されてきた。

20

【0004】

PQRST複合波（コンプレックス）の検出および解析を用いる先に述べたECGシステムは、心臓脱分極波面を検出または検知するのに利用可能な、心臓の近くまたはまわりにある、外部から貼り付けられた電極の空間的な配置方向および数に全て依存している。

30

【0005】

埋め込み可能医療デバイスシステムの機能の精巧化および複雑さが長年にわたって増したため、こうしたシステムが、埋め込んだデバイスおよび/または外部デバイス、たとえば、プログラミングコンソール、監視システム、および同様なシステムの間の通信手段を含むことが必要になった。診断目的については、埋め込んだデバイスは、デバイスの動作状態および患者の状態に関する情報を医師または臨床医に伝えることができる望ましい。心臓電気活動（たとえば、ECG、EGM、または同様なものの）を表示するデジタル化した電気信号を送信またはテレメータ送信して、外部デバイスが格納および/または解析することができる最新の埋め込み可能デバイスが入手可能である。

40

【0006】

心臓事象を診断および測定するために、心臓病専門医は、選択すべきいくつかのツールを有する。こうしたツールは、12誘導心電図、強制的運動(exercise stress)心電図、ホルターモニタリング、放射性同位元素イメージング、冠状動脈造影、心筋バイオプシ、および血液血清酵素試験を含む。医療デバイス分野においてこうした進歩があったが、表面ECGは、ペーシングのまさに始まった時から標準の診断ツールのままであったし、今日でもそうである。12誘導心電図（ECG）は、概して、ペーシングシステムを埋め込む前に心臓の状態を確定するのに用いられる第1手技である。その後、医師は、通常、プログラマまたは体外テレメトリー送信によって利用可能なECGを用いて、埋め込み後のペースメーカーの有効性を調べるであろう。以前のECGトレースは、患者の記録に加えられて、後で、最近のトレースに対して比較する時に用いられるようにする。しかし、（ECG

50

記録デバイスへの直接接続か、ペースメーカープログラマへの直接接続のいずれでも) ECG 記録における現在の当技術分野でのやり方は、外部 ECG 電極およびリード線の使用を含むことに留意されたい。

【0007】

不都合なことに、表面 ECG 電極は技術的な欠点を有する。たとえば、既存の外部または体表面 ECG システムを用いて行われる心電図解析は、機械的な問題および信号品質が低いことによって制限される可能性がある。体の外部に取り付けられる電極は、信号品質の問題およびエラーの主要な原因である。その理由は、体の外部に取り付けられる電極は、たとえば、筋肉雑音、電磁干渉、高周波通信機器干渉、および呼吸によるベースラインシフトなどの干渉に対して感受性があるためである。信号の劣化は、接触の問題、ECG 波形アーチファクト、および患者の不快感によっても起こる。外部で取り付けられた電極は、皮膚と電極間の位置の変化および相対変位による動きのアーチファクトも受ける。さらに、外部電極は、適正な電気接触を確保するために、特別な皮膚の処理、たとえば、電解質軟膏またはクリームの塗布を必要とする。電極を位置決めすることおよび電極に ECG リード線を取り付けることを伴うこうした処理は、不必要に、ペースメーカー追跡調査セッションを長引かせる。可能性のある一手法は、埋め込んだペースメーカーに、心臓信号を検出し、表面(皮膚)電極に取り付けられた ECG リード線を介して得ることができるトレースと同じか、またはそれに匹敵するトレースに心臓信号を変換する機構を備えることである。

【0008】

診断目的および関連する医療目的のために人間の心臓の電気活動を監視することは当技術分野ではよく知られている。たとえば、Ohlsson に発行された米国特許第 4,023,565 号は、複数のリード線入力からの ECG 信号を記録する回路要素を記載している。同様に、Levin に発行された米国特許第 4,263,919 号、Feldman 他に発行された米国特許番号第 4,170,227 号、および Kepski 他に発行された米国特許第 4,593,702 号は、表面 EKG 信号を組み合わせて、アーチファクトを排除するようにする複数電極システムを記載している。

【0009】

従来技術における複数電極システムの主要な用途は、胸部および四肢の複数の電極から取得した ECG 信号からのベクトル心電計であるように考えられる。これは、心臓脱分極波の振幅を含む、心臓の脱分極の方向を監視する技法である。Greensite に発行された米国特許第 4,121,576 号は、こうしたシステムを開示している。

【0010】

ECG を検出し、ベクトル心電計調査を行うために、過去に、いくつかの体表面 ECG 監視電極システムが実施された。たとえば、Page 他に発行された米国特許第 4,082,086 号は、便宜のためと、他の電極に対する 1 つの電極の正確な配置方向を確保するための両方のために、患者の皮膚に貼り付けることができる 4 電極直交アレイを開示している。Case に発行された米国特許第 3,983,867 号は、一般に用いられる位置で患者に配設された ECG 電極およびサンプリングされたバイポーラ電極対にわたって生成した電圧対時間の ECG 信号を表示する 6 軸基準システム直交ディスプレイを採用するベクトル心電計を記載している。

【0011】

参照により本明細書に援用される、Lindemans に発行された米国特許第 4,310,000 号ならびに DeCote に発行された米国特許第 4,729,376 号および米国特許第 4,674,508 号は、ペースメーカー コネクタ ブロック上に取り付けられるか、そうでなければペースメーカー ケースから絶縁された、個別の受動検知基準電極の使用を開示している。受動電極は、刺激基準電極の一部ではなく、したがって、刺激パルス送出に続く、表面での残留後電位を伴わない検知基準電極を提供するように実施される。

【0012】

さらに、皮下埋め込み EGM 電極に関して、先に述べた Lindemans の米国特許第 4,311,50

0,000号は、上述したように、ペースメーカーの表面上に位置決めされた1つまたは複数の基準検知電極を開示している。関連技術において、Lundに発行された米国特許第4,313,443号は、皮下埋め込み電極またはECG監視時に用いる電極を記載する。

【0013】

参照により本明細書に援用される、Bennettに発行された米国特許第5,331,966号は、(埋め込みデバイス本体上に位置する)接近した間隔で離間配置された皮下電極アレイによって心臓電気信号を検出し収集する、強化された機能を提供する方法および装置を開示している。

【0014】

ごく最近、2000年10月26日に出願されたCeballos他によるP-9033「Surround Shroud Connector and Electrode Housings for a Subcutaneous Electrode Array and Leadless ECG's」第09/697,438号(その全体が参照により本明細書に援用される)は、埋め込んだペースメーカーの周縁で円周方向に配置されたシラウド上に位置する皮下電極アレイによって心臓電気信号を検出する代替の方法および装置を開示している。関連の提出物、すなわち、2000年10月31日に出願されたBrabec他によるP-9041「Subcutaneous Electrode for Sensing Electrical Signals of the Heart」第09/703,152号(その全体が参照により本明細書に援用される)は、P-9033に記載されるシラウドと共に実施される螺旋電極の使用を開示している。さらに、両方ともGuck他による、2000年10月25日に出願されたP-8786「Multilayer Ceramic Electrodes for Sensing Cardiac Depolarization Signals」第09/696,365号および2000年12月13日に出願されたP-8787「Thin Film Electrodes for Sensing Cardiac Depolarization Signals」第09/736,046号(その全体が参照により本明細書に援用される)は、埋め込み可能ペースメーカーの周縁端に沿ってかつ中に組み込まれた凹所内に配置された多層セラミックおよび薄膜ECG電極の使用を開示している。

【発明の概要】

本発明は、電極をフィードスルー内に直接組み込むことを可能にする種々の電極デザインに関する。デザイン次第で、フィードスルーフェルールは、埋め込み可能ペースメーカーの周縁のまわりの所望の位置に個々に溶接され、その後、フィードスルー/電極が既存のフェルール内に作製されることができる。別法として、完全なフィードスルー/電極組み立て品が作製され、その後、一体ものとしてペースメーカーに溶接されることができる。これらのフィードスルー/電極組み立て品は、埋め込み可能ペースメーカーの回路要素に電気接続されて、ペースメーカーと通信する外部デバイス上に心電計トレースとして表示可能な心臓脱分極波形を検出するためのリード線なし皮下電極アレイ(SEA)が作成される。プログラマのプログラミングヘッドがリード線なしSEAを装備した埋め込みデバイス上に位置決めされると、心電計トレース波形をプログラマスクリーン上で表示し、観察することができる。これらの波形はまた、2000年12月27日に出願されたCombsおよびBergによるP-7683「Leadless Fully Automatic Pacemaker Follow-Up」第09/749,169号(その全体が参照により本明細書に援用される)に記載されるように、患者の近傍またはある距離に位置する外部デバイスに体外でテレメータ送信されることがある。

【0015】

本発明は、なかでも、Bennettに発行された米国特許第5,331,966号に記載されるリード線なしECG埋め込み可能ペースメーカー上で現在用いられている従来技術の外部取り付け電極および電極ワイヤを置き換える可能性がある。一般に、従来技術のやり方は、埋め込んだペースメーカーの面上に配置した電極を含む。筋肉に面すると、電極は筋電位を検出し易く、ペースラインドリフトを受け易い。本発明は、筋電位の検出を最小にし、それによって、ペースメーカーを患者の切開ポケット(incision pocket)の配置方向にあまり感度がないようにさせる。さらに、デバイスが胸部のいずれの側にも埋め込まれること

10

20

30

40

50

を可能にすることによって、最大の電極分離および最小の信号変動を可能にする。これは主に、ポケット内のペースメーカーの配置方向が変動するためである。埋め込み可能デバイス電極は、電極対間の距離を最大にするようにペースメーカーの周縁に配置される必要がある。

【0016】

本発明は、2000年10月26日に出願されたCeballos他によるP-9033「Surround Shroud Connector And Electrode Housings For A Subcutaneous Electrode Array And Leadless ECG's」第09/697,438号に記載される、表面搭載電極および接続ワイヤを通常収容する従順(compliant)シラウドの必要性をなくす。フィードスルー/電極組み立て品は一体の機能要素であるため、完全な組み立て品は、IPGケーシング内に直接溶接ができる。本明細書に開示される製造プロセスを含む本発明は、埋め込み手技中の埋め込み可能ペースメーカーの構造上の効率および操作の容易さに加えて、従順シラウドの必要性をなくす。10

【0017】

本発明における電極の間隔によって、最大の電極間隔、最小の筋電位電気雑音、および同時に、特に組み立て品をペースメーカーケーシングに溶接するための、ペースメーカーケーシングからの適切な絶縁が可能になる。ペースメーカー周縁のまわりの電極間隔は、最大を維持し、電極対間では等距離であるのが好ましい。3つの電極を等間隔で配置した実施形態に関して開示されたような間隔配置は最大平均信号を維持する。数学的モデルを用いて示すように、電極対間の3つのベクトルの間隔が等しく、ベクトル間の角度が等しいため本配置が好ましい。電極対のこうした配置は、信号の変動も最小にする。代替の3電極の実施形態は、2つのベクトルの間隔が等しく、そのベクトル間の角度が90°に設定されるように配列された電極を含む。これらの実施形態のベクトルを組み合わせて、心臓信号(ECG)の適当な検知が可能になる。皮下電極アレイ(SEA)における3電極および4電極の位置の他の開示は、2000年11月22日に出願されたPankenおよびReinkeによるP-8552「Subcutaneous Electrode Array Virtual ECG Lead」第09/721,275号(その全体が参考により本明細書に援用される)に見出すことができる。20

【0018】

従順シラウド、螺旋電極、および多層セラミック電極の使用と同様に、本発明によって、医師または医療技術者は、リード線なしの追跡調査を行うことが可能になり、追跡調査は、次に、外部リード線を患者に付着させるのにかかる時間なくす。こうした時間の節約は、追跡調査の費用を低減し、医師または医療技術者がより多くの患者を調べることを可能にする。他の実施態様は、限定はしないが、事象記憶部を有するホルタモニタリング、不整脈検出およびモニタリング、捕捉(capture)検出、虚血検出およびモニタリング(ECG上のS-T上昇および抑制、QT間隔変化)、ならびに電話伝送およびテレメトリモニタリングを含む。30

【発明を実施するための最良の形態】

【0019】

図1は、本発明に従って用いるようになっている埋め込み可能医療デバイス(IMD)システムの図である。図1に示す医療デバイスシステムは、患者12に埋め込まれた埋め込み可能デバイス10を含む。当技術分野の従来のやり方によれば、ペースメーカー10は、密閉された生物学的に不活性な外ケーシング内に収容され、外ケーシングは、それ自体、導電性であって、ペースメーカーペーシング/検知回路の中性電極として機能することができる。1つまたは複数のペースメーカーのリード線(図1において参照番号14でひとまとめで特定される)は、従来の方法で、ペースメーカー10に電気接続され、静脈18を介して患者の心臓16内に延びる。リード線14の遠位端の略近傍には、心臓電気信号を受け取るための、かつ/または、心臓16にペーシング電気刺激を送出するための1つまたは複数の露出した導電性電極が配設される。当業者には理解されるように、リード線14は、その遠位端(複数可)が心臓16の心房および/または心室内にある状態で埋め込まれることができる。40

10

20

30

40

50

【 0 0 2 0 】

本発明は、ペースメーカーを含む実施形態において、本明細書で説明されるが、本開示の恩恵を受ける当業者は、本発明が、いくつかの他のタイプの埋め込み可能医療デバイスシステムと共に、また、実際に、2つの物理的に離れたコンポーネント間の通信リンクを設けることが望ましい任意の用途で実施することができることを理解するであろう。

【 0 0 2 1 】

図1には、アップリンクおよびダウンリンク通信チャネルを介して埋め込みデバイス10と無侵襲通信を行う外部プログラミングユニット20も示す。これは以下でさらに詳細に説明する。埋め込みデバイス10とプログラマ20の間の双方向通信を容易にするために、従来の医療デバイスプログラミングシステムに従って、プログラミングユニット20には、プログラミングヘッド22が連結される。多くの既知の埋め込み可能デバイスシステムにおいて、図1に示すようなプログラミングヘッドは、当技術分野の一般的なやり方に従って、患者の体のデバイスの埋め込み部位の上に位置決めされ（通常、皮膚接触位置から2～3インチ以内）、それによって、ヘッド内の1つまたは複数のアンテナは、埋め込みデバイスの密閉格納部内に配設されるか、または、デバイスのコネクタブロック内に配設されたアンテナに対してRF信号の送受信を行うことができる。

【 0 0 2 2 】

図2は、現在開示している発明によるプログラミングユニット20の斜視図である。内部において、プログラマ20は処理ユニット20（図示せず）を含み、処理ユニットは、現在開示している発明によれば、パーソナルコンピュータタイプマザーボード、たとえば、Intel Pentium3マイクロプロセッサおよびデジタルメモリなどの関連回路要素を含むコンピュータマザーボードである。プログラマコンピュータシステムのデザインおよび動作の詳細は、本開示では詳細には述べられないであろう。その理由は、こうした詳細が、当業者にはよく知られていると考えられるためである。

【 0 0 2 3 】

図2を参照すると、プログラマ20は外ハウジング60を備え、外ハウジングは、熱可塑性材料または適度に頑丈ではあるがそれでも比較的軽量の別の材料でできているのが好ましい。図2において、概して62で示す運搬ハンドルは、ハウジング60の前面に一体に形成される。ハンドル62を用いると、プログラマ20をブリーフケースのように運ぶことができる。

【 0 0 2 4 】

関節式ディスプレイスクリーン64はハウジング60の上面に配設される。ディスプレイスクリーン64は、プログラマ20が使用されていない時に閉じた位置（図示せず）に折りたたんで閉じられ、それによって、プログラマ20のサイズが減り、プログラマの輸送および保管中におけるディスプレイ64の表示面が保護される。

【 0 0 2 5 】

フロッピディスクドライブは、ハウジング60内に配設され、ディスク挿入スロット（図示せず）を介してアクセス可能である。ハードディスクドライブもまた、ハウジング60内に配設されており、ハードディスクドライブ作動インジケータ（たとえば、LED（図示せず））が、ハードディスク起動の可視表示を与えるために設けられるであろうことが予想される。

【 0 0 2 6 】

当業者には理解されるように、患者の伝導系の状態を確定する手段を設けることが望ましいことがしばしばある。通常、プログラマ20は外部ECGリード線24を装備している。本発明によってこれらのリード線が不要になる。

【 0 0 2 7 】

本発明によれば、プログラマ20は、内部プリンタ（図示せず）を装備しており、それによって、患者のECGまたはプログラマのディスプレイスクリーン64上に表示されたグラフィックのハードコピーを生成することができる。General Scanning Co.から入手可能なAR-100プリンタなどのいくつかのタイプのプリンタが知られており、市販されて

いる。

【0028】

図2の斜視図において、プログラマ20は、関節式ディスプレイスクリーン64が、複数の可能な開いた位置のうちの1つに持ち上げられており、それによって、プログラマ20のディスプレイエリアが、プログラマ20の前にいるユーザに見える。関節式ディスプレイスクリーンは、たとえば、陰極線管(CRT)または同様なものと比較すると比較的薄いことが特徴である、LCDまたはエレクトロルミネッセンスタイプであることが好ましい。

【0029】

当業者には理解されるように、ディスプレイスクリーン64は、ハウジング60内に配設されたコンピュータ回路要素に動作可能に結合し、内部コンピュータの制御下で、グラフィックおよび/またはデータの可視表示を行うようになっている。 10

【0030】

図2を参照して本明細書で述べるプログラマ20は、Thomas J. Winklerに発行された「Portable Computer Apparatus With Articulating Display Panel」と題する米国特許第5,345,362号(その全体が参照により本明細書に援用される)にさらに詳細に記載されている。Medtronic Model 9790プログラマは、本発明が有利に実施されることができる埋め込み可能デバイス-プログラミングユニットである。

【0031】

図3は、現在開示している発明によるパルス発生器10を構成する電子回路要素のブロック図である。図3からわかるように、ペースメーカー10は、デバイスのペーシング機能および検知機能を制御する主刺激制御回路21を備える。刺激制御回路21と連結する回路要素は、たとえば、Sivula他に発行された特許第5,052,388号「Method And Apparatus For Implementing Activity Sensing In A Pulse Generator」に開示されているものによれば、従来のデザインであってよい。パルス発生器10の一定の部品が、そのデザインおよび動作において従来型である限りにおいて、こうした部品は、本明細書では詳細に述べられないであろう。その理由は、こうした部品のデザインおよび実施態様は、当業者にとっては日常的な問題であると考えられるからである。たとえば、図3の刺激制御回路21は、検知増幅器回路要素25、刺激パルス出力回路要素26、水晶クロック28、ランダムアクセスメモリおよびリードオンリメモリ(RAM/ROM)ユニット30、および中央処理ユニット(CPU)32を含み、これらは全て当技術分野ではよく知られている。 20 30

【0032】

ペースメーカー10はまた、内部通信回路34を含み、それによって、図2においてより詳細に述べるように、外部プログラマ/制御ユニット20と通信することができる。

さらに図3を参照すると、パルス発生器10は、1つまたは複数のリード線14に結合し、リード線は、埋め込み時に、図1を参照して先に述べたように、パルス発生器10の埋め込み部位と患者の心臓16の間で横方向に延びる。物理的には、リード線14とパルス発生器10の種々の内部部品の間の接続部は、図1に示す従来のコネクタブロック組み立て品11によって補助される。当業者にはよく知られているように、電気的には、リード線の導体とパルス発生器10の内部電気部品の結合は、リード線インターフェース回路19によって補助されることができ、リード線インターフェース回路は、マルチプレクサがするように機能して、たとえば、心房チップ/リング電極導体ATIP/ARINGおよび心室チップ/リング電極導体VTIP/VRINGを含むリード線14の種々の導体と、パルス発生器10の個々の電気部品の間に、選択的にかつ動的に、必要とする接続を確立するようになる。明確にするために、リード線14とパルス発生器10の種々の部品の間ににおける特定の接続部を図3には示していないが、たとえば、リード線14は、一般的なやり方に従って、必ず、検知増幅器回路要素25および刺激パルス出力回路26に直接的に、または間接的に結合し、それによって、心臓電気信号は、検知回路要素25に送られ、刺激パルスは、リード線14を介して心臓組織に送出されることが、当業者 40 50

には明らかとなる。図3には、一般に、埋め込みデバイスに含まれて、たとえば、デバイスの検知回路要素を高電圧刺激パルスから保護する保護回路要素も示されていない。

【0033】

先に述べたように、刺激制御回路21は中央処理ユニット32を含み、中央処理ユニットは、既製のプログラム可能マイクロプロセッサまたはマイクロコントローラであってよいが、本発明ではカスタム集積回路である。CPU32と刺激制御回路21の他の部品の間の特定の接続部が図3には示されていないが、CPU32が、RAM/ROMユニット30に格納したプログラムの制御下で、刺激パルス出力回路26および検知増幅器回路25のタイミングを合わせた動作を制御するように働くことは当業者には明らかになるであろう。当業者は、こうした動作機構をよく知っていると考えられる。

10

【0034】

続けて図3を参照すると、水晶発振器回路28、目下のところ好ましい実施形態では、32,768Hz水晶制御発振器は、主タイミングクロック信号を刺激制御回路21に供給する。再び、こうしたクロック供給信号が、タイミング合わせされるパルス発生器10の種々の部品に供給されるラインは、明確にするために、図3から省略される。

【0035】

図3に示すパルス発生器10の種々の部品は、当技術分野の一般的なやり方に従って、ペースメーカー10の密閉格納部内に収容されたバッテリ（図示せず）によって駆動される。図面を明確にするために、バッテリおよびバッテリとパルス発生器10の他の部品の間の接続部は示していない。

20

【0036】

CPU32が発する信号の制御下で心臓刺激を生成するように働く、刺激パルス出力回路26は、たとえば、Thompsonに発行された「Body Stimulator Output Circuit」と題する米国特許第4,476,868号（その全体が参照により本明細書に援用される）に開示されているタイプのものであってよい。しかし、再び、当業者は、本発明を実施する目的に適しているであろう、多くの種々のタイプの従来技術のペーシング出力回路の中から選択できるであろうことが考えられる。

【0037】

従来のデザインである検知増幅器回路25は、リード線14から心臓電気信号を受け取り、こうした信号を処理して、心房収縮（P波）および心室収縮（R波）を含む、特定の心臓電気事象の発生を反映する事象信号を導出するように働く。CPUは、当技術分野の一般的なやり方に従って、パルス発生器10の同期した刺激動作を制御する時に用いるために、これらの事象指示信号をCPU32に供給する。さらに、これらの事象指示信号は、医師または臨床医に対する可視表示のために、アップリンク送信によって外部プログラミングユニット20に伝達することができる。

30

【0038】

当業者は、ペースメーカー10が、いくつかの他の部品およびサブシステム、たとえば、活動センサおよび関連回路要素を含んでよいことを理解するであろう。しかし、ペースメーカー10のこうした付加的な部品が有るか無いかは、本発明に関係しないと考えられ、有るか無いかは、主に、ペースメーカー10内の通信サブシステム34および外部ユニット20内の関連通信サブシステムの実施態様および動作に関係する。

40

【0039】

図4は、本発明が実施することができる埋め込んだペースメーカー10の断面図である。ペースメーカー10の主要部品は、電子回路要素52および密閉電源50が収容された密閉ケーシングを含む。リード線コネクタモジュール11は、ペースメーカー10の心房リード線および心室リード線の近位端が開口15を通して挿入される格納部を提供する。リード線コネクタモジュール11は、ペースメーカーケーシング10に接続され、当技術分野ではよく知られているように、リード線コネクタと密閉フィードスルーパー（図示せず）の間に電気接続部（同じく図示せず）を含む。

【0040】

50

さらに図4を参照すると、フィードスルー／電極組み立て品54は、ペースメーカーケーシングのほぼまたは実質的に平らな周縁部上の場所に溶接される。好ましい実施形態において、本発明において開示されたようなフィードスルー／電極組み立て品の設置を受け入れる、まるい端部を含む少し平らな斜視形状を有するペースメーカーの完全な周縁部を製造することができる。これらのフィードスルー／電極組み立て品54は、一体密閉性(integral hermiticity)のためにペースメーカーケーシングに溶接され、アクセスを得るための個別のフィードスルーパーツ56を通じて、ワイヤ55によって電子回路要素52に接続される。

【0041】

図5は、ECG検知電極と組み合わせた、本発明の第1の実施形態の代替構造のいくつかの断面図である。この実施形態において、完全な組み立て品は、実に小さく、ペースメーカーケーシングと適合するようにデザインされている。完全な組み立て品のサイズが小さいため、検知電極は、P波などの弱い／非常にわずかな心臓脱分極波を検出することができる材料からデザインされ、製造されねばならない。

【0042】

さらに、以下の図6～図12で開示するものを含む皮下電極組み立て品は、密閉性があり(10^{-6} ccHe/秒未満で、好ましくは 10^{-9} ccHe/秒)、生体適合性があり、ペースメーカーケーシングに結合可能か、または、完全に一体にできなければならない。概して、本明細書で開示した電極は全て以下の材料から構成されることができる。絶縁体は、ガラス、セラミック(直接ろう付け)、高分子、またはガラスセラミックから成つてよい。フェルールは、チタン、ニオブ、ステンレススチールなどの任意の適当な合金または金属、またはこれらの金属と合金の組み合わせから作製されてよい。フィードスルーノットは、ニオブ、タンタル、プラチナ、またはプラチナ-イリジウムなどの任意の適当な合金でできつてよい。検知電極は、プラチナ、プラチナブラック、チタン、窒化チタン、または酸化ルテニウムなどの任意の適当な材料またはそれらの組み合わせで構成されてよい。焼結(粉末冶金)、スパッタリング、めつき、CVD、PVD、または他の方法を含む、電極コーティング堆積法を用いて、大きな表面積および低い分極を得ることができる。イオンエッティング、方向性凝固(directional solidification)、または他のプロセスを用いて、表面にきめを出して、電極の表面積を増やし、製造容易性を単純にすることができます。

【0043】

図5Aおよび図5Bは、単純な皮下ECG電極組み立て品を示す。図5Aは、ペースメーカーケーシング(図示せず)のフェルール73への溶接を受け入れる、任意選択の溶接用ノット70を有するフェルール73に取り付けられたフィードスルーノット75を示す。ガラス絶縁体85は、フィードスルーノット75およびフェルール73に接合する。好ましくは、フィードスルーノット75は、機械加工されて、ECG検知電極として働く。2000年12月13日に出願されたGuck他によるP-8787「Thin Film Electrodes for Sensing Cardiac Depolarization Signals」第09/736,046号は、フィードスルーノットをECG電極に変換する製造プロセスを開示した。図5Bは、絶縁体76およびフェルール73によって支持されたノット75を有する、ろう付けされたフィードスルーパーツ84を示す。これらの部品は金ろう77と接合される。

【0044】

図5Aおよび図5Bに示す実施形態は、エレガントな電極デザインおよび背が低いことを開示している。実施形態は、目立った突起がなく、したがって、埋め込み手技をより容易にし、患者に対する快適さを増すのに適している。

【0045】

図6は、大きな表面積を有するECG検知電極を利用する、本発明の第2の実施形態についての4つの図を示す。図6Aは断面図、図6Bは平面図、図6Cは斜視図、および図6Dは断面図であり、それらの全ては、とりわけ、改良したフェルールケーシング内のガラス絶縁体を示す。

【0046】

10

20

30

40

50

図6 Aを参照すると、ほぼ平らな端部を持つ電極74で終端するフェルール導体75の断面図が示される。電極74は、フェルール73内の凹所に置かれて、フェルールは、任意選択の溶接用ノッチ70でペースメーカケーシングに溶接されている。したがって、完全な組み立て品は、ペースメーカケーシングの上または外に突き出る部品がない。フィードスルーラー導体75は、絶縁体76の開口に嵌挿され、絶縁体には、フィードスルーラー導体が、ろう77によって接合される。絶縁体76は、ECG信号が、ペースメーカ10内のSEA回路要素に電気接続されているフィードスルーラー導体75を通じて、検知電極74から巡回する時、ECG信号の電気的絶縁を維持する。ろう77は、組み立て品を密閉し、電極74のまわりの空洞を満たす体液の侵入を防ぐのに役立つ。

【0047】

10

この実施形態において、ECG検知電極74の増加した表面積は、本発明の大きな特徴の1つである。幾何学的な表面積が増えて、より小さな振幅を有する心臓波形、たとえば心房細動波の検出が改善される。さらに、幾何学的な表面積が増えることは、ECG検知電極で、またはECG電極のまわりでの分極効果を減衰させることができる。両方の特徴は、ECG波形の適切な検出の確保に役立つ。構造は、心臓脱分極信号の適当な検出および送信を可能にする。代替の実施形態において、電極コーティングを用いて、より大きな表面積を得、低分極をもたらすことができる。コーティング堆積法は、焼結（粉末冶金）、スパッタリング、めっき、CVD、PVD、または他の方法を含んでよい。さらに、イオンエッティング、方向性凝固、または他のプロセスを用いて、表面にきめを出して、電極の表面積を増やし、製造容易性を単純にすることができる。

【0048】

20

検知電極74は、フィードスルーラー導体75と一緒に均質であり、焼結、スパッタリング、めっきなどのような堆積法によって作製することができる。別法として、検知電極74は、後で、形状記憶合金、溶接、ろう付け、圧縮干渉接合などによって、フィードスルーラー導体に取り付けられてよい。

【0049】

30

図6 Dは、同じフィードスルーラー導体75および検知電極74が用いられている実施形態の断面図である。ただし、以下の点を除く。すなわち、1) フィードスルーラー導体/電極をフェルールと接合するため、2) 電気的に絶縁して、信号の完全性を維持するため、および3) 組み立て品を密閉するために、ガラス85が用いられる。

【0050】

40

図7は、背の低いECG検知電極およびフィルタ（すなわち、コンデンサ）を利用する、本発明の第3の実施形態についての4つの図を示す。

図7 Aは、多層セラミックコンデンサ71を附加したものを示しており、多層セラミックコンデンサは、電磁干渉をろ過して、信号をペースメーカ回路要素に伝える前に検出信号を改善するのに役立つ。フィードスルーラー導体およびフィードスルーフェルールは、コンデンサに電気的に結合される。コンデンサ71は、組み立て品内に設置され、非導電性エポキシ79を用いて固定することができる。導電性エポキシ78を用いて、コンデンサ71をフィードスルーラー導体75に結合することができる。図7 Dにおいて、フィルタコンデンサ71はガラス絶縁体85と共に用いられることにも留意されたい。

【0051】

図8は、大きな表面積を有するECG検知電極およびコンデンサの両方を利用する、本発明のさらに別の実施形態についての4つの図を示す。図8 Aにおいて、ECG検知電極74は、図6に関して開示した方法、すなわち、第2の実施形態と同じ方法で実施される。大きな表面積を有する検知電極を用いる理由は、図6で挙げた理由と同じである。

【0052】

50

図9は、本発明の第3および第4の実施形態（図7および図8）が、ポリイミドディスクと組み立てられて、組み立て品が漏れ試験できるようになる方法についての3つの図を示す。この図は、密閉性を試験するための、すなわち、組み立て品が漏れを試験され得るかを判断するための重要な要素に目的を絞っている。コンデンサ71の直下にポリイミドディス

ク72を付加することによって、この目的が達成される。漏れ試験可能なフィードスルーをさらに説明するために、2000年10月25日に出願された、Fraley他によるP-8990「Leak Testable Capacitive Filtered Feedthrough for an Implantable Medical Device」第09/696,601号（その全体が参照により本明細書に援用される）が参考される。先に開示した実施形態と同様に、絶縁体としてガラス（図示せず）を用いて、同じ要素が組み立て品に付加されるであろう。

【0053】

図10は、背が低く、大きな表面積のディスク電極80を有する、本発明の断面図を示す。具体的に、電極80は、図6および図8で開示した実施形態で実施されて、ECG検知電極の表面積をさらに増やすようにすることができる。電極は、フィードスルーをシールドに溶接した後、フィードスルー導体に取り付けられる。電極の取り付けは、レーザ溶接、抵抗スポット溶接、機械的干涉、または他の等価な方法によって行われることができる。

10

【0054】

図11は、先に開示した実施形態において示した組み立て品と共に用いることができる種々の電極タイプの図である。図11Aは、（図6に示すように）検知電極86が取り付けられている、標準的な、頭がほぼ平らのフィードスルー導体である。図11Bおよび図11Cに示すように、電極の代替のタイプを用いることができる。フィードスルー導体75を、白金粉末室67を含むように改造することができる。図11Bの電極75は、Pt粉末68でコーティングされ、焼結される。図11Cの電極75は、Pt粉末68およびPt黒69でコーティングされ、焼結される。本発明によれば、焼結したPt68およびPt黒69の任意の組み合わせを用いることができる。図11Dに示すように、全ての電極はステロイドプラグ82を含んでよい。図11Eおよび図11Fは、本発明による製造ステージを示す。具体的には、図11Fに示すように、電極75は、電極ディスク80を貫通する。図11Eに示すように、突出部は、従順な輪郭を有するように、レーザ溶接されるか、機械的に成形されるのが好ましい。フィードスルー導体は、背の低い電極ディスク80を貫通する。図11Fに点線で示すように、フィードスルー導体は、ディスク80を貫通し、図11Eに示すように、電極75をフィードスルー導体に取り付けるために溶接される。

20

【0055】

図12Aおよび図12Bは、形状記憶合金66を利用して、より容易でかつより低コストの作製を可能にする組み立て品の例である。図12Aは、検知電極74をフェルール73およびペースメーカークーリング（図示せず）から電気的に絶縁するための別の材料の絶縁体87を伴った、セラミックまたはガラス絶縁体83の実施態様を示す。図12Bの電極は、エポキシバッケン79および背の低い検知電極80をフェルール73およびペースメーカークーリングから電気的に絶縁するための絶縁体88を用いる代替の実施形態である。

30

【0056】

上記の特定の実施形態は本発明の実施を例示する。したがって、本発明または添付請求項の範囲から逸脱することなく、当業者に知られているか、または本明細書で開示された他の手段を使用することができることが理解されるべきである。したがって、本発明は、本発明の範囲から逸脱することなく、具体的に述べられた以外の方法で実施することができることが理解されるべきである。全ての要素に関して、その要素を、無数の等価な代替物で置き換えることができ、代替物のうちのいくつかのみが本明細書で開示されている。

40

【図面の簡単な説明】

【0057】

【図1】患者に埋め込んだ密閉デバイスおよび外部プログラミングユニットを含む、本発明による体に埋め込み可能なデバイスシステムの図である。

【図2】図1の外部プログラミングユニットの斜視図である。

【図3】図1の埋め込みデバイスのブロック図である。

50

【図4】本発明を好ましい実施形態として実施することができる埋め込んだペースメーカーの断面図である。

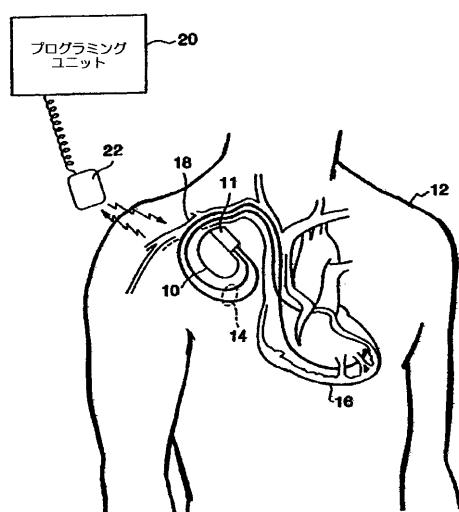
【図5】単純なECG検知電極を用いた、本発明の第1の実施形態のいくつかの代替の作製のうちの2つの断面図である。

【図6】大きな表面積を有するECG検知電極を利用する、本発明の第2の実施形態の4つの図である。

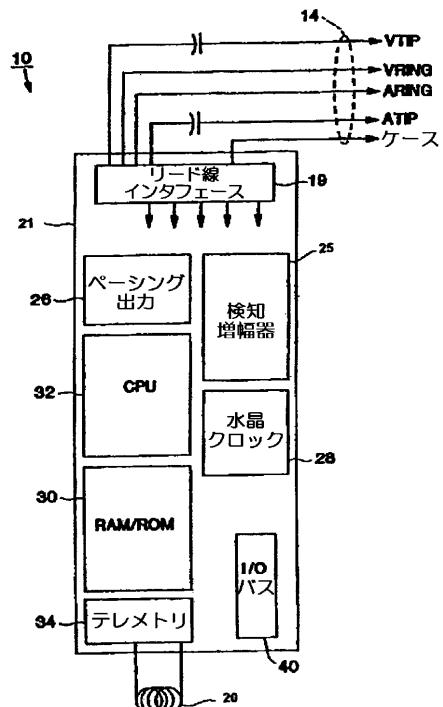
【図7】背が低く、ろ過用コンデンサを有するECG検知電極を利用する、本発明の第3の実施形態の4つの図である。

【図8】大きな表面積およびろ過用コンデンサを有するECG検知電極を利用する、本発明の第4の実施形態の4つの図である。

【図9】本発明の第3および第4の実施形態(図7および図8)を、ポリイミドディスクを用いて組み立て、組み立て品を漏れ試験可能にする方法についての4つの図である。


【図10】背の低いディスク電極を有する、本発明の断面図である。

【図11】先の図で示した組み立て品において用いることができる種々の電極タイプの図である。


【図12】形状記憶合金を用いてフィードスルーノードに取り付けられた電極の断面図である。

10

【図1】

【図3】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
12 December 2002 (12.12.2002)

PCT

(10) International Publication Number
WO 02/098507 A2

(51) International Patent Classification: A61N 1/378 KEIMEL, John, G.; 6 Charley Lake Court, North Oaks, MN 55127 (US).

(21) International Application Number: PCT/US02/08888

(22) International Filing Date: 20 March 2002 (20.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/870,097 30 May 2001 (30.05.2001) US

(71) Applicant: MEDTRONIC, INC. [US/US]; 710 Medtronic Parkway LC340, Minneapolis, MN 55432 (US).

(72) Inventors: HOWARD, William, G.; 2550 North Fisk Street, Roseville, MN 55113 (US); SCHMIDT, Craig, L.; 831 Hidden Meadow Trail, Bagan, MN 55123 (US).

(74) Agents: WOLDE-MICHAEL, Girma, et al.; Medtronic, Inc., 710 Medtronic Parkway LC 340, Minneapolis, MN 55432 (US).

(81) Designated States (national): CA, JP.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(Published: without international search report and to be republished upon receipt of that report)

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/098507 A2

(54) Title: IMPLANTABLE MEDICAL DEVICE WITH DUAL CELL POWER SOURCE

(57) **Abstract:** An implantable medical device having a dual cell power source powering a high-power output circuit and a low-power control circuit. The power source includes a first, high-rate cell and a second, lower-rate cell having a rate capability less than a rate capability of the first, high-rate cell. The first and second cells are electrically connected to the output circuit and control circuit by circuitry. In one embodiment, the circuitry connects the first and second cells in parallel to the output circuit and the control circuit, and includes a switching circuit for selectively uncoupling the first, high-rate cell from the control circuit during a transient high power pulse. In another embodiment, the first and second cells are formed within a single case and are connected in parallel to the output circuit and the control circuit. In another embodiment, the high-rate cell is anode limited, characterized by a rate capability exhibiting minimal dependence on time up to a pre-selected voltage-based IRI at which at least 40 percent of the cathode is consumed.

SUBCUTANEOUS SENSING FEEDTHROUGH/ELECTRODE ASSEMBLY

5 The present invention relates generally to implantable pacemakers and more particularly to subcutaneous electrodes implemented to sense, acquire, and store electrocardiographic data and waveform tracings from an implanted pacemaker. More particularly, the present invention relates to various embodiments including the manufacture and assembly of such electrodes with feedthroughs that facilitate their electrical connection to a pacemaker's circuitry.

10 Electrocardiogram (ECG) signals are commonly used in medicine to determine the status of the electrical conduction system of the human heart. As practiced, an ECG recording device is commonly attached to the patient via ECG leads connected to skin electrodes arrayed on the patient's body so as to achieve a recording that displays the cardiac waveforms in any one of 12 possible vectors.

15 Since the implantation of the first cardiac pacemaker, implantable IMD technology has advanced with the development of sophisticated, programmable cardiac pacemakers and pacemaker-cardioverter-defibrillator (PCD) arrhythmia control devices designed to detect arrhythmias and dispense appropriate therapies. The detection and discrimination between various arrhythmic episodes in order to trigger the delivery of an appropriate

20 therapy is of considerable interest. Prescription for implantation and programming of the implanted device are based on the analysis of the PQRST electrocardiogram (ECG) and the electrogram (EGM). The waveforms are usually separated for such analysis into the P-wave and R-wave in systems that are designed to detect the depolarization of the atrium and ventricle respectively. Such systems employ detection of the occurrence of the P-

25 wave and R-wave, analysis of the rate, regularity, and onset of variations in the rate of recurrence of the P-wave and R-wave, the morphology of the P-wave and R-wave and the direction of propagation of the depolarization represented by the P-wave and R-wave in the heart. The detection, analysis and storage of such EGM data within implanted medical devices are well known in the art. Acquisition and use of ECG tracing(s), on the other

30 hand, has generally been limited to the use of an external ECG recording machine attached to the patient via surface electrodes of one sort or another.

The aforementioned ECG systems that use detection and analysis of the PQRST complex are all dependent upon the spatial orientation and number of externally applied electrodes available near or around the heart to detect or sense the cardiac depolarization wave front.

5 As the functional sophistication and complexity of implantable medical device systems increased over the years, it has become necessary for such systems to include communication means between implanted devices and/or an external device, for example, a programming console, monitoring system, and similar systems. For diagnostic purposes, it is desirable that the implanted device be able to communicate information regarding the 10 device's operational status and the patient's condition to the physician or clinician. State of the art implantable devices are available which can transmit or telemeter a digitized electrical signal to display electrical cardiac activity (e.g., an ECG, EGM, or the like) for storage and/or analysis by an external device.

15 To diagnose and measure cardiac events, the cardiologist has several tools from which to choose. Such tools include twelve-lead electrocardiograms, exercise stress electrocardiograms, Holter monitoring, radioisotope imaging, coronary angiography, myocardial biopsy, and blood serum enzyme tests. In spite of these advances in the 20 medical device art, the surface ECG has remained a standard diagnostic tool since the very beginning of pacing and remains so today. The twelve-lead electrocardiogram (ECG) is generally the first procedure used to determine cardiac status prior to implanting a pacing system. Thereafter, the physician will typically use an ECG available through the programmer or extra corporeal telemetry transmission to check the pacemaker's efficacy 25 after implantation. Previous ECG tracings are placed into the patient's records for later use in comparing against more recent tracings. It must be noted, however, that current art practice in ECG recording (whether through a direct connection to an ECG recording device or to a pacemaker programmer), involves the use of external ECG electrodes and leads.

30 Unfortunately, surface ECG electrodes have technical drawbacks. For example, electrocardiogram analysis performed using existing external or body surface ECG systems can be limited by mechanical problems and poor signal quality. Electrodes attached externally to the body are a major source of signal quality problems and errors because of susceptibility to interference such as muscle noise, electromagnetic

interference, high frequency communication equipment interference, and baseline shift from respiration, for example. Signal degradation also occurs due to contact problems, ECG waveform artifacts, and patient discomfort. Externally attached electrodes are also subject to motion artifacts from positional changes and the relative displacement between the skin and the electrodes. Furthermore, external electrodes require special skin preparation, for example, application of electrolyte ointment or cream, to ensure adequate electrical contact. Such preparation, along with positioning the electrode and attachment of the ECG lead to the electrode needlessly prolongs the pacemaker follow-up session. One possible approach is to equip the implanted pacemaker with features for detecting cardiac signals and transforming them into a tracing that is the same as or comparable to tracings obtainable via ECG leads attached to surface (skin) electrodes.

Monitoring electrical activity of the human heart for diagnostic and related medical purposes is well known in the art. For example, U.S. Pat. No. 4,023,565 issued to Ohlsson describes circuitry for recording ECG signals from multiple lead inputs. Similarly, U.S. Pat. No. 4,263,919 issued to Levin, U.S. Pat. No. 4,170,227 issued to Feldman, et al, and U.S. Pat. No. 4,593,702 issued to Kepski, et al, describe multiple electrode systems that combine surface EKG signals for artifact rejection.

The primary application of multiple electrode systems in the prior art appears to be vector cardiography from ECG signals taken from multiple chest and limb electrodes. This is a technique for monitoring the direction of depolarization of the heart including the amplitude of the cardiac depolarization waves. U.S. Pat. No. 4,121,576 issued to Greensite discloses such a system.

Numerous body surface ECG monitoring electrode systems have been implemented in the past to detect the ECG and conduct vector cardiographic studies. For example, U.S. Pat. No. 4,082,086 issued to Page, et al., discloses a four electrode orthogonal array that may be applied to the patient's skin both for convenience and to ensure precise orientation of one electrode with respect to the other. U.S. Pat. No. 3,983,867 issued to Case describes a vector cardiography system employing ECG electrodes disposed on the patient in commonly used locations and a hex axial reference system orthogonal display for displaying ECG signals of voltage versus time generated across sampled bipolar electrode pairs.

WO 02/098507

PCT/US02/08888

4

U.S. Pat. No. 4,310,000 to Lindemans and U.S. Pat. Nos. 4,729,376 and 4,674,508 to DeCote, incorporated herein by reference, disclose the use of a separate passive sensing reference electrode mounted on the pacemaker connector block or otherwise insulated from the pacemaker case. The passive electrode is implemented to provide a sensing reference electrode that is not part of the stimulation reference electrode and thus does not carry residual after-potentials at its surface following delivery of a stimulation pulse.

Moreover, in regard to subcutaneously implanted EGM electrodes, the aforementioned Lindemans U.S. Pat. No. 4,310,000 discloses one or more reference sensing electrodes positioned on the surface of the pacemaker case as described above. In 10 a related art, U.S. Pat. No. 4,313,443 issued to Lund describes a subcutaneously implanted electrode or electrodes for use in monitoring ECG.

U.S. Pat. No. 5,331,966 to Bennett, incorporated herein by reference, discloses a 15 method and apparatus for providing an enhanced capability of detecting and gathering electrical cardiac signals via an array of relatively closely spaced subcutaneous electrodes (located on the body of an implanted device).

More recently, P-9033 *Surround Shroud Connector and Electrode Housings for a Subcutaneous Electrode Array and Leadless ECGs*, by Ceballos, et al. filed on October 26, 2000, Serial No. 09/697,438, incorporated herein by reference in its totality, discloses an alternate method and apparatus for detecting electrical cardiac signals via an array of 20 subcutaneous electrodes located on a shroud circumferentially placed on the perimeter of an implanted pacemaker. An associated submission, P-9041 *Subcutaneous Electrode for Sensing Electrical Signals of the Heart* by Brabec et al, filed on October 31, 2000, Serial No. 09/703,152, incorporated herein by reference in its totality, discloses the use of a spiral electrode implemented in conjunction with the shroud described in P-9033. In 25 addition, P-8786 *Multilayer Ceramic Electrodes for Sensing Cardiac Depolarization Signals*, filed October 25, 2000, Serial No. 09/696,365 and P-8787 *Thin Film Electrodes for Sensing Cardiac Depolarization Signals*, filed on December 13, 2000, Serial No. 09/736,046 both by Guck et al, incorporated herein by reference in their totality, disclose the use of multi-layer ceramic and thin film ECG electrodes placed into recesses 30 incorporated along and into the peripheral edge of the implantable pacemaker.

SUMMARY OF THE INVENTION

The present invention relates to various electrode designs that allow direct incorporation of the electrode into a feedthrough. Depending on the design, the feedthrough ferrules may be welded individually into desired positions around the perimeter of an implantable pacemaker and then the feedthrough/electrodes fabricated into the existing ferrules. Alternatively, the complete feedthrough/electrode assembly may be fabricated and then welded as one body into the pacemaker. These feedthrough/electrode assemblies are electrically connected to the circuitry of an implantable pacemaker to create a leadless Subcutaneous Electrode Array (SEA) for the purpose of detecting cardiac depolarization waveforms displayable as electrocardiographic tracings on an external device in communication with the pacemaker. When the programming head of a programmer is positioned above an implanted device equipped with a leadless SEA electrocardiographic tracing waveforms may be displayed and viewed on the programmer screen. These waveforms may also be telemetered extra-corporeally to an external device located nearby or at some distance from the patient, as is described in P-7683, *Leadless Fully Automatic Pacemaker Follow-Up* by Combs and Berg, filed on December 27, 2000, Serial No. 09/749,169 incorporated herein by reference in its entirety.

The present invention, inter alia, may be a replacement for externally mounted electrodes and electrode wires in the prior art currently used on the leadless ECG implantable pacemaker, as described in U.S. Pat. No. 5,331,966 issued to Bennett. Typically, prior art practice includes electrodes placed on the face of the implanted pacemaker. When facing muscle, the electrodes are apt to detect myopotentials and are susceptible to baseline drift. The present invention minimizes myopotential detection and thereby makes the pacemaker less sensitive to orientation in the incision pocket of a patient. Further, allowing the device to be implanted on either side of the chest provides maximum electrode separation and minimal signal variation. This is primarily because of variations in pacemaker orientations within the pocket. Implantable device electrodes need to be placed on the perimeter of the pacemaker in such a way as to maximize the distance between electrode pairs.

The present invention eliminates the need for a compliant shroud that typically houses the surface mounted electrodes and connecting wires as described in *Patent application No. P-9033, "Surround Shroud Connector And Electrode Housings For A*

5 *Subcutaneous Electrode Array And Leadless ECGs, " by Ceballos et al. filed on October 26, 2000, Serial No. 09/697,438. Because the feedthrough/electrode assembly is an integral functional component, the complete assembly can be welded directly into the IPG casing. The present invention, including the manufacturing process disclosed herein*

eliminate the need for a compliant shroud in addition to structural efficiencies and ease of handling of the implantable pacemaker during the implant procedure.

10 The spacing of the electrodes in the present invention provides maximal electrode spacing, minimal myopotential electrical noise, and, at the same time, appropriate insulation from the pacemaker casing particularly because of the welding of the assemblies to the pacemaker casing. The electrode spacing around the pacemaker's perimeter preferably maintains a maximum and equal distance between the electrode pairs. Spacing arrangements such as disclosed with the three-electrode equal spacing embodiment maintain a maximum average signal. The arrangement is preferred because the spacing of the three vectors between the electrode pairs is equal and the angle between 15 the vectors is equilateral, as is shown using mathematical modeling. Such an arrangement of electrode pairs also minimizes signal variation. An alternate three-electrode embodiment includes electrodes arranged so that the spacing of two vectors is equal and with angle between them set at 90°. Vectors in these embodiments can be combined to provide adequate sensing of cardiac signals (ECGs). Further disclosure of the position of 20 three and four-electrodes in the Subcutaneous Electrode Array (SEA) may be found in P-8552, *Subcutaneous Electrode Array Virtual ECG Lead* by Panken and Reinke, filed on November 22, 2000, Serial No. 09/721,275, incorporated herein by reference in its entirety.

25 Similar to the use of a compliant shroud, helical electrode and multi-layer ceramic electrode, the present invention allows a physician or medical technician to perform leadless follow-up that, in turn, eliminates the time it takes to attach external leads to the patient. Such timesavings may significantly reduce the cost of follow-up, and may enable the physician or medical technician to see more patients. Other implementations include, but are not limited to: Holter monitoring with event storage, arrhythmia detection and 30 monitoring, capture detection, ischemia detection and monitoring (S-T elevation and suppression on the ECG), changes in QT interval, and transtelephonic and telemetric monitoring.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a body-implantable device system in accordance with the present invention, including a hermetically sealed device implanted in a patient and an external programming unit.

5 FIG. 2 is a perspective view of the external programming unit of FIG. 1.

FIG. 3 is a block diagram of the implanted device from FIG. 1.

10 FIG. 4 is a cross sectional view of an implanted pacemaker in which the present invention may be practiced as a preferred embodiment.

FIGS. 5 provides two cross sectional views of several alternative fabrications of the first embodiment of the present invention, using simple ECG sensing electrodes.

15 FIG. 6 shows four views of the second embodiment of the present invention that utilizes an ECG sensing electrode with a large surface area.

FIG. 7 shows four views of the third embodiment of the present invention that utilizes an ECG sensing electrode with a low profile and a filtered capacitor.

15 FIG. 8 shows four views of the fourth embodiment of the present invention that utilizes an ECG sensing electrode with a high surface area and a filtered capacitor.

FIG. 9 shows three views of how the third and fourth embodiments (FIGS. 7 and 8) of the present invention may be assembled with a polyimide disk to render the assembly as leak testable.

20 FIG. 10 shows a cross sectional view of the present invention with a low-profile disk electrode.

FIG. 11 is a display of various electrode types that may be used in the assemblies shown in previous figures.

25 FIG. 12 shows a cross sectional view of electrodes attached to a feedthrough conductor through the use of a shape memory alloy.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of an implantable medical device system adapted for use in accordance with the present invention. The medical device system shown in FIG. 1 includes implantable device 10 that has been implanted in patient 12. In accordance with conventional practice in the art, pacemaker 10 is housed within a hermetically sealed, biologically inert outer casing, which may itself be conductive so as to serve as an indifferent electrode in the pacemaker's pacing/sensing circuit. One or more pacemaker

WO 02/098507

PCT/US02/08888

8

leads, collectively identified with reference numeral 14 in FIG. 1 are electrically coupled to pacemaker 10 in a conventional manner and extend into the patient's heart 16 via a vein 18. Disposed generally near the distal end of leads 14 are one or more exposed conductive electrodes for receiving electrical cardiac signals and/or for delivering electrical pacing stimuli to heart 16. As will be appreciated by those of ordinary skill in the art, leads 14 may be implanted with their distal end(s) situated in the atrium and/or ventricle of heart 16.

Although the present invention will be described herein in an embodiment which includes a pacemaker, those of ordinary skill in the art having the benefit of the present disclosure will appreciate that the present invention may be practiced in connection with numerous other types of implantable medical device systems, and indeed in any application in which it is desirable to provide a communication link between two physically separated components.

Also depicted in FIG. 1 is an external programming unit 20 for non-invasive communication with implanted device 10 via uplink and downlink communication channels, to be hereinafter described in further detail. Associated with programming unit 20 is a programming head 22, in accordance with conventional medical device programming systems, for facilitating two-way communication between implanted device 10 and programmer 20. In many known implantable device systems, a programming head such as that depicted in FIG. 1 is positioned on the patient's body over the implant site of the device (usually within 2- to 3-inches of skin contact), such that one or more antennae within the head can send RF signals to, and receive RF signals from, an antenna disposed within the hermetic enclosure of the implanted device or disposed within the connector block of the device, in accordance with common practice in the art.

FIG. 2 is a perspective view of programming unit 20 in accordance with the presently disclosed invention. Internally, programmer 20 includes a processing unit (not shown in the Figure) that in accordance with the presently disclosed invention is a personal computer type motherboard, e.g., a computer motherboard including an Intel Pentium 3 microprocessor and related circuitry such as digital memory. The details of design and operation of the programmer's computer system will not be set forth in detail in the present disclosure, as it is believed that such details are well-known to those of ordinary skill in the art.

WO 02/098507

PCT/US02/08888

Referring to FIG. 2, programmer 20 comprises an outer housing 60, which is preferably made of thermal plastic or another suitably rugged yet relatively lightweight material. A carrying handle, designated generally as 62 in FIG. 2, is integrally formed into the front of housing 60. With handle 62, programmer 20 can be carried like a briefcase.

5 An articulating display screen 64 is disposed on the upper surface of housing 60. Display screen 64 folds down into a closed position (not shown) when programmer 20 is not in use, thereby reducing the size of programmer 20 and protecting the display surface of display 64 during transportation and storage thereof.

10 A floppy disk drive is disposed within housing 60 and is accessible via a disk insertion slot (not shown). A hard disk drive is also disposed within housing 60, and it is contemplated that a hard disk drive activity indicator, (e.g., an LED, not shown) could be provided to give a visible indication of hard disk activation.

15 As would be appreciated by those of ordinary skill in the art, it is often desirable to provide a means for determining the status of the patient's conduction system. Normally, programmer 20 is equipped with external ECG leads 24. It is these leads that are rendered redundant by the present invention.

20 In accordance with the present invention, programmer 20 is equipped with an internal printer (not shown) so that a hard copy of a patient's ECG or of graphics displayed on the programmer's display screen 64 can be generated. Several types of printers, such as the AR-100 printer available from General Scanning Co., are known and commercially available.

25 In the perspective view of FIG. 2, programmer 20 is shown with articulating display screen 64 having been lifted up into one of a plurality of possible open positions such that the display area thereof is visible to a user situated in front of programmer 20. Articulating display screen is preferably of the LCD or electro-luminescent type, characterized by being relatively thin as compared, for example, a cathode ray tube (CRT) or the like.

As would be appreciated by those of ordinary skill in the art, display screen 64 is operatively coupled to the computer circuitry disposed within housing 60 and is adapted to provide a visual display of graphics and/or data under control of the internal computer.

30 Programmer 20 described herein with reference to FIG. 2 is described in more detail in U.S. Pat. No. 5,345,362 issued to Thomas J. Winkler, entitled *Portable Computer Apparatus With Articulating Display Panel*, which patent is hereby incorporated herein by

WO 02/098507

PCT/US02/08888

10

reference in its entirety. The Medtronic Model 9790 programmer is the implantable device-programming unit with which the present invention may be advantageously practiced.

FIG. 3 is a block diagram of the electronic circuitry that makes up pulse generator 10 in accordance with the presently disclosed invention. As can be seen from FIG. 3, pacemaker 10 comprises a primary stimulation control circuit 21 for controlling the device's pacing and sensing functions. The circuitry associated with stimulation control circuit 21 may be of conventional design, in accordance, for example, with what is disclosed Pat. No. 5,052,388 issued to Sivila et al., *Method And Apparatus For Implementing Activity Sensing In A Pulse Generator*. To the extent that certain components of pulse generator 10 are conventional in their design and operation, such components will not be described herein in detail, as it is believed that design and implementation of such components would be a matter of routine to those of ordinary skill in the art. For example, stimulation control circuit 21 in FIG. 3 includes sense amplifier circuitry 25, stimulating pulse output circuitry 26, a crystal clock 28, a random-access memory and read-only memory (RAM/ROM) unit 30, and a central processing unit (CPU) 32, all of which are well-known in the art.

Pacemaker 10 also includes internal communication circuit 34 so that it is capable of communicating with external programmer/control unit 20, as described in Fig. 2 in greater detail.

Further referring to FIG. 3, pulse generator 10 is coupled to one or more leads 14 which, when implanted, extend transvenously between the implant site of pulse generator 10 and the patient's heart 16, as previously noted with reference to FIG. 1. Physically, the connections between leads 14 and the various internal components of pulse generator 10 are facilitated by means of a conventional connector block assembly 11, shown in FIG. 1. Electrically, the coupling of the conductors of leads and internal electrical components of pulse generator 10 may be facilitated by means of a lead interface circuit 19 which functions, in a multiplexer-like manner, to selectively and dynamically establish necessary connections between various conductors in leads 14, including, for example, atrial tip and ring electrode conductors ATIP and ARING and ventricular tip and ring electrode conductors VTIP and VRING, and individual electrical components of pulse generator 10, as would be familiar to those of ordinary skill in the art. For the sake of clarity, the

specific connections between leads 14 and the various components of pulse generator 10 are not shown in FIG. 3, although it will be clear to those of ordinary skill in the art that, for example, leads 14 will necessarily be coupled, either directly or indirectly, to sense amplifier circuitry 25 and stimulating pulse output circuit 26, in accordance with common practice, such that cardiac electrical signals may be conveyed to sensing circuitry 25, and such that stimulating pulses may be delivered to cardiac tissue, via leads 14. Also not shown in FIG. 3 is the protection circuitry commonly included in implanted devices to protect, for example, the sensing circuitry of the device from high voltage stimulating pulses.

As previously noted, stimulation control circuit 21 includes central processing unit 32 which may be an off-the-shelf programmable microprocessor or micro controller, but in the present invention is a custom integrated circuit. Although specific connections between CPU 32 and other components of stimulation control circuit 21 are not shown in FIG. 3, it will be apparent to those of ordinary skill in the art that CPU 32 functions to control the timed operation of stimulating pulse output circuit 26 and sense amplifier circuit 25 under control of programming stored in RAM/ROM unit 30. It is believed that those of ordinary skill in the art will be familiar with such an operative arrangement.

With continued reference to FIG. 3, crystal oscillator circuit 28, in the presently preferred embodiment a 32,768-Hz crystal controlled oscillator provides main timing clock signals to stimulation control circuit 21. Again, the lines over which such clocking signals are provided to the various timed components of pulse generator 10 (e.g., microprocessor 32) are omitted from FIG. 3 for the sake of clarity.

It is to be understood that the various components of pulse generator 10 depicted in FIG. 3 are powered by means of a battery (not shown) that is contained within the hermetic enclosure of pacemaker 10, in accordance with common practice in the art. For the sake of clarity in the Figures, the battery and the connections between it and the other components of pulse generator 10 are not shown.

Stimulating pulse output circuit 26, which functions to generate cardiac stimuli under control of signals issued by CPU 32, may be, for example, of the type disclosed in U.S. Pat. No. 4,476,868 to Thompson, entitled *Body Stimulator Output Circuit*, which patent is hereby incorporated by reference herein in its entirety. Again, however, it is believed that those of ordinary skill in the art could select from among many various types of prior art

pacing output circuits that would be suitable for the purposes of practicing the present invention.

5 Sense amplifier circuit 25, which is of conventional design, functions to receive electrical cardiac signals from leads 14 and to process such signals to derive event signals reflecting the occurrence of specific cardiac electrical events, including atrial contractions (P-waves) and ventricular contractions (R-waves). CPU provides these event-indicating signals to CPU 32 for use in controlling the synchronous stimulating operations of pulse generator 10 in accordance with common practice in the art. In addition, these event-indicating signals may be communicated, via uplink transmission, to external

10 programming unit 20 for visual display to a physician or clinician.

15 Those of ordinary skill in the art will appreciate that pacemaker 10 may include numerous other components and subsystems, for example, activity sensors and associated circuitry. The presence or absence of such additional components in pacemaker 10, however, is not believed to be pertinent to the present invention, which relates primarily to the implementation and operation of communication subsystem 34 in pacemaker 10, and an associated communication subsystem in external unit 20.

20 FIG. 4 is a cross sectional view of implanted pacemaker 10 in which the present invention may be implemented. The major components of pacemaker 10 include a hermetic casing in which are housed electronic circuitry 52 and hermetic power source 50. Lead connector module 11 provides an enclosure in which the proximal ends of atrial and ventricular leads may be inserted into openings 15. Lead connector module 11 is connected to pacemaker casing 10 and as is well known in the art includes electrical connections (not shown) between lead connectors and hermetic feedthroughs (also not shown).

25 Further referring to FIG. 4, feedthrough/electrode assemblies 54 are welded into place on a generally or substantially flattened periphery of the pacemaker casing. In the preferred embodiment, the complete periphery of the pacemaker may be manufactured with a slightly flattened perspective including rounded edges to accommodate the placement of feedthrough/electrode assemblies such as those disclosed in the present invention. These feedthrough/electrode assemblies 54 are welded to pacemaker casing for integral hermeticity and connected via wire 55 through separate feedthroughs 56 to gain access to electronic circuitry 52.

WO 02/098507

PCT/US02/08888

13

FIGS. 5 represents several cross sectional views of alternative structures of the first embodiment of the present invention in combination with ECG sensing electrodes. In this embodiment, the complete assembly is quite small and designed to match with the pacemaker casing. Because of the small size of the complete assembly, the sensing electrodes must be designed and manufactured from materials capable of detecting faint/very slight cardiac depolarization waveforms, such as the P-wave.

Further, the assembly of the subcutaneous electrodes including those disclosed in Figures 6 through 12 hereinbelow, must be hermetic (less than 10^{-6} cc He/sec with 10^{-9} cc He/sec preferred), biocompatible, and joinable to or fully integrable with the pacemaker casing. In general, all the electrodes disclosed herein may be constructed from the following materials. The insulator may consist of glass, ceramic (direct braze), polymeric, or glass-ceramic. The ferrule may be fabricated from any suitable alloy or metal such as titanium, niobium, stainless steel, or combination of these metals and alloys. The feedthrough conductor may be made of any suitable alloy such as niobium, tantalum, platinum, or platinum-iridium. The sensing electrode may be constructed of any suitable material such as platinum, platinum black, titanium, titanium nitride, or ruthenium oxide, or combinations thereof. Electrode coating deposition methods, including sintering (powder metallurgy), sputtering, plating, CVD, PVD, or other methods, can be used to obtain large surface areas and low polarization. Ion etching, directional solidification, or other processes may be used to texture the surface to increase the surface area of the electrode and to simplify manufacturability.

FIGs. 5A and 5B illustrate simple subcutaneous ECG electrode assemblies. FIG. 5A shows feedthrough conductor 75, mounted in ferrule 73 with optional welding notch 70 to accommodate the welding of the pacemaker casing (not shown) to ferrule 73. Glass insulator 85 joins feedthrough conductor 75 and ferrule 73. Preferably, feedthrough conductor 75 is machined to function as an ECG sensing electrode. P-8787, *Thin Film Electrodes for Sensing Cardiac Depolarization Signals*, by Guck et al, filed on December 13, 2000, Serial Number 09/736,046, disclosed a manufacturing process for conversion of feedthrough conductors to ECG electrodes. FIG. 5B displays brazed feedthrough 84 with a conductor 75 that is supported by insulator 76 and ferrule 73. These components are joined with gold braze 77.

WO 02/098507

PCT/US02/08888

The embodiments shown in FIGs 5A and 5B disclose elegant electrode designs and a low profile. They have no appreciable protrusions and as such, lend themselves to an easier implant procedure and greater comfort for the patient.

FIG. 6 shows four views of the second embodiment of the present invention that utilizes an ECG sensing electrode with a large surface area. FIG. 6A is a cross sectional view, 6B a top view, 6C a perspective view, and 6D a cross sectional view all which represent, *inter alia*, a glass insulator within a modified ferrule casing.

Referring to FIG. 6A, a cross-sectional view of feedthrough conductor 75 terminating in a substantially flat-ended electrode 74 is shown. Electrode 74 is recessed within ferrule 73 that is welded to the pacemaker casing at optional welding notch 70. Thus, the complete assembly has no components that protrude above or outside of the pacemaker's casing. Feedthrough conductor 75 fits through opening in insulator 76 to which it is joined by braze 77. Insulator 76 maintains electrical isolation of the ECG signal as it circuits from sensing electrode 74 through feedthrough conductor 75 that is electrically connected to SEA circuitry within pacemaker 10. Braze 77 serves to hermetically seal the assembly and prevent the intrusion of body fluid that fills the cavity around electrode 74.

In this embodiment, the increased surface area of ECG sensing electrode 74 is one of the significant features of the invention. The geometric surface area is increased to improve detection of cardiac waveforms that have lesser amplitudes, for example, atrial fibrillation waves. In addition, increasing the geometric surface area may attenuate polarization effects at or around the ECG sensing electrode. Both features help to ensure the appropriate detection of ECG waveforms. The structure enables adequate detection, and transmission of cardiac depolarization signals. In an alternate embodiment, electrode coatings may be used to obtain larger surface areas and effect low polarization. Coating deposition methods may include sintering (powder metallurgy), sputtering, plating, CVD, PVD, or other methods. In addition, ion etching, directional solidification, or other processes may be used to texture the surface to increase the surface area of the electrode and to simplify manufacturability.

Sensing electrode 74 may be integral and homogenous with feedthrough conductor 75 and established via deposition methods such as sintering, sputtering, plating, etc.

Alternatively, sensing electrode 74 may be subsequently attached to the feedthrough conductor via shape memory alloys, welding, brazing, compression interference joints, etc.

FIG. 6D shows a cross sectional view of the embodiment in which the same feedthrough conductor 75 and sensing electrode 74 are used, with the exception that glass 85 is used to 1) join the feedthrough conductor/electrode with the ferrule, 2) electrically insulate so as to maintain signal integrity, and 3) hermetically seal the assembly.

FIG. 7 shows four views of a third embodiment of the present invention that utilizes an ECG sensing electrode with a low profile and a filter(i.e., capacitor).

FIG. 7A shows the addition of a multi-layer ceramic capacitor 71 that serves to filter electromagnetic interference to improve the detected signal prior to passing the signal on to the pacemaker circuitry. The feedthrough conductor and feedthrough ferrule are electrically joined to the capacitor. Capacitor 71 can be placed in the assembly and stabilized using non-conductive epoxy 79. Conductive epoxy 78 may be used to couple capacitor 71 with feedthrough conductor 75. Note also that in FIG. 7D, the filter capacitor 71 is used with glass insulator 85.

FIG. 8 shows four views of yet another embodiment of the present invention that utilizes both an ECG sensing electrode with a high surface area and a capacitor. In FIG. 8A, ECG sensing electrode 74 is implemented in a manner similar to that disclosed in conjunction with FIG. 6, the second embodiment. The reasons for using a sensing electrode with a high surface area are the same as those cited in FIG. 6.

FIG. 9 shows three views of how the third and fourth embodiments (FIGs. 7 and 8) of the present invention may be assembled with a polyimide disk to render the assembly leak testable. This figure focuses on the important element of testing for hermeticity, that is, determining whether the assembly may be tested for leaks. The addition of polyimide disk 72 immediately below capacitor 71 accomplishes this purpose. For further description of a leak testable feedthrough, reference is made to P-8990, *Leak Testable Capacitive Filtered Feedthrough for an Implantable Medical Device*, by Fraley et al, filed October 25, 2000, Serial No. 09/696,601, that is incorporated herein by reference in its totality. As with the embodiments disclosed hereinabove, the same element could be added to an assembly using glass as an insulator (not shown).

FIG. 10 shows a cross sectional view of the present invention with a low-profile/high surface area disk electrode 80. Specifically, electrode 80 may be

5 implemented in the embodiments disclosed in FIGs 6 and 8 to further increase the surface area of the ECG sensing electrode. The electrodes are attached to the feedthrough conductor after welding the feedthrough to the shield. Electrode attachment may be performed by laser weld, resistance spot weld, mechanical interference, or other equivalent methods.

10 FIG. 11 is a representation of various electrode types that may be used with the assemblies shown in the embodiments disclosed hereinabove. FIG. 11A is a standard, substantially flat headed, feedthrough conductor to which is attached sensing electrode 86 (as was shown in FIG. 6). Alternative types of electrodes may be used, as shown in FIGS. 11B and 11C. Feedthrough conductor 75 may be modified to contain a platinum powder chamber 67. Electrode 75 in FIG. 11B is coated and sintered with Pt powder 68. Electrode 75 in FIG. 11C is coated and sintered with Pt powder 68 and with Pt black 69. In accordance with the present invention, any combination of sintered Pt 68 and Pt black 69 may be used. All electrodes may include a steroid plug 82 as shown in FIG. 11D. FIGs 11E and 11F represent stages of manufacture in accordance with the present invention. Specifically, a shown in FIG. 11F, electrode 75 protrudes through electrode disk 80. The protrusion is preferably laser welded or mechanically formed to have a compliant contour as shown in FIG. 11E. The feedthrough conductor fits through the low-profile electrode disk 80. As shown in FIG. 11F by dotted lines, the feedthrough conductor protrudes through the disk and is welded to attach electrode 75 to feedthrough conductor as shown in FIG. 11E.

15 FIGS. 12A and 12B are examples of assemblies that make use of shape memory alloy 66 to allow easier and less costly fabrication. FIG. 12A represents the implementation of a ceramic or glass insulator 83, with an insulator of another material 87 to electrically isolate sensing electrode 74 from ferrule 73 and pacemaker casing (not shown). The electrode in FIG. 12B, is an alternate embodiment using epoxy backfill 79 and insulator 88 to electrically isolate the low-profile sensing electrode 80 from ferrule 73 and pacemaker casing.

20 The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, therefore, that other expedients known to those of skill in the art or disclosed herein may be employed without departing from the invention or the scope of the appended claim. It is therefore to be understood that the invention may be

WO 02/098507

PCT/US02/08888

17

practiced otherwise, than is specifically described, without departing from the scope of the present invention. As to every element, it may be replaced by any one of infinite equivalent alternatives, only some of which are disclosed in the specification.

WHAT IS CLAIMED IS:

1. An IMD including at least one electrode incorporated into a feedthrough for electrical coupling with a circuit of the IMD to detect physiological signals, the electrode in combination with the feedthrough comprising:
 - 5 the electrode disposed in a ferrule conforming to a periphery of IMD; insulator means between said sensing electrode and said ferrule; and electrical coupling means between said electrode and said circuit.
 2. The IMD of claim 1 wherein said electrode includes a substantially flat end integrated with a generally flattened exposed periphery of the IMD forming a hermetic seal therewith.
 - 10 3. The IMD of claim 2 wherein a plurality of electrodes are distributed around said exposed periphery of the IMD forming an array.
 4. The IMD of claim 2 wherein a braze connects said electrode, said ferrule and said insulator to form said hermetic seal.
 - 15 5. A sensing electrode system wherein one or more electrodes are disposed around the perimetric periphery of an implantable medical device (IMD), the sensing electrode system comprising:
 - a first end integrated with a feedthrough conductor;
 - insulator means having an opening to encase a segment of said first end;
 - 20 braze means to hermetically seal and integrally connect said first end with said insulator and said insulator with a ferrule; and
 - a second end forming a large surface area extending through said ferrule;
 - 25 said first end being electrically coupled to a circuit in the IMD, said second end providing sensing to process physiologic signals obtained via said large surface area.
 6. The system of claim 5 wherein a plurality of electrodes are distributed at perimetric periphery of the IMD with said large surface area of said second end being in planar conformity with the periphery of the IMD.
 7. The system of claim 5 wherein said insulation means and said braze means are jointly replaced by a glass structure.
 - 30 8. The system of claim 5 wherein said second end extends into bodily fluids of the patient in whom the IMD is implanted.

9. An implantable medical device (IMD) having a hermetically sealed housing having a housing outer wall exposed to the body and a housing inner wall enclosing sensing circuitry within said housing for processing electrical signals of the body detected between at least two sense electrodes supported by the housing, wherein;

5 at least one sense electrode comprises a electrical feedthrough mounted to extend between said housing first side and said housing second side, said feedthrough comprising a ferrule having an inner ferrule surface extending between a ferrule first end and a ferrule second end, an electrically conductive feedthrough pin extending between a feedthrough pin first end and a feedthrough pin second end, and an electrical insulator extending between said feedthrough pin and said ferrule inner wall and supporting said feedthrough pin; and further comprising:

10 means for mounting said ferrule wall first end to extend said feedthrough pin through said housing to expose said feedthrough pin first end to the body and to hermetically enclose said feedthrough pin second end within said housing; and

15 means for electrically coupling said feedthrough pin second end with said sensing circuitry thereby enabling said feedthrough pin first end to function as a first sense electrode operable in conjunction with a second sense electrode coupled with the sensing circuitry to enable sensing of electrical signals of the body.

10. The IMD of claim 9, wherein each feedthrough:

20 the ferrule first end is mounted flush with the outer housing wall and the ferrule second end extends within said housing; and

25 said insulator is mounted to extend between said ferrule inner wall within said housing and said feedthrough pin and supports the feedthrough pin first end recessed into the ferrule away from the ferrule first end.

11. The IMD of claim 10, wherein in each feedthrough:

the feedthrough pin has a pin diameter extending through said insulator; and

the feedthrough pin has an enlarged electrode diameter at the feedthrough pin first end providing an enlarged electrode surface area.

12. The IMD of claim 10, wherein the feedthrough pin first end is subjected to a surface treatment selected from the group consisting of sintering, sputtering, plating, CVD and PVD.

13. The IMD of claim 10, wherein the feedthrough further comprises a capacitive filter mounted between said ferrule and said feedthrough pin.
14. The IMD of claim 10, wherein each feedthrough:
 - 5 the feedthrough ferrule is cylindrical in shape between the ferrule first end and the ferrule second end and has a ferrule diameter; and the feedthrough pin has an enlarged electrode diameter less than the ferrule diameter at the feedthrough pin first end forming an enlarged electrode surface area.
 - 10 15. The IMD of claim 14, wherein the enlarged electrode surface area is enhanced by a surface treatment selected from the group consisting of sintering, sputtering, plating, CVD and PVD.
 16. The IMD of claim 14, wherein the feedthrough further comprises a discoidal capacitive filter mounted between said ferrule inner wall and said feedthrough pin.
 17. The IMD of claim 9, wherein each feedthrough:
 - 15 the ferrule first end is mount flush with the outer housing wall and the ferrule second end extends within said housing; and said insulator is mounted to extend between said ferrule inner wall within said housing and said feedthrough pin and supports the feedthrough pin first end extending past the ferrule first end and outward of the housing exposed wall.
 - 20 18. The IMD of claim 17, wherein each feedthrough:
 - the feedthrough pin has a in diameter extending through said insulator; and the feedthrough pin has an enlarged electrode having an enlarged electrode diameter at the feedthrough pin first end providing an enlarged electrode surface area extending outward over the housing outer wall.
 - 25 19. The IMD of claim 18, wherein the feedthrough pin first end is subjected to a surface treatment selected from the group consisting of sintering, sputtering, plating, CVD and PVD.
 - 20 21. The IMD of claim 18, wherein the feedthrough further comprises a capacitive filter mounted between said ferrule and said feedthrough pin.
 - 25 30 22. The IMD of claim 18, wherein each feedthrough:

the feedthrough ferrule is cylindrical in shape between the ferrule first end and the ferrule second end and has a ferrule diameter;

the feedthrough pin has a pin diameter extending through said insulator; and

the feedthrough pin has an enlarged electrode having electrode diameter exceeding the ferrule diameter at the feedthrough pin first end forming an enlarged electrode surface area extending outward over the housing outer wall.

5. The IMD of claim 22, further comprising insulating means for electrically insulating the enlarged electrode extending outward over the housing outer wall from the ferrule first end and the housing outer wall.

10. The IMD of claim 22, wherein the enlarged electrode surface area is enhanced by a surface treatment selected from the group consisting of sintering, sputtering, plating, CVD and PVD.

15. The IMD of claim 22, wherein the feedthrough further comprises a discoidal capacitive filter mounted between said ferrule inner wall and said feedthrough pin.

20. The IMD of claim 9, wherein the feedthrough pin first end is subjected to a surface treatment selected from the group consisting of sintering, sputtering, plating, CVD and PVD.

25. The IMD of claim 9 wherein, wherein a plurality of sense electrodes are each formed of a like plurality of said feedthroughs each electrically connected with said sensing circuitry to process a plurality of electrical signals detected from selected pairs of feedthrough pin first ends.

28. The IMD of claim 9 wherein:

a plurality of sense electrodes are each formed of a like plurality of said feedthroughs each electrically connected with said sending circuitry to process a plurality of electrical signals detected from selected pairs of feedthrough pin first ends; and

30. The IMD of claim 9, wherein each feedthrough:

the feedthrough pin has a pin diameter extending through said insulator; and

the feedthrough pin has an enlarged electrode diameter at the feedthrough pin first end providing an enlarged electrode surface area.

30. The IMD of claim 9, wherein said housing comprises a pair of opposed major housing walls joined at their peripheries by a perimeter, and the ferrule of said feedthrough is attached to an opening through said perimeter of said housing.

5 31. The IMD of claim 9, wherein the feedthrough pin first end is subjected to a surface treatment selected from the group consisting of sintering, sputtering, plating, CVD and PVD.

32. The IMD of claim 9, wherein each feedthrough further comprises a capacitive filter mounted between said ferrule and said feedthrough pin.

10 33. The IMD of claim 9, wherein the insulator further comprises an electrically insulating glass extending between a portion of the length of the feedthrough pin and at least a portion of the inner ferrule surface and adhered thereto to form a hermetic seal of the pin to the ferrule.

15 34. The IMD of claim 9, wherein the insulator further comprises an electrically insulating ceramic insulator extending between a portion of the length of the feedthrough pin and adhered thereto by a braze and to at least a portion of the inner ferrule surface and adhered thereto by a braze to form a hermetic seal of the pin to the ferrule.

35. The IMD of claim 9, wherein the insulator extends between a first portion of the length of the feedthrough pin and a first portion of the inner ferrule surface, and the feedthrough further comprises:

20 a capacitive filter mounted between a second portion of the inner ferrule surface and the feedthrough pin; and

25 a polyamide disk between the capacitive filter and the insulator to facilitate hermetic leak testing of the insulator.

36. The IMD of claim 9 wherein a shape memory alloy is implemented to provide ease of assembly between the feedthrough and the sensing electrode.

25 37. The IMD of claim 36 wherein said shape memory alloy is structured to support the feedthrough and the sensing electrode forming a compact assembly thereof.

38. The IMD of claim 9 wherein said feedthrough and said electrode are integrally attached using one of a weld and mechanical forming process.

WO 02/098507

PCT/US02/08888

1/12

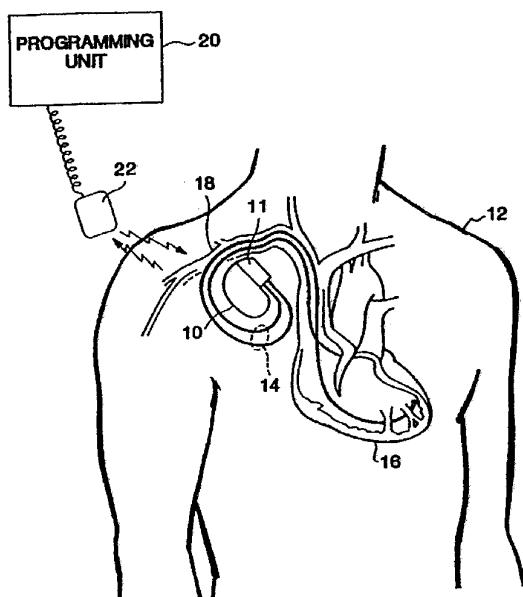
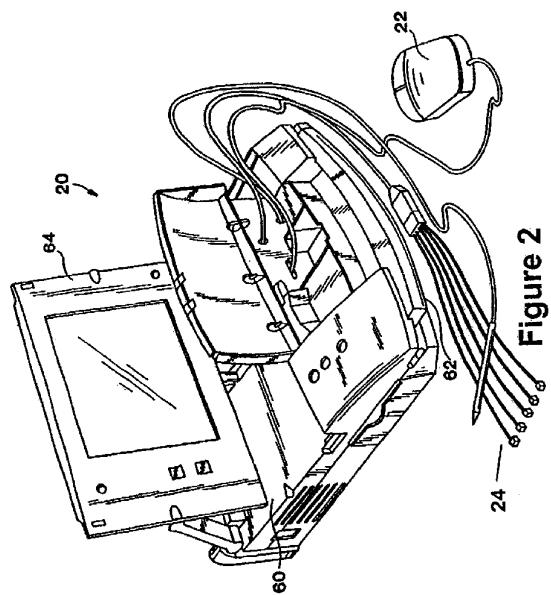



Figure 1

WO 02/098507

PCT/US02/08888

2/12

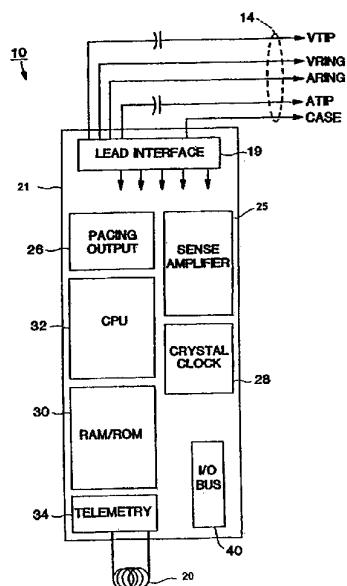


Figure 3

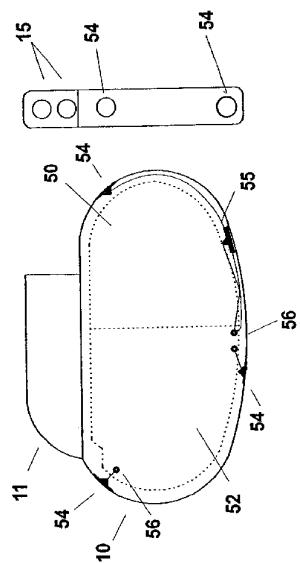
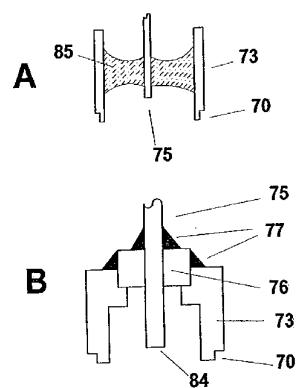



Figure 4

Figure 5

WO 02/098507

PCT/US02/08888

6/12

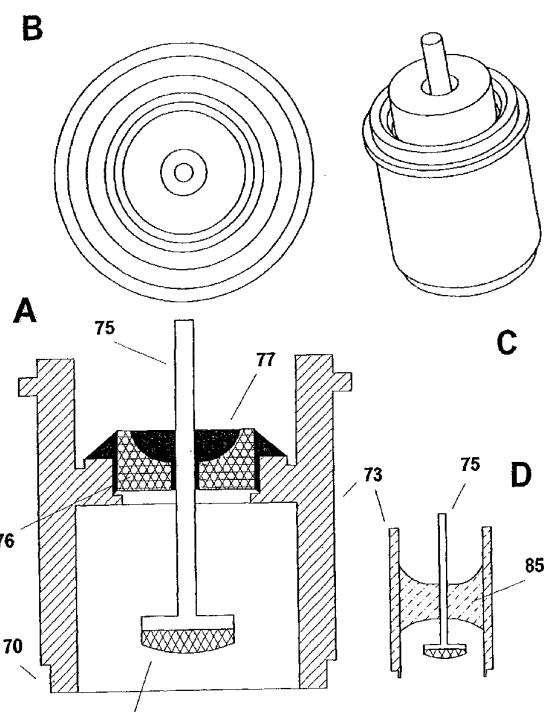


Figure 6

WO 02/098507

PCT/US02/08888

7/12

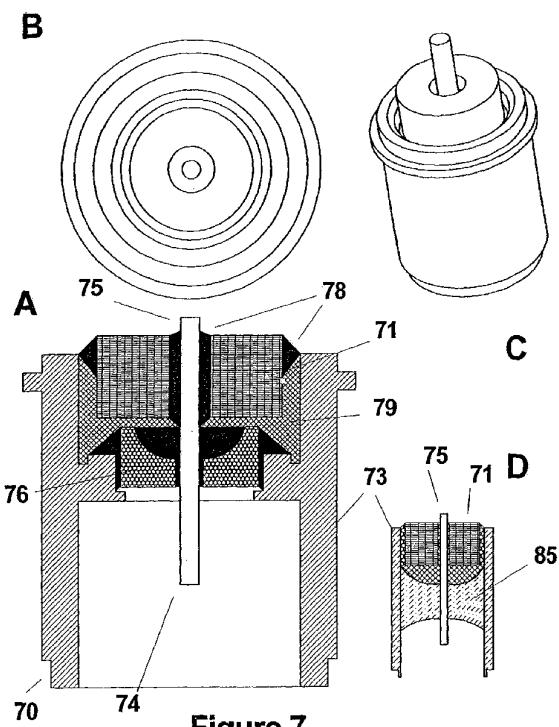


Figure 7

WO 02/098507

PCT/US02/08888

8/12

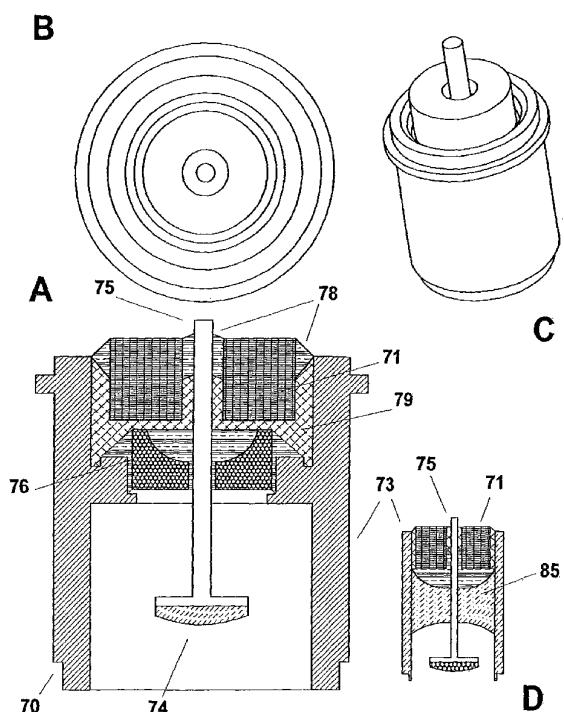
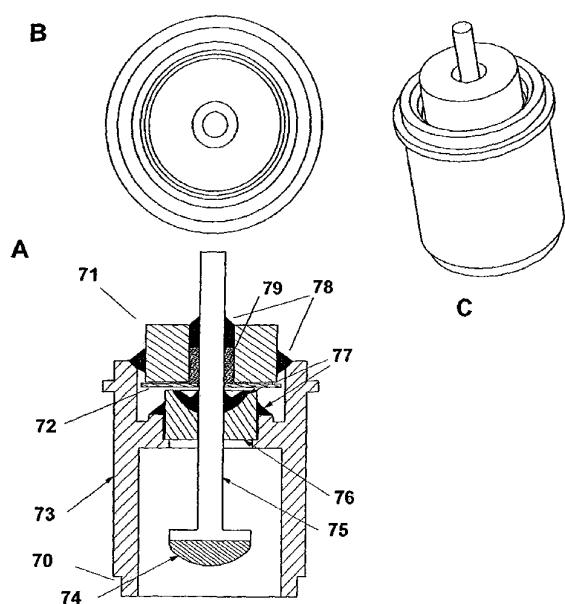



Figure 8

WO 02/098507

PCT/US02/08888

9/12

Figure 9

WO 02/098507

PCT/US02/08888

10/12

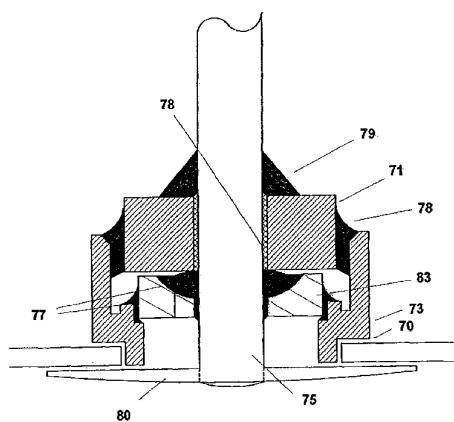
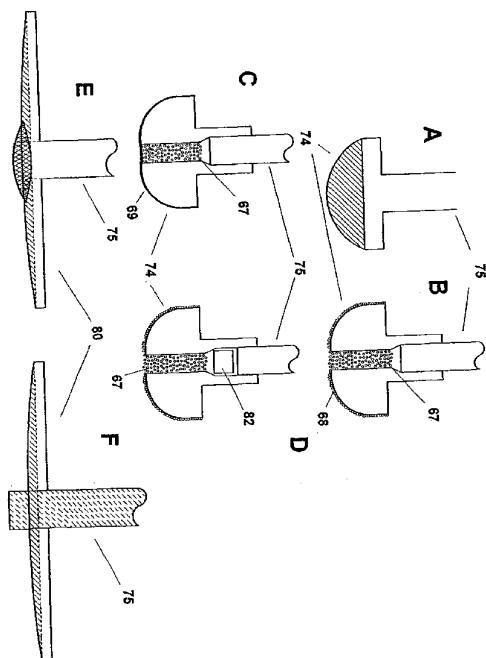
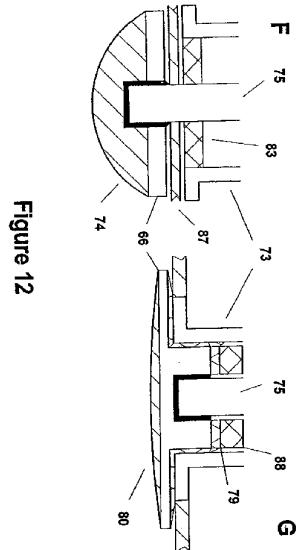



Figure 10

Figure 11

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
12 December 2002 (12.12.2002)

PCT

(10) International Publication Number
WO 02/098507 A3(51) International Patent Classification⁵: A61N 1/378

Ls.; 831 Hidden Meadow Trail, Eden Prairie, MN 553123 (US).

(21) International Application Number: PCT/US02/08888

KEIMEL, John, G.; 6 Charley Lake Court, North Oaks, MN 55127 (US).

(22) International Filing Date: 20 March 2002 (20.03.2002)

(74) Agents: WOLDE-MICHAEL, Girma, et al.; Medtronic, Inc., 710 Medtronic Parkway LC 340, Minneapolis, MN 55432 (US).

(25) Filing Language: English

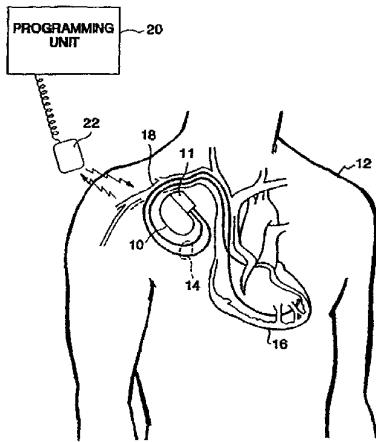
(81) Designated States (national): CA, JP.

(26) Publication Language: English

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(30) Priority Data: 09/870,097 30 May 2001 (30.05.2001) US

(77) Published:
— with international search report


(71) Applicant: MEDTRONIC, INC. [US/US]; 710 Medtronic Parkway LC340, Minneapolis, MN 55432 (US).

(88) Date of publication of the international search report:
22 May 2003

[Continued on next page]

(54) Title: IMPLANTABLE MEDICAL DEVICE WITH DUAL CELL POWER SOURCE

WO 02/098507 A3

(57) **Abstract:** An implantable medical device having a dual cell power source powering a high-power output circuit and a low-power control circuit. The power source includes a first high-rate cell and a second, lower-rate cell having a rate capability less than a rate capability of the first, high-rate cell. The first and second cells are electrically connected to the output circuit and control circuit by circuitry. In one embodiment, the circuitry connects the first and second cells in parallel to the output circuit and the control circuit, and includes a switching circuit for selectively uncoupling the first, high-rate cell from the control circuit during a transient high power pulse. In another embodiment, the first and second cells are formed within a single case and are connected in parallel to the output circuit and the control circuit. In another embodiment, the high-rate cell is anode limited, characterized by a rate capability exhibiting minimal dependence on time up to a pre-selected voltage-based ERI at which at least 40 percent of the cathode is consumed.

WO 02/098507 A3

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No PCT/US 02/08888
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61N1/378 A61N1/375		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61N HO1M		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 331 966 A (BENNETT TOM D ET AL) 26 July 1994 (1994-07-26) cited in the application column 13, line 54 -column 14, line 26; figure 2D	5-38
A	---	1-4
Y	US 5 836 992 A (SEIFRIED LYNN M ET AL) 17 November 1998 (1998-11-17) figure 1	5,6,8-38
Y	US 5 333 095 A (PRUETT DONALD N ET AL) 26 July 1994 (1994-07-26) figure 4	7
	---	-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents :		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the International filing date		
L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the International filing date but later than the priority date claimed		
Date of the actual completion of the International search 29 January 2003		Date of mailing of the International search report 06/02/2003
Name and mailing address of the ISA European Patent Office, P.O. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016		Authorized officer Petter, E

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		International Application No PCT/US 02/08888
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 310 000 A (LINDEMANS FREDERIC W) 12 January 1982 (1982-01-12) cited in the application column 3, line 3 - line 32 column 4, line 8 - line 42 ----	1,5,7,9
A	DE 41 12 936 A (BIOTRONIK MESS & THERAPIEG) 24 October 1991 (1991-10-24) claims 16,17 ----	15,19, 24,26,31
A	US 3 981 309 A (CANNON ROBERT LEE) 21 September 1976 (1976-09-21) column 3, line 51 -column 4, line 10 ----	15,19, 24,26,31
A	US 4 612 100 A (EDELING MARTIN ET AL) 16 September 1986 (1986-09-16) claim 1 ----	15,19, 24,26,31
E	WO 02 34332 A (MEDTRONIC INC) 2 May 2002 (2002-05-02) page 12, line 10 - line 24; figure 4 ----	1
1		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT Information on patent family members				International Application No PCT/US 02/08888
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
US 5331966	A 26-07-1994	AU 654552 B2 AU 1750692 A CA 2106378 A1 DE 69210395 D1 DE 69210395 T2 EP 0578748 A1 JP 2655204 B2 JP 6505662 T WO 9217240 A1	10-11-1994 02-11-1992 06-10-1992 05-06-1996 09-01-1997 19-01-1994 17-09-1997 30-06-1994 15-10-1992	
US 5836992	A 17-11-1998	US 5735884 A	07-04-1998	
US 5333095	A 26-07-1994	DE 69431324 D1 DE 69431324 T2 EP 0623363 A2	17-10-2002 02-01-2003 09-11-1994	
US 4310000	A 12-01-1982	DE 3160894 D1 EP 0033242 A1	27-10-1983 05-08-1981	
DE 4112936	A 24-10-1991	DE 4112936 A1	24-10-1991	
US 3981309	A 21-09-1976	CA 1066364 A1 GB 1535210 A US 8535466 I5	13-11-1979 13-12-1978 27-01-1976	
US 4612100	A 16-09-1986	DE 3345990 A1 DE 3476969 D1 EP 0147710 A2 JP 1901026 C JP 6002165 B JP 60156474 A	27-06-1985 13-04-1989 10-07-1985 27-01-1995 12-01-1994 16-08-1985	
WO 0234332	A 02-05-2002	WO 0234332 A1	02-05-2002	

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(51) Int.Cl.⁷
A 61N 1/365

F I

テーマコード(参考)

(72)発明者 ホワード, ウィリアム・ジー
アメリカ合衆国ミネソタ州55113, ローズビル, ノース・フィスク・ストリート 2550
(72)発明者 シュミット, クレイグ・エル
アメリカ合衆国ミネソタ州55123, イーガン, ヒドュン・メドー・トレイル 831
(72)発明者 ケイメリ, ジヨン・ジー
アメリカ合衆国ミネソタ州55127, ノース・オーヴィス, チャーリー・レイク・コート 6
F ターム(参考) 4C027 AA02 EE01 KK01
4C053 JJ01 JJ02 JJ18 JJ23 KK02 KK07