I*I Innovation, Sciences et Innovation, Science and CA 2942206 C 2022/11/08

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 942 206
12 BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépdt PCT/PCT Filing Date: 2015/03/10 (51) ClLInt./Int.Cl. GO6F 9/44(2018.01),

GO6F 8/30(2018.01), GO6F 9/445(2018.01),
HO4N 21/2387(2011.01), HO4H 60/87(2009.01)

(72) Inventeurs/Inventors:

(87) Date publication PCT/PCT Publication Date: 2015/09/17
(45) Date de délivrance/lssue Date: 2022/11/08

(85) Entrée phase nationale/National Entry: 2016/09/09 TORGEMANE, HENRI, US;
(86) N° demande PCT/PCT Application No.: IB 2015/051740 HALSTED, BENJAMIN, US;

N L UNTER ECKER, OLIVER, US
(87) N° publication PCT/PCT Publication No.: 2015/136445

L, L (73) Propriétaire/Owner:
(30) Priorités/Priorities: 2014/03/11 (US61/951,514); TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

2014/05/27 (US14/287,904)
(74) Agent: ERICSSON CANADA PATENT GROUP

(54) Titre : PROCEDES ET SYSTEMES DE GENERATION DYNAMIQUE D'EXECUTIONS D'APPLICATIONS
PERSONNALISEES
(54) Title: METHODS AND SYSTEMS FOR DYNAMIC RUNTIME GENERATION OF CUSTOMIZED APPLICATIONS

100
5,

X
APP CREATION AND COMPONENT LIFE-CYCLE
EXECUTION 102 TANAGEVIENT 208
ACCLIRE LI SERVER OR CLIENT
DIFINTICNFILE prig

(LOCAL READ OR
HITS SHR

A
REGUEST) 114: U DEFINITION
#IE 158
REGISTER
COMPONENTS
WITH

ALEND L)
BEFINTION
PARAMS INTO

FRAMEWCRK 118 COMPONENT
_ AR 164
CONTINUALLY Rl i l
uANAGE 058 OBTAN FARMMETERIZED
COMPONENT PAZAN, PARAM. IS COMEONENT
LIFE-CYCLE/ e N AL P
LFE LY WRITE: KNG e DEF NITION 150
APP EDITING 104 IFCT g HIORRTE
083 142 ML 143 5081182 |
il
SONT NUALLY

JERFORM 13 ARTCIPATE RS
b LIVE CCMPONEN™IN
ZRAMEWORK {64

INTERAGTIVE EDITING 106 COMPONENT DESTRUGHON 140

SE.[:ECTK}T\ F'N-Ef\‘\'ETIZ & REMOVE FEMOVE DEALLOCATE J§]
128 EDITING 132 GES 166 HTIIL 18] OBJECT 165

POSITIOMING COMPONENT
e INS"ANTIATION
14

(57) Abrégé/Abstract:

A user equipment (UE) device for programmatic runtime generation of an application. The UE device receives a Ul definition file
that includes definitions indicating visual appearance attributes of portions of the application, a set of components that are Ul
building blocks to be presented within the application, and a set of behaviors that may be performed by the components, where the
definitions include attribute-value pairs. The UE device receives a set of component definition files that include code for
implementing components that includes the components indicated by the Ul definition file and after a beginning of an execution of
the application, the UE device parses the Ul definition file to identify the visual appearance attributes, the set of components, and
the set of behaviors; and dynamically instantiates the set of components based upon the parsed Ul definition file and the set of
component definition files to create the application.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2015/136445 A1 || IO OO0 A A

(43) International Publication Date
17 September 2015 (17.09.2015)

CA 02942206 2016-09-09

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—~
é

\\

(10) International Publication Number

WO 2015/136445 Al

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/IB2015/051740

International Filing Date:

10 March 2015 (10.03.2015)
Filing Language: English
Publication Language: English
Priority Data:
61/951,514 11 March 2014 (11.03.2014) Us
14/287,904 27 May 2014 (27.05.2014) Us

Applicant: TELEFONAKTIEBOLAGET L M ERIC-
SSON (PUBL) [SE/SE]; S-164 83 Stockholm (SE).

Inventors: TORGEMANE, Henri; 3301 Sky Ridge Ln.,
Cedar Park, Texas 78613 (US). HALSTED, Benjamin;
137 Smoke Tree Ct., San Jose, California 95136 (US).
UNTER ECKER, Oliver; 21145 Colina Dr., Los Angeles,
California 90290 (US).

(8D

(84)

(74) Agents: HASSELGREN, Erik Joakim et al.; 6300 Leg-

acy Drive, MS EVR 1-C-11, Plano, Texas 75024 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR DYNAMIC RUNTIME GENERATION OF CUSTOMIZED APPLICATIONS

100
5\

]

COMPONENT LIFE-CYCLE
MANAGEMENT 108

APP GREATION AND
EXECUTION 102

ACGUIRE Ul SERVER OR CLIENT
DEFINTONFILE | | 120
NER

JIDEFNITION
FILE 122
COt
DEFALLTS
WHTH U L‘O"ir‘ONEN T
DEF. 138 FARAMS 154
-
:;R\ZOQRM OBTAIN
BARAM PQS;AqL‘
YiRIT 1APPING TH
WRITE i r\un'\ G 4
!
£y
APP EDITING 104 INEGT I INJECT | H 1 ALL(\ SATE 1 I

€SS 162 HTAL 1280 JS QBJ 152
G
CONTINUALLY
PERFORM 126 [T PARTICIPATE AS
| 1 LIVE COMPONENT (N
g ! FRAMEVWORIK 164

INTERACTIVE EDITING 106
p—— 10T T
SELECTION | || | PARAMETER | REMGVE | REMGVE DEALLCCATE 35
128 || | EDITNG 132 | CS8 136 | HTWL 158] CBJECT 1680
POSIT:ONING COMPONENT
130 INSTANTIATION
la¢

(57) Abstract: A user equipment (UE) device for program-
matic runtime generation of an application. The UE device re-
ceives a Ul definition file that includes definitions indicating
visual appearance attributes of portions of the application, a
set of components that are Ul building blocks to be presented
within the application, and a set of behaviors that may be per-
formed by the components, where the definitions include at-
tribute-value pairs. The UE device receives a set of compon-
ent definition files that include code for implementing com-
ponents that includes the components indicated by the UI
definition file and after a beginning of an execution of the ap-
plication, the UE device parses the Ul definition file to identi-
fy the visual appearance attributes, the set of components, and
the set of behaviors; and dynamically instantiates the set of
components based upon the parsed Ul definition file and the
set of component definition files to create the application.

CA 02942206 2016-09-09

WO 2015/136445 A1 AT 00N VAT VY OO

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW. KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

METHODS AND SYSTEMS FOR DYNAMIC RUNTIME GENERATION OF
CUSTOMIZED APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No.
5 61/951,514, filed March 11, 2014.

FIELD

Embodiments of the invention relate to the field of application generation; and
more specifically, to dynamic runtime genecration of applications through use of

parameterized code.

10 BACKGROUND

IPTV is a multimedia delivery platform that utilizes a packet-based network
infrastructure (e.g., broadband Internet access networks) to deliver video content to
customers, typically as an alternative to delivery by traditional over-the-air television,
satellite television, and cable television. A typical IPTV solution includes head-end

15 video acquisition equipment for receiving television content,
intermediate IPTV facilities (c.g., Ericsson Mediaroom™) including server platforms
and associated IPTV middleware, networking devices (e.g., routers, switches) for
content distribution between various nodes of the IPTV system, access nodes (e.g.,
very-high-bit-rate digital subscriber line (VDSL or VHDSL) or passive optical network

20 (PON) equipment) to enable high-bandwidth transport to and from the customer
premises, and operator-provided applications that manage the IPTV system and/or
provide end-user IPTV applications.

Consumers (also referred to as users, end users, viewers, customers, or
subscribers) of IPTV services utilize user interfaces of operator-provided applications

25 on User Equipment (UE) devices (such as set-top boxes (STBs), tablets, smartphones,
laptops, personal computers, etc.) to access IPTV content. However, these applications
are difficult to create, as they are often tremendously complex systems including many
layers of abstraction and rely upon customized code bases. Further, it is also desired, by

operators, to provide custom application user interfaces (Uls) for different users or

2,942,206
Date Regue/Date Received 2021-08-20

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

devices, and it has proven tremendously difficult to both generate and maintain such
custom Uls.

The appearance and behavior of Uls for web applications are typically pre-
defined. The code that defines 1t—CSS, for the most part--is fixed past compile-time
and typically statically referenced by a web application.

Although some applications may permit “skinning” for the purposes of app
customization, many applications (c.g., thosc of large companics) requirc a great deal
of customization far beyond what “skinning” can provide, as there is a need to be able
to control how user interface elements should look and/or behave — perhaps radically
diffcrently. To satisfy such requirements, some application developers have turned to
digging into code bases and (statically) applying such customizations. This usually
requires expert knowledge of the code base, and can lead to many unintended bugs
being created. Accordingly, there is a need for a solution for modifying complex web
applications that allows creating widely differing Ul experiences, depending on
developer preference, without requiring code base changes.

Cascading Style Sheet (CSS) pre-processors have been one approach recently
used to more easily build rich web technology based applications that can be
customized. However, CSS pre-processors arc typically designed to be run as part of a
build step to produce static CSS files that can then be used directly by browsers without
additional customization. Additionally, some CSS pre-processors perform all parsing,
transforming, and variable replacement in one computationally expensive step on the
client side, thereby degrading the performance and user experience. Accordingly, there
is still a need for generating and maintaining per-user (or per-device) style
customization of web application, at a significantly smaller footprint such that it could
be suitable for highly customized CSS that can be generated on-demand by web servers

or by web browsers.

SUMMARY

In an embodiment of the invention, a method in a server end station for
efficiently providing customized user interfaces for an application is disclosed. The
method includes transforming a set of one or more augmented style rules into style

generation code. The set of augmented style code rules includes both style syntax and a

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

set of one or more expressions that include a set of one or more variables. The set of
augmented style code rules are not valid according to a style standard of the style
syntax, and the style generation code, when executed by a set of one or more
invocations using a set of one or more input variables corresponding to the set of
variables, generates a set of one or more valid style rules according to the style
standard. The method further includes transmitting the style generation code to a user
cquipment (UE) device of a uscr. In some embodiments, the style gencration code
comprises JavaScript code that is executed by the set of invocations using the input
variables as parameters. In some embodiments, the style standard is the Cascading
Style Sheets (CSS) standard, and in some¢ embodiments the style gencration code
and/or the set of invocations comprises JavaScript code. In some embodiments, the
executing of the style generation code occurs as part of a build step that includes
generating multiple sets of valid style rules to match a same number of known sets of
input variables. In some of these embodiments including the build step, the method
further includes storing, using a computer-readable medium, the multiple sets of valid
style rules, and transmitting the multiple sets of style rules to a plurality of UE devices
of a plurality of users.

According to an cmbodiment of the invention, a non-transitory computcr
readable storage medium is described. The non-transitory computer readable storage
medium stores instructions that, when executed by a set of one or more processors of a
computing device, cause the computing device to efficiently provide customized user
interfaces for an application by performing a set of operations. The set of operations
includes transforming a set of one or more augmented style rules into style generation
code. The set of augmented style code rules includes both style syntax and a set of one
or more expressions that include a set of one or more variables. The set of augmented
style code rules are not valid according to a style standard of the style syntax, and the
style generation code, when executed by a set of one or more invocations using a set of
one or more input variables corresponding to the set of variables, generates a set of one
or more valid style rules according to the style standard. The set of operations further
includes transmitting the style generation code to a UE device of a user. In some
embodiments, the style standard is the Cascading Style Sheets (CSS) standard, and in

some embodiments the style gencration code and/or the set of invocations comprises

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

JavaScript code. In some embodiments, the executing of the style generation code
occurs on demand. In some embodiments, the executing of the style generation code
occurs as part of a build step that includes generating multiple sets of valid style rules
to match a same number of known sets of input variables. In some of these
embodiments including the build step, the set of operations further includes storing,
using the non-transitory computer-readable storage medium or another non-transitory
computer-rcadable storage medium, the multiple scts of valid style rules, and also
transmitting the multiple sets of style rules to a plurality of UE devices of a plurality of
users.

In an embodiment of the mvention, a method in a server end station for
efficiently providing customized user interfaces for an application is disclosed. The
method includes transforming a set of one or more augmented style rules into style
generation code. The set of augmented style code rules includes both style syntax and a
set of one or more expressions that include a set of one or more variables. The set of
augmented style code rules are not valid according to a style standard of the style
syntax, and the style generation code, when executed by a sct of one or more
invocations using a set of one or more input variables corresponding to the set of
variables, generates a set of one or more valid style rules according to the style
standard. The method further includes executing the style generation code using the set
of input variables to generate the set of valid style rules. In some embodiments, the
style gencration code comprises JavaScript code that is exccuted by the set of
invocations using the input variables as parameters. The method further includes
transmitting the set of valid style rules to a user equipment (UE) device of a user, which
causes a customized user interface to be presented to the user. In some embodiments,
the method further includes, by the server end station, executing the style generation
code with another set of one or more input variables to generate another set of one or
more valid style rules, and then transmitting the another set of valid style rules to
another UE device of another user, which causes another customized user interface to
be presented to the another user that i1s different than the customized user interface
presented to the user. In some embodiments, the style standard is the Cascading Style
Sheets (CSS) standard, and in some embodiments the style generation code and/or the

sct of invocations comprises JavaScript code. In some embodiments, the exccuting of

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

the style generation code occurs on demand in response to receiving, from the UE
device, a request for the set of valid style rules. In some embodiments, the executing of
the style generation code occurs as part of a build step that includes generating multiple
sets of valid style rules to match a same number of known sets of input varnables. In
some of these embodiments including the build step, the method further includes
storing, using a computer-readable medium, the multiple sets of valid style rules, and
transmitting the multiple scts of style rules to a plurality of UE devices of a plurality of
users.

According to an embodiment of the invention, a non-transitory computer
readable storage medium is described. The non-transitory computer readable storage
medium stores instructions that, when executed by a set of one or more processors of a
computing device, cause the computing device to efficiently provide customized user
interfaces for an application by performing a set of operations. The set of operations
includes transforming a set of one or more augmented style rules into style generation
code. The set of augmented style code rules includes both style syntax and a set of one
or more expressions that include a set of one or more variables. The set of augmented
style code rules are not valid according to a style standard of the style syntax, and the
style generation code, when executed by a set of one or more invocations using a sct of
one or more input variables corresponding to the sct of variables, generates a set of one
or more valid style rules according to the style standard. The set of operations further
includes executing the style generation code using the set of input variables to generate
the set of valid style rules. In some embodiments, the style generation code comprises
JavaScript code that is executed by the set of invocations using the input variables as
parameters. The set of operations further includes transmitting the st of valid style
rules to a user equipment (UE) device of a user, which causes a customized user
interface to be presented to the user. In some embodiments, the set of operations further
includes, by the server end station, executing the style generation code with another set
of one or more input variables to generate another set of one or more valid style rules,
and then transmitting the another sct of valid style rules to another UE device of
another user, which causes another customized user interface to be presented to the
another user that is different than the customized user interface presented to the user. In

some embodiments, the style standard is the Cascading Style Sheets (CSS) standard,

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

and in some embodiments the style generation code and/or the set of invocations
comprises JavaScript code. In some embodiments, the executing of the style generation
code occurs on demand in response to receiving, from the UE device, a request for the
set of valid style rules. In some embodiments, the executing of the style generation
code occurs as part of a build step that includes generating multiple sets of valid style
rules to match a same number of known sets of input variables. In some of these
cmbodiments including the build step, the sct of operations further includes storing,
using the non-transitory computer-readable storage medium or another non-transitory
computer-readable storage medium, the multiple sets of valid style rules, and also
transmitting the multiple scts of style rules to a plurality of UE devices of a plurality of
users.

According to an embodiment of the invention, a method in a user equipment
(UE) device for generating a customized user interface for an application is described.
The method includes receiving, at a set of network interfaces of the UE device from a
server end station, style generation code. The style generation code, when executed by
a set of one or morc invocations using a set of one or more input variables
corresponding to the set of variables, generates a set of one or more valid style rules of
a style standard, and dynamically injccts the valid style rules into the application. The
method also includes causing the customized user interface to be presented to the user
as a result of executing the style generation code according to the set of invocations.
The user interface includes a set of one or more user interface elements that are styled
according to the set of valid style rules. In some embodiments, the method further
includes receiving, from the server end station, the set of invocations using the set of
input variables. In some embodiments, the style standard is the Cascading Style Sheets
(CSS) standard, and in some embodiments the style generation code and/or the set of
invocations comprises JavaScript code.

According to an embodiment of the invention, a non-transitory computer
readable storage medium is described. The non-transitory computer readable storage
medium stores instructions that, when executed by a set of one or more processors of a
computing device, cause the computing device to generate a customized user interface
for an application by performing a sct of operations. The set of operations includes

receiving, at a sct of network interfaces of the computing device from a server end

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

station, style generation code. The style generation code, when executed by a set of one
or more invocations using a set of one or more input variables corresponding to the set
of variables, generates a set of one or more valid style rules of a style standard, and
dynamically injects the valid style rules into the application. The set of operations also
includes causing the customized user interface to be presented to the user as a result of
executing the style generation code according to the set of invocations. The user
interface includes a sct of onc or morc uscr interface clements that arc styled according
to the set of valid style rules. In some embodiments, the set of operations further
includes receiving, from the server end station, the set of invocations using the set of
input variables. In some embodiments, the style standard is the Cascading Style Shects
(CSS) standard, and in some embodiments the style generation code and/or the set of
invocations comprises JavaScript code.

According to an embodiment of the invention, a method in a user equipment
(UE) device for programmatic runtime application creation is described. The method
includes receiving a single user interface (UI) defimition file. The Ul definition file
includes a plurality of definitions indicating visual appearance attributes of portions of
the application, a set of one or more components to be presented within the application,
and a sct of bchaviors that may be performed by the components. The plurality of
definitions includes a plurality of attribute-value pairs. The method further includes
receiving a set of one or more component definition files that include code for
implementing a plurality of components that includes the set of components indicated
by the UI definition file. The method further includes, after a beginning of an execution
of the application, parsing the UI definition file to identify the visual appearance
attributes, the set of components, and the set of behaviors. The method further includes
dynamically instantiating the set of components based upon the parsed UI definition
file and the set of component definition files to create the application.

According to an embodiment of the invention, a non-transitory computer
readable storage medium is described. The non-transitory computer readable storage
medium stores instructions that, when executed by a set of one or more processors of a
computing device, cause the computing device to programmatically generate an
application at runtime by performing a set of operations. The set of operations includes

receiving a single user interface (Ul) definition file. The UI definition file includes a

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

plurality of definitions indicating visual appearance attributes of portions of the
application, a set of one or more components to be presented within the application, and
a set of behaviors that may be performed by the components. The plurality of
definitions includes a plurality of attribute-value pairs. The set of operations also
includes receiving a set of one or more component definition files that include code for
implementing a plurality of components that includes the set of components indicated
by the Ul definition file. The set of operations further includes, after a beginning of an
execution of the application, parsing the UI definition file to identify the visual
appearance attributes, the set of components, and the set of behaviors. The set of
operations further includes dynamically instantiating the sct of components based upon
the parsed Ul definition file and the set of component definition files to create the
application.

Accordingly, embodiments of the invention enable dynamic, runtime generation
of user interfaces for web applications. Such embodiments provide application
developers the ability to easily build, test, and deploy web custom applications
including customized visual appearance, customized components/structures, and
customized behavior. In some embodiments, application developers can construct
customized applications by modifying cxpressive, human-rcadable definitions within a
single UI definition file. This UI definition file may flexibly be used by UE devices to,
at runtime, dynamically generate the application, or may be executed by a server end
station to generate rcady-to-use application code for UE devices. Embodiments of the
invention allow application developers to create, maintain, and modify these
customized applications by relying upon a shared set of component definitions to
simply and easily modify the appearance and functionality of the application. Further,
in embodiments of the invention the Ul definition file abstracts away the presentation
and logic code (e.g., HyperText Markup Language (HTML) code, Cascading Style
Sheet (CSS) rules, JavaScript code), allowing application developers to instead focus
upon generating the application itself instead of the code and concepts (e.g., the
Document Object Model (DOM)) behind the application. Embodiments of the
invention provide these benefits using parameterized style rules that can be easily
finalized into standard CSS rules for multiple environments and/or users using

powerful and expressive invocations. In some embodiments, the generation of the

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

finalized standard CSS rules may be flexibly performed, based upon the particular
needs of the system, by either a centralized server or by the UE device rendering the
application for a user. In some embodiments, the methods, apparatuses, and systems
described herein can be used to generate a variety of web technology based

applications, such as applications used by users of IPTV systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the following description
and accompanying drawings that are used to illustrate embodiments of the invention.
In the drawings:

Figure 1 illustratcs stages in a system for dynamic runtime gencration of user
interfaces of an application according to embodiments of the invention;

Figure 2 illustrates a flow in a user equipment device for dynamically
generating an application at runtime based upon a Ul definition file according to
embodiments of the invention;

Figure 3 illustrates a block diagram of a system including an IPTV system
utilizing dynamic runtime application generation based wupon style rule
parameterization according to an embodiment of the invention;

Figure 4 illustrates augmented style code and style generation code according
to an embodiment of the invention;

Figure 5A illustrates style generation invocation code that, when used to invoke
the style generation code of Figure 4, results in the illustrated set of valid style rules
and the customized user interface being generated according to an embodiment of the
invention;

Figure 5B illustrates additional style generation invocation code that, when
used to invoke the style generation code of Figure 4, results in the illustrated additional
set of valid style rules and the additional customized user interface being generated
according to an embodiment of the invention;

Figure 6 illustrates a flow in a server end station for utilizing parameterized
stylc rules to allow for thc dynamic runtime gencration of user interfaces of an

application according to embodiments of the invention;

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

10

Figure 7 illustrates a flow in a server end station for utilizing parameterized
style rules to allow for the dynamic runtime generation of user interfaces of an
application according to some embodiments of the invention; and

Figure 8 illustrates a flow in a user equipment device for utilizing style
generation code generated by a server end station for dynamic runtime generation of

user interfaces of an application according to embodiments of the invention.

DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are set forth. However,
it 1s understood that embodiments of the invention may be practiced without these
specific details. In other instances, well-known circuits, structurcs and techniques have
not been shown in detail in order not to obscure the understanding of this description.
Those of ordinary skill in the art, with the included descriptions, will be able to
implement appropriate functionality without undue experimentation.

Bracketed text and blocks with dashed borders (e.g., large dashes, small dashes,
dot-dash, and dots) are used herein to illustrate optional operations that add additional
features to embodiments of the invention. However, such notation should not be taken
to mean that these are the only options or optional operations, and/or that blocks with
solid borders are not optional in certain embodiments of the invention.

ER IS

References in the specification to “one embodiment,” “an embodiment,” “an
example embodiment,” etc., indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodiment. Further, when a
particular feature, structure, or characteristic is described in connection with an
embodiment, it is submitted that it is within the knowledge of one skilled in the art to
effect such feature, structure, or charactenistic in connection with other embodiments
whether or not explicitly described.

In the following description and claims, the terms “coupled” and “connected,”
along with their derivatives, may be used. It should be understood that these terms are

not intended as synonyms for each other. “Coupled” is used to indicate that two or

more elements, which may or may not be in direct physical or electrical contact with

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

11

each other, co-operate or interact with each other. “Connected” is used to indicate the
establishment of communication between two or more elements that are coupled with
each other.

An electronic device stores and transmits (internally and/or with other electronic
devices over a network) code (which is composed of software instructions and which is
sometimes referred to as computer program code or a computer program) and/or data
using machinc-rcadable media (also called computer-recadable media), such as machine-
readable storage media (¢.g., magnetic disks, optical disks, read only memory (ROM),
flash memory devices, phase change memory) and machine-readable transmission
media (also called a carrier) (¢.g., clectrical, optical, radio, acoustical or other form of
propagated signals — such as carrier waves, infrared signals). Thus, an electronic device
(e.g., a computer) includes hardware and software, such as a set of one or more
processors coupled to one or more machine-readable storage media to store code for
execution on the set of processors and/or to store data. For instance, an electronic
device may include non-volatile memory containing the code since the non-volatile
memory can persist the code even when the electronic device is turned off, and while
the clectronic device is turned on that part of the code that is to be executed by the
processor(s) of that clectronic device 1s copicd from the slower non-volatile memory
into volatile memory (¢.g., dynamic random access memory (DRAM), static random
access memory (SRAM)) of that electronic device. Typical electronic devices also
include a sct or onc or more physical nctwork interface(s) to establish network
connections (to transmit and/or receive code and/or data using propagating signals)
with other electronic devices. One or more parts of an embodiment of the invention
may be implemented using different combinations of software, firmware, and/or
hardware.

Methods, apparatuses, and systems for dynamic runtime generation of
customized user interfaces and applications are described herein. Embodiments of the
invention introduce a framework for easily defining and constructing user interfaces of
an application without requiring expert knowledge of the underlving code of the
application. In embodiments of the invention, an application developer (e.g., an IPTV
operator) can construct customized applications by modifying expressive, human-

readable definitions within a single Ul definition file. This Ul definition file may

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

12

flexibly be used by UE devices to, at runtime, dynamically generate the application, or
used by a server end station to construct ready-to-use application code (¢.g., HTML,
CSS, and/or JavaScript code). Application developers may quickly and easily construct
variants of the application by also constructing alternative Ul definition files including
different definitions that will cause differing appearances, structures, and behaviors of
the subsequently generated applications. For example, different Ul definition files may
bc gencrated for different types of access that various users arc permitted access to
(e.g., some users arc allowed access to a certain type of content, and thus the Ul
definition file will include definitions for custom UI elements for accessing that
content), for different types of UE devices (e.g., for larger or smaller displays), for
different types of operating systems or supporting applications used by the users, etc.

In an embodiment, the Ul definition files are used along with a set of
component definition files that provide definitions of components that can be
instantiated at runtime. Each of the definitions of components may include a set of
default visual styles and/or behaviors, which can be overridden / changed through the
definitions in the respective Ul definition file.

In some embodiments, the system may be configured for a UE device to access
a Ul definition file along with the set of component definition files to dynamically
generate the application at runtime. In some embodiments, this dynamic generation
includes dynamically injecting HTML elements, CSS rules, and/or JavaScript code into
a web-based display of the application.

In some embodiments, the system may be configured for a server end station to
access a Ul definition file along with the set of component definition files to generate
an application. In an embodiment, this generation includes generating the HTML, CSS,
and/or JavaScript necessary for the application to execute at the UE device of a user. In
another embodiment, this generation includes creating, based upon the Ul definition
file and the set of component definition files, style generation code. The style
generation code, when executed by a set of invocations using a set of one or more input
variables, generates a set of valid style rules of a style standard and dynamically injects
the valid style rules into the application.

Thus, embodiments of the invention allow application developers to create,

maintain, and modify customized applications by relying upon a shared set of

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

13

component definitions to simply and casily modify the appearance and functionality of
an application. Further, in embodiments of the invention the UT definition file abstracts
away the presentation and logic code (e.g., HyperText Markup Language (HTML)
code, Cascading Style Sheet (CSS) rules, JavaScript code), allowing application
developers to instead focus upon generating the application itself instead of the code
and concepts (e.g., the Document Object Model (DOM)) behind the application. Some
cmbodiments of the invention provide these bencefits using paramcterized style rules
that can be easily finalized into standard CSS rules for multiple environments and/or
users through use powerful and expressive invocations. In some embodiments, the
generation of the finalized standard CSS rules may be flexibly performed, based upon
the particular needs of the system, by either a centralized server or by the UE device
rendering the application for a user.

In some embodiments, the methods, apparatuses, and systems described herein
can be used to generate a variety of web technology based applications, such as
applications used by users of IPTV systems. In some IPTV systems, the application
code that a user interacts with (e.g., the application executing on a STB, tablet,
smartphone, personal computer, etc.) in order to access IPTV content. These
applications, through typically originally crecated by an [PTV tcchnology provider, arc
often heavily customized by IPTV operators. Using embodiments of the invention, an
IPTV operator need only interact with one or more Ul definition files to generate one or
more customized applications for its users.

Figure 1 illustrates stages in a system 100 for dynamic runtime generation of an
application at runtime under control of a definition file according to embodiments of
the invention. The system 100 includes three scparate, but interrelated, stages: an
application creation and execution 102 stage, an application editing 104 stage, and a
component life-cycle management 108 stage.

The application editing 104 stage is performed by an operator / application
developer, who may utilize a text or graphical based interface to enter “design mode”
124 to create or update a Ul definition file. In an embodiment, this involves launching
another Ul definition editor webpage displaying a sample UI definition file, which can
be edited. The operator may then begin editing as a semi-continuous process 126, in

which interactive editing 106 occurs where the results/cffect of an edit may be

14

represented to the operator. This interactive editing 106 may include one or

more of component selection 128 (e.g., selecting those components to be included in

the customized version of the application), positioning 130 (e.g., defining where on the

Ul the component is to be placed), parameter editing 132 (e.g., changing or setting a

5 wvalue for the application that affects its display or use, such as a color, size, text, etc.),

and/or component instantiation 134 (c.g., loading a defined component for the operator

to observe and/or interact with the currently-defined version of a component). As or

after the Ul definition file is modified, it will be saved to a server end station or a UE

device 120. A UE device is an electronic device used by a user to access video assets

10 via an application providing access to a media system such as an IPTV system. The UE

device may be a Sct Top Box (STB), smart phone, tablet, laptop or desktop computer,

wearable computing device, etc.

The application creation and execution 102 stage includes an acquisition 114 of

a Ul definition file 122, from a server end station or the client (i.c., UE device) 120

15 itself. In embodiments of the invention, the UI definition file includes instructions of a

Webapp Definition Language (“WADL”). WADL is a language that permits the

description of web application component assemblies, their connections (e.g., behaviors

and interactions), and customizer-specific parameter sets for automated web application

generation. In an embodiment, WADL serves as the “external definition” part of a

20 larger system for programmatic web application creation. In an embodiment, WADL is

aliased on JSON, and thus is ecasily transported as an XMLHttpRequest (XHR)

payload, casily machine-written and machine-read, and human-writable and human-

readable. WADL’s use of type definitions further permits intemal consistency checks

and an efficient mapping to internal, computable types. Further, WADL’s use of

25 variables permits shared references to one definition, and added comfort for humans

writing definitions, and JavaScript pass-throughs permit a large degree of
expressiveness at minimal “expense” (to the implementer or learner of the language).

The Ul definition file may include many sections detailing components to be

included in the application (i.c., the structure of the web application), the appearance of

30 the application, and the behavior of the components within the application. In an

embodiment, the Ul definition file also includes one or more of a version identifier, a

2,942,206
Date Regue/Date Received 2021-08-20

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

15

set of “application-wide” default attribute values, and a set of component declarations.

A portion of an example Ul definition file is provided below as Table A:

Table A - Example UI Definition File

{

"vergicon": "0.8",
"defaults": |
"container":
"backgroundColor": "$dark backgroundColor"

"actionButtons": {
"button":
lltypell : llSizell,
"width": "70px",
"height": "60px"

"button backgroundColor": "S$brand coclor",
"in animation": "none",
"out animation": "none"

"theme":
"dark backgroundColor": "#111111",
"brand color": "rgba (100, 50, 30, 0.7)",
"content minSize": {

lltypell: llSizellI
"width": 1024,
"height": 786

"body font": "\"Segoe UI\", sans-serif"

b,

"components": [

"clagg": "viewg.Detailg",
"root": ".details",
"components": |

"clags": "actionButtons",
"layout": {
"type": "horizontal",
"containg": "actionButton",
"controls": "actionBar"

}

}
]

"clasg": "views.YourStuff",
"type": "container",
"paramg": {
"feeds": [subscriber:Continue, subscriber:Pins,

subsgcriber:Rentals],

CA 02942206 2016-09-09

WO 2015/136445

16

PCT/IB2015/051740

I

"componentg": [

"class": "views.DetailsPane",
"type": "details pane",
"root": "#detailsPanel",
"paramg": {
"metadataPog":

"type": "Position",

lltopll : "72pX",

"right": "140px"

"clags": "actionButtons",
"root": "#actionButtonss>.actions",
"params" :
"barPos": {
"type": "Position",
lltopll : "60px",
"right": "10px"

"button": {
lltypell: "Size",
"width": "100px",
"height": "72px"

"button spacing": "4px",
0.258",

¥
"layout": {
"type": "vertical",
"containg": "actionButton",
"controls": "actionBar"

}

"class": "views.Filmstrip",
"paramg": {
"item gap": "4px",

"regetToFirstTabaAndIltemOnReEnter": true

"in animation": "slideInFromRight 0.5s both

"out animation": "slideOutToRight 0.5s both"

"backgroundColor": "rgba(0,0,0,0.40)"

17

Turning back to Figure 1, the application creation and execution 102 stage, in
addition to using the UI definition file 122, also includes parsing the UI definition file
to identify the needed components, and registering these components with a framework
116. At this point, the component life-cycle management 108 stage is 118 begun.

5 For cach component and every sub-component that may be defined by the Ul
definition file 136, the component life-cycle management stage 108 stage includes a
component instantiation sub-stage 112 that may begin, in an embodiment, as the
application begins to launch (e.g., when a browser first loads a page of the application).
In this component instantiation sub-stage 112, the default attribute values (as provided

10 by the defined component definition files, which may also include code — HTML
and/or JavaScript — to provide the component functionality) will be reconciled (or,
“blended” 138) with the defined attribute values from the Ul definition file based upon
a set of rules. In some embodiments, the component-specific attribute values of the Ul
definition file will take precedence over conflicting attribute values of the “defaults”

15 portion of the Ul definition file, and attribute values of the “defaults” portion of the Ul
definition file will take precedence over conflicting attribute values sect by the
component definition files; however, other precedence rules may be defined depending
upon the desires of the particular configuration instance.

With the determined “blended” 138 component defaults determined, the

20 component instantiation sub-stage 112 next performs CSS parameter mapping 140 to
apply the style rules to the components to be placed in the page without creating
conflicts. Next, the style rules (e.g., CSS) are injected 142 into the page. CSS
parameter mapping will be described in greater detail later herein.

The component instantiation sub-stage 112 also includes blending 144 the Ul

25 definition parameters (e.g., related to component behavior) into the default component
parameters. This may also occur according to a precedence rule; in an embodiment, the
UI definition parameters take precedence over default component parameters from the
component definition files.

Next, the necessary parameterized display code (e.g., HTML) for the necessary

30 components is obtained 146 (based upon code from the component definition files) and
the necessary HTML is injected 148 into the application. Similarly, the parameterized

script code component definition 150 is gathered and all necessary script code (e.g.,

2,942,206
Date Regue/Date Received 2021-08-20

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

18

JavaScript) to support the components and the UI is allocated 152. Thus, each
generated component participates as a live component in the framework 154.

The component life-cycle management stage 108 stage may also include, in an
embodiment, a component destruction sub-stage 110 that works to eliminate
application components as necessary. For example, if a behavior of one component is
to remove another component, that another component may be removed by removing
any componcnt-specific style rules (c.g., CSS) 156 from active usc, removing 158 any
display code (¢.g., HTML) of the component from active use, and removing 160 any
script code (e.g., JavaScript) objects created for the component.

Figure 2 illustrates a flow 200 in a user equipment device for dynamically
generating an application at runtime based upon a Ul definition file according to
embodiments of the invention. The operations of this and other flow diagrams will be
described with reference to the exemplary embodiments of the other diagrams.
However, it should be understood that the operations of the flow diagrams can be
performed by embodiments of the invention other than those discussed with reference
to these other diagrams, and the embodiments of the invention discussed with reference
to these other diagrams can perform operations different than those discussed with
reference to the flow diagrams.

The flow 200 includes, at block 203, receive a user interface (UI) definition file
generated by the operator. The Ul definition file includes a plurality of definitions
indicating visual appearance attributes of portions of an application, a set of
components to appear within the application, and a set of behaviors that may be
performed by the components. Optionally, this receiving of the UI definition file occurs
at block 210 from a server end station across a network 210, and optionally this
receiving of the UI definition file occurs as part of the application package at block
215.

In some embodiments, the operator generates the Ul definition file through a
simple text-based interface, a drag-and-drop interface (for adding components into a
UI), or a combination of the two.

The flow 200 also includes, at block 220, receiving a set of one or more
component definition files that include code for implementing a plurality of

components. The plurality of components includes the set of components indicated by

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

19

the UI definition file (i.e., all of the set of components, and possibly additional
components, have definitions in the set of component definition files).

After a beginning launch of the application, at block 225, the Ul definition file
is read / parsed to identify the visual appearance attributes, the set of components, and
the set of behaviors at block 230. Optionally, the parsing at block 230 includes
registering the identified set of components with a component framework of the
application as a registry, at block 235.

The flow 200 also includes, at block 240, dynamically instantiating the set of
components based upon the UI definition file and the set of component definition files.
In an embodiment, this includes, at block 245, dynamically generating HTML, CSS,
and JavaScript objects representing the set of components based upon identifying
parameters defined in the Ul definition file.

In an embodiment, this dynamic instantiation is performed by a UI generation
module based upon the parsed UI definition file (which defines which components to
instantiate, when to instantiate them, and with which parameters) and the registry. In an
embodiment, components may have inherent default parameters, default parameters per
component as defined in the UI definition file (in its “defaults” section — see Table A
above), and parameters defined on the concrete instantiation level as per the Ul
definition file (in its “components” section). The component parameters (as defined in
the Ul definition file and as defaults associated with Ul components classes) inform
dynamic HTML and CSS gencration, which are a part of component instantiation. They
also inform the configuration of JavaScript objects representing components within the
component framework. In an embodiment, this Ul component framework provides raw
(not-yet-configured) components and manages the life-cvcle (and, implied visibility) of
components. In some embodiments, a deployment platform is any web-based rendering
application, and in an embodiment a deployment platform is HTMLS5 and thus supports
any device that can run HTMLS, including but not limited to smartphones, tablets, and
traditional computers.

Accordingly, embodiments of the invention permit the run-time construction of
web application manifolds within the limits of a finite set of UI building blocks (ic.,
components) and their associated finite set of configuration parameters, under control

of a Ul definition file.

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

20

Figure 3 illustrates a block diagram of a system 300 including an IPTV system
306 utilizing dynamic runtime application generation based upon parameterized code
according to an embodiment of the invention. The system 300 includes one or more
content providers 310A-310M that provide video assets to the IPTV system 306 (or
directly to UE devices 328), which are ultimately to be distributed / communicated with
UE devices 328 (optionally at a user premise 308) via a communication network 304.
The communication nctwork 304 may include any type of data nctwork, voice nctwork,
broadcast network, IP-based network, and/or wireless network facilitating
communication of data and media content in any format. The communication network
304 can be implemented using any well-known type of network topology and/or
communication protocol, and may be represented or otherwise implemented as a
combination of two or more networks.

The UE devices 328 (or viewing systems, consumer devices, client devices,
etc.) are clectronic devices used by users 302A-302N to access video assets via an
application 326A-326E providing access to the IPTV system 306. A non-exhaustive set
of UE devices 328 are illustrated herein and include a Set Top Box (STB) 322 which is
connected to a display 324A (commonly a television, but can also be another type of
monitor, projector, ctc.). Other UE devices 328 include a smart phone 330, a tablet 332,
and a laptop or desktop computer 334 — each of which may include a processor,
computer-readable storage, a display 324B-324D, and optionally an application 326A-
326F that exccutes to allow connectivity/interaction with the IPTV system 306.
However, other UE devices can be implemented as any one or combination of wired
and/or wireless device, as any form of television client device (e.g., STB 322, digital
video recorder (DVR)), gaming device, computer device, portable computer device,
consumer device, media device, communication device, video processing and/or
rendering device, appliance device, mobile phone (¢.g., cellular, Voice over IP (VolIP),
Wi-Fi, etc.), a portable media device (e.g., a personal/portable media player, handheld
media player, etc.), wearable device, and/or as any other type of device that is
implemented to receive media content in any form of audio, video, and/or image data.
A UE device (e.g., STB 333) may also be associated with a user 302A (i.e., a person)

and/or an entity that operates the device.

21

The various UE devices (322, 330, 332, 334) shown in system 300 may or may
not include a respective display device (e.g., 324A-324D). A UE device and display
device together render and playback audio, video, and/or image data. A display
device (e.g., display 324A) can be implemented as any type of a television, high

5 definition television (HDTV), Liquid Crystal Display (LCD), Light-Emitting Diode
(LED) display, or similar display system. The various client devices (e.g., television,
gaming, or computer devices) may also be associated with one or more input devices,
such as a remote control device for accepting user-sclectable input and selections to the
television client device, a gaming controller for user-selectable inputs to the gaming

10 device, and/or a keyboard and/or mouse input devices for user-selectable input to the
UE device. The UE devices described herein can also be implemented with any
differing combinations of other components such as one or more processors,
communication components (e.g., network interfaces), memory components, and/or
processing and control circuits. For example, a UE device may include network

15 interfaces to receive video assets from IPTV system 306 and/or content providers
310A-310M, interfaces to receive broadcast and/or over-the-air inputs via which video
assets can be received over the air. The UE devices may also include one or more
tuners to tune television channels and/or data streams for display and viewing.

The UE devices and/or displays may optionally include IPTV applications (or

20 “apps”) 326A-326E to assist in providing connectivity to the IPTV system 306. These
IPTV apps 326, when executed by processors of the respective devices, may be
configured to cause the respective devices to connect to the IPTV system 306 (c.g.,
using a sct of network interfaces), send requests to the IPTV system 306 (e.g., for lists
of video assets, for video assects themselves), receive responses from the IPTV system

25 306 (e.g., user interface (UI) elements from the IPTV system 306, video assets), present
the user interfaces of the IPTV system 306 on the displays to the users, and/or display
the video assets and any (optional) corresponding user interfaces (e.g., playback
controls, additional video assets, advertising, etc.). In some embodiments of the
invention, the applications 326A-326E are built using web-based technologies,

30 including one or more of HTML code, CSS rules, JavaScript code, etc.

In the depicted embodiment of Figure 3, the IPTV system 306 includes one or

more computing devices 330 that include processor(s) 338, network interfaces 336 (for

2,942,206
Date Regue/Date Received 2021-08-20

22

connecting to the content providers 310A-310M and/or social networking
system 320 and/or UE devices 328), and computer-readable storage media 332. The
computer-readable storage media 332, in some embodiments, may store copies of video
assets, which may be provided by the content providers 310A-310M. The term “video

5 asset” is generally used to refer to video or collection of images that may or may not
include audio; however, the term “video asset” may also be used generically to refer to
a piece of multimedia content, including but note limited to any type of audio, video,
and/or image data received from any media content and/or data source. As described
hercin, a video asset can include recorded video content, video-on-demand (VOD)
10 content, OTT video content, television content (e.g., “live” television, “broadcast”
television), advertisements, commercials, music videos, movies, video clips, and other
media content. Depending upon configuration, the IPTV system 306 may provide the
video assets to the UE devices 328 via the network 304, but in some configurations the
UE devices 328 use the network 304 to directly access video assets from content

15 providers 310A-310M.

The computer-readable storage media 332 may also store other media content,
metadata, interactive games, network-based applications, and/or any other content or
data (e.g., program guide application data, user interface data, advertising content,
closed captioning data, content metadata, search results and/or recommendations, etc.)

20 for use by the IPTV system 306 and/or UE devices 328 when interacting with the IPTV
system 306 and/or video assets.

In the depicted embodiment, the set of processors 338 of the one or more
computing devices 330 executes a customized style module instance 340B, which may
be launched using customized style module code 340A stored by the computer-readable

25 storage media 332. The customized style module instance 340B is used as part of the
system for dynamically generating applications through use of the augmented style
code 342 and style generation code 344 stored by the computer-readable storage media
332. The augmented style code 342, in an embodiment includes portions of style rules
following a style standard (e.g., CSS) that have been modified, or augmented, to

30 include expressions including parameters. Thus, the augmented style code 342, in its
entirety, will not strictly follow the style standard and thus will be deemed invalid

according to that style standard. The customized style module instance 340B may

2,942,206
Date Regue/Date Received 2021-08-20

23

translate the augmented style code 342 into the style generation code 344. In an
embodiment, the style generation code 344 is executable code (either by the computing
device(s) 330 or by the applications 326 executing on the UE device(s) 324) that can
generate valid style rules 348 to be used by the applications 326. In some embodiments,
5 this style generation code 344 comprises JavaScript code, but in other embodiments it
can include any other computer-executable code (e.g., code written in Python, Lua,
C++, C, ML, Fortran, PHP, Ruby, VBScript, Scheme, Shell scripts, XSLT, Tcl, Java,
Smalltalk, Objective C, C#, Visual Basic, etc.).
In an embodiment, the style generation code 344 is executed through a set of
10 style generation invocations 346, which may optionally exist (and be executed by) the
computing device(s) 330 or directly by a UE device 324 at rumtime. The set of style
generation invocations 346, in an embodiment, causes the style generation code 344 to
be executed using a set of input variables, which causes the custom generated set of
style rules 348 to be generated. Examples of augmented style code 342, style
15 generation code 344, style generation invocation code 346, and generated sets of valid
style rules 348 are now presented in further detail in Figure 4, Figure SA, and Figure
5B.
Figure 4 illustrates augmented style code 342 and style gencration code 344
according to an embodiment of the invention. The augmented style code 342 and style
20 generation code 344 are used as part of the overall solution for providing dynamically
generated applications; in particular, these pieces of the solution allow for dynamic
styling of user interfaces of the application.
Accordingly, in an embodiment the augmented style code 342 comprises
parameterized CSS files that can be used in deferred evaluable transformation system
25 for high-performance, dynamic, run-time, parameterized finalization. The augmented
style code 342, in an embodiment, is provided as one or more input files that include
modified CSS rules that have been augmented with additional expression-based syntax.
In some embodiments, the augmented style code 342 is generated by a technology
provider and constructed purposcfully to “expose” certain aspects of a Ul to be
30 modified through wuse of expressions 410 including variables 415.

2,942,206
Date Regue/Date Received 2021-08-20

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

24

In an embodiment, notably, the augmented style code 342 input files might
themselves be the output of other CSS pre-processing software, such as the Less.js
dynamic style sheet language.

As depicted in Figure 4, the illustrated augmented style code 342A includes
two rules — or style declarations — that each include style syntax 420 and expressions
410 (using variables 415) demarcated by expression delimiters 405. In this example,
the expression delimiters 405 comprise an opening delimiter (comprising a dollar sign
followed by an open curly bracket) and a closing delimiter (comprising a closing curly
bracket), though in other embodiments other opening and closing delimiters may be
used, provided that they can be unambiguously identified by a parser. In this example, a
first rule (for objects having a class matching the selector of “rulel”) includes three
declarations (or, “sub-rules”), where a “width” attribute has an associated value
including an expression 410 defining the value to be a sum of an “itemWidth” variable
added with the number thirty. A second declaration also includes an expression 410
indicating that the attribute “border-style” is to have an associated attribute value
represented by the value of a variable named “borderPattern™. Finally, the first rule also
includes a third declaration indicating that a “color” attribute is to have an associated
attributc valuc represented by the valuc of variable named “defaultColor”. A sccond
rule (for objects having a class matching the selector of “.rule2”) is similar to the first
rule, as it also includes three declarations for the “width”, “border-style”, and “color”
attributes. However, the expressions 410 for the “width” and “color” are different —
here, the attribute value for “width™ is configured to represent 1.5 times the value of the
itemWidth variable, and the attribute value for “color” is configured to be a result from
an application of a “lighten()” function using a variable “defaultColor” as its argument.
This lighten() function may be a function that is part of a language of the later-
generated style generation code 344A, defined by the technology provider, or made
available in some other manner.

The format of the expressions 410 within the augmented code may be
configured in a varicty of ways — in an embodiment, the technology provider simply
defines a grammar/syntax for these expressions 410 that will be recognized by a parser

used to generate the style generation code 344A. However, in other embodiments the

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

25

format of the expressions 410 follows a defined language grammar/syntax of a common
programming language.

With the one or more files representing the augmented style code 342A, the
customized style module instance 340B will parse and compile the augmented style
code 342A into the style generation code 344A. In an embodiment, the style generation
code 344A is JavaScript code that, when executed, injects CSS rules into an application
loading (c.g., in a browscr). In othcr embodiments, the style gencration code 344A is
code of another language that is configured to generate valid CSS when executed with
proper mput arguments for the translated expressions 455. In the depicted embodiment
of Figure 4, the style gencration code 344A comprises a set of functions that accept a
set of input variables/arguments for itemWidth, borderPattern, and defaultColor, and
that retumns a string of valid CSS based upon the values of those arguments. In an
embodiment, the style generation code 344A is specifically designed to be fast. As an
example, in some embodiments it does not include any explicit parsing. In some
embodiments, the style generation code 344A is designed to execute within a particular
type of application 326 (¢.g., a web browser), designed to run on a server, or flexible to
be run by either.

For cxample, in the depicted embodiment of Figure 4, the gencrated style
generation code 344A is valid JavaScript code, where cach parameterized CSS file (ie.,
the augmented style code 342A) is transformed into style generation code 344A
comprising a JavaScript function that takes scveral parameters as its input, onc of
which is a map of values made available for use within that function, as defined in the
input parameterized CSS file (e.g., augmented style code 342A). The generated style
generation code 344A is designed for high performance, and includes primarily simple
string concatenation operations, along with any additional operations expressed in the
parameterized CSS. In some deployments, this first step i1s intended to happen
infrequently, as an initial build step for the application to be deployed.

This approach, which includes using augmented style code 342A to generate
style generation code 344A, provides several distinct advantages that center around
flexibility and performance. This approach is flexible because it allows parameterized
style rules (e.g., CSS rules) to be easily “finalized” into standard rules for multiple

environments/configurations. Additionally, this approach is performant because this

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

26

“two-step” approach performs the computationally expensive aspects in its first
“translating the augmented style code 342A to generate the style gencration code
344A7 step, which leaves a “lighter” amount of computational expense (e.g., at runtime
by a relatively less powerful UE device) in its second step of invoking the style
generation code 344A while preserving the power and expressiveness of style
parameterization.

The sccond step of the solution includes having the style gencration code 344A
deployed in an environment and ran as needed to obtain the desired level of
customization. One implementation of that step can be to run it immediately after it is
generated, as part of the same build process. This would be primarily uscful in a
situation where a finite number of parameters is known at build time, as matching style
files (e.g., CSS files) can then be generated efficiently for each set of parameters. Thus,
in some embodiments, the server end station (i.e., computing device(s) 330) may
directly use the style generation code 344A to perform the “second step™ to generate
sets of valid style rules 348 by calling the style generation code 344 A using a set of
style generation invocations 346. For example, the computing device(s) 330, in the
computer-readable storage media 332, may store a set of style generation invocations
for cach uscr and/or uscr intcrface and/or deployment scenario that necds to be
generated for the application. Another implementation of this second step can be to
deploy the generated style generation code 344A to web servers providing aspects of
the application, and have those web servers “finalize™ the style rules (¢.g., CSS) based
on a set of parameters that may vary with each request.

Yet another implementation of the second step can be to deploy the generated
style generation code 344A as part of client-side JavaScript files that are served to
browsers, and have this style finalization code run within each user’s browser using
parameters acquired by the client-side application. Thus, in some embodiments, the
server end station (i.c., computing device(s) 330) may instead transmit the style
generation code 344A (directly or indirectly through other computing devices and/or
processes) to a UE device 328, which itself will generate sets of valid style rules 348 by
calling the style generation code 344A using a set of style generation invocations 346.
The set of style generation invocations 346 may be stored locally at the UE device 328,

retriecved from the server end station, or retrieved from another computing device. In an

27

embodiment, although the same version of the style generation code 344A may be

transmitted to many different UE devices of potentially different users of potentially

different service agreements (dictating what content is to be presented by the

application), the set of style gencration invocations 346 may be unique to each user,

5 group of users, group of devices sharing a common characteristic, etc., to allow

completely different applications to be generated.

In these embodiments of the invention, the separation of the parsing of the

augmented style code 342 (c.g., parameterized CSS) from the generation of the final

style rules (e.g., by invoking the style generation code 344A), is accomplished in a

10 manner that enables that style generation to be fast, and to be able to be done in

multiple environments, including in a browser where existing CSS pre-processor tools

either do not support using the in such a fashion or are not practical due to the
performance penalty that would come with using them in such a fashion.

Figure SA illustrates style generation invocation code 346A that, when used to

15 invoke the style generation code 344A of Figure 4, results in the illustrated set of valid

style rules 348A and the customized user interface 525A being generated according to

an embodiment of the invention. In this depicted embodiment, style generation

mvocation code 346A comprises code (e.g., JavaScript code such as jQuery code) with

a plurality of input variables 515 corresponding to the variables/parameters of the style

20 generation code 344A. The style generation invocation code 346A includes these input

variables 515 that comprise an attribute 505 matching the variables of the translated

expressions 455 of the style generation code 344A, and values 510 to be used as

arguments to invoke the style generation code 344A to generate the set of valid style

rules 348A. In this depicted example, the input arguments include values 510 of “50”

25 for the attribute itemWidth, the value “solid” for the attribute border-style, and the

value “#567A3C” for the attribute defaultColor. When invoked using these values, the

style generation code 344A will generate the illustrated set of valid style rules 348A

that are valid according to the style standard. As an example, the itemWidth of “50” is

passed to the style generation code 344 A, which causes the first class selector “.rulel”

30 to have a value of “80px” (based upon the translated expression 455 of “30 +

itemWidth” concatenated with “px™), and the second class selector “.rule2” to have a

value of “75px” (based upon the translated expression 455 of “1.5 * itemWidth”

2,942,206
Date Regue/Date Received 2021-08-20

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

28

concatenated with “px”). Similarly, the input argument values of border-style “solid”
and defaultColor “#567A3C” cause the first class selector to have values of “solid” and
“#567A3C” (just as passed in) and cause the second class selector to have values of
“solid dashed” and “#6A8E50”.

Accordingly, the invocation of the style generation code 344A, in this
embodiment, causes the style rules to be applied to the customized UI 525A, which
includes a first sct of user identificrs 545A (c.g., uscrs “logged in™ or “detected to be
using” the application), a set of hub sclection Ul elements 530 allowing the user(s) to
perform functions in the application, and a first Ul clement 535A and second Ul
element 540A. For purposes of this illustration, first Ul clement 535A (c.g., a <div>,
, etc.) has a class of “rule1” and will be presented according to the first rule of
the generated set of style rules 348A, and the second UI element 540A has a class of
“rule2” and will be presented according to the second rule of the generated set of style
rules 348A. In this example, the first Ul element 535A has a longer horizontal length
(80px) compared to the second Ul element 540A length (75px), as dictated by the
generated set of style rules 348A. Similarly, the “rulel” border-style of the generated
set of style rules 348A causes the first Ul element 535A to have four solid borders, and
the “rulc2” border-style of the gencrated sct of style rules 348A causcs the sccond Ul
element 535A to have a “solid” top and bottom border, and a “dashed” left and right
side border. Additionally, the “rulel” color of the generated set of style rules 348A
causes the first Ul element 535A to have a dark green border, and the “rule2” color of
the generated set of style rules 348A causes the second Ul element 535A to have a
comparatively lighter green border.

In a similar vein, Figure SB illustrates additional style generation invocation
code 346B that, when used to invoke the style generation code 344A of Figure 4,
results in the illustrated additional set of valid style rules 348B and the additional
customized user interface 525B being generated according to an embodiment of the
invention. This additional style generation invocation code 346B may, for example, be
used by another user (e.g., represented by the second user identifier 545B) of the same
application or another device of the same (or a different) user to generate a (different)
customized Ul 525B. In this depicted example, style generation invocation code 346B

instead includes an itemWidth of 707, a border-style of “dotted”, and a defaultColor of

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

29

“#333333”. By invoking the style generation code 344A with these parameters, the
generated set of valid style rules 348B will be different than the generated set of valid
style rules 348A despite both resulting from the use of the same style generation code
344A. Thus, in this example, the first Ul element 535B will now be shorter than the
second Ul element 540B, have four dotted, dark gray borders. Similarly, the second Ul
element 540B will now be longer than the first Ul element 535B, have a light gray
dottcd top and bottom bordcr and light gray dashed right and left borders.

Figure 6 illustrates a flow 600 in a server end station (e.g., computing device(s)
330) for utilizing parameterized style rules (i.e., augmented style code 342A) to allow
for the dynamic runtime generation of usecr interfaces of an application according to
embodiments of the invention.

The flow 600 includes, at block 605, transforming a set of one or more
augmented style rules into style generation code. The set of augmented style code rules
includes both style syntax (e.g., portions of CSS rules) and a set of one or more
expressions including a set of one or more variables. However, the set of augmented
style code rules are not valid according to a style standard (e.g., CSS) of the style
syntax. This style generation code, when executed by a set of one or more invocations
using a sct of onc or morc input variables corresponding to the sct of varables,
generates a set of one or more valid style rules according to the style standard.

The flow also includes, at block 610, executing the style generation code using
the set of input variables to generate the set of valid style rules. In an embodiment, the
set of input variables are part of the set of invocations, which may be code written in a
common language with the style generation code. In an embodiment, the common
language is JavaScript, and in an embodiment the set of valid style rules are CSS rules.

At block 6135, the flow further includes transmitting the set of valid style rules to
a UE device of a user, causing a customized user interface to be presented to the user.
In an embodiment, the set of valid style rules are part of a CSS file, which is rendered
by a browser application executing on the UE device.

Optionally, the flow continues one or more times by executing the style
generation code using another set of input variables to gencrate another set of valid
style rules (at block 620) and transmitting the another set of valid style rules to another

UE device of another user, which causes another customized user interface to be

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

30

presented to the another user (at block 625). Blocks 620 and 625 may optionally be
executed one or more times, to casily and efficiently provide customized user interfaces
for different users of the application/system. In an embodiment the user interfaces are
of an IPTV application to allow the users to access content provided by an IPTV
system.

As described above, the style generation code may be executed in a variety of
locations by a varicty of diffcrent devices. For example, the style generation code may
be executed at a UE device.

Figure 7 illustrates a flow 700 in a server end station (e.g., computing device(s)
330) for utilizing parameterized style rules (i.c., augmented style code 342A) to allow
for the dynamic runtime generation of user interfaces of an application according to
embodiments of the invention. The operations of Figure 7 is similar to the operations
of Figure 6 with the exception that the server end station transmits the style generation
code to a UE device which is then configured to execute the style generation code.

The flow 700 includes, at block 705, transforming a set of one or more
augmented style rules into style generation code. The set of augmented style code rules
includes both style syntax (e.g., portions of CSS rules) and a set of one or more
expressions including a set of one or more variables. However, the set of augmented
style code rules are not valid according to a style standard (e.g., CSS) of the style
syntax. This style generation code, when executed by a set of one or more invocations
using a sct of onc or more input variables corresponding to the set of varables,
generates a set of one or more valid styvle rules according to the style standard. The flow
also includes, at block 710, transmitting the style generation code to a UE device of a
user.

Figure 8 illustrates a flow 800 in a user equipment device for utilizing style
generation code generated by a server end station for dynamic runtime generation of
user interfaces of an application according to embodiments of the invention. Flow 800
includes, at block 803, receiving, at a set of network interfaces of the UE device from a
server end station, style generation code. The style generation code, when executed by
a set of one or morc invocations using a set of one or more input variables
corresponding to the set of variables, generates a set of one or more valid style rules of

a style standard and dynamically injects the valid style rules into an application. In an

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

10

15

20

25

30

31

embodiment, the style rules are CSS rules, and in various embodiments the application
may be a web application executing in a browser or a special-purpose application.

Optionally, the flow 800 includes at block 810 receiving, from the server end
station, the set of invocations using the set of input variables. In other embodiments,
though, the set of invocations are created at the UE device (e.g., providing a user
interface to solicit the arguments/values for the invocations) or retrieved from a
different server end station or different UE device.

At block 8135, the flow further includes causing the customized user interface to
be presented to the user as a result of executing the styvle generation code according to
the sct of invocations. The user interface includes a set of onc or more user interface
elements that are styled according to the set of valid style rules.

Although Figures 4-8 focus upon the dynamic generation of style rules,
embodiments of the invention are also able to dynamically create other portions of an
application, including but not limited to components and behaviors, using similar
systems. While embodiments have been described in relation to an IPTV system,
alternative embodiments could instead be utilized for other systems using customizable
applications. For example, embodiments of the invention work in nearly any type of
wceb application / sitc that can benefit from providing customized “views” into an
application that reveal different interfaces, styles, functions, components, and/or
behaviors.

While embodiments disclosed herein describe CSS as being used as a style
standard and style sheet language, the scope of the invention is not to be limited to
using CSS as the only style sheet language as other style sheet languages may be used.

Additionally, while many embodiments disclosed herein focus upon the
parameterization of style rules (e.g., CSS), the scope of the invention is not to be so
limited. Instead, in various embodiments of the invention, other types of computer code
can be parameterized in this manner, including but not limited to structural and/or
behavioral component code (e.g., JavaScript), display code (e.g., HTML), and nearly
any other type of code that can form portions of an application, whether it be a web
application or other type of application.

While the flow diagrams in the figures show a particular order of operations

performed by certain embodiments of the invention, it should be understood that such

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

32

order is exemplary (c.g., alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain operations, €tc.).

Additionally, while the invention has been described in terms of several

embodiments, those skilled in the art will recognize that the invention 1s not limited to

5 the embodiments described, can be practiced with modification and alteration within

the spirit and scope of the appended claims. The description is thus to be regarded as

illustrative instcad of limiting.

33

CLAIMS

‘What is claimed is:

1. A method in a user equipment, UE, device (128A) for programmatic runtime

generation of an application (326A-E), comprising:

receiving a single user interface, Ul, definition file (122), wherein the Ul definition
file (122) includes a plurality of definitions indicating visual appearance
attributes of portions of the application, a set of one or more components
that are Ul building blocks to be presented within the application, and a set
of behaviors that may be performed by the components, wherein the
plurality of definitions includes a plurality of attribute-value pairs;

receiving a set of one or more component definition files that include code for
implementing a plurality of components that includes the set of components
indicated by the UI definition file (122), wherein the Ul definition file
(122) is distinct from the set of one or more component definition files;

after a beginning of an execution of the application (326A-E), parsing the Ul
definition file (122) to identify the visual appearance attributes, the set of
components, and the sel of behaviors; and

dynamically instantiating the set of components based upon the parsed Ul
definition file (122) and the set of component definition files to create the

application (326 A-E).

2. The method of claim 1, wherein the Ul definition file is received from a server end

station.

3. The method of claim 2, wherein the Ul definition file is received at the beginning

of the execution of the application (326A-E).

4. The method of claim 3, further comprising transmitting, to the server end station ,

an XMLHttpRequest for the UI definition file.

5. The method of claim 2, wherein the Ul definition file is received within a package

providing the application.

. Application No. 2,942,206
Date Regue/Date Received 2021-08-20

34

6. The method of claim 1, wherein the dynamically instantiating comprises calling a
set of one or more script language functions using one or more sets of parameters

from the Ul definition file.

7. The method of claim 6, wherein the set of script language functions dynamically

creates Ul elements representing the set of components.

8. The method of claim 6, wherein the set of script language functions are JavaScript

functions.

9. A non-transitory computer-readable storage medium storing instructions which,
when executed by a set of one or more processors of a computing device, cause the
computing device to programmatically generatc an application (326A-E) at
runtime by performing operations comprising:
receiving a single user interface, Ul, definition file (122), wherein the Ul definition
file (122) includes a plurality of definitions indicating visual appearance
attributes of portions of the application (326A-E), a set of one or more
components that are Ul building blocks to be presented within the
application (326A-E), and a sct of behaviors that may be performed by the
components, wherein the plurality of definitions includes a plurality of
attribute-value pairs;

receiving a set of one or more component definition files that include code for
implementing a plurality of components that includes the set of components
indicated by the UI definition file (122), wherein the Ul definition file
(122) is distinct from the set of one or more component definition files;

after a beginning of an execution of the application (326A-E), parsing the Ul
definition file (122) to identify the visual appearance attributes, the set of
components, and the set of behaviors; and

dynamically instantiating the set of components based upon the parsed Ul
definition file (122) and the set of component definition files to create the

application (326A-E).

10. The non-transitory computer-readable storage medium of claim 9, wherein the Ul

definition file is received from a server end station.

. Application No. 2,942,206
Date Regue/Date Received 2021-08-20

11.

12.

13.

14.

15.

16.

Date Regue/Date Received 2021-08-20

35

The non-transitory computer-readable storage medium of claim 10, wherein the Ul
definition file is received at the beginning of the execution of the application
(326A-E).

The non-transitory computer-readable storage medium of claim 11, wherein the

operations further comprise:

transmitting, to the server end station, an XMLHttpRequest for the Ul definition
file.

The non-transitory computer-readable storage medium of claim 10, wherein the Ul

definition file is received within a package providing the application (326A-E).

The non-transitory computer-readable storage medium of claim 9, wherein the
dynamically instantiating comprises calling a set of one or more script language

functions using one or more sets of parameters from the Ul definition file.

The non-transitory computer-readable storage medium of claim 14, wherein the set
of script language functions dynamically creates Ul elements representing the set

of components.

The non-transitory computer-readable storage medium of claim 14, wherein the set

of script language functions are JavaScript functions.

Application No. 2,942,206

WO 2015/136445

100

p°

CA 02942206 2016-09-09

119

PCT/IB2015/051740

APP CREATION AND
EXECUTION 102

COMPONENT LIFE-CYCLE
MANAGEMENT 108

ACQUIRE Ul
DEFINITION FILE
(LOCAL READ OR | |
HTTP XHR
REQUEST) 114 | ||

Ul DEFINITION
FILE 122

REGISTER
COMPONENTS
WITH

SERVER OR CLIENT

FOR EACH COMPONENT AND ANY
SUB-COMPONENT 136

COMPONENT INSTANTIATION 14

FRAMEWORK 118

CONTINUALLY™
MANAGE

COMPONENT
\, LIFE-CYCLE/ /
NYISIBILITY 148/

WRITE

BLEND BLEND Ul
COMP. DEFINITION
DEFAULTS PARAMS INTO
WITH U COMPONENT
DEF. 138 PARAMS 144

" :

APP EDITING 104

ENTER
DESIGN
MODE 124

SEMI-

| CONTINUALLY }.

\PERFORM 128/

INTERAG TIVE EDITING 108

¥
PERFORM
038 OBTAIN .
1S5 PACAL PARAMETERIZED
PARAM. H‘.‘FMC" JS COMPONENT
MAPPING : EFINITION 15
AMO 148 DEFINITION 150
INJECT INJECT ALLOGATE
GSS 142 HTML 148 JSOBJ 152

PARTICIPATE AS

LIVE COMPONENT IN
FRAMEWORK 154

i

SELECTION
128

PARAMETER
EDITING 132

POSITIONING
130

COMPONENT
INSTANTIATION
134

COMPONENT DESTRUCTION 11

REMOVE
CSS 156

REMOVE
HTML 158

DEALLOCATE J8
OBJECT 160

FIG. 1

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740
219

200

R

RECEIVE A USER INTERFACE (Ui DEFINITION FILE GENERATED BY THE OPERATOR,
WHEREIN THE Ul DEFINITION FILE INCLUBES A PLURALITY OF DEFINITIONS INDICATING
VISUAL APPEARANCE ATTRIBUTES OF PORTIONS OF AN APPLICATION, ASET GF
COMPONENTS TO APPEAR WITHIN THE APPLICATION, AND A SET OF BEHAVIORS THAT
MAY BE PERFORMED BY THE COMPONENTS 205

: RECEIVE THE Ul DEFINITION FILE FROM A SERVER END STATION ACROSS A
‘ NETWORK 210

§ RECEIVE THE Ul DEFINITION FILE AS PART OF THE APPLICATION PACKAGE 215

b e e o o o e ot o o o ot e oen o et o oot o o en oo cons e oot onn o oo oot et onn m o o ar e ok

2

RECEIVE A SET OF ONE OR MORE COMPONENT DEFINITION FILES THAT INCLUDE CODE
FOR IMPLEMENTING A PLURALITY OF COMPONENTS THAT INCLUDES THE SET OF
COMPONENTS INDICATED BY THE Ul DEFINITION FILE 220

¥

BEGIN LAUNCH OF THE APPLICATION 228

k4

PARSE THE Ul DEFINITION FILE TO IDENTIFY THE VISUAL APPEARANCE ATTRIBUTES,
THE SET OF COMPONENTS, AND THE SET OF BEHAVIORS 230

REGISTER THE IDENTIFIED SET OF COMPONENTS WITH A COMPONENT
FRAMEWORK OF THE APPLICATION A3 AREGISTRY 235

DYNAMICALLY INSTANTIATE THE SET OF COMPONENTS BASED UPON THE Ul
DEFINITION FILE AND THE SET OF COMPONENT DEFINITION FILES 240

DYNAMICALLY GENERATE HTML, C85, AND JAVASCRIPT OBJECTS
REPRESENTING THE SET OF COMPONENTS BASED UPON IDENTIFYING
PARAMETERS DEFINED IN THE Ul DEFINITION FILE 245

3/9

300 CONTENT FIG 3
\ CONTENT PROVIDER 717 PROVIDERS
310A P : : 310A-310M
* |]

IPTV SYSTEM 306

|
| |
I |
| COMPUTING DEVICE(S) 330 customizep 11!
! COMP-READABLE STORAGE MEDIA 332 STYLE !
| MODULE .
U AUGMENTED STYLE CODE 342 | INSTANCE |||
! CUSTOM. 340B |
| | STYLE GEN. CODE 344 STYLE |
1| | 7777 STYLE GEN. INVOCATIONS 246 1| MOD. CPUS)- 338 |
| e | GOPE NETWORK !
'l || GENERATED SET(S) OF VALID STYLE || 340A INTERFAGE l
! (8)

18 RULES 348 ! 336 !
| [bemmm e e e e T e e —— 336 |
|

|

NETWORK
304

| |
| |
! SET TOP BOX (STB) 322 | | ——co_ SMART PHONE 230 !
| e 1 | APP326B || DISPLAY 324B i
. appgoee | | l=oooooo-ooo |
I] e e e e

: TABLET 332 |
A N R e |
. Y P32 || DISPLAY 324 !
i DISPLAY (E.G., TV) 324A |__APP326C 1] DISPLAY 324C !
| |
I - . LAPTOP/DESKTOP COMPUTER l
| | APP326A | 334 |
S e [e U |
| i APP 326D E DISPLAY 324D !
T l
| |
| |

Date Regue/Date Received 2021-08-20

CA 02942206 2016-09-09

PCT/IB2015/051740

WO 2015/136445

419

v Ol

({3 = ss2) || sso mopuimi({
‘agmeb = ggmebeso

{

(Guuoo)piidews wnial
}{Byuoa ‘pHggmeb uopoun)
g

P

aﬂc{ﬁ_+898%%3%,%@+”.amal

,_cé,mum;mmn+Emzm%mﬁ,_8+”mmﬁmaw?o@}

..c.,,m,,mé_niguéaﬁrm.w?U%s,,%,_agei

,m%,.%,i,,,?cﬁ;com@s%ﬁv+_a.am@p;.

S 4 LenBIeRICT + |, [BAIS-Ieping, +

JUXA, + (UIPIAALUSY + OC) + , UIpIM U Lens, wimad (Byuoaiupm

w@ J } (Byuon) uonoun 8dwes
3

NOISSHIdX3 } meuwmcﬁmhwm)
QILVISNYHL :

ﬂ%u

Yive
3a00
NOLLYHINTD
FTALS

Ve
3A0T FTIALS A
QaININDNY

- \\\\/

{

- {

{ (iofooynejepiusiubl 1¢ iojoo
‘pousep { weneepioq 1§ (eifis-18piog
Lxd, + BPIAAWSY , 7L 1S uIpim
}zank
0z

xﬁz% @mm‘isziﬁﬂf },.A
F1ALS YWINAS TTALS ”Toumwﬁmm‘p@n 18 L4002
{ wenedsepiog 14 eilisuepiog
X UIBIAALUBYH + 0T 15 (UIpim

: \/Mv Loy

SLy I1avidvA” 0Ly :\\mg w3 hmgzm q

NOISS3HdXd NOISSTHdXT

CA 02942206 2016-09-09

PCT/IB2015/051740

WO 2015/136445

5/9

YOy ‘00SIoURLY UBG

Ch-C PO

YOrG
e INJWATH
I ONOO3S

L

J

YeES
- LNIWETE
N 1syid

0es
SINIWITE
N NOULO3T3S
i

A

AL JINOA

{
0538Y94 H0j00
PBUSER PIOS 214154800
XAGA pM

Yzainy

{
OEYL08H 000
PH0S 2A1S-IepI0Y
xd0g WP
Yieing

!

7\

Vere
SIMNE FTALS AINVA
40 138 031 vHINGD

gis
A18VIHVYA
INdN

018G G0S
ANWAILNGIHLLY
3

) \

| iEs|g pue i I Y
//m m/w
(o4
// YGes w_ ,q%m
{(SIHISLNI
IS LSHI4 QIZINOLSND

VS 9Old

A
\
i
>
DY £ 0GH, 0I0TINeBp
‘pHOS 191AS-480I0Q
08 UIPIAR LS
b oeiduwes, Jegnieh eso

}
Yove \/_

3000 NOILYDOANI
NAD FTALS

CA 02942206 2016-09-09

PCT/IB2015/051740

WO 2015/136445

6/9

-y '09SI0URLY UBS

- Z¥-C PR

...................................

q40vs
LNENETE
N ANOCOHES

g5¢%
ANFWITS
I} 15y

Al INOA

{
‘5666664 000
‘PAYSED PenoD 8i1s-Jepiog
XdGoL (pim

Yezeny

{
£ECEETH WOJ0O
‘PONOD (BIAIS-IBRIO]

Xd001 (yIpim
} ey
q8ve
ST FATALS diTVA
40 138 31¥HENID
{

LECLECH, LojoTINERD
penop (9lA18-18pIog
‘0 P LISY
}fedwes,)8g01eb ss0

BHED IH_ o)

/7/@%% «/ j2loras
(ShFi41Naa In
SIS ANODES GAZINOLSND

g9 old

~

g9v€ 3Q00
NOLLVOOANT 'N3ID 37A1S

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740
719

600

R

TRANSFORMING A SET OF ONE OR MORE AUGMENTED STYLE RULES INTO STYLE
GENERATION CODE, WHEREIN THE SET OF AUGMENTED STYLE CODE RULES INCLUDES
BOTH STYLE SYNTAX AND A S8ET OF ONE OR MORE EXPRESSIONS INCLUDING A SET OF

ONE OR MORE VARIABLES, WHEREIN THE SET OF AUGMENTED STYLE CODE RULES
ARE NOT VALID ACCORDING TO A STYLE STANDARD OF THE STYLE SYNTAX, AND
WHEREIN THE STYLE GENERATION CODE, WHEN EXECUTED BY ASET OF GNE OR

MORE INVOCATIONS USING A SET OF ONE OR MORE INPUT VARIABLES
CORRESPONDING TO THE SET OF VARIABLES, GENERATES A SET OF ONE OR MORE
YALID STYLE RULES ACCORDING TO THE STYLE STANDARD 605

v

EXECUTING THE STYLE GENERATION CODE USING THE SET OF INPUT VARIABLES TO

¥

TRANSMITTING THE SET OF VALID STYLE RULES TO A UE DEVICE OF AUSER, CAUSING
ACUSTOMIZED USER INTERFACE TO BE PRESENTED TO THE USER 815

TO GENERATE ANOTHER SET OF VALID STYLE RULES 620

i
i
o e o et e o e e e e e e e o S e S e S e e e o o e e e e e o e e e e

: TRANSMITTING THE ANOTHER SET OF VALID STYLE RULES TO ANOTHER UE DEVICE OF|
§ ANOTHER USER, CAUSING ANCOTHER CUSTOMIZED USER INTERFACE TOBE !
: PRESENTED TO THE ANOTHER USER 845 i

i
EXECUTING THE STYLE GENERATION CODE USING ANOTHER SET OF INPUT VARIABLES e

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740
8/9

700

R

TRANSFORMING A SET OF ONE OR MORE AUGMENTED STYLE RULES INTO STYLE
GENERATION CODE, WHEREIN THE SET OF AUGMENTED STYLE CODE RULES INCLUDES
BOTH STYLE SYNTAX AND A S8ET OF ONE OR MORE EXPRESSIONS INCLUDING A SET OF

ONE OR MORE VARIABLES, WHEREIN THE SET OF AUGMENTED STYLE CODE RULES
ARE NOT VALID ACCORDING TO A STYLE STANDARD OF THE STYLE SYNTAX, AND
WHEREIN THE STYLE GENERATION CODE, WHEN EXECUTED BY ASET OF GNE OR

MORE INVOCATIONS USING A SET OF ONE OR MORE INPUT VARIABLES
CORRESPONDING TO THE SET OF VARIABLES, GENERATES A SET OF ONE OR MORE
YALID STYLE RULES ACCORDING TO THE STYLE STANDARD 705

TRANSMITTING THE STYLE GENERATION CODE TO A UE DEVICE OF AUSER 710

FIG. 7

CA 02942206 2016-09-09

WO 2015/136445 PCT/IB2015/051740

919

800

RECEIVING, AT A SET OF NETWORK INTERFACES OF THE UE DEVICE FROM A SERVER
END STATION, 8TYLE GENERATION CODE, WHEREIN THE STYLE GENERATION CODE,
WHEN EXECUTED BY A SET OF ONE OR MORE INVOCATIONS USING A SET OF ONE OR
MORE INPUT VARIABLES CORRESPONDING TO THE SET OF VARIABLES, GENERATES A
SET OF ONE OR MORE VALID STYLE RULES OF A STYLE STANDARD AND DYNAMICALLY
INJECTS THE VALID STYLE RULES INTO AN APPLICATION 803

mmmmmmmmmmmmmmmmmmmmmmmmm I

! !
! RECEIVING, FROM THE SERVER END STATION, THE SET OF INVOCATIONS USING THE |
! _
|

SET OF INPUT VARIABLES 810

e l et S

CAUSING THE CUSTOMIZED USER INTERFACE TO BE PRESENTED TOTHE USER AS A
RESULT OF EXECUTING THE STYLE GENERATION CODE ACCORDING TO THE SET OF
INVOCATIONS, WHEREIN THE USER INTERFACE INCLUDES A SET OF ONE OR MORE
USER INTERFACE ELEMENTS THAT ARE STYLED ACCORDING TO THE SET OF VALID
STYLE RULES 815

FIG. 8

100

M

APP CREATION AND
EXECUTION 102

ACOUIRE UE
DEFINITION FILE
(LOCAL READ OR

H

REQUEST) 114

REGISTER
COMPONENTS

WITH
FRAMEWORK 116

T

UL DEFINITION
FILE 122

BERVER QR CLIENT
1

COMPONENT LIFE-CYCLE
MANAGEMENT 108

FOR EACH COMPONENT AND ANY
SUB-COMPOMENT 138

COMPONENT

LIFE- CVCLE/

DESIGN
MODE 124

CONTINUALLY
PERFURM 128

COMPONENT INSTANTIATION 112

BLENG BLEND LI
COMP. DEFINITION
DEFAULTS PARAMS INTO
WITHYI COMPONENT
DEF. 138
PERFGHRIT OBTAN
€8s RN PARAMETERIZED
PARAM, g J5 CONPONENT
MAPPING Py DEFINITION 150
m

INJE[‘T WJF(‘ AL LOCATF
CH0 142 HTML | J8 OB 458

AR
LIVE COMPONENT IN
FRAMEWORK

INTERACTIVE EDITING 106

‘ 'SELECT>ON| | ‘ , PARKVETER
128

EDITING 182

POSITIONING]
130

COMPONENT
INSTANTIATION
14

COMFONENT DESTRUCTION 110

REMOVE REMOVE DEALLQCATE 8|
€88 150 HTML 138 OBJECT 180

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - REPRESENTATIVE_DRAWING

