(51) Internationale Patentklassifikation: A61K 31/00

(21) Internationales Aktenzeichen: PCT/EP02/01988

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 101 10772.2 7. März 2001 (07.03.2001) DE

(72) Erfinder; und

Veröffentlicht: — ohne internationalen Recheneredicht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweitbuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Titel: NOVEL MEDICAMENT COMPOSITIONS ON THE BASIS OF ANTICholinergicS AND PDE IV INHIBITORS

(54) Bezeichnung: NEUE ARZNEIMITTELKOMPOSITIONEN AUF DER BASIS VON ANTICholinERGIKA UND PDE-IV-INHIBITOREN

(57) Abstract: The invention relates to novel medicament compositions on the basis of anticholinergics and PDE IV inhibitors, to methods for producing them and to the use thereof in the therapy of respiratory tract diseases.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft neuartige Arzneimittelkompositionen auf der Basis von Anticholinergika und PDE-IV-Inhibitoren, Verfahren zu deren Herstellung sowie deren Verwendung bei der Therapie von Atemwegserkrankungen.
Neue Arzneimittelkombinationen auf der Basis von Anticholinergika und PDE-IV-Inhibitoren

Die vorliegende Erfindung betrifft neuartige Arzneimittelkombinationen auf der Basis von Anticholinergika und PDE-IV-Inhibitoren, Verfahren zu deren Herstellung sowie deren Verwendung bei der Therapie von Atemwegserkrankungen.

Beschreibung der Erfindung

Die vorliegende Erfindung betrifft neuartige Arzneimittelkombinationen auf der Basis von Anticholinergika und PDE-IV-Inhibitoren, Verfahren zu deren Herstellung sowie deren Verwendung bei der Therapie von Atemwegserkrankungen.

Die vorstehend genannten Effekte werden sowohl bei gleichzeitiger Applikation innerhalb einer einzigen Wirkstoffformulierung als auch bei sukzessiver Applikation der beiden Wirkstoffe in getrennten Formulierungen beobachtet. Erfindungsgemäß bevorzugt ist die gleichzeitige Applikation der beiden Wirkstoffbestandteile in einer einzigen Formulierung.

Im Rahmen der vorliegenden Erfindung werden unter Anticholinergika Salze verstanden, die bevorzugt ausgewählt sind aus der Gruppe bestehend aus Tiotropiumsalzen, Oxitropiumsalzen und Ipratropiumsalzen, besonders bevorzugt sind dabei Tiotropiumsalze. In den vorstehend genannten Salzen stellen die Kationen Tiotropium, Oxitropium und Ipratropium die pharmacologisch wirksamen Bestandteile dar. Im Rahmen der vorliegenden Patentanmeldung ist eine Bezugsnahme auf vorstehende Kationen durch Verwendung der Bezeichnung anzusehen. Eine Bezugsnahme auf Verbindungen schließt natürgemäß eine Bezugsnahme auf die Bestandteile (Tiotropium, Oxitropium oder Ipratropium) mit ein.
Unter den im Rahmen der vorliegenden Erfindung einsetzbaren Salzen 1 sind die Verbindungen zu verstehen, die neben Tiotropium, Oxitropium oder Ipratropium als Gegenion (Anion) Chlorid, Bromid, Iodid, Methansulfonat, para-Toluolsulfonat oder Methylsulfat enthalten. Im Rahmen der vorliegenden Erfindung sind von allen Salzen 1 das Methansulfonat, Chlorid, Bromid oder Iodid bevorzugt, wobei dem Methansulfonat oder dem Bromid besondere Bedeutung zukommt. Von erfindungsgemäß herausragender Bedeutung sind Salze 1, die ausgewählt sind aus der Gruppe bestehend aus Tiotropiumbromid, Oxitropiumbromid und Ipratropiumbromid. Besonders bevorzugt ist das Tiotropiumbromid.

Im Rahmen der vorliegenden Erfindung werden unter PDE-IV-Inhibitoren (im Folgenden 2) Verbindungen verstanden, die ausgewählt sind aus der Gruppe bestehend aus Enprofylline, Rofumilast, Ariflo, Bay-198004, CP-325,366, BY343, D-4396 (Sch-351591), V-11294A, AWD-12-281 sowie den tricyclischen Stickstoffheterocyclen der allgemeinen Formel 2a

![Chemical Structure](image)

wobei

- \(R^1 \) C₁-C₅-Alkyl, C₅-C₆-Cycloalkyl, Phenyl, Benzyl oder ein 5- oder 6-gliedriger, gesättigter oder ungesättigter heterocyclischer Ring, der ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff und Stickstoff enthalten kann;
- \(R^2 \) C₁-C₅-Alkyl oder C₂-C₄-Alkenyl;
- \(R^3 \) C₁-C₅-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, C₅-C₆-Cycloalkyl, Phenoxy oder durch einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten heterocyclischen Ring, der ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff und Stickstoff enthalten kann, substituiert sein kann;
- \(R^3 \) C₅-C₆-Cycloalkyl oder gegebenenfalls durch C₁-C₄-Alkoxy substituiertes Phenyl oder Benzyl, bedeuten können, gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, in Form ihrer Diastereomere und ihrer Gemische, gegebenenfalls in Form ihrer Tautomere sowie...
gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Von den vorstehend genannten Verbindungen der Formel 2a gelangen im Rahmen der vorliegenden Erfindung bevorzugt diejenigen Verbindungen der Formel 2a zur Anwendung in denen

R¹ C₁-C₄-Alkyl, C₅-C₆-Cycloalkyl, Tetrahydrofuranyl, Tetrahydropyranyl, Piperazinyl, Morpholinyl oder Phenyl;
R² C₁-C₄-Alkyl oder C₂-C₄-Alkenyl;
R³ C₁-C₄-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy, C₅-C₆-Cycloalkyl, Phenoxy, (C₁-C₄-Alkoxy)phenoxy, Piperazin oder Pyrrol substituiert sein kann, C₅-C₆-Cycloalkyl oder gegebenenfalls durch C₁-C₄-Alkoxy substituiertes Phenyl oder Benzyl, bedeuten können gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, in Form ihrer Diastereomere und ihrer Gemische, gegebenenfalls in Form ihrer Tautomere sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Von den Verbindungen der Formel 2a gelangen im Rahmen der vorliegenden Erfindung bedenkenswerten bevorzugt diejenigen Verbindungen der Formel 2a zur Anwendung in denen

R¹ Ethyl, Propyl, Butyl, Cyclopentyl, Tetrahydrofuranyl, Tetrahydropyranyl, N-Morpholinyl oder Phenyl;
R² Ethyl, Propyl, Allyl oder Butenyl;
R³ Ethyl, Propyl, Butyl, Cyclopentyl, Cyclohexylmethyl, Benzyl, Phenylethyl, Phenoxyethyl, Methoxybenzyl oder N-Pyrolymethyl, bedeuten können gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, in Form ihrer Diastereomere und ihrer Gemische, gegebenenfalls in Form ihrer Tautomere sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Besonders bevorzugt gelangen als Komponente 2 diejenigen Verbindungen der Formel 2a zur Anwendung, in denen

R¹ Ethyl, n-Propyl, tert-Butyl, Cyclopentyl, 3-Tetrahydrofuranyl, N-Morpholinyl oder Phenyl;
R² Ethyl oder n-Propyl;
R³ Ethyl, i-Propyl, n-Propyl, n-Butyl, t-Butyl, Cyclopentyl, Cyclohexylmethyl, Benzyl, Phenylethyl, Phenoxyethyl, Methoxybenzyl oder
N-Pyrolloxy-methyl, bedeuten können gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, in Form ihrer Diastereomere und ihrer Gemische, gegebenenfalls in Form ihrer Tautomere sowie gegebenenfalls ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Als Alkylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden verzweigte und unverzweigte Alkylgruppen mit 1 bis 5 Kohlenstoffatomen betrachtet, beispielsweise werden genannt: Methyl, Ethyl, n-Propyl, Iso-Propyl, n-Butyl, iso-Butyl, sec. Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl oder neo-Pentyl. Gegebenenfalls werden für vorstehend genannten Gruppen auch die Abkürzungen Me, Et, n-Pr, i-Pr, n-Bu, i-Bu, t-Bu, etc. verwendet.

Tabelle 1 faßt diejenigen Verbindungen der allgemeinen Formel 2a zusammen, die im Rahmen der vorliegenden Erfindung besonders bevorzugt in Kombination mit den Verbindungen 1 zum Einsatz gelangen.

Tabelle 1:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclopentyl</td>
<td>n-Propyl</td>
<td>i-Propyl</td>
</tr>
<tr>
<td>2</td>
<td>Cyclopentyl</td>
<td>n-Propyl</td>
<td>Ethyl</td>
</tr>
<tr>
<td>3</td>
<td>t-Butyl</td>
<td>Ethyl</td>
<td>4-Methoxybenzyl</td>
</tr>
</tbody>
</table>

Weiterhin bevorzugt ist die Verbindung 2 ausgewählt aus der Gruppe bestehend aus Enprofylline, Roflumilast, Ariflo und AWD-12-281, wobei AWD-12-281 sowie die vorstehend genannten Verbindungen der Formel 2a als Verbindung 2 erfindungsgemäß besonders bevorzugt sind.

Eine Bezugnahme auf die vorstehend genannten PDE-IV-Inhibitoren 2 schließt im Rahmen der vorliegenden Erfindung eine Bezugnahme auf deren gegebenenfalls existierende pharmakologisch verträgliche Säureadditionssalze ein.

Unter den physiologisch verträglichen Säureadditionssalzen, die von 2 gebildet werden können, werden erfindungsgemäß pharmazeutisch verträgliche Salze

Die Applikation der erfindungsgemäßen Arzneimittelkombinationen aus 1 und 2 erfolgt vorzugsweise auf inhalativem Wege. Hierbei können geeignete Inhalationspulver, die in geeignete Kapseln (Inhaletten) abgefüllt mittels entsprechender Pulverinhalatoren appliziert werden, zum Einsatz kommen. Alternativ dazu kann eine inhalative Anwendung auch durch Applikation geeigneter Inhalationsaerosole erfolgen. Hierzu zählen auch Inhalationsaerosole, die beispielsweise HFA134a (auch TG134a genannt), HFA227 (auch TG227 genannt) oder deren Gemisch als Treibgas enthalten. Die inhalative Applikation kann ferner mittels geeigneter Lösungen der Arzneimittelkombination bestehend aus 1 und 2 erfolgen.

Ein Aspekt der vorliegenden Erfindung betrifft dementsprechend ein Arzneimittel, welches eine Kombination aus 1 und 2 enthält.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Arzneimittel, welches ein oder mehrere Salze 1 und ein oder mehrere Verbindungen 2, gegebenfalls in Form ihrer Solvate oder Hydrate enthält. Auch hierbei können die Wirkstoffe entweder gemeinsam in einer einzigen Darreichungsform oder in zwei getrennten Darreichungsformen enthalten sein. Erfindungsgemäß bevorzugt sind Arzneimittel, die die Wirkstoffe 1 und 2 in einer einzigen Darreichungsform enthalten.

Die vorliegende Erfindung betrifft ferner die Verwendung von 1 und 2 zur Herstellung eines therapeutisch wirksame Mengen von 1 und 2 enthaltenden Arzneimittels zur Behandlung von entzündlichen und/oder obstruktiven Atemwegserkrankungen, insbesondere von Asthma oder chronisch obstruktiver Lungenkrankung (COPD),
sowie deren Komplikationen wie beispielsweise pulmonale Hypertension, daneben auch allergische und nicht allergische Rhinitis.

Die vorliegende Erfindung zielt ferner auf die simultane oder sukzessive Verwendung therapeutisch wirksamer Dosen der Kombination vorstehender Arzneimittel 1 und 2 zur Behandlung von entzündlichen und/oder obstruktiven Atemwegserkrankungen, insbesondere von Asthma oder chronisch obstruktiver Lungenentzündung (COPD), sowie deren Komplikationen wie beispielsweise pulmonale Hypertension, daneben auch allergische und nicht allergische Rhinitis, durch simultane oder sukzessive Applikation.

In den erfindungsgemäßen Wirkstoffkombinationen aus 1 und 2 können die Bestandteile 1 und 2 in Form ihrer Enantiomere, Gemische der Enantiomere oder in Form der Racemate enthalten sein.

Die Verhältnisse, in denen die beiden Wirkstoffe 1 und 2 in die erfindungsgemäßen Wirkstoffkombinationen eingesetzt werden können, sind variabel. Die Wirkstoffe 1 und 2 können gegebenfalls in Form ihrer Salze oder Hydroxyde vorliegen. Je nach Wahl der Verbindungen 1 bzw. 2 variieren die im Rahmen der vorliegenden Erfindung einsetzbaren Gewichtsverhältnisse aufgrund des unterschiedlichen Molekulargewichts der verschiedenen Verbindungen sowie aufgrund ihrer unterschiedlichen Wirkstärke. In der Regel können die erfindungsgemäßen Arzneimittelkombinationen die Verbindungen 1 und 2 in Gewichtsverhältnissen enthalten, die in einem Bereich von 1:300 bis 50:1, bevorzugt von 1:250 bis 40:1, liegen. Bei den besonders bevorzugten Arzneimittelkombinationen, die Tiotropiumsalz als Verbindung 1 enthalten, liegen die Gewichtsverhältnisse von 1 zu 2 besonders bevorzugt in einem Bereich, in dem Tiotropium 1' und 2 in Verhältnissen von 1:150 bis 30:1, ferner bevorzugt von 1:50 bis 20:1 enthalten sind.

Beispielsweise und ohne den Umfang der Erfindung darauf zu beschränken, können bevorzugte erfindungsgemäße Kombinationen aus 1 und 2 Tiotropium 1' und PDE-IV-Inhibitor 2 in den folgenden Gewichtsverhältnissen enthalten:

Die Anwendung der erfindungsgemäßen Arzneimittel enthaltend die Kombinationen aus 1 und 2 erfolgt üblicherweise so, daß 1 und 2 gemeinsam in Dosierungen von 0,01 bis 10000 μg, bevorzugt von 0,1 bis 2000 μg, besonders bevorzugt von 1 bis 1500 μg, ferner bevorzugt von 50 bis 1200 μg pro Einmalgabe enthalten sind.

Beispielsweise enthalten erfindungsgemäße Kombinationen aus 1 und 2 eine solche Menge an Tiotropium 1 und PDE-IV-Inhibitor 2, daß die Gesamtdosierung pro Einmalgabe 100 μg, 105 μg, 110 μg, 115 μg, 120 μg, 125 μg, 130 μg, 135 μg, 140 μg, 145 μg, 150 μg, 155 μg, 160 μg, 165 μg, 170 μg, 175 μg, 180 μg, 185 μg, 190 μg, 195 μg, 200 μg, 205 μg, 210 μg, 215 μg, 220 μg, 225 μg, 230 μg, 235 μg, 240 μg, 245 μg, 250 μg, 255 μg, 260 μg, 265 μg, 270 μg, 275 μg, 280 μg, 285 μg, 290 μg, 295 μg, 300 μg, 305 μg, 310 μg, 315 μg, 320 μg, 325 μg, 330 μg, 335 μg, 340 μg, 345 μg, 350 μg, 355 μg, 360 μg, 365 μg, 370 μg, 375 μg, 380 μg, 385 μg, 390 μg, 395 μg, 400 μg, 405 μg, 410 μg, 415 μg, 420 μg, 425 μg, 430 μg, 435 μg, 440 μg, 445 μg, 450 μg, 455 μg, 460 μg, 465 μg, 470 μg, 475 μg, 480 μg, 485 μg, 490 μg, 495 μg, 500 μg, 505 μg, 510 μg, 515 μg, 520 μg, 525 μg, 530 μg, 535 μg, 540 μg, 545 μg, 550 μg, 555 μg, 560 μg, 565 μg, 570 μg, 575 μg, 580 μg, 585 μg, 590 μg, 595 μg, 600 μg, 605 μg, 610 μg, 615 μg, 620 μg, 625 μg, 630 μg, 635 μg, 640 μg, 645 μg, 650 μg, 655 μg, 660 μg, 665 μg, 670 μg, 675 μg, 680 μg, 685 μg, 690 μg, 695 μg, 700 μg, 705 μg, 710 μg, 715 μg, 720 μg, 725 μg, 730 μg, 735 μg, 740 μg, 745 μg, 750 μg, 755 μg, 760 μg, 765 μg, 770 μg, 775 μg, 780 μg, 785 μg, 790 μg, 795 μg, 800 μg, 805 μg, 810 μg, 815 μg, 820 μg, 825 μg, 830 μg, 835 μg, 840 μg, 845 μg, 850 μg, 855 μg, 860 μg, 865 μg, 870 μg, 875 μg, 880 μg, 885 μg, 890 μg, 895 μg, 900 μg, 905 μg, 910 μg, 915 μg, 920 μg, 925 μg, 930 μg, 935 μg, 940 μg, 945 μg, 950 μg, 955 μg, 960 μg, 965 μg, 970 μg, 975 μg, 980 μg, 985 μg, 990 μg, 995 μg, 1000 μg, 1005 μg, 1010 μg, 1015 μg, 1020 μg, 1025 μg, 1030 μg, 1035 μg, 1040 μg, 1045 μg, 1050 μg, 1055 μg, 1060 μg, 1065 μg, 1070 μg, 1075 μg, 1080 μg, 1085 μg, 1090 μg, 1095 μg, 1100 μg oder ähnliches beträgt. Vorstehend genannte Dosierungsvorschläge pro Einmalgabe sind nicht als auf die explizit angegebenen Zahlenwerte beschränkt anzusehen, sondern dienen nur als beispielhaft offenbare Dosierungen. Selbstverständlich sind beispielsweise auch Dosierungen, die um o.g. Zahlenwerte in einem Bereich von ca. +/- 2,5 μg schwanken, von den vorliegenden exemplarisch erläuterten Werten umfaßt. Bei diesen Dosierungsbereichen können die Wirkstoffe 1 und 2 in den vorhergehend beschriebenen Gewichtsverhältnissen enthalten sein.

Beispielsweise und ohne den Umfang der Erfindung darauf zu beschränken, können die erfindungsgemäßen Kombinationen aus 1 und 2 eine solche Menge an Tiotropium 1 und PDE-IV-Inhibitor 2 enthalten, daß pro Einmalgabe 5 μg 1 und 25 μg 2, 5 μg 1 und 50 μg 2, 5 μg 1 und 100 μg 2, 5 μg 1 und 200 μg 2, 5 μg 1 und 300 μg 2, 5 μg 1 und 400 μg 2, 5 μg 1 und 500 μg 2, 5 μg 1 und 600 μg 2, 5 μg 1 und 700 μg 2, 5 μg 1 und 800 μg 2, 5 μg 1 und 900 μg 2, 5 μg 1 und 1000 μg 2, 10 μg 1 und 25 μg 2,
9
10 µg 1 und 50 µg 2, 10 µg 1 und 100 µg 2, 10 µg 1 und 200 µg 2, 10 µg 1 und 300 µg 2, 10 µg 1 und 400 µg 2, 10 µg 1 und 500 µg 2, 10 µg 1 und 600 µg 2, 10 µg 1 und 700 µg 2, 10 µg 1 und 800 µg 2, 10 µg 1 und 900 µg 2, 10 µg 1 und 1000 µg 2, 18 µg 1 und 25 µg 2, 18 µg 1 und 50 µg 2, 18 µg 1 und 100 µg 2, 18 µg 1 und 200 µg 2, 18 µg 1 und 300 µg 2, 18 µg 1 und 400 µg 2, 18 µg 1 und 500 µg 2, 18 µg 1 und 600 µg 2, 18 µg 1 und 700 µg 2, 18 µg 1 und 800 µg 2, 18 µg 1 und 900 µg 2, 18 µg 1 und 1000 µg 2, 20 µg 1 und 25 µg 2, 20 µg 1 und 50 µg 2, 20 µg 1 und 100 µg 2, 20 µg 1 und 200 µg 2, 20 µg 1 und 300 µg 2, 20 µg 1 und 400 µg 2, 20 µg 1 und 500 µg 2, 20 µg 1 und 600 µg 2, 20 µg 1 und 700 µg 2, 20 µg 1 und 800 µg 2, 20 µg 1 und 900 µg 2, 20 µg 1 und 1000 µg 2, 36 µg 1 und 25 µg 2, 36 µg 1 und 50 µg 2, 36 µg 1 und 100 µg 2, 36 µg 1 und 200 µg 2, 36 µg 1 und 300 µg 2, 36 µg 1 und 400 µg 2, 36 µg 1 und 500 µg 2, 36 µg 1 und 600 µg 2, 36 µg 1 und 700 µg 2, 36 µg 1 und 800 µg 2, 36 µg 1 und 900 µg 2, 36 µg 1 und 1000 µg 2, 40 µg 1 und 25 µg 2, 40 µg 1 und 50 µg 2, 40 µg 1 und 100 µg 2, 40 µg 1 und 200 µg 2, 40 µg 1 und 300 µg 2, 40 µg 1 und 400 µg 2, 40 µg 1 und 500 µg 2, 40 µg 1 und 600 µg 2, 40 µg 1 und 700 µg 2, 40 µg 1 und 800 µg 2, 40 µg 1 und 900 µg 2, 40 µg 1 und 1000 µg 2, 40 µg 1 und 900 µg 2, 40 µg 1 und 1000 µg 2, appliziert werden.

Wird als erfindungsgemäß bevorzugte Kombination aus 1 und 2 die Wirkstoffkombination verwendet, in der 1 Tiotropiumbromid bedeutet, entsprechen die vorstehend beispielhaft genannten pro Einmalgabe applizierten Wirkstoffmengen von 1 und 2 den nachfolgenden pro Einmalgabe applizierten Mengen an 1 und 2: 6 µg 1 und 25 µg 2, 6 µg 1 und 50 µg 2, 6 µg 1 und 100 µg 2, 6 µg 1 und 200 µg 2, 6 µg 1 und 300 µg 2, 6 µg 1 und 400 µg 2, 6 µg 1 und 500 µg 2, 6 µg 1 und 600 µg 2, 6 µg 1 und 700 µg 2, 6 µg 1 und 800 µg 2, 6 µg 1 und 900 µg 2, 6 µg 1 und 1000 µg 2, 12 µg 1 und 25 µg 2, 12 µg 1 und 50 µg 2, 12 µg 1 und 100 µg 2, 12 µg 1 und 200 µg 2, 12 µg 1 und 300 µg 2, 12 µg 1 und 400 µg 2, 12 µg 1 und 500 µg 2, 12 µg 1 und 600 µg 2, 12 µg 1 und 700 µg 2, 12 µg 1 und 800 µg 2, 12 µg 1 und 900 µg 2, 12 µg 1 und 1000 µg 2, 21,7 µg 1 und 25 µg 2, 21,7 µg 1 und 50 µg 2, 21,7 µg 1 und 100 µg 2, 21,7 µg 1 und 200 µg 2, 21,7 µg 1 und 300 µg 2, 21,7 µg 1 und 400 µg 2, 21,7 µg 1 und 500 µg 2, 21,7 µg 1 und 600 µg 2, 21,7 µg 1 und 700 µg 2, 21,7 µg 1 und 800 µg 2, 21,7 µg 1 und 900 µg 2, 21,7 µg 1 und 1000 µg 2, 24,1 µg 1 und 25 µg 2, 24,1 µg 1 und 50 µg 2, 24,1 µg 1 und 100 µg 2, 24,1 µg 1 und 200 µg 2, 24,1 µg 1 und 300 µg 2, 24,1 µg 1 und 400 µg 2, 24,1 µg 1 und 500 µg 2, 24,1 µg 1 und 600 µg 2, 24,1 µg 1 und 700 µg 2, 24,1 µg 1 und 800 µg 2, 24,1 µg 1 und 900 µg 2, 24,1 µg 1 und 1000 µg 2, 43,3 µg 1 und 25 µg 2, 43,3 µg 1 und 50 µg 2, 43,3 µg 1 und 100 µg 2, 43,3 µg 1 und 200 µg 2, 43,3 µg 1 und 300 µg 2, 43,3 µg 1 und 400 µg 2, 43,3 µg 1 und 500 µg 2, 43,3 µg 1 und 600 µg 2, 43,3 µg 1 und 700 µg 2, 43,3 µg 1 und 800 µg 2, 43,3 µg 1 und 900 µg 2, 43,3 µg 1 und 1000 µg 2, 48,1 µg 1 und 25 µg 2, 48,1 µg 1 und 50 µg 2, 48,1 µg 1 und 100 µg 2, 48,1 µg 1 und 200 µg 2, 48,1 µg 1 und 300 µg 2, 48,1 µg 1 und 400 µg 2, 48,1 µg 1 und
500µg 2, 48,1µg 1 und 600µg 2, 48,1µg 1 und 700µg 2, 48,1µg 1 und 800µg 2, 48,1µg 1 und 900µg 2 oder 48,1µg 1 und 1000µg 2.

Wird als erfindungsgemäß bevorzugte Kombination aus 1 und 2 die Wirkstoffkombination verwendet, in der 1 Tiotropiumbromidmonohydrat bedeutet, entsprechen die vorstehend beispielhaft genannten pro Einmalgabe applizierten Wirkstoffmengen von 1 und 2 den nachfolgenden pro Einmalgabe applizierten Mengen an 1 und 2: 6,2µg 1 und 25µg 2, 6,2µg 1 und 50µg 2, 6,2µg 1 und 100µg 2, 6,2µg 1 und 200µg 2, 6,2µg 1 und 300µg 2, 6,2µg 1 und 400µg 2, 6,2µg 1 und 500µg 2, 6,2µg 1 und 1000µg 2, 12,5µg 1 und 125µg 2, 12,5µg 1 und 250µg 2, 12,5µg 1 und 500µg 2, 12,5µg 1 und 1000µg 2, 12,5µg 1 und 2000µg 2, 12,5µg 1 und 4000µg 2, 12,5µg 1 und 8000µg 2, 12,5µg 1 und 9000µg 2, 12,5µg 1 und 10000µg 2, 12,5µg 1 und 20000µg 2, 12,5µg 1 und 40000µg 2, 12,5µg 1 und 80000µg 2, 12,5µg 1 und 90000µg 2, 12,5µg 1 und 100000µg 2, 12,5µg 1 und 200000µg 2, 12,5µg 1 und 400000µg 2, 12,5µg 1 und 800000µg 2, 12,5µg 1 und 900000µg 2, 12,5µg 1 und 1000000µg 2, 12,5µg 1 und 2000000µg 2, 12,5µg 1 und 4000000µg 2, 12,5µg 1 und 8000000µg 2, 12,5µg 1 und 9000000µg 2, 12,5µg 1 und 10000000µg 2.

Die Applikation der erfindungsgemäßen Wirkstoffkombinationen aus 1 und 2 erfolgt bevorzugt auf inhalativem Wege. Hierzu müssen die Bestandteile 1 und 2 in inhalierbaren Darreichungsformen bereitgestellt werden. Als inhalierbare Darreichungsformen kommen Inhalationspulver, treibgashaltige Dosieraerosole oder treibgasfreie Inhalationslösungen in Betracht. Erfindungsgemäße Inhalationspulver enthaltend die Wirkstoffkombination aus 1 und 2 können allein aus den genannten Wirkstoffen oder aus einem Gemisch der genannten Wirkstoffe mit physiologisch verträglichen Hilfsstoffen bestehen. Im Rahmen der vorliegenden Erfindung sind von dem Begriff treibgasfreie Inhalationslösungen auch Konzentrate oder sterile, gebrauchsfertige Inhalationslösungen umfasst. Die erfindungsgemäßen Darreichungsformen können
die Wirkstoffkombination aus 1 und 2 entweder gemeinsam in einer oder in zwei getrennten Darreichungsformen enthalten. Diese im Rahmen der vorliegenden Erfindung einsetzbaren Darreichungsformen werden im nachfolgenden Teil der Beschreibung detailliert beschrieben.

5

A) Inhalationspulver enthaltend die erfindungsgemäßen Wirkstoffkombinationen aus 1 und 2:
Die erfindungsgemäßen Inhalationspulver können 1 und 2 entweder allein oder im Gemisch mit geeigneten physiologisch unbedenklichen Hilfsstoffen enthalten.

10
Sind die Wirkstoffe 1 und 2 im Gemisch mit physiologisch unbedenklichen Hilfsstoffen enthalten, können zur Darstellung dieser erfindungsgemäßen Inhalationspulver die folgenden physiologisch unbedenklichen Hilfsstoffe zur Anwendung gelangen: Monosaccharide (z.B. Glucose oder Arabinose), Disaccharide (z.B. Lactose, Saccharose, Maltose), Oligo- und Polysaccharide (z.B. Dextrane), Polyalkohole (z.B. Sorbit, Mannit, Xilit), Salze (z.B. Natriumchlorid, Calciumcarbonat) oder Mischungen dieser Hilfsstoffe miteinander. Bevorzugt gelangen Mono- oder Disaccharide zur Anwendung, wobei die Verwendung von Lactose oder Glucose, insbesondere, aber nicht ausschließlich in Form ihrer Hydrate, bevorzugt ist. Als besonders bevorzugt im Sinne der Erfindung gelangt Lactose, höchst bevorzugt Lactosemonohydrat als Hilfsstoff zur Anwendung.

Die Hilfsstoffe weisen im Rahmen der erfindungsgemäßen Inhalationspulver eine maximale mittlere Teilchengröße von bis zu 250μm, bevorzugt zwischen 10 und 150μm, besonders bevorzugt zwischen 15 und 80μm auf. Gegebenenfalls kann es sinnvoll erscheinen, den vorstehend genannten Hilfsstoffen feinere Hilfsstofffraktionen mit einer mittleren Teilchengröße von 1 bis 9μm beizumischen. Letztgenannte feinere Hilfsstoffe sind ebenfalls ausgewählt aus der vorstehend genannten Gruppe an einsetzbaren Hilfsstoffen. Schließlich wird zur Herstellung der erfindungsgemäßen Inhalationspulver mikronisierter Wirkstoff 1 und 2, vorzugsweise mit einer mittleren Teilchengröße von 0,5 bis 10μm, besonders bevorzugt von 1 bis 5μm, der Hilfsstoffmischung beigemischt. Verfahren zur Herstellung der erfindungsgemäßen Inhalationspulver durch Mahlen und Mikronisieren sowie durch abschließendes Mischen der Bestandteile sind aus dem Stand der Technik bekannt.

35 Die erfindungsgemäßen Inhalationspulver können entweder in Form einer einzigen Pulvermischung, die sowohl 1 als auch 2 enthält oder in Form von separaten Inhalationspulvern, die lediglich 1 und 2 enthalten bereitgestellt und appliziert werden.
Die erfindungsgemäßen Inhalationspulver können mittels aus dem Stand der Technik bekannten Inhalatoren appliziert werden.
Erfindungsgemäße Inhalationspulver, die neben 1 und 2 ferner einen physiologisch unbedenklichen Hilfsstoff enthalten, können beispielsweise mittels Inhalatoren appliziert werden, die eine einzelne Dosis aus einem Vorrat mittels einer Meßkammer, wie er in der US 4570630A beschrieben wird, oder über andere apparative Vorrichtungen, wie sie in der DE 36 25 685 A beschrieben werden, dosieren. Vorzugsweise werden die erfindungsgemäßen Inhalationspulver, die neben 1 und 2 physiologisch unbedenkliche Hilfsstoff enthalten, allerdings in Kapseln abgefüllt (zu sogenannten Inhaletten), die in Inhalatoren wie beispielsweise in der WO 94/28958 beschrieben, zur Anwendung gelangen.

Ein zur Anwendung der erfindungsgemäßen Arzneimittelkombination in Inhaletten besonders bevorzugter Inhalator ist Figur 1 zu entnehmen.
Dieser Inhalator (Handihaler) für die Inhalation pulverförmiger Arzneimittel aus Kapseln ist gekennzeichnet durch ein Gehäuse 1, enthaltend zwei Fenster 2, ein Deck 3, in dem sich Lufteinlaßöffnungen befinden und welches mit einem über ein Siebgehäuse 4 befestigten Sieb 5 versehen ist, eine mit Deck 3 verbundene Inhalationskammer 6, an der ein mit zwei geschliffenen Nadeln 7 versehener, gegen eine Feder 8 beweglicher Drücker 9 vorgesehen ist, sowie ein über eine Achse 10 klappbar mit dem Gehäuse 1, dem Deck 3 und einer Kappe 11 verbundenes Mundstück 12.

Sollen die erfindungsgemäßen Inhalationspulver im Sinne der vorstehend genannten bevorzugten Anwendung in Kapseln (Inhaletten) abgefüllt werden, bieten sich Füllmengen von 1 bis 30 mg, bevorzugt von 3 bis 20 mg, bevorzugt 5 bis 10 mg Inhalationspulver pro Kapsel an. Diese enthalten erfindungsgemäß entweder gemeinsam oder jeweils die bereits vorstehend für 1 und 2 genannten Dosierungen pro Einmalgabe.

B) Treibgashaltige Inhalationsaerosole enthaltend die erfindungsgemäßen Wirkstoffkombinationen aus 1 und 2:
Erfindungsgemäße treibgashaltige Inhalationsaerosole können 1 und 2 im Treibgas gelöst oder in dispergierter Form enthalten. Hierbei können 1 und 2 in getrennten Darreichungsformen oder in einer gemeinsamen Darreichungsform enthalten sein, wobei 1 und 2 entweder beide gelöst, beide dispergiert oder jeweils nur eine Komponente gelöst und die andere dispergiert enthalten sein können.
Die zur Herstellung der erfindungsgemäßen Inhalationsaerosole einsetzbaren Treibgase sind aus dem Stand der Technik bekannt. Geeignete Treibgase sind

Die erfindungsgemäßen treibgashaltigen Inhalationsaerosole können ferner weitere Bestandteile wie Kosolventien, Stabilisatoren, oberflächenaktive Mittel (surfactants), Antioxidantien, Schmiermittel sowie Mittel zur Einstellung des pH-Werts enthalten. All diese Bestandteile sind im Stand der Technik bekannt.

Die erfindungsgemäßen treibgashaltigen Inhalationsaerosole können bis zu 5 Gew-% an Wirkstoff 1 und/oder 2 enthalten. Erfindungsgemäße Aerosole enthalten beispielsweise 0,002 bis 5 Gew-%, 0,01 bis 3 Gew-%, 0,015 bis 2 Gew-%, 0,1 bis 2 Gew-%, 0,5 bis 2 Gew-% oder 0,5 bis 1 Gew-% an Wirkstoff 1 und/oder 2.

Liegen die Wirkstoffe 1 und/oder 2 in dispergierter Form vor weisen die Wirkstoffteilchen bevorzugt eine mittlere Teilchengröße von bis zu 10 µm; bevorzugt von 0,1 bis 5 µm, besonders bevorzugt von 1 bis 5 µm auf.

Die vorstehend genannten erfindungsgemäßen treibgashaltigen Inhalationsaerosole können mittels im Stand der Technik bekannten Inhalatoren (MDIs = metered dose inhalers) appliziert werden. Dementsprechend betrifft ein weiterer Aspekt der vorliegenden Erfindung Arzneimittel in Form von wie vorstehend beschriebenen treibgashaltigen Aerosolen in Verbindung mit einem oder mehreren zur Verabreichung dieser Aerosole geeigneten Inhalatoren. Ferner betrifft die vorliegende Erfindung Inhalatoren, dadurch gekennzeichnet, daß sie vorstehend beschriebene erfindungsgemäße treibgashaltige Aerosole enthalten.

Die vorliegende Erfindung betrifft ferner Kartuschen, die ausgestattet mit einem geeigneten Ventil in einem geeigneten Inhalator zur Anwendung gelangen können und die eine der vorstehend genannten erfindungsgemäßen treibgashaltigen Inhalationsaerosole enthalten. Geeignete Kartuschen und Verfahren zur Abfüllung dieser Kartuschen mit den erfindungsgemäßen treibgashaltigen Inhalationsaerosolen sind aus dem Stand der Technik bekannt.
C) Treibgasfreie Inhaltionslösungen oder Suspensionen enthaltend die erfindungsgemäßen Wirkstoffkombinationen aus 1 und 2:

In einer solchen bevorzugten Ausführungsform liegt der Gehalt bezogen auf Natriumedetat unter 100 mg / 100 ml, bevorzugt unter 50 mg / 100ml, besonders bevorzugt unter 20 mg / 100ml. Generell sind solche Inhaltionslösungen bevorzugt, in denen der Gehalt an Natriumedetat bei 0 bis 10mg/100ml liegt.

Zu den bevorzugten Hilfsstoffen zählen Antioxidantien, wie beispielsweise Ascorbinsäure, sofern nicht bereits für die Einstellung des pH-Werts verwendet, Vitamin A, Vitamin E, Tocopherole und ähnliche im menschlichen Organismus vorkommende Vitamine oder Provitamine.

Konservierungsstoffe können eingesetzt werden, um die Formulierung vor Kontamination mit Keimen zu schützen. Als Konservierungsstoffe eignen sich die dem Stand der Technik bekannten, insbesondere Cetylpyridiniumchlorid, Benzalkoniumchlorid oder Benzoesäure bzw. Benzoate wie Natriumbenzoat in der aus dem Stand der Technik bekannten Konzentration. Die vorstehend genannten Konservierungsstoffe sind vorzugsweise in Konzentrationen von bis zu 50mg/100ml, besonders bevorzugt zwischen 5 und 20 mg/100ml enthalten.

Bevorzugte Formulierungen enthalten außer dem Lösungsmittel Wasser und der Wirkstoffkombination aus 1 und 2 nur noch Benzalkoniumchlorid und Natriumedetat. In einer anderen bevorzugten Ausführungsform wird auf Natriumedetat verzichtet.

Zur Applikation der erfindungsgemäßen treibgasfreien Inhaltionslösungen sind besonders solche Inhalatoren, die eine kleine Menge einer flüssigen Formulierung in
16
der therapeutisch notwendigen Dosierung binnen weniger Sekunden in ein
therapeutisch-inhalativ geeignetes Aerosol vernebeln können. Im Rahmen der
vorliegenden Erfindung sind solche Vernebler bevorzugt, bei denen bereits eine
Menge von weniger als 100 µL, bevorzugt weniger als 50 µL, besonders bevorzugt
zwischen 20 und 30 µL Wirkstofflösung mit bevorzugt einem Hub zu einem Aerosol
mit einer durchschnittlichen Teilchengröße von weniger als 20 µm, bevorzugt
weniger als 10 µm, so vernebelt werden können, daß der inhalierbare Anteil des
Aerosols bereits der therapeutisch wirksamen Menge entspricht.

10 Eine derartige Vorrichtung zur treibgasfreien Verabreichung einer dosierten Menge
eines flüssigen Arzneimittels zur inhalativen Anwendung, wird beispielsweise in der
internationalen Patentanmeldung WO 91/14468 als auch in der WO 97/12687 (dort
insbesondere Figuren 6a und 6b) ausführlich beschrieben. Die dort beschriebenen
Vernebler (Devices) sind auch unter der Bezeichnung Respimat® bekannt.

15 Dieser Vernebler (Respimat®) kann vorteilhaft zur Erzeugung der
erfindungsgemäßen inhalierbaren Aerosole enthaltend die Wirkstoffkombination aus
1 und 2 eingesetzt werden. Aufgrund seiner zylinderräumigen Form und einer
handlichen Größe von weniger als 9 bis 15 cm in der Länge und 2 bis 4 cm in der
Breite kann dieses Device jederzeit vom Patienten mitgeführt werden. Der Vernebler
versprüht ein definiertes Volumen der Arzneimittelformulierung unter Anwendung
hoher Drücke durch kleine Düsen, so daß inhalierbare Aerosole entstehen.

20 Im wesentlichen besteht der bevorzugte Zerstäuber aus einem Gehäuseoberteil,
einem Pumpengehäuse, einer Düse, einem Sperrspanngewinde, einem Federgehäuse,
einer Feder und einem Vorratsbehälter, gekennzeichnet durch
- ein Pumpengehäuse, das im Gehäuseoberteil befestigt ist, und das an
seinem einen Ende einen Düsenkörper mit der Düse bzw. Düsenanordnung
trägt,
- einen Hohlkolben mit Ventilkörper,
- einen Abtriebsflansch, in dem der Hohlkolben befestigt ist, und der sich im
Gehäuseoberteil befindet,
- ein Sperrspanngewinde, das sich im Gehäuseoberteil befindet,
- ein Federgehäuse mit der darin befindlichen Feder, das am Gehäuseoberteil
mittels eines Drehlagers drehbar gelagert ist,
- ein Gehäuseunterteil, das auf das Federgehäuse in axialer Richtung
aufgesteckt ist.
Der Hohlkolben mit Ventilkörper entspricht einer in der WO 97/12687 offenbarten Vorrichtung. Er ragt teilweise in den Zylinder des Pumpengehäuses hinein und ist im Zylinder axial verschiebbar angeordnet. Insbesondere wird auf die Figuren 1-4 - insbesondere Figur 3 - und die dazugehörigen Beschreibungssteile Bezug genommen. Der Hohlkolben mit Ventilkörper übt auf seiner Hochdruckseite zum Zeitpunkt des AuslöSENS der Feder einen Druck von 5 bis 60 Mpa (etwa 50 bis 600 bar), bevorzugt 10 bis 60 Mpa (etwa 100 bis 600 bar) auf das Fluid, die abgemessene Wirkstofflösung aus. Dabei werden Volumina von 10 bis 50 Mikroliter bevorzugt, besonders bevorzugt sind Volumina von 10 bis 20 Mikroliter, ganz besonders bevorzugt ist ein Volumen von 15 Mikroliter pro Hub.

Der Ventilkörper ist bevorzugt an dem Ende des Hohlkolbens angebracht, das dem Düsenkörper zugewandt ist.

Die Düse im Düsenkörper ist bevorzugt mikrostrukturiert, d.h. durch Mikrotechnik hergestellt. Mikrostrukturierte Düsenkörper sind beispielsweise in der WO-94/07607 offenbart; auf diese Schrift wird hiermit inhaltlich Bezug genommen, insbesondere auf die dort offenbarte Figur 1 und deren Beschreibung.

Der Düsenkörper besteht z.B. aus zwei fest miteinander verbundenen Platten aus Glas und/oder Silizium, von denen wenigstens eine Platte einen oder mehrere mikrostrukturierte Kanäle aufweist, die die Düseninnenseite mit der Düsenaulaßseite verbinden. Auf der Düsenaulaßseite ist mindestens eine runde oder nicht-runde Öffnung von 2 bis 10 Mikrometer Tiefe und 5 bis 15 Mikrometern Breite, wobei die Tiefe bevorzugt bei 4, 5 bis 6,5 Mikrometern und die Länge bei 7 bis 9 Mikrometern beträgt.

Im Fall von mehreren Düsenöffnungen, bevorzugt sind zwei, können die Strahlrichtungen der Düsen im Düsenkörper parallel zueinander verlaufen oder sie sind in Richtung Düsenöffnung gegeneinander geneigt. Bei einem Düsenkörper mit mindestens zwei Düsenöffnungen auf der Aulaßseite können die Strahlrichtungen mit einem Winkel von 20 Grad bis 160 Grad gegeneinander geneigt sein, bevorzugt wird ein Winkel von 60 bis 150 Grad, insbesondere bevorzugt 80 bis 100°. Die Düsenöffnungen sind bevorzugt in einer Entfernung von 10 bis 200 Mikrometern angeordnet, stärker bevorzugt in einer Entfernung von 10 bis 100 Mikrometer, besonders bevorzugt 30 bis 70 Mikrometer. Am stärksten bevorzugt sind 50 Mikrometer.

Die Strahlrichtungen treffen sich dementsprechend in der Umgebung der Düsenöffnungen.
Die flüssige Arzneimittelzubereitung trifft mit einem Eingangsdruck von bis zu 600 bar, bevorzugt 200 bis 300 bar auf den Düsenkörper und wird über die Düsenöffnungen in ein inhalierbares Aerosol zerstäubt. Die bevorzugten Teilchengröße des Aerosols liegen bei bis zu 20 Mikrometern, bevorzugt 3 bis 10 Mikrometern.

Das Sperrspannwerk enthält eine Feder, bevorzugt eine zylindrische schraubenförmige Druckfeder, als Speicher für die mechanische Energie. Die Feder wirkt auf den Abtriebsflansch als Sprungstück, dessen Bewegung durch die Position eines Sperrglieds bestimmt wird. Der Weg des Abtriebsflansches wird durch einen oberen und einen unteren Anschlag präzise begrenzt. Die Feder wird bevorzugt über ein kraftübersetzendes Getriebe, z.B. ein Schraubschubgetriebe, durch ein äußeres Drehmoment gespannt, das beim Drehen des Gehäuseoberteils gegen das Federgehäuse im Gehäuseunterteil erzeugt wird. In diesem Fall enthalten das Gehäuseoberteil und der Abtriebsflansch ein ein- oder mehrgängiges Keilgetriebe.

Das Gehäuseunterteil wird in axialer Richtung über das Federgehäuse geschoben und verdeckt die Lagerung, den Antrieb der Spindel und den Vorratsbehälter für das Fluid.

zurückgezogen, wodurch eine Teilmenge des Fluids aus dem Vorratsbehälter in den Hochdruckraum vor der Düse eingesaugt wird.

In den Zerstäuber können gegebenenfalls nacheinander mehrere das zu zerstäubende Fluid enthaltende austauschbare Vorratsbehälter eingeschoben und benutzt werden. Der Vorratsbehälter enthält die erfindungsgemäße wässerige Aerosolzubereitung.

Weitere konstruktive Details sind in den PCT-Anmeldungen WO 97/12683 und WO 97/20590 offenbart, auf die hiermit inhaltlich Bezug genommen wird.

In den dieser Patentanmeldung beigefügten Figuren 2a/b, die identisch sind mit den Figuren 6 a/b der WO 97/12687, ist der Vernebler (Respimat®) beschrieben, mit dem die erfindungsgemäßen wässrigen Aerosolzubereitungen vorteilhaft inhaliert werden können.

Figur 2a zeigt einen Längsschnitt durch den Zerstäuber bei gespannter Feder, Figur 2b zeigt einen Längsschnitt durch den Zerstäuber bei entspannter Feder.

Feder schiebt sich das Sperrglied (62) zwischen den Anschlag (61) und eine Abstützung (63) im Gehäuseoberteil. Die Auslösetaste (64) steht mit dem Sperrglied in Verbindung. Das Gehäuseobereil endet im Mundstück (65) und ist mit der aufsteckbaren Schutzkappe (66) verschlossen.

Das Federgehäuse (67) mit Druckfeder (68) ist mittels der Schnappnasen (69) und Drehlager am Gehäuseoberteil drehbar gelagert. Über das Federgehäuse ist das Gehäuseunterteil (70) geschoben. Innerhalb des Federgehäuses befindet sich der austauschbare Vorratsbehälter (71) für das zu zerstäubende Fluid (72). Der Vorratsbehälter ist mit dem Stopfen (73) verschlossen, durch den der Hohlkolben in den Vorratsbehälter hineinragt und mit seinem Ende in das Fluid (Vorrat an Wirkstofflösung) eintaucht.

In der Mantelfläche des Federgehäuses ist die Spindel (74) für das mechanische Zählwerk angebracht. An dem Ende der Spindel, das dem Gehäuseoberteil zugewandt ist, befindet das Antriebsritzel (75). Auf der Spindel sitzt der Reiter (76).

Der oben beschriebene Vernebler ist geeignet, die erfindungsgemässe Aerosolzubereitungen zu einem für die Inhalation geeignetem Aerosol zu vernebeln.

Wird die erfindungsgemässe Formulierung mittels der vorstehend beschriebenen Technik (Respimat®) vernebelt, sollte die ausgebrachte Masse bei wenigstens 97%, bevorzugt wenigstens 98% aller Betätigungen des Inhalators (Hube) einer definierten Menge mit einem Toleranzbereichs von maximal 25%, bevorzugt 20% dieser Menge entsprechen. Bevorzugt werden pro Hub zwischen 5 und 30 mg Formulierung als definierte Masse ausgebracht, besonders bevorzugt zwischen 5 und 20 mg.

Die erfindungsgemässe Formulierung kann jedoch auch mittels anderer als der vorstehend beschriebenen Inhalatoren, beispielsweise Jet-Stream-Inhalatoren, vernebelt werden.

Dementsprechend betrifft ein weiterer Aspekt der vorliegenden Erfindung Arzneimittel in Form von wie vorstehend beschriebenen treibgasfreien Inhaltslösungen oder Suspensionen in Verbindung mit einer zur Verabreichung dieser Formulierungen geeigneten Vorrichtung, bevorzugt in Verbindung mit dem Respimat®. Bevorzugt zielt die vorliegende Erfindung auf treibgasfreie Inhaltslösungen oder Suspensionen gekennzeichnet durch die erfindungsgemässe Wirkstoffkombination aus 1 und 2 in Verbindung mit der unter der Bezeichnung Respimat® bekannten Vorrichtung. Ferner betrifft die vorliegende
Erfindung vorstehend genannte Vorrichtungen zur Inhalation, bevorzugt den Respimat®, dadurch gekennzeichnet, daß sie vorstehend beschriebene erfindungsgemäße treibgasfreie Inhalationslösungen oder Suspensionen enthalten.

Dementsprechend betrifft ein weiterer Aspekt der vorliegenden Erfindung Arzneimittel in Form von wie vorstehend beschriebenen treibgasfreien Inhalationslösungen oder Suspensionen, die als Konzentrate oder sterile gebrauchsfertige Formulierungen vorliegen, in Verbindung mit einer zur Verabreichung dieser Lösungen geeigneten Vorrichtung, dadurch gekennzeichnet, daß es sich bei dieser Vorrichtung um einen energiebetriebenen Stand- oder transportablen Vernebler handelt, der inhalierbare Aerosole mittels Ultraschall oder Druckluft nach dem Venturiprinzip oder anderen Prinzipien erzeugt.

Die folgenden Beispiele dienen einer weitergehenden Erläuterung der vorliegenden Erfindung, ohne den Umfang der Erfindung allerdings auf die nachfolgenden beispielhaften Ausführungsformen zu beschränken.

Ausgangsmaterialien

Tiotropiumbromid:

Zur Herstellung der erfindungsgemäßen Inhalationspulver kann ebenfalls kristallines Tiotropiumbromidmonohydrat eingesetzt werden. Dieses kristalline Tiotropiumbromidmonohydrat ist gemäß nachfolgend beschriebener Vorgehensweise erhältlich.

Ausbeute: 13,4 kg Tiotropiumbromidmonohydrat (86 % d. Th.)

Das so erhaltene kristalline Tiotropiumbromidmonohydrat wird nach bekannten Verfahren mikronisiert, um den Wirkstoff in Form der mittleren Teilchengröße bereitzustellen, die den erfindungsgemäßen Spezifikationen entspricht.

Formulierungsbeispiele

A) Inhaltionsspulver:

1)

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>µg pro Kapsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>21,7</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>200</td>
</tr>
<tr>
<td>Lactose</td>
<td>4778,3</td>
</tr>
<tr>
<td>Summe</td>
<td>5000</td>
</tr>
</tbody>
</table>

2)

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>µg pro Kapsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>21,7</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>125</td>
</tr>
<tr>
<td>Lactose</td>
<td>4853,3</td>
</tr>
<tr>
<td>Summe</td>
<td>5000</td>
</tr>
<tr>
<td>Bestandteile</td>
<td>µg pro Kapsel</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Tiotropiumbromid x H2O</td>
<td>22,5</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>250</td>
</tr>
<tr>
<td>Lactose</td>
<td>4727,5</td>
</tr>
<tr>
<td>Summe</td>
<td>5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>µg pro Kapsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>21,7</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>250</td>
</tr>
<tr>
<td>Lactose</td>
<td>4728,3</td>
</tr>
<tr>
<td>Summe</td>
<td>5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>µg pro Kapsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid x H2O</td>
<td>22,5</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>495</td>
</tr>
<tr>
<td>Lactose</td>
<td>4482,5</td>
</tr>
<tr>
<td>Summe</td>
<td>5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>µg pro Kapsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>21,7</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>400</td>
</tr>
<tr>
<td>Lactose</td>
<td>4578,3</td>
</tr>
<tr>
<td>Summe</td>
<td>5000</td>
</tr>
</tbody>
</table>
B) Treibgashaltige Inhaltsaerosole:

1) Suspensionsaerosol:

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Gew-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>0,015</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>0,066</td>
</tr>
<tr>
<td>Sojalecithin</td>
<td>0,2</td>
</tr>
<tr>
<td>TG134a : TG227 = 2:3</td>
<td>ad 100</td>
</tr>
</tbody>
</table>

2) Suspensionsaerosol:

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Gew-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>0,029</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>0,033</td>
</tr>
<tr>
<td>Ethanol, absolut</td>
<td>0,5</td>
</tr>
<tr>
<td>Isopropylmyristat</td>
<td>0,1</td>
</tr>
<tr>
<td>TG 227</td>
<td>ad 100</td>
</tr>
</tbody>
</table>

3) Suspensionsaerosol:

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Gew-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>0,029</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>0,033</td>
</tr>
<tr>
<td>Ethanol, absolut</td>
<td>0,5</td>
</tr>
<tr>
<td>Isopropylmyristat</td>
<td>0,1</td>
</tr>
<tr>
<td>TG 227</td>
<td>ad 100</td>
</tr>
</tbody>
</table>
4) Suspensionsaerosol:

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Gew-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>0,029</td>
</tr>
<tr>
<td>AWD-12-281</td>
<td>0,033</td>
</tr>
<tr>
<td>Ethanol, absolut</td>
<td>0,5</td>
</tr>
<tr>
<td>Isopropylmyristat</td>
<td>0,1</td>
</tr>
<tr>
<td>TG 227</td>
<td>ad 100</td>
</tr>
</tbody>
</table>

5 5) Suspensionsaerosol:

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Gew-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiotropiumbromid</td>
<td>0,029</td>
</tr>
<tr>
<td>Verbindung der Formel 2a</td>
<td>0,033</td>
</tr>
<tr>
<td>Ethanol, absolut</td>
<td>0,5</td>
</tr>
<tr>
<td>Isopropylmyristat</td>
<td>0,1</td>
</tr>
<tr>
<td>TG 227</td>
<td>ad 100</td>
</tr>
</tbody>
</table>
Patentansprüche

1) Arzneimittel gekennzeichnet durch einen Gehalt an einem oder mehreren Anticholinergika (1) in Kombination mit einem oder mehreren PDE-IV-Inhibitoren (2), gegebenenfalls in Form ihrer Enantiomere, Gemische der Enantiomere oder in Form der Racemate, gegebenenfalls in Form der Solvate oder Hydrate sowie gegebenenfalls gemeinsam mit einem pharmazeutisch verträglichen Hilfsstoff.

2) Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, daß die Wirkstoffe 1 und 2 entweder gemeinsam in einer einzigen Darreichungsform oder in zwei getrennten Darreichungsformen enthalten sind.

3) Arzneimittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß 1 ausgewählt ist aus der Gruppe bestehend aus Tiotopiumsalzen, Oxitropiumsalzen oder Ipratropiumsalzen, bevorzugt Tiotopiumsalzen.

4) Arzneimittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß 1 in Form des Chlorids, Bromids, Iodids, Methansulfonats, para-Toluolsulfonats oder Methylistansulfats, bevorzugt in Form des Bromids enthalten ist.

5) Arzneimittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß 2 ausgewählt ist aus der Gruppe bestehend aus Enprofylline, Roflumilast, Ariflo, Bay-198004, CP-325,366, BY343, D-4396 (Sch-351591), V-11294A, AWD-12-281 sowie den tricyclischen Stickstoffheterocyclen der allgemeinen Formel 2a

\[
\begin{align*}
R^1 & \quad \text{C}_1\text{-C}_5\text{-Alkyl, C}_5\text{-C}_6\text{-Cycloalkyl, Phenyl, Benzyl oder ein 5- oder 6-} \\
\text{gliedriger, gesättigter oder ungesättigter heterocyclischer Ring, der ein} \\
\text{oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff und} \\
\text{Stickstoff enthalten kann;}
\end{align*}
\]
27

R² C₁-C₅-Alkyl oder C₂-C₄-Alkenyl;
R³ C₁-C₅-Alkyl, das gegebenenfalls durch C₁-C₄-Alkoxy,
 C₅-C₆-Cycloalkyl, Phenoxyl oder durch einen 5- oder 6-gliedrigen,
 gesättigten oder ungesättigten heterocyclischen Ring, der ein oder zwei
 Heteroatome, ausgewählt aus der Gruppe Sauerstoff und Stickstoff
 enthalten kann, substituiert sein kann,
C₅-C₆-Cycloalkyl oder gegebenenfalls durch C₁-C₄-Alkoxy
 substituiertes Phenyl oder Benzyl, bedeuten können, gegebenenfalls in
 Form ihrer Racemate, ihrer Enantiomere, in Form ihrer Diastereomere
 und ihrer Gemische, gegebenenfalls in Form ihrer Tautomere sowie
 gegebenenfalls ihrer pharmakologisch unbedenklichen
 Säureadditionssalze.

6) Arzneimittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
 daß Z ausgewählt ist aus der Gruppe bestehend aus Enprophyline,
 Rofumilast, Ariflo, AWD-12-281 sowie den tricyclischen
 Stickstoffheterocyclen der allgemeinen Formel 2a.

7) Arzneimittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß
 die Gewichtsverhältnisse von 1 zu 2 in einem Bereich von 1:300 bis 50:1,
 bevorzugt von 1:250 bis 40:1 liegen.

8) Arzneimittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
 daß eine einmalige Applikation einer Dosierung der Wirkstoffkombination 1
 und 2 von 0,01 bis 10000μg, bevorzugt von 0,1 bis 2000μg entspricht.

9) Arzneimittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,
 daß es in Form einer für die Inhalation geeigneten Darreichungsform vorliegt.

10) Arzneimittel nach Anspruch 9, dadurch gekennzeichnet, daß es sich um eine
 Darreichungsform ausgewählt aus der Gruppe Inhalationspulver,
 treibgashaltige Dosieraerosole und treibgasfreie Inhalationslösungen oder
 -suspensionen handelt.

11) Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß es ein
 Inhalationspulver ist, welches 1 und 2 im Gemisch mit geeigneten
 physiologisch unbedenkliche Hilfsstoffen ausgewählt aus der Gruppe
 bestehend aus Monosaccharide, Disaccharide, Oligo- und Polysaccharide,
 Polyalcohole, Salze, oder Mischungen dieser Hilfsstoffe miteinandernhält.
12) Inhalationspulver nach Anspruch 11, dadurch gekennzeichnet, daß der Hilfsstoff eine maximale mittlere Teilchengröße von bis zu 250 μm, bevorzugt zwischen 10 und 150 μm aufweist.

13) Kapseln gekennzeichnet durch einen Gehalt an Inhalationspulver nach Anspruch 11 oder 12.

14) Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß es ein Inhalationspulver ist, welches als Bestandteile lediglich die Wirkstoffe 1 und 2 enthält.

15) Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß es sich um ein treibgashaltiges Inhalationsaerosol handelt, welches 1 und 2 in gelöster oder dispergierter Form enthält.

16) Treibgashaltiges Inhalationsaerosol nach Anspruch 15, dadurch gekennzeichnet, daß es als Treibgas Kohlenwasserstoffe wie n-Propan, n-Butan oder Isobutan oder Halogenkohlenwasserstoffe wie chlorierte und/oder fluorierte Derivate des Methans, Ethans, Propans, Butans, Cyclopropans oder Cyclobutans enthält.

17) Treibgashaltiges Inhalationsaerosol nach Anspruch 16, dadurch gekennzeichnet, daß das Treibgas TG134a, TG227 oder ein Gemisch davon darstellt.

18) Treibgashaltiges Inhalationsaerosol nach Anspruch 15, 16 oder 17, dadurch gekennzeichnet, daß es gegebenenfalls einen oder mehrere weitere Bestandteile ausgewählt aus der Gruppe bestehend aus Kosolventien, Stabilisatoren, Oberflächenaktive Mittel (surfactants), Antioxidantien, Schmiermittel und Mittel zur Einstellung des pH-Werts enthält.

19) Treibgashaltiges Inhalationsaerosol nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß es bis zu 5 Gew-% an Wirkstoff 1 und/oder 2 enthalten kann.
20) Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß es sich um eine treibgasfreie Inhalationslösung oder -suspension handelt, die als Lösemittel Wasser, Ethanol oder ein Gemisch aus Wasser und Ethanol enthält.

21) Inhalationslösung oder -suspension nach Anspruch 20, dadurch gekennzeichnet, daß der pH 2 - 7, bevorzugt 2 - 5 beträgt.

23) Inhalationslösung oder -suspension nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, daß sie gegebenenfalls weitere Co-Solventien und/oder Hilfsstoffe enthält.

26) Inhalationslösung oder -suspension nach Anspruch 25, dadurch gekennzeichnet, daß sie als Komplexbildner Editinsäure oder ein Salz der Editinsäure, bevorzugt Natriumeditat, enthält.

5

28) Inhalationslösung oder -suspension nach Anspruch 25, 26 oder 27, dadurch gekennzeichnet, daß sie als Konservierungsmittel Verbindungen ausgewählt aus Cetylpyridiniumchlorid, Benzalkoniumchlorid, Benzoesäure und Benzoaten enthält.

10

29) Inhalationslösung oder -suspension nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, daß sie neben den Wirkstoffen 1 und 2 und dem Lösemittel nur noch Bezalkoniumchlorid und Natriumdetat enthält.

15

30) Inhalationslösung oder -suspension nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, daß sie neben den Wirkstoffen 1 und 2 und dem Lösemittel nur noch Benzalkoniumchlorid enthält.

31) Inhalationslösung oder -suspension nach einem der Ansprüche 20 bis 30, dadurch gekennzeichnet, daß es sich um ein Konzentrat oder eine sterile gebrauchsfertige Inhalationslösung oder -suspension handelt.

32) Verwendung einer Kapsel gemäß Anspruch 13 in einem inhalator, bevorzugt im Handihaler.

25

33) Verwendung einer Inhalationslösung gemäß einem der Ansprüche 20 bis 30 zur Vernebelung in einem Inhalator gemäß der WO 91/14468 oder einem wie in den Figuren 6a und 6b der WO 97/12687 beschriebenen Inhalator.

30

34) Verwendung einer Inhalationslösung gemäß Anspruch 31 zur Vernebelung in einem energiebetriebenen Stand- oder transportablen Vernebler, der inhalierbare Aerosole mittels Ultraschall oder Druckluft nach dem Venturi-Prinzip oder anderen Prinzipien erzeugt.

35

35) Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 31 zur Herstellung eines Medikaments zur Behandlung von entzündlichen oder obstruktiven Atemwegserkrankungen Atemwegserkrankungen.