PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOGF 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 96/15501

23 May 1996 (23.05.96)

(21) International Application Number: PCT/US95/¥5028

(22) International Filing Date: 13 November 1995 (13.11.95)

(30) Priority Data:
08/339,481
08/527,161

Us
uUs

10 November 1994 (10.11.94)
12 September 1995 (12.09.95)

(71) Applicant: CADIS, INC. [US/US]; 1909 26th Street, Boulder,
CO 80302 (US).

(71)(72) Applicants and Inventors; KAVANAGH, Thomas, S.
[US/US); 65 Bellevue Drive, Boulder, CO 80302 (US).
BEALL, Christopher, W. [US/US]; 679 Cougar Drive,
Boulder, CO 80302 (US). HEINZ, william, C. [US/US],
8256 Johnson Court, Arvada, CO 80005 (US). MOTYCKA,
John, D. [US/US]; 30130 Chestnut Drive, Evergreen, CO
80439 (US). PENDLETON, Samuel, S. [US/USY; 976 West
Dahlia Street, Louisville, CO 80027 (US). SMALLWOOD,
Thomas, D. [US/US]; 308 Moming Star Lane, Lafayette,
CO 80026 (US). TERPENING, Brooke, E. [US/US],
25221 Westridge Road, Golden, CO 80403 (US). TRAUT,
Kenneth, A. [US/US]; 4151 Cooper Court, Boulder, CO
80303 (US).

(74) Agent: LEACH, Sydney; Baker & McKenzie, Suite 4500, 2001
Ross Avenue, Dallas, TX 75201 (US).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA,
CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU,
LV, MG, MN, MW, NO, NZ, PL, PT, RO, RU, SD, SE,
SK, UA, UZ, VN, European patent (AT, BE, CH, DE, DK,
ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

CH, CN,

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

(57) Abstract

The present invention provides a method and appa- "
ratus for an object oriented database management system.
The present invention may be advantageously used in a
client/server architecture comprising a knowledge base client
and a knowledge base server (132). A plurality of users
may access the system at the same time. In a preferred em-
bodiment, the knowledge base server (132) may include a
dynamic class manager (134), a connection manager (135), a
query manager (136), a handle manager (137), a units man-
ager (138), a database manager (1349), and a file manager
(140). The object oriented database system is hierarchical.
Each instance in a knowledge base may be a member of a
class, and a class may be a subclass of a parent class, and so
on.

133
143

Y

132——

115 34
D —N, —
Liconse
130 Manager
/ 144
Le; Retriever | Schema Editor 141
APl Registry Server
Knowledge Base Client




applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Ccs
Ccz
DE
DK
ES
F1
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the RCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW

NL
NO
Nz
PL

RO
RU
SD
SE
SI
SK
SN
D
TG
)

UA

vz

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam




10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

1

OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to an object oriented database
management system that is optimized for fast reads of the data,
and is particularly suited for applications where extensive
updating is not necessary. The database is structured so that
when an item does not have a value, nothing is stored.
Therefore, memory space is not wasted storing null values, and
search speed is improved because no time is consumed searching
such null fields.

While various features of the present invention may be
advantageously used in other applications, the invention is
described herein with reference to the problem of managing parts
and components in a manufacturing operation. The invention is
particularly useful for solving problems in parts management
which have existed for a long time.

Often, the competitive success of a manufacturing company
may largely depend upon the company's ability to bring products
to market faster. The rewards for an enterprise that is able to
achieve this objective may be considerable. The penalty for
failing to achieve this objective can be the loss of a customer
or even an entire market. In a typical company, re-engineering
or redesigning the parts selection process may significantly
improve the operations of the company and achieve major gains in
bringing products to market faster. In addition, significant
cost savings may be achieved.

Design engineering has been the focal point in the
competitive drive to get products to market quicker, at reduced
cost, and with improved quality. Companies are continually
striving to make the design engineer more efficient. This quest
for efficiency translates into providing more effective tools for
the design activity thereby making the design activity a larger
portion of the design day.

The culmination of every design cycle in a manufacturing
company is the parts selection process that will result in a
completed bill of materials. Design engineers typically have to
specify and select dozens of components that will satisfy their

design requirements. In every case, the design engineer will be



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

2

presented with a choice that collectively can have a major
strategic impact on the firm. The implicit choice that each
design engineer faces when specifying and selecting every part
is the question of whether he or she can re-use an existing part,
or whether he or she needs to release a new part.

Depending on the design engineer's answer to this
deceptively simple question, the company may be required to
support a new part at considerable cost. Market research has
shown that design engineers in large companies find it easier to
add a new part, even if an exact match or acceptable substitute
already exists, because it takes too much time and trouble to
look up parts to determine whether an existing part would be
suitable. However, releasing even one new part is time consuming
and expensive. Figure 1 summarizes the typical process that a
manufacturing company goes through prior to releasing a new part.

If an existing approved part can be used in a design, the
design engineer has more time for design, the expensive process
of releasing a new part is avoided, and the value of the prior
part release process will be maximized. However, what is
required is a quick and easy way to locate parts for use. When
a part is quickly found and used, not only does the designer
benefit, but the design engineering department, procurement,
manufacturing, field service, and every other group downstream
from the design engineer will benefit as well. Typically though,
after spending too much valuable design time looking for a
released part and not finding it, the design engineer simply
specifies another new part.

The reason the designer often has difficulty finding parts
is because most systems which reference parts do so by part
number. The designer knows the functional attributes, geometric
description, and other characteristics of what is required, but
rarely knows the part number from which the correct part can be
identified. Efforts to address this problem in the past have
made part descriptions available through key-words: but
oftentimes the descriptions are not standardized and are usually
limited to a bare bones description due to restricted field
lengths. In the past, accurate access by design engineers tc
released parts information has usually been inadequate.

Because of the need to use existing parts, ad-hoc crutches



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

3

have been developed by many organizations. These include
intelligent part numbering systems, crib-sheets, "where used"
systems derived from bill of materials, group technology, CAD
drawing management systems, and occasionally description driven
RDBMS applications. These solutions are ad-hoc because:

1. These crutches are not complete solutions; they often
lead to the circumvention of the existing part
selection and release process in order to get the job
done.

2. They are based on tools that are designed for other
primary tasks and are typically inefficient or are
misused in this application.

3. The organization develops and applies resources not
directly related to the focus of the business.

4. Too many people become part selection experts on their
current design focus only, limiting mobility of
personnel to new projects.

5. There are no tools that measure the frequency of
finding a suitable part, or provide any measure of
redundancy between the newly released parts with those
already available for use.

6. Inevitably these attempts to develop a complete system

are unsatisfactory and are abandoned.

There is an additional reason why these past attempts to
address this problem cannot be characterized as complete
solutions. They do not adequately address the company's entire
pool of released parts. This parts pool typically has
characteristics that hinder comprehensive management and which
have stifled full corrective action by any existing system. Such
characteristics include the fact that the data tends to be widely
scattered across the company, and among many different systems.
Most parts are poorly described, and some parts can never be
found because of description inconsistencies. There are many
similar parts -- parts that are different, but which would
satisfy the same design criteria if the parts could be
identified. The pool of parts almost never shrinks. Typically,
no matter how big it is today, it will be bigger tomorrow.

In the past, ad-hoc solutions invariably attempted to



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

4

address the problem by utilizing key-word search tools. Searches
on user specified key-words are part of many relational database

applications. A key-word query on a relational database
typically causes the database to search a specific table for some
text-string. These applications may support wild cards, the

option for case sensitivity, or other functions associated with
the key-word match. However, given the inconsistencies in
typical part descriptions noted above, key-word approaches have
been severely limited in their effectiveness. In a database that
supports key-word searches, a question is posed in terms of key-
words and answers are returned, but it is never known if all
possible answers are returned. In a parts management system, it
is critical to find all items and all related or similar items
in a database. Otherwise, there can be no assurance that a
suitable part does not already exist in the company's database,
and the cost of creating a new part to add to the existing
database may be incurred unnecessarily when the system fails to
find suitable existing parts.

The example shown in Table 1 highlights the limitation of
a key-word based parts retrieval system. The four entries shown
in Table 1 represent examples of typical entries in a parts
database. An elementary key-word search on the term 'cam
follower bearing' would likely return with only one part found,
#0002. A sophisticated system might return with three partial
matches, finding some of the terms in #0001, #0002, and #0003.
It is unlikely that a system would know that 'track roller' is
a synonym for 'cam follower.' Also, roller and needle are
sometimes synonyms. A search involving 'inch' would only find
a match in the first listed part. Finally, while the last two
parts imply they are bearings, the descriptions do not explicitly

identify them as such.

Table 1
Part # Description
0001 Bearing, cam follower, roller, 1.0 inch
0002 Cam follower bearing, needle, 1.0 "
0003 Cam follower, 1.0", roller

0004 Track roller , 1.0"



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

5

Problems have arisen .in the past because it is not uncommon
for various units to be specified differently in typical part
descriptions. For example, some parts may have temperature
characteristics specified in degrees Centigrade, while others may
be specified in Fahrenheit. Also, one screw may have a length

that is expressed as 1 inch. Another screw may have a length
expressed as 2.5 centimeters. Both screws may be acceptable
substitutes for the same design requirement. However, prior

database management tools have not been able to satisfactorily
deal with units in a way which would allow both parts to be found
in response to a search for existing parts having a range of
lengths that included both 1 inch and 2.5 centimeters.

The standard relational database management systems (RDBMS)
model is wunsatisfactory for developing a parts management
solution. Internally developed corporate systems have inevitably
been built on a standard RDBMS technology and, in general, have
not been satisfactory to the end-user.

In an effort to deal with these problems, some companies
have developed a dollar cost estimate of the release process, and
have provided a mechanism to charge it back to the design
engineering group. The rationale behind such an approach is that
the design engineer is the only person who can influence the
outcome one way or another. By choosing to specify a new part,
the design engineer commits the company to a series of process
steps, such as those shown in Figure 1, that subsequently result
in time and cost incurrence to the corporation. However, such
efforts have been less than satisfactory, and serve to
demonstrate the need for a quicker and easier system for looking
up parts to determine whether an existing part would be suitable.

It would be desirable to entirely eliminate triggering the
process depicted in Figure 1 by avoiding the release of a new

part whenever possible. In the past, design engineers have not
been provided with the needed tools to specify and select parts
that have already been released. There has been a need to

provide an approach which would allow a company to avoid
duplicating process costs (in time and effort) that have been
incurred earlier in releasing a part, if an existing part is an

exact match to the design requirements or an acceptable

substitute.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

6

A company's pool of existing parts data is potentially a
valuable asset, but its effective value is discounted by the
above-described characteristics which inhibit the data from being
a useful and readily available resource of prior company
knowledge and investment. Therefore, any solution that can
affordably transform this pool of existing parts data into a
useful information resource would be of great value to a company .
However, effective tools to manage it have not been available in

the past.

SUMMARY OF THE INVENTION

The present invention, in its preferred embodiment, may
include a retriever means, a knowledge base client means, and a
knowledge base server means. A legacy means is preferably
included to facilitate organization of an existing legacy
database into a schema for use in connection with the present
invention. 1In a preferred embodiment, the knowledge base server
means includes a dynamic class manager means, a connection
manager means, a query manager means, a handle manager means, a
units manager means, a database manager means, and a file manager
means. A preferred system also includes a registry server means
and license manager means to control unauthorized user access to
the system.

The present invention may be used to provide a part
management system which has a number of advantageous features.
A system in accordance with the present invention provides a tool
for design engineers which enables them to intuitively,
definitively, and virtually instantaneously find a released part
that is either an exact match or an acceptable substitute for the
design requirements, if such a part exists. Duplicate parts can
be eliminated, and inventory carrying costs reduced as well.

Through the use of an object oriented knowledge base, the
present invention can make access to part data intuitive,

instantaneous, definitive, and can encompass all parts. The
present system can transform a company's poorly managed pool of
existing parts data into a valued corporate asset. It can

provide ongoing consistency and control to the specification,
release, and subsequent retrieval of all parts information.
Part classes, sub-classes, part characteristics such as



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

7

shape, material, and dimensions, among others, fit very well
within the object oriented environment of the present invention.
Parts are treated as objects within a parts family or "schema".

The present invention uses attribute searches, which offer
decided advantages over generic key-word searches. The
incomplete search problems associated with key-word matching
which are described above with reference to Table 1 may be solved
when the same data is restructured as parametric attributes. A
parametric attribute description consists of (1) reducing all
terminology to some standard form, (2) describing each term as
some value of an attribute related to an object or subclass, and
(3) ordering the set of attributes of the object. 1In this case,
cam follower bearings are classified under subclass of bearings
called "mounted bearings". This is illustrated in Table 2.
Described this way, the parts are easily related, and appear to
correspond to the same part. This would not be apparent from a

key-word search.

Table 2
Part # Ojbect Mounting Type Element Diameter
Type inches
0001 mounted bearing cam follower roller 1.0
0002 mounted bearing cam follower roller 1.0
0003 mounted bearing cam follower roller 1.0
0004 mounted bearing cam follower roller 1.0

In the present invention, users search a parts database by
selecting attributes that describe a part. Selection consists

of sifting from general to detailed part attributes. aAll
possible questions are linked to the attributes; the user merely
selects from the enumerated possibilities. This sifting

mechanism has the effect of masking unwanted parts. The intent
is to leave parts that exactly fit the search criteria, but not
eliminate any parts that might fit.

The present invention is an effective, on-going part
specification, description, and retrieval system. Parts are
found by describing them using their relevant attributes.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

8

Attributes can be both parametric (length, capacitance, etc.) and

non-parametric (cost, preferred, etc.). The description process
is intuitive to the occasional user and does not require
specialized computer expertise. Needed parts may be found
virtually instantly. This level of performance encourages

widespread usage of the system. The response time is essentially
independent of the size of the database searched and of the
number of users at any point in time.

A system in accordance with the present invention provides
definitive access to the data. If a needed part exists, the user
will be able to find it. 1If a part does not exist, the user will
know that too with certainty, so that a new part can be released
with confidence. The system is capable of retrieving all parts
fitting the description criteria completely, as well as all parts
that closely match or satisfy a subset of the criteria. The
system facilitates the selection of parts based on preferred
attributes. Examples of preferred attributes include:
"standard" values (which encourage design standardization), low
field failure rates (which ensures reliability), low unit cost,
and preferred suppliers.

The present system can affordably transform a company's pool
of existing parts legacy data into usable information. The
present system enables a design engineer to painlessly create and
edit descriptions of parts based on critical engineering
attributes. All part descriptions may be standardized in terms
of content and format as a function of the type of part. The
descriptions are independent of arbitrary and pre-determined
field 1length 1limitations, and are able to automatically
accommodate the varying field length requirements of different
part types. The system is flexible in that it may be easily
modified to accommodate major changes triggered by internal or
external realities. This includes addition and deletion of
entire part families, new product lines, corporate
consolidations, mergers, and acquisitions.

The present system provides unit measure convertibility.
The user is able to specify a part in his or her unit-of-measure
of choice. The system provides rules governing the conversion
of wunits-of-measure of parts. For some part families
convertibility of units is allowed and required, for others,



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

9

convertibility is prohibited; the system knows what rules apply
to which part families.

The present system provides an open system environment with
connectivity to any other application or system across the
enterprise. Enterprise-wide desktop access to all parts
information is provided. Part information on newly specified
parts is instantly available throughout the corporation. The
elimination of the information time lag between engineering and
other departments involved in parts management fosters concurrent
engineering practices. The system also provides management and
control functions associated with the release of parts into the
system.

The present system enables design engineers, and other
users, to locate parts by describing them in terms of parametric
and non-parametric attributes. It supports dynamic management
(additions, deletions, and manipulations) of part families and
attributes to accommodate both standard and proprietary parts.
It provides on-going structure, consistency, and control in the
management of the part specification and description process.
It also includes the company's existing (legacy) parts in the on-
going system.

The present invention may be advantageously used in a
client/server architecture comprising a knowledge base client and
a knowledge base server. The present invention provides a
particularly advantageous concurrency control mechanism for an
object oriented database management system that is read oriented.
In a preferred embodiment, the knowledge base server includes an
object oriented lock manager, a dynamic class manager, a
connection manager, a query manager, a handle manager, a units
manager, a database manager, and a file manager.

The object oriented lock manager of the present invention
may be used to provide a concurrency control mechanism which has
a number of advantageous features. A system in accordance with
the present invention maximizes availability of a tool for design
engineers. The invention provides optimal availability by
allowing users to query and view class objects without disruption
of their view while modifications are being made by other users.
These modifications would preferably include additions,
deletions, and edits of classes, attributes, instances, and



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

10

parameters.
The invention optimizes performance of the concurrency

control system by using lock inheritance based on class objects.
The lock manager means implements a mechanism for locks to be
placed on a class without subclass inheritance of the lock. This
mechanism is a class lock. The lock manager means also provides
an inheritance mechanism for locks. The inheritance mechanism
is a tree lock. Tree locking a class will lock all descendants
of that class by inheritance without physically requiring the
placement of class locks on the descendant classes. The present
invention employs true share locks and exclusive locks. The
present invention also provides a novel implementation of a lock
mode that is a hybrid between a share lock and an exclusive lock,
which is referred to as an “update” lock.

The invention optimizes performance by simplifying the
number of objects that need to be locked by using class level
lock granularity. The granularity or scope of a class lock is the
class itself, the attributes defined by the class, and the
instances associated with that class. The present invention does
not allow an instance to be locked independently of the class to
which it belongs.

The knowledge base client means uses the object oriented
lock means mechanisms to place locks of appropriate granularity
and inheritance to provide the maximum availability, stability,
and performance of a tool using these means.

Further features and advantages of the present invention
will be appreciated in connection with the drawings and the
following detailed description of a presently preferred

embodiment.

IP F DRAWTI
Figure 1 is a flow chart depicting a typical conventional parts

management process.

Figure 2 is a diagram of a typical network environment that is
suitable for use in connection with the present invention.
Figure 3 is a block diagram depicting an overall architecture for
a system according to the present invention.

Figures 4A and 4B represent a flow chart showing a login

procedure for accessing the system.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

11

Figure 5 depicts an initial display screen showing the part

specification window.

Figure 6 depicts an example of the part specification window
during a search.

Figure 7 is a flow chart for selecting a class.

Figure 8 is a flow chart depicting the procedure for updating the
part count and display.

Figure 9 is a flow chart depicting the procedure for opening a
class.

Figure 10 depicts a display screen showing information displayed
in the part specification window.

Figure 11 is a flow chart depicting the procedure for closing an
open class.

Figure 12 is a flow chart depicting the procedure for selecting
text search criteria.

Figure 13 depicts a display screen showing information displayed
in the part specification window.

Figure 14 is a flow chart depicting the procedure for selecting
numeric search criteria.

Figure 15 depicts a custom numeric dialog box.

Figure 16 depicts a display screen showing information displayed
in the part specification window.

Figure 17 is a flow chart depicting the procedure for selecting
boolean search criteria.

Figure 18 depicts a display screen showing information displayed
in the part specification window.

Figure 19 is a flow chart depicting the procedure for selecting
enumerated search criteria.

Figure 20 depicts a display screen showing information displayed
in the part specification window.

Figure 21 depicts a display screen showing information displayed
in the part specification window.

Figure 22 is a flow chart depicting the procedure for selecting
attribute order for display.

Figure 23 is a flow chart depicting the procedure for displaying
search results.

Figure 24 depicts a display screen showing information displayed
in the search results window.

Figure 25 is a flow chart depicting the procedure for doing a



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

12

query.
Figure 26 is a flow chart depicting the procedure for displaying
part information.

Figure 27 depicts a display screen showing information displayed
in the part information window.

Figure 28 is a flow chart depicting the procedure for launching
a user action.

Figure 29 depicts a display screen showing an example of a user
action launched by the procedure depicted in Figure 28.

Figure 30 is a flow chart depicting the procedure followed when
the user actuates the apply button.

Figure 31 depicts a display screen showing information displayed
in the part specification window.

Figure 32 is a flow chart depicting the procedure followed when
the user actuates the edit button.

Figure 33 is a flow chart depicting the procedure followed when
the user actuates the sort button.

Figure 34 depicts a display screen showing information displayed
in the sort dialog box.

Figure 35 is a flow chart depicting procedures followed when a
user edits parts.

Figure 36 depicts a display screen showing information displayed
in the parts editor window.

Figure 37 depicts a display screen showing information displayed
in the parts editor window.

Figure 38 is a flow chart depicting procedures followed when a
user deletes parts.

Figure 39 is a flow chart depicting procedures followed when a
user moves parts.

Figure 40 depicts a display screen showing information displayed
in the parts editor window.

Figure 41 shows the internal object representation for a class.
Figure 42 depicts a generic list.

Figure 43 illustrates the data structure for attribute data.
Figure 44 illustrates the data structure for an enumerator
object.

Figure 45 illustrates the data structure for a unit family.
Figure 46 depicts the data structure for units.

Figure 47 depicts the data structures for a unit families.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

13

Figure 48 shows the data structure for an enumerated derived

unit.

Figure 49 depicts the data structure for an instance and
associated parameters.

Figure 50 depicts the data structure for a parameter.

Figure 51 is an example of a schema with instances.

Figure 52 is a flow chart depicting how the handle manager
responds to a request for the virtual memory address of an object

Figure 53 depicts the sequential layout of the dynamic file.
Figure 54 shows the general layout of the schema and instance
files.

Figure 55 shows the layout of a file header.

Figure 56 shows the layout of a schema file object which
represents a class in the knowledge base.

Figure 57 shows the layout of a schema file object which
represents an attribute in the knowledge base.

Figure 58 shows the layout of a schema file object which
represents an enumerator in the knowledge base.

Figure 59 shows the layout of a schema file object which
represents a unit in the knowledge base.

Figure 60 shows the layout of a schema file object which
represents a unit family in the knowledge base.

Figure 61 shows the layout of an instance file object.

Figure 62 shows the layout of a Type 1 dynamic object used to
store a character string.

Figure 63 shows the layout of a Type 2 dynamic object used to
store data items which are four bytes in length.

Figure 64 shows the layout of a Type 3 dynamic object used to

store parameter data.
Figure 65 is a flow chart depicting how to add a class to the

schema.

Figure 66 is a continuation of the flow chart in Figure 65.
Figure 67 is a flow chart depicting the addition of enumerated
attributes.

Figure 68 is a continuation of the flow chart in Figure 67.
Figure 69 is a flow chart depicting the addition of an instance.
Figure 70 is a continuation of the flow chart in Figure 69.
Figure 71 is a flow chart depicting the deletion of a class.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

Figure
Figure
Figure
Figure
Figure

14

72 is a continuation of the flow chart in Figure 71.
73 is a flow chart depicting the deletion of an attribute.
74 is a continuation of the flow chart in Figure 73.
75 is a flow chart depicting the deletion of an instance.
76 is a flow chart depicting the steps involved in moviﬁg

a subtree.

Figure
Figure

77 is a continuation of the flow chart in Figure 76.
78 is a flow chart depicting unhooking a moved class from

the original parent.

Figure
common
Figure
Figure
by the
Figure
Figure
Figure

79 is a flow chart describing the process for finding the
ancestor of the class to be moved.

80 is a continuation of the flow chart in Figure 79.

8l is a graphical representation of the data maintained
connection manager.

82 is a flow chart describing applying a local query.

83 is a continuation of the flow chart in Figure 82.

84 is a flow chart depicting the process for performing

a query on a subtree.

Figure
count.
Figure
Figure
Figure
in the
Figure
in the
Figure
Figure
in the
Figure

85 is a flow chart depicting the application of a query

86 is a graphical representation of the locking function.
87 depicts match logic in genic.

88 depicts a display screen showing information displayed
schema editor window.

89 depicts a display screen showing information displayed
schema editor window.

90 is a flow chart depicting navigation of the class tree.
91 depicts a display screen showing information displayed
schema editor window.

92 is a flow chart depicting reparenting a class to a new

subclass.

Figure
in the
Figure
in the
Figure
schema
Figure

in the

93 depicts a display screen showing information displayed

schema editor window.
94 depicts a display screen showing information displayed

schema editor window.
95 is a flow chart depicting rearranging a class in the

editor.
96 1is the flow chart for the overall legacy procedures

class manager.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

15

Figure 97 depicts a display screen showing information displayed
in the schema editor window.

Figure 98 depicts adding new classes in the schema editor window.
Figure 99 depicts a display screen showing information displayed
in the schema editor window.

Figure 100 depicts a display screen showing information displayed
in the schema editor window.

Figure 101 is a flow chart depicting rearranging attributes in
the schema editor.

Figure 102 depicts a display screen showing information displayed
in the schema editor window.

Figure 103 depicts a display screen showing information displayed
in the schema editor window.

Figure 104 is a flow chart depicting the addition of a new
enumerated attribute in the schema editor window.

Figure 105 depicts a display screen showing information displayed
in the schema editor window.

Figure 106 is a flow chart depicting the addition of a numeric
attribute.

Figure 107 depicts a display screen showing information displayed
in the schema editor window.

Figure 108 depicts a display screen showing information displayed
in the schema editor window.

Figure 109 is a flow chart depicting the addition of a Boolean
attribute.

Figure 110 depicts a display screen showing information displayed
in the schema editor window.

Figure 111 is a flow chart depicting the addition of a new string

attribute.
Figure 112 depicts a display screen showing information displayed

in the schema editor window.
Figure 113 is a flow chart depicting the addition and insertion

of enumerators.
Figure 114 depicts a display screen showing information displayed

in the schema editor window.
Figure 115 depicts a display screen showing information displayed

in the schema editor window.
Figure 116 is a flow chart depicting the deletion of enumerator

type attributes.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

16

Figure 117 depicts a display screen showing information displayed
in the schema editor window.

Figure 118 depicts the flow chart for editing a numeric attribute
in the schema editor.

Figure 119 depicts a display screen showing information displayed
in the schema editor window.

Figure 120 is a flow chart depicting the addition of values to
a table.

Figure 121 is a picture of the automatic values dialog in the
table editor in the schema editor.

Figure 122 is a flow chart of the process for adding labels in
the table editor.

Figure 123 is a picture of the automatic labeling dialog in the
table editor in the schema editor.

Figure 124 represents the process flow chart for the user
changing the rows and columns of a table.

Figure 125 shows the command line parameters for import.

Figure 126 shows the command line parameters for simp.

Figure 127 is a flow chart for the user deleting an attribute in
the schema editor.

Figure 128 is a picture of a screen in the schema editor with
a class selected for attribute editing when the class has no
locally defined attributes.

Figure 129 is another picture of a screen in the schema editor
with a class selected for attribute editing when the class has
attributes available for editing.

Figure 130 show the confirmation dialog that appears in the
schema editor when deleting an attribute.

Figure 131 is an example of match criteria in genic.

Figure 132 is a flow chart depicting the process for legacy
processing.

Figure 133 is a flow chart depicting automatic part
classification function of the legacy manager.

Figure 134 is a flow chart depicting the method for classifying
a part in the legacy process.

Figure 135 is a flow chart depicting legacizing ancestor parts.
Figure 136 is a flow chart depicting the method for legacizing

an instance.
Figure 137 is a continuation of the flow chart in Figure 136.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

17

Figure 138 is a continuation of the flow chart in Figure 137.
Figure 139 is a flow chart depicting processing the attributes
for a class for classification.

Figure 140 is a flow chart depicting processing a thesaurus for

a schema object.
Figure 141 is a flow chart depicting legacizing a class

thesaurus.

Figure 142 is a flow chart depicting parameterizing a part
instance.

Figure 143 1is a flow chart depicting legacizing non-numeric
attributes for a class.

Figure 144 is a diagram depicting the state of a query result
before and after processing a sort request.

Figure 145 is a flowchart showing the legacy internal process for
a numeric attribute.

Figure 146 is a flow chart depicting the internal working of the
classifier.

Figure 147 is a continuation of the flow chart in Figure 146.
Figure 148 is a continuation of the flow chart in Figure 147.
Figure 149 is a continuation of the flow chart in Figure 148.
Figure 150 is a flow chart depicting the internal working of the
schema generator.

Figure 151 is a continuation of Figure 150.

Figure 152 is a depiction of data structures in the database
manager in the dynamic class manager.

Figure 153 is a flow chart of the internal processes of an
import.

Figure 154 is a continuation of Figure 153.

Figure 155 depicts the data structures in the query manager after
applying a query.

Figure 156 depicts the data structures in the query manager after
setting a numeric query selector.

Figure 157 depicts the data structures in the query manager after
setting a boolean query selector.

Figure 158 shows a numeric query selector class in the query
manager.

Figure 159 shows an enumerated query selector class and a string

query selector class in the query manager.
Figure 160 shows the base query or class and the boolean selector



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

18

class in the query manager.

Figure 161 depicts a query result class in the query manager.
Figure 162 depicts the base query class, the query class, and the
search result class in the query manager.

Figure 163 represents the query manager class and the query
nhandle manager class that are the main data structures in the
query manager.

Figure 164 shows the classes that are created in the query
manager after a query is created.

Figure 165 is a flow chart that depicts stages of processing in
genic.

Figure 166 is a continuation of the flow chart of Figure 165.
Figure 167 is a continuation of the flow chart of Figure 166.
Figure 168 is a depiction of a typical server architecture for
the invention.

Figure 169 is a depiction of a typical client architecture for
the invention

Figure 170 depicts the process flow chart for the legacy
knowledge base open screen.

Figure 171 shows the legacy knowledge base open dialog.

Figure 172 shows the screen that appears when the legacy
application is invoked.

Figure 173 is the flow chart for the process after the legacy
work area is selected.

Figure 174 is the main legacy screen.

Figure 175 depicts screen after the selection of a class for
thesaurus editing.

Figure 176 is the flow chart of invoking a dialog for thesaurus
editing.

Figure 177 show the thesaurus editing dialog for a class.
Figure 178 depicts the process flow for the thesaurus editing

dialog in Figure 177.
Figure 179 shows the thesaurus editing dialog after adding a new

entry.

Figure 180 shows text entered in a thesaurus entry.

Figure 181 shows a regular expression in a thesaurus entry.
Figure 182 shows the result of inserting a new thesaurus entry.

Figure 183 shows a complex regular expression in the thesaurus

entry.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

19

Figure 184 depicts the flow chart for invoking the thesaurus
editor for an enumerated attribute.

Figure 185 depicts a display screen showing the procedure for
bringing up a thesaurus editor for an enumerated attribute from
the parts specification window.

Figure 186 depicts a display screen showing editing an enumerator
thesaurus from the parts specification window.

Figure 187 depicts a display screen showing editing an enumerator
thesaurus from the edit parts window.

Figure 188 1is a diagram depicting the state of a query result
before and after processing a request toO retrieve an instance
from a sorted query result.

Figure 189 depicts the management of sorted ranges within a
sorted query result.

Figure 190 depicts a display screen showing the procedure of
bring up a numeric attribute thesaurus editor from the edit parts
window.

Figure 191 depicts a display screen showing the procedure for
editing a numeric attribute thesaurus from the edit parts window.
Figure 192 depicts a display screen showing the procedure for
editing a unit thesaurus.

Figure 193 depicts a flow chart for editing a unit thesaurus.
Figure 194 depicts a display screen showing the procedure for
setting up legacy processing for selected parts.

Figure 195 depicts a flow chart for setting up legacy processing
for selected parts.

Figure 196 depicts a display screen showing the result of

legacizing selected parts.
Figure 197 depicts a flow chart for editing the 1list of

attributes to parameterize.

Figure 198 depicts a display screen showing the procedure for
editing a list of attributes to parameterize.

Figure 199 depicts a flow chart for generating customer schema
from customer data.

Figure 200 depicts a flow chart for initially classifying
customer data and generating an import map.

Figure 201 depicts a flow chart for augmenting customer data from

a database of vendor parts.
Figure 202 depicts a flow chart for buffering query result to



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

20

optimize network performance.
Figure 203 depicts editing a non-enumerated thesaurus.
Figure 204 is a diagram of a network environment that is suitable
for a preferred embodiment of the present invention.
Figure 205 is a block diagram depicting an overall architecture
for a system employing a preferred embodiment of the present
invention.
Figure 206A is a schematic diagram which depicts an extended
database granularity hierarchy proposed in the past.
Figure 206B is a schematic diagram that depicts another example
of a hierarchy of lock granules proposed in the past.
Figure 206C is a schematic diagram that depicts a hierarchy of
lock granules in accordance with the present invention.
Figure 207A is a schematic diagram that depicts a hierarchy in
which a class share lock has been applied to three classes.
Figure 207B is a schematic diagram that depicts a hierarchy in
which a tree lock has been applied to a class, and in conjunction
with Figure 207A, demonstrates an example of lock subsuming.
Figure 208 is a diagram representing lock conflicts for the lock
types and granularities employed by the present invention.
Figure 205 is a diagram illustrating a hierarchy during a step
in a process of granting a lock request.
Figure 210 is a diagram illustrating the hierarchy during a
subsequent step in the process of granting a lock request.
Figure 211 is a diagram illustrating the hierarchy during a
subsequent step in the
process of granting a tree lock request on a class whee the steps
depicted in Figure 209 and Figure 210 are successful.

Figure 212 is a flow diagram representing the locking process
performed when a retriever window is opened.
Figure 213 illustrates the process that occurs when a class is
selected in the class hierarchy.
Figure 214 is a flow diagram that represents the process of
opening a class to view subclasses.
Figure 215 is a flow diagram representing a process that occurs
when a user selects a “find class” activity.
Figure 216 depicts an example of a screen display when navigating
the schema by opening and selecting classes.

Figure 217 is a diagram of a schema illustrating an example of



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

21

internal lock states of classes in the schema corresponding to
the display of Figure 216.

Figure 218 illustrates a lock table maintained by the lock
manager as correlated with the schema depicted in Figure 217.
Figure 219 is a diagram that illustrates the contents of one of
the lock objects in the lock table shown in Figure 218.

Figure 220 diagrams the process that occurs when a user adds a
part to a class in the knowledge base.

Figure 221 shows a schema having a class to which a part is being
added.

Figure 222 depicts the lock table states for the process of
adding a part as described in Figure 220.

Figure 223 shows a lock object corresponding to the class for the
add part operation corresponding to Figures 221-222.

Figure 224 depicts an example of a screen display when adding a
part to the schema.

Figure 225 illustrates a flow chart for an example where a user
has selected the edit parts function.

Figure 226 illustrates a flow chart for an example where a user,
while in the edit parts window, navigates to different locations
in the class hierarchy tree.

Figure 227 depicts an example of a screen display when editing

a part.
Figure 228 shows a schema corresponding to the schema being

edited in Figure 227.

Figure 229 shows a lock holder table after completion of the
creation of an edit parts window.

Figure 230 shows a lock object corresponding to the example shown
in Figures 227-229.

Figure 231 shows a flow chart for an example of moving a single
part from one class in a subtree to another class within a given
subtree.

Figure 232 shows a flow chart for an example of a general case
of moving any number of parts from one class in a subtree to
another class within that subtree.

Figure 233 shows a lock holder table during the process for the
general case of moving any number of parts from one class in a
subtree to another class within that subtree.

Figure 234 shows details of the lock objects for the source and



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

22

destination classes, and the associated actions for the general
case of moving parts shown in Figure 232.

Figure 235 shows a preferred display associated with a move parts
operation.

Figure 236 is a flow chart illustrating the process for an
optimized case where one part is to be removed from the knowledge
base.

Figure 237 is a flow chart illustrating the process for a general
case of deleting one or more parts from a subtree.

Figure 238 shows the locks that must be held by a lock holder
that wishes to remove an instance from a class.

Figures 239 and 240 show preferred displays associated with a
delete parts operation.

Figure 241 is a flow chart that describes steps that are involved
in concurrency control when using the schema editor to change the
structure of the schema.

Figure 242 shows a lock table that indicates the locks that are
held during the operations described in Figure 241.

Figure 243 illustrates a screen display for a preferred
embodiment showing a schema developer window that is opened in
one step of the process shown in Figure 241.

Figure 244 shows a flow chart illustrating the mechanisms that
are used by the concurrency control means when displaying a
instance.

Figure 245 depicts the lock table, a diagram of the schema, and
details concerning one of the lock obje cts, showing the
condition of the lock holder table for the situation depicted in
Figure 244.

Figure 246 illustrates a screen display for a preferred
embodiment showing a search results window that is opened in one
step of the process shown in Figure 244.

Figure 247 is a flow chart depicting the steps for requesting
authorization to do a schema edit.

Figure 248 is a flow chart depicting the steps for requesting
authorization to do an instance edit.

Figure 249 is a flow chart depicting the steps for requesting a
class share lock.

Figure 250 is a flow chart depicting the steps for requesting a

tree share lock.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

23

Figure 251 is a flow chart depicting the steps for requesting a
tree update lock.

Figure 252 is a flow chart depicting the steps for requesting a
tree exclusive lock.

Figure 253 is a chart representing the application of a lock
manager by a knowledge base client.

Figure 254 is a diagram of a lock table that is used by the lock

manager.
Figure 255 shows the data structure for the lock holder table.
Figure 256 is a flow chart showing the operation of starting a
lock holder.

Figure 257 is a flow chart for the operation of ending a lock
holder.

Figure 258 shows the major components of a computer hardware
configuration for a knowledge base server.

Figure 259 shows the major components of a computer hardware
configuration for a retriever, a schema editor, a graphical user
interface component, and an API.

Figure 260 and Figure 261 depict flow charts for the process of
comparing part attributes.

Figure 262A shows an example of a display of a search results

window.
Figure 262B shows an example of a display of a compare parts

dialog box.
Figure 263 shows an example of a display of a compare parts
dialog box after a compare to selected part command has been

invoked.
Figure 264 depicts an initial display screen showing the part

specification window.
Figure 265 depicts an example of the part specification window

during a search.
Figure 266 depicts a display screen showing information displayed

in the part specification window.
Figure 267 is a flow chart depicting procedures followed when a

user edits parts.
Figure 268 depicts a display screen showing information displayed

in the parts editor window.
Figure 269 depicts a display screen showing information displayed

in the parts editor window.



10

15

20

25

30

[9%)
o

40

WO 96/15501 PCT/US95/15028

24

Figure 270 is a flow chart depicting procedures followed when a
user deletes parts.

Figure 271 is a flow chart depicting procedures followed when a
user moves parts.

Figure 272 depicts a display screen showing information displayed
in the parts editor window.

Figure 273 shows the internal object representation for a class.
Figure 274 depicts a generic list.

Figure 275 illustrates the data structure for attribute data.
Figure 276 illustrates the data structure for an enumerator
object.

Figure 277 depicts the data structure for an instance and
associated parameters.

Figure 278 depicts the data structure for a parameter.

Figure 279 is an example of a schema with instances.

Figure 280 is a flow chart depicting how to add a class to the
schema.

Figure 281 is a continuation of the flow chart in Figure 280.
Figure 282 is a flow chart depicting the addition of enumerated
attributes.

Figure 283 is a continuation of the flow chart in Figure 282.
Figure 284 is a flow chart depicting the addition of an instance.
Figure 285 is a continuation of the flow chart in Figure 284.
Figure 286 is a flow chart depicting the deletion of a class.
Figure 287 is a continuation of the flow chart in Figure 286.
Figure 288 is a flow chart depicting the deletion of an
attribute.

Figure 289 is a continuation of the flow chart in Figure 288.
Figure 290 is a flow chart depicting the deletion of an instance.
Figure 291 is a flow chart depicting the steps involved in moving
a subtree.

Figure 292 is a continuation of the flow chart in Figure 291.
Figure 293 is a flow chart depicting unhooking a moved class from
the original parent.

Figure 294 is a flow chart describing the process for finding the
common ancestor of the class to be moved.

Figure 295 is a continuation of the flow chart in Figure 294.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

25

The present invention can advantageously be used in a network
environment. A number of configurations are possible, and only
one example will be described herein. It should be understood
that the present description is illustrative, and the invention
is not limited to the particular example or configuration
described herein. An overview of a suitable network environment
is depicted in Figure 2.

The network 100 includes a first UNIX server host 101. One or
more knowledge bases l23are installed on the first UNIX server
host 101. In the illustrated example, a first knowledge base
server daemon 102 runs on the first UNIX server host 101. Data
may be physically stored on a first disk drive 103 which is
sometimes referred to as secondary storage. More than one
knowledge base server 102 may exist on the system 100. For
example, a second knowledge base server daemon 104 may be
provided. Similarly, data may be physically stored on a second
disk drive 105. The first UNIX server host 101 may communicate
over a network with a second UNIX server host 106 and a third
UNIX server host 107. In this example, a registry server daemon

108 is installed on the second UNIX server host 106. The
registry server daemon 108 could run on the same UNIX server host
101 as the knowledge base server daemons 102 and 104. Certain

files containing information used by the registry server 108 may
be physically stored on a third disk drive 109. The registry
server 108 is used to administer user access to features and
access to knowledge bases. The registry server 108 also allows
a system administrator to set up different user profiles for
different types of users. For example, there may be some users
who only need access permission to retrieve parts from a
knowledge base 123. Other users may need access permission to
add parts, or edit existing parts. The registry server 108
provides a convenient way to specify and control user access to
specific functions. The registry server 108 describes the
knowledge bases in use, the users that are allowed to use the
system, and the access rights that each user has to the listed
knowledge bases.

A licensed manager server daemon 110 is installed on the third
UNIX server host 107. The license manager server 110 controls
the number of licenses available to any authorized user on the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

26

network 100. The license manager 110 uses "floating" licenses.
For example, when 20 licenses are available through the license
manager 110, any 20 users of the network can use these licenses
concurrently.

Before a knowledge base server 102 can be started, the license
manager server 110 and the registry server 108 must be running.
In order for the registry server daemon 108 to continue to run,
it must be able to obtain a license from the license manager
server 110. If the registry server 108 can not contact the
license manager server 110, it will exit. Therefore, the license
manager server 110 should be started first. The registry server
108 should be started second. The knowledge base server 102
should be started thereafter.

Users may access data available through the knowledge base
server daemon 102 or the knowledge base server daemon 104 using
a suitable workstation 111 connected to the network 100. For
example, a Sun Microsystems SPARCstation 111, preferably running
X11R5/Motif v1.2 software. Alternatively, a SPARC compatible
workstation may be used. 1In addition, a Hewlett Packard series
700 workstation running Motif v1.2 with X11R5 will also give

satisfactory results. In the illustrated example, the Sun
Microsystems SPARCstation 111 runs a SunOS 4.1.x operating
system. A Hewlett Packard series 700 platform preferably

includes HP-UX 9.0.x software.

In addition, a user can access the network 100 using an IBM PC
compatible computer 112 running Microsoft Windows v3.1. In the
illustrated example, the IBM PC compatible computer 112 can be
a 386, 486, or Pentium based machine. The IBM PC compatible
computer 112 includes a display 113, a mouse 114, and a keyboard
115. The display 113 is preferably a VGA or SVGA CRT 113. In
the illustrated example, the IBM PC compatible computer 112 runs
MS-DOS 5.0 or later disk operating system, MS-DOS 6.2 being
preferred. The IBM PC compatible computer 112 also must have
Winsock 1.1 compliant TCP/IP software. A windows client using
an IBM PC compatible computer 112 will employ RPC calls via
TCP/IP to communicate with the knowledge base server 102. The
IBM PC compatible computer 112 should have sufficient available
disk space for software installation. In the illustrated
example, the IBM PC compatible computer 112 should also have art



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

27

least 4 megabytes of RAM memory; 16 megabytes of memory is
preferred.

The Sun Microsystems SPARCstation 111 similarly has a display
116, a mouse 117, and a keyboard 122.

The illustrated network 100 shown in Figure 2 also supports an
X Windows client which employs a computer 118, which has a
display 119, a mouse 120, and a keyboard 121. A user can access
this system using X Windows in a proper emulation mode
interfacing with the workstation 111.

In the example shown in Figure 2, each of the server hosts
101, 106 and 107 may be a Sun Microsystems SPARCstation (or a
SPARC compatible), or a Hewlett Packard series 700 computer. 1In
a presently preferred embodiment, a single UNIX system on the
network may be designated to run the knowledge base server daemon
102, the registry server daemon 108, and the license manager
server daemon 110. This implementation may provide ease of
administration. For best performance, the software and knowledge
bases embodying the present invention should reside on a single
server host 101 local disk drive 103. However, a knowledge base
123 for example may reside on a remote disk drive 109.

In the present example, the network environment includes
an operating system with a file system, supports virtual memory,
employs UDP/TCP/IP protocol, and provides ONC/RPC (open network
computing/remote procedure call) services. In addition, it is
useful if the network environment supports multiprocessing and
multitasking.

The present system supports interactive editing by the user.
Users are able to change the parts schema by adding and deleting
part attributes, and are able to add whole sections to the schema
to support their custom parts. In addition to schema editing,
parts in the database may be repositioned within the schema
hierarchy, as well as being modified, added, and deleted.

The present invention provides an object oriented tool set

that (1) supports dynamic class management, (2) supports a
database having a large number of parts (e.g., in excess of
several hundred thousand parts), (3) has performance sufficient

to support interactive retrieval of parts by hundreds of users,
and (4) understands and automatically manages the translation

across different units of measure. This system may be referred



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

28

to as a knowledge base management system.

The present knowledge base management system enables
a user to locate "objects" by describing them in terms of their
attributes. 1In a parts management application, these objects are
parts, but it could be any other item described by a collection
of attributes. Applications are created by subject matter
experts--not computer programmers. The sophistication of the
application is tied to the development of the subject based
schema, not to computer program development.

The present invention may be better understood in connection
with the following description of the overall architecture of a
presently preferred embodiment.

I. Overall Architecture

Turning now to Figure 3, presently preferred embodiment may
include a retriever 130, a knowledge base client 131, and a
knowledge base server 132. A legacy manager 133 is preferably
included to facilitate organization of an existing legacy
database into a schema for use in connection with the present
invention. In a preferred embodiment, the knowledge base server
132 includes a dynamic class manager 134, a connection manager
135, a query manager 136, a handle manager 137, a units manager
138, a database manager 139, and a file manager 140. A preferred
system also includes a registry server 141 and license manager
142 to control unauthorized user access to the system.

A schema editor 144 is preferably provided to modify or
customize the schema. An application programming interface or
API 143 is also provided in the illustrated environment.

A knowledge base 123is a database containing information,
and is stored on a disk drive 103. The knowledge base 123 in the
present example comprises three files: the schema file, the
variable data file, and the instance file. A schema is a
collection of classes, attributes, units, and unit families and
their relationships.

In the present example, the executable for the knowledge
base server 132 is pmxdbd. Each pmxdbd server provides access
to one knowledge base 123. Therefore, the UNIX server host 101
must run one pmxdbd process for each knowledge base 123. For
example, in a system having three knowledge bases, the UNIX ps

command would show three pmxdbd servers running.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

29

Unlike an RDBMS based application, with the present
knowledge base management system solution, complexity, and thus
response time, does not increase exponentially with size and
number of relationships. Knowledge is not tied to the quantity
of software code. Schema can be dynamically updated without
recompiling the application. Data and schema are interactively
user modifiable. A gquery is equivalent to finding corresponding
indices, not computing RDBMS table joins. . Database size 1is
reduced. A knowledge base management system database 123 in
accordance with the present invention is typically about 1/10 the
size of an equivalent RDBMS database.

The steps for logging into the system are shown in the
flowcharts depicted in Figure 4A and Figure 4B.

A login procedure is initiated by a user logging into the
retriever 130, as depicted in step 150 in Figure 4A. The user's
name and password are sent to the registry server 141, as shown
in 151. In step 152, the user name and password are validated
by the registry server 141. If the user name and password are
not valid, the flow returns to step 150 and the user must try
again. If the name and password are valid, the flow continues
to step 153 in which the retriever 130 asks for an appropriate
software license from the license manager 142.

In step 154, the license manager 142 determines whether or
not a license is available for the user. If a license is not
available, flow returns to step 150 shown in Figure 4A. If the
license is available, license manager 142 grants a license to run
and flow continues to step 155. The retriever 130 will display
on the display 116 a 1list of knowledge bases 123 which are
available. The list of knowledge bases is obtained from the
registry server 141. The registry server 141 will only return
a list of knowledge bases for which the user has access rights.
In step 156, the user may then select a knowledge base 123 to
open.

In step 157, the retriever 130 will send an open knowledge
base request to the knowledge base server 132. 1In step 158, the
knowledge base server checks to see if the requested knowledge
base 123 is locked. There are times, for example when an input
administrator is performing extensive input into a knowledge base
123, when it is desirable to lock a knowledge base 123 and



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

30

temporarily prevent any other user from accessing it. Instances
when a knowledge base 123 is locked are typically those in which
one person needs to have exclusive access to the knowledge base
123. 1If the knowledge base 123 is locked, flow returns to step
155 in which the retriever 130 again displays on the display 116
a list of knowledge bases from the registry server 141 for which
the user has access rights. The user will also receive a message
notifying the user that the knowledge base 123 that the user
initially attempted to open is locked.

If the requested knowledge base 123 is not locked, flow
continues to step 159 in Figure 4B, and the knowledge base server
132 checks to determine which open modes are valid for this user
or knowledge base 123. For example, if the knowledge base 123
is read only, and the user has attempted to access it in a mode
in which a write operation to the knowledge base 123 has been
requested, flow returns to step 155 in Figure 4A and the user
receives a message on the display 116.

In this example, if the requested open mode is available
that particular knowledge base 123 for that particular user, flow
continues to step 160 shown in Figure 4B. The knowledge base
server 132 attempts to get the appropriate software license from

the license manager 142. If a license is not granted, flow
returns to step 155 shown in Figure 4A. If a license is
available, flow continues to step 161 shown in Figure 4B. In

that event, the knowledge base server 132 will return connection
and a knowledge base handle to the retriever 130. The user will
then have successfully logged on to the network 100 and will have
access to the requested knowledge base server 102.

Figure 168 shows the major components of a computer hardware
configuration 101 providing the computational and communications
environment for a knowledge base server 132. This configuration
consists of a central processing unit or CPU 2109 which includes
an arithmetic 1logical wunit 2100 which fetches and executes
program instructions from main memory 2101. The programs are
stored on a disk drive 103, access to which is provided through
a disk controller 2106. The knowledge base files 123 are also
stored on disk drive 103 and accessed through virtual memory
addresses 2112 in main memory 2101, through which, when required,
a page 2111 of contiguous data in a disk file 2108 is copied intc



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

31

main memory 2101. The preferred embodiment of the present
invention uses virtual memory 2112 for this knowledge base
management system. The knowledge base server 132 interacts with
the client API 143 through a local area network 100, access to
which is controlled by network controller 2102, or through a wide
area network 2104, access to which is controlled by a serial
interface controller 2103. An I/0 bus 2105 mediates data
transfers between the CPU 2109 and the peripheral data storage,
interface and communication components.

Figure 169 shows the major components of a computer hardware
configuration 112 providing the computational and communications
environment for a retriever 130, schema editor 144, a graphical
user interface component of legacy 133, and an API 143. This
configuration consists of a central processing unit or CPU 2109
which includes an arithmetic logical unit 2100 which fetches and
executes program instructions from main memory 2101. The programs
are stored on one or more disk drives 2110, access to which is
provided through a disk controller 2106. The user interacts with
the system through the keyboard 115 and mouse Or similar
graphical pointer 114 with the graphical user interface displayed
on the CRT display 113. The API 143 communicates with the
knowledge base server 132 through a local area network 100,
access to which is controlled by network controller 2102, or
through a wide area network 2104, access to which is controlled
by a serial interface controller 2103. An I/0 bus 2105 mediates
data transfers between the CPU 2103 and the peripheral data
storage, interface and communication components.

A. Retriever
The retriever 130 1is an application that provides a
graphical interface for finding and managing parts. The

retriever 130 communicates with the knowledge base client 131
using the API 143. The retriever 130 provides an object oriented
graphical user interface. A user interacts with the retriever
130 providing input through a keyboard 115 and a mouse 114. The
retriever displays information on the display 116.

Figure 5 depicts a typical display that appears on the
screen of the display 116 after a user successfully logs on to
the system. The particular example described herein is described
in a Windows environment, it being understood that the invention



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

32

is not limited to implementation in Windows. Those skilled in
the art are familiar with windows techniques and instructions,
including how to click, double click, drag, point and select with
a mouse 114. Additional information may be obtained from the
Microsoft Window's User's Guide (1992), available from Microsoft
Corporation, One Microsoft Way, Redmond, Washington, 98052-6399,
part number 21669.

When a user first opens a knowledge base 123, a part
specification window 170 appears, as shown in Figure 5.
Initially, the left hand portion of the screen 171 displays the
parts found 172, which in this instance is the total number of
parts found in the knowledge base 123. Also displayed on the
left-hand portion of the screen 171 is the root class 173 and the
root subclasses 174. In the illustrated examples, the root
subclasses 174 are electrical components, mechanical (i.e.,
mechanical components), and materials. The root class 173 is the
upper most class that has no parent. 1In this example, it is the
name of the knowledge base 123, or the very beginning of the
schema. A subclass 174 is a class that has a parent. When a
class is chosen, any subclasses that belong to that class will
appear on the display 171. Subclasses are the children of the
parents. For example, the parent of the mechanical subclass 174
is the root class 173, and the mechanical subclass 174 is a child
of the parent root class 173. 1In the example shown in Figure §,
there are three subclasses.

The right hand portion of the screen 175 displays root
attributes 176. In the illustrated example, the attributes are
part number, description, and cost. Attributes 176 are the
characteristics of a class or subclass 174.

Specific attribute values may be entered to locate a part
as search criteria 177. Command buttons 178 are displayed in the
part specification window 170. When a command name is dimmed,
the command is not available at the current time. In the example
shown in Figure 5, display button 179 will, when activated,
display a list of the parts matching the current specification
at that point in the search. 2An edit button 180 and a make
button 181 are also shown in Figure 5. These command buttons are
only shown if the user is authorized to edit attribute values and
has access rights to make a new part, respectively. When



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

33

activated, the edit button 180 causes a parts editor window to
be displayed which allows the user to edit attribute values.
When the make button 181 is activated, it allows a user to add
a part to the knowledge base 123. These three buttons appear in
the parts area 186 of the command buttons 178. A display order
area 187 has a set all command button 182 and a clear command
putton 183. When the set all button 182 is activated, it sends
a sequential display order to each attribute. This order is used
to arrange the attributes display in a search results window.
When the clear button 183 is activated, it causes the display
order numbers to be removed from all of the attributes.

A clear criteria area 188 includes an all button 184 and a
selected button 185. When the all button 184 is activated, it
causes all values to be cleared from the search criteria fields
177. When the selected button 185 is activated, it causes the
value to be cleared from the selected search criteria fields 177.

The left-hand portion of the screen 171 is separated from
the right-hand portion of the screen 175 by a split bar 189. A
user may drag the split bar 189 to the left or right to change
the size of the left hand portion of the screen 171 and the
right-hand portion of the screen 175.

Icons are displayed in the part specification window 170 to
provide information to the user. Closed folder icons 189 are
used to represent the classes that have subclasses. An open
folder icon 190 is used to represent opened classes 173 and
subclasses. A protected icon 191 indicates an attribute for
which the user cannot enter values when making a part. An
undefined icon 192 indicates a column which, if selected by a
user, will be used to search for parts that do not have any value
for the selected attribute 176. Also shown in Figure 5 is a text
icon 193 associated with each of the attributes entitled "part
number", "description", and "cost". The text icon 193 1is used
to indicate attributes 176 that have values consisting of a
string of characters. For example, a written description is an
attribute 176 of a part that is a text attribute. An order
column 194 is used to indicate the sequence, from left to right,
in which attributes 176 will appear when a search results window
299 is displayed. When applicable, a "1" in this column will
indicate the attribute 176 that will be displayed on the far left



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

34

of the search results window, a "2" in this column will indicate
the attribute 176 that is displayed next, and so forth from left

to right.
The part specification window 170 also contains a query type
indicator 195. This only appears for users who have access

rights for editing parts. This indicates the type of query that
the user is performing, i.e., whether it is global or local. 1In
the example illustrated in Figure 5, the query type has defaulted
to global.

When the user needs to locate a part, the user generally
knows the characteristics or attributes 176 of the part, but the
user may not know the part number. By knowing the attributes
176, the user can easily locate the part in the knowledge base.
A user locates parts in the knowledge base by specifying the type
of part the user wants to find. The user specifies a part by
selecting the part's class 173 and subclasses 174 and by entering
attribute search criteria 177.

The first step in specifying the part the user wants to
locate is to open the class 173 the part belongs to. When the
user opens a class such as the mechanical class 174 shown in
Figure 5, the user sees the next level of the hierarchy, i.e.,
subclasses 196 shown in Figure 6. The closed folder icon 189
next to the mechanical subclass 174 shown in Figure 5 is replaced
by an open folder icon 190 shown in Figure 6. The next step in
specifying a part is to open the next subclass 196 the part
belongs to, in this example the fasteners subclass 196. When the
user opens one of the subclass folders 196, the user sees the
next level of subclasses 197, as shown in Figure 6. The user
continues specifying a part by opening another level of subclass
197, such as the bolts subclass 197 shown in Figure 6, and so
forth through lower levels of subclasses 198 and 199, until the
user reaches a class that has no more subclasses, which is called
a leaf class 201. A leaf class is identified with a page icon
202. An open class 199 will be displayed with a line 232 forming
a subtree connecting the subclasses 204 of the class 199. More
specifically, line 232 connects the open folder icon 190 for the
class 199 with the closed folder icons 189 of the subclasses 204.
The line 232 extends vertically down from the open folder icon
198 to the level of the last subclass 204, as horizontal branches



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

35

connecting the vertical line 232 with closed folder icons 189 for
the subclasses 204.

At every subclass level the number of parts found at that
level is displayed as parts found 172. The parts found number
172 indicates the number of parts located within the current
subclass 199, including its subclasses and leaf classes (see
Figure 6). This instant feedback to the user greatly facilitates
a search.

The steps followed by the retriever 130 are depicted in
Figure 7. The user selects a class in step 205. In step 206,
the selected class is displayed in a highlighted representation
200 (see Figure 5). The retriever 130 resets the current query
to the selected class in step 206.

Referring to Figure 7, in step 207 of the flow the retriever
130 determines whether inherited attributes 176 have query
selectors 177 set. If query selectors are set, the flow proceeds
to step 208, and the retriever 130 sets corresponding gquery
selectors for inherited attributes 176. Flow then proceeds to
step 209. In step 207, if inherited attributes do not have any
query selectors set, the flow proceeds directly to step 209.

In step 209, the retriever 130 gets local attributes 203 for
the class 199 and adds them to the display in the right hand
portion 175 of the part specification window 170, which may be
referred to as the attribute window 175.

Flow proceeds to step 210 where the retriever 130 updates
the part count and displays that information as parts found 172.
Flow then proceeds to step 211 where control is returned to the
user and the system waits for another command.

The procedure 210 for updating the part count and display
is shown in more detail in Figure 8. In order to update the part
count and display, the retriever 130 gets a value representative
of the query result count and displays it as parts found 172.
This is shown in step 212 of Figure 8.

The retriever 130 then checks to determine whether the part
count is zero, which is performed in step 213. If the part count
is zero, the retriever 130 checks to determine whether this
particular user has access rights to add a new part to the
knowledge base. This occurs in step 214. If the user does not
have such access rights, the flow proceeds to step 211 and



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

36

returns control to the user. If the user does have such access
rights, the retriever 130 then activates the make button 181.
Up until this point in time, the make button 181 had been dimmed
because that procedure was not available. In a preferred
embodiment, a user is not allowed to add a new part to the
knowledge base unless the user has access rights which permit him
or her to do so. Activation of the make button occurs in step
215 of the flow chart illustrated in Figure 8.

If the part count is not equal to zero, flow transfers to
step 216 in which the retriever 130 checks to determine whether
the user has access rights to edit parts. If the user does have
such access rights, the retriever 130 proceeds to step 217 in the
flow and activates the edit button 180. The flow then proceeds
to step 218, where the retriever 130 activates the display button
179. In step 216, if the user does not have access rights to
edit parts, the flow proceeds directly to step 218. After the
display button is activated in step 218, the flow proceeds to
step 211 where control is returned to the user.

Figure 9 depicts steps performed by the retriever 130 to
open a class. In order to open a class such as the fasteners
class 196 shown in Figure 6, the user positions the cursor to
point to the closed folder 189 immediately next to the class and
double clicks. As shown in Figure 9, the retriever 130 then
changes the display of a closed folder 189 and replaces it with
an open folder icon 190 in step 220. The retriever gets a list
of the subclasses 197.

In step 221, the retriever 130 proceeds through the list of
subclasses and determines whether the next subclass in the list
is a leaf class 201. 1If it is, flow proceeds to step 222 in
Figure 9 and a page icon 202 is displayed for that subclass 201.
Control will then proceed to step 224.

In step 221, if the next subclass in the list is not a leaf
class, flow proceeds to step 223 where the retriever 130 displays
a closed folder icon 189 and the class name for the subclass 197.
Flow then proceeds to step 224.

In step 224, the retriever 130 checks to determine whether
there are any more subclasses 197 in the list to display. 1If
there are, flow proceeds back to step 221. If there are not,

flow proceeds to step 205.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

37

flow proceeds to step 205.
The procedure followed by the retriever 130 to close and

open class 199 (see Figure 10) is depicted in Figure 11. 1In step
225, the user double clicks on the open folder icon 190
associated with the class 199 that is to be closed. Flow then
proceeds to step 226 in Figure 11. In step 226, the retriever
130 removes all lines for the subtree 232 from the display 171.
The names of the subclasses 204 and the closed folder icons 189
associated with them will also be removed from the display 171.
The representation of the tree structure will then be collapsed
to eliminate the space formerly occupied by the subclasses 204.

The flow then proceeds to step 227, in which the open folder
190 next to the parent class 199 is replaced with a closed folder
icon 189. The flow then proceeds to step 228 in Figure 11, and
control is returned to the user.

The changes to the part specification window 170 which occur
when a user closes an open class may be better appreciated by
comparing Figure 10 with Figure 6. Starting with Figure 10, if
the user closes the numeric class 199, the subtree line 232 and
the subclasses 204 will be removed from the display, and the open
folder icon 190 associated with the numeric class 199 will be
replaced with a closed folder icon 189. The display 171 will be
updated to appear as depicted in Figure 6.

Attributes 203 that may have a value taken from a set of
pre-defined values are referred to as enumerated attributes. For
example, the head style attribute 203 under bolts is taken from
a set of pre-defined values because the head style for a bolt can
only be one type taken from a finite list of possible head
styles. Enumerated attributes such as head style 203 are
identified with an associated enumerated icon 233.

Attributes 203 that have values of either true or false are
Boolean attributes. For example, a bolt can have an attribute
203 used to indicate whether or not it is a self locking bolt.
If the bolt is self locking, this attribute value is true. If
the bolt is not self locking, this attribute value is false.
Boolean attributes have a Boolean attribute icon 234 associated
with them.

Attributes 236 that have values that are numeric and have

an associated unit of measurement are called numeric attributes.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

38

For example, the length of a bolt 236 is a numeric attribute.
Numeric attributes 236 have a numeric attribute icon 235
associated with them.

The user may further specify the part by entering attribute
search criteria 177. Each class and subclass has an associated
set of attributes 176. Attributes 176 are the characteristics
of a part, such as the material the part is made from, its
length, or finish. As the user opens additional subclasses 196,
197, 198 and 199, the attributes 203 specifically associated with
those subclasses 196, 197, 198 and 199 appear. These attributes
203 are the local attributes of the open class/subclass 199 and
are appended to the existing attributes 176, which are the
inherited attributes. By entering attribute search criteria 177,
the user can narrow down the number of parts the user needs to
check for applicability.

Referring to Figure 12, there may be many parts in the
selected subclass or leaf class 240, and it is desirable to
further specify a part by entering search criteria 177. When a
user enters search criteria 177, the retriever 130 immediately
performs a search to locate only the parts that have all of the
specified attribute values 176, 203. There are four types of
attributes: (1) enumerated, (2) numeric, (3) text, and (4)
Boolean. The retriever 130 has different procedures for entering
and clearing the search criteria for each type of attribute.

A procedure for entering text attribute search criteria 177
is shown in Figure 12. 1In step 250, the user selects the text
attribute. For example, a user could enter search criteria 242
for the part number attribute 241. To do so, the user would
click on the text attribute icon 193 associated with the part
number attribute 241. The retriever 130 then pops up a text
search criteria dialog box 237, as shown in Figure 13. The
retriever 130 positions the cursor at the left most position the
data entry field 243 of the text search criteria dialog box 237.
Referring to Figure 12, the retriever 130 then proceeds to step
251 in order to accept text input entered in the data entry field
243,

The retriever 130 allows for the use of special characters
as part of the search criteria 242. An asterisk matches any

number of characters. For example, it may be desirable to locate



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

39
all parts containing the abbreviation "pf" (for picofarads)
anywhere in the selected part number text attribute 241. To

accomplish this, a user could type *pf* in the text data entry
field 243. 1In the example illustrated in Figure 13, typing 015*
in the data entry field 243 will cause the retriever 130 to
search for any part number beginning with the digits 015
regardless of how many additional characters or numbers follow
in the part number. A question mark matches any single
character. For example, to locate all parts with descriptions
containing fractional sizes, i.e., 1/8, 1/4, 1/2, etc., a user
could type ?/?. Finally, occasions may arise when it is
desirable to search for a part containing the special character
* or the special character ? in the text. By typing |
immediately before either special character * or ?, the retriever
130 will recognize the following special character as a regular
character.

The text attribute search criteria 242 is case insensitive.
A search will match a character regardless of whether it is upper
case or lower case. The case of the letters typed by the user
in the text data entry field 243 is disregarded when the search
is looking for matching attribute values.

The user remains in control until user's input in the text
data entry field 243 is confirmed. User may confirm such input
by clicking on an OK button 244 in the text search criteria
dialog box 237, or by pressing the enter key on the keyboard 115.

This may be better understood in connection with the
following discussion of an example of the classes and subclasses
a user may open to specify and locate a particular bolt.

A cancel button 245 is provided in the text search criteria
dialog box 237 to enable a user to abort the text search. If the
cancel button 245 is activated, the retriever 130 returns to the
state that existed just prior to the user's selection of the
associated text attribute icon 193. Any input entered in the
text data entry field 243 will be ignored.

A clear button 246 is provided in the text search criteria
dialog box 237. If this button is activated, the retriever 130
will clear any entry in the text data entry field 243. The
dialog box 237 will remain in position, and the retriever 130
will continue to wait for the confirmation of input from the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

40

user.
If the user enters characters in the text data entry field

243 and activates the OK button 244, flow continues to step 253
shown in Figure 12. The retriever 130 will add a text selector
to the current query if none currently existed for the associated
attribute 241. If a pre-existing text selector is present, the
retriever 130 will replace it in the current query. The search
will then be performed including this text attribute search
criteria 242, and the retriever 130 will proceed to step 210
shown in Figure 12.

The text data entered by the user in the entry field 243
will be displayed in the search criteria field 242 in the right
hand portion 175 of the part specification window 170. The parts
count 172 will be updated as shown in Figure 13 to reflect the
results of the search.

If the length of the text data that is entered by the user
exceeds the size of the data entry field 243, scroll buttons 247
may be used in the manner known to those skilled in the art to
view text that may fall outside the field of view 243.

Numeric attributes such as the length attribute 236 shown
in Figure 13 may be selected as a search criteria 177. Referring
to Figure 14, a user selects a numeric attribute such as the
numeric attribute length 236 shown in Figure 13 by clicking on
its associated numeric attribute icon 235. Referring to Figure
14, this is represented by step 255 in the flow chart.

The retriever 130 then proceeds to step 256 to determine if
a table of standard values has been defined for the selected
numeric attribute 236. If no table of standard values has been
defined, the retriever 130 proceeds to step 257. A custom
numeric dialog box 265 shown in Figure 15 will appear. Custom
numeric dialog box 265 allows entry of a range of numeric values.
A "from" numeric input field 266 is provided in the custom
numeric dialog box 265. A "to" numeric input field 267 is alsc
provided in the custom numeric dialog box 265. When a user types
the "from" value, it is automatically copied toc the "to" value
field 267. 1If a user wants to search for only one value using
the default unit of measure 268, the user may confirm the input
having the same value in both the "from" input field 266 and the
"to" input field 267 by clicking the OK command button 270, thus



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

41

proceeding to step 260 shown in Figure 14.

In step 257, a user may select a different unit of measure
other than the default unit of measure 268. The default unit of
measure is displayed in the custom numeric dialog box together
with a button 269 which, when actuated, produces a drop down list
box containing a list of other available units of measure. Thus,
a different unit of measure may be selected from the drop down
list box.

The custom numeric dialog box 265 includes a cancel button
271 and a clear button 272 which operate in a manner known to
those skilled in the art. The custom numeric dialog box 265 also
includes an OK button 270 described previously. A user's input
is confirmed in step 260 shown in Figure 14 when the user clicks
the OK button 270 or presses the enter key on the keyboard 115
when the OK button 270 is highlighted.

Referring to Figure 14, in step 256 if a table of standard
values is defined for the numeric attribute 236, the user is
presented with a table of standard values 273 (see Figure 16) in
step 258. Referring to Figure 16, if the list of standard values
that are defined for the numeric attribute 236 exceeds the number
that can be displayed in the pop up window 273 for the table of
standard values, scroll buttons 274 may be used in a manner known
to those skilled in the art to view values which are not
currently displayed in the table of standard values window 273.
A plurality of standard values 275 which are defined for the
numeric attribute 236 are displayed in the table of standard
values window 273, as shown in Figure 16. The currently selected
standard value 276 is displayed in a highlighted manner.

The table of standard values window 273 includes an OK
button 277. The retriever 130 will accept the highlighted
standard value 276 when the user actuates the OK button 277. The
table of standard values window 273 also includes a cancel button
278 and a clear button 280 which operate in a manner known to
those skilled in the art.

The table of standard values window 273 includes a custom
button 279. If the user does not find a standard value 275 on
the list which is the same as the numeric value that is required,
the user may actuate the custom button 279. In Figure 14, the
retriever 130 checks for actuation of the custom button in step



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

42

259. If the custom button is actuated, flow proceeds from step
259 to step 257. The user is then presented with the custom
numeric dialog box 265 shown in Figure 15. The user may then
enter the desired numeric value in the manner previousl
described with reference to step 257 in Figure 14.
In step 260, when the user confirms the input by actuating

the OK button 277 or by pressing the enter key on the keyboard
115, flow proceeds from step 260 to step 261. The retriever 130
will add or replace the numeric selector in the current query,
depending upon whether the numeric attribute 236 was present in
the previous query. The retriever 130 will then proceed to step
210 and update the parts count 172 and update the display 170.
The table of standard values window 273 will disappear when the
user's input 1is confirmed, for example, by actuating the OK
button 277. 1In step 262, the retriever 130 then returns control
to the user and awaits another command. The selected numeric
value will be displayed in the numeric search criteria field 281.

The procedure for entering search criteria 282 for a Boolean
attribute 203 shown in Figure 17. The user selects a Boolean
attribute 203 that uses a search criteria 177 by clicking on the
Boolean attribute icon 234.

Referring to Figure 17, the retriever 130 then proceeds to
step 301. A Boolean dialog box 283 pops up to present true and
false choices to the user. The Boolean dialog box 283, shown in
Figure 18, includes a true option button 284 and a false option
button 285. As is typical in a windows operating environment,
these option buttons are mutually exclusive. The user may select
either a true or a false search criteria 282 by clicking on the
true option button 284 or the false option button 285,
respectively.

The Boolean dialog box 283 includes an OK button 286. The
user confirms the input in step 302 shown in Figure 17 by
actuating the OK button 286.

The Boolean dialog box 283 also includes a cancel button 287
and a clear button 288, which function in a manner known to those
skilled in the art.

When the user confirms the desired Boolean search criteria
282 by actuating the OK button 286, the retriever 130 proceeds
to step 303 in Figure 17 and adds or replaces an appropriate



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

43

Boolean selector in the current query. As explained above, a
Boolean selector will be added if no such selector existed in the
previous query. A Boolean selector will be replaced if a Boolean
selector appeared for this attribute 203 in the previous query.
Flow then proceeds to step 210 in Figure 17. The Boolean dialog
box 283 disappears, and the selected search criteria is displayed
in the appropriate search criteria field 282 in the right hand
portion 175 of the part specification window 170. The display
of parts found 172 will also be updated.

Referring to Figure 19, a user may select an enumerated
attribute 289 by clicking on an enumerated attribute icon 233.
This is accomplished in step 305 depicted in Figure 19. The
retriever 130 then displays an enumerated attribute dialog box
291, as shown in Figure 20. The enumerated attribute dialog box
291 presents a list of valid values the particular attribute 289
may have. The selected value is displayed as a highlighted entry
293, A user may select multiple values 292 for the search
criteria 290. When multiple values 292 are selected, the
retriever 130 treats them as an "or" logic condition for the
search criteria 290. In other words, the search will retrieve
parts that have any one of the enumerated values 292 which are
selected.

The dialog box 291 includes a clear button 296. The user
may deselect all of the selected values 293 and start over. This
is convenient when multiple values 292 have been selected. The
user may abort this operation by actuating a cancel button 295
provided by the dialog box 291. This will transfer flow from
step 307 to step 309 shown in Figure 19.

When the user is satisfied with the selected enumerated
values 293, the user can confirm the input by actuating an OK
button 294 provided in the dialog box 291. Referring to Figure
19, flow proceeds from step 307 to step 308 when this occurs.
The retriever 130 will add or replace the selected enumerated
values 292 in the current search query, depending upon whether
pre-existing values for this attribute have been selected in a
previous query. The retriever 130 will then proceed to step 210
shown in Figure 19 and update the display. The enumerated
attribute dialog box 291 will disappear. The selected search
criteria 293 appear in the search criteria display field 290.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

44

retriever 130 will then proceed to step 309 shown in Figure 19,
and return control to the user awaiting another command.

Referring to Figure 20, the enumerated attribute dialog box
291 also includes scroll buttons 297 which operate in a manner
known to those skilled in the art.

Figure 21 depicts an updated display of the part
specification window 170. In the illustrated example, the text
attribute search criteria 242 is displayed in the search criteria
display field associated with the part number attribute 241. The
enumerated attribute search criteria 290 is displayed in the
search criteria field associated with the enumerated attribute
"head style" 289. The numeric search criteria 281 is displayed
in the search criteria display field associated with the numeric
attribute for length 236. The updated parts found display 172
reveals that the search has succeeded in locating a single part
that has the desired attributes.

A flow chart of the procedure employed by the retriever 130
to determine the order in which the search results are to be
displayed is depicted in Figure 22. The procedure starts with
step 310 in which the user is allowed to select the order in
which the display results are to be sorted according to the
attributes of the parts located in the search. The display may
be sorted according to attributes 176 which were not selected as
search criteria, as well as attributes 241, 289, and 236 which
were. Selection is accomplished by clicking on buttons 298 in
the order column 194 to correspond to the desired attribute 247 .
The first order button 298 that is clicked will be the first
attribute 241 with respect to which the search results will be
sorted for display. A "1" appears on the display of the order
button 298 which is clicked first. Similarly, the second order
button 299 which is clicked will be the second criteria from
which the search results are sorted, and a "2" appears on the
display of the button 299.

When a user clicks on an order button 298 as shown in Figure
21, the retriever 130 proceeds to step 311 in the flow chart
illustrated in Figure 22. The retriever 130 checks to determine
whether the requested order button 298 is already set, i.e.,
already has a number on the order button 298. If it is not, flow
proceeds to step 312 and the retriever 130 sets the order button



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

45

298 to the highest order currently set plus one. That is, if the
user clicked order button 357 shown in Figure 21, the display
order for that cost attribute 358 is not currently set. In this
example, the highest order currently set is "6". Thus, in step
312 the order button 357 would be set to "7", because that is one
more that the highest order currently set (i.e., 6+1=7). A "7"
would then be displayed on order button 357. The flow then
proceeds to step 315. Referring again to step 311 shown in
Figure 22, if the display order is currently set for a particular
order button 299, the flow proceeds to step 313 and the selected
display order is unset. In other words, the display button 299
may be toggled off. Flow then proceeds to step 314, and each of
the order buttons 361, 358, 359, and 360 currently set which have
a number greater than the number of the order button 299 that was
toggled off, will be decremented by one and reset. In the
example illustrated in Figure 21, if the user clicks on the order
putton 299 (which currently displays a "2"), that order button
299 will be reset (it will appear blank like order button 357).
In addition, the remaining order buttons 358, 359, 360 and 361
which have a currently set display order greater than order
button 299 (i.e., greater than "2"), will be decremented by one.
Order button 358 will be changed from "3" to "2", order button
359 will be changed from "4" to 31 and so forth. Order button
298 will not be changed, because its display order is "1" and is
not greater than the display order of order button 299 which was
reset. Flow then proceeds to step 315 and control is returned
to the user.

The procedure for requesting display of search results 1is
depicted in Figure 23. The procedure is initiated in step 316
when the user clicks on the display button 179. The procedure
then moves to step 317 shown in Figure 23. 1In this step, the
system does a query and obtains the query result. This step 1s
shown in more detail 1in Figure 25. After the query result 1s
obtained, the procedure then moves to step 318 and displays a
search results window 299, an example of which is shown in Figure
24.

Referring again to Figure 23, the next step in the procedure
is step 319. For each attribute specified in the display order
194 (as a result of the user clicking the associated display



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

46

order buttons 298, 299, etc.) a display column is created. The
display columns are created left to right in the order specified
by the order buttons 194. The procedure then moves to step 320,
and for each part in the query result, the attribute values for
the specified attributes are displayed in the respective display
columns. Control is then returned to the user in step 321 and
the retriever 130 waits for another command.

Referring to Figure 25, the procedure for doing a query is
illustrated in more detail. The procedure starts at step 322.
The system first determines in step 323 whether the query is a
local query or a global query. If the query is a local one, the
retriever 130 makes a list of parts in the selected class, as
indicated in step 325. If the query is not a local one, the
retriever 130 makes a list of all of the parts included in the
selected subtree, as indicated in step 324. 1In either event, the
system then proceeds to step 326 to determine whether unprocessed
parts remain in the list. If the answer is yes, the flow
proceeds to step 328 and the system gets the next part in the
list. The procedure then goes to step 329 to determine whether
all attribute selectors are matched by corresponding part
parameters. If the answer is no, the procedure loops back to
step 326. If the answer is yes, the procedure goes to step 330.
The part is added to the query result in step 330, and the flow
loops back to step 326. Referring back to step 326, if no
unprocessed parts remain in the list, the procedure then proceeds
to step 331 and returns the query result and part count.

Referring to Figure 24, the search results window 299
displays the selected attributes for the parts found in the
search. The part number attribute 336 appears in the left most
column because the order button 298 was selected first in this
example. The finish attribute 337 appears second, because the
finish button 299 was selected second. Similarly, the head-style
attribute 338, the head recess attribute 339, the length
attribute 340, and the description attribute 341 are displayed
in the order indicated by the order buttons 194. In the
illustrated example, the search had narrowed down the parts found
172 to a single part. If more than one part had been obtained
in the search results, the remaining parts would be displayed in
additional rows in the search results display window 299, and the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

47

display would be sorted according to attributes in the order
indicated by the order button 194.

A significant performance optimization of this invention
concerns the management of a query result to optimize use of
network resources, thereby allowing effective access to a
knowledge base server 132 through a wide area network 2103, which
typically has significantly lower transmission speeds and data
throughput than a local area network 100. This is accomplished
as shown in the flowchart in Figure ZZZ. In response to a user
request to scroll the scrolled list 352 in step 2130 in either
direction, buffers containing part information in the direction
being scrolled is examined in test 2131 to determine if the
scroll request results in a need for part information not
currently in the buffer. If it does, then the buffer is refilled
with sufficient part information from the query result to allow
for scrolling of one additional display page of information
without requesting additional information from the knowledge base
server 132. After scrolling the display, parts information is
displayed from the display buffer in step 2132 and control is
returned to the user in step 2133. In this way, the network
transmission cost that would have been incurred if the entire
query result were transmitted to the server initially is avoided,
significantly improving response time to the point where a wide
area network 2103 provides a practical alternative to a local
area network 100. This optimization also reduces overall network
traffic and removes the need for any limits on the number of
parts that may be displayed in a query result as are typically
found in query systems.

Referring to Figure 24, the search results window 299
includes a part info button 342. The procedure initiated by
actuation of the part info button 342 is shown in Figure 26. 1In
step 332, the user clicks on the part info button 342. The
system proceeds to step 333 to produce a display of a class path
in outline format 350 from the root class 173 to the owning class
240 of the part, as shown in part information display window 351
in Figure 27. Referring to Figure 26, the procedure flow
proceeds to step 334 and produces a display of a scrolled list
352 containing attribute names 353 and values 354.

Figure 27 depicts the part information window 351. The



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

48

attribute name 353 and values 354 for those attributes are
displayed in a scrolled list 352. The part information window
351 shown in Figure 27 may be closed by actuating the OK command
button 356. Referring to Figure 26, the procedure then goes to
step 335 and control is returned to the user.

The search results window 299 includes a user action command
button 343. This user action button 343 is used to launch other
user applications or software programs. This provides
transparent access to other applications directly from the
system. The user action command button 343 becomes active when
a part in the search results window 299 is selected by clicking
on the row number for that part, and a user action is associated
with that part.

For example, it may be desirable to see an actual part
drawing for a selected part. A CAD or viewer application may be
selected from a pull-down list 344 of applications by clicking
on button 345 and then clicking on the desired application
included in the pull-down list 344. The desired user application
is first selected, and then the user action command button 343
is actuated to cause the application to start and the designated
file to open. User actions may be defined by the system
administrator.

Figure 28 depicts a flow chart for the procedure used to
launch a user action. In step 365, the user selects a user
action from a list 344 on the search results window 299. The
flow then proceeds to step 366, and the system looks up arguments
to the wuser action by checking associated user action
definitions.

In step 367, the system formats a command line with
parameters filled in from part attributes 336, 337, and 340
specified in user action definitions. In step 368, a local
process is executed using the formatted command line and block
until the user action is completed and the process exits.
Finally, in step 369, control is returned to the user.

In the example illustrated in Figure 24, the Microsoft

Windows Write program 344 has been selected. When the user
actuates the user action button 343, the Write program 344
starts. In this example, the part number 336 is passed to the

Write program 344. Figure 29 shows the user action display



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

49

screen 355 when the write program 344 starts, where the part
number information 336 was passed to the Write program.

The search results window 299 includes a sort command button
348. In the illustrated example, this button 348 is dimmed
because only one part is displayed. When a plurality of parts
are displayed in the search results window 299, the sort command
putton 348 may be actuated to re-sort the displayed information
differently.

The search results window includes a print command button
347. Actuating this button 347 causes a hard copy print out of
the parts to be generated. This is convenient, for example, when
the user wants to do some additional research on the parts.

The search results window 299 includes an apply command
putton 346. This button 346 is used to copy the attribute values
for the selected part to the search criteria fields 177 in the
part specification window 170. After the values are copied, the
search results window 299 closes. The results of actuating the
apply command button 346 are shown in Figure 31. This may be
conveniently used, for example, to conduct another query in which
one of the parameters is relaxed.

The procedure executed when the apply command button 346 is
actuated is shown in Figure 30. The procedure starts at step 370
when the user actuates the apply command button 346. Step 371
ies then executed, and a new query is created with the selected
parts owning class as the query class. In step 372, an
appropriate attribute selector is added to the query for each
defined attribute for the part.

The part specification window 170 is displayed in step 373
with the class outline 248 open to the class 240 of the current
query. Then in step 374 the attribute selectors 242, 281, etc.,
are displayed for the current query. The system then updates the
part count 172 and the display 170. Control is returned to the

user in step 375.
Alternatively, the search results window 299 may be closed

by actuating close button 349.

A user who has the necessary access rights may edit parts
information in the knowledge base by actuating the edit command
putton 180. The procedure that is executed is shown in Figure
32. Step 376 is executed when the edit button 180 is selected.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

50

In step 377, a query is performed based upon the current search
criteria 177 and the retriever 130 gets the query results. The
query results are then displayed in a spreadsheet format in step
378.

In step 379, the system then handles part move, delete, and
attribute edit requests.

The sort procedure executed when the user actuates the sort
button 348 in the search results window 299 is depicted in the
flow chart of Figure 33. Step 380 is performed when the user
clicks on the sort button 348. The system then displays a sort
dialog box 386, as described in step 381.

An example of a sort dialog box 386 is shown in Figure 34.
Attributes 387 through 392 are displayed in an attribute column
393 in accordance with step 381 of Figure 33. The dialog box 386
also includes a sort key column 394 and a sort order column 395.
The sort order column contains pull-down menus actuated by
appropriate buttons 396 (only one of which is shown) which allow
the user to select ascending order or descending order for each
attribute 387 - 392. This is described in step 381 shown in
Figure 33.

The sort procedure allows a user to reorganize the list of
parts in an alphanumeric or numeric sequence. The user can sort
the list of parts in ascending or descending order based upon one
or more of the attribute values 387-392. The sort key 394
identifies which attribute 387-392 the user wants to sort by
first, which attribute the user wants to sort by second, which
attribute the user wants to sort by third, and so on.

For example, if the user has a list of parts and the user
wants to obtain a sorted listing of these parts according to one
of the attributes 392, the user selects that attribute 392 as the
first sort key. The user may select a second attribute 389 to
sort on when the first attribute 392 has duplicate values. In
the example shown in Table 3, the length attribute 392 was the
first key and the order was ascending. The major material
attribute 389 was not selected as a sort key.

Table 3

Length  Major Material
.5 (Inch) Phosphate

.5 (Inch) Zinc



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

51

.5 (Inch) Phosphate
.75 (Inch) Phosphate
.75 (Inch) 2inc

.75 (Inch) Phosphate

Notice that in the example shown in Table 3, there are
duplicate values in the length column and because of this, the
values in the materials column are random. If the user wants
these values to be sorted in conjunction with the first key, the
user would select the major material attribute 389 as the second
sort key. In this example, for both attributes 392 and 389 the
user would use the default sort order, which is ascending. The
example shown in Table 4 is the result when using this type of

sort.
Table 4

] . M ™
.5 (Inch) Phosphate

.5 (Inch) Phosphate

.5 (Inch) 2Zinc

.75 (Inch) Phosphate

.75 (Inch) Phosphate

.75 (Inch) Zinc

Selecting ascending as the sort order causes the order of
the attribute values to be sorted in a manner which depends on
the type of attributes where enumerated attributes are sorted,
the enumerated attributes with a value of "undefined" are listed
first, then the remainder of the values are listed in the same
order as they appear in the schema. When text attributes are
sorted, the text attributes with a value of "undefined" are
listed first, then the values that are numeric, and then the text
is sorted in ASCII sequence. When numeric attributes are sorted,
the numeric attributes with a value of wundefined" are listed
first, then the values that are numeric based upon the unit of
measurement. When boolean attributes are sorted, the boolean
attributes with a value of "undefined" are listed first, then the
attributes with a true value, and then the attributes with a

false value.
Selecting descending as the sort order causes the order of



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

52

the attribute values to be reversed.

To establish the sort order the user wishes to use, the user
should choose the sort command button 348, then from the sort
dialog box 386, select the attribute 392 the user wants to sort
first, then choose the set command button 398. Choosing the set
command button 398 sets the key 394 and the sort order 395 for
the attribute 392. Double-clicking in the key field 394 of the
attribute 392 sets both the sort key 394 and the sort order 395.

To clear the key 394 and sort order 395, the user may select
the attribute 392 that the user wants cleared, then choose the
set command button 398. The key 394 and sort order 395 for the
selected attribute 392 will then clear. As shown in step 382 in
Figure 33, the user can cancel the input by actuating the cancel
command button 397. If the user does so, flow will jump to step
385 and control will be returned to the user.

After selecting all the attributes 387-392 with respect to
which the user wants to sort, the user may actuate the OK command
button 399. This results in flow going to step 383 in Figure 33.
In step 383, the query result is sorted according to the
requested compound sort key. In accordance with step 384, the
sort dialog box 386 will close and the search results window 299
will reappear with the parts information sorted according to the
user's selections. Then in step 385, control will be returned
to the user.

The user may be required to edit the parts in the user's
knowledge base whenever the user has additional data to further
classify a part, there is a duplicate part, or if the user needs
to move parts from one class to another class.

The edit command button only appears in the parts
specification window when the user has access rights for this
feature. The system administrator is responsible for setting
access rights to this feature. There are two features that will
assist the user in locating parts that need editing. One is
searching for parts that have undefined attributes. The other
is using the local query command to find parts that have not been
fully classified.

From a parts editor window 1019, the user can edit the
attribute wvalues, move parts from one class to another, and

delete parts.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

53

In order to edit parts, the user follows the same procedures
that the user uses for specifying a part. In addition to
specifying parts with specific attribute values 1056, the user
can also locate the parts that do not have values (undefined) for

a specific attribute 1060. To locate parts with undefined
attribute values, the user selects the undefined check box 165
for the specific attribute 166. See Figure 6. When the

undefined check box 165 contains a check mark, it is selected,
indicating that the user is searching for parts that do not have
that attribute 166 defined.

The user would use undefined if the user is editing the data
in the user's knowledge base and the user wants to locate
attributes 166 that are currently undefined 1060 so the user can
research those parts and update the knowledge base to include the
appropriate values.

If the user selects a specific attribute value and also
selects "undefined", the user sets up an "or" condition as part
of the user's search criteria. In this example, the system
locates parts with the specific value and the parts that do not
have a value for that attribute. The undefined check box 165 is
positioned to the right of the search criteria field 177. The
user may need to use the horizontal scroll bar to move the check
box 165 into view.

Once the user has specified the part by selecting the class
174and subclasses 196, 197, 198, and 199, entered the attribute
search criteria 177, and set the display order 194, the user can
choose the edit command button 180.

Figure 35 depicts a flow chart showing the procedure
followed when a user edits parts. Referring, for example, to
Figure 21, a user who has access rights to edit parts may actuate
the edit button 180 and bring up the parts editor window 1019
shown in Figure 36. The first step 1012 shown in Figure 35
involves the user selection of attributes and parts to edit from
the parts editor window 1019. A user may enter new or revised
values 1061for attributes 1051, and the system will accept
parameter input in step 1013. If the attribute is an enumerated
attribute 1051, a pull down 1ist 1062 will be presented to the
user with available choices, as shown in Figure 37. 1In step 1014
of Figure 35, a determination is made as to whether there are



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

54

more parts to edit. If there are no more parts to edit, flow
proceeds to step 1017. The system updates the part display 1020
and the parts editor window 1019 with edited values 1061. The
system then proceeds to step 1018 and returns control to the
user.

In step 1014, if more parts remain to be edited, flow
proceeds to step 1015, and the system gets the next selected
part. In step 1016, the system sets the next selected parts
parameter to the user input value 1061. Control then loops back
to step 1014.

Figure 38 depicts a procedure for deleting parts. 1In step
1021, the user selects parts to delete from the edit parts window
1019. The user then clicks a delete parts command button 1026.
In step 1022, a determination is made as to whether any more
parts remain to be deleted. If the answer is yes, flow proceeds
to step 1023 in which the system gets the next selected part and
deletes it from the query result and the knowledge base. Flow
then loops back to step 1022. When there are no more parts to
delete, flow proceeds to step 1024, and the system redisplays the
updated query result in the part editor window 1019. Flow then
proceeds to step 1025, and control is returned to the user.

Figure 39 depicts a flow chart for a procedure for moving
parts. The procedure may be initiated by the user selecting
parts to move from the parts editor window 1019 as shown in step
1032. Alternatively, the user may initiate the procedure as in
step 1033 by navigating the class hierarchy on the parts editor
window 1019 and selecting a destination class. The user may
actuate a move parts command button 1027, which is illustrated
for example in Figure 40.

Referring to Figure 39, the procedure proceeds to step 1034
and a determination is made as to whether there are more parts
to move. If there are no more parts to move, flow transfers to
step 1042 and the system redisplays the query result in the parts
editor window 1019. The flow then proceeds to step 1043, and
control is returned to the user.

Returning to step 1034 in Figure 39, if a determination is
made that there are more parts to move, flow proceeds to step
1035 and the system gets the next selected part. In step 1036
a determination is made as to whether the user has requested an



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

55

unconditional move. 1f the answer is yes, flow jumps to step
1040. The system then sets the part class to the destination
class selected by the user. Any parameters Or missing attributes
are set to undefined. Flow proceeds to step 1041, and the system
deletes the moved part from the query results. Flow proceeds to
step 1042 where the system redisplays the query result in the
parts editor window 1019.

In step 1036, if the user has not requested an unconditional
move, flow proceeds to step 1037 where a determination is made
as to whether attributes for any part parameters are missing from
the destination class. 1f the answer is no, flow proceeds toO
step 1040 and continues as described above.

1f a determination is made in step 1037 that there are
attributes for part parameters which are missing £from the
destination class, flow transfers to step 1038. The system gets
a list of parameters that will be deleted by the move and
presents them to the user by displaying them on the display 116.
Flow then proceeds to step 1039. If the user then overrides the
warning that parameters will be deleted, or requests that the
parts be moved unconditionally, flow transfers to step 1040 and
proceeds as described above. 1f the user does not wish to
override the parameter deletion warning or does not request that
the parts be moved unconditionally, flow loops back to step 1034.

The process of editing parts may be further understood in
connection with a description of the parts editor window 1019
(shown in Figure 40). Once the user has specified a part by
celecting a class 174 and subclasses 196, 197, 198 and 199,
entered the attribute search criteria 177, and set the display
order 194, the user can edit the parts by choosing the edit
command button 180. Choosing this command 180 causes the parts
editor window 1019 to appear. The top area 1052 of the parts
editor window 1019 contains the class tree 1044, showing
highlighting the navigation path and class definition of the
parts the user ijs editing. The bottom area 1053 of the window
1019 contains the parts 1020 the user has selected to edit. The
parts appear in a table 1020 that is similar to tables that are
used in spreadsheet applications. The part attributes 1049,
1050, 1051, etc., and attribute values 1055, 1056, 1057, etc.,
appear in the display order, from left to right, that the user



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

56

previously established in the part specification window 170. To
use a value, the user clicks an enter box 1063. To cancel a new
value, the user clicks a cancel box 1064.

The top area 1052 of the parts editor window 1019 contains
the class definition 1044, which comprises the class tree showing
the navigation path and class definition of the parts selected
for editing. The window 1019 has a horizontal split bar 1047
that splits the window into two sections 1052 and 1053. The user
can move the split bar 1047 up or down so the user can see more
of one section 1052 or the other 1053. The parts editor window
1019 includes an area referred to as the editing area 1046.
After selecting an attribute value 1051, a text box or list box
1054 appears in this editing area 1046 so the user can make
changes (see Figure 36). Each part appears as a row 1048 in the
table 1020,and each row 1048 of the table 1020 is numbered. The
user may use the row number to select a part that the user needs
information on or that the user wants to move or delete. The
attributes 1049, 1050, 1051, etc., are the column headings, and
the attribute values are the rows.

Referring to Figure 40, a sort command button 1029 may be
actuated to rearrange the parts according to a sort order that
the user may enter. A part info command button 1028 may be
actuated to display all of the part information (the class
definition and all attributes) for a selected part. A print
command button 1030 may be actuated to print the list of parts.
A delete command button 1026 becomes active after the user
selects a part, and can be used to remove obsolete parts from the
user's knowledge base. A close command button 1031 may be
actuated to close the parts editor window 1019 and return focus
to the part specification window 1070.

In order to make a part, a user follows the same procedures
the user uses to specify a part. If the user specifies a part
that results in zero parts found 172 and an acceptable substitute
does not exist, the user can add a new part to the knowledge
base.

After determining that the user is going to enter a new part
in the knowledge base, the user must fully specify the part. In
a preferred embodiment, a complete part specification is defined
as selecting the class up to the leaf class 201 and entering



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

57

values for all the required attributes 203. In a preferred
embodiment, if the user does not select a leaf class 201 or enter
the required attributes 203, the user cannot add the part. When
making parts, a preferred procedure is for the user to enter as
many attribute values 203 as the user can in order to give the
part as complete a specification as possible.

Some attributes are required before a part can be added.
Required attributes have a required icon 263 immediately to the
left of the attribute icon. Before choosing the make command
181, the user must enter an attribute value for each required
attribute. In addition, a user cannot enter any attribute values
for protected attributes. Protected attributes have a protected
jcon 191 immediately to the left of the attribute icon. Once the
user has selected the leaf class 201 and entered all required
attributes, the user can choose the make command button 181.
Choosing the make command 181 causes the part to be added to the
user's knowledge base and the parts found 172 to be updated to
show a part count of 1.

Although the above description has been with reference to
a Windows client 112, the system is not so limited.

B. Knowledge Base Client

The knowledge base client 131 is a set of C++ libraries that
provide knowledge base services to a client application 130, 133,
and 144 through the API 143. The services may be either local
or result in remote procedure calls to the knowledge base server
132. For client applications which run under Windows, the
knowledge base client consists of one or more Windows Dynamic
Link Libraries (DLL) which use the WinSock DLL to provide network
access to the knowledge base server 132 and the registry server
141.

C. Knowledge Base Server

The knowledge base server 132 is a UNIX server process that
manages knowledge base 103 access, retrieval and updates. A
knowledge base server 132 may manage one or more knowledge bases
103 and 105.

1. Dynamic Class Manager

The dynamic class manager 134 is a software subsystem in the
knowledge base server 132 that manages schema and data. The
dynamic class manager 134 provides the ability to store class,



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

58

attribute, unit and instance information that can be modified
dynamically. The dynamic class manager 134 consists of C++
libraries and classes and provides operations for "legacizing"
and for accessing, creating, deleting, and modifying classes,
attributes, instances, parameters, unit families, units and meta-
attributes at run-time.

The capabilities of the dynamic class manager 134 are
accessed by a user programmer through a set of functions provided
by the API 143.

The dynamic class manager 134 knowledge base, hereafter
sometimes referred to as "the knowledge base," is a collection
of classes, attributes, units, instances with parameter values,
and relationships among these objects. In the dynamic class
manager 134, a class defines a separate type of object. Classes
have defined attributes. The attributes have some type, and
serve to define the characteristics of an object. A class can
be derived from another class. In this case, the class inherits
attributes from its ancestors. A knowledge base contains
instances of classes. The attribute values defined by an
instance are parameters.

Another way to describe the concept of classes, attributes,
instances, and parameters is to use a dog as an example. The
word "dog" is the analog of a class. Dog describes a group of
similar things that have a set of characteristics, or attributes.
The attributes of a dog are things like color, breed, and name.
The class and attributes do not describe any particular dog, but
provide the facility to describe one. An instance of a dog has
parameters that give values to the attributes: for example, a
dog whose color is beige, of the breed golden retriever, and
whose name is Sandy.

Classes can have relationships. The class "dog" is part of
the larger class, "mammal". The class "mammal" is less specific
than "dog". It conveys less information about the object "dog",
but everything about "mammal" also applies to "dog". "Dog" is
clearly a subset of "mammal", and this relationship is a
subclass. "Dog" is a subclass of the class "mammal". The
subclass "dog" could be further subclassed into classes like big
"dogs", little "dogs", etc. The concept subclass implies a
parent relationship between the two classes. "Mammal" is a



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

59

parent and "dog" is a subclass. The terminology "'dog' is
derived from 'mammal'" is also used to describe the relationship.

The subclass "dog" inherits attributes from its parent
class. The attribute color could be part of the "mammal" class,
since all "mammals" have a color. The "dog" class inherits the
attribute color from its parent.

The root class 1is special, it has no parent. It is the
class from which all classes begin their derivation. In
illustrations set forth herein, graphs have been drawn to
illustrate a class hierarchy, and the root class is placed at the
top of those drawings. Subclasses branch out from the root class
into ever widening paths that make the graph look like an upside
down tree. The entire group of classes is a tree, and the
special class that has no parent, though it is at the top, is the
root.

one of the available attribute types supported by the
dynamic class manager 134 is a numeric type. Numeric attributes
are used to describe measurable quantities in the real world.
Such measurements do not consist of just a numeric value; they
also have some agssociated units. The dynamic class manager 134,
in conjunction with the units manager 138, maintains information
about different types of units that can be used with numeric
attributes. The dynamic class manager 134 (using the units
manager 138) can also perform conversions among units where such
conversion makes sense. The units that the system understands
are grouped into various unit families. These unit families and
the units they define, can be changed at run time. The dynamic
class manager 134 also comprises a dynamic units manager 138.

The word "schema" refers to the layout of classes,
attributes, units, and unit families. A knowledge base with no
instances is a schema. This may be better understood in
connection with the following more detailed description of the
various objects managed by the dynamic class manager 134.

A class is the most fundamental object in the schema 1in
accordance with the present invention. A class is a collection
of related objects. In the present example, a class may have
eight or nine components. A class is a schema object. As
explained above, the schema is the collection of classes,

attributes, units, and unit families and their relationships.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

60

Every class has exactly one parent from which it is derived,
except for the root class 173. The root class 173 is the one
class that has no parent. The root class 173 has another special
characteristic in that it can never be deleted. The consequence
of a class being derived from its parent means that the class has
all of the properties of its parent. These properties are
referred to as attributes. Attributes are inherited from the
parent class.

A class may have zero or more subclasses. A class is a
parent of each of its subclasses. A subclass is a class that has
a parent, so the root class 173 is not a subclass. The
subclasses of a parent class have some defined order. The order
is persistent, meaning that the dynamic class manager 134
preserves the order even across closes and reopens of the
knowledge base.

A class has a set of descendants that is comprised of all
of its subclasses, all of the subclasses' subclasses, and so on.
A class that has zero subclasses or an empty set of descendants
is called a leaf class 201. A subtree is the set composed of a
class and all of its descendants. The subtree is said to be
rooted at the class. A subclass also has a set of ancestors,
which is the set composed of the parent, its parent's parent, and
so on including the root class 173. Classes that have the same
parent are sometimes referred to as siblings.

Following a subclass to its parent is sometimes referred to
as going up the tree. Moving from a parent to one of its
subclasses is sometimes referred to as going down the tree.
Therefore, the root class 173 of the schema is the furthest up
at the top of the tree, and the objects furthest down at the
bottom of the tree are typically leaf classes 201.

A class has a name which is the text identifying a class,
subclass, or leaf class, and is an ASCII character string. The
present invention uses class handles for references to a class,
which are further described in connection with the operation of
the handle manager 137. In the example shown in Figure 5, there
are three subclasses.

Figure 41 shows the internal object representation for a
class 800. 1In the present schema, a class has a parent handle
801. Every class object 800 includes stored information



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

61

representing the handle of its parent class, exXcept in the
special case of the root class 173, which has no parent. A null
is stored in this location in that case. A handle is a reference
to an object. The parent handle information 801 is used by the
handle manager 137 to identify the stored class object which is
the parent class for the class 800.

The class object 800 includes a subclass list 802. The
subclass list 802 is an array of handles which may be used by the
handle manager 137 to identify those class objects which are
subclasses of the class 800. In the internal representation
provided in the present invention, lists can grow without bounds
and are dynamic. The storage space available is not fixed.

This provides flexibility and power to the database
structure, because the class object 800 may have an extremely
large number of subclasses in a large database without
substantial degradation in performance.

The class object 800 includes an attribute list 803. The
attribute list 803 is a list of handles. The handle manager 137
may use the information stored in the attribute 1list 103 to
identify the attributes possessed by class object 800.

The class object 800 also includes a local instance list
804, which is a handle 1ist. Field 805 shown in Figure 41 is a
pointer to storage location of the class name, i.e., the text
identifying the class.

Field 806 is used to store the handle for the class 800.
The field 807 stores an indication of the class code, i.e.,
whether it is primary, secondary, or a collection.

The class object 800 also includes a subtree instance count
808. The subtree instance count 808 is a numeric indication of
the total number of items or instances present in all of the
descendants of the class 800 i.e., the total number of instances
in class 800, all of the class 800's subclasses, all of the
subclasses' subclasses, and so on. Referring, for example, to
Figure 10, the instance count 808 is used to generate the parts
found 172 field which is displayed on the part management window
170. Thus, when a user is navigating through the tree structure
of a knowledge base, as a user selects and opens subclasses, the
user can be immediately informed of the number of parts found 172
at any location on the tree by retrieving the subtree instance



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

62

count 808 for the current class and passing that information to
the retriever 130. The subtree instance count 808 is kept up to
date whenever the knowledge base is modified, so it is not
necessary while a user is navigating through the tree structure
of the database to perform a real time computation of parts found
172.

Referring again to Figure 41, the class object 800 also
preferably includes a metaparameter list 809. The metaparameter
list 809 is a string list, and may be used as a pointer to
strings containing linking information ,for example, the name of
a file that contains a graphical display of the type of parts
represented by the class 800, thesaurus information used for
legacizing data, or other legacizing information.

Figure 42 depicts an example of a generic list 810. The
class manager 134 uses lists of handles, lists of floating point
values, lists of pointers to character strings, etc. whenever a
variable amount of data can be associated with an object.
Examples of lists would be items 802, 803, 804 and 809. The list
810 depicts a
list of simple integers.

A list object 810 includes a pointer 812 which points to the
beginning 815 of the list data 811. A list object 810 also
includes a field 813 indicating the currently allocated size for
the list data 811. The list object 810 also includes a field 814
containing information indicating the amount of list data 811
currently in use.

The list data 811 contains the actual list of values. The
first item 815 in the list in this example contains the wvalue
ngn Similarly, in this example list items 816, 817, 819, 820
and 821 contain additional values. List items 822, 823, 824, 825
and 826 in this example are not currently in use and are set to
zero. In this illustrated example, the currently allocated size
813 of the list is twelve. The amount in use 814 of the list is
seven, meaning that the first seven items in the list are valid.

Figure 43 illustrates the data structure for attribute data
827.

An attribute object 827 contains at least six fields in the
illustrated embodiment. A first field 828 contains a pointer to



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

63

an external name comprising an ASCII character string that is the
name for the attribute. The attribute object 827 also contains
a field 829 containing the handle for this attribute object 827.
The attribute object 827 also contains a field 830 which contains
the handle of the class that defines this attribute 827. The
fourth field 831 1is a Boolean indication of whether this
attribute is a required attribute for the defining class. A
fifth field 832 contains a Boolean field indicating whether this
attribute is protected. For example, in Figure 6 the "part
number" attribute 176 is protected. This is indicated by the
protected icon 191. In the data structure of the attribute
object 827 shown in Figure 43, this information is stored in
field 832. The attribute object 827 also contains a field 833
which is a metaparameter list.

Enumerated attributes include fields 828 - 833, indicated
collectively as attribute data 834, plus a field 835 which is a
list of enumerator handles.

In the case of a Boolean attribute, only fields 828 - 833
are used, which are again indicated collectively in Figure 43 as
attribute data 834.

Numeric attributes include fields 828 - 833, indicated
collectively as attribute data 834, plus a field 838 which
contains the handle of the unit family for this numeric
attribute.

In the case of a string attribute, and in the case of a
string array attribute, only the attribute data 834 comprising
fields 828 - 833 is included.

One example of the use of these data structures by the
dynamic class manager 134 is the procedure of a user selecting
a class by clicking on the closed folder icon 189 associated with
the class (see Figure 7). When a class is opened, the dynamic
class manager 134 will check the class object 800 and retrieve
the attribute list 803. The handles stored in the attribute list
803 will be passed to the handle manager 137. The handle manager
137 will return the virtual memory address for each attribute 827
of the class. The dynamic class manager 134 may then use the
pointer 828 to the external name of an attribute object 827 to
retrieve the character string text for the external name for the
attribute. That ASCII text information can then be passed



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

64

through the API 143 so that it may eventually be provided to the
retriever 130 for display to a user on the display 116.

Figure 44 illustrates the data structure for an enumerator
object 841. An enumerator object 841 may comprise three fields.
A first field 842 contains a pointer to the external name for the
enumerator object 841. A second field 843 contains the handle
for the enumerator object 841. A third field 844 may contain a
metaparameter list. Handles are used to link from other objects
to the enumerator object 841. An advantage of this structure is
the ability to easily modify a knowledge base if it becomes
desirable to change the external name of an object. Such a
change need only be performed once to the ASCII character string
that is used to represent the external name. All other objects
merely contain a handle which can be used by the handle manager
137 to provide the dynamic class manager 134 with the actual
external name.

Figure 45 depicts the data structure for a unit family
object 845. In the example illustrated in Figure 45, the unit
family object 845 has four fields. The first field is a pointer
to the external name 846 for the unit family object. The second
field 847 contains the handle for this unit family object 845.
The third field 848 is a list of unit family handles of unit
families which are included in the unit family 845. The field
849 contains a list of handles for local units.

A unit is a system of measurement for a numeric parameter.
A unit family is a collection of units that may be used for a
numeric attribute. A unit family handle is a reference to a unit
family. A unit family name is the ASCII text that identifies a
unit family. A unit handle is a reference to a unit. A unit
name is the ASCII text that identifies a unit. Local units are
units that are defined in this unit family 845.

Figure 46 depicts the data structure for units. A unit
object 850 may comprise five data fields 851 - 855. The first
field 851 is a pointer to the external name for the unit. The
handle for the unit object 850 is stored in the second field 852.
The third field 853 contains the handle for the defining unit
family. The fourth field 854 is a metaparameter list. The last
field 855 contains an indication of the type of unit (e.g., real,
integer or enumerated table). These five fields 851 - 855



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

65

comprise the base unit data 856.
If the unit object 850 is a base unit, then no additional

data is required. This is represented by item 862 in Figure 46.
If the unit object 850 is an enumerated derived unit 867, it will
contain the base unit data 856, which includes fields 851 - 855.
An enumerated derived unit 867 will also include a field 858
which provides the handle for the base unit. Another field 856
provides information on how many rows are present in the
enumerated list. The field 860 provides the list of enumerators
which typically comprises ASCII character strings. The field 861
provides a list of corresponding values for the 1list of
enumerators in field 860.

If the unit object 850 is a real derived unit 866, it will
include the base unit data 856 which comprises fields 851 - 855.
In addition, it will include a field 863 in which is stored the
handle for the base unit. A second additional field 864 will
contain a multiplication factor used to derive the real derived
unit 866. A third additional field 865 will provide an offset,
if any, which must be added or subtracted to the base unit in
order to derive the real derived unit 866. For example, if the
base unit 850 is degrees centigrade, and the real derived unit
866 is degrees Fahrenheit, the multiplication factor 864 would
be 9/5 and the offset 865 would be 32 degrees.

Figure 47 depicts the data structures for a unit families.

The dynamic class manager 134 maintains a single global unit
family handle list 836. One element 837 in that 1list is the
handle for unit family 845. For simplification, an arrow has
been drawn directly from the handle 837 to the unit family 845.
In actual practice, the handle 837 from the list 836 is provided
to the handle manager 137, and the handle manager 137 provides
the address in virtual memory for the unit family 845. It should
be understood therefore that the handle manager 137 is involved
in linking handles to the objects associated with the handles.
With the understanding that such linkage to the handle manager
137 occurs in every instance where a handle is used to refer to
an object, further reference to the handle manager 137 in this
description may be omitted for purposes of simplification. In
addition, data fields and or data members that are unnecessary
for purposes of this description have been omitted from Figure



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

66

47. In the example illustrated in Figure 47, the list of
included unit family handles 848 is empty. The actual list of
local unit handles 839 is pointed to by list object 849 in the
unit family object 845. By going to the list of local unit
handles 839, the dynamic class manager 134 can lookup the desired
unit object. For example, item 857 in the list 839 is a handle
which refers to real derived unit 866. In this example, the
unit family 845 is "resistance", and the real derived unit 866
is "kohms". The real derived unit 866 has the handle of the base
unit stored in field 863. The handle stored in field 863 is used
to lookup the base unit 850, whose name 852 in this instance is
"ohms" . The real derived unit object 866 contains a
multiplication factor 864, which in this example is 1,000. The
offset 865 is zero. Thus, the units manager 138 will use the
multiplication factor 864 to convert the derived unit "kohms" 850
to the base unit "ohms" 866 by multiplying by 1,000.

The real derived unit object 866 contains a handle 853 for
the defining unit family 845. The unit object 850 also contains
a field 853 containing the handle for the unit family 845.

Figure 48 shows the data structure for an enumerated derived
unit. A global unit family handle list 836 may contain an item
837 in the list which is the handle for unit family 845 as
described with reference to Figure 47. However, in this example,
the global unit family handle list 836 also contains an item in
the list 862 which is the handle for a second unit family 845'.
The second until family 845' has a name 847'. The list of
included unit handles 848' in this example has the handle for
unit family 845. The unit family object 845', includes a data
field 849' which points to a list of local unit handles 839'.
The list 839' includes an item 868 in the list which is the
handle for an enumerated derived unit object 867. In this
example, the name of the enumerated derived unit object 867 is
"table of ohms" 852. Field 859 contains information on the
number of rows which are included in this enumerated derived unit
object 867. Field 860 points to the list of enumerators 869
which lists the values that may be selected by the user from an
enumerated list, in this example, "10k", "11k", "12k", etc. The
list 869 contains strings of ASCII characters. In the enumerated
derived unit object 867, the field 861 contains a pointer to the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

67

list of real numeric data values 870. There is a one to one
correspondence between the items in the list 869 and the numeric
values in the list 870. In the illustrated example, the list 870
contains the actual numeric values 10000; 11000; 12000; etc.
Because these values represent ohms in this example, they
correspond to "10k", v11k", "12k", etc., ohms. Of course, the
enumerated derived unit object 867 contains a field 858 which has
the handle for the base unit object 850, which in this case has
the name 852 of "ohms".

Figure 48 depicts the data structure that is used by the
dynamic class manager 134 to provide information to the retriever
130 necessary to display a table of standard values window 273
as shown in Figure 16. In Figure 16, the plurality of standard
values 275 comprise a display of the ASCII characters contained
in list 869 shown in Figure 48. When one of the values 275 is
selected by the user, the units manager 138 provides the dynamic
class manager 134 with the corresponding numeric value taken from
list 870 shown in Figure 48.

Figure 49 depicts the data structure for an instance 871 and
associated parameters 872. An instance object 871 may contain
four fields 873 - 876. The first field 873 is the handle for the
owner class of this instance. The second field 874 may give the
ordinal location of this instance's handle in the instance list
804 of its owning class. The third field 875 is a 1list of
parameters, which points to the values contained in 877. The
fourth field 876 is the handle for the instance object 871. The
list of parameters 877 contains a plurality of pointers to
parameters for the various attributes associated with this
instance object 871. In the example illustrated in Figure 49,
the list 877 contains three entries 878, 879 and 880. Additional
elements of the list 877 have been omitted for clarity. The
pointer 878 in list 877 points to information concerning the
associated parameter 872. The data structure for the parameter
872 is illustrated in more detail in Figure 50.

Figure 50 shows the data structure for five different types
of parameters: enumerated, Boolean, numeric, string and string
array. Each of the parameter objects 872 has an attribute handle
881. An enumerated object 888 has an attribute handle 881 and
an enumerator handle 882. A Boolean object 889 has an attribute



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

68

handle 881 and a Boolean value 883. A numeric parameter object
890 has an attribute handle 881, a unit handle 884 and a value
885. For example, if the numeric parameter is 10 ohms, the unit
handle 884 would be the handle for the ohms unit, and the value
885 would be 10. A string parameter 891 contains a field for the
attribute handle 881 and a pointer 886 to an ASCII character
string. A string array parameter 892 contains an attribute
handle 881 and a field 887 that points to a list of pointers to
string arrays.

Figure 51 is an example of a schema with instances. The
example has a class named "electronics", which has a subclass
800' named "capacitors". The capacitors subclass 800' has an
attribute 827 called "case type". There are two possible types
of cases in this example, which are referred to as '"case A" and
"case B". The subclass capacitors 800' has a subclass 800' named
"electrolytic". The electrolytic subclass 800' has an attribute
827' called "voltage rating", and one instance 871' is provided
that has parameters 890 and 888 of 5 volts and a type B case,
respectively. Most objects and lists are shown incomplete in
order to simplify the illustration, it being understood that like
reference numerals refer to the same objects described in
connection with Figures 41 - 50.

In Figure 51, the class object 800 has a name 806, which in
this case is "electronics". The class object 800 has a field 802
which points to a list of subclasses 893. The list 893 has a
first entry 894 which is the handle for the subclass 800'. 1In
this case, the name 806' of the subclass 800' is capacitors. Of
course, all references to schema objects actually use handles
(not shown in Figure 51) and actually go through the handle
manager 137 and handle table. This is not shown in Figure 51 in
order to simplify the diagram.

The subclass 800' capacitor has a field 802' which points

to a list of subclasses 893'. The list 893' has an entry 894"
which is the handle for subclass 800". The name 806" for
subclass 800" is electrolytic. The subclass 800" has a null

entry in the field 802" which would normally contain a pointer
to a list of subclasses, if any. In this example, the subclass
800" does not have any subclasses.

Returning to the capacitors subclass 800', field 803



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

69

contains a pointer to a l1ist of attributes 897. The list 897
contains the handle for the enumerated attribute 827 called "case
type". Field 830 of the enumerated attribute object 827 contains
the handle of the defining class 800' called capacitors. The
enumerated attribute object 827 contains a pointer 835 which
points to a list 839 of handles for enumerators. In this
example, the list 839 contains a handle 898 for the enumerator
841. The enumerator 841 contains a pointer 842 to the external
name for this enumerator, which may be an ASCII string for "case
A". Similarly, item 899 in the list 839 points to enumerator
841' associated with case B.

Returning now to subclass 800" named electrolytic, the
pointer 803" points to a list 897! of attributes, and one of the
fields in the list 897' contains the handle for numeric attribute
827' which is "voltage rating". The numeric attribute 827'
contains a field 830' which contains the handle of the defining
class which in this example is the class 800" named electrolytic.
The numeric attribute object 827' also contains a field 838’
which contains the handle of the voltage unit family (not shown) .

Returning to the electrolytic class 800", a field 804"
contains a pointer to a list 895 of handles of instances. Item
896 in the list 895 contains the handle associated with instance
871. 1Instance 871 contains a field 873 which contains the handle
of the owning class, which in this case is the electrolytic class
800". The instance data object 871 also contains a field 875
which points to a list of parameters 877. The list 877 contains
a pointer 878 which points to the numeric parameter 890. The
numeric parameter 890 contains a field 881 which contains the
handle of the attribute 827' (voltage rating). The numeric
parameter object 890 also contains a field 884 which has the
handle of the units, which in this case is "volts". For
simplicity, the unit object is not shown. The numeric parameter
object 890 contains a field 885 which contains the value 5.0.
In this instance, the electrolytic capacitor is rated at 5.0
volts.

The parameter list 877 contains a pointer 879 which points
to the enumerated parameter 888. The enumerated parameter object
888 contains a field 881' which contains the handle of the
attribute, which in this instance is case type. The enumerated



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

70

parameter object 888 also contains a field 882 which is the
handle for the enumerator 841'. In this example, the
electrolytic capacitor rated at 5.0 volts has a type case B.

The data structure described herein has significant
advantages. Referring to Figure 51, it is easy to change a name
or description in this data structure. Consider an example where
the database may contain 1,000 instances of capacitors with a
type B case. If the type B case is discontinued, or the name
changed to "re-enforced", the only change that would need to be
made would be to replace a single ASCII string representing the
name for that case type. All 1,000 instances in the database
simply contain a handle that the handle manager 137 associates
with that ASCII text string. No other changes need to be made
in the database.

Another advantage of the data structure in accordance with
the present invention is that if a primary value is undefined,
nothing is stored. Thus there is no wasted space.

Another advantage of the database structure is that
algorithms do not have to be changed based upon location in the

tree structure. All algorithms work the same regardless of
location in the tree structure. The only special case is the
root class. For example, the algorithm for adding an instance

to the database is the same no matter where in the tree structure
you are located. This makes dynamic changes to the schema very
easy. A class or an entire branch of the tree structure can be
moved from one location to another simply by changing lists of
handles. It is not necessary to run a convert program.
Everything is self contained. A class object 800 contains the
handle of its parent 801 and thus knows who it's parent is. The
class object 800 also contains a pointer 802 to a list of its
subclasses, so it knows who its children are.

In the present database structure, it is possible to delete
instances quickly. An instance can be deleted by taking the last
item in the list of instances 804 and moving it to the position
of the instance being deleted. 1In other words, the handle of the
last instance would be written over the handle of the instance
being deleted, and the number of items in the list would be
decremented by one. The instance index field 874 for an instance
object 871 may be used to facilitate fast deletions.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

71

In a preferred embodiment, the value of parameters are
always stored in base units. The objects in fields described do
not necessarily occupy a word of memory. In a preferred
embodiment, all parameters of a particular type are stored
contiguously. This improves the speed of searches. For example,
the case type 841' described with reference to Figure 51 would
be stored contiguously with all the other parameters for case
type. The numeric parameter of 5.0 volts would be stored in a
different physical location in memory contiguous with other
numeric volt parameters.

As described above, providing a class object structure 800

with a field 808 providing the subtree instance count for that
class allows the system to virtually instantly display a parts
count 172 to provide the user instantaneous feedback during the
tree traversal steps of the users search. The process of finding
a part essentially amounts to discarding the thousands of parts
that do not have the attributes desired and narrowing the search
down to a small number that do.
This is accomplished by navigating to the correct class from the
root of the classification hierarchy. During this phase, the
parts found indication 172 can be updated using the data
structure field 808 indicating the subtree instance count. This
provides significant response time advantages compared to
actually counting the available instances at each step. The
user has immediate feedback indicating the number of parts
available in the selected tree. The combination of providing an
object oriented hierarchical tree structure together with search
criteria based upon any desired combination of attributes, while
providing instantaneous feedback on the number of instances
corresponding to the current search criteria and class provides
significant advantages over data base management schemes that
have been attempted in the past.

An important function of the dynamic class manager 134 is
the ability to modify the database structure during operation.
The database structure is known as the schema. The schema of
the object oriented database is structured using classes. The
classes contain attributes. The attributes may contain
enumerators, and unit families. The ability to add, move and
delete these items is important to the dynamic operation of the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

72

database.
To add a class to the schema, three items must be known:

the class name, the parent of the new class, and the location
within the list of subclasses to insert the new class. Figure
65 illustrates this operation. The first step 1840 converts the
handle of the parent class into an actual class pointer. The
parent pointer must be immediately tested in step 1841 prior to
its use. If the pointer proves to be invalid, then the operation
terminates at step 1842. If the pointer is valid, the insertion
index is tested in step 1843. 1If it proves to be invalid, the
operation is terminated in step 1844. Finally, the name of the
class must be tested in step 1845 to determine if it fits the
guidelines of valid class names. If the class name fails, then
the operation terminates in step 1846. When step 1845 accepts
the class name, the new class can be created. A new handle is
created in step 1847 first, and then the new class is created
in internal memory in step 1848. The new handle is inserted into
the table of class handles in step 1849 of Figure 66, followed
by the handle being added to the parents list of subclass handles
in step 1850. The last operation is to cause the file manager
140to add the new class to the indicated parent on the secondary
storage device 103.

To add an attribute to a class, three items must be known:
the class handle of the owning class, the location in which to
insert the new attribute, and the name of the attribute. Figure
67 illustrates the adding of attributes. The first step 1930
is to convert the class handle into a class pointer, followed by
the testing of that class pointer in 1931 to determine if it is
a valid class pointer. If not, the procedure terminates in 1932.
If the class pointer is determined to be valid, then the
insertion index is validated in 1933. If the index fails the
validation test, then the procedure terminates in 1934. If the
validation of the index succeeds, then the operation continues
in 1935 where the name of the attribute is tested. If the
attribute name fails, then the operation terminates in 1936. If
the name of an enumerated attribute is accepted in 1935, then the
attribute can be created. Step 1937 creates a new handle for the
attribute. Then the new attribute is created in step 1938. The
new attribute handle is then added to the 1list of attributes



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

73

local to the owning class in 1939. The last step is 1940 of
Figure 68 to cause the file manager 140 to update secondary
storage 103 with the new attribute. The operation is complete
in step 1941.

The addition of an instance is shown in Figure 69. Adding
an instance requires a class handle. The class handle must be
converted into a class pointer in 1918. The class pointer is
tested in 1919 to determine if it is a valid class pointer. If
it is not valid, then the procedure terminates in 1920. If the
class pointer is determined to be valid, then the procedure
continues in 1921 with the generation of a new instance handle
and a new instance object. The handle for the new instance is
inserted into the handle table in 1922. The instance is added
to the parents list of instances in 1923. The subtree instance
count is incremented to reflect the presence of the new instance
in 1924. The instance has now been created in memory, and needs
to be added to secondary storage 103, which is done in step 1925
of Figure 70. The procedure is complete in step 1926.

The deletion of a class is shown in Figure 71. To remove
a class from the database structure, the current class handle
must be identified. The class handle is first decoded into a
class pointer in step 2600. The class pointer is then checked
to determine if it is a valid class pointer in 2601. If the
class pointer is invalid, the procedure is terminated in 2602.
If the class pointer is valid, then it is checked to determine
if it is the root class in 2603. If the class pointer represents
the root class, then the procedure terminates in 2604, because
the root class cannot be deleted. If the class pointer does not
represent the root class, it is checked to determine if the class
represents a leaf class in 2605. If the class pointer does not
represent a leaf class, the procedure terminates in 2604. If the
class pointer is found to point to a leaf class, then operation
continues in 2906 where all of the instances of this class are
deleted. The process of deleting instances is described below
with reference to Figure 75. In step 2607 all of the attributes
which are local to the class being deleted are deleted. In
Figure 72 The class is then unlinked from its parent class in
step 2608. The system checks to determine if the unlink was
successful, and that the data structures which contain the class



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

74

list are intact in 2609. If the unlink failed, then operation
stops in 2610. If the unlink succeeded, then operation continues
in 2611 where the class object is actually deleted. In step
2612, the file manager 140 is instructed to remove the class
object from secondary storage 103, and the operation completes
in step 2613.

The deletion of an attribute is shown in Figure 73. To
remove an attribute, the attribute handle must be decoded into
an attribute pointer in step 1860. Step 1861 checks to see if
the attribute pointer obtained from step 1860 is valid. 1If the
attribute pointer is invalid, the procedure stops in 1862. If
the attribute pointer is valid, the procedure continues in step
1863 by searching the entire subtree for all of the parameters
in all of the subtree instances that are derived from this
attribute. After searching, in step 1864 the system determines
how many parameters were derived from this attribute. If there
were parameters derived from this attribute, the operation
proceeds to 1865, where the parameters are undefined. If there
were no parameters derived from this attribute, then the
procedure continues to step 1866. Likewise, after the parameters
have been undefined in 1865, the operation continues to 1866.
In step 1866, the attribute is unlinked from the defining class.
In 1867 the procedure checks to determine if the unlink operation
succeeded. If the unlink failed, then the procedure stops at
1868. If the unlink was successful, then the attribute object
is deleted in 1869 in Figure 74. The file manager 140 is then
instructed to remove the attribute from secondary storage 103 in
step 1870. The operation is complete in step 1871.

The deletion of an instance is shown in Figure 75. An
instance is deleted from the database by first converting the
instance handle in step 2000 to an instance pointer. The
instance pointer is checked to determine that it is indeed a
valid instance pointer in 2001. If the instance pointer is
invalid then the operation terminates in 2002. If the instance
pointer is valid, then the instance is unlinked from its owning
class in 2003. The instance object is itself deleted in 2004.
The subtree instance counts is then decremented to indicate that
one instance has been deleted from the subtree in 2005. The file
manager 140 is then instructed to update the secondary storage



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

75

103 to reflect the deletion of the instance in 2006. The
operation is complete in step 2007.

In Figure 76, moving a subtree to a new position in the
class hierarchy is described. 1In step 1800, the move subtree
procedure is called with a class to move, the destination parent
class, and the position among its sibling classes at the
destination specified. 1In step 1801, the class pointers for the
class to be moved and the destination parent class are obtained.
If the test for all valid pointers in step 1802 fails, step 1804
returns an error, else test 1805 is made to prevent the class
from being trivially moved to its own parent. Step 1806 insures
that the position among the subclasses of the destination parent
class is within a valid range, with an error returned by step
1804 upon error. In step 1807, the class hierarchy above both
the class to be moved and the destination class is analyzed to
identify the nearest common ancestor class.

In step 1808 of Figure 77, the common ancestor is tested to
see if it is identical to the class being moved. If it is, given
that a test has already been performed to insure that the class
is not being moved to its parent, then this is determined to be
an attempt to move a class to a subclass of itself, and an error
is returned. All other moves are legal, so the class is unhooked
from its parent class in step 1809 and added to the list of
subclasses for the destination class in step 1810. The
destination class subtree instance count is incremented by the
number of instances in the moved class in step 1811, and the
subtree count of the original parent class of the moved class is
decremented by the moved class instance count in step 1812. In
step 1813 the permanent image of the knowledge base is updated
through the file manager 140, with step 1814 returning
successfully to the caller.

Figure 78 describes unhooking the moved class from its
original parent class. In step 1815 the class pointer for the
parent is obtained and used in step 1816 to get a list of
subclasses for the parent class. If the class handle of the
class to be moved is not in the resulting subclass list as tested
in step 1817, the knowledge base is internally inconsistent and
an error is returned to the caller, else the class is deleted
from the parent class subclass list in step 1818 before a



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

76

successful return in step 1819.

Figure 79 describes the process of finding the nearest
common ancestor of the class to be moved and the destination
class. In step 1820, a temporary class handle is set to the
handle of the class to be moved. Step 1821 gets the parent of
the temporary class, initiating a loop that creates a list of
classes in order from the class to move to the root. Each class
encountered is added to a list in step 1822, with iteration being
terminated if step 1823 shows that the root has been encountered.
If the test in step 1823 fails, the temporary class handle is set
to the handle of its parent class in step 1824 and iteration
continues.

A similar list is created for the destination class in steps
1831 through 1828, moving to Figure B80. In step 1831, a
temporary class handle is set to the handle of the destination
class. Step 1832 gets the parent of the temporary class,
initiating a loop that creates a list of classes in order from
the class to move to the root. Each class encountered is added
to a list in step 1826, with iteration being terminated if step
1827 shows that the root has been encountered. 1If the test in
step 1827 fails, the temporary class handle is set to the handle
of its parent class in step 1828 and iteration continues.

The final step 1829 iterates through the two resulting lists
until a matching class handle is found. This is the handle of
the nearest common ancestor, which is returned in step 1830.

2. Connection Manager

The connection manager 135 is a subsystem of the knowledge
base server 132 that manages information about the current client
connections. The connection manager 135 is responsible for
creating, maintaining, and closing client 130, 133, or 144
connections to the knowledge base server 132. The connection
manager 135 will create an instance of query manager 136 for each
client 130, 133 or 144 connection. The connection manager 135
maintains a linked 1list of entries about these <client
connections. A graphical representation of the data maintained
by the connection manager is shown in Figure 81.

Referring to Figure 81, the connection manager 135 maintains
a connection list pointer 1070 for each connection which points
to a connection list 1077. The connection list 1077 includes



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

77

data concerning the start time, time of last request, and time
of last message 1071 for a client 130, 133 or 144. A total count
1072 for calls to the API 143 is maintained. A pointer to remote
procedure call connection information 1073 is also maintained.
A pointer to information concerning the associated database
manager 139 is also maintained. The connection manager 135 also
retains a read-only flag 1075 to control access, and a pointer
is maintained to the associated query manager 136.
3. Query Manager

The query manager 136 is a subsystem of the knowledge base
server 132 that interacts with the dynamic class manager 134 to
provide query operations on the knowledge base 123. The query
manager 136 1is responsible for managing the query data
structures, matching selectors to parameters, and building and
managing lists of instances or classes that matched the query.

The following discussion references the data structures
described in Figures 158-163. When the query manager 136 1is
instantiated, a query manager class 700 is created. Each
instance of this class 700 contains a query handle manager for
queries 711, a query handle manager for query results 712, and
a query handle manager for search results 713. 1In general a
query handle manager class 701 is a list of base query classes
702. This list 701 is the mapping between a handle and a base
query class 702 or one of the derived classes, query class 703
, search result class 704, and query result class 705. The
offset into the list represents the handle of the object.

A "query" is an object created through the API 143 that can
be used to select instances in the knowledge base 123 based on
parametric criterion. A query is always tied to a class when it

is created.
To create a query, query class 703 is created as a derived

class of base query class 702. There is one of these classes 703
for every query created. The base query class 702 is the base
class for queries (query class 703), query results (query result

class 705), and search results (search result class 704). Base
query 702 contains the query class handle 714 that is the class
handle of the class on which a query was created. Since the

query manager 136 needs to access the dynamic class manager 134,
a reference 715 to the dynamic class manager 134 is kept.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

78

Once created, a query class 702 continues to exist until it
is explicitly deleted.

A guery consists of zero or more "selectors". A "query
selector" is associated with one of the attributes defined for
the class for which the query was created. Setting a selector
will cause the query to return only those instances that match
the selector. Setting multiple selectors causes the query to
return the conjunction of the instances matching the selectors.
i.e., only instances matching all selectors will be returned

The exact form and semantics of the query attribute class
706 selector depends on the type of the associated attribute.
Each attribute can have at most one associated selector class 706
or derived classes 707, 708, 709, or 710 for any given query.
For any attribute type, the selector class 706 or derived
classes 707, 708, 709, or 710 can be set to include instances for
which the associated parameter is in the "undefined" state 731.
Setting a selector class 706 without requesting the undefined
parameters will cause the instances that have that parameter set
to undefined to be excluded. Requesting that undefined
parameters be included without otherwise setting the selector
class 706 will cause only the instances for which the parameter
is undefined to be returned.

The attribute selector classes 707, 708, 709, and 710 are
added to the query class 702 attribute selector «class list 716
as a result of an API 143 call to set the specified attribute
selector class 706.

The attribute selector class list 716 is destroyed when the
query class 702 is destroyed.

Actually performing a query is referred to as "applying a
query." Applying a query will return a query result handle. A
query result handle is a reference to a query result class 705.
A query result class 705 is an object that contains the list of
instances 723 returned by the query. Given a query result
handle , the user can retrieve the actual instances represented
by 1list 723. The query result continues to exist until
explicitly deleted. Subsequent changes to the query class 702
will not affect an existing query result class 705. Subsequent
applications of the query class 702 will return additional query
results class 705.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

79

The query may be applied either locally or on a subtree.
When a query is applied locally, the query manager 136 retrieves
the class pointer associated with the class handle 714 wusing the
class manager 134 reference 715. The 1list of instances
associated with the class pointer is retrieved and a list
iterator is used to evaluate each instance against the attribute
selector list 716 in the query class 703. A query class 703 with
no selectors will simply return all instances of class 714.

In Figure 82 and Figure 83 a local query is applied. The
gquery handle is converted to a query class 702 pointer in step
750. In step 751, the pointer is validated. If the pointer is
invalid, an error is returned in step 752.

In step 753 , the query result class 705 is created and
added to the query result handle manager 712.

In step 754 , the class manager 134 is called using
reference 715 to get the class pointer for the class handle 714
that was set in the query class 702. This pointer is used in
step 755 to call the class manager 134 function to get the list
of instances for the class handle in 714

The query class 702 class pointer from step 750 is used
to retrieve the selector class list 716 associated with the
gquery class 702 class in step 756.

A significant performance optimization of this invention is
checking in step 757 to see if any selector classes 706 and
derived classes are set. If no selector classes 706 and derived
classes are set, step 760 is performed which associates the
class instance list with the query result class 705 and a normal
return is done in step 761.

If selector classes 706 and derived classes are set, then
step 758 requires an instance in the class instance list to be
examined. If no more instances are available in step 759 , the
instance list of matches 1s associated with the query result
class 705 in step 760 in list 723 and a normal return is done
in step 731.

A selector class 706 and derived classes are retrieved
from the query class 702 attribute selector class list 716 in
step 762 . In step 763 , if there are no more selector classes
706 and derived classes to evaluate, the process returns to step
758 to get the next instance in the class after saving the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

80

instance handle in the query result class 705 instance list 716
in step 769.

If there are selector classes 706 and one of its derived
classes to evaluate, step 764 is performed. This step retrieves
the parameter value for the attribute handle 763.

Another significant performance optimization of this
invention is the process that starts in step 765 to check if the
parameter is defined. This step makes processing of empty or
null values extremely efficient. If the parameter is not defined,
the undefined selector flag 731 is checked in step 768. 1If the
undefined flag 731 is not set, the instance handle is discarded
as a possible match and the next instance is processed starting
in step 758 . If the undefined flag 731 is set, the instance
matches and the next selector list 716 item is processed in step
762.

If parameter values existed in step 765, the selector list
716 item is checked in step 766 to see if criteria are set. If
they are not, the next instance is processed in step 758. Based
on the attribute type, the selector 706 and derived classes are
used for evaluating the parameter and selection criteria in step
767. If the selection criteria matched, the next selector class
list 716 item is processed in step 762.

In Figure 84, the process for performing a query on a

subtree is shown. The query handle is converted to a query
class 702 pointer in step 770. In 771, the pointer is
validated. If the pointer is invalid, an error is returned in
step 772.

In step 773, the query result class 705 is created and added
to the query handle manager 712. The next step 774
performs the apply local guery function described in Figure 82
and Figure 83. This step 774 will be applied recursively for each
subclass of the class handle 714. The subclasses for this class
handle 714 are retrieved from the class manager 134 reference
715 1in step 775.

If there are more subclasses to process as determined in
step 776, the class handle for the subclass is retrieved from the
class manager 134 reference 715 in step 781 and the local query
procedure in Figure 82 and Figure 83 is called in step 774.

From step 776, 1if all the subclasses were processed, the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

81

procedure returns to the parent class in step 777. Step 778
checks to see if the recursive algorithm has returned back to the
top query class 714 . If it hasn't, the remaining subclasses of
the current class are processed in step 776. If the procedure
has returned to the top query class 714, the instance list 723
is associated with the query result class 705 in step 779 and the
procedure returns to the caller in step 780.

The data structures that are created when a query is created
and applied are shown in Figures 164, Figure 157, Figure 156, and
Figure 155. In these figures assume the root class of a
particular knowledge base has a boolean attribute “discontinued”
and a numeric attribute “length” with a base unit of “inches”.
The user does a query of all discontinued parts with a length >3
inches.

In Figure 164 a query on the root class ( class handle 0 )
is created using the API 143 function "pmx createquery". A query
handle of 2 is returned to the caller. The user then retrieves
the handles for the boolean attribute “discontinued” ( attribute
handle 10) and for the numeric attribute “length” ( attribute
handle 19 and unit handle 5) wusing API 143 function get
"pmx_getattributedescriptorset".

In Figure 157, the results of setting the boolean selector
using API 143 function "pmx_setbooleanselector" with queryhandle
2 is shown.

In Figure 156, the results of setting the numeric selector
using API 143 function "pmx_setnumericselector" with queryhandle
2 is depicted.

After applying the query handle 2, instances 3, 300, and
30000 are found. The results of applying the query are shown in
Figure 155. A query results handle of 0 is returned since there
are no other query results in this example.

Another significant performance optimization of this
invention is described in Figure 85 applying a query count. This
procedure is used to return quickly and efficiently the number
of parts available in a schema class tree to the retriever 130.
The process starts in step 790 when the query class 702 pointer
is converted from the query handle. Step 791 checks this pointer
for validity, and returns in step 792 if an error occurred. Step
793 accesses the dynamic class manager 134 using reference 715



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

82

to get the class pointer for the query class 714. The list of
selectors 716 described by the base attribute selector class 706
is retrieved in step 794. If a selection list 716 item exists
as determined in step 795, the procedure for applying a query
described in Figure 84 must be executed and the resulting
instance count returned in step 798. The significant invention
occurs in step 796. The dynamic class manager 134 directly
maintains a count of instances local to a class, as well as a
count of all instances in the subtree parented by that class.
This value is maintained when instances are moved, deleted, or
added to a class. When the apply query count procedure is
applied, the value is simply looked up in the class and returned
to the user in 796. This step results in high performance tree
traversal feedback in the retriever 130, item 172.

The initial order of instances within a query result 705 is
random. The query result instances 723 can be reordered using
an API 143 function for sorting the instances. The retrieval
functions will then return the instances in sorted order. A
query result class 705 can be resorted multiple times.

In Figure 161, a sorting request consists of an ordered list
of attributes 719 and an indication of whether the order is to
be ascending or descending in sort order 1list 720. The
descending order is precisely the reverse of the normal order
which is ascending order.

The instances will be ordered first by the first attribute
in the ordering list 719. Within a group of instances that have
equal settings for the first attribute, the second attribute will
be used, and so on until the list is exhausted. Any order not
uniquely determined by the list will be essentially random.

The ascending order for boolean attributes is (TRUE, FALSE,

UNDEFINED) . The ascending order for enumerated attributes is the
order of the enumerators as defined in the schema followed by
undefined. The ascending order for string attributes is the
normal ASCII collating sequence followed by undefined.
The ascending order for numeric attributes is first sorted by
base units in the order defined by the schema. Within a base
unit, the instances are in numeric sequence. Undefined
parameters will be last.

Additional file manager 140 derivations are possible. The



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

83

interface provided by the file manager 140 to the dynamic class
manager 134 and the handle manager 137 is an agreement to
maintain a copy of the dynamic class manager schema and instance
data on secondary persistent storage 103. Changes, as they are
made to the schema and instances are also made in secondary
storage. The dynamic class manager 134 is initialized by reading
the data, via the file manager 140, from secondary storage 103.
Other secondary storage mechanisms could be implemented which
follow the interface specification. Other implementations could
use commercial data bases 1including relational database
management systems such as an Informix database, Oracle database,
Raima database, etc. Other implementations could also be built
using other proprietary file formats.

A query result is instantiated and populated with instance
handles. The order of the instances is random within the query
result. Instances within a query result may be sorted according
to specified criteria. Multiple sort criteria may be specified.
Sort criteria is specified by indicating a list of one or more
attributes and a sort order (ascending or descending) for each
attribute. Instances in a query result are ordered by sorting the
parameters indicated by the attributes according to the specified
order.

A query result is not sorted immediately upon receiving sort
message containing the sort criteria. Rather a query result
merely remembers the sort criteria and waits to perform the sort
when an instance handle is requested from a query result. (From
the PMX Retriever, a request for an instance handle is eminent.)

When an instance handle is requested from a query result,
the query result will sort itself at this point. However, the
entire query result is not sorted; only the portion of the query
result containing the instance of interest is sorted. The sorting
method used is incremental, only sorting those portions of the
query result that contain instances of interest. The other
portions of the query result are left unsorted. Incremental
sorting is done to improve response time: sorting a portion of
the query result usually takes less time than sorting the entire
query result.

Incremental sorting requires tracking which instance handles
in a query result have been sorted and which have not. To



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

84

accomplish this, the query result is sub-divided in to ranges.
There are two types of ranges: sorted and unsorted. Every
instance handle in a query result resides in either a sorted or
unsorted range. The Range Manager is responsible for managing
these ranges.

Initially, prior to any sorting, the entire query result is
contained in a single unsorted range. The act of incrementally
sorting the query result will sub-divide the query result into
several ranges, some which are sorted, some which are not. As
more and more portions of the query result are sorted, the number
of unsorted ranges become fewer; eventually the entire query
result becomes a single sorted range.

The range manager 1is aware of the meaning of sorted and
unsorted ranges and uses this information to join ranges together
to avoid range fragmentation, which would decrease performance
speed. The range manager uses two rules to join ranges: 1) two
adjacent ranges of the same type (sorted or unsorted) may be
joined together to make a single larger range, 2) an unsorted
range containing only a single instance handle may be joined with
an adjacent sorted range to make a larger sorted range.

Prior to sorting, a query result consists mainly of a list
of instances, 0 through N, in an unsorted state step 1350 of
Figure 144. The receipt of a sort message, changes the state of
the query result to sorted and provides it sorting criteria step
1351 of Figure 1444.

The query result will eventually receive a message to return
the Ith instance handle from the list of instance handles in step
1352 of Figure 188. At this point the query result must sort the
list to correctly order the Ith instance. This is done by first
selecting a random index, R, between 0 (lower bound of range) and
N (upper bound of range) (step 1353). The entire list is ordered
such that all instances greater than the instance at R are placed
above R in the list and all instances less than the instance at
R are placed below R in the list (step 1354). The instance at R
is now ordinally sorted within the list. At this point there are
three ranges: 0 to R-1 (unsorted), R (sorted), and R+l to N
(unsorted) .

If Ith and R coincide, sorting is complete and the Ith
instance handle is returned. Otherwise sorting must continue.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

85

Sorting continues based on the location of Ith in relation to R.
If Ith is less than R, then the range between 0 (lower bound) and
R-1 (upper bound) will be ordered. If Ith is greater than R, then
the range between R+1 (lower bound) and N (upper bound) will be
ordered. With the appropriate range determined, a new random R
is selected within the new range, and all instances in the new
range will be partially ordered with respect to the instance at
R.

The list is iterively sub-divided into ranges and partially
ordered until Ith and R coincide, at which time the sorting
discontinues and Ith instance handle is returned.

Sometime later when a another Ith instance is requested, if
this Ith instance is found within a range that has already been
sorted, no sorted need be done, and the Ith instance handle is
immediately returned. If this Ith instance is not found within
a sorted range, the sorting continues by iterively ordering the
ranges until Ith is found.

Each time a range is ordered and new ranges are identified,
the range manger is provided with this information. The range
manager keeps track of all ranges. At beginning of each iteration
range manager is asked if Ith exists in sorted range. If it is,
then no further sorting is required. If Ith is not found within
a sorted range, then the range manager provides the lower and
upper bound of the range that Ith exists in and the algorithm
orders that range and creates new ranges.

At the end of a sorting session, just prior to returning the
Ith instance, the range manager is provided the opportunity to
join fragmented ranges based on the rules previously mentioned.
At the end of a sorting session, the range manager may be
tracking the step shown in 1355 of Figure 189. Any adjacent
ranges of the same type may be joined together. Also, unsorted
ranges of size one, may be joined to adjacent sorted ranges.

The range manager will be tracking the ranges shown in 1356
when the range joining is complete.

A class pattern search is similar to a query but is applied
to all of the classes in a subtree. A search result is
represented by search result class 704.

A class pattern search performs a pattern match on the class
names and returns a list of classes 717 whose names match the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

86

pattern. Unlike a query, there is no separation of creating a
search and performing it, since a search isn't complicated enough
to need to be built up a piece at a time. The search returns a
"search result" handle which is an item that continues to exist
until the user deallocates it. There is no defined order in which
the classes are returned.

4. Handle Manager

The handle manager 137 is a component of the dynamic class
manager 134 that provides services for creation, deletion, and
disk-to-memory mapping of handles for all objects. The handle
manager 137 comprises two lists of virtual memory addresses which
are shown in Figure 42. The first list 810 contains the virtual
memory addresses 810-814 of schema objects (classes, attributes,
enumerators, units, and unit families). The second list 811
contains the virtual memory addresses 815-826 of instances. A
handle is an index into a list. Thus, given a schema object
handle or an instance handle, the handle manager 137 can return
to the dynamic class manager 134 the virtual memory address of
the desired object.

When the dynamic class manager 134 needs to examine the data
for some object for which it has a handle, the handle manager 137
responds to a request for the virtual memory address of the
object as shown in Figure 52. The procedure begins at step 1000
with a request from the dynamic class manager 134. The handle
is checked for validity at step 1001 (i.e., that the handle is
one that was created by the handle manager 137). If the handle
is not wvalid, an error condition is generated and the handle
manager returns a NULL virtual memory address to the dynamic
class manager 134 to indicate the error in step 1002. Otherwise,
the handle manager 137 continues with step 1003.

If the handle is valid, then the address stored in the
appropriate list (schema object or instance) is examined at step
1003. One special virtual memory address is reserved to indicate
that an object with the given handle is deleted. Only objects
which are deleted are allowed to have this special memory
address. If the address found from the handle look up in step
1003 is the deleted object address, then an error condition is
generated and the handle manager 137 returns a NULL virtual
memory address in step 1004 to the dynamic class manager 134.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

87

Otherwise, the handle manager 137 continues with step 1005.
1f the virtual memory address found in the list at step 1005 is
not a NULL pointer, then processing continues at step 1009. If
the virtual memory address found at step 1005 is NULL, then the
requested object is not present in memory. The handle manager
137 makes a request to the file manager 140 to read the object
with the given handle from secondary storage 103, create the
object in the virtual address space, and return the virtual
memory address to the handle manager 137 in step 1006.

At step 1007, the virtual memory address of the object which
has been created by the file manager 140 is tested against the
special deleted virtual memory address. If file manager 140 has
determined that the object is deleted, then an error condition
is generated and a NULL pointer is returned in step 1008.
Otherwise, processing continues at step 1009.

At step 1009, the handle manager 137 has identified a valid
virtual memory address for the object with the given handle. The
type of the object is tested to insure it is of the same type as
the type of the handle. If the type is not correct, then an
error condition is generated and a NULL pointer is returned in
step 1010. Otherwise, the address of the requested object has
been identified and this address is returned in step 1011 to the
dynamic class manager 134.

When the dynamic class manager 134 creates a new schema
object or instance on pehalf of a function of the API 143, the
handle manager 137 is invoked to generate a new handle for the
new object. The handle manager 137 returns an unused handle,
which is the next list index sequentially following the most
previously generated handle. In other words, it returns oldmax
+ 1. The handle manager 137 is informed of the address of the
new object so it can be entered into the list.

The handle manager 137 is also invoked by the dynamic class
manager 134 whenever an object is deleted on behalf of a function
of the API 143. The virtual memory address stored in the list
which is indexed by the given handle is set to the special
deleted object address.

5. Units Manager

The units manager 138 1is an integral component of the

dynamic class manager 134 that provides services for creation,



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

88

maintenance, and deletion of base and derived units for numeric
attributes. The data structures provided are discussed in detail
as part of the description of the dynamic class manager 154. The
presence of the units manager 138 and its ability to relate
numeric quantities to the units in which they are measured and
to perform automatic conversions among compatible units when
updating, searching and sorting the numeric values in the
database 123 has significant advantages compared to storing the
numeric values devoid of units.
6. File Manager

The file manager 140 is a subsystem of the knowledge base
server 132 that provides access to a secondary storage mechanism
103 for the schema objects and instances. The file manager 140
provides an access method independent set of services for
reading, writing, updating, creating, and locking knowledge bases
123.

The file manager 140 provides to the dynamic class manager
134 and handle manager 137 an abstract interface to the
persistent storage 103 of knowledge base objects. In other
words, the file manager 140 is a C++ abstract base class which
is intended to be fully defined by derived classes. The
interface functions or methods provided by the file manager 140
are shown in Table 5 and Table 6. The functions provided by the
file manager 140 may be separated into groups depending on their
usage.

Functions for opening and closing secondary Storage are used
by the class manager 134 when the class manager 134 is created
to service a knowledge base 123when a knowledge base server 132
is started or when the knowledge base server 132 terminates. The
class manager 134 uses a warm start function to initialize the
knowledge base server 132 in the desired configuration. A
factory creation function is used by a file manager factory.
Those skilled in the art are familiar with the use of factories
for object instantiations, and such functions will not be
described in detail. See Coplien, Advanced C++.

Other file manager 140 functions are used by the dynamic
class manager 134 whenever it performs some operation which
modifies the knowledge base 123. These functions correspond
nearly one-to-one for the API 134 and dynamic class manager 134



10

15

20

25

30

35

40

45

WO 96/15501 PCT/US95/15028

89

functions which make modifications to the knowledge base 123.
The file manager 140 is responsible for insuring that the data
in secondary storage 103 models exactly the data in the dynamic

class manager 134.

Additional file manager functions are used by the handle
manager 137 when the dynamic class manager 134 uses the handle
of some object which is not in virtual memory (see Figure 52,
step 1006). These functions construct the object in virtual
memory by reading the object from secondary storage 103. The
address of the created object is returned to the handle manager

137.

Table 5
Functions used by the class manager for API actions:

virtual long getDBFeatureCode
virtualconst cd_stringList CD_FAR & getDBCopyright
virtual cd_boolean addLeafClass

virtual cd_boolean addInstance

virtual cd_boolean addAttribute

virtual cd_boolean addEnumerator

virtual cd_boolean addsStringArrayElement
virtual cd_boolean changeSubclassOrder
virtual cd_boolean changeAttributeOrder
virtual cd_boolean changeEnumeratorOrder
virtual cd_boolean deleteLeafClass
virtual cd_boolean deletelInstance
virtual cd_boolean deleteAttribute
virtual cd_boolean deleteEnumerator
virtual cd_boolean deleteStringArrayElement
virtual cd_boolean movelnstance

virtual cd_boolean moveAttribute

virtual cd_boolean moveSubtree

virtual cd_boolean setParameter

virtual cd_boolean setStringArrayElement
virtual cd_boolean setParameterUndefined
virtual cd_boolean setClassName

virtual cd_boolean setAttributeName
virtual cd_boolean setEnumeratorName
virtual cd_boolean setClassCode

virtual cd_boolean setAttributeRequired
virtual cd_boolean setAttributeProtected
virtual cd_boolean addUnitFamily



10

15

20

25

30

35

40

45

WO 96/15501

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

90

cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean
cd_boolean

Table 6

PCT/US95/15028

addUnit
setEnumeratedUnitRows
setClassMetaParameters
setAttributeMetaParameters
setEnumeratorMetaParameters
setUnitMetaParameters
setEnumeratedUnitTable
setUnitFamilyName
setUnitName
setUnitConversionValues
deleteDerivedUnit
setAttributeUnits

Functions for opening and closing secondary storage:

cd_fileManager

virtual ~cd_fileManager

A function for warm starting:

virtual cd class CD_FAR * warmStart

A function for factory creation of a derived file

manager:

static cd_fileManager * make

Functions used by the handle manager for faulting
objects into memory:

virtual
virtual
virtual
virtual
virtual
virtual
virtual

The presently preferred

of file managers 140 from a base file manager class.

manager 140 "nullmgr.hxx")

(called

void
void
void
void
void
void
void

getClass
getAttribute
getEnumerator
getUnit
getUnitFamily
getSchemaObject
getInstance

embodiment comprises two derivations

A null file
defines all of the file

manager 140 functions, but the effect of any of these functions

is null.

for the dynamic class manager 134.

The null file manager 140 provides no secondary storage

The purpose for this type of



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

91

file manager 140 is primarily for testing.

A second derivation of the file manager 140 is the Cadis
File Manager (called "ecdsdbmgr.hxx"). The Cadis File Manager
interacts with secondary storage for persistent storage of the
schema objects and instance objects. The formats of the files
as stored on secondary storage are shown in Figures 53 - 64. The
Cadis File Manager also manages the details of the mapped 1/0,
the standard I/0, and the raw I/0 access methods.

The Cadis File Manager maintains a copy of the current state
of the knowledge base 123 in simple files on secondary storage
103. Although the secondary storage copy can be thought of as
a single knowledge base 123, for convenience it is mapped to
three files on secondary storage. These three files are known
as the schema file, the instance file and the dynamic file 2400.
The schema file and instance file contain fixed size data about
schema objects and instance objects respectively. The dynamic
file contains data, such as lists of items and character strings,
which by their nature are of varying length.

Referring to Figure 53, the sequential layout of the dynamic
file 2400 is shown. The dynamic file 2400 contains a header 2401
(described below) and, following sequentially, a plurality of
variable length objects. The first variable length object is
2402, the second 2403. These objects continue down through the
file. Figure 54 shows the general layout of the schema and
instance files 2404. Here the format is essentially the same
with a header 2401 and a series of objects 2405, 2406 etc. 1In
each of the schema and instance files, however, the objects are
of known size. This means that they can be located quickly in
the file knowing only their ordinal position amongst the objects.
In the current implementation, this ordinal position is always
exactly equal to the value of the handle assigned to the object.

Figure 55 shows the layout of the file header 2401 which is
present in all three files. The first six computer storage words
in the headers of the three files follow the same format across
files. These six words contain the release number 2407 and
revision number 2408 of the knowledge base 123, the date 2409
when the knowledge base was created, the file offset 2410 of the
last location in the file which contains data, a boolean flag
2411 indicating whether the knowledge base 123 can be updated,



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

92

a feature code 2412 optionally indicating the source of the data
present in the file, and two filler words 2413 and 2414. The
headers of all three file types will then contain two additional
words. The contents of these words will vary among the files.
The schema file 2404 will contain an offset into the dynamic file
2400 where a list of global units is present 2415 and the value
of the maximum handle used in the schema file 2416. The instance
file will contain an additional filler word 2417 and the value
of the maximum handle used in the instance file 2418. The
dynamic file will contain an additional filler word 2419 and a
word containing the value "-1" 2420.

The objects 2405, 2406 etc. present in the schema file will
be objects of various types corresponding to the various types
in the schema. In most cases, the values stored in the knowledge
base for a particular type of object correspond in a very
straightforward fashion with the values kept in memory by the
dynamic class manager 134. Figures 56, 57, 58, 59 and 60 show
the layouts of these various objects. Each of these object types
is comprised of twelve computer storage words.

Figure 56 shows the layout of a schema file object 2421
which represents a class in the knowledge base 123. The class
object contains a flag indicating if the class has been deleted
2426, a type code which is always "20" 2427, an indicator of
whether the class is a "primary", "secondary" or "collection"
class 2428, an empty filler byte 2429, the handle of the class
2430, the handle of its parent class 2431, an offset into the
dynamic file where the list of subclasses belonging to the class
can be found 2432, an offset into the dynamic file where the list
of local attributes of the class can be found 2433, an offset
into the dynamic file where the list of instances belonging to
the class can be found 2434, the number of instances currently
located in the subtree rooted at the class 2435, an offset into
the dynamic file where the list of metaparameters which belong
to the class can be found 2436, three filler words 2437, 2438 and
2439 and an offset into the dynamic file where the name of the
class can be found 2440.

Figure 57 shows the layout of a schema file object 2422
which represents an attribute in the knowledge base. The
attribute object contains a flag indicating if the object has



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

93

peen deleted 2441, a type code 2442 which is 51 for an enumerated
attribute, 52 for a boolean attribute, 53 for a numeric
attribute, 54 for a string attribute and 55 for a string array
attribute. It alsoc contains a field indicating if the attribute
is "required" 2443, a field indicating if it is "protected" 2444,
the handle of the attribute 2445, and the handle of the class
which defines the attribute 2446. If the attribute is an
enumerated attribute, there will be an offset into the dynamic
file where the list of enumerator handles belonging to the
attribute will be found 2448. If the attribute is a numeric
attribute, there will be the unit family handle 2449 for the unit
family which contains the units which the numeric attribute uses.
1f the attribute is not of one of these two types, a filler word
2447 will be present. The attribute will contain the offset into
the dynamic file where the meta-parameters for this attribute are
listed 2450 and filler words 2451, 2452, 2453, 2454, 2455 and
2456. Finally, the attribute will contain the offset into the
dynamic file where the attributes name is given 2457.

Figure 58 shows the layout of a schema file object 2423
which represents an enumerator in the knowledge base 123. The
enumerator object contains a flag indicating if the object has
been deleted 2458, a type code 2453 which always contains the
number "60", two filler bytes 2460, the handle of the enumerator
2461, the offset into the dynamic file where the meta-parameters
for the enumerator can be found 2462, filler words 2463 through
2470 and the offset into the dynamic file where the name of the
enumerator is located 2471.

Figure 59 shows the layout of a schema file object 2424
which represents a unit in the knowledge base. The unit object
contains a flag indicating if the object has been deleted 2472,
a type code 2473 which is "81" for a base unit, "91" for a real
derived unit and "92" for an enumerated table, a unit type flag
indicating whether the unit is integer, real or enumerated 2474,
a field which, for an enumerated unit, contains the number of
rows to be displayed in the table 2475, the unit's handle 2476,
the handle of the unit family which defines this unit 2477 and
the handle of the base unit from which this unit is derived 2478
(or NULL if this is unit is a base unit). For a base unit, there
will then be two filler words 2479 and 2480. A real derived unit



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

94

has a multiplication factor 2481 and an offset 2482. An
enumerated table has an offset into the dynamic file where the
list of enumerator strings is located 2483 and an offset into the
dynamic file where the list of real values is located 2484. al1
unit types then have an offset into the dynamic file where the
meta-parameter list can be found 2485, four filler words 2486-
2489 and an offset into the dynamic file for the unit name 2490.

Figure 60 shows the layout of a schema file object which
represents a unit family in the knowledge base 2425. The unit
family object contains a flag indicating if the object has been
deleted 2491, a type code which is always "70", 2492, a two byte
filler field 2493, the handle of the unit family 2494, the offset
into the dynamic file where a list of unit family handles which
are included in this unit family can be found 2495, and offset
into the dynamic file where a list of unit handles defined by
this family can be found 2496, seven filler words 2497-2503, and
an offset into the dynamic file where the name of the unit family
can be found 2504.

The objects 2405, 2406 etc. present in the instance file
will all be instance objects. Each instance object is comprised
of four computer storage words. Figure 61 shows the layout of
an instance file object 2511. The instance object contains a
flag indicating if the instance has been deleted 2505, a type
code which is always "30", a two-byte filler field 2507, the
handle of the instance 2508, the handle of the class which owns
the instance 2509, and an offset into the dynamic file where the
list of parameters belonging to the instance can be found 2510.

The objects 2402, 2403 etc. present in the dynamic file are
variable length objects which have various types based on the
size of the components which are stored therein. Figure 62 shows
the layout of a type 1 dynamic object 2512 which is used to store
@ character string. A type 1 dynamic object contains a flag to
indicated if it has been deleted 2516, a type code which ig "1
2517, the length of the character string stored 2518, the amount
of space actually allocated in the file for the character string
2519, a two-byte filler 2520, and a block of characters which
contain the stored string 2513. Figure 63 shows the layout of
a type 2 dynamic object 2514 which is used to store data items
which are four bytes in length, such as handles, integers, reals,



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

95

offsets, etc. A type 2 dynamic object contains a flag to
indicate if it has been deleted 2521, a type code which is "2"
2522, a two-byte filler 2523, the length of the stored data 2524,
the amount of space actually allocated in the file for the data
2525, and a block of data which contains the actual stored values
2515. Figure 64 shows the layout of a type 3 dynamic object 2526
which is used to store parameter data. Each stored parameter
takes 4 computer words. A type 3 dynamic object contains a flag
to indicated if the object has been deleted 2527, a type code
which is "3" 2528, the length of the stored data 2529, the amount
of space actually allocated for the data 2530, a two-byte filler
2531, and then a succession of parameter objects 2532, 2547 and
so forth. Each parameter object 2532 contains a flag indicating
if the parameter has been deleted 2533, a type code which
indicates if the parameter is enumerated, Boolean, numeric,
string or string array 2534, a two-byte filler 2535 and the
attribute handle of the attribute to which this parameter refers
2536.
If the parameter is of enumerated type, the parameter object will
also contain the handle of the enumerator to which the parameter
is set 2537 and a filler word 2538.
If the parameter is of Boolean type, the parameter object will
also contain the actual Boolean value stored 2539 and a filler
word 2540. If the parameter is of numeric type, the parameter
object will also contain the handle of unit in which the value
is expressed 2541 and the actual numeric value 2542 expressed in
those units. If the parameter is of string type, the parameter
will also contain an offset into the dynamic file where the
string value is located 2543 and a filler word 2544. If the
parameter is of string array type, the parameter will contain an
offset into the dynamic file where a list of offsets to the
stored character strings can be found 2545 and a filler word
2546.
7. DataBase Manager

The database manager 139 is a subsystem of the knowledge
base server 132 that stores and manages high-level information
about knowledge bases 123 being managed by the knowledge base
server 132. A graphical representation of the data maintained
by the database manager 139 is shown in Figure 152. The database



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

96

manager 139 maintains a linked list of entries about knowledge
bases 123 managed by the knowledge base server 132.

The database manager 139 is responsible for concurrency
control on database objects. For concurrency control, write
locks are maintained on classes. A write lock has the property
that read or retrieval operations may be performed on the locked
class, but update operations may only be performed by the lock
holder. Locks are set by the schema editor 500 and by legacy 133
to allow concurrent updaters and privacy in legacy work areas.

Only one lock holder is allowed per class. Lock holders are
identified by their connection, not by user name. Locks are
maintained for the length of a connection. Once a connection is
destroyed by either closing the knowledge base 123 or because the
connection timed out, all locks held by that connection are
released.

Locking a class locks all attributes defined by that class.
Locks are required for modifying attributes and classes. Locks
are advisory for editing instances.

The granularity of locking is at the knowledge base, tree

and class level. Locks may be set 1locally to a class or
inherited. Local class locks are set using a class 1lock
mechanism. These are local locks which are not inherited by

subclasses of the locked class. For example, the root class of
a knowledge base 123 may be class locked to prevent updates, but
the subclasses may still be locked by another user.

Locks may be inherited by locking the knowledge base 123,
which implicitly locks all classes in the knowledge base 123.
Locks may also be inherited by locking a subtree. A subtree is
locked by applying a tree lock to a class. All descendent
classes of the tree locked class are locked by implication.
Physically, any class locks in the subtree are subsumed by the
subtree or knowledge base lock. For a user to get a tree lock,
no nodes in that tree can be locked by another user.

For a more detailed discussion of lock object granularity,
see Won Kim, "Object Oriented Databases", or Won Kim, "Object -
Oriented Concepts, Databases, and Applications", (1989) published
by ACM Press.

In Figure 86, let class B be locked by User 1. User 1 could
be granted a tree lock on class A since there are no locks held



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

97

in the tree by other users. In another example, let class B be
locked by user 1. Locks can be granted to User 2 for classes C,
D, E, and F since there are no other lock holders for those
classes. User 2 can be given a local tree lock on class A, but
a tree lock would be denied user 2 since class B is locked by
user 1.

One feature of the invention is the ability to specify that
an interface requires a lock on an attribute or class that is a
parameter to the interface. The database manager 139 will check
for a lock at the database manager level, and this relieves the
class manager 134 from subsequent lock conflict resolution.

D. API

The application programming interface or API 143 refers to
the external C or C++ language functions that provide access to
the functions provided by the knowledge base server 132, registry
server 141, and license manager 142 functions to client
applications 130, 133, and 144.

E. Registry Server

The registry server 141 is a UNIX process that provides
administration and security functions for users and knowledge
bases. User administration functions include name and password
management and mapping user access rights to knowledge bases 123.
Knowledge base administration provided by the registry server
includes RPC service mapping, host CPU mapping, and logical to
physical name mapping.

F. License Manager

The license manager 142 is a UNIX server process (which in
the illustrated example is called "pmxlm") that provides software
license control for the software and for licensed knowledge bases
123. satisfactory operation of the license manager 142 may be
achieved using a conventional Elan License Manager available from
Elan Computer Group, Inc.

G. Schema Editor

The schema editor 144 is an application that provides a
graphical interface for creating, editing, and deleting schema
objects. Objects may be renamed, reordered, and moved. The
schema editor 144 communicates with the knowledge base client 131
using the API 143. The schema editor 144 provides an object
oriented graphical user interface. A user interacts with schema



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

98

editor 144 providing input through a keyboard 115 and a mouse
114. The schema editor 144 displays information on the display
116.

Figure 87 depicts a typical display that appears on the
screen of the display 116 after a user successfully logs on to
the system and selects schema editor from the e tools pull down
menu 146 from the parts specification window 170 shown in Figure
88. The particular example described herein is described in a
Windows environment, it being understood that the invention is
not limited to implementation in Windows. Those skilled in the
art are familiar with Windows techniques and instructions,
including how to click, double click, drag, point and select with
a mouse 114. Additional information may be obtained from the
Microsoft Window's User's Guide (1992), available from Microsoft
Corporation, One Microsoft Way, Redmond, Washington, 98052-6399,
part number 21669.

When a user first opens the schema editor 144, a schema
editing window 500 appears, as shown in Figure 89. Initially,
the left hand portion of the screen 501 displays the class title
edit box 502, which is used to change the title of the selected
class. The class title OK button 503 and cancel button 504 are
used to accept or reject class title changes. The class add
button 505 and delete button506 are used to add or delete
classes. Also displayed on the left-hand portion of the screen
501 is the root class 507 and the root subclasses 508. 1In the
illustrated examples, the root subclasses 508 are "electrical
components", "mechanical", and "materials". The root class 507
is the upper most class that has no parent. In this example, it
is the name of the knowledge base 123, or the very beginning of
the schema. A subclass 508 is a class that has a parent. When
a class 507 is chosen, any subclasses 508 that belong to that
class 507 will appear on the display 501. Subclasses are the
children of the parents. For example, the parent of the
mechanical subclass 508 is the root class 507, and the mechanical
subclass 508 is a child of the parent root class 507. In the
example shown in Figure 89, there are three subclasses 508.

The right hand portion of the screen 509 displays the root
attributes 516. In the illustrated example, the attributes are
"part number", "description", and "cost". Attributes 516 are the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

99

characteristics of a class or subclass 507. Attribute number
column 517 is used to display the total attributes both local and
inherited for the selected class represented on the class side
of the screen 501. The locks column 519 and the required column
520 are used to set locked (protected) or required attributes.
The user clicks on the row of the desired attribute in the lock
column 519 or the required column 520, a check mark will appear
in the selected row/column if the lock or required is turned on.
Locked and required attributes are used for make part described
above in connection with the description of the retriever 130.
Also displayed in the right hand portion of the screen 509 is
attribute title edit box 510, which is used to change the title
of the selected attribute. The attribute title OK button 511 and
cancel button 512 are used to accept or reject attribute title
changes. The attribute add button 513, delete button 514 and
edit button 515 are used to add, delete, or edit certain
attributes. The command name in these buttons is dimmed when the
user has selected an attribute that is not owned by the selected
class in area 501. The edit button is also dimmed if the
attribute type is not either numeric or enumerated.

Class tree 508 is navigated by double clicking on the closed
folder icon 189 as described in the flow chart in Figure 90 and
in connection with Figure 91. The user double clicks on a closed
folder icon 529 in step 521, an open folder is displayed and a
list of subclasses is obtained in step 522. For each subclass
that was obtained, an icon 531, 532 is displayed to represent a
leaf class 531 in step 524 or a subclass 532 in step 525.
Attributes are displayed for the selected class in area 509 and
control is returned back to the user in step 528. Classes are
closed by double clicking on an open folder icon 190, this
displays a closed folder icon 529 and collapses all subclasses
of the selected class. Leaf classes do not have any subclasses
and are displayed as document icons 531. Leaf classes 531 cannot
be opened or closed.

A class can be reparented to a new subclass as described in
the flow chart of Figure 92 and in connection with Figures 93-94.
The user selects the subtree to be moved in step 534 which is
highlighted 544 in screen area 501. In step 535, the user holds
the mouse button down 117 and the control key on the keyboard 122



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

100

and drags the class in area 501 onto the class that is to become
the new parent of the selected class being dragged 544. As the
user is dragging the selected class, the class being dragged over
is highlighted and the mouse cursor is changed to a no drop icon
in step 538 if the class is a sibling of the selected class being
dragged in step 535. If the class being dragged over is not a
sibling of the selected class 544 being dragged, the cursor is
changed to a drop icon in step 539. When the user drops the
selected class being dragged in step 540 on a legal drop class,
the knowledge base 123 is updated to represent the new class
structure in step 541. The class tree 501 is also updated to
represent the new class tree 542 and 545. Control is then
returned to the user 528.

A class can be rearranged within a subclass with sibling
classes as described in the flow chart of Figure 95 and in
connection with Figures 96-97. The user selects the subtree 545
to be rearranged in step 547 from screen area 501. The user
holds the mouse button down 117 and drags the class in area 501
onto the class that is to become the new location of the selected
class being dragged in step 547. As the user is dragging the
selected class, the class being dragged over is highlighted and
the mouse cursor is changed to a no drop icon in step 551 if the
class is not a sibling of the selected class being dragged in
step 547. If the class being dragged over is a sibling of the
selected class being dragged in step 547 the cursor is changed
to a drop icon in step 552. When the user drops the selected
class being dragged in step 553 on a legal drop class, the
knowledge base 123 is updated to represent the new class
Structure in step 554. The class tree 501 is also updated to
represent the new class tree 557 in step 555. Control is then
returned to the user in step 528.

New classes are added using the add button 505 as described
in flow chart Figure 98 and in connection with Figure 99 - 100.
The user selects a class in the class tree area 501 that will be
used as the parent of the class to be added. The user selects
the add button 505 and the add class dialog 564 appears in step
560. The new class title is entered into the dialog box in step
560. 1In this example "custom hardware" has been entered in text
entry field 565. The user then selects either the OK button 566



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

101

or the cancel button 567. If the OK button 566 is selected in
step 561 the new class is added to the knowledge base. The
screen 501 is updated to show the new class tree 568 in step 562,
as shown in Figure 100. The new class is a leaf class and is
represented as a document icon 531. If the parent class was a
leaf class the parent class icon will be changed to a open folder
icon 530. The add class dialog 564 is closed in step 563 and
control is returned to the user in step 528. If the cancel
button is selected the add class dialog box 564 is closed in step
563 and control is returned to the user in step 528.

An attribute can be rearranged as described in the flow
chart of Figure 101 and in connection with Figures 102 and 103.
In this example "finish" 579 will be rearranged under "head
recess" 580. The user selects the attribute 579 to be rearranged
in step 570 from screen area 509. The user holds the mouse
button down 117 and drags attribute 579 in the attribute area 509
onto the attribute 580 that is to become the new location of the
selected attribute being dragged in step 576. As the user is
dragging the selected attribute in step 570, the attribute being
dragged over is highlighted in step 572 and the mouse cursor is
changed to a no drop icon in step 574 if the class is an
inherited attribute. See step 573. If the attribute being
dragged over is not an inherited attribute the cursor is changed
to a drop icon 575. When the user drops the selected attribute
being dragged in step 576 on a legal drop attribute, the
knowledge base 123 is updated to represent the new attribute
structure in step 577. The attribute area 509 is also updated
to represent the new attribute structure 579 in step 578 as shown
in Figure 103. Control is then returned to the user in step 528.

A new enumerated attribute can be added as described in the
flow chart of Figure 104 as shown in Figure 105. In this example
a new enumerated attribute titled "material" is added. The user
selects the add button 513 from screen area 509. The add
attribute dialog 588 is displayed in step 582. The user selects
the type of attribute to add, in this example enumerated 589 is
selected in step 583. In step 584, the user then enters an
attribute title to represent the enumerated attribute, in this
example the user entered "material" 590. The user can then
select either the OK button or the cancel button in step 585.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

102

If OK is selected, the knowledge base is updated and the
attribute list in area 509 is updated to include the added
attribute in step 586 and the add attribute dialog is closed in
step 587. Control is then returned to the user in step 528. If
the cancel button is selected, the add attribute dialog is closed
in step 587 and control is returned to the user in step 528.

A new numeric attribute can be added as described in the
flow chart of Figure 106 as shown in Figures 107 - 108. 1In this
example a new numeric attribute titled "length" is added using
unit family inches. The user selects the add button 513 from
screen area 509. The add attribute dialog 588 is displayed in
step 582. The user selects the type of attribute to add, in this
example numeric 599 is selected in step 594. 1In step 584, the
user then enters an attribute title 600 to represent the numeric
attribute, in this example the user entered "length" 600. The
user can then select either OK or cancel in step 585. If OK is
selected, the unit family dialog 1600 is displayed in step 595.
The unit family dialog 1600 contains a list of all available
units 1601 for the entire knowledge base 123. If the OK button
1602 is selected from this dialog box 1600, a new numeric
attribute of unit type length is knowledge base and the attribute
list is updated in step 598. Control is then returned to the
user in step 528. If the cancel button 1603 is selected, the add
attribute dialog 588 is closed in step 587 and control is
returned to the user in step 528.

A new Boolean attribute can be added as described in the
flow chart of Figure 109 and as shown in Figure 110. 1In this
example a new Boolean attribute titled "purchased" is added. The
user selects the add button 513 from screen area 509. The add
attribute dialog 588 is displayed in step 582. The user selects
the type of attribute to add, in this example Boolean is selected
1605 and 1607. The user then enters an attribute title to
represent the Boolean attribute, in this example the user entered
Purchased 584 and 1606. The user can then select either OK or
cancel 585. If OK is selected, the knowledge base is updated and
the attribute list is updated to include the added attribute 586
and 509 and the add attribute dialog is closed 587. Control is
then returned to the user 528. If the cancel button is selected,
the add attribute dialog is closed 587 and control is returned



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

103

to the user 528.
A new string attribute can be added as described in the flow

chart in Figure 111 and screen shot Figure 112. 1In this example
a new string attribute titled Manufacturer is added. The user
selects the add button 513 from screen area 5089. The add
attribute dialog is displayed 582 and 588. The user selects the
type of attribute to add, in this example string is selected 1609
and 1611. The user then enters a attribute title to represent
the string attribute, in this example the wuser entered
Manufacturer 584 and 1610. The user can then select either OK
or cancel 585. If OK is selected, the knowledge base is updated
and the attribute list is updated to include the added attribute
586 and 509 and the add attribute dialog is closed 587. Control
is then returned to the user 528. If the cancel button is
selected, the add attribute dialog is closed 587 and control is
returned to the user 528.

Enumerators for enumerated type attributes can be added and
inserted as described in the flow chart Figure 113 and as shown
in Figure 114 and Figure 115. When an enumerated attribute is
active in screen area 509 the edit button 515 is activated. When
the edit button 515 is selected, the edit enumerator dialog box
1620 is displayed with a list of enumerators for the selected
enumerated attribute 1613. The user can either select the add
button 1621 or the insert button 1622. If the add button 1621
is selected in step 1615, a blank line is added after the active
enumerator in the dialog box 1620 and the knowledge base 123 is
updated. If the insert button 1622 is selected in step 1616, a
blank line is added before the active enumerator in the dialog
box 1620 and the knowledge base 123 is updated. The enumerator
title is typed into the blank line in dialog box 1620 in step
1617, in this example "aluminum" is entered and the knowledge
base is updated in step 1617A. In the example on Figure 115,
"steel" has been added and the insert button 1622 was selected
to add a blank line above the enumerator "steel." When the user
has completed adding/inserting enumerators, the close button 1623
is selected in step 1619, and the edit enumerators dialog box
1620 is closed. The control is then returned to the user in step

528.
Enumerators for enumerated type attributes can be deleted



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

104

as described in the flow chart of Figure 116 and as shown in
Figure 117. When an enumerated attribute is active in screen
area 509 the edit button 515 is activated. When the edit button
515 is selected, the edit enumerator dialog box 1620 is displayed
with a list of enumerators 1624 for the selected enumerated
attribute 1613. The user selects an enumerator in step 1626 then
selects the delete button 1629 in step 1627. In step 1627A, a
confirmation dialog box 1630 displays allowing the user to select
either the "yes" button 1631 in step 1627C or the "no" button
1632 in step 1627D. If "yes" is selected, the enumerator is
removed from the edit enumerator list 1624 and the knowledge base
is updated in step 1627C and the confirmation dialog is closed
in step 1627D. If the user selects "no" in step 1627D, the
confirmation dialog is closed. When the user has completed
deleting enumerators, the close button 1623 is selected in step
1619 and the edit enumerators dialog 1620 is closed. The control
is then returned to the user in step 528.

Figure 118 describes the functions that can be performed
from the numeric table editor dialog box 1550 in Figure 119.
This dialog box 1550 allows the user to build tables of numeric
values for a numeric attribute. The numeric table editor dialog
1550 is invoked in step 1500 from the schema editor 500 after
selecting a numeric attribute such as 1552. The edit button 515
invokes the table editor dialog 1551.

In step 1501, calls are made through the API 143 to display
existing table data. If no table data exists, a table 1554 with
1 row and 1 column is constructed and displayed as shown in
Figure 119.

Tables 1554 consist of cells which have numeric values and
labels associated with them. A label is distinct from a value,
and is used as a textual description or representation of the
underlying values. Table cells 1554 must contain ascending
numeric values. Labels may be in any collating order.

In Figure 118, the user adds values to a table in step 1504
by executing the procedure described in Figure 120. The user may
optionally label a table manually in Figure 120, step 1509, or
use the auto-label feature in step 1510 by selecting item 1559
in Figure 121. The auto label button 1559 invokes the automatic
values dialog box 1560 in step 1510. In step 1511, the user fills



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

105

in values for items 1561, 1562, and 1563 and selects the OK
button 1564. In step 1513, the values for the cells are
calculated and set in the table. In step 1514, the automatic
values dialog 1560 is closed, and control is returned to the user
in step 1515.

In Figure 120, if the user chose to label the table cells
manually in step 1509, the user selects item 1565 and enters a
value, accepted by selected check box 1566A. Any cells the user
had selected in item 1566 are filled with the value in step 1517.
Control is returned to the user in step 1515.

In Figure 118, the user performs step 1503 to add labels to
the table. The process for adding 1labels to the table is
described in Figure 122. In step 1519, the user may select auto
label or manual labeling. If auto label item 1567 in Figure 123
is selected, the automatic labeling dialog 1568 is invoked in
step 1520. For each column in the table 1569, the user may type
in a label. 1In step 1522 the user may select the OK button 1570
or the cancel button 1571. If the user selects the OK button
1570, step 1523 sets the cell labels to the current cell value
concatenated with the label values from the automatic labeling
dialog 1568. Dialog 1568 is dismissed, and control is returned
to the user in step 1524.

Tables are structured as rows and columns. The user may
wish to change the number of columns and rows in a table by
executing step 1502. Rows and columns are entered by using the
edit boxes 1555 or 1556 and the check mark button 1557. To not
accept a value, the "x" button 1558 may be selected. The
procedure for changing the number of columns and rows is
described in Figure 124.

In Figure 124, the user may select rows in step 1536 by
selecting item 1556 in the table editor dialog 1550. The user
enters the number of rows in item 1556 and selects item 1557 to
accept the item. In step 1537, the number of rows Kkept
internally is adjusted to the number of rows entered in step
1536. The number of rows is checked in step 1538. If the number
of rows is greater than the number of rows previously in the
table, the new rows are added with the default value of "0" and
no labels in step 1540 and control is returned to the user in
step 1535. If no new rows are needed, "0" Or more rows are



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

106

deleted from the table along with their 1labels in step 1539
before returning control to the user in step 1535.

In Figure 124, the user may have selected columns to change
in step 1530 by selecting item 1555 and entering a numeric value
and selecting item 1557 to accept the item. This new number is
set internally in step 1531. If new columns need to be added as
determined in step 1532, step 1534 adds new columns to the table
with the default value of "0" and no labels. If no new columns
are needed as determined in step 1532, "0" or more columns are
removed from the table along with their labels.

Back in Figure 118, the user closes the table editor in step
1506 by selecting the OK button 1572 in Figure 119 or by
canceling changes by selecting cancel button 1573 in Figure 119.
The table editor dialog box 1550 is dismissed in step 1507 and
control is returned to the user in step 528.

In Figure 127, the process for deleting an attribute from
schema editor 500 is shown. 1In Figure 128, the user selects the
mechanical class 2206. Note that all the cells in area 509 are
dimmed, and the delete button 519 is not active. The schema
editor 500 only allows the attributes defined by mechnical class
2206 to be edited, and there are no locally defined attributes.

In Figure 129, the user selects test hardware item 2207.
Attributes are defined at this class and in area 509, the local
attributes in items 2208, 2209, and 2210 are not dimmed and are
available for editing. The user selects item 2214 in Figure 130
and it is highlighted.

In step 2200 of Figure 127, the user selects the delete
button 519 in Figure 130.

In step 2201 of Figure 127, the dialog box 2211 in Figure
130 is displayed to allow the user to verify the deletion of the
attribute 2214. If the user selects button 2213 in Figure 130,
the dialog box 2211 is dismissed in step 2204 and control is
returned to step 528 from step 2205.

If the user selects button 2212 in Pigure 130, the attribute
is deleted from the knowledge base in step 2203 and item 2214 of
Figure 130 is deleted from the display area 509 Figure 130. Step
2204 is executed to dismiss dialog 2211, and control is returned

to step 528 from step 2205.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

107

H. Legacy and the Legacy Manager

The legacy manager 145 is a component of the dynamic class
manager 134 that provides services for classifying, and
parameterizing data. Legacy 133 is an application that provides
a graphical interface and tools for classifying, parameterizihg,
moving, importing, and editing parts, a process also known as
"legacizing". Legacy 133 communicates with the knowledge base
client 131 using the API 143

Figure 132 shows a preferred process for performing the
transformation of customer 1legacy parts data into a parts
knowledge base in a form usable by the dynamic class manager 134,
thereby providing access to users through a retriever 130.

In step 600, customer parts data sources, which may include
data from material requirements planning systems, part master
systems, bill of material systems, purchasing systems,
engineering drawing systems, part catalogs, crib sheets,
intelligent part numbering systems in files 601 are analyzed for
possible complete or partial inclusion in the input files that
serve as input to legacy 133. Parts data sources to be used in
legacy processing are segregated into legacy input files 602.
These original parts data sources may be in a variety of formats,
including fixed length records, delimited records, COBOL file
formats, or others which are converted in step 603 to importable
legacy data files 604, which consist of text identified by part
identifier with fields separated by a standard delimiter, usually
an ASCII tab character.

In step 605 the legacy input files are analyzed to determine
if data augmentation would be appropriate. For example,
classification and parametric information about integrated
circuit parts is available referenced by manufacturer and device
number and may be used to augment or replace any other
descriptions of these parts by use of genic 3000. Similarly,
classification and parametric information is available from
government and industry standards, or customer supplied
engineering tables, which may then be automatically merged with
other descriptions of these parts. The resulting optionally
augmented part legacy data is stored in files 607.

Step 608 includes running the classify program to perform
initial classification of the optionally augmented legacy data



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

108

607. In addition, if parts data is to be imported to classes
based on patterns identified in the parts data, import maps are
generated describing the relationship of the patterns to their
associated classes. Finally in step 608, any required custom
schema development is performed by a combination of manual means
and use of the schemagen program. The result of step 608 is the
creation of a preliminary knowledge base accessible by the
dynamic class manager 134 and therefore legacy 133.

In step 610 the graphical user interface of legacy 133 is
used by subject matter knowledgeable users who are assigned to
perform further part classification and parameterization on parts
within identified subtrees of the class hierarchy. By iterative
application of 1legacy 133, the preliminary customer parts
knowledge base 611 is produced. In step 612 a combination of
random sampling, use of the ability of retriever 130 to query on
parts at a non-leaf class in the schema to identify partially
classified parts, querying on undefined attributes to identify
incomplete parameterization, and sorting and inspection of
parameter minimum, maximum, and standard values is used for
quality inspections and correction of part classification and
parameterization. The final result of the quality assurance
activities performed in step 612 is a customer parts knowledge
base ready for delivery to the customer. In step 613, this
knowledge base is delivered to the customer by means of computer
tape, disks, or other computer-readable means, with the delivered
knowledge base 614 being further maintained and enhanced by the
customer through retriever 130.

In the present invention, legacy 133 provides graphical user
interface to the classify a part function 1101, parameterize a
part function 1102 of the legacy manager 145, along with software
programs for performing initial part classification 3001, a
schema generation program 3002 for custom schema generation from
data, and genic 3000, a data augmentation through analysis,
lookup, classification and parameter generation for integrated
circuit type parts based on manufacturer and device identifiers.

Legacy 133 includes the query formulation and part display
and editing functions of retriever 130 as a means of querying,
displaying and modifying the parameters of parts, including
selecting those parts to be classified and parameterized, and as



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

109

a means of navigating the class hierarchy and associated
attributes to select classes, attributes and enumerators for
thesaurus editing.

Legacy 133 also provides a graphical user interface for the
creation, modification and deletion of thesaurus entries stored
as metadata associated with classes, numeric attributes, boolean
attributes, enumerators of enumerated attributes, and units
within unit families. Legacy 133 also includes a means for
setting and modifying the class types collection, primary, and
secondary which are used to control the classify a part function
1101 in its use of the class hierarchy.

It provides a means for selecting the source attribute 1266,
a text attribute from which the text parameter to be analyzed by
the legacy manager 145. It also provides a means for selecting
the destination attribute 1267, the text parameter of is set to
return to the user the text resulting from application of
thesaurus entries when a part is classified or parameterized.

The user may specify a list of attributes to parameterize
1277 which is defined by the legacy manager as a superset of the
parameters that may be set during parameterization. Legacy 133
provides a graphical user interface for adding and deleteing
parameters from the list of attributes to parameterize 1277.

The user may also specify a virtual root 1269 which is
defined by the legacy manager as the class from which legacize
ancestor classes 1112. By this means, the user may effectively
control which superclass thesaurus entries are applied to
legacizing one or a group of parts.

Figure 170 shows how the user accesses knowledge bases for
legacy processing by step 615, selecting Open from the drop down
menu choice File 1201 in Figure 171.

The registry server 141 is queried for a list of knowledge
bases and rights available to the user in step 616. The results
are displayed to the user in step 617 as a selectable, scrolled
list 1200 specifying the knowledge base name 1202, with rights
Lo retrieve parts 1203, edit parts 1204, edit schema 1205, and
make parts 1206 shown for each knowledge base known to the
registry server 141. When a user selects a knowledge base, such
as the example "fifi" 1202 shown with retriever 1203, edit parts
1204, and edit schema 1205 rights and with make part rights 1206



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

110

denied, the legacy button 1207 will be dimmed if the user does
not have legacy rights to the selected knowledge base 1202. If
the user has legacy rights to the selected knowledge base, the
legacy 1207 button may be used in step 618 to continue with
legacy 133, displaying the work area selection window 1212 shown
in Figure 172.

In step 619 the user selects and locks the work area or
cancels and does not select a work area. As shown in Figures 172
and 173, the class hierarchy is presented starting with the root
of the knowledge base 1216 step 624. By manipulating the class
hierarchy in step 625 as in retriever 130, selecting a class 1213
as the root of the work area, and using the work in area button
1214 to request the work area or cancel button 1215 in step 625.
If the user cancelled the request as tested in step 626, the work
area 1217 window is removed and the initial legacy window 1199
is displayed. If the user did not cancel the request as tested
in step 626, a subtree lock is requested for the selected class
in step 627. If the lock is not granted as tested by step 628,
an error dialog informs the user that another user is working in
the requested subtree in step 631. If the lock is granted, a
retriever 130 with additional legacy functions is invoked in step
629 with the class hierarchy rooted at the class selected by the
user 1216. Control is returned to the user in step 630.

Legacy 133, with part specification window 1224 shown in
Figure 174 includes the functions of retriever 130 as discussed
in A. Retriever the following differences. The available parts
in a the subtree of a selected class 1218 are shown, with the
value independent of any query selectors set as search criteria.
An update count button 1220 is provided to allow the user to
explicitly request a query to be performed with the matching part
count updated as parts found. This function is provided
separately in legacy because the processing of legacy knowledge
bases begins with parts either unclassified or roughly classified
to high levels in the parts hierarchy, resulting in possible
performance penalties for some queries. By allowing the user
control over when a query other than the query that returns the
part count for a subclass is performed, significant additional
effeciencies may be achiever, especially during the early part

of a legacy processing project.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

111

The class hierarchy 1223 displayed by legacy includes
additional icons 1222 that show classes with locks that may have
been applied by other users. These locks may be refreshed at the
user's request, providing feedback concerning the work areas of
other legacy and schema editor users and allowing class access
conflicts to be more easily resolved.

Legacy 133 also provides a user interface for class
thesaurus editing as shown in Figure 175. The process of editing
a class thesaurus is shown in the flowchart in Figure 176. In
step 631, the user navigates to and selects a class 1225 and
chooses thesaurus entry editing 1226 from a drop down menu
available by use of the right mouse button. In step 632, the
thesaurus list is obtained from metadata for the class 1225
through the dynamic class manager 134. In step 633 the user edits
the thesaurus using the thesaurus editor 1227 shown in Figure 177
before returning to the retrieve parts window 1228. 1In the
example shown in Figure 177, the thesaurus currently has one
entry 1229, which contains a regular expression suitable for
matching many of the common text forms for describing 1/4 inch
20 threads per inch pitch machine bolts. In the editing example,
the user adds a thesaurus entry for the same size machine bolts
where "1/4 inch" is described as ".25 -" or some variant thereof.

Thesaurus editing consists of modifying the list of text
strings in a thesaurus using the controls provided by the
thesaurus editor 1227 as shown in the flow chart in Figure 178.

The user selects one of seven thesaurus editor actions in
step 635. If the test at step 636 determines that the user
selected the cancel button 1230, control is returned to the
invoking window without updating the thesaurus being edited. If
the OK button is chosen, the thesaurus for the schema object is
replaced with the text in the thesaurus editor in step 642. The
add button 1233 is used in step 639 to open a blank line 1237
below the currently selected thesaurus entry as shown in Figure
179. The copy button is used to store the contents of the
currently selected thesaurus entry 1229 in step 637 sO that it
may be used to replace a selected thesaurus entry 1237 as shown
in Figure 179. In the example shown, the user replaces "1/4" 1238
in the new thesaurus entry 1237 with "\.250*" in Figure 181. In
this way, the user can easily reuse thesaurus entries to create



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

112

patterns that match similar forms of text that may be found in
part descriptions for parts of a class.

In Figure 182 a blank thesaurus entry 1240 has been created
by using the insert button 1234 and step 640 with thesaurus entry
1237 selected. Deleting thesaurus entry 1240 using the delete
button 1235 and step 641 would result in the thesaurus entries
shown in Figure 181.

Figure 183 shows a thesaurus entry of a type that is likely
to be found at a nonleaf class in the class hierarchy. It matches
the portion of a standard form of text description of a
fractional sized machine bolt, transforming the portion of a
string such as "0.25-20 X 2.5 L, CAP HD, STLNPHEX SKT" into
"0.25-30 length={0.75 inch}L,CAP HD, STLNPHEX SKT", from which it
is significantly easier and more reliable to automatically
extract the length parameter with the correct unit of inches.
Figure 183 also shows that the thesaurus editor 1227 can be
invoked by selecting the the thesaurus drop down menu for a class
in the class hierarchy accessible from either the part
specification window 1224 or the part editing window 1243.

The flowchart in Figure 184 shows the process of editing
thesauruses for the enumerators of an enumerated attribute. In
the example shown in Figure 185, the enumerated attribute Finish
1244 is selected and the drop down menu including the thesaurus
entry choice is selected as Step 648. The result is shown in
Figure 186. The enumerator list 1247 is obtained for the selected
attribute 1244 and displayed in Step 649. Selecting an enumerator
such as the example "Cadmium Plate" 1248 invokes the thesaurus
editor 1227 for that enumerator's thesaurus, which functions as
described in the flowchart in Figure 178. The thesaurus editor
for enumerator thesauruses may also be invoked from the column
heading of the edit parts window 1243 as shown in the example in
Figure 187 where a thesaurus entry 1251 for the enumerator "Black
Oxide" 1250 for attribute Finish 1244 is being displayed and
edited.

The flowchart in Figure 203 shows the process of editing a
thesaurus entry for a numeric, text or boolean attribute. In the
example shown in Figure 189 the thesaurus 1252 for a numeric
attribute, Length, 1253 is edited. The user selects the attribute
from either the part specification window 1224 or the part



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

113

editing window 1243 as shown in Figure 190 by using the drop down
menu 1246. The thesaurus for the selected attribute is obtained
in step 656 and edited by the thesaurus editor 1227 as shown in
Figure 191, with control return to the user in step 658. The
example thesaurus entry is a regular expression that will match
some standard forms of machine bolt length descriptions as
transformed by class thesaurus entry 1241 in Figure 183.

Figure 192 shows thesaurus entry editing for units within
a unit family. In the associated flow chart in Figure 193, the
user selects the unit thesaurus editing button 1254 from the
legacy tools toolbar 1255 in step 659. The list of all unit
families is obtained and presented to the user in a drop down
list 1256 in step 660. In step 661, the user may return from the
unit thesaurus editor by choosing the OK button 1258 or cancel
button 1259 through step 666. If instead the user selects a unit
family from the drop down list 1256, step 662 obtains a list of
derived units for the unit family 1260. The user selects a
derived unit 1260 in step 663 and step 664 obtains the thesaurus
for the unit 1261, which is then edited with the thesaurus editor
1227,

Figure 96 shows the processing of queried parts by the
legacy functions classify a part 1101 and parameterize a part
1102. Figure 195 is a flowchart describing the process by which
parts selected 1262 from the part editing window 1243. In step
667 the user selects part 1262 from the attribute display and
chooses the legacy processing window from the tools menu 1264.
In step 668 the legacy processing window displays the class path
from the root of the users workspace to the class of the current
query. Also displayed are drop down lists of available source
attributes 1266 and destination attributes 1267. A list of
available target attributes for parameterizing are displayed if
the parameter setup button 1268 is chosen. The user may also
select a virtual root 1269 for controlling the application of
ancestor class thesaurus entries during classify a part 1101.

If the user chooses the legacize button 1270, the selected
parts are both classified 1101 and parameterized 1102, with
resulting part parameter values displayed in the part display
window 1262. Figure 196 shows the result of legacizing the
selected parts 1279. In the first line of the parts display 1281



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

114

after legacizing, the finish parameter is set to "Cadmium Plate"
due to matching the thesaurus entry 1249 "CAD[MIUM PLATE]* from
Figure 186. The length 1282 is set to .5625 inches due to
matching a combination of the class thesaurus entry at the class
Fractional, the numeric attribute thesaurus entry for length, and
the unit thesaurus entry for the unit "inches".

If the user chooses the classify button 1271, the selected
parts are classified 1101. The results of classifying a part may
be inspected by using the part information button 1273.

If the user chooses the parameter setup button 1268, the
process described in the flow chart in Figure 197 displays
attributes for the class of the current query in step 678. In
response to choosing the insert button 1274, step 680 inserts the
selected available attribute 1276 into the list of attributes
to parameterize 1277 above the current selection. In response to
choosing the add button 1275, step 681 adds the selected
available attribute 1276 into the 1list of attributes to
parameterize 1277 below the current selection. In response to
choosing the remove button 1278, step 682 removes the selected
attribute to parameterize 1277. The result of editing the
attributes to parameterize 1277 are shown in Figure 198.

The legacy manager 145 is a component of the dynamic class
manager 134 which automatically subclassifies and parameterizes
an instance based on a combination of text data in a source
attribute 1266 and thesaurus entries that may be available as
metaparameters to classes, text attributes, enumerators or
enumerated attributes, boolean attributes, numeric attributes,
and units. Classification by the legacy manager 145 is
accomplished by the classify a part function 1101, a non-parsing
method employing matching of thesaurus entries interpreted as
regular expressions against source attribute 1266. Each
successful match increases the score for the class at which the
matching class, attribute, or enumerator thesaurus entry was
found. The thesaurus entry matches are performed recursively down
the class hierarchy, beginning with the class at which the part
instance is currently defined, with scores being compared in the
style of a single-elimination tournament as the recursive calls
return. If there is a clear winner among sibling classes, the
winner is passed up in the recursive call return to compete at



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

115

the next level. If a class achieves a score equal to the current
winner within a sibling group, the winning score is stored and
the current winner is marked as tainted and may not be declared
the winner for the sibling class group. However, a sibling class
that achieves a superior matching score to the tainted winner
score will be declared the winner of the sibling group. If there
is no winner within a sibling group, the superclass of that group
is declared the winner and competes with its siblings in the next
round of competition. When the recursive descent of the class
hierarchy is completed, if a winner has been chosen among the
classes in the subtree, the part instance being classified has
its owner set to the winner class. The part instance is then
analyzed again, first by having the thesaurus entries between its
owner and either the root of the class hierarchy, or a virtual
root class supplied when invoking the classify part function
1101, applied to the text parameter defined by source attribute
1266, which may result in eliding portions of the text. This
modified text is used to set the text parameter defined by
destination attribute 1267, providing feedback to the user
concerning the combination of thesaurus entry matches that were
used to classify the part instance.

Turning to Figure 133, the automatic part classification
function of the legacy manager begins by insuring that the source
and destination attributes chosen by the user are text attributes
and are either local to the part instance's owner class, or are
inherited at that class in step 1104. If an illegal attribute is
detected in step 1105, the part instance is returned with its
classification unchanged, else initialization is performed by
creating a local copy of the source attribute text parameter and
initializing the legacy attribute in step 1106, a local copy of
which contains the score of the class at each node of the class
tree as the classification tournament progresses. The instance
is then classified in step 1107, following the method outlined
above. If the resulting working string is determined to be of
zero length in step 1108 due to the application of thesaurus
entries throughout the subtree in step 1107, the destination
attribute's parameter is set to undefined for this part instance
in step 1109, else it is set to the value of the working string
in step 1110. The classified instance is returned to the caller



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

116

in step 1111.

In Figure 134, the method for classifying a part referred
to in step 1107 is displayed. In step 1112, ancestors of the
current class are legacized, with thesaurus entries being applled
in order from the root class or a virtual root class supplied by
the user. Then the subtree of the owner class of the instance is
recursively descended to legacize the instance for the purpose
of finding the class that provides the best overall match to the
source attribute 1266 in step 1113. If the winner class differs
from the current owner class for the part as determined by step
1114, the owner for the class is set to the winner class in step
1115, after which the classified part instance is returned in
step 1116.

Legacizing ancestor classes is shown in Figure 135, with
step 1113 ascending the class hierarchy from the owner class of
the part to and including the root or virtual root class,
creating a list which is ordered from root to owner class of the
part. The first class in this list, which is the root or virtual
root class, is obtained in step 1114. If step 1114 successfully
obtained a class to process as determined by step 1115, the
thesaurus entries for that class are processed in step 1116. This
processing may result in modifications to the working string. The
next class in the list is obtained in step 1117, with control
then returned to step 1115, providing for a loop that processes
each class in the list. When the loop terminates by encountering
the end of the class list, the legacy attribute with updated
scores and the modified working string are returned to the
caller.

The method for legacizing an instance to determine the best
matching class in the subtree is shown in Figure 136. First the
working string is checked for zero length in step 1117, with step
1118 setting the winner class to the current class and returning
if the working string does not contain any characters which could
influence the further choice of a matching class. If the working
string has one or more characters, the thesaurus entries for the
current class are processed in step 1119. If none of the
thesaurus entries applied in step 1119 matched the working
string, the class type is tested in step 1122. If the class type
is marked as primary and the owner class of the instance is not



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

117

the same as the current class as tested in step 1123, processing
continues through step 1125 and the current class is returned as
the winner of this subtree. This is done to insure that subtrees
for primary classes are not descended unless the primary class
has at least one matching thesaurus entry, preventing unnecesséry
processing. If the class type is marked as collection, thesaurus
entries only must be matched if they are found in step 1124 - a
collection class with zero thesaurus entries of the type that are
intended to match and elide parts of the working string will
always have its subclasses explored for a better match. If not,
processing continues through step 1125 with the current class
being declared with winner for the subtree. Classes marked as
secondary are descended whether or not any thesaurus entries
matched the working string.

In the cases where the rules as described above for continue
the descent of the subtree are met, thesaurus entries for local
attributes of the current class are processed in step 1126. In
step 1127, the winner for the tournament over the subtree rooted
at the current class is provisionally declared to be the current
class. Processing then continues through step 1128 to Figure 137,
where the subtree will be explored for a better match. This is
accomplished by recursive descent of the subtree, which begins
with getting the list of subclasses for the current class in step
1129. As long as this list is not fully processed, as tested in
step 1130, a loop is executed in which the next class in the
list is obtained in step 1131 and the legacize instance function
1113 is recursively called. This function always returns with a
winner class set, which may be the same as the current class in
the case that a superior match was not found in the subtree. The
score for the winner class so returned is compared to the current
winner in step 1114. The count of primary class matches is
weighted most heavily, followed by secondary and collection class
matches, non-numeric attribute matches, numeric attribute
matches, and finally, as a tie breaker, the class with the
shorter length of working string after processing is preferred.
If the returned winner class has a lower score than the current
winner, it is rejected and the loop continues with step 1130. If
the returned winner score is identical to the current winner, the
current winner is marked as tainted in step 1115 and will not be



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

118

allowed to be declared the winner for this subtree. This is to
prevent an equal match across all subclasses from favoring the
first subclass processed. If the returned winner has a higher
score than the current winner, it is stored as the current winner
in step 1116 and further competition within this subtree is with
this new winner class.

When the list of subclasses has been processed as indicated
by the test in step 1130 failing, processing continues through
step 1125. In Figure 138, the tainted winner flag is tested in
step 1186, with the current winner being rejected if the flag is
set, resulting in the current class being declared as the winner
of its subtree in step 1187. If any of the processing resulted
in a new winner being declared as tested in step 1188, the
current working string is replaced with the working string
returned from the competition in the subtree in step 119. The
current score is updated with the new winner score in step 1190,
with this score being used to compete with classes in the next
level of the tournament. Regardless of whether a new winner was
declared, the final winner class for the subtree is returned to
the caller in step 1121.

In Figure 139, the processing of attributes for the purpose
of classification is shown starting with obtaining the list of
local attributes for the class in step 1131. These attributes are
all processed in a loop controlled by the test in step 1132, with
step 1133 getting the next attribute in the list for analysis.
The details of the matching of an attribute's thesaurus entries
to the working string are controlled be the test for attribute
type in step 1134.

Enumerated attributes do not themselves carry thesaurus
entries. The terms associated with enumerated attributes that are
likely to be found in a part description are the possible value
of the attribute, the enumerators. Each enumerator may have a
list of thesaurus entries, any one of which may match a part of
the working string. In order to test each enumerator, a list of
enumerators is created in step 1135. As long as the test for
another enumerator in step 1136 succeeds, the thesaurus,
consisting of a list of thesaurus entries, is obtained in step
1137, and processed against the working string in step 1138. If
an entry in the thesaurus matched, the non-numeric attribute



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

119

score is incremented for the class in step 1140, improving its
degree of match against the working string. If no thesaurus entry
matched, the loop continues, processing each enumerator in order.

If the attribute is a text string or boolean type, it may
have a thesaurus containing thesaurus entries describing both how
to transform the working string locally before further
processing, and what patterns constitute a match for the text
string or boolean attribute if matched in the working string.
This thesaurus is obtained in step 1141 and processed in step
1138, using the general function for processing any thesaurus for
any schema element. If the thesaurus entry matched, the non-
numeric attribute score is incremented for the class in step
1140.

Numeric attributes must be evaluated both in terms of the
numeric thesaurus itself, and any associated unit thesaurus. The
numeric thesaurus entries attempt to match a combination of
digits and other numeric symbols, along with patterns that would
indicate an appropriate context for finding the numeric
information in a text string. The unit thesauruses for the base
and derived units of the unit family for the attribute may
contain patterns that discriminate among the different
convertible units that might be found in the working string, such
as "in" for inch or "ft" for feet, allowing the legacy manager
to correctly interpret and convert such information. The
thesaurus for the numeric attribute is obtained in step 1141 and
processed in step 1138. If no thesaurus entry matched as tested
in step 1139, no further processing is done, else the list of
units for the unit family for the numeric attribute are obtained
in step 1142. A loop controlled by the test for another unit in
the list in step 1143 gets the thesaurus for the next unit in
step 1144, processes that thesaurus against the working string
in step 1138, and tests for a match in step 1139. A match
indicates that a number and unit in correct combination have been
found in the working string, increasing the numeric attribute
score for the class in step 1145.

Figure 140 shows the generalized mechanism for processing
a thesaurus against the working string for all types of schema
objects that may have thesauruses defined: classes, numeric
attributes, enumerators, boolean attributes, and text attributes.



10

15

20 -

25

30

35

40

WO 96/15501 PCT/US95/15028

120

It is invoked with a flag to indicated whether a successful match
of a thesaurus entry should result in modification of the working
string. Processing beings by getting a list of all the strings,
or thesaurus entries, that make up the thesaurus provided by the
caller in step 1146. These entries are processed in a loop that
is controlled both by the test for another thesaurus entry in the
list in step 1147, and the test for a successful pattern match
in step 1157. In each iteration through the loop, the next
thesaurus entry is processed against the working string.

There are two general types of thesaurus entries used to
match the text in the working string. The first, called a
modifying or editing thesaurus entry, begins with either a "v/"
or a "g/". These thesaurus entries behave essentially 1like
editing commands in the UNIX vi editor. For example, a thesaurus
entry "g/X .*([0-9.1[0-9.\/]1[0-9.\/1%*)/s// 1length={\1 inch}"
would only act on a string that matched regular expression
pattern between the first pair of slashes, and would substitute
for that string the text "length=", followed by the text in the
working string matching the captured portion of the pattern
(between the open and closed parentheses), followed by the word
"inch". For example, this thesaurus entry applied to the working
string "1/4-20 X 1.25" would produce the resulting working string
"1/4-20 length={1.25 inch}". Providing this type of thesaurus
entry, employing full regular expressions with the ability to
capture and reuse portions of the working string, allows for the
reliable evaluation of standard form text fragments common to a
particular class or attribute without requiring that all of the
text conform to a correct or canonical form, thereby allowing
legacy to successfully exploit a wide variety of data of the sort
commonly found in legacy parts data sources.

The "v/" form of this type of thesaurus entry works
identically to the "g/" form, with the exception that the filter,
or first pattern, 1is considered to match if the regular
expression it contains is not matched in the working string. This
allows the selective modification of working strings that are
discovered to be missing data that, if provided, would allow for
simpler processing by later thesaurus entries.

The processing for editing style thesaurus entries begins
by extracting the filter between the first pair of slashes in



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

121

step 1148. The pattern to be matched is then extracted in step
1149. If the pattern is missing, it is defaulted to be identical
to the filter, as in the example above. A flag is set to avoid
later modification of the working string other than the
transformation defined by the thesaurus entry itself in step
1151. If the filter matches the working string, keeping in mind
the opposite sense this has for "v/" thesaurus entries, as tested
in step 1152, then the modify flag is set and the pattern is
tested against the working string in step 1157. If it matches,
and the caller requested that the working string be modified and
the modify flag is set, as tested in step 1158, the text in the
working string matched by the pattern is replaced with the
replacement text, with appropriate expansion of captured text,
in step 1159. If a thesaurus entry matched, a boolean value of
true is returned to the caller in step 1160.

Non-editing, or simple, thesaurus entries are intended to
match and optionally result in eliding matched text from the
working string. They are distinguished by not starting with "v/"
or "g/". The pattern is set to the thesaurus entry in step 1154,
and the flag is set to modify the working string in step 1155.
The replacement text is set to a single character "!" in step
1156 that can be detected in later thesaurus entries, providing
a simple means for determining either by inspection of the
destination attribute 1267 or by a thesaurus entry matching "!".
In this way, the effect of matching a thesaurus entry can be made
conditional upon the successful application of an earlier
thesaurus entry. From this point, processing continues as for the
editing thesaurus entries, with a test for the pattern being
matched in the working string in step 1157, followed by optional
replacement of the matched text by the character "!", defined as
the current replacement text in step 1159 as controlled by the
test in step 1158.

If the entire list of thesaurus entries is processed without
a match as indicated by the test in step 1147 failing, a boolean
false is returned to indicate that no matches occurred.

Processing the thesaurus for a class is shown in Figure 141,
where step 1116 first determines if the class is a collection
class or not. Collection classes may contain a thesaurus, which
may be used to avoid descending a subtree in order to tune



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

122

performance or improve reliability by limiting the scope of
matches. However, while editing thesaurus entries may always
result in the modification of the working string, simple
thesaurus entries are not so used for a collection class, so a
flag is set to avoid processing of the working string in step
1164. Conversely, for primary or secondary classes, Simple
thesaurus entry matches should always result in eliding the
matched pattern from the working string, and -the flag to process
the string is set accordingly in step 1163. In either case, the
function to process the thesaurus for a schema object is called
for the class in step 1165, with the result returned in step
1166.

In addition to automatically subclassifying by matching both
class and attribute thesaurus entries within a subtree to the
text parameter defined by the source attribute 1266, one or more
specified attributes may be automatically parameterized using
thesaurus entries.

Parameterize a part 102 is shown in Figure 142. Like
classify a part 1101, it begins by checking that source and
destination attributes are local or inheritable to the owner
class of the instance being parameterized in step 1104. If an
illegal attribute is detected in step 1105, the instance is
simply returned in step 1169. The text parameter for the source
attribute is copied to the working string and the legacy
attribute is initialized in step 1106. In order to preserve the
effect of any thesaurus entries in classes between the owner
class of the instance and the root, legacize ancestor classes is
performed in step 1112, and the thesaurus entries for the owner
class are also processed in step 1119. Non-numeric parameters are
legacized first in step 1167, followed by numeric parameters in
step 1168. This order allows simpler definitions of collections
of thesaurus entries with less conflict between the numeric
thesaurus entries and numeric data that is often found within
enumerators or other non-numeric attributes. For example, the
ceramic capacitor dielectric "X7R" contains a digit that might
be inadvertently elided by applying a simple numeric thesaurus
entry, but would be protected by allowing the non-numeric
attributes to be processed first. After all parameters have been
legacized, the parameterized instance is returned in step 1169.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

123

To legacize non-numeric parameters, step 1167, the process
in Figure 143 is followed. In step 1170, the 1list of all
inherited and local non-numeric attributes for the owner class
of the part instance is obtained. The list may be further limited
to those target attributes selected by the user using Figure 194,
dialog 1263. Iteration through this list is controlled by the
test for another attribute in the list by step 1132 in Figure
145, and successful thesaurus entry matches that may occur in
step 1139. In this loop, the next attribute from the list is
obtained in step 1133 and its type is determined in step 1134.

If the attribute type is enumerated, the same procedure of
evaluating thesaurus entries for each enumerator is performed
identically to that in Figure 139, with a list of enumerators
being created in step 1135, then looped through until 1list is
exhausted as tested by step 1136. For each enumerator, a
thesaurus is obtained in step 1137 and processed in step 1138.
If a thesaurus entry matches as tested by step 1139, the
enumerated parameter for the attribute may be set to the
enumerator for which the thesaurus entry matched. However, the
parameter will only be set if it 1is currently undefined.
Parameters which currently are set to a value are presumed to
have been set by a more trusted prior process, either in the form
of directly imported data, or a value entered by a human through
either retriever or the part editing capability of the legacy
interface.

A similar method is used for text string and boolean
attributes as detected by the test in step 1134. The thesaurus
for the attribute is obtained in step 1141, and the thesaurus is
processed against the working string in step 1138. If a thesaurus
entry matched and the parameter is currently undefined, it is set
as appropriate, either to true if boolean, or to the matched
result if a string attribute.

Legacizing numeric parameters, step 1168, is shown in Figure
145, starting with assembling a list of inherited and 1local
attributes in the order of their definition in the schema in step
1175. The list may be further limited to those target attributes
selected by the user using Figure 194, dialog 1263. While there
remain attributes to be processed, the next attribute is obtained
in step 1133, its thesaurus is extracted from its metaparameters



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

124

in step 1141, and processed in step 1138. If a thesaurus entry
matched, the list of units for the unit family for the attribute
is created in step 1142. Each unit is processed in a loop
controlled by test 1143, with the unit obtained in step 1176 and
the unit thesaurus obtained in step 1144 and processed in step
1138. A matching unit thesaurus entry as indicated by the test
in step 1139 results in setting a the associated numeric
parameter in step 1177. As in the case of non-numeric attributes,
a currently set parameter value will not be overwritten by this
step. When the 1list of numeric attributes is exhausted, the
instance is returned in step 1178.

Legacy 133 also includes a classify program 3001 and a
schema generator 3002.

The classify program as shown in Figure 200 is used to match
formal object names with human entered textual descriptions that
contain abbreviations and spelling errors. The purpose of the
classify program is to use the knowledge accumulated in the names
of the schema objects in 2154 (class names, attribute names, unit
families, etc.) to suggest locations that one might place a new
part, or where one might go to look for a set of parts with a
given description obtained in 2153. The classify program
generates output which is a set of potential locations in the
schema that the part description may be classified in 2157. The
set of potential locations is reviewed by a human in 2158. The
selected classification is then placed in an import map in 2159.

The classify program operates by using two word matching
techniques. The first matching technique is referred to as the
"Bickel Algorithm", and the other matching technique is referred
to as the "Soundex" Algorithm.. These algorithms use different
approaches to locate candidate word matches with the target word.

In the Bickel Algorithm, a mask describes the characters
which are common to the target word, and the candidate word is
scored based upon the frequency of the use of each character.
The higher the aggregate score, the better the match. The Bickel
Algorithm is well known to those skilled in the art.

In the Soundex Algorithm, a mask which describes the sounds
of the characters used in both the target and candidate word is
checked for an exact match, or a match up to a certain location
in the mask. The Soundex Algorithm is also well known to those



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

125

skilled in the art, and will not be described in detail.

The classify program extracts all of the schema object names
from the object oriented database in step 925 of Figure 146. As
the names are extracted they are separated into distinct words
in 926. Encoding of each of the distinct words into
representative forms using the Bickel mask, and the Soundex mask
occurs in 927. The process of steps 925 through 928 inclusive
continues until all schema object names have been extracted,
separated into distinct words and encoded. 1In addition to the
extraction, separation, and encoding performed in 925, the
program also remembers where in the schema tree structure that
each word was used. Since the same word may be used in
different locations of the tree, it is important to remember
which one was used where.

User input is obtained in step 929. The user input is data
which is obtained from a customer, and describes a part that is
to be classified using the schema name data obtained in 925
through 928 inclusive. The user data is text data which can be
broken into distinct words for the purposes of matching against
schema words. Step 930 decomposes the user input string into
distinct words. These words can be abbreviations of the intended
words, can contain misspellings, or can be malformed in other
ways.

The words obtained from the user description in step 930 are
then encoded by both the Bickel algorithm, and the Soundex
algorithm in step 931 of Figure 147. The Bickel character mask
is applied to each schema word to determine which of the schema
words are the best candidate matches in steps 932 through 935.
Step 932 selects a schema word. Step 933 tests the score yielded
by the Bickel Algorithm, to determine if it is the highest score
match. If so, the result is saved in a list of potential matches
in 934. The search continues until all schema words have been
examined for matches in 935.

Step 936 in Figure 148 examines the results of the previous
search loop, and selects the words which exactly match the
highest score seen by the loop from 932 to 935 from the list
created of potential matches in 934. These soundex masks,
created in 927, is used to test how well the refined set of
candidates matches the original input word in 937. If a word



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

126

fails the Soundex test, then the word is discarded from the
candidate list in 938. If the Soundex test succeeds in 937, the
word is retained for further use, in 939, and the search
continued to 940 to determine if any more candidate words remain.
At 940 If there are still words in the candidate list, the
program continues at 936. Otherwise, the program continues at
941.

At this point, there may still be too many options to be
useful as a search tool, and only the use of single words have
been discussed so far. The Description of parts in many cases
involves multiple words. Each word bears meaning in itself, but
collectively as a set of words mean more in this context than
they do individually. In other words, the group is more
meaningful than the sum of the component parts. This can be
exploited by remembering where in the class structure each of the
candidate words came from. By comparing the ancestry of the
words that are found by the matching technique previously
described, common threads can be found that are used more than
other threads through the tree. These popular threads describe
the likely places in the tree that a given part description can
either be found , or could be placed. This process of finding
common ancestor threads is performed in 941. Figure 149 step 942
looks at the result of this process to determine if there are any
words which did not gain any strength through the combination of
ancestors. These words are discarded, unless they are the only
ones. (In other words, no common ancestors were found.)

The output of these algorithms can then be presented to a
user either through a text based interface, or a graphical user
interface in step 943. The user can then make a selection from
the small set to find what the user is looking for. This process
is repeated for each description that is presented to the
classify program either interactively, or through a batch
interface.

The schema generator is used to generate object database
structure from human entered text descriptions that contain
abbreviations and spelling errors. There are three purposes of
the schema generation program. The first is to generate schema
class structure for an object oriented database from human
generated text descriptions. The second is to determine the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

127

class density of each of the generated classes. In other words,
to determine how many user descriptions could be described by
each generated class. The third is to combine erroneous
spellings of the input data, to further populate existing
classes, and to avoid creating additional variant classes.

The schema generation tool 3002 as shown in Figure 199 is
used to create schema using customer or user part descriptions
as input. Since this part description data is entered by humans
in 2150, the data tends to contain misspellings, and
typographical errors. The schema generator reduces the user
descriptions to schema structure in 2151. The output is a schema
structure and a part mapping density that indicates how many of
the part descriptions would be placed at each schema class in
2152.

The schema generator reads a description of an arbitrary
part in step 960 of Figure 150. If a description was obtained,
step 962 allows execution to continue at 963. If a input was not
found, step 962 prints the output to a disk file and terminates

The part is decomposed into words in 963. Each word is
compared against all other words that exist at that level in 964,
to determine if this word needs to be added to the list at this
level. 1If a the current word failed to match any previously used
word, then the program proceeds to 971 of Figure 151 to add the
word to the internal word list at this level.

Regardless of how the match occurred (whether by adding a
new word, or matching an existing word), then the next word in
the string is examined against the subordinates of the matched
word in a recursive fashion. This process continues until the
input is exhausted, both in the case of each description, then
until all descriptions are exhausted.

The techniques used for matching are the Bickel Algorithm
in step 964 of Figure 150, a typographical error matcher in 968
of Figure 151, and an abbreviation matcher in step 966. 1In the
Bickel Algorithm, a mask describes the characters which are
common to the target word, and the candidate word is scored based
upon the frequency of the use of each character. The higher the
aggregate score, the better the match. This algorithm is used
for finding the broadest set of potential matches and is used in
964 of Figure 150.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

128

Since humans are not particularly consistent in the entering
of part descriptions, additional techniques must be employed to
refine the output of the search by the Bickel Algorithm. In some
cases, humans use abbreviations in place of full word
descriptions. Abbreviations are typicallly formed by either
truncating the word, or deleting characters from the word.

In step 966 the abbreviation matcher attempts to stretch the
target word when errors in comparison are encountered. Each time
that a comparison fails, the target is stretched by 1 character.
The comparison then resumes at the next character. 1If the target
word gets longer than the candidate word, then the comparison
fails. If the target is exhausted prior to completing the
comparison with the candidate, then a match is declared if a
certain percentage of the word has been covered by the suspected
abbreviation. The required coverage is adjustable, and is tuned
to each data set. Some examples would be:

Blt -->B*1lt

Bolt Bolt The comparison covers 100 %.
Rgstr --> R*g¥*st*r

Register Register The comparison covers 100 %
Microproc Microproc

Microprocessor Microprossor  The comparison covers 75

o\

The * characters here represent a character inserted into
the string in the locations where the string is stretched. The
value of the character is irrelevant to the process. Any
character could be used. If the result of step 966 is to produce
only 1 match, then the schema generator at step 967 will decide
to combine the current word with a word that is currently in use
in step 970

The typographical error matcher in step 968 is used to
combine words which are intended to be the same, and can be
detected by a human as the same word, but computers can not.

Typographical errors occur when a human entering data on a
standard "qwerty" keyboard, misses the intended key, and instead
uses one of the adjacent keys. An example would be the word



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

129
"Adhesive".
Adhesive -- The intended word.
Ashesive -- s used in place of the d.
Adnesive -- n used in place of the h.

In both of these typos, the intended key can be found
physically adjacent to the character that was used.

To match the words which contain typographical errors, two
things must be done. A map must be made of all the adjacent keys
for each character on the keyboard. Second, when comparing words
which are suspected of containing typographical errors, the
comparison must look at the keys adjacent to the character in the
target word that does not match. If the key can be found as an
adjacent key in the key map, then the comparison can continue.
Each error is counted, and in the end, a match can be returned,
with a particular number of errors. If there are still several
candidates, the one with the fewest errors is selected.

In addition to the typographical errors described, there is
a special case that involves transposed characters. This problem
is not detected by the method described. However, by performing
a subtraction on a character by character basis, and taking the
absolute value of any number that is not zero, Transposed
characters can be detected by adjacent characters which have the
same non-zero difference value. Transpositions are not counted
as errors for the purposes of error grading. An example would

be the word "Positive".

Positive
Psoitive

When combined with the matching process that uses adjacent
keys, the word Positive could be matched as follows:

Positive
Psoitice

If the result of the typo matching process in step 968 of
Figure 151 yields a single match, then the decision will be made
in step 969 to combine the current part description with an



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

130

existing part description in step 970.

Once a matching has been deduced by the combination of these
techniques, selecting the correct spelling of the word is the
next problem. Each time that a new spelling is detected, and
matched with a particular candidate word, the misspelled is
combined with the candidate in step 970. If the candidate word
is treated as an intelligent object, which can perform some
actions when the replacement is made, then the number of times
that any given spelling is observed can be recorded. The object
can reflect its current state as the most popular spelling seen.
Since humans tend to spell correctly most of the time, the
misspellings still get matched, counted, and so forth, but they
disappear in to the correctly spelled word. The object when
asked what it spells responds with the most used spelling.

If a word is habitually misspelled by a particular user in
their parts description, all of the misspellings congregate
around the most popular one, which is suggested as a class entity
in the object schema in one place. The misspelling can be
corrected in one place rather than hundreds or thousands.

From 970, the program proceeds to 972 to determine if any
more words remain in the current description. If there are more
words, the program returns to 964 to begin evaluating the next
word. This process continues for each word in a given
description, and for each description, until all words and
descriptions are exhausted.

Genic 3000 is a tool that is used as part of the legacy
process. Genic 3000 is used for data augmentation and parameter
specification for customer data that contains integrated
circuits. The output of genic 3000 can be subsequently imported
into a knowledge base 123 for additional legacy processing.

Figure 201 shows a typical data flow for processing data
using Genic 3000.

Genic 3000 accomplishes data augmentation by using vendor part
numbers and vendor names found in customer data shown in item
2162. The vendor part number and name is looked up
programmatically in a published database of vendor parts as
depicted by item 2160. Database 21620 and 2162 are read by genic
3000 in steps 2161 and 2163 respectively. In step 2164,
information found in the published database is then translated



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

131

to ASCII text in a format 2165 that can be imported in step 2166
into a knowledge base 123.

The process for matching vendor part numbers found in
customer data with published vendor part numbers may be a direct
match or may involve several heuristics. If the part number does
not directly match, the manufacturer name or code is needed and
the vendor part number from the customer data must be decoded.
The decoding is done by stripping off the prefix, suffix, and
extracting a base device number.

The match algorithm scans the published database file,
building a list of published candidate parts that match on at
least the base number. In addition, matches of the manufacturer
name, part number prefix, and part number suffix are noted. The
number of different classifications of a base number (i.e. kinds
of parts represented by the base number) is also determined.
After these determinations have been made, the quality of the
match can be determined.

The quality of a candidate match is based on a rating table
shown in Table 7. The rating table is a Karnaugh map (see An
Engineering Approach to Digital Design, William I. Fletcher,
(1980), pg 134) reduction table shown in Table 7. The Karnaugh
map is used in this case to guarantee that all possible
combinations of the problem are considered, and to make it easier
to express the relationships among the matches of manufacturer,
number of classifications, prefix, and suffix. Each cell of the
table contains a rating value.

The row and column indicies are boolean values indicating
whether or not the value that is represented by that variable
position is true or false. These boolean values indicate whether
or not the associated condition is true which in turn indicates
whether a match was made on this portion of the part number. The
contents of the map are integer values representing the grade of
that particular cell. In this map lower cell values ( 1 ) are

preferred over larger cell values (12).

Table 7
Suffix/Manufacturer



10

15

20

25

30

35

WO 96/15501 PCT/US95/15028

132
Prefix / 1 00 01 11 10
Class
00 12 11 10 11
01 9 7 6 8
11 4 3
10 5 4

Table 7. A Karnaugh map which idenitifies relationships between

match grades.

A table representation of the Karnaugh map in Table 7 is
described in Table 8. Table 8 is an english conversion table
from match conditions to match grade. The grade of any given
match can be determined by identifying which of the components
match. It is assumed that the base number portion must match
before any subsequent matching tests are made. Empty locations
in the table indicate no match.

Table 8
Rati } Manufactu |Suff |Only Prefi
ng rer ix One X
Match Matc | Class | Match
h
—
12
11 Yes
11 Yes
10 Yes Yes
9 Yes
7 Yes Yes
8 Yes Yes
6 Yes Yes Yes
5 Yes
4 Yes Yes
3 Yes Yes
2 Yes Yes Yes
4 Yes Yes
3 Yes Yes Yes




10

15

20

25

30

35

WO 96/15501 PCT/US95/15028

133
2 " Yes Yes Yes
1 "Yes Yes Yes Yes

Beyond this representation, the table is reduced in yet a
third representation programatically. In a program, the each
match variable is assigned as a number, that when added to its
peers, provides a unique index into an array of predefined
values. The predefined values are the grade values themselves.

If numerical values are assigned, component match values are
used for indexing grading for a match of each of the components,

as follows:

Table 9

mnemonic Valu

Manufactur | 1

er
Suffix 2
1 Class 4
Prefix

The combination of these match values will yeild an index
with the range of 0 - 15 inclusive. The contents of the grading
array are shown in Table 10 which is a lookup table which
converts grade index to actual grade value.

Table 10
Inde | Grad

X e
Valu

12
11
11
10

w_lwipolie o




10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

134

el IR W WV,

10
11
12
13
14
15

Hinvjwidesinv]jwinfuloan]loga

The following is an example which works through this system,
using a vendor (manufacturer) and a vendor (manufacturer) part
number.

A list of candidate vendor part numbers for matching the
vendor part number of Intel 2901B might look as follows:

Candidate #1: Manufacturer=AMD , Part Number = ILM2901B
Candidate #2: Manufacturer=Intel , Part Number = 2901A

Assume that the base number 2901 was only found under one
classification, microprocessors, in the published database.

Candidate #1 would be decoded to the example shown in Figure
87.

Using the match criteria described earlier, this part
matches the Suffix, and was found in 1 Class. From Table 7, 8,
or 10, this part match would be graded as an 8.

Similarly, candidate #2 would decode to the example shown
in Figure 131

Again using the match criteria described earlier, this part
matches the Manufacturer, the Prefix, and was found in 1 Class.
In this case, the prefix was match, due to the absence of any
prefix information in either description. From Table 7, 8, or
10 this part match would be graded as a 3.

Since the lower rating is better, the candidate #2 will be
selected as a match for "Intel 2901B".

The output would contain parameter information from the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

135

published database put into an import map and import file that
maps to a knowledge base.

The operation of this software is described in the flow
diagram Figures 165 - 167. Operation begins when the commercial
database is read. The contents of this database is read, énd
indexed by base number in step 900 of Figure 165. After the
database has been read, the program begins reading the input part
data in step 901. 1In step 902, the part number that was received
by 901 is decomposed into its component parts, namely a base
number, a prefix, a suffix, and a manufacturer.

In step 903, the base number found in 902 is used to find
matching database entries in the data read in 900. Item 904
determines if any base number matches were found in the
commercial database data. If there were no base number matches,
the program continues at 901 by looking for another vendor name
and vendor part number as input. If one or more base number
matches were found, the program continues at 905. At 905 the
program proceeds for each of the matching entries found in 904,
processing each matching item individually with a single pass
through the loop for each matched item. In 905, one of the
entries found in 903 is searched to determine if the item
contains a match on the prefix portion of the part number that
was identified in 902. If a match is found in 905, then the
program continues at step 906 in Figure 166 by setting the flag
indicating a prefix match. The value of the prefix match is
indicated in Table 8. If a prefix match was not found, then 906
gets skipped, and the program continues at 907. Item 907
searches the matching item being tested in this iteration , found
in 903, for a match on the suffix portion found in 902. If a
suffix match is found, operation continues at 908, by setting
suffix match flag. The value of the suffix match flag is
indicated in Table 8. If a suffix match is not found, program
operation continues at 909.

In 909, the program searches the part being tested in this
iteration, which was found in 903, for a match on the
manufacturer portion found in 902. If a manufacturer match is
found, then program operation continues at 910 where the match
flag is set indicating a manufacturer match. The value of the
manufacturer match is indicated in Table 8. If a manufacturer



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

136

match is not found, then 910 is skipped, and the program
continues at 911. In 911, the program attempts to determine if
all of the parts which matched the base number found in 902, and
actually matched in 904 are of the same kind of part, or, in
other words, do all of the parts found in 904 perform the same
function. If they are determined to be the same, the program
continues at step 912 of Figure 167. In step 912, the program
sets the flag indicating that 1 class of parts was found for the
part number requested in step 901. The value of the one class
flag is indicated in Table 8. If the set of parts which matched
in 904 are determined to represent multiple classes of parts, or
parts which perform different functions, then the program
continues at 913.

In 913 the program combines the match flags set in 906, 908,
910, and 912 into a single variable which constitutes the index
into the grading table shown in Table 9. The index is used in
914 to lookup the grade in the internal array representation of
Table 9. The grade found in 914 is assigned the part which
matched in 904, and is the current part being used for this
itteration, which began at 905. 1In 915, the program determines
if there are more matches, which were found in 904, which need
to be tested by this process. If more items remain, operation
continues at 905 with the next item in the match list found in
903. If no more items remain to be examined, the program
continues at 916. In 916, the program examines the results of
the iterative process beginning at 905, and ending at 915 for the
entries which have been scored the highest by 914. The highest
grade is then selected by 916, and presented to the user as the
best match. The best match contains all of the data associated
with that entry. The data associated with that entry is obtained
from the database which was read in 900.

To facilitate the legacy process, it 1is necessary
automatically populate a knowledgebase with as much information
necessary to uniquely identify a part and place the part in a
class as close as possible to the part's actual class. This is
achieved by importing customer data into a knowledgebase with a
set of import utilities.

The import utilities may modify a knowledgebase in a number
of ways. The most obvious way is by importing of new data into



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

137

the knowledgebase to create instances. Import utilities may add
or modify data (parameters) on existing instances. Import
utilities may also add enumerators that are missing from the
schema, delete instances, translate text to other attribute
types, and map unknown parameter values to known good values and
numeric units, and dynamically change the destination class based
information from a class map and customer data.

There are presently five import utilities: Import, Classmap
Import, Simple Import, ImportA and ImportB. Though they are
functionally similar, however, each one has unique features
necessary to solve various scenarios associated with user data.

SimpleImport, Classmap Import and ImportB importing customer
part information into a knowledgebase by creating new instances.

Import and ImportA allow importing part information into
existing, selected instances, thus augmenting them.

Classmap Import dynamically changes the destination class
through the use of a class map and a selected field in the user
data.

Primary to the import utilities is the import file. The
import file consists mainly of customer part data that is most
useful for classifying parts. The import file must be formatted
in a way acceptable to the import utilities. An import file has
three sections: class path section, attribute name section and
the customer data section.

The class path section is the first section in an import
file. It is a single line of data, composed of tab separated
names. The names are class names that specify the path from the
root to the import destination class. Importing will generally
be done at the destination class.

The attribute name section is the second section in an
import file. It is a single line of data, composed of tab
separated attribute names. The attribute names specify the
attributes into which the customer data will be imported. The
attribute names specified in this section must be valid at the
destination class specified the class path section.

The customer data section is the third section in an import
file. It is one or more lines composed of tab separated values.
There is value for each attribute named in the attribute section.
There is a one-to-one correspondence between the columns in the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

138

attribute section and the columns of data in the customer data
section. Two adjacent tabs represent an empty field.

The following figure illustrates the format of an import
file. The first line is the class path section. The second line
is the attribute name section. Lines 3 and 4 are the user data
section. When imported, two instances will be created. The
parameters for the Part Number and Description attributes will
be set to 123321 and 1/4x11/2 20UNF for the first instance, and
will be set to 123322 and 1/4x13/4 20UNF for the second instance.

root Mechanical Components Fastners Bolts
Part Number Description

123321 1/4x11/2 20UNF

123322 1/4x13/4 20UNF

To allow modifying existing instances, certain attributes
in the attribute section may be specified as "key" attributes.
Key attributes are used to search and select certain instances.
Only those instances whose parameters match those the values in
the "key" attributes column in the import file are operated on
during the import. Only string type attributes may be specified
as key attributes. One or more attributes may be selected as key
attributes. Key attributes may occur anywhere at any location
in the attribute name section. An attribute name can be used
both as a key name and as an attribute to be imported into. A
key attribute is specified in the attribute section of the import
file by prefixing the name with "key>" (e.g., keys>Partno). The
following figure illustrates an attribute name section of an
import file that contains key attributes.

key>Part Number Description key>Vendor Code V e n

Descript

To allow importing of numeric attributes a default unit must
be specified in the attribute name section. A default unit is
a unit name from the unit family associated to the attribute.
Default unit specifier follows the "|" symbol, which is appended
to the attribute name (e.g., Length|Inches). The following
figure illustrates an attribute name section of an import file




10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

139

that contains numeric attributes with unit specifiers.

Part Number Description Length|Inches Diameter|Feet

Attribute values may be replicated to other attributes
without adding an extra column of data to the customer data
section in an import file. This is accomplished by specifying
the two attribute names separated by a "I symbol (e.g.,
Description!Description2). The following figure illustrates an
attribute name section of an import file that contains an
attribute that is replicated.

Part Number Description!Description2

Comments may be placed in an import file by beginning a line
with a "#" symbol. Blank lines are also allowed in an import
file.

There are four phases performed during an import. After
initialization, parsing command-line options, logging in, and
opening the database, the first import phase is started.

The first phase is to read the first non-comment line of the
import file step 1300 of Figure 153. This line is the class path
section. The class path is read and parsed into class names.
The class path is validated following the class path to the
destination class. If the destination class exists, the second
phase begins.

The second phase reads the second non-comment line of the
import file (1302). This is the attribute name section. The
line is read and the attribute names are parsed. The attribute
names are validated by verifying that they exist at the
destination class. For Simple Import and ImportA, all the
attributes must be of type string. For Import, Classmap Import,
and ImportB, all specified numeric attributes must also specify
a valid default unit (special symbol "|"). In addition,
attribute names are parsed for special other symbols like "key>"
and "!",

The third phase only occurs when importing into existing
instances. During this phase, a lookup table is created (1307).




10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

140

The lookup table contains instance handle for each instance at
the destination class and the parameter values for the key
attributes (i.e., attributes prefixed by "key>" in the attribute
name section). The lookup table is used to quickly 1locate
instances that will be augmented by data in the customer data
section of the import file.

The forth phase reads the data from the customer data
section of the import file and performs the import (1308). This
is done by reading each line, parsing the line into fields, and
then importing the value by setting the parameter for the
appropriate attribute.

In the case when the destination class 1is automatically
selected, a selected field from the customer data is used to
attempt matching a class from the class map file (1327). If a
destination class can-be identified, the new instance will be
created in that class (1328) (1323).

In the case when new instances are being created, the
instance is created prior to setting the parameters (1323).

In the case where data is being imported into existing
instances, the key values are first extracted from the data, then
a binary search is performed on the lookup table to identify all
matching, existing instances (1324). Once all the matching
instances are found, parameters are set from the remaining data.

In the case where enumerated attributes are imported step
1311 of Figure 154, if the attribute data from the import file
does not match any existing enumerators associated to the
attribute, then either the data is used automatically add a new
enumerator to the schema, or the import utility will present a
menu of existing enumerators to choose from (1317). If the menu
is presented, the user may either choose map the data read from
the file to an existing enumerator, or to use the data to add a
new enumerator, or to ignore the data and leave the parameter
undefined. If the user chooses to map the data to an existing
enumerator, this information is retained by the import utility
and is used if subsequent occurrences of the same data is
encountered, at which time the utility automatically maps the
data to the existing enumerator.

In the case where numeric attributes are imported (1312),
if the attribute data from the import file is simply numeric



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

141

characters (1318), the parameter is set using the default unit
for the attribute specified in the attribute name section of the
import file. If the attribute data from the import file contains
data that is both numeric and not numeric, it is assumed a unit
specifier is included with the data and will be used to over-ride
the default unit mentioned in the attribute name section. The
utility will parse the data to location the unit specifier and
see if the specifier names a known unit name (1319). If it does
not, the import utility will present a menu of existing unit
names to choose from (1320). When the menu is presented, the
user may either choose map the data read from the file to an
existing unit name or to ignore the data and leave the parameter
undefined. 1If the user chooses to map the data to an existing
unit name, this information is retained by the import utility and
is used 1if subsequent occurrences of the same data is
encountered, at which time the utility automatically maps the
data to the existing unit name.

In the case where boolean attributes are imported (1310),
if the attribute data from the import file is one of True, Yes,
T, Y, or 1, the value of TRUE is assumed. If the data is one of
False, No, N, F, or 0, the value of FALSE is assumed. If the
attribute data from the import file contains data that cannot be
recognized as either TRUE or FALSE (1314), the import utility
will present a menu to choose from (1316). When the menu is
presented, the user may either choose map the data read from the
file to a TRUE value, or map the data to a FALSE value, or to
ignore the data and leave the parameter undefined. 1If the user
chooses to map the data to a TRUE or FALSE value, this
information is retained by the import utility and is used if
subsequent occurrences of the same data is encountered, at which
time the utility automatically maps the data to the appropriate
boolean value.

The following sections describes each of the five import
utilities and how its features deviate from the general
description of these utilities.

The usage and syntax of the import utility is shown in
Figure 125.

Different operations may be performed depending on which
options were set. If the -r option is set, the matching



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

142

instances are deleted from the knowledge base rather than
imported. If the -M option is set, if no matching instances were
found, a new instance is created from all the data on the line,
including the key attribute fields. If the -U option is used,
information is imported only when there is one matching instance.
Nothing is imported if more that one instance is matched. If the
-X option is used, information is imported only when there is no
matching instance. This must be used with the -M option,
otherwise there is a null effect.

Classmap Import adds new instances to a knowledgebase.
Instances are added to a particular class based on a map that
describes a pattern to match in data that class.

The usage of this command is shown in Figure 126.

After initialization the import map file is read. The
import map file's first field is the pattern to match in the data
and the second is the CADIS-PMX class to which an instance is
imported. An exception file specified by the -o option is
created. The exception file contains instances which could not
be imported because the parameters did not match any of the map
patterns.

The class path in the class path section of the import file,
must name a class that all the attributes named in the attribute
name section are valid.

When the customer data is read from the file, the field
specified with the -f option is used to match patterns in the map
file. If there is no match, the instance is output to the
instance exception file specified with the -o option.

If the -f option field matches a pattern in the class map,
the instance is added to that class and the parameters are set.

If an attribute for a parameter is an enumerated, the
enumerator will be added to the schema if it does not exist This
means that import must acquire a DBXLock.

If the replacement attribute for an instance parameter is
a boolean, the parameter is set to TRUE if the text is an 'x!',
'X', 'r+, 't', 'TRUE', 'true', or a 'l1'. A FALSE value is set
for '0', 'F', 'f', 'FALSE', or 'false'.

The format of an import map is shown below. For example,
suppose the import were performed on the first data field on the
first line in the import file which has a value of "10 inch



10

15

20

25

30

35

WO 96/15501 PCT/US95/15028

143
spike". That data field would be compared first against the
pattern "Thyristor". This pattern does not match, so the data

field is then compared against the pattern "*spike*" which
contains regular expression meta-characters. This does match,
so the first line would be imported to the class "Spikes" under
the class "Mechanical" under the root "PMX Root".

Thyristor PMX_Root Electrical Discrete Thryistor
*spike* PMX_Root Mechanical Spikes

Simple Import is the most basic import utility. It can only
be used to create instances, and only string attributes may be
specified. The command usage is shown in the following Table 11.

Table 11

simple_import [-u user] [ -p password } -d kdbname {-P] [-v] import_file

-u use user name 'username' when doing login, if
none given login id is used

-p use specified password with login,

-d the logical database name to connect to

-V turn on verbose mode

import_file name of the file containing the import info.

No "key>"
attributes allowed in attribute name
section of import file. Only string
type attributes may be imported.

This utility
is used to update existing instances if
and only if the attribute's parameter

is currently undefined.

importA [-u user] [ -P password ] -d kdbname [-P] [-v]




WO 96/15501 PCT/US95/15028

144
5 ‘import_file
-u use user name 'username' when doing login, if
none given login id is used
-p use specified password with login,
10 -d the logical database name to connect to
-v turn on verbose mode
import file name of the file containing the import info.
This utility
15 1s used to create new instances and
allows the importation of all attribute
types.

importB [-u user] [ -p password ] -d kdbname [-P] [-v] -0 nogoparts import_file

20
-u useé user name 'username' when doing login, if
none given login id is used
-p use specified password with login,
-d the logical database name to connect to
25 -v turn on verbose mode
-0 the name of the file to write part data of parts
that could not be imported due to
difficulty with setting parameters.
import file name of the file containing the import info.
30
II. Additional Embodiments and Modifications
Although the invention has been described herein with
reference to an application to the problem of parts management,
those skilled in the art, after having the benefit of this
35 disclosure, will appreciate that the invention is useful in other

applications as well. For example, the invention will be
particularly useful in any application where an organization
places value on reliably finding one of many instances of objects
having variable descriptions. The dynamic class manager



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

145

described herein will be particularly useful in any application
where it is desirable to restructure a classification or schema.

Although the invention has been described herein with
reference to a local area network, those skilled in the art,
after having the benefit of this disclosure, will appreciate that
other embodiments and implementations are possible. For example,
the system could be implemented on a main frame or single
computer having multiple user stations. The system could also
be implemented over a network other than a LAN, such as a wide
area network or the InterNet.

Additional file manager 140 derivations are possible. The
interface provided by the file manager 140 to the dynamic class
manager 134 and the handle manager 137 is an agreement to
maintain a copy of the dynamic class manager schema and instance
data on secondary persistent storage 103. Changes, as they are
made to the schema and instances are alsoc made in secondary
storage. The dynamic class manager 134 is initialized by reading
the data, via the file manager 140, from secondary storage 103.
Other secondary storage mechanisms could be implemented which
follow the interface specification. Other implementations could
use commercial data bases including relational database
management systems such as an Informix database, Oracle database,
Raima database, etc. Other implementations could also be built
using other proprietary file formats.

III. Method and Apparatus for Concurrency in an Object Oriented
Database

A. Overall Architecture

A presently preferred embodiment of the present invention
is shown in Figure 204, and employs a network 4100 having a
client/server architecture comprising one or more knowledge base
clients 4112, 4118 and 4111, and a knowledge base server 4108.
In the preferred embodiment shown in Figure 205, the knowledge
base server 4108 includes an object oriented lock manager 4125,
a dynamic class manager 4134, a connection manager 4135, a query
manager 4136, a handle manager 4137, a units manager 4138, a
database manager 4139, and a file manager 4140. A server host
4109 may be designated to run the knowledge base server 4108,
with the software and knowledge base 4123 preferably residing on
a local disk drive 4110. A knowledge base client 4131 interacts



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

146

with the knowledge server 4132 over a network 4100 in the
illustrated embodiment. A preferred system includes a registry
server 4141 and a license manager 4142 to control unauthorized
access to the system. A legacy client 4133 and a legacy manager
4145 are preferably included to facilitate organization of an
existing legacy database into schema for use in connection with
an object oriented database management system. An application
programming interface or API 4143 is also shown in the
illustrated embodiment.

A schema editor 4144 is provided for modifying and changing
the schema or database 4123. With the concurrency control
provided by the present invention, a plurality of schema editors
4144 may be used at the same time, while a plurality of
retrievers 4130 are being used. The structure and operation of
the schema editor 4144, the dynamic class manager 4134, the
retriever 4130, the connection manager 4135, the query manager
4136, the handle manager 4137, the units manager 4138, the
database manager 4139, the file manager 4140, the registry server
4141, the license manager 4142, the API 4143, the legacy manager
4145, and the knowledge base client 4131 are described above in
more detail.

B. Concurrency Control

In the example illustrated in Figure 204, a plurality of
users or clients 4111, 4112, and 4118 are shown connected to the
network 4100. A first client 4111 runs on a Sun Microsystems
SPARCstation 4111, which is shown having a display 4116, a mouse
4117, and a keyboard 4122. A second client 4112 runs on an IBM
compatible computer 4112, shown having a display 4113, a mouse
4114, and a keyboard 4115. A third X Windows client 4118 is
illustrated having a computer 4118, a display 4119, a mouse 4120,
and a keyboard 4122.

The present system supports interactive editing by one or
more users connected through respective clients 4131. For
example, users are able to use a schema editor 4144 to change the
schema by adding and deleting attributes, to add whole sections
to the schema, to reposition whole sections of the schema within
the schema hierarchy, and to modify, add and delete instances.
These interactive editing operations may be performed while other
users are simultaneously using retrievers 4130 to access the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

147

database 4123. The management of these simultaneous operations,
including the ability of a plurality of users to access the
database 4123 while a plurality of users are at the same time
making changes to the database 4123, is referred to as
concurrency control.

In the present invention, the object oriented lock manager
4125 provides a concurrency control mechanism which allows users
to query and view class objects without disruption of their view
while modifications are being made by other users. These
modifications include additions, deletions, and edits of classes,
attributes, instances, and parameters.

In a preferred embodiment, the lock manager 4125 is a
subsystem of the class manager 4134.

The present invention optimizes performance of the
concurrency control system by using lock inheritance based on
class objects. The lock manager 4125 implements a mechanism for
locks to be placed on a class without subclass inheritance of the
lock. This mechanism is referred to as a “class lock.” The lock
manager 4125 also provides an inheritance mechanism for locks.
The inheritance mechanism is referred to as a “tree lock.” Tree
locking a class will effectively result in a “lock” on all
descendants of that class by inheritance without physically
requiring the placement of class locks on the descendant classes.

The present invention simplifies the number of objects that
need to be locked by using class level lock granularity. This
optimizes performance. The granularity or scope of a class lock
is the class itself, the attributes defined by the class, and the
instances associated with that class. Figure 206C is a schematic
diagram that depicts a hierarchy of lock granules in accordance
with the present invention. A significant feature of the present
invention is that it does not allow an instance to be 1locked
independently of the class to which it belongs. This is in
contrast to the approaches shown in Figure 206A and Figure 206B.
In the present invention, classes are locked, either individually
(class locks), or in groups (tree locks), but instances are not
locked as such. Concurrency is controlled, not by determining
whether a instance in question is itself locked, but rather by
determining whether the class to which it belongs is locked. The

composite object is a class.



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

148

The present invention can implement concurrency control in an
object oriented database using only three types of lock modes,
although four types are preferably employed. The three types of
lock modes used in the present invention are: class share lock

(*CsSL”), tree update lock (“TUL”), and tree exclusive lock
("TXL”). The fourth type of lock mode that may be used is a tree
share lock (“TSL”), which may be considered to be in effect a
group of class share 1locks. Therefore, in a preferred

embodiment, the knowledge base server 4132 actually supports four
lock types: exclusive, update, and two flavors of share locks.

The “class share lock,” which is also referred to as a “CSL,"
locks a single class node for sharing.

The “tree share lock,” which is also referred to as a “TSL,"
locks the subtree rooted at the class for sharing. This lock
behaves exactly like placing a CSL on each class in the subtree.

The “tree update lock,” which is also referred to as a “TUL,
locks the subtree rooted at the class for instance editing. This
is sometimes called simply an 'update lock' or U-lock.

The “tree exclusive lock,” which is also referred to as a
“"TXL,"” or sometimes simply as an X-lock, locks the subtree rooted
at the class for exclusive use.

Some actions which change the knowledge base 4123 can be
performed without requiring an exclusive type of write lock.
Another type of write lock, referred to herein as an “update”
lock, is used for certain actions including modifying parameter
values, adding, and moving instances. An update lock is a hybrid
of the share and exclusive locks. An object may be update locked
by at most one application, but simultaneously the object can be
share locked by one or more applications. This means that the
one application with the update lock can make changes to the
object at the same time as it is being examined by the other
applications. These changes to the knowledge base that can occur
when an object is both update and share locked are considered
easy enough for an application to recognize and manage.

An update lock is a "weaker" type of a write lock than an
exclusive lock. Any change to the knowledge base 4123 requires
that a write lock has been requested and acquired. Some of the
updating actions require an exclusive lock, and other updating
actions require an update lock. But, the ones that require an



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

149

update lock require "at least" an update lock. An exclusive lock
is always sufficient for making a change to the knowledge base
123, but an update lock is a more friendly, more concurrent lock
for making a selected set of changes.

The knowledge base client 4131 uses the object oriented lock
mechanisms provided by the lock manager 4125 to place locks of
appropriate granularity and inheritance to provide the maximum
availability, stability, and performance of a tool using these
mechanisms. The example described herein is optimized for a read
oriented database system. It is particularly advantageous in a
knowledge base schema that is used for parts management.

Locks serve two purposes. First, locks are used by the
application or knowledge base client 4131 to announce or make the
statement that an object is being examined. Since it is harmless
for multiple applications to examine the same object
simultaneously, the type of lock used for this purpose is a share
lock. Several applications can share an object by concurrently
share locking it. Typically, applications use share locks as
they navigate through the schema, perform queries, and examine
instances.

The second use of locks by an application is to announce that
it wishes to change an object. The application should insure
that no other application is attempting to change the same
object. This type of lock is called an write lock. Other
applications are prevented from changing an object that is write
locked. Typically, applications use write locks when adding or
deleting instances, modifying parameter values, or editing the
schema. As noted above, the knowledge base server 4132 supports
two types of write locks: exclusive locks and update locks.
Exclusive locks are used to prevent applications from interacting
in ways that could cause problems. For example, when an instance
is to be deleted, or when the schema is edited, an exclusive lock
is used. Where an object can be changed in ways that do not
cause problems, a weaker update lock is preferably used to
provide maximum concurrency.

It will be appreciated that most of the locks used in the
present invention are 'tree' locks. In the above discussion,
references were made to locking an object (actually a class).
What is really meant is that a class is under the influence of



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

150

a lock. When the ancestor class of a given class is exclusive
locked, then that class is also effectively exclusive locked
because it is in the subtree which is rooted by an exclusive
locked class. ‘

An application establishes a lock by requesting it. If the
request succeeds, then the application has acquired the lock.
The application must release the lock when the object no longer
needs to be locked. The request will fail if the lock conflicts
with other locks that have already been requested by other
applications. A conflict will occur if the request is for a
write lock and the object is already write locked or if the
request is for a share lock and the object is already exclusive
locked.

The objects that can be locked are always classes. 1Instances
are never locked. The preferred system uses a subtree as an
alias for an instance. In this approach, fewer 1locks are
applied, which results in a less complex and faster system. For
an application to change some object which is not a class, a
write lock on the class associated with that object is required.
In other words, to add an instance a write lock must be requested
for the class to which the instance is to be added. A parameter
value can only be changed when the application requests a write
lock on the class that owns in instance. For example, the schema
developer or editor 4144 requests exclusive locks on a class for
making changes to attributes which are defined by that class.

The 1lock manager 4125 and the knowledge base server 4132
require an application to become a lock holder before it can
request a lock. It becomes a lock holder by using the
pmx_startLockHolder () function, and thus starting a lock holder.
The pmx_startLockHolder () function is described more fully in the
software functions section. The combination of the application's
connection to the knowledge base server 132 and the lock holder
are what distinguish one application from another for resolving
conflicts between locks. An application can start multiple lock
holders and thus cause conflicts for lock requests within the
application. This is wuseful for subroutines within the
application that need to be isolated. The application stops
being a lock holder by ending the lock holder.

Each application connection to the knowledge base server has



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

151

a unique lock holder table 4146 as shown in Figure 205. The lock
holder table 4146 is used by the lock manager 4125 to manage the
existing lock holders for each connection.

Figure 255 shows the data structure for the lock holder table
4146. In a preferred embodiment the lock holder table 4146 is
a dynamic list of Boolean values.

A TRUE value in the lock holder table 4146 represents a lock
holder that has been started. A FALSE value in the lock holder
table 4146 is a lock holder that has been ended or one that has
never been used. The index into the lock holder table 4146 is
the lock holder handle 267 itself. Thus, in the example shown
in Figure 255, the TRUE value 4601 is lock holder handle zero,
and it has been started. The lock holder handle one 4267
corresponds to the table 4146 entry identified by reference
numeral 4602, and it has a TRUE value indicating that it has been
started. The lock holder handle 2 with value FALSE 4603 has been
ended.

The operation of starting a lock holder is shown in the flow
chart in Figure 256. 1In step 4607, the lock holder table 4146
is searched for a value of FALSE, representing a lock holder that
is not in use and can be allocated. If a FALSE element is found,
then the table index is assigned to "newLH." In step 4608, if
a FALSE element was found control proceeds to step 4609 where the
the lock holder table 4146 element at index "newLH" is set to
TRUE to indicate that the lock holder is being allocated. If a
FALSE element was not found in step 4608, control continues at
step 4611 where a new element 4606 is allocated at the end of the
lock holder table 4146 and the index of this new element 4606 is
assigned to "newLH". Control continues at step 4609. At step
4610, the index "newLH" is returned as the newly started lock
holder handle.

Figure 257 is a flow chart for the operation of ending a lock
holder. The process can be performed very quickly in one step
4612 in the present invention. 1In step 4612, the lock holder
table 4146 element indexed by the lock holder handle to be ended
is set to FALSE.

Figure 208 is a diagram representing the lock conflicts for
the lock types and granularities provided in the present
invention. The first column 4220 represents locks held by a



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

152

first user, who will be referred to as lock holder 1. The top
row 4219 represents the lock requested by a second user, who will
be referred to as lock holder 2. The conflict states are shown
in the intersecting cells. The cells indicate whether the lock
requested by lock holder 2 conflicts with the lock held by lock
holder 1. For example, if lock holder 1 has a TUL on a class,
represented by the location in column 4220 indicated by reference
numeral 4216, and lock holder 2 requests a CSL, represented by
the location in row 4219 indicated by reference numeral 4217,
then the intersecting cell 4221 shows that there is no lock
conflict and lock holder 2 gets the CSL on the class.

Table 12 lists the available lock types used by the present
invention, lock granularities and their mnemonics. The most
restrictive locking mechanism is the exclusive lock which only
allows one lock holder. The most permissive lock type is a share
lock which allows multiple lock holders of non-conflicting types.
An intermediate level of concurrency is provided by the update
lock. Although an object oriented lock manager may provide class
exclusive locks or class update locks, the tree granularity for
the lock types used in the preferred embodiment of the present
invention are sufficient to provide view stability. Share locks
are preferably provided at both the class and tree granularity,
but that is not required by the present invention.

In a preferred embodiment, concurrency control primarily
occurs at the application level, and not at the DBM (database
management) level. The client application 4130, 4144 or 4133 of
the API 4143 must explicitly request a lock when the application
attempts a function. Although the description herein sometimes
refers to a user or lock holder *“requesting” a lock, in a
preferred embodiment, the GUI programs may be written so that a
user does not need to explicitly perform such a request in the
sense that the GUI programs hide this operation from the user and
the user may not actually be aware that the client application
4130, 4144, or 4133 of the API 4143 is requesting a lock. The
client application may perform a background request to the lock
manager 4125 when the user attempts to navigate the hierarchy or
edit parts, for example using the retriever 4130 or the schema
editor 4144. 1If a conflict is detected or the request fails, the
user is then informed through an appropriate dialog box or



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

153

message that access to the portion of the schema that the user
attempted to navigate or edit cannot be obtained. 1In a preferred
system, the client applications 4130, 4144 and 4133 are well
behaved and cooperate to achieve concurrency control. In other
words, concurrency is mediated by cooperating applications 4130,
4133, and 4144.

A given application and lock holder combination can request
multiple locks of the same type for the same class without
conflict. For example, in the above description with reference
to Figure 208, the same user could be both lock holder 4001 and
lock holder 4002. This may occur, for example, when the same user
opens a second window. A count for each type of lock acquired
by the application is maintained by the lock manager 4125 of the
knowledge base server 4132. The locks must be released as many
times as they are requested. However, in a preferred embodiment,
locks can be released en masse in five ways. The knowledge base
server supports two API functions for releasing multiple locks.
All locks that have been acquired by a lock holder are released
when the lock holder is ended. And, all locks that have been
acquired by an application are released when the application
closes the knowledge base 4123 or when the application logs out.

The share locks supported by the lock manager 4125 of the
knowledge base server 4132 are advisory. This means that the
share lock is a means of announcing to other applications (ones
that might want to edit instances or the schema) that a part of
the schema is being navigated. Share locks are not required for
navigating the schema or for quefying and examining instances,
but they are preferred. Acquiring a share lock prevents other
applications from acquiring write locks, which are enforced. The
lock manager 4125 and the knowledge base server 4132 will not
allow any schema or instances to be edited without appropriate
write locks. Therefore, if clients of the API 4143, such as the
retriever 4130, schema editor 4144, legacy 4133, or user written
API program, requests share locks whenever one of them navigates
into a part of the schema, it will be insulated from any changes
that might occur to the schema while it is navigating.

The client application 4130, 4144, and 4133 of the API 4143
should request a class share lock for a class whenever it gets
a class descriptor or attribute descriptor for that class. This



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

154

method insures that the data in the descriptor is valid and
remains valid. The client application 4130, 4144, and 4133
should also use a class tree lock at a class for which it does
a query. This may be used to prevent another application from,
for example, deleting instances in the subtree where the quéry
is applied.

In the present invention, locks are not subsumed. An object
may have multiple locks of the same type. Lock requests and
releases are paired. In the illustrated embodiment, a function
to perform a release of a class share lock will only release one
class share lock on an object.

The operation of the lock manager 4125 may be better
understood with reference to Figures 209-211. Figure 209 is a
schematic diagram of a class hierarchy 4215 representing an
example of a portion of an object oriented database. 1In this
example, class 4202 is an ancestor for all of the other classes
which are depicted. If Figure 209 depicted the entire database,
then class 4202 would be the root class. Class 4202 is the
parent of class 4201 and class 4205. Class 4201 has two children
shown as class 4206 and class 4200. Class 4205 is the parent of
class 4210 and class 4207. Class 4200 has two descendants: class
4203 and class 4204. Class 4206 has two children shown as class
4208 and class 4209. Similarly, class 4210 and class 4207 each
are shown with two children: classes 4211 and 4212, and classes
4213 and 4214, respectively.

If a lock is requested for class 4200, the first step is
checking whether the requested lock conflicts with any other lock
at this class 4200. This is represented in Figure 209, where
class 4200 is shown as a black square to represent the step of
examining the class 4200 for conflicting locks at this point in
the hieiarchy 4215. The determination of conflicts is performed
in accordance with the matrix represented in Figure 208. If the
requested lock for class 4200 is a class share lock CSL, and the
class 4200 is already subject to a class share lock CSL, a tree
share lock TSL, or a tree update lock TUL, then there is no
conflict, and the answer "“No” (i.e., no conflict) would be
returned. This is represented in Figure 208 as a “No” at the
intersection of the CSL column with the CSL, TSL, and TUL rows.
If the requested lock for class 4200 is a class share lock CSL,



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

155

and the class 4200 is already subject to a tree exclusive lock
TXL, then there is a conflict and the answer “Yes” (i.e., yes
there is a conflict) would be returned. This is represented in
Figure 5 as a “Yes” at the intersection of the CSL column with
the TXL row. If there is a conflict, the requested lock is not
granted.

The 1lock request procedure would then continue in this
particular example with the step of checking whether the
requested lock conflicts with any other lock at the ancestors
4201 and 4202 of the class 4200. This is represented in Figure
210, where class 4201 and class 4202 are shown as a black squares
to represent the step of examining the ancestor classes 4201 and
4202 for conflicting locks at these points in the hierarchy 4215.
The determination of conflicts is performed in accordance with
the matrix represented in Figure 208. The class 4200 is
represented in Figure 210 as a shaded square to indicate that the
class 4200 is the class for which the lock is requested. After
the check in Figure 6 is completed successfully, the ancestor
classes 4201 and 4202 of class 4200 are checked for conflicts.
In this example, the request for a lock on class 4200 could be
for either a class or tree lock. 1If a conflict is indicated, the
requested lock is not granted. If no conflict is detected, the
answer “No” is returned. 1In such a case, the requested lock may
be granted if the requested lock is a class share lock. 1If the
requested lock is a tree exclusive lock, a tree share lock, or
a tree update lock, the procedure continues to the step described
in connection with Figure 211.

Figure 211 is a diagram illustrating a hierarchy during a
subsequent step in the process of granting a tree lock request
on class 4200, if the checks in Figure 209 and Figure 210 are
successful. The descendent classes 4203 and 4204 are checked for
conflicts. The class 4203 and the class 4204 are each shown as
a black square to represent the step of examining the descendent
classes 4203 and 4204 for conflicting locks at these points in
the hierarchy 4215. The determination of conflicts is performed
in accordance with the matrix represented in Figure 208. The
class 4200 is represented in Figure 211 as a shaded square to
indicate that the class 4200 is the class for which the lock is
requested. If a conflict is indicated, the answer “Yes” is



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

156

returned and the requested lock is not granted. If no conflict
is detected, the answer “No” is returned and the requested lock
is granted.

The operation of the lock manager 4125 may be best understood
with reference to Figures 247-254. During operation, the lock
manager 4125 maintains a dynamic lock table 4400 shown in Figure
254. The lock table 4400 interacts with the schema. For
example, if a class is physically added or deleted from the
schema, the lock table 4400 is changed accordingly. Locks are
evaluated by the system based upon the inheritance pattern
reflected by the schema. The lock table 4400 is maintained in
the illustrated example by the knowledge base server 4132.

The lock table 4400 shown in Figure 254 is organized in the
preferred embodiment so that each row corresponds to a class in
the schema. Each column corresponds to a lock holder using the
system. Each cell of the lock table 4400 has been numbered for
purposes of reference during the discussion that follows. For
example, the intersection of the row corresponding to class
handle 4003 and the column corresponding to lock holder 4002 is
indicated by reference numeral 4410. If the a class share lock
is placed on the class corresponding to class handle 4005 by the
user corresponding to lock holder 4003, then the lock manager
4125 would place a CSL indication in element 4419 of the lock
table 4400. It will be appreciated by those skilled in the art
that there is no provision in the concurrency control system
according to the present invention for locking an instance; the
lock table 4400 only makes provision for classes.

If lock holder 4006 attempted to place some type of lock on
the class corresponding to class handle 4004, the lock manager
4125 would have to check element 4404 of the lock table 4400 to
determine whether lock holder 4001 had a conflicting lock on that
class. The determination of what lock type conflicts with the
type of lock that the lock holder 4006 was attempting to place
on the class would be determined in accordance with the lock
conflict table of Figure 208. If no conflicting lock was found
at cell 4404, then the lock manager 4125 would proceed to check
cell 4411 to determine whether lock holder 4002 had a conflicting
lock on the class corresponding to class handle 4004. If not,
the lock manager 4125 would proceed to check cell 4418 to



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

157

determine whether lock holder 4003 had a conflicting lock on the
class. The 1lock manager 4125 would continue until all
corresponding cells 4425, 4432 and 4446 for the remaining lock
holders 4004, 4005, and 4007, respectively, were checked. This
is essentially the procedure corresponding to the process
represented in Figure 209.

In order to perform checks of ancestor classes, for example
checking class 4201 shown in Figure 210, the lock manager 4125
must have a mechanism to supply the lock manager 4125 with
information as to what class handle corresponds to the class
4201. The dynamic class manager 4134 performs this function.
Thus, in order to implement the ancestor check depicted in Figure
210, the dynamic class manager 4134 will supply the lock manager
4125 with the class handle for the ancestor class 4201. If the
corresponding class handle is class handle 4002, then the lock
manager 4125 can perform a check of the cells 4402, 4409, 4416,
4423, 4430, and 4444 in the row corresponding to the class handle
4002 in the manner described above with reference to the row for
class handle 4004.

Similarly, in order to perform a check of descendent classes
4203 and 4204 shown in Figure 211, the dynamic class manager 1434
will supply the lock manager with the class handles corresponding
to these <classes, and the lock manager may check the
corresponding rows of the lock table 4400 to determine if there
is a conflicting lock. When an operation involves an instance,
the dynamic class manager 4134 supplies the lock manager 4125
with the owning class for that instance, and the system checks
for lock conflicts with that class.

When a lock is requested, the lock manager uses both the
connection and the lock holder handle 4267 for identifying lock
conflicts. When a schema or instance edit is attempted, the
dynamic class manager 4134 first asks for authorization to
perform the operation from the lock manager 4125. In one
embodiment, only the connection 1is wused to check for
authorization. In this example, the lock holder that asked for
the edit operation is not taken into account when checking for
the existence of the appropriate lock. This optimization was
done in this particular example to prevent requiring a lock
holder handle as an input argument to each of the API editing



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

158

functions.

Figure 247 is a flow chart depicting the steps for requesting
authorization to do a schema edit. An exclusive lock is required
by the lock holder in order to do the desired schema edit. 1In
step 4450, the current class is set equal to the class to be
checked. 1In step 4451, the “current class” is checked to see if
it is exclusive locked, (i.e., whether it has a tree exclusive
lock TXL). Referring to Figure 254, if the requesting lock
holder is lock holder 4003, and the current class is class handle
4003, this step in effect checks the intersection cell 4417 for
an exclusive lock. If it is exclusive locked, then it means in
this example that it is exclusive locked by the lock holder that
is attempting to do the edit. In that event, the lock manager
4125 returns an “OK” indication in step 4452 to the client 4131
corresponding to the requesting lock holder 4003. If it is not
exclusive locked, the flow proceeds to step 4453 where the lock
manager 4125 checks to determine whether the “current class” is
the root class. If it is the root class, the lock manager 4125
returns a “no” in step 4454. If it is not, the flow proceeds to
step 4455, where the “current class” is set equal to the parent
class of the class that was the “current class.” The lock
manager 4125 asks the dynamic class manager 4134 who the parent
is, and that information is supplied to the lock manager 4125 by
the class manager 4134. The procedure then loops back to step
4451, as shown in Figure 247. In effect, the lock manager 4125
will check the ancestors using this procedure.

Figure 248 is a flow chart depicting the steps for requesting
authorization to do an instance edit. 1In order to perform an
edit of an instance, an exclusive lock or an update lock is
required. The lock manager 4125 must first ask the class manager
4134 to tell the lock manager 4125 who is the owning class for
the instance, and this information is provided by the dynamic
class manager 4134. In step 4457, the current class is set equal
to the class to be checked. 1In step 4458, the “current class”
is checked to see if it is exclusive locked or update locked,
(i.e., whether it has a tree exclusive lock TXL or a tree update
lock TUL). 1If it is exclusive or update locked, then it means
in this example that it is so locked by the lock holder that is
doing the edit. In that event, the lock manager 4125 returns an



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

159

“OK” indication in step 4459 to the client 4131 corresponding to
the requesting lock holder. If it is not exclusive locked, the
flow proceeds to step 4460 where the lock manager 4125 checks to
determine whether the “current class” is the root class. 1If it
is the root class, the lock manager 4125 returns a “no” in step
4461. 1If it is not, the flow proceeds to step 4462, where the
“current class” 1is set equal to the parent class of the class
that was the “current class.” The lock manager 4125 asks the
dynamic class manager 4134 who the parent is, and that
information is supplied to the lock manager 4125 by the class
manager 4134. The procedure then loops back to step 4458, as
shown in Figure 248.

Figure 249 is a flow chart depicting the steps for requesting
a class share lock. 1In step 4464, the “current class” is set
equal to the class for which the lock is requested. 1In step
4465, the class is checked to determine whether it is exclusive
locked by some other lock holder. If it is, the lock manager
4125 returns a “no” in step 4466. If it is not, the lock manager
4125 proceeds to step 4467, where the lock manager 4125 checks
to determine whether the “current class” is the root class. If
it is, the lock manager 4125 returns a “ves” and grants the
requested CSL in step 4468. If it is not, the lock manager 4125
proceeds to step 4469, where the lock manager 4125 asks the class
manager who the parent class is. When that information is
supplied to the lock manager 4125, the “current class” is set
equal to the parent class, and the flow loops back to step 4465.

Figure 250 is a flow chart depicting the steps for requesting
a tree share lock. In step 4470, the “current class” is set
equal to the class at which the tree lock is requested. In step
4471, the “current class” is checked to determine whether it is
exclusive locked by some other lock holder. This checks the row
in the lock table 4400 corresponding to the “current class” at
every cell except the cell in the column corresponding to the
requesting lock holder. If it is, the lock manager 4125 returns
a “no” in step 4472. If it is not, the lock manager 4125
proceeds to step 4473, where the lock manager 4125 checks to
determine whether the “current class” is the root class. If it
is not, the lock manager 4125 proceeds to step 4474, where the
lock manager 4125 sets the “current class” equal to the parent



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

160

class (the lock manager 4125 must obtain the identification of
the parent class from the class manager 4134). The procedure
then loops back to step 4471. This effectively results in
checking the ancestors. If it is found to be the root class in
step 4473, the lock manager 4125 checks to see if all of the
descendent classes have been checked in step 4475. 1If they have,
then the 1lock manager 4125 returns a “yes” and grants the
requested TSL in step 4476. If not, in step 4477 the lock
manager 4125 sets the “current class” equal to some descendent
that has not yet been examined.

In step 4478, the lock manager 4125 then checks to determine
whether the new “current class” is exclusive locked by some other
lock holder. This effectively results in checking the
corresponding row in the lock table 4400 at every cell except the
cell in the column corresponding to the requesting lock holder.
If the new “current class” is not exclusive locked by some other
lock holder, the flow loops back to step 4475. This loop
effectively results in checking all of the descendants. If the
new “current class” 1is exclusive locked by some other lock
holder, then the lock manager 4125 returns a “no” in step 4479.

Figure 251 is a flow chart depicting the steps for requesting
a tree update lock. 1In step 4480, the “current class” is set
equal to the class at which the tree lock is requested. 1In step
4481, the “current class” is checked to determine whether it is
exclusive locked or update locked by some other lock holder.
This checks the row in the lock table 4400 corresponding to the
“current class” at every cell except the cell in the column
corresponding to the requesting lock holder. If it is, the lock
manager 4125 returns a “no” in step 4482. If it is not, the lock
manager 4125 proceeds to step 4483, where the lock manager 4125
checks to determine whether the “current class” is the root
class. If it is not, the lock manager 4125 proceeds to step
4484, where the lock manager 4125 sets the “current class” equal
to the parent class (the lock manager 4125 must obtain the
identification of the parent class from the class manager 4134).
The procedure then loops back to step 4481. This effectively
results in checking the ancestors. If it is found to be the root
class in step 4483, the lock manager 4125 checks to see if all
of the descendent classes have been checked in step 4485. If



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

161

they have, then the lock manager 4125 returns a “yes” and grants
the requested TUL in step 4486. If not, in step 4487 the lock
manager 4125 sets the “current class” equal to some descendent
that has not yet been examined.

The lock manager 4125 then checks in step 4488 to determine
whether the new “current class” is exclusive locked or update
locked by some other lock holder. This effectively results in
checking the corresponding row in the lock table 4400 for the new
“current class” at every cell except the cell in the column
corresponding to the requesting lock holder. If the new “current
class” is not exclusive locked by some other lock holder, the
flow loops back to step 4485. This loop effectively results in
checking all of the descendants. If the new “current class” is
exclusive locked or update locked by some other lock holder, then
the lock manager 4125 returns a “no” in step 4489.

Figure 252 is a flow chart depicting the steps for requesting
a tree exclusive lock. 1In step 4490, the “current class” is set
equal to the class at which the tree lock is requested. In step
4491, the “current class” is checked to determine whether it has
any lock by some other lock holder. This checks the row in the
lock table 4400 corresponding to the “current class” at every
cell except the cell in the column corresponding to the
requesting lock holder. 1If any other lock holder has any type
of lock on the “current class,” the lock manager 4125 returns a
“no” in step 4492. If it is not, the lock manager 4125 proceeds
to step 4493, where the lock manager 4125 checks to determine
whether the “current class” is the root class. If it is not, the
lock manager 4125 proceeds to step 4494, where the lock manager
4125 sets the “current class” equal to the parent class (the lock
manager 4125 must obtain the identification of the parent class
from the class manager 4134). The procedure then proceeds to
step 4495, where the 1lock manager 4125 checks to determine
whether the new “current class” has a TSL, TUL or TXL by any
other lock holder. 1If it does, the lock manager 4125 returns a
“no” in step 4496. If it does not, the flow loops back to step
4493. 1In step 4493, if the “current class” is found to be the
root class, the lock manager 4125 checks in step 4497 to see if
all of the descendent classes have been checked. If they have,
then the lock manager 4125 returns a “yes” and grants the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

162

requested TXL in step 4498. If not, in step 4499 the lock
manager 4125 sets the “current class” equal to some descendent
that has not yet been examined.

The lock manager 4125 then checks in step 4500 to determine
whether the new “current class” is has any type of lock by some
other lock holder. This effectively results in checking the
corresponding row in the lock table 4400 for the new “current
class” at every cell except the cell in the column corresponding
to the requesting lock holder. If the new “current class” does
not have any type of lock by some other lock holder, the flow
loops back to step 4497. This loop effectively results in
checking all of the descendants. If the new “current class” has
any type of lock by some other lock holder, then the lock manager
4125 returns a “no” in step 4501.

When a client 4131 invokes a retriever 4130, the concurrency
system will perform the procedure depicted in Figure 212 to open
a retriever window 4290. Figure 212 1is a flow diagram
representing the locking process performed when the retriever
window 4290 is opened. 1In step 4225, the user attempts to open
a retriever window 4290. A new lock holder is requested in step
4226. If the request for a new lock holder in step 4226 fails,
then the flow proceeds to step 4227, and the client 4131 will not
display a retriever window. If the request for a new lock holder
is granted, the flow proceeds to step 4228.

The new lock holder is associated with that user. In many
cases there may be a one-to-one correspondence between users and
lock holders. However, a single user can be more than one lock
holder, so the following discussion will refer to lock holders.
In the procedure depicted in Figure 212, the new lock holder then
requests a CSL for the root class in step 4228. In the
illustrated example, a GUI associated with the client 4131 will
request the class share lock for the root class. If the
requested CSL is not granted, the flow proceeds to step 4227, and
the retriever window will not be displayed. Preferably, a
message to the user is generated by the system in step 4227. If
the CSL requested in step 4228 is granted, the flow proceeds to
step 4229, and a retriever window is opened for the lock holder
and displayed on the user’s display 4116.

Figure 213 depicts a process 4230 that is performed by the



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

163

system when a class is selected in the class hierarchy. When the
user attempts to select the class in step 4232, a request for a
CSL is issued in step 4233 by the GUI associated with that user’s
knowledge base client 4131. If the request fails, the flow
proceeds to step 4234; the class is not selected. If the CSL is
granted, the flow method proceeds to step 4235, where the class
becomes the selected class, becomes highlighted, and associated
attributes are displayed.

Figure 216 shows an example of a screen that may be displayed
on the user’s display 4116 when the user is navigating the class
tree 4248. A root class 4245 is designated class 4001 in the
display. Class 4240 is a descendent of the root class 4245, and
is designated class 4002 in the display. Class 4241 is also a
descendent of the root class 4245, and is designated class 4003
in the display. 1In addition, class 4247 is a descendent of the
root class 4245, and is designated class 4006 in the display.
Class 4241 has two descendants: class 4246 and class 4243. Class
4246 is designated class 4004 in the display shown in Figure 216.
And class 4243 is designated class 4005 in the display. 1In the
illustrated example, the user selected class 4243. If the CSL
is granted in the method 4230 depicted in Figure 213, the class
4243 becomes the selected class, becomes highlighted 4244, and
associated attributes 4242 are displayed.

Figure 214 is a flow diagram that represents a process 4231 of
opening a class to view subclasses. Referring to Figure 216, in
this example, the user double clicks on the class 4241 to be
opened, and a request for a CSL is issued in step 4236 of Figure
214. If the CSL is granted, the method proceeds to step 4237,
and the display of the class 4241 changes from a closed folder
(such as is shown in Figure 216 for class 4240) to an open folder
4241, and all subclasses 4246 and 4243 are displayed. The step
4237 of obtaining a CSL for the open class 4241 is illustrated
in the method shown in Figure 214 as a single step, it being
understood that step 4237 comprises multiple steps similar to
steps 4233, 4234 and 4235 shown in Figure 213.

Figure 215 is a flow diagram representing the steps of a
process that occurs when a user selects the “find class” activity
in step 4238. (The find class activity is a class search through
the class hierarchy or schema ). A class matching a search



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

164

pattern is first selected using the process 4230 depicted in
Figure 213. If the process 4230 depicted in Figure 213 is
successful, then the class is opened using the process 4231
depicted in Figure 214. It will be understood by those skilled
in the art that the steps 4230 and 4231 shown in Figure 215
correspond to multiple step procedures shown in Figures 213 and
214, respectively.

The lock manager 4125 maintains a lock table for each class in
the schema, and for each lock holder. This may be better
understood with reference to Figures 217-219.

Figure 217 is a diagram of a schema 4248 corresponding to the
display of Figure 4216, and it illustrates corresponding internal
lock states of the classes 4245, 4240, 4241, 4246, 4243, and 4247
in the schema 4248. Figure 218 illustrates a lock table 4250
maintained by the lock manager 4125 and corresponds to the schema
4248 depicted in Figure 217 and displayed in Figure 216. Figure
219 is a diagram that illustrates the contents of a lock object
4260 for class 4243 in the lock table 4250 shown in Figure 218.

The schema 4248 that 1is displayed in Figure 216 can be
diagrammed as shown in Figure 217 to show the internal 1lock
states of the classes 4245, 4240, 4241, 4246, 4243, and 4247 that
are maintained by the lock manager 4125. The processes described
in Figure 214 and Figure 215 for opening and selecting classes
have been performed on the schema 4248 shown in Figure 217.
Class 4245 and class 4241 have been opened. Class 4243 has been
selected.

Lock states are kept in the lock table 4250 by the lock
manager 4125. The rows identified by reference numerals 4251,
4252, 4253, 4254, and 4255 of the 1lock table 4250 each
corresponds to a class 4245, 4240, 4241, 4246, 4243, and 4247,
respectively, in the schema 4248. Each 1lock holder has a
corresponding column, which are shown in Figure 218 as lock
objects 4256, 4257, 4258, and 4259. The lock table elements
correlate the class handles 4251, 4252, 4253, 4254, and 4255 of
the classes 4245, 4240, 4241, 4246, 4243, and 4247 in the schema
4248 with the lock objects 4256, 4257, 4258, and 4259. Class
handle 4251 in the lock table 4250 has a CSL lock object 4261
associated with lock holder 4257 because the class 4245 in the
schema 4248 is open on the display 4116 of the user who is lock



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

165

holder 4257. The class 4241 in the schema 4248 has a CSL 4262
because the user who is lock holder 4257 also has it open. Class
4243 in the schema 4248 has a CSL lock object 4260 because it is
the selected class. Of course, the 1lock object 4269
corresponding to the class handle 4254 for this lock holder 4257
is empty in Figure 218, because the corresponding class 4246
shown in Figure 217 has no locks. Similarly, the lock object
4249 is blank or empty in Figure 218, because the corresponding
class 4240 shown in Figure 217 has no lock applied to it.

An example of an element 4260 of the lock table 4250
corresponding to the selected class 4243 is shown in Figure 219.
The contents of the lock object 4260 for class 4243 include means
for indicating whether any lock types are applied to the
corresponding class 4243. 1In the illustrated embodiment, a CSL
count 4263 indicates that one class share lock exists for this
class 4243. A lock holder handle 4267 is used by the lock
manager 4125 to identify each lock holder. When a request for
a new lock holder 4226 is granted, (see Figure 212), a lock
holder handle 4267 is assigned to the new lock holder. Thus, the
procedure for granting a request for a new lock holder includes
the step of assigning a lock holder handle to the new lock
holder. 1In the illustrated example, each user has a unique user
identifier or user ID. The lock object 4260 includes a record
of the user ID 4268 of the user who corresponds to the lock
holder handle 4267. Because a single user may be a multiple lock
holder, the user ID 4268 for other lock holders 4256, 4258 or
4259 may be the same as the user ID 4268 for the lock object
4260.

In the example shown in Figure 219, the lock holder 4267 has
a class lock on class 4243, but does not have any tree locks
(TSL, TUL, or TXL) on the class 4243. Thus a count for TXL locks
4264 is zero. Similarly, a count for TUL locks 4265 and a count
for TSL locks 4266 are both zero in this example.

Figure 220 diagrams the process that occurs when the user
discussed above with reference to Figures 216-219 adds a part to
a class 4243 in the knowledge base 4123. When the user selects
the ‘make part” function in step 4270 using the retriever 4130
to add an instance to the database 4123, the client 4131 requests
a tree update lock in step 4271 for the selected class 4243. If



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

166

the request for a TUL is successful, the flow proceeds to step
4273 and the user is given access to add the part. The TUL is
then released by the lock manager 4125 when the add part
operation is completed. If the request for a TUL is not granted,
the flow proceeds to step 4272, and the user is denied access for
the purpose of making a part. In a preferred embodiment, the
user is given a message when access is not permitted to inform
him or her of such event in step 4272.

Figure 222 depicts the states of the lock table 4250 for the
process of adding a part as described in Figure 220. Figure 221
diagrams the schema 4248 to which the part is being added. A
part is being added to class 4243 in the schema 4248 shown in
Figure 221. Figure 224 shows the screen display during the
process of adding a part under these circumstances. In order to
perform the function of adding a part, a tree update lock is
required. If it is granted, the lock object 4260 for class 4243
will have a TUL for the add part operation, and will also have
a CSL as shown in Figure 222, since the class 4243 in the schema
4248 is also the selected class. Of course, the lock object 4269
corresponding to the class handle 4254 for this lock holder 4257
is empty in Figure 222, because the corresponding class 4246
shown in Figure 221 has no locks. Similarly, the lock object
4249 is blank or empty in Figure 222, because the corresponding
class 4240 shown in Figure 221 has no lock applied to it.

Figure 223 shows the lock object 4260 in this example. The
count 4265 for the tree update lock type is one in this example,
because a TUL has been granted to this lock holder for this class
4243. As noted above, the lock holder also has a CSL for the
class 4243, and the count 4263 for the class share lock type is
also one in this example. Like reference numerals in Figures
217-219 and Figures 221-223 refer to like elements, and the
description in connection with Figures 217-219 will not be
repeated.

When step 4273 in Figure 220 is performed in a preferred
embodiment, the step of opening an “add part window” 4275 (shown
in Figure 224) is also performed. The tree 4276 under the
influence of the tree update lock is represented in the add part
window 4275 by a diagram 4276 representing class 4245, class

4241, and class 4243.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

167

Referring to Figure 225, when the user selects the edit parts
function in step 4280, the system clones the existing class share
locks in step 4281 for the corresponding portion of the hierarchy
4248 currently displayed as a result of navigation to that point
using the retriever 4130. Referring to Figure 227, the edit
parts function creates a new window 4283 which contains a view
of the class tree 4285 corresponding to the schema 4248. To
present that additional view 4283 of the class hierarchy tree
4285, new share locks must be obtained for the presented classes
4245, 4241, and 4243. This insures a consistent view 4285 for
the parts that are going to be displayed or edited in this window
4283. The system will reissue identical navigation locks for the
parts editor tree 4285.

While in the edit parts window 4283, the user may navigate
(see step 4282 in Figure 226) through the schema 4248 shown in
Figure 228 to different locations in the class hierarchy tree
4285. This navigation uses the same navigation steps 4230 and
4231 described above, as shown in Figure 226.

In Figure 229, the lock holder table 4250 for this user is
shown after the completion of the creation of the edit parts
window 4283. Note that the lock holder 4257 contains two CSL
(class share locks) 4261, 4262, and 4260 for each class 4245,
4241 and 4243 which has been opened to get to the class 4243
identified by class handle 4255. There is one CSL for each class
4245, 4241 and 4243 opened for the original retriever window
4290, and one CSL for each class 4245, 4241 and 4243 opened for
the edit parts window 4283. When the user continues to navigate
down the tree 4285, CSL’s will be obtained for each class through
which the user navigates.

Figure 230 shows the lock object 4260 for this example in more
detail. The class share lock count 4263 is two, because two
class share locks are contained in the element 4260 shown in
Figure 229 at the intersection of the row corresponding to the
class handle 4255 and the column corresponding to the lock object
4257.

Like reference numerals in Figures 228-230 refer to like
elements in Figures 217-219 and Figures 221-223. Therefore, the
description in connection with Figures 217-219 and Figures 221-

223 will not be repeated.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

168

Figure 231 depicts a flow chart for the method used when a
user is attempting to move a selected part 4330 from one class
4243 to another class 4241 within a given subtree 4248. Figure
232 shows a flow chart for the method used in the general case
of moving any number of parts from one class 4243 in a subtree

4248 to another class 4241 within that subtree 4248. The
difference between these two figures is determined by the number
of parts to be moved. In the special case of one part to be

moved, an optimization can be made in the method shown in Figure
231 that makes it more likely that the operation can be completed
because the locks are applied to a smaller set of composite
objects.

In Figure 232, the general case of moving any number of parts
from one class 4243 in a subtree 4248 to another class 4241
within that subtree 4248 is shown. 1In a preferred embodiment,
this method is used to move more than one part, and the method
depicted in Figure 231 is used to move a single part. In Figure
232, the operation begins by attempting to get a TXL (tree
exclusive lock) for the subtree 4243 that was selected when the
edit parts operation was started (Figure 225). If the lock is
denied, then the operation is rejected. If the lock is granted,
then a TUL (tree update lock) is requested for the destination
class 4241. 1If the TUL is granted, then the all of the necessary
locks are held, and the parts are moved from the source class
4243 to the destination class 4241.

Figure 231 shows the special case where only one part 330 is
to be moved. The only thing that is different here is where the
TXL is requested. Although the previous case (Figure 232) is
known to work, it will be less likely to succeed because it
requires a broader lock on the subtree 4285 in which parts are
being moved. To increase the likelihood of moving the part 4330,
the TXL is applied to the class 4243 which owns the instance 4330
being moved. This applies the lock to the smallest possible
portion of the tree 4285, thereby locking the fewest number of
instances. When the lock is granted, the operation proceeds in
the same manner as the general case shown in Figure 232.

Referring more specifically to Figure 231, the user initiates
the process in step 4300. Although this step is labeled “user
moves one part,” it should be understood that the first step is



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

169

more accurately an attempt by the user to perform the indicated
function (if the necessary locks are available). The concurrency
control system then proceeds to step 4301, in which the system
requests a TXL for the class 4243 that owns the part that is to
be moved. Although Figure 231 refers to the “defining class of
part,” those skilled in the art will appreciate that it is more
accurately referred to as the owning class for that part. If the
TXL cannot be obtained, (because the lock manager 4125 detects
a conflicting lock present in the lock table 4250), the system
proceeds to step 4302. The GUI preferably informs the user that
the requested move cannot be performed, for example, with a
message that access is denied because the information is in use.
If the requested TXL is granted by the lock manager 4125, the
system proceeds to step 4303. The system requests a TUL on the
destination class 4241. If the requested tree update lock cannot
be granted, (because the lock manager 4125 detects a conflicting
lock present in the lock table 4250), the system proceeds to step
4304 and preferably informs the user that the requested move
cannot be performed. If the requested TUL does not conflict with
an existing lock in the lock table 4250, the lock manager 4125
grants the requested TUL and proceeds to step 4305. The part can
then be moved.

The dynamic class manager 4134 will, of course, perform
operations on the objects in the knowledge base 4123 which are
described more fully above.

Figure 233 shows the lock table 4250 for the general case of
moving parts described in Figure 232. The table 4250 of lock
holders may have multiple locks on many portions of the tree
4285. The illustrated lock table 4250 identifies the locks that
are held by this lock holder 4257 (the locks held by the
retriever 4290, the locks held by the parts editor 4283, and the
locks held for the move parts operation). The classes 4245,
4241, and 4243 identified by class handles 4251, 4253, and 4255,
respectively, each have a CSL (class share lock) for the
retriever, and a CSL for the parts editor. In addition, the
class 4241 identified by class handle 4253 has a TUL (tree update
lock) to add the part that is about to be moved to the class
4241. Also, the class 4243 identified by class handle 4255 has
a TXL for removing the part from the class 4243.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

170

In the illustrated example, in order to have the TXL granted
to the class 4243 represented by class handle 4255, there may be
no other TSL (tree share locks), TUL, TXL, or CSL’s held by
other 1lock holders 4256, 4258 or 4259 which are currently
operating. The fact that there are CSL's held by this lock
holder 4257 is considered a self conflicting condition. This
condition is permitted, and the TXL granted, due to the fact that
the CSL locks are held by the requester 4257 of the TXL. In
general, in circumstances like this, broader locks are granted
if and only if the only conflicts that can be identified are with
the lock holder 4257 that is making the request.

A preferred display for moving a selected part 4330 is shown
in Figure 235. In the preferred embodiment, the display of the
parts editor window 4283 shown in Figure 235 should visually
indicate the source class 4243 in the tree 4285 with a dotted
rectangle 4291, highlighting, color code, or some other
distinguishing feature. The destination class 4241 should be
visually indicated by highlighting 4292, or some other
distinguishing feature. The user accomplishes the move function
by clicking on the move command button 4335.

Figure 236 depicts a flow chart for the optimized case where
one part 4328 is to be removed from the knowledge base 4123. The
process 1is started at step 4320. In step 4321, a TXL 1is
requested for the class 4243 that owns the instance 4328 that is
to be removed. Although Figure 236 refers to the class 4243 as
the “defining class of part,” those skilled in the art will
appreciate that the class 4243 is more accurately referred to as
the owning class. If the TXL cannot be obtained, then the
operation is denied in step 4322. If the operation succeeds, the
TXL is granted in step 4323, and the part 4328 is deleted.

Figure 238 shows the locks 4260 that must be held by a lock
holder 4257 that wishes to remove an instance 4328 from a class
4243. This condition is essentially the same as a portion of the
move operation (see Figure 233) wherein the part must be removed
from a class 4243. The lock conditions are the same for the
classes 4245 and 4243 represented by class handles 4251 and 4255,
respectively. The class 4241 represented by class handle 4253
holds a CSL for the retriever, and a CSL for the parts editor.
To delete a part 4328, a TXL must be held for the class 4243 from



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

171

which the instance 4328 or set of instances is to be removed.

Figure 237 depicts a flow chart for the general case of
deleting more than one part from the subtree 4248, which begins
with step 4324. The TXL is requested in step 4325 from the class
4245 that was identified when the part editor was invoked. This
is the class 4245 that defines the subtree 4285 wherein work will
be done. After successfully obtaining the TXL, instances are
deleted from their owning classes 4245, 4240, 4241, 4246, 4243,
or 4247. 1If the TXL is denied, then the operation is rejected,
and no parts are deleted.

Figure 239 shows the preferred display associated with the
delete parts operation. A part 4330 is selected by clicking on
the display 4330 of the part. The selected part 4330 corresponds
to the part 4328 to be deleted shown schematically in Figure 238.
In the illustrated example, the selected part is defined by, or
a member of, the selected class 4243. The deletion of the
selected part 4330 is initiated by clicking on the delete command
button 4331 shown in Figure 239. 1In a preferred embodiment, if
the requested locks are granted, the system opens a dialog box
or window 4332 as shown in Figure 240 to ask the user to confirm
that he or she wants to delete the selected part 4330. The
deletion operation is confirmed by clicking on the “yes” button
4333, at which time the dialog box 4332 is closed and the
selected part 4330 is deleted.

Figure 241 describes the steps that are involved in
concurrency control when using the schema editor to change the
structure of the schema. In step 4340 when the user selects the
schema developer or schema editor 4144, the next operation is to
obtain a TXL lock on the subtree that the user wishes to modify.
The procedure for attempting to accomplished this begins with
step 4341, where a tree exclusive lock is requested for the
active class 4243. If the TXL cannot be obtained, then the
process branches to step 4342 and the schema developer 4144
cannot be started. When the TXL lock is granted, the method
proceeds to step 4343 and the schema developer screen 4350 is
displayed. Following step 4343, the CSL locks that were obtained
for the retriever 4290 on the class 4243 that was selected for
schema editing are released in step 4344 (because a TXL lock has
been obtained for that class 4243). In step 4345, a CSL lock is



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

172

then obtained by the schema developer 4144 for the parent class
4241 of the class 4243 in which the schema is to be edited. A
CSL is preferably also obtained for the parent class 4245 of the
class 4241.

Figure 242 shows a lock table 4250 that indicates the locks
that are held during the operations described in Figure 241.
Note that the schema editor 4144 holds a TXL (in element 4260)
for the class 4243 represented by class handle 4255. This
prevents other users of the system from accessing any of the
information in the subtree below the class 4243 represented by
class handle 4255. Details of the lock object 4260 are also
shown in Figure 242.

Figure 243 illustrates a screen display for a preferred
embodiment showing a schema developer window 4350 that is opened
in step 4343 of Figure 241. The class 4243 in which the schema
is to be edited is preferably displayed in a highlighted manner
4349.

Figure 244 shows a flow chart illustrating the mechanisms that
are used by the concurrency control means when displaying a
instance. The operation begins at step 4360 by the user
selecting the parts display mechanism. Referring to Figure 246,
this is initiated when the user clicks on the display command
button 4352. In order for the system to display the desired
information, there will need to be locks present. In order to
obtain locks, the software 4131 must become a lock holder. A
request for a new lock holder is performed in step 4361 shown in
Figure 244. 1If the request to become a lock holder is denied,
then the flow proceeds to step 4362 and the user is not allowed
to display the parts. However, if the lock holder request is
granted, then the flow proceeds to step 4363 and the software
4131 requests a TSL (tree share lock) on behalf of the user. If
the TSL is denied, then the method proceeds to step 4362 and the
operation cannot proceed. When the TSL is granted for the active
class, the method proceeds to step 4364 and parts can be
displayed with a confidence that the information contained within
that subtree 4243 is coherent.

Figure 245 depicts the lock table 4250, a diagram of the
schema 4248, and details concerning one of the lock objects 4373.
Figure 245 shows the condition of the lock holder table 4250 for



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

173

the situation described in Figure 244. The retriever 4290 is
holding the CSL locks 4261, 4262 and 4260 for all of the classes
4245, 4241 and 4243, respectively, that have been navigated
through to get to the class 4243 that is represented by class
handle 4255. In order for the system to display the pafts
defined by class 4243, a new lock holder 4258 is formed, and a
TSL lock 4373 is requested for the class 4243 identified by class
handle 4255. The TSL 4373 insures that other locks cannot be
granted, and hence there will be no ability to modify the schema
4248, or the instances contained within the this subtree 4243.
Hence the list of parts 4365 displayed in the search results
window 4351 shown in Figure 246 will be consistent, and coherent
for the duration that the lock 4373 is held.

In Figure 245, the tree share lock is indicated in the lock
table 4250 at the intersection 4373 of the row corresponding to
the class handle 4255 and the column corresponding to the lock
holder 4258. The lock object 4373 is shown in more detail
in Figure 245. The TSL count for the lock object 4373 is shown
as one, because the lock holder 4258 holds a TSL lock for the
class 4243 corresponding to the class handle 4255. The lock
holder handle 4372 is two, indicating that this is a different
lock holder from the lock holder described above with reference
to Figures 238 and 242. However, the user ID 4370 is shown as
4100. This is because the same user (whose user ID is 4100) is
two lock holders.

Figure 253 is a chart representing the application of the lock
manager 4125 by the knowledge base client 4131. When a
retriever window 4502 is opened, the concurrency system assigns
the user the lock holder 4001 (LH1l) position, and grants CSL’s
to that lock holder. To perform a “find class” function 4503,
lock holder 4001 will require CSL’‘s as shown in Figure 253. When
a part edit window 4504 is opened, lock holder 4001 must obtain
a TSL on the current class, and CSL’s to navigate the hierarchy.
Tree locks (TUL and TXL) are required to edit the schema.

In order to open a part display window 4505, the user will
have to be assigned a new lock holder (LH2), and will require a
TSL. In order to open a schema edit window 4506, Figure 253
shows that LH1 will require a TXL. In order to open an add part,
or make part, window 4507, LH1 will require a TUL. In a



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

174

preferred system, a user can tear off a window 4508 in the
retriever. In order to do so, the user must be assigned LH3, and
will require CSL's to navigate the schema.

The present invention may include a knowledge base client
means and a knowledge base server means. The knowledge base
server means preferably comprises an object oriented lock manager
means. The knowledge base server means preferably includes a
dynamic class manager means, a connection manager means, a query
manager means, a handle manager means, a units manager means, a
database manager means, and a file manager means.

Figure 258 shows the major components of a computer hardware
configuration 4109 providing the computational and communications
environment for a knowledge base server 4132. This configuration
consists of a central processing unit or CPU 6109 which includes
an arithmetic logical unit 6100 which fetches and executes
program instructions from main memory 6101. The programs are
stored on a disk drive 4110, access to which is provided through
a disk controller 6106. The knowledge base files 4123 are also
stored on disk drive 4110 and accessed through virtual memory
addresses 6112 in main memory 6101, through which, when required,
a page 6111 of contiguous data in a disk file 6108 is copied into
main memory 6101. The preferred embodiment of the present
invention uses virtual memory 6112 for this knowledge base
management system. The knowledge base server 4132 interacts with
the client API 4143 through a local area network 4100, access to
which is controlled by network controller 6102, or through a wide
area network 6104, access to which is controlled by a serial
interface controller 6103. An I/O bus 6105 mediates data
transfers between the CPU 6109 and the peripheral data storage,
interface and communication components.

Figure 259 shows the major components of a computer hardware
configuration 4112 providing the computational and communications
environment for a retriever 4130, schema editor 4144, a graphical
user interface component of legacy 4133, and an API 4143. This
configuration consists of a central processing unit or CPU 6109
which includes an arithmetic logical unit 6100 which fetches and
executes program instructions from main memory 2601. The programs
are stored on one or more disk drives 6110, access to which is
provided through a disk controller 6106. The user interacts with



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

175

the system through the keyboard 4115 and mouse or similar
graphical pointer 4114 with the graphical user interface
displayed on the CRT display 4113. The API 4143 communicates with
the knowledge base server 4132 through a local area network 4100,
access to which is controlled by network controller 6102, or
through a wide area network 6104, access to which is controlled
by a serial interface controller 6103. An I/0 bus 6105 mediates
data transfers between the CPU 6109 and the peripheral data
storage, interface and communication components.

The present invention may be advantageously used in a
client/server architecture comprising a knowledge base client and
a knowledge base server, as shown in Figure 204. However, the
invention 1is not necessarily limited to a client/server
architecture. The invention may also be used in a distributed
database system.

C. Object Oriented Database Structure

Figure 267 depicts a flow chart showing the procedure followed
when a user edits parts. Referring, for example, to Figure 266,
a user who has access rights to edit parts may actuate the edit
button 7180 and bring up the parts editor window 5019 shown in
Figure 292. The first step 5012 shown in Figure 267 involves the
user selection of attributes and parts to edit from the parts
editor window 5019. A user may enter new or revised values 5061
for attributes 5101, and the system will accept parameter input
in step 5013. If the attribute is an enumerated attribute 5101,
a pull down list 5062 will be presented to the user with
available choices, as shown in PFigure 293. In step 5014 of
Figure 267, a determination is made as to whether there are more
parts to edit. If there are no more parts to edit, flow proceeds
to step 5017. The system updates the part display 5020 and the
parts editor window 5019 with edited values 5061. The system
then proceeds to step 5018 and returns control to the user.

In step 5014, if more parts remain to be edited, flow proceeds
to step 5015, and the system gets the next selected part. 1In
step 5016, the system sets the next selected parts parameter to
the user input value 5061. Control then loops back to step 5014.

Figure 294 depicts a procedure for deleting parts. In step
5021, the user selects parts to delete from the edit parts window
5019. The user then clicks a delete parts command button 5026.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

176

In step 5022, a determination is made as to whether any more
parts remain to be deleted. If the answer is yes, flow proceeds
to step 5023 in which the system gets the next selected part and
deletes it from the query result and the knowledge base. Flow
then loops back to step 5022. When there are no more parts to
delete, flow proceeds to step 5024, and the system redisplays the
updated query result in the part editor window 5019. Flow then
proceeds to step 5025, and control is returned to the user.

Figure 295 depicts a flow chart for a procedure for moving
parts. The procedure may be initiated by the user selecting
parts to move from the parts editor window 5019 as shown in step
5102. Alternatively, the user may initiate the procedure as in
step 5103 by navigating the class hierarchy on the parts editor
window 5019 and selecting a destination class. The user may
actuate a move parts command button 5027, which ig illustrated
for example in Figure 284.

Referring to Figure 295, the procedure proceeds to step 5104
and a determination is made as to whether there are more parts
to move. If there are no more parts to move, flow transfers to
step 5042 and the system redisplays the query result in the parts
editor window 5019. The flow then proceeds to step 5043, and
control is returned to the user.

Returning to step 5104 in Figure 295, if a determination is
made that there are more parts to move, flow proceeds to step
5105 and the system gets the next selected part. 1In step 5106
a determination is made as to whether the user has requested an
unconditional move. If the answer is yes, flow jumps to step
5040. The system then sets the part class to the destination
class selected by the user. Any parameters or missing attributes
are set to undefined. Flow proceeds to step 5041, and the system
deletes the moved part from the query results. Flow proceeds to
step 5042 where the system redisplays the query result in the
parts editor window 50189.

In step 5106, if the user has not requested an unconditional
move, flow proceeds to step 5107 where a determination is made
as to whether attributes for any part parameters are missing from
the destination class. If the answer is no, flow proceeds to
Step 5040 and continues as described above.

If a determination is made in step 5107 that there are



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

177

attributes for part parameters which are missing from the
destination class, flow transfers to step 5108. The system gets
a list of parameters that will be deleted by the move and
presents them to the user by displaying them on the display 4116.
Flow then proceeds to step 5109. If the user then overrides the
warning that parameters will be deleted, or requests that the
parts be moved unconditionally, flow transfers to step 5040 and
proceeds as described above. If the user does not wish to
override the parameter deletion warning or does not request that
the parts be moved unconditionally, flow loops back to step 5104.

The process of editing parts may be further understood in
connection with a description of the parts editor window 5019
(shown in Figure 284). Once the user has specified a part by
selecting a class 7174 and subclasses 7196, 7197, 7198 and 7199,
entered the attribute search criteria 7177, and set the display
order 4194, the user can edit the parts by choosing the edit
command button 7180. Choosing this command 7180 causes the parts
editor window 5019 to appear. The top area 5102 of the parts
editor window 5019 contains the class tree 5044, showing
highlighting the navigation path and class definition of the
parts the user is editing. The bottom area 5103 of the window
5019 contains the parts 5020 the user has selected to edit. The
parts appear in a table 5020 that is similar to tables that are
used in spreadsheet applications. The part attributes 5049,
5100, 5101, etc., and attribute values 5105, 5106, 5107, etc.,
appear in the display order, from left to right, that the user
previously established in the part specification window 7170.
To use a value, the user clicks an enter box 5063. To cancel a
new value, the user clicks a cancel box 5064.

The top area 5102 of the parts editor window 5019 contains the
class definition 5044, which comprises the class tree showing the
navigation path and class definition of the parts selected for
editing. The window 5019 has a horizontal split bar 1047 that
splits the window into two sections 5102 and 5103. The user can
move the split bar 5047 up or down so the user can see more of
one section 5102 or the other 5103. The parts editor window 5019
includes an area referred to as the editing area 5046. After
selecting an attribute value 5101, a text box or list box 5104
appears in this editing area 5046 so the user can make changes



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

178

(see Figure 292). Each part appears as a row 5048 in the table
5020,and each row 5048 of the table 5020 is numbered. The user
may use the row number to select a part that the user needs
information on or that the user wants to move or delete. The
attributes 5049, 5100, 5101, etc., are the column headings, and
the attribute values are the rows.

After determining that the user is going to enter a new part
in the knowledge base, the user must fully specify the part. 1In
a preferred embodiment, a complete part specification is defined
as selecting the class up to the leaf class 7201 and entering
values for all the required attributes 7203. In a preferred
embodiment, if the user does not select a leaf class 7201 or
enter the required attributes 7203, the user cannot add the part.
When making parts, a preferred procedure is for the user to enter
as many attribute values 7203 as the user can in order to give
the part as complete a specification as possible.

Some attributes are required before a part can be added.
Before choosing the make command 7181, the user must enter an
attribute value for each required attribute. 1In addition, a user
cannot enter any attribute values for protected attributes.
Protected attributes have a protected icon 7191 immediately to
the left of the attribute icon. Once the user has selected the
leaf class 7201 and entered all required attributes, the user can
choose the make command button 7181. Choosing the make command
7181 causes the part to be added to the user's knowledge base and
the parts found 7172 to be updated to show a part count of 4001.

The knowledge base client 4131 is a set of C++ libraries that
provide knowledge base services to a client application 4130,
4133, and 4144 through the API 4143. The services may be either
local or result in remote procedure calls to the knowledge base
server 4132. For client applications which run under Windows,
the knowledge base client consists of one or more Windows Dynamic
Link Libraries (DLL) which use the WinSock DLL to provide network
access to the knowledge base server 4132 and the registry server
4141.

The knowledge base server 4132 is a UNIX server process that
manages knowledge base 4110 access, retrieval and updates. A
knowledge base server 4132 may manage one or more knowledge bases

4110 and 4110.



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

179

The dynamic class manager 4134 is a software subsystem in the
knowledge base server 4132 that manages schema and data. The
dynamic class manager 4134 provides the ability to store class,
attribute, unit and instance information that can be modified
dynamically. The dynamic class manager 4134 consists of C++
libraries and classes and provides operations for "legacizing"
and for accessing, creating, deleting, and modifying classes,
attributes, instances, parameters, unit families, units and meta-
attributes at run-time.

The capabilities of the dynamic class manager 4134 are
accessed by a user programmer through a set of functions provided
by the API 4143.

The dynamic class manager 4134 knowledge base, hereafter
sometimes referred to as "the knowledge base," is a collection
of classes, attributes, units, instances with parameter values,
and relationships among these objects. In the dynamic class
manager 4134, a class defines a separate type of object. Classes
have defined attributes. The attributes have some type, and
serve to define the characteristics of an object. A class can
be derived from another class. In this case, the class inherits
attributes from its ancestors. A knowledge base contains
instances of classes. The attribute values defined by an
instance are parameters.

Another way to describe the concept of classes, attributes,
instances, and parameters is to use a dog as an example. The
word "dog" is the analog of a class. Dog describes a group of
similar things that have a set of characteristics, or attributes.
The attributes of a dog are things like color, breed, and name.
The class and attributes do not describe any particular dog, but
provide the facility to describe one. An instance of a dog has
parameters that give values to the attributes: for example, a
dog whose color is beige, of the breed golden retriever, and
whose name is Sandy.

Classes can have relationships. The class "dog" is part of
the larger class, "mammal". The class "mammal" is less specific
than "dog". It conveys less information about the object "dog",
but everything about "mammal" also applies to "dog". "Dog" is
clearly a subset of "mammal", and this relationship is a
subclass. "Dog" is a subclass of the class "mammal". The



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

180

subclass "dog" could be further subclassed into classes like big

"dogs", 1little "dogs", etc. The concept subclass implies a
parent relationship between the two classes. "Mammal" is a
parent and "dog" is a subclass. The terminology "'dog' is

derived from 'mammal'" is also used to describe the relationship.

The subclass "dog" inherits attributes from its parent class.
The attribute color could be part of the "mammal" class, since
all "mammals" have a color. The "dog" class inherits the
attribute color from its parent.

The root class is special, it has no parent. It is the class
from which all classes begin their derivation. In illustrations
set forth herein, graphs have been drawn to illustrate a class
hierarchy, and the root class is placed at the top of those
drawings. Subclasses branch out from the root class into ever
widening paths that make the graph look like an upside down tree.
The entire group of classes is a tree, and the special class that
has no parent, though it is at the top, is the root.

One of the available attribute types supported by the dynamic
class manager 134 is a numeric type. Numeric attributes are used
to describe measurable quantities in the real world. Such
measurements do not consist of just a numeric value; they also
have some associated units. The dynamic class manager 4134, in
conjunction with the units manager 4138, maintains information
about different types of units that can be used with numeric
attributes. The dynamic class manager 4134 (using the units
manager 4138) can also perform conversions among units where such
conversion makes sense. The units that the system understands
are grouped into various unit families. These unit families and
the units they define, can be changed at run time. The dynamic
class manager 4134 also comprises a dynamic units manager 4138.

The word "schema" refers to the layout of classes, attributes,
units, and unit families. A knowledge base with no instances is
a schema. This may be better understood in connection with the
following more detailed description of the various objects
managed by the dynamic class manager 4134.

A class is the most fundamental object in the schema in
accordance with the present invention. A class is a collection
of related objects. 1In the present example, a class may have
eight or nine components. A class is a schema object. As



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

181

explained above, the schema is the collection of classes,
attributes, units, and unit families and their relationships.
Every class has exactly one parent from which it is derived,
except for the root class 7173. The root class 7173 is the one
class that has no parent. The root class 7173 has another
special characteristic in that it can never be deleted. The
consequence of a class being derived from its parent means that
the class has all of the properties of its parent. These
properties are referred to as attributes. Attributes are
inherited from the parent class.

A class may have zero or more subclasses. A class is a parent
of each of its subclasses. A subclass is a class that has a
parent, so the root class 7173 is not a subclass. The subclasses
of a parent class have some defined order. The order is
persistent, meaning that the dynamic class manager 4134 preserves
the order even across closes and reopens of the knowledge base.

A class has a set of descendants that is comprised of all of
its subclasses, all of the subclasses' subclasses, and so on.
A class that has zero subclasses or an empty set of descendants
is called a leaf class 7201. A subtree is the set composed of
a class and all of its descendants. The subtree is said to be
rooted at the class. A subclass also has a set of ancestors,
which is the set composed of the parent, its parent's parent, and
so on including the root class 7173. Classes that have the same
parent are sometimes referred to as siblings.

Following a subclass to its parent is sometimes referred to as
going up the tree. Moving from a parent to one of its subclasses
is sometimes referred to as going down the tree. Therefore, the
root class 7173 of the schema is the furthest up at the top of
the tree, and the objects furthest down at the bottom of the tree
are typically leaf classes 7201.

A class has a name which is the text identifying a class,
subclass, or leaf class, and is an ASCII character string. The
present invention uses class handles for references to a class,
which are further described in connection with the operation of
the handle manager 7137. In the example shown in Figure 264,
there are three subclasses.

Figure 285 shows the internal object representation for a
class 4800. In the present schema, a class has a parent handle



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

182

4801. Every class object 4800 includes stored information
representing the handle of its parent class, except in the
special case of the root class 7173, which has no parent. A null
is stored in this location in that case. A handle is a reference
to an object. The parent handle information 4801 is used by the
handle manager 7137 to identify the stored class object which is
the parent class for the class 4800.

The class object 4800 includes a subclass list 4802. The
subclass list 4802 is an array of handles which may be used by
the handle manager 7137 to identify those class objects which are
subclasses of the class 4800. In the internal representation
provided in the present invention, lists can grow without bounds
and are dynamic. The storage space available is not fixed.

This provides flexibility and power to the database structure,
because the class object 4800 may have an extremely large number
of subclasses in a large database without substantial degradation
in performance.

The class object 4800 includes an attribute list 4803. The
attribute list 4803 is a list of handles. The handle manager
7137 may use the information stored in the attribute list 4110
to identify the attributes possessed by class object 4800.

The class object 4800 also includes a local instance 1list
4804, which is a handle list. Field 4805 shown in Figure 285 is
a pointer to storage location of the class name, i.e., the text
identifying the class.

Field 4806 is used to store the handle for the class 4800.
The field 4807 stores an indication of the class code, i.e.,
whether it is primary, secondary, or a collection.

The class object 4800 also includes a subtree instance count
4808. The subtree instance count 4808 is a numeric indication
of the total number of items or instances present in all of the
descendants of the class 4800 i.e., the total number of instances
in class 4800, all of the class 4800's subclasses, all of the
subclasses' subclasses, and SO on. Thus, when a user is
navigating through the tree structure of a knowledge base, as a
user selects énd opens subclasses, the user can be immediately
informed of the number of parts found at any location on the tree
by retrieving the subtree instance count 4808 for the current
class and passing that information to the retriever 4130. The



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

183

subtree instance count 4808 1is kept up to date whenever the
knowledge base is modified, so it is not necessary while a user
is navigating through the tree structure of the database to
perform a real time computation of parts found 7172.

Referring again to Figure 285, the class object 4800 also
preferably includes a metaparameter list 4809. The metaparameter
list 4809 is a string list, and may be used as a pointer to
strings containing linking information ,for example, the name of
a file that contains a graphical display of the type of parts
represented by the class 4800, thesaurus information used for
legacizing data, or other legacizing information.

Figure 286 depicts an example of a generic list 4810. The
class manager 4134 uses lists of handles, lists of floating point
values, lists of pointers to character strings, etc. whenever a
variable amount of data can be associated with an object.
Examples of lists would be items 4802, 4803, 4804 and 4809. The
list 4810 depicts a list of simple integers.

A list object 4810 includes a pointer 4812 which points to the
beginning 4815 of the list data 4811. A list object 4810 also
includes a field 4813 indicating the currently allocated size for
the list data 4811. The list object 4810 also includes a field
4814 containing information indicating the amount of list data
4811 currently in use.

The list data 4811 contains the actual list of values. The
first item 4815 in the list in this example contains the wvalue
"4005". Similarly, in this example list items 4816, 4817, 4819,
4820 and 4821 contain additional values. List items 4822, 4823,
4824, 4825 and 4826 in this example are not currently in use and
are set to zero. In this illustrated example, the currently
allocated size 4813 of the list is twelve. The amount in use
4814 of the list is seven, meaning that the first seven items in
the list are valid.

Figure 287 illustrates the data structure for attribute data
4827. An attribute object 4827 contains at least six fields in
the illustrated embodiment. A first field 4828 contains a
pointer to an external name comprising an ASCII character string
that is the name for the attribute. The attribute object 4827
also contains a field 4829 containing the handle for this
attribute object 4827. The attribute object 4827 also contains



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

184

a field 4830 which contains the handle of the class that defines
this attribute 4827. The fourth field 4831 is a Boolean
indication of whether this attribute is a required attribute for
the defining class. A fifth field 4832 contains a Boolean field
indicating whether this attribute is protected. This is
indicated by the protected icon 7191. 1In the data structure of
the attribute object 4827 shown in Figure 287, this information
is stored in field 4832. The attribute object 4827 also contains
a field 4833 which is a metaparameter list.

Enumerated attributes include fields 4828 - 4833, indicated
collectively as attribute data 4834, plus a field 4835 which is
a list of enumerator handles.

In the case of a Boolean attribute, only fields 4828 - 4833
are used, which are again indicated collectively in Figure 287
as attribute data 4834.

Numeric attributes include fields 4828 - 4833, indicated
collectively as attribute data 4834, plus a field 4838 which
contains the handle of the unit family for this numeric
attribute.

In the case of a string attribute, and in the case of a
string array attribute, only the attribute data 4834 comprising
fields 4828 - 4833 is included.

One example of the use of these data structures by the dynamic
class manager 4134 is the procedure of a user selecting a class
by clicking on the closed folder icon 7189 associated with the
class. When a class is opened, the dynamic class manager 4134
will check the class object 4800 and retrieve the attribute list
4803. The handles stored in the attribute list 4803 will be
passed to the handle manager 7137. The handle manager 7137 will
return the virtual memory address for each attribute 4827 of the
class. The dynamic class manager 4134 may then use the pointer
4828 to the external name of an attribute object 4827 to retrieve
the character string text for the external name for the
attribute. That ASCII text information can then be passed
through the API 4143 so that it may eventually be provided to the
retriever 4130 for display to a user on the display 4116.

Figure 288 illustrates the data structure for an enumerator
object 4841. An enumerator object 4841 may comprise three
fields. A first field 4842 contains a pointer to the external



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

185
name for the enumerator object 4841. A second field 4843
contains the handle for the enumerator object 4841. A third

field 4844 may contain a metaparameter list. Handles are used
to link from other objects to the enumerator object 4841. An
advantage of this structure is the ability to easily modify a
knowledge base if it becomes desirable to change the external
name of an object. Such a change need only be performed once to
the ASCII character string that is used to represent the external
name. All other objects merely contain a handle which can be
used by the handle manager 7137 to provide the dynamic class
manager 4134 with the actual external name.

Figure 289 depicts the data structure for an instance 4871 and
associated parameters 4872. An instance object 4871 may contain
four fields 4873 - 4876. The first field 4873 is the handle for
the owner class of this instance. The second field 4874 may give
the ordinal location of this instance's handle in the instance
1ist 4804 of its owning class. The third field 4875 is a list
of parameters, which points to the values contained in 4877. The
fourth field 4876 is the handle for the instance object 4871.
The list of parameters 4877 contains a plurality of pointers to
parameters for the various attributes associated with this
instance object 871. In the example illustrated in Figure 289,
the list 4877 contains three entries 4878, 4879 and 4880.
Additional elements of the list 4877 have been omitted for
clarity. The pointer 4878 in list 4877 points to information
concerning the associated parameter 4872. The data structure for
the parameter 4872 is illustrated in more detail in Figure 290.

Figure 290 shows the data structure for five different types
of parameters: enumerated, Boolean, numeric, string and string
array. Each of the parameter objects 4872 has an attribute
handle 4881. An enumerated object 4888 has an attribute handle
4881 and an enumerator handle 4882. A Boolean object 4889 has
an attribute handle 4881 and a Boolean value 4883. A numeric
parameter object 4890 has an attribute handle 4881, a unit handle
4884 and a value 4885. For example, if the numeric parameter is
4010 ohms, the unit handle 4884 would be the handle for the ohms
unit, and the value 4885 would be 4010. A string parameter 4891
contains a field for the attribute handle 4881 and a pointer 4886
to an ASCII character string. A string array parameter 4892



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

186

contains an attribute handle 4881 and a field 4887 that points
to a list of pointers to string arrays.

Figure 291 is an example of a schema with instances. The
example has a class named "electronics", which has a subclass
4800' named "capacitors". The capacitors subclass 4800' has an
attribute 4827 called "case type". There are two possible types
of cases in this example, which are referred to as "case A" and
"case B". The subclass capacitors 4800' has a subclass 4800
named "electrolytic". The electrolytic subclass 4800 has an

attribute 4827' called "voltage rating", and one instance 4871
is provided that has parameters 4890 and 4888 of 5 volts and a
type B case, respectively. Most objects and lists are shown
incomplete in order to simplify the illustration, it being
understood that like reference numerals refer to the same objects
described in connection with Figures 273-278.

In Figure 291, the class object 4800 has a name 4806, which in
this case is "electronics". The class object 4800 has a field
4802 which points to a list of subclasses 4893. The list 4893
has a first entry 4894 which is the handle for the subclass
4800'. In this case, the name 4806' of the subclass 4800' is
capacitors. Of course, all references to schema objects actually
use handles (not shown in Figure 291) and actually go through the
handle manager 7137 and handle table. This is not shown in
Figure 291 in order to simplify the diagram.

The subclass 4800' capacitor has a field 4802' which points to
a list of subclasses 4893'. The list 4893' has an entry 4894'
which is the handle for subclass 4800". The name 4806" for
subclass 4800" is electrolytic. The subclass 4800" has a null
entry in the field 4802" which would normally contain a pointer
to a list of subclasses, if any. 1In this example, the subclass
4800" does not have any subclasses.

Returning to the capacitors subclass 4800', field 4803
contains a pointer to a list of attributes 4897. The list 4897
contains the handle for the enumerated attribute 4827 called
"case type". Field 4830 of the enumerated attribute object 4827
contains the handle of the defining class 4800' called
capacitors. The enumerated attribute object 4827 contains a
pointer 4835 which points to a 1list 4839 of handles for
enumerators. In this example, the list 4839 contains a handle



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

187

4898 for the enumerator 4841. The enumerator 4841 contains a
pointer 4842 to the external name for this enumerator, which may
be an ASCII string for "case A". Similarly, item 4899 in the
list 4839 points to enumerator 4841' associated with case B.

Returning now to subclass 4800" named electrolytic, the
pointer 4803" points to a list 4897' of attributes, and one of
the fields in the list 4897' contains the handle for numeric
attribute 4827' which is "voltage rating". The numeric attribute
4827' contains a field 4830' which contains the handle of the
defining class which in this example is the class 4800" named
electrolytic. The numeric attribute object 4827' also contains
a field 4838' which contains the handle of the voltage unit
family (not shown).

Returning to the electrolytic class 4800", a field 4804"
contains a pointer to a list 4895 of handles of instances. Item
4896 in the 1list 4895 contains the handle associated with
instance 4871. Instance 4871 contains a field 4873 which
contains the handle of the owning class, which in this case is
the electrolytic class 4800". The instance data object 4871 also
contains a field 4875 which points to a list of parameters 4877.
The list 4877 contains a pointer 4878 which points to the numeric
parameter 4890. The numeric parameter 4890 contains a field 4881
which contains the handle of the attribute 4827' (voltage
rating). The numeric parameter object 4890 also contains a field
4884 which has the handle of the units, which in this case is
"volts". For simplicity, the unit object is not shown. The
numeric parameter object 4890 contains a field 4885 which
contains the value 5.0. In this instance, the electrolytic
capacitor is rated at 5.0 volts.

The parameter list 4877 contains a pointer 4879 which points
to the enumerated parameter 4888. The enumerated parameter
object 4888 contains a field 4881' which contains the handle of
the attribute, which in this instance is case type. The
enumerated parameter object 4888 also contains a field 4882 which
is the handle for the enumerator 4841'. 1In this example, the
electrolytic capacitor rated at 5.0 volts has a type case B.

The data structure described herein has significant
advantages. Referring to Figure 291, it is easy to change a name
or description in this data structure. Consider an example where



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

188

the database may contain 1,000 instances of capacitors with a
type B case. If the type B case is discontinued, or the name
changed to "re-enforced", the only change that would need to be
made would be to replace a single ASCII string representing the
name for that case type. All 1,000 instances in the database
simply contain a handle that the handle manager 7137 associates
with that ASCII text string. No other changes need to be made
in the database.

Another advantage of the data structure in accordance with the
present invention is that if a primary value is undefined,
nothing is stored. Thus there is no wasted space.

Another advantage of the database structure is that algorithms
do not have to be changed based upon location in the tree
structure. All algorithms work the same regardless of location
in the tree structure. The only special case is the root class.
For example, the algorithm for adding an instance to the database
is the same no matter where in the tree structure you are
located. This makes dynamic changes to the schema very easy.
A class or an entire branch of the tree structure can be moved
from one location to another simply by changing lists of handles.
It is not necessary to run a convert program. Everything is self
contained. A class object 4800 contains the handle of its parent
4801 and thus knows who it's parent is. The class object 4800
also contains a pointer 4802 to a list of its subclasses, so it
knows who its children are.

In the present database structure, it is possible to delete
instances quickly. An instance can be deleted by taking the last
item in the list of instances 4804 and moving it to the position
of the instance being deleted. In other words, the handle of the
last instance would be written over the handle of the instance
being deleted, and the number of items in the list would be
decremented by one. The instance index field 4874 for an
instance object 4871 may be used to facilitate fast deletions.

In a preferred embodiment, the value of parameters are always
stored in base units. The objects in fields described do not
necessarily occupy a word of memory. In a preferred embodiment,
all parameters of a particular type are stored contiguously.
This improves the speed of searches. For example, the case type
4841' described with reference to Figure 291 would be stored



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

189

contiguously with all the other parameters for case type. The
numeric parameter of 5.0 volts would be stored in a different
physical location in memory contiguous with other numeric volt
parameters.

As described above, providing a class object structure 4800
with a field 4808 providing the subtree instance count for that
class allows the system to virtually instantly display a parts
count 7172 to provide the user instantaneous feedback during the
tree traversal steps of the users search. The process of finding
a part essentially amounts to discarding the thousands of parts
that do not have the attributes desired and narrowing the search
down to a small number that do.

This is accomplished by navigating to the correct class from
the root of the classification hierarchy. During this phase,
the parts found indication 7172 can be updated using the data
structure field 808 indicating the subtree instance count. This
provides significant response time advantages compared to
actually counting the available instances at each step. The
user has immediate feedback indicating the number of parts
available in the selected tree. The combination of providing an
object oriented hierarchical tree structure together with search
criteria based upon any desired combination of attributes, while
providing instantaneous feedback on the number of instances
corresponding to the current search criteria and class provides
significant advantages over data base management schemes that
have been attempted in the past.

An important function of the dynamic class manager 4134 is the
ability to modify the database structure during operation. The
database structure is known as the schema. The schema of the

object oriented database is structured using classes. The
classes contain attributes. The attributes may contain
enumerators, and unit families. The ability to add, move and

delete these items 1s important to the dynamic operation of the
database.

To add a class to the schema, three items must be known: the
class name, the parent of the new class, and the location within
the list of subclasses to insert the new class. Figure 292
illustrates this operation. The first step 5840 converts the
handle of the parent class into an actual class pointer. The



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

190

parent pointer must be immediately tested in step 5841 prior to
its use. If the pointer proves to be invalid, then the operation
terminates at step 5842. If the pointer is valid, the insertion
index is tested in step 5843. If it proves to be invalid, the
operation is terminated in step 5844. Finally, the name of the
class must be tested in step 5845 to determine if it fits the
guidelines of valid class names. If the class name fails, then
the operation terminates in step 5846. When step 5845 accepts
the class name, the new class can be created. A new handle is
created in step 5847 first, and then the new class is created
in internal memory in step 5848. The new handle is inserted into
the table of class handles in step 5849 of Figure 293, followed
by the handle being added to the parents list of subclass handles
in step 5850. The last operation is to cause the file manager
4140 to add the new class to the indicated parent on the
secondary storage device 4110.

To add an attribute to a class, three items must be known:
the class handle of the owning class, the location in which to
insert the new attribute, and the name of the attribute. Figure
294 illustrates the adding of attributes. The first step 5930
is to convert the class handle into a class pointer, followed by
the testing of that class pointer in 5931 to determine if it is
a valid class pointer. If not, the procedure terminates in 5932.
If the class pointer 1is determined to be valid, then the
insertion index is validated in 5933. 1If the index fails the
validation test, then the procedure terminates in 5934. If the
validation of the index succeeds, then the operation continues
in 5935 where the name of the attribute is tested. If the
attribute name fails, then the operation terminates in 5936. If
the name of an enumerated attribute is accepted in 5935, then the
attribute can be created. Step 5937 creates a new handle for the
attribute. Then the new attribute is created in step 5938. The
new attribute handle is then added to the list of attributes
local to the owning class in 5939. The last step is 5940 of
Figure 295 to cause the file manager 4140 to update secondary
storage 4110 with the new attribute. The operation is complete
in step 5941.

The addition of an instance is shown in Figure 284. Adding an
instance requires a class handle. The class handle must be



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

191

converted into a class pointer in 5918. The class pointer is
tested in 5919 to determine if it is a valid class pointer. If
it is not valid, then the procedure terminates in 5920. If the
class pointer is determined to be valid, then the procedure
continues in 5921 with the generation of a new instance handie
and a new instance object. The handle for the new instance is
inserted into the handle table in 5922. The instance is added
to the parents list of instances in 5923. The subtree instance
count is incremented to reflect the presence of the new instance
in 5924. The instance has now been created in memory, and needs
to be added to secondary storage 4110, which is done in step 5925
of Figure 285. The procedure is complete in step 5926.

The deletion of a class is shown in Figure 286. To remove a
class from the database structure, the current class handle must
be identified. The class handle is first decoded into a class
pointer in step 6600. The class pointer is then checked to
determine if it is a valid class pointer in 6601. If the class
pointer is invalid, the procedure is terminated in 6602. If the
class pointer is valid, then it is checked to determine if it is
the root class in 6603. If the class pointer represents the root
class, then the procedure terminates in 6604, because the root
class cannot be deleted. If the class pointer does not represent
the root class, it is checked to determine if the class
represents a leaf class in 6605. If the class pointer does not
represent a leaf class, the procedure terminates in 6604. If the
class pointer is found to point to a leaf class, then operation
continues in 6906 where all of the instances of this class are
deleted. The process of deleting instances is described below
with reference to Figure 290. 1In step 6607 all of the attributes

which are local to the class being deleted are deleted. In
Figure 287 The class is then unlinked from its parent class in
step 6608. The system checks to determine if the unlink was

successful, and that the data structures which contain the class
list are intact in 6609. If the unlink failed, then operation
stops in 6610. If the unlink succeeded, then operation continues
in 6611 where the class object is actually deleted. In step
6612, the file manager 4140 is instructed to remove the class
object from secondary storage 4110, and the operation completes

in step 6613.



5

10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

192

The deletion of an attribute is shown in Figure 288. To
remove an attribute, the attribute handle must be decoded into
an attribute pointer in step 5860. Step 5861 checks to see if
the attribute pointer obtained from step 5860 is valid. If the
attribute pointer is invalid, the procedure stops in 5862. If
the attribute pointer is valid, the procedure continues in step
5863 by searching the entire subtree for all of the parameters
in all of the subtree instances that are derived from this
attribute. After searching, in step 5864 the system determines
how many parameters were derived from this attribute. 1If there
were parameters derived from this attribute, the operation
proceeds to 5865, where the parameters are undefined. If there
were no parameters derived from this attribute, then the
procedure continues to step 5866. Likewise, after the parameters
have been undefined in 1865, the operation continues to 5866.
In step 5866, the attribute is unlinked from the defining class.
In 5867 the procedure checks to determine if the unlink operation
succeeded. If the unlink failed, then the procedure stops at
5868. If the unlink was successful, then the attribute object
is deleted in 5869 in Figure 289. The file manager 4140 is then
instructed to remove the attribute from secondary storage 4110
in step 5870. The operation is complete in step 5871.

The deletion of an instance is shown in Figure 290. An
instance is deleted from the database by first converting the
instance handle in step 6000 to an instance pointer. The
instance pointer is checked to determine that it is indeed a
valid instance pointer in 6001. If the instance pointer is
invalid then the operation terminates in 6002. If the instance
pointer is valid, then the instance is unlinked from its owning
class in 6003. The instance object is itself deleted in 6004.
The subtree instance counts is then decremented to indicate that
one instance has been deleted from the subtree in 6005. The file
manager 4140 is then instructed to update the secondary storage
4110 to reflect the deletion of the instance in 6006. The
operation is complete in step 6007.

In Figure 291, moving a subtree to a new position in the class
hierarchy is described. 1In step 5800, the move subtree procedure
is called with a class to move, the destination parent class, and
the position among its sibling classes at the destination



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

193

specified. 1In step 5801, the class pointers for the class to be
moved and the destination parent class are obtained. If the test
for all valid pointers in step 5802 fails, step 5804 returns an
error, else test 5805 is made to prevent the class from being
trivially moved to its own parent. Step 5806 insures that the
position among the subclasses of the destination parent class is
within a valid range, with an error returned by step 5804 upon
error. In step 5807, the class hierarchy above both the class
to be moved and the destination class is analyzed to identify the
nearest common ancestor class.

In step 5808 of Figure 292, the common ancestor is tested to
see if it is identical to the class being moved. If it is, given
that a test has already been performed to insure that the class
is not being moved to its parent, then this is determined to be
an attempt to move a class to a subclass of itself, and an error
is returned. All other moves are legal, so the class is unhooked
from its parent class in step 5809 and added to the list of
subclasses for the destination c¢lass in step 5810. The
destination class subtree instance count is incremented by the
number of instances in the moved class in step 5811, and the
subtree count of the original parent class of the moved class is
decremented by the moved class instance count in step 5812. In
step 5813 the permanent image of the knowledge base is updated
through the file manager 4140, with step 5814 returning
successfully to the caller.

Figure 293 describes unhooking the moved class from its
original parent class. In step 5815 the class pointer for the
parent is obtained and used in step 5816 to get a list of
subclasses for the parent class. If the class handle of the
class to be moved is not in the resulting subclass list as tested
in step 5817, the knowledge base is internally inconsistent and
an error is returned to the caller, else the class is deleted
from the parent class subclass list in step 5818 before a
successful return in step 5819.

Figure 294 describes the process of finding the nearest common
ancestor of the class to be moved and the destination class. 1In
step 5820, a temporary class handle is set to the handle of the
class to be moved. Step 5821 gets the parent of the temporary
class, initiating a loop that creates a list of classes in order



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

194

from the class to move to the root. Each class encountered is
added to a list in step 5822, with iteration being terminated if
step 5823 shows that the root has been encountered. If the test
in step 5823 fails, the temporary class handle is set to the
handle of its parent class in step 5824 and iteration continues.

A similar list is created for the destination class in steps
5831 through 5828, moving to Figure 295. In step 5831, a
temporary class handle is set to the handle of the destination
class. Step 5832 gets the parent of the temporary class,
initiating a loop that creates a list of classes in order from
the class to move to the root. Each class encountered is added
to a list in step 5826, with iteration being terminated if step
5827 shows that the root has been encountered. If the test in
step 5827 fails, the temporary class handle is set to the handle
of its parent class in step 5828 and iteration continues.

The final step 5829 iterates through the two resulting lists
until a matching class handle is found. This is the handle of
the nearest common ancestor, which is returned in step 5830.

D. Comparing Instances By Their Attribute Values

A preferred method and apparatus for performing a search or
query is described in more detail in application Serial No.
08/339,481, filed Nov. 10, 1994. When the results of a search
are obtained, the instances (in the illustrated example the
instances are parts) may be displayed as shown in Figure 262A.
The parts may then be compared by their attribute values. The
parts that the user wishes to compare are selected by clicking
on them. When selected, the display of the selected part is
shaded or highlighted, as shown in Figure 262A by the shaded part
displays indicated by reference numerals 4653 - 4662. The parts
4663, 4664, and subsequent parts are not highlighted because they
have not been selected in the illustrated example.

After displaying the 1list of parts that match the search
specification (see Figure 262A), a user will often want to
compare those parts in relation to their shared attribute values.
This can be done by using the compare parts option 4652 from the
actions menu 4651. This command 4652 accesses the part attribute
comparison dialog box 8630 shown in Figure 262B and Figure 263,
where a user can compare the attribute values among all selected
parts 4633, 4634, 4635, and 4636. In a preferred embodiment, a



10

15

20

25

30

WO 96/15501 PCT/US95/15028

195

user must select at least two parts in the search results window
4650 before invoking the compare parts command 4652. An example
of comparing a selected part's attribute values to all other
values is shown in the part attribute comparison dialog box 4630
shown in Figure 262B.

In a preferred embodiment, before the part attribute
comparison dialog box 4630 first appears on the user’s display
as shown in Figure 262B, all attribute values for the selected
parts are evaluated as to whether or not they have the same
value. When the part attribute comparison dialog box 4630
appears on the user’s display screen, the results of this
comparison are indicated in the first column 4637 of the dialog
box 4630. In the illustrated example, an equal operator (=) 632
is displayed in the first column 4637 where all of the attributes
in that row 4643 are equal for all of the parts 4633, 4634, 4635,
and 4636 selected for the compare parts operation. A not equal
(<>) operator 4631 is displayed in the first column 4637 where
all of the attributes in that row 4642 are not equal for all of
the parts selected for the compare parts operation. The second
column 4638 of the dialog lists the attribute titles, and the
remaining columns 4633, 4634, 4635, and 4636 are each allocated
to a single part; that is, one for each part that the user
previously selected from the search results window. Each part
column 4633, 4634, 4635, and 4636 lists its attribute values in
the same order as the other columns.

An example part attribute comparison dialog box 4630 is shown
in Figure 262B. Table 13 describes the regions of the part
attribute comparison dialog box 4630:



10

15

20

25

WO 96/15501 PCT/US95/15028

196

Table 13

Region Description

Initial Evaluation Dpisplays either an equal operator (=)

4637 or a not equal (<>) operator, when the
part attribute comparison dialog box
630 first appears. An equal operator
4632 indicates that all the values for
that specific attribute are the same
for all the selected parts. A not
equal operator 4631 indicates that at
least one value, for all the same
attributes, for all the selected
parts, is not the same.

Attribute Title Displays the name of each attribute in
4638 a separate row.

Part 4633, 4634, Displays the values for each attribute
4635 and 4636 for a particular part. Each attribute

value is an element in a separate row
for the column corresponding to that
part. A part (column) number is at
the top of the column corresponding to
each part.

Referring to Figure 262B and Figure 263, certain command
buttons 4639, 4640 and 4641 are provided in the illustrated
embodiment. A “compare to selected part” command button 4639
causes the system to compares all the attribute values of the
other parts 4633, 4634, and 4636 shown in the dialog box 4630 to
those belonging to a single part 4635 a user has selected (see
Figure 263). The user must select the part 4635 by clicking on
its column number 4635 (labeled "part 4003” in Figure 4060)
before choosing this command 4639. A “clear comparisons” command
button 4640 causes the system, once a comparison has been
conducted using the “compare to selected part” command 4639,
clears the comparison results (at which point the display will
return to a display similar to that shown in Figure 262B). A



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

197

“close” command button 4641 will cause the system to close the
part attribute comparison dialog box or window 4630 and return
to the display window that was active before the compare parts
dialog box 4630 was opened. Table 14 describes the command
buttons 4639, 4640 and 4641 in the part attribute comparison

dialog box 4630.

Table 14

Command Description

Compare to Compares all the attribute values
shown in the dialog box to those

Selected belonging to a single part a user has
selected. The user must select the

Part 4639 part (that is, its column number)
before choosing this command.

Clear Once a comparison has been conducted
using the Compare to Selected Part

Comparisons command, clears the comparison
results.

4640

Close 4641 Closes the dialog box.

Referring to Figure 263, when the compare to selected part
command is issued, the attribute display changes to indicate the
results of the comparison in a way that makes equal and unequal
comparisons immediately apparent to a user in a very convenient
manner. When all of the attribute values for the non-selected
parts 4633, 4634, and 4636 are compared to those for the baseline
part 4635, the cells 4644 and 4645 for attribute values that
match are not shaded, and the cells 4647 for attribute values
that do not match are shaded. For example, the selected or
baseline part 4635 has a value for the attribute "major material”
4648 indicating that the part is made of “steel” 4646. The
attribute value “steel” 4646 for the selected part 4635 is
compared to the values of the other parts for the attribute
“major material” 4648. The first part 4633 has a value of
wsteel” 4644 for this attribute 4648. Because it is the same
value 4644 as the attribute value 4646 for the selected part



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

198

4635, it 1is displayed unshaded, as shown in Figure 263.
Similarly, the second part 4634 also has a value of “steel” 4645
for this attribute 4648. Because it is the same value 4645 as
the attribute value 4646 for the selected part 4635, it is also
displayed unshaded, as shown in Figure 263. The fourth part 636
has a value of “nylon” 4647 for this attribute 4648. Because it
is not the same as or equal to the attribute value 4646 for the
selected part 4635, it is displayed as a shaded cell 4647, as
shown in Figure 263.

A procedure for comparing part attributes may include the

following steps:

1 From the search results window, a user selects two or
more parts that the user wants to compare.

2. From the actions menu, the user chooses compare parts.
The part attribute comparison dialog box 4630 appears,
showing which attribute values for a single attribute are
the same (=) 4632, or if any attribute values for a
single attribute are different (<>) 4631, in the first
column 4637.

3 Referring to Figure 263, to compare the attribute values
for all parts 4633, 4634, and 4636 displayed in the
dialog box 4630 with those for a baseline part 4635, the
user clicks the baseline part column number 4635 and
chooses the compare to selected part command button 4639.
All the attribute values for the non-selected parts 4633,
4634, and 4636 are compared to those for the baseline
part 4635. The cells 4644 and 4645 for attribute values
that match are not shaded; the cells 4647 for attribute
values that do not match are shaded.

4 To clear the color comparisons, the user chooses the
clear comparisons command button 4640.

5 To compare the attribute values for all parts displayed
in the dialog to those for a different part, repeat step
4003. Figure 260 and Figure 261 depict flow charts for
the process of comparing part attributes. In step 4625,
the user selects a number of parts greater than one for
comparison. Of course, the user must select more than
one part, because there would be nothing to compare with
the baseline part if only one part was selected. In step



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

199

4626, the user invokes a compare parts command 4652 from
an action menu 4651.

In step 4627, a window or dialog box is opened and the parts
selected for comparison are displayed. In Figure 262A, the part
attributes are preferably displayed in rows. In a preferred
embodiment, the part attributes are preferably displayed in
columns as shown in Figure 262B. The user then selects in step
4628 a part 4635 to compare. Point A identified with reference
numeral 4629 is a common point in the flow charts of Figures 260
and 261.

Step 4630 is an entry point into an outer program loop, and
step 4631 is an entry point into an inner program loop. In step
4632, the system checks to determine whether the current instance
is the selected baseline instance 4635. If it is, the method
jumps to step 4635 and goes to the next instance or column. If
it is not, the method proceeds to step 4633 where the method
determines whether the corresponding attribute values are the
same (or match) for the current instance and the selected
instance 4635. If the attribute values are equal, the display
of that cell 4644 of the attribute row 4648 is unchanged, and the
flow proceeds to step 4635, where the procedure goes to the next
instance. If the attribute values are not equal, the method goes
to step 4634, and the display of that cell 4647 of the attribute
row 4648 is changed, for example to highlight it, or the
background color is changed, or it is shaded. The flow then
proceeds to step 4635 and goes to the next instance, or column.
In step 4636, a check is made to determine whether this is the
last instance for this attribute, i.e., whether it is the last
column. If not, the process loops to step 4631. 1If it is the
last instance for this attribute, i.e., it is the last column,
the procedure goes on to conduct a comparison of the next
attribute, i.e., it goes to the next row. In step 4637, the
method checks to see if this is the last row. If not, the
process loops back to step 4630. If it is the last row, the
comparison has been completed for all rows and columns, i.e.,
each attribute has been compared for every instance. The system
then exits at step 4638.

E Summary
Using the present invention, in a preferred application



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

200

involving the use of an object oriented database management
system to manage parts information, multiple users may access the
same knowledge base 4123 concurrently for finding parts, editing
parts, and editing the schema. The object oriented database
management system manages concurrency by using “locks.” '

More than one schema editor or developer 4144 can be active
concurrently in the same knowledge base. When a user selects the
class that he or she wants to edit, the schema editor 4144
establishes a lock on that class. As long as the schema editor
4144 has a lock on that class, that class and all of its
subclasses are not accessible for editing in any other schema
editor 144, and may not be available for viewing by the retriever
4130. However, another schema editor 4144 and/or retriever 4130
may concurrently work on any other section of the knowledge base
4123 that does not have a lock.

With schema developer/retriever concurrency, a user can edit
his or her schema 4123 at the same time that the rest of his or
her company is using the object oriented database management
system to retrieve parts information. Anyone attempting to find
or edit parts in the area that is locked, preferably receives a
message indicating that the class is locked. When this message
appears, the first user can either go to a different area of the
knowledge base 4123 or wait until the second user'’s schema editor
4144 releases the lock.

All of the editing functions require an application to become
a lock holder and then request a form of write lock before the
edit will succeed.

F. Software Functions

The enumeration, pmx_lockType, is used to specify the 1lock
types that can be requested and released for classes in the
knowledge base.

typedef enum {
PMX ERROR_LOCKTYPE =
PMX_NO_LOCK -
PMX_CLASS_S_LOCK =
PMX_TREE_S_LOCK -
PMX_TREE_U_LOCK -
PMX_TREE_X_LOCK -

} pmx_lockType;

- -

~

0 WK o



10

15

20

25

30

35

40

45

WO 96/15501 PCT/US95/15028

201

The enumeration, pmx_lockMode, is used to describe the
lock state of a class in the knowledge base. Any given
class is in some lock state which is defined by the locks
present on the class, either explicitly on the class or by
virtue of the class being in a subtree which is locked..
typedef enum {
PMX_LOCKMODE_ERROR =
PMX_ LOCKMODE_NONE
PMX_ LOCKMODE_SHARE =
PMX LOCKMODE_UPDATE
PMX_LOCKMODE_EXCLUSIVE

} pmx_lockMode =

- ~

-

-~

s W~ o

The pmx lockDescriptor structure returned by the API
function pmx_getLockDescriptor to return information about
the locks held by the specified 1lock holder at the
specified class. The specified class and lock holder are
returned along with number of times each type of lock has
been acquired.

typedef struct ({

pmx_classHandle classHandle;
pmx_lockHolderHandle lockHolderHandle;

long classShareLockCount;
long treeShareLockCount;
long treeUpdateLockCount ;
long treeExclusiveLockCount;

} pmx_lockDescriptor;

The following API functions are preferably provided for

concurrency control:

pmx_startLockHolder
pmx_endLockHolder

pmx_regquestLock
pmx_releaseLock
pmx_releaseAlllLocks
pmx_releaseAllLocksOfType

pmx_freeLockDescriptor
pmx_getLockDescriptor
pmx_getLockMode



10

15

20

25

30

35

40

45

50

WO 96/15501 PCT/US95/15028

202

pmx_equallLockHolderHandles
pmx_isNullLockHolderHandle
pmx_getNullLockHolderHandle

These functions are used to start and end being a lock
holder, to request and release locks, and to retrieve
information about the lock status of classes.

Lock holders, which are identified by lock holder handles,
are started and ended with pmx startLockHolder() and
pmx_endLockHolder () .

To request a lock, use pmx_requestLock. To release a lock
or group of locks, use pmx_releaseLock (),
pmx_releaseAllLocks (), or pmx_releaseAllLocksOfType() .

To retrieve information about the locks that have been
acquired on classes, use pmx _getLockMode () or
pmx_getLockDescriptor ().

A description of these functions follows:

whichDB The handle of an open knowledge base.
lockHolder The handle of a lock holder which has been
started.
thisClass The class of the class for which lock
information

is desired.

Description

This function returns the count of the locks of each type
which

have been acquired for the given lock holder and class. Only

the
locks which have been requested for the given class are
reported.
A class may be influenced by a tree lock on an ancestor, but

that
condition is not reported.

The application should free the descriptor when it is

finished
with it. The application should also take care not to alter

or
destroy any of the data in the descriptor since the

pmx_freeLockDescriptor() function expects it to be



10

15

20

25

30

35

40

45

50

WO 96/15501 PCT/US95/15028

203
uncorrupted.
Return Value
1. pmx_endLockHolder
Purpose
Terminate a lock holder that has been started.
Syntax

cd_boolean

pmx_endLockHolder (
pmx_dbHandle whichDBR,
pmx_lockHolderHandle lockHolder );

Parameters
whichDB The handle of an open knowledge base.
lockHolder The handle of a lock holder which has been
started.
Description

The lock holder is ended. Any locks that were requested with

the

lock holder handle are automatically released. The function
will

fail if the lock holder handle is invalid (i.e., it has never

been
started) .

Return Value
Upon success, returns CD_TRUE.

Upon failure, returns CD_FALSE.

Errors
PMX ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX_ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.

2. pmx_getLockDescriptor

Purpose
Get the description of the locks held at the given class.

Syntax



10

15

20

25

WO 96/15501 PCT/US95/15028

204

pmx_lockDescriptor CD_FAR *
pmx_getLockDescriptor (

pmx_dbHandle whichDB,
pmx_lockHolderHandle lockHolder,
pmx_classHandle thisClass ) ;

Parameters Upon success, returns a pointer to the descriptor.
Upon failure, returns a NULL pointer.

Errors
PMX ERRORBADCLASSHANDLE
The class handle is invalid.

PMX ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.



10

15

20

25

30

35

40

45

50

WO 96/15501

PCT/US95/15028

205

3. pmx_getLockMode

Purpose

Return the lock mode of a given class.

Syntax
pmx_lockMode

pmx_getLockMode (

pmx_dbHandle whichDB,
pmx_lockHolderHandle lockHolder,
pmx_classHandle thisClass,
cd_boolean self );
Parameters
whichDB The handle of an open knowledge base.
lockHolder The handle of a lock holder which has been
started.
thisClass The handle of the class for which the lock
mode is
desired.
self Specifies whether the lock mode is desired
with
respect to the current application (self)
or all
other applications.
Description

This function returns the lock mode of a given class. The
lock mode is the effective lock on the class caused by
locks at the class and at ancestors of the class. The

application has the choice of asking for the mode based on
locks it has acquired or based on 1locks held by other
applications. When the self argument is CD_TRUE, then the
lock mode result is based on the locks acquired by the
current application and lock holder. Otherwise, when self

is CD_FALSE,
applications

Return Value
Upon success,

Upon failure,

Errors

then lock mode result is based on all other
and lock holders.

returns the lock mode.

returns PMX_ LOCKMODE_ERROR.



10

15

20

25

30

35

40

45

50

WO 96/15501 PCT/US95/15028

206

PMX ERRORBADBOOLEANVALUE
A boolean value is not CD_TRUE or CD_FALSE.

PMX_ERRORBADCLASSHANDLE
The class handle is invalid.

PMX ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX_ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.

4. pmx releaseAllLocks

Purpose

Releases all the locks that have been acquired for a class
and for

all of its descendants.

Syntax
cd_boolean
pmx_releaseAllLocks (

pmx_dbHandle whichDB,
pmx_lockHolderHandle lockHolder,
pmx_classHandle thisClass ) ;
Parameters
whichDB The handle of an open knowledge base.
lockHolder The handle of a lock holder which has been
started.
thisClass The handle of the class at the root of the
subtree

for which the locks are to be released.

Description
This function releases all the locks of all types held on all

classes in the subtree rooted by the given class. Only the

locks
for the given lock holder are released. An error does not

occur
if no locks have been acquired.

Return Value
Upon success, returns CD_TRUE.



10

15

20

25

30

35

40

45

50

WO 96/15501 PCT/US95/15028

207

Upon failure, returns CD_FALSE.

Errors
PMX_ERRORBADCLASSHANDLE
The class handle is invalid.

PMX_ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX_ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.

5. pmx~re1eaaeAllLocksOnype

Purpose

Releases all the locks of a given type held on all classes
in the

subtree rooted by the given class.

Syntax
cd_boolean
pmx_releaseAllLocksOnype(

pmx_dbHandle whichDB,
pmx_lockHolderHandle lockHolder,
pmx_classHandle thisClass,
pmx_lockType lockType );
Parameters '
whichDB The handle of an open knowledge base.
lockHolder The handle of a lock holder which has been
started.
thisClass The handle of the class at the root of the
subtree
for which the locks are to be released.
lockType The type of lock which is to be released.
Description
This function releases all the locks of the specified type
held on

all classes in the subtree rooted by the given class. Only

the
locks for the given lock holder are released. An error does



10

15

20

25

30

35

40

45

50

WO 96/15501 PCT/US95/15028

208

not
occur if no locks have been acquired.

Return Value
Upon success, returns CD_TRUE.

Upon failure, returns CD_FALSE.

Errors
PMX ERRORBADCLASSHANDLE
The class handle is invalid.

PMX ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX_ ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.

PMX ERRORBADLOCKTYPE
The lock type is invalid.

6. pmx releaselock

Purpose

Releases the lock of the given type that has been acquired
on the

given class.

Syntax
cd_boolean
pmx_releaseLock (

pmx_dbHandle whichDB,
pmx_lockHolderHandle 1lockHolder,
pmx_classHandle thisClass,
pmx_lockType lockType ) ;
Parameters
whichDB The handle of an open knowledge base.
lockHolder The handle of a lock holder which has been
started.
thisClass The handle of the class for which the lock

is to
be released.



10

15

20

25

30

35

40

45

WO 96/15501 PCT/US95/15028

209

lockType The type of lock which is to be released.

Description
This function releases one lock of the given type for the
given class and lock holder. An application can acquire
multiple locks of the same type for a single class, so the
lock must be released as many times as it is requested.
Locks can be released en masse with pmx_releaseAllLocks.

The function fails if the lock described by the lock holder,

class
handle, and lock type has not been previously acquired.

Return Value
Upon success, returns CD_TRUE.

Upon failure, returns CD_TRUE.

Errors
PMX_ERRORBADCLASSHANDLE
The class handle is invalid.

PMX_ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX_ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.

PMX_ERRORBADLOCKTYPE
The lock type is invalid.

PMX_ERRORNOSUCHLOCK
Attempt to release a lock which is not present.

7. pmx_requestLock

Purpose
Request that a lock of the given type be acquired on the

given class.

Syntax
cd_boolean
pmx_requestLock (

pmx_dbHandle whichDB,
pmx_lockHolderHandle lockHolder,
pmx_classHandle thisClass,

pmx_lockType lockType );



10

15

20

25

30

35

40

45

50

WO 96/15501
Parameters
whichDB
lockHolder
thisClass
is
lockType
Description

PCT/US95/15028

210

The handle of an open knowledge base.

The handle of a lock holder which has been
started.

The handle of the class for which a lock
requested.

The type of lock which is requested.

This function requests a lock of the given type for the given
class and lock holder. The lock is acquired if the request

does

not conflict with the locks held by other applications and

lock
holders.

Return Value

Upon success, returns CD_TRUE.

Upon failure, returns CD_FALSE.

Errors

PMX_ERRORBADCLASSHANDLE
The class handle is invalid.

PMX ERRORBADDBHANDLE
The knowledge base handle is invalid.

PMX_ERRORBADLOCKHOLDERHANDLE
The lock holder handle is invalid.

PMX_ ERRORBADLOCKTYPE
The lock type is invalid.

PMX ERRORCANNOTGRANTLOCK
The requested lock cannot be granted.

8. pmx startLockHolder

Purpose

Start being a new lock holder.



10

15

20

25

30

35

40

45

WO 96/15501 PCT/US95/15028

211

Syntax
pmx_lockHolderHandle
pmx_startLockHolder (
pmx_dbHandle whichDB ) ;

Parameters
whichDB The handle of an open knowledge base.

Description
This function creates a new lock holder, identified by a lock

holder handle. The new lock holder may be used to request

locks.
Locks from one lock holder conflict with another lock holder,

even
for the same application.

Return Value
Upon success, returns a new lock holder handle.

Upon failure, returns pmx_NullLockHolder, a NULL lock holder
handle.

Errors
PMX_ERRORBADDBHANDLE
The knowledge base handle is invalid.

9. pmx_freeLockDescriptor

Purpose
Free a pmx_lockDescriptor.

Syntax
cd_boolean
pmx_freeLockDescriptor (
pmx_lockDescriptor * thisDescriptor );

Parameters
thisDescriptor The lock descriptor to be freed.

Description
This function frees the memory associated with a lock

descriptor.
No further reference to the descriptor may be made after

calling



10

15

20

25

30

35

40

45

50

WO 96/15501 PCT/US95/15028

212
this function.

Return Value
Upon success, returns CD_TRUE.
Upon failure, returns CD FALSE.

Error
PMX ERRORNULLPOINTER
A NULL pointer was passed in place of a required input
argument.

10. pmx_equalLockHolderHandles

Purpose
Compare two lock holder handles for equality.

Syntax
cd_boolean
pmx_equalLockHolderHandles (
pmx_lockHolderHandle handlel,
pmx_lockHolderHandle handle2 );

Return Value
If the two handles are equal, returns CD_TRUE.
If not equal, returns CD FALSE.

11. pmx _getNullLockHolderHandle

Purpose
Get a NULL lock holder handle.

Syntax
pmx_lockHolderHandle
pmx_getNullLockHolderHandle () ;

Return Value
Returns a NULL lock holder handle.

12. pmx isNullLockHolderHandle

Purpose
Check if a lock holder handle is the NULL handle.

Syntax
cd_booclean
pmx_isNullLockHolderHandle (



10

15

WO 96/15501 PCT/US95/15028

213

pmx_lockHolderHandle handle );

Return Value
If the specified handle is the NULL handle, returns CD_TRUE.

Upon failure, returns CD_FALSE.

The above description is intended to be only an example of the
invention, setting forth a presently preferred embodiment.
Modifications and alternative embodiments will be apparent to
those skilled in the art after having the benefit of this
disclosure. The scope of the invention should not be limited to
the particular example described herein. Instead, the scope of
the invention is intended to be defined by the claims.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

CLAIMS

214

WHAT IS CLAIMED IS:

A database management system, comprising:

an object oriented representation of information describing

the characteristics of existing instances organized in a
parent-child/class-subclass structure, wherein the
internal representation of an instance is dependent upon
information that is locally available from a class to
which that instance belongs plus inherited attributes

from a parent class;

means for querying said object oriented representation in a

guided and iterative manner;

means for displaying search results; and,
means for selecting particular information pertaining to the

2.

characteristics which are to be displayed by the means

for displaying.

The database management system according to claim 1,

wherein:
at least one class in said object oriented representation of

information is represented as a class object having a
handle, said class object having a parent handle
identifying the parent class of said class object, said
class object having a subclass list, said subclass list
comprising an array of class handles identifying the
subclasses of said class object, said class object
including an attribute list comprising a list of handles
which may be used to identify attributes of said class
object, said class object including a subtree instance
count, said subtree instance count comprising a numeric
indication of the total number of instances that belong
to said class object and that are present in all

descendants of said class object.



10

15

20

25

30

35

WO 96/15501 PCT/US95/15028

3.
wherein

215

The database management system according to claim 2,

at least one class in said object oriented representation of

information is represented as a second class object
having a handle, said second class object having a parent
handle identifying the parent class of said second class
object, said second class object having a local instance
list, said local instance list comprising an array of
handles which can be used to identify the instances that
belong to said second class object, said second class
object including an attribute list comprising a list of
handles which may be used to identify attributes of said
second class object, said second class object including
a subtree instance count, said subtree instance count
comprising a numeric indication of the total number of
instances that belong to said second class object and
that are present in all descendants of said class object.

The database management system according to claim 3,

wherein:

said

5.

means for displaying search results includes means for
displaying a numeric value corresponding to said subtree
instance count providing a numeric indication of the
total number of instances that are present in a class
that a user is navigating in a search and all descendants

of said class.

The database management system according to claim 1,

wherein:

said

instances are represented as an owning class and a list
of information with no additional storage allocated for

undefined characteristics.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

6.
further

216

The database management system according to claim 3,

comprising:

legacy means to facilitate organization of existing data into

a hierarchical, object-oriented schema having an object
oriented representation of information describing the
characteristics of existing instances organized in a
parent-child/class-subclass structure.

The database management system according to claim 6,

wherein:

said

legacy means 1is operative to standardize descriptions of
instances in content and format as a function of the type
of instance and having variable field length descriptions
that are not subject to arbitrary predetermined field
length limitations.

The database management system according to claim 6,

wherein:

said

9.

legacy means includes a rule system for unit measure
conversion, providing that units of first user specified
families of parts are automatically converted to a
predetermined unit of measure, and providing that units
of second user sgspecified families of parts are not
automatically converted to another unit of measure.

The database management system according to claim 6,

wherein:

said

10.
further

legacy means includes means for transforming existing
textual information about an instance into parametric
values for said instance within a schema, and means for
automatically estimating the class to which said instance

should placed in a schema.

The database management system according to claim 3,

comprising:

means for performing parametric attribute searches on a

hierarchical, object-oriented schema.



10

WO 96/15501 PCT/US95/15028

217

11. The database management system according to claim 3,
further comprising:

means for searching said object oriented representation of

information to retrieve all instances that exactly

correspond to a predetermined set of search criteria, as

well as instances that closely match said predetermined

set of search criteria.

12. The database management system according to claim 3,
further comprising:
means for searching said object oriented representation of
information to retrieve all instances that exactly
correspond to a predetermined set of search criteria, as
well as instances that correspond to a subset of said
predetermined set of search criteria.

13. The database management system according to claim 3,
further comprising:

means for searching said object oriented representation of

information to retrieve all instances that exactly

correspond to a predetermined set of search criteria, as

well as instances that correspond to a subset of said

predetermined set of search criteria.



WO 96/15501 PCT/US95/15028

218

14. A network having a client/server architecture,
comprising:

a knowledge Dbase server, the knowledge base server
including a dynamic class manager, a connection
manager, a gquery manager, a handle manager, a units
manager, a database manager, and a file manager;

an object oriented hierarchical schema representing classes
of instances as objects arranged in a hierarchy, said
schema being fully connected with each class object
including information as to any class object that is
a parent in the hierarchy, and class objects that are
descendants in the hierarchy, said class objects being
managed by said dynamic class manager; and,

an application programming interface to permit a client
application to access the object oriented hierarchical

schema.

15. The network according to claim 14, wherein:
at least one class in said object oriented hierarchical
schema is represented as a class object having a
handle, said class object having a parent handle
identifying the parent class of said class object,
said class object having a subclass 1list, said
subclass list comprising an array of class handles
identifying the subclasses of said class object, said
class object including an attribute list comprising a
list of handles which may be used to identify
attributes of said class object, said class object
including a subtree instance count, said subtree
instance count comprising a numeric indication of the
total number of instances that belong to said class
object and that are present in all descendants of said

class object.



WO 96/15501 PCT/US95/15028

219

16. The network according to claim 15, wherein:

at least one class in said object oriented representation
of information is represented as a second class object
having a handle, said second class object having a
parent handle identifying the parent class of said
second class object, said second class object having
a local instance 1list, said 1local instance list
comprising an array of handles which can be used to
identify the instances that belong to said second
class object, said second class object including an
attribute list comprising a list of handles which may
be used to identify attributes of said second class
object, said second class object including a subtree
instance count, said subtree instance count comprising
a numeric indication of the total number of instances
that belong to said second class object and that are
present in all descendants of said class object.

17. The network according to claim 16, further comprising:
an object oriented lock manager, said object oriented lock
manager being operable to allow modification of a
first portion of said object oriented hierarchical
schema by one client application while a plurality of
other client applications are navigating or searching
a second portion of said object oriented hierarchical

schema.



10

15

20

25

30

35

40

18.

WO 96/15501 PCT/US95/15028

220

A parts management system, comprising:

a
a

processor;
display having a screen, the display being coupled to the

processor;

mouse coupled to the processor;
knowledge base accessible by the processor, the knowledge

base having descriptive information for a plurality of
parts corresponding to products of an organization,
the knowledge base comprising a hierarchical schema of
parts information representing classes of instances,
the hierarchical schema of parts information having a
root class, the hierarchical schema of parts
information having a plurality of levels of descendant
classes, the root class being a parent of a plurality
of first level descendent classes, at least some of
the first level descendant classes being first level
parent classes of respective second level descendent
classes, at least some of the second level descendant
classes being second 1level parent classes of
respective third level descendent classes, the classes
and instances having a plurality of attributes,
wherein a class at a level "n" in the hierarchical
schema of parts information inherits attributes from
its parent class at a level "n-1" in the hierarchical

schema;

means for displaying a graphical tree hierarchy in a tree

means

display area of the screen, the graphical tree
hierarchy representing classes in a currently selected
portion of the  hierarchical schema of parts
information, said classes having individually
associated icons for individual classes displayed in
the tree display area of the screen;

for navigating the graphical tree hierarchy by
clicking with the mouse on selected locations in the
tree display area representing a portion of the
hierarchical schema of parts information; and,

means for displaying attributes in an attribute display

area of the screen, the attribute display area being

distinct from the tree display area, the means for



10

WO 96/15501 PCT/US95/15028

221

displaying attributes being coordinated with the means
for displaying classes such that the attributes
displayed in the attribute display area are the
corresponding attributes for a currently selected
location in the hierarchical schema of parts

information.



10

15

20

WO 96/15501 PCT/US95/15028

19.

222

The parts management system according to claim 18, wherein:
at least one class in said object oriented hierarchical

schema is represented as a class object having a
handle, said class object having a parent handle
identifying the parent class of said class object,
said class object having a subclass 1list, said
subclass list comprising an array of class handles
identifying the subclasses of said class object, said
class object including an attribute list comprising a
list of handles which may be used to identify
attributes of said class object, said class object
including a subtree instance count, said subtree
instance count comprising a numeric indication of the
total number of instances that belong to said class
object and that are present in all descendants of said

class object.



WO 96/15501 PCT/US95/15028

223

20. The parts management system according to claim 19, wherein:

at least one class in said object oriented representation

of information is represented as a second class object

having a handle, said second class object having a

parent handle identifying the parent class of said

second class object, said second class object having

a local instance 1list, said 1local instance 1list

comprising an array of handles which can be used to

identify the instances that belong to said second

class object, said second class object including an

attribute list comprising a list of handles which may

be used to identify attributes of said second class

object, said second class object including a subtree

instance count, said subtree instance count comprising

a numeric indication of the total number of instances

that belong to said second class object and that are
present in all descendants of said class object.



10

15

20

25

30

35

40

WO 96/15501 PCT/US95/15028

224

21. The parts management system according to claim 20, further
comprising:
means for displaying a numeric value in a parts found
display area corresponding to a subtree instance count
‘representing the total number of instances that belong
to a selected class and that are present in all
descendants of said class when navigating the
graphical tree hierarchy by clicking with the mouse on
selected locations in the tree display area.

22. An object oriented database management system 1in a
client/server architecture, comprising:

a knowledge base client;

a knowledge base server, the knowledge base server
including a dynamic class manager, a connection
manager, a query manager, a handle manager, a units
manager, a database manager, and a file manager;

an object oriented hierarchical database structure
including classes, where each class is represented by
a class object data structure which includes
hierarchical location identifying information for said
class, said class object data structures being managed
by said dynamic class manager;

an object oriented lock manager for controlling access by
a plurality of client applications, said object
oriented lock manager providing concurrency control
using class share locks, tree update locks, and tree
exclusive locks, and not using instance locks; and,

a lock holder table, the lock holder table being used by
the lock manager to control concurrent access by said
client applications by granting appropriate locks to
a client application when the requested lock does not
conflict with an existing lock in the lock holder

table.



WO 96/15501 PCT/US95/15028

. PARTS MANAGEMENT PROCESS

START
: ~
Fig. 1 W O\ EX18TING
] Pravesy ,
Detme Ports -
Reourement Updats BOM
] =
Lacess Petonias
Sovrenis} - Gat
« New Docs
« Fraid Aleria NO . ;ﬂ
- Asey Drwg Updatae _— L] ml
U ~
e Tres
:gr? ivw;Mﬂ:N
. . Upsews
Ocher It-&'.-n'-
- Seurce G Caruly * Cosus
-an Lofon e
- Ferecast e |
- Wershouse -
. Accurscy Change Comtrel
a 1 M_IGGBIM
- Pnong
- Marg:n Anslyss
- Comneubity NO
« Custamer impect
-mu@q
:m‘wm YES )
coGs Reisssed
- *
- Speres
« Fodure Ansiyans Run New MAP-
:Mu1umq G tnout
I;ou-/m”,
. Orvvcuums
L_ ;l’m_
e : m-n:
[")
’ Speres iwentory Pay \\
| acceer /g REJECT




WO 96/15501

115

107

PCT/US95/15028

_ 02

nowledge Base
erver Daemon

License Manager
Server Daemon

Registry Knowiledge Base
Server Daemon Server Daemon

—2-104

1o’

108’

105
109

Fig. 2
2/ 277



WO 96/15501

PCT/US95/15028
135 | 114
116\
-
——— /——- l4¢.
License
130 Manager
133 144
/ /‘-—_
IQ |Legacy | Remiever |Schema Editor 141
APl Regisory Server J
Rl Knowledge Base Client
Knowledge Base Servcr* 135 139
13— -

ion M )
Gmnecuo; anager DataBase Manager

Query Manager Dynamic %&mga

S ————————r

134 138
1 37_-/< Handle Manager >
chgacy Mana@J—MS
l

1
—v— 40
File Manager .




WO 96/15501

User Logs Into
Retriever

PCT/US95/15028

Name and Password are sent to Registry Server

be-151

No

validated by Regist

152

Retriever asks for appropriate software license from

License Manager

153

cence Manager

License to Run

Retriever displays list of knowledge bases from

Registry for which user has access rights

|z 155

Y

User selects knowledge base to open

L7 156

L'

Retriever sends open knowiedge base request to
Knowidege Base Server

| 157

Fig. 4A



WO 96/15501 PCT/US95/15028

Knowledge base is
read-only and write

Licenses not
granted

b Lo
Knowledge Base Server returns connection and knowlege 161

base handle to Retriever

Fig. 4B

5277



WO 96/15501 PCT/US95/15028

', “7 e At ea sav . e eaes wor
I Dk,
/N
1o,
A
[y

[27F



WO 96/15501 PCT/US95/15028

172 194 76 193

14

I Pasta -t
A Dty || E., || Weksy:

7 ;
179 el
/80

18



WO 96/15501 PCT/US95/15028

y

Highlight class and reset }-72—206

current query to seiected
class
208
~~
Set corresponding query L . 207
. ? Do inherited attributes have
seiectors for inherited

. attributes

IGet local attributes for class
and add to attribute window

pdate p 210 (see
count and Fig.8)

display

21
Retumn control 10 user

Fig. 7

¢/277



WO 96/15501 PCT/US95/15028

cou!
unt 210
display

Get query resultcountand |, __ 212
dispiay as Parts Found:

217

/l/

Activate Make button Activate Edit button

Activate Display Button €

e )
K Return control to user T &—211

_/

Fig. 8

327+



WO 96/15501 PCT/US95/15028

User Opens Class (double 219
click on closed folder)

)I/ 220
Dispiay open folder and class
name and get list of

—Yes 5]

Display document page ">~
icon

Dispiay closed foider and 223
class name

list to display?

205 (see Fig. 7)

Fig. 9

n[274



WO 96/15501

PCT/US95/15028

53

43 &

:

!

g
ik
5

g

L3
1

Pae e Dty Qe

l[n—l- TN NIETE N

/_—/.

g.

/0




WO 96/15501 PCT/US95/15028

User closes open class 225
(double click on open
folder)

— 226
Remove all lines for

subtree from dispiay

. — 227
Display closed folder and
class name

Return control to user

Fig. 11

12 /277



WO 96/15501 PCT/US95/15028

s ,
' User Sciects Text 2 S ©
\ L Criterion

. 25!

Accept text input in text
box or dialog

Input confirmed?

Add or replace text
253 7 L seiector in current query

252

131737



WO 96/15501 PCT/US95/15028

7% 23 43

e || €. Jl-tsts. J[ Setsh || Com |

N3



WO 96/15501 PCT/US95/15028

User selects numeric 255
criterion

No

values defined for
meric attribul

Present table of standard
258 values and accept
selection
ed Accept range of numbers f-/l.f——’57
USET requested custo and unit of measure in
value? dialog
259

J

261 "_J Add or replace numeric

| seiector in current query

210
display

A/[Retum control to uaé
262 ' J\

Fig. 14

AS| 3%



WO 96/15501 PCT/US95/15028

265 —d i®

14[ 277



WO 96/15501 PCT/US95/15028

{
(12 S 247

file  Qpuen

e T — ——
[ Diewiew, | Ed.., | -tke... Gl Sttt || Ciom | .80
L i pd y

)
(79

80 17| I

1/ 277



WO 96/15501 PCT/US95/15028

User selects boolean 00
criterion

y

Present True and False
choices and accept input [ —— 301

302

Input confirmed?

303 —=—| Add or replace boolean
selector in current query

210

Fig. 17

1277



WO 96/15501

PCT/US95/15028

= — — ey ___*“.__,n_“ e
| Dk, 1 £ Yt [[swsr ][ Oom Y[~ ar J{ sutociey |

7

179 (80

|70

19/277




WO 96/15501

(User selects enumerated 305

Present list of standard 106
values and accept 4
selections

307
No

Yes

Add or replace
308 =—Z=__| enumerated seiector in
current query

210

” L——[Remm control to user}_—

/271

PCT/US95/15028

Fig. 19



WO 96/15501 PCT/US95/15028

;;{En: Qpughs Jeois
P

A eTenaAn TasA A aaaa 4408 0Ae- S0s: bebene

7> Dimphey.

4] 277



WO 96/15501 PCT/US95/15028

358 |

I[l:;v i e jla-»...j
J
' (e3
(79 (BZ (70

/80

22/277



WO 96/15501 PCT/US95/15028

User selects attribute
order (single click on an 310

No
i
Set the seiected display == 312
313 Unset the seiected 1
2| A | order to the highest order
display currently set + |

y

For each currently set
314 dispiay order > selected
- display order, subtract 1
and reset

. y
315 _L(Rcmm control 10 user ,

Fig. 22

23/237



WO 96/15501

PCT/US95/15028

User clicks on Display 316
button

S/

317 (See
Fig. 25)

Do query and
obtain query
resuit

Display search results
window

y

For each attribute

specified in the display +—7___ 319
order, create a display
column in the requested
order

y

For each pan in query
result, display attribute [ ——320

values in display columns

!

oy 318

-
Return control to uscrj_’—— 321
.

Fig. 23
24 113+



WO 96/15501 PCT/US95/15028

213

Bearch Results

21t



WO 96/15501

35—

PCT/US95/15028

Do query 322
23
query local? 0
Make list of Make listof 324
parts in class parts in subtree

|

J

remain in Jist?

Get next part in
list

329

b 330
Add part to
query result
331
Return query

result and count

26[211F

Fig. 25



WO 96/15501

User clicks on Pant Info
button on Search Results
window

root to the owning class
of the part in outline
format

For each attribute with a
defined parameter,

name and value in a
scrolled list

Displayclasspathfrom | —

PCT/US95/15028

332

333

display the attribute | 2— 334

[ Return control to u.m}’_'—' 335

Fig. 26

23277



WO 96/15501 PCT/US95/15028

354

| 237



WO 96/15501

User selects a user action
' from list on Search 365
Resuits window
o
Look up arguments t0 ey _ 366
user action in user action
definitions

y

Format a command line
with parameters filled in
from parn attributes
specified in user action
definitions

y

Execute a iocai process |

command line and block
untii process exits

"L 367

using the formatted —a— 368

}
[ Return control to user}—_l—— 369

29/277

PCT/US95/15028

Fig. 28



WO 96/15501 PCT/US95/15028

355

s ST it Unfitled) e
File Edit Ffind Charecter Psragraph Docu
Part Number 0159339 *

ment__Help

3)277



WO 96/15501 PCT/US95/15028

User selects Apply button
from Search Results 370
window
.

Create a new query with
selected parts owning
class as the query class

p—"Z 371

For each defined attribute 372
for the part. addan  |—2—"

appropniate attribute

selector to the query

\

Display the Part Search =7 373
window with the class
outline open to the class
of the current query

v

Display the attribute w—l-—)"
selectors of the current
query

Update part
count and
display

75
Return control to user

Fig. 30

34] 237



WO 96/15501 PCT/US95/15028

{70

ndow Heip

" ——— . W




WO 96/15501

PCT/US95/15028

User selects Edit

get query results

|

Display query

spreadsheet

v

Doqueryand |__ 377

results in bt 378

Handle part
move, deiete,
and attribute edit

requests

Fig. 32

33/277



WO 96/15501

382

383

User clicks on Sort

button on Search Resuits

window

PCT/US95/15028

380

Display sort dialog
allowing seiection of
optionai ascending or

descending sort for all
displayed attributes

t— 381

Input cancelled

No

Yes

Sort query result
according to requested
compound sort key

y

384 T

Redispiay attributes for
parts in query result in
Search Resuits window

385 —'l_{Remm control to user \’

J

|

Fig. 33

24/ 537



WO 96/15501 PCT/US95/15028

395

36

35/ 277



WO 96/15501

1012

User selects
attribute and
parts to edit

from Edit Pans

window

1013
Accept /

parameter input

j

1015 —=____

there rr]ore parts to edi

1014

Get next
selected part

Y

1016 —___|

| Set parameter to
user input value

J

1017 — Update part

display with
edited values

|

1018
Return control to user

3¢/

277

PCT/US95/15028

Fig. 35



WO 96/15501 PCT/US95/15028

= anns‘Edrlmr

1 Past Noambnan | - | i M atwial| Hoad Siyie] Hesd Reswss| - Langth
002713981 SCREW {Stee JPan  Ciess .375iech
0027159R1 SCREW.PAN HD CR 86-32X 3/8 ‘Pan

3:]002T153R2 SCREW.PAN HO CR REC 86.32/8 Pan
_4:]0027835R1 SCREW. PAN HD CR RECMACHG&-32X1/4 Pen ..
o6 ]0153240  SCREW.PAN HD CR REC MACH 86-32X 5/16 Pan
= 6]0199333  SCREW.MACH PAN HD CR 8§-J2UNC X 1/2.PHC Pan
7 10153344 SCREWPAN HD CR REC MACH 8C-22 UNCXS/AAMLE ... Pan
8 SCREW.MACH PAN HD CR 86-32UNC X 1.0,PHC Pan

37/23%



WO 96/15501 PCT/US95/15028

Sl ujo Sl stesial} Hoad

Pan
Pan
Pan

Pan
s Pan
. o ' PHC ‘Pan
015834¢  SCREW.PAN HD CR REC MACH 85-32 UNC X 5/8 N LB _ iPan
b {0135376  SCREW MACH PAN HD CR 36-32UNC X 1.0.PHC N, :Pan
9 {0159378  SCREW.PAN HD CR REC MACH 86-32 UNCX 1 1/4

7 ( 7 7 - 7
1029 1028 (027 (026 /o3 703/



WO 96/15501 PCT/US95/15028

User selects

pants io delete

from Edit Pants
window and

clicks Delcte
button

1021

1022

No
there more pans tod

Yes

Get next
selected pan and
delete from P \_L— 1023
query resuit and
knowiedge base

Redisplay
updated query " \_~ 1024
result

Return control to
user 1025

Fig. 38

39/277



WO 96/15501

1032

PCT/US95/15028

User navigates
class hierarchy
on Edit Pants
window, selects
destination class

Are there more pans t0
move?

Get next
selected pan

1035 —=

Get list of

parameters that
will be deleted
by move,

Set part class to
destination class
and set
parameters for
missing
attributes to
undefined

Y

|_==1040

1033

1034

Delete moved

1041 =2— part from query

resuits

Redisplay query
result

y

Fig. 39

Retumn control 0 user

1042

1043

4 [274



14

WO 96/15501 PCT/US95/15028

Pa—ﬂ*s-t;kar .

el 9933y SCREW.MACH PAN HD CR 85-32UNC X 172 PHC

~ SCREW.PAN HD CR AEC MACH 86
SCREW.PAN HD CR 86-2X 3/8
SCREW.PAN HD CR REC 56-32X3/8
SCREW. PAN HD CR REC MACH §-32X 14 ... Pan
SCREW PAN HD CR REC MACH 86-32 X 5716

0158344 _ }
£ 8 10153376 SCREW MACH PAN HD CR 86-32UNC X 1.0.PHC
o § - 10159328 SCREW . PAN HD CR AEC MACH 86- T2 UNC X 1 1/4

SCREW PAN HD CR REC MACH 86-22 UNC X S/8 1N LG : e HOBE &

(5'\\ (Af@

_;(zo:s

o1 i

B u %

/

joad

/

io2g 037 (026 {030 {03}

At/ 237



PCT/US95/15028

WO 96/15501

608—

I1S17 I8jawieled ean

808— 1unon aduejsu| saliqng
108-. 9poJ sse|)
908 — alpueH A
G08— SweN jeusaixq o) 1id
08 1S 8duejsu| |20
€08 I1S17 sInquny
¢08— IS ssejoqnsg
1087 9|pueH jualed

008

L 9inBy4

u2(27+



PCT/US95/15028

WO 96/15501

¢ ainbyy

9281 o
5281 0
ves+ 0
ez8-f o0
2280
e 3
T te ~
618 9 <
818~ 100l vi8 =t () azis Em::o_
Ll8= 6l e18—t (21) azis xep|
918-f 22 ¢l8—[eiep is}i ay) o} Jajujod] *»_ "
c18-f 5 7 °
A eeqisy] 199(q0 1s17 ayL

18



PCT/US95/15028

WO 96/15501

\,mw\.—

ejep aingne

Reny Bup)g

hea™

ejep ainqlne

Buis

Ke8™

SlpueH Ajjwedijun

FE8T

eiep ainqye

JIETTTTY)

£v ainby4

pS &

elep ainqum

IS|7 1919weled elap =<3

ueajoog

{Pa108101d St g

S8

SajpueH iojesawnug jo isj|

hES

eiep sinquye

pajelawnugy

¢PalINbay s1a 5
9|pueH sse|) bujuyep-t. ocs
olpueH AN-t=-tbes
oweN jeutsix3 o) Jajujod g3
s
(et

eleg ainquuy

Wy [ 2%



PCT/US95/15028

WO 96/15501

1S|7 1918Weled elap

)

s|pueH A

[ aWeu |eusa)xa o0} J8jujod

198
lojesawinug

vt aunb)4

4S [ 993~



PCT/US95/15028

WO 96/15501

6V8—=1  S8|pueH Jun jeao) o is7

898 — 1 Sa|puey yun papnjou) jo s

Lv8— | ajpuey A
(+]/7: Rt o awlieu |eusajxa o) Jajujod
. G6V8

Ajjwey yun

Sy 8inbj4

4o/ 292-



PCT/US95/15028

WO 96/15501

}8sjjo

1ojae4 )|Inw

alpueH Jun eseq

elep )iun aseq

s|eal Jo }s||

g ainby4

siojesawnua Jo isj

pajesawnua 1abajuy/jeal) adAy

SMO

1S|7 191auieled ejaui

a|pueH jun aseq

8lpueH Ajjwe4 jun Bujuyep |

ejep jjun aseq

a|pueH A

awleu jeusalxa o) Jajujod

elep Jjun aseq

llun aseq

7 [y



PCT/US95/15028

WO 96/15501

0 1758
e0l 1= 493 Ly ainbi4
<921 Jun aseq
€53 1 4n bujuyap
nod e SWwyoy|
.nmu\v Hun paapap |eal 253 s
4n Bujupep
S . . swyo
| # <33 Jun RS
Ls3 AN
oh8 L . ~
sl o
tE$ 3
y
S|eoo] T t#?
348 IINN \
aduels|say |4 = S

w\& Awe4 yun E.u

ost 1817 olpuEn

Allweq yun jeqopn



PCT/US95/15028

WO 96/15501

g8y ainb4

0°0002}

0°0004 1

0'oooot

I

sl

swyo

liun

1sil +l

R—

lINN

adue|sisay .

Auwey yun

el

MLt

ot
—f-eo3
T+ L8

SMOJ
, SWwio Jo ajqel |
ﬁw@ \\g HUN paAjiap
pajelawnua
sl »/ 3
§|820|
(8HR 2}~ sapnjouy
(Lhs2F AWEI Wun |e—t
.&\m& Awey yun
Pl

2€3 1S|7 8jpuey
Ajwey yun jeqojn

W9/ 277



PCT/US95/15028

WO 96/15501

6 91nbi4

u# 19)aweued o) Jajujod
QR81 Z# lejaweled o) Jajujod
tLE 2 1 19leweled o) J8jujod «IJ.rw
33 1 o# 19)aweled o) 1oyujod

Ja)awelsed

ya

\

i3 alpueH AW o 5

—~  sJ9jaweled o isj|-

Sy

e Xapu| aduejsuj

LR 9]pueH sse|) J8umo

s

50 [ ¢



PCT/US95/15028

WO 96/15501

(331 SbBups o1 snd jo sy

C —ojpuey anqune

138 |

Ael
.npwm elly buuls

agy =} BuUls ayy oy 1eyujod

05 ainby4

onjeA ueajooq

18%

s|puey ainquye

ueajoog

8jpuey Jo0jelawnua

1831

9lpuey ainqgiae

88 L 9lpuey ainqune
7 buins
[

588 - anjea
583 9jpueH yun
(53T alpuey anqiye
2 CTETTTTY

ab3

iga——T1__8IPUeH aingqije

pajelawinuy

18)aweled sse|) asegq

')

<&

54/ 277



PCT/US95/15028

WO 96/15501
806 class 800
" Electronics
— 893
su ‘
;l, list j
P v class ¢80C
894 Capacitors _Ly_- 806
b subclasses 894
/ - \]/ list §
802’ atributes 7 893
800"
} , class &
897'1 list 807 ' 062" Electrolytic
* g02" " subclasses
803t atributes
827 enum. attribute 897. ), list instances
M casetype  a829 804~ l
830=—w—r=  def. class
. 835 —_— 896, | list
enumerator list ) aum. X
898 8279y B
W list Voltage rating-1.829'
) enum.
830'~—=  def. class
841
, Unit "=§38'
~ L um.
899 k\ i handle of 573
839 case B voitage uF. m\:*nc oo
' 842 COwner g 871
handie of a Params -r=-87S
890 voitage unit
num. pan;me: r B81 878, list
Attribute ! 877
5.0 885 .
Uit  p— ] )
' 879
884
enum. parameter
e 881"
Attribute
Value Pe_388
W\
882

52/ 978

Fig. 51



WO 96/15501 PCT/US95/15028

Request for the
virtual memory
of an object with| >~ 1000
a given handle
INZ\
1001
Generate error, .
reurn NULL Handle valid

10041

Rewm NULL

fil
005 —y | Rewenc

into memory

Reum NULL =

1010

Remmn NULL

1
. ,‘1/01
memory address

Fig. 52

53/ 237



WO 96/15501

PCT/US95/15028

2400
S

Offset
0 Header (8 words) |—— 2401
32 Object#0 | _s 2402
32+ size #1 52403
of #0
#2
#3

54 [ 31+

Fig. 53



WO 96/15501 PCT/US95/15028

2404
Offset 4
0 Header (8 words)  [#2401.
32 Record #0 (12 words) #2405
80 #1 #2406
128 #2
#3

Fig. 54

55/ 277



WO 96/15501 PCT/US95/15028

.~ 2401
240%] Release1 |Revision4  [52408
2409 Date
2410y Virtual EOF
2411x] Read only | Feature Code §2412

2413¥ Filler
24144 Filler 2417 #2419
24157  Global unit family Filler Filler
table offset - -
2416y Maximum handle Maximum handle -1
32 bit words 2418 2420
schema instance dynamic
file file file

Fig. 55

56 271



2426

WO 96/15501

2427~ s 2428
Del'd | type | Class | Filler
20 | code 2429
My Handle #2430
Parent handie |~ 2431
Offset to subclass list 52432
Offset to attribute list #2433
Offset to instance list 2434
Subtee instance count | #2435
Offset to meta Parameter list | 52436
Filler | 2437
Filler #2438
Filler |« 2439
Offset to external name | s 2440

51 271

PCT/US95/15028

Fig. 56



WO 96/15501 PCT/US95/15028

1422
Y

2442+ 42443

2441+ | Del'd | Type| is |is 2
b P req'd | protected /}44
2445= My handle
24462 Defining class handle
2447 Filler +
2450 Offset to meta parameter list if type = 51
2451 Filler offset to list of 2448
enumerator handles
24527 Filler
24537 Filler if type = 53
2454~ Filler unit family handle | 2449
2455 Filler
2456 Filler
24577 Offset to external name

Fig. 57

57/ 977



WO 96/15501

2423

2458 1N j 5 2459

Del'd type | Filler |s2460
60

My Handle 52461
Offset to meta parameter list | #2462
Filler | 52463
Filler 52464
Filler | 52465
Filler 52466
Filler | 52467
Filler | 52468
Filler 52469
Filler #2470
Offset to external name  [f 2471

59/ 9%

PCT/US95/15028

Fig. 58



WO 96/15501 PCT/US95/15028

2424
42472 2473 s 2474

unit 2475
Del'd | type | type | rows /
247 6% My handle
2477y Defining unit family
handle

24784  Base unit handle type=91 2481 type=92 2483
247%R| Filler Mult Factor offset to

: enumerators

- —> | list
2480y Filler j if type = 81 Offset offset to
values list

2485; Offset to meta \"2482 \»2484

Parameter list
2486% Filler
2487y Filler
2488y Filler
2489 Filler
24904 Offset to external name

Fig. 59

cof 247



WO 96/15501 PCT/US95/15028

2425

2491y 2492 }2493
Del'd type | Filler
: 70
My Handle 52494
Offset to inclltjsde unit family /2495
ist

Offset to local unit list  |,.72496
Filler £ 2497
Filler #2498
Filler 52499
Filler #2500
Filler L2501
Filler #2502
Filler #2503
Offset to external name | 52504

Fig. 60

6l (217



WO 96/15501

2511

2505 ,_ 2506 2507
type
Del'd 30 | Filler
My Handle 2508
Owner handle 72509

Offset to parameter list | #2510

L{Type 3 list (paramter list)

in the dynamic file

@[ 271

PCT/US95/15028

Fig. 61



WO 96/15501 PCT/US95/15028

Type 1 - string
2512
Header ‘/
2516 l. 2517{ P 2518
Del'd Typel | curlength
maxlength filler
2519~ =~ 2520
2513
Data
C a o
C 1 t 0
r S \0 \0

Fig. 62

;) 91



WO 96/15501

PCT/US95/15028

Type 2 - 4 byte data

2514
Header ./
2521 R 2522,\
Del'd Type 2 filler 2523
cur length $2524
max length 52525
Data
«2515
52
26
103
10
Fig. 63

¢ [ 937



WO 96/15501

2526
header /

2527, 2528, 42929

Del'd | type 3 | cur length

PCT/US95/15028

max length | filler 2531 type = 42
2530 v~ /2532 Boolean value 2539
2533 Parameter __2534 Filler 2540
Deld | type T_/ﬁller 253 fype = 43
Attribute Handle 52536 Unit Handle 2541
Enumerator Handle  |s2537 Value 72542
filler if type 142538 e=4
=41
offset to string 152543
2547
Parameter Filler

#1

(type 1)
)
type =45

offset to list of  |2545
offsets (type 2)

Filler 52546

65/ 977

Fig. 64



WO 96/15501

Convert the
1840—2 | parentclass
handle into a
class pointer

Generate a new
L class handle

Create anew

1848 =2 | Ciis object

66 (277

Rerurn Bad 1842
Class Handle
Return index out[ -2 __
of range 1844
Remmbad ==
classname 1846

Fig. 65

PCT/US95/15028



WO 96/15501

Insert the new
handle into the
handle table

= 1849

into the parent's
list of subclasses

ln.sel‘uhel'mulle‘.-1

1850

Instruct the File Manager to 1851

update secondary storage

Compiete

1852

c7/ 8

PCT/US95/15028

Fig. 66



WO 96/15501

1939—,
e

1932
Reum Bad =
Class Handle
1934
Rerum Index
Out of Bounds
936
Return Bad =
Auribute Name

Generate a new
Attribute Handle

Create a new
Enumerated
Attribute

Add the
Enumerated
Attribute to the
local list of
atributes.

|

A

{3/ 277

PCT/US95/15028

Fig. 67



WO 96/15501

Manager to 1940

1941

(9 /977

PCT/US95/15028

Fig. 68



WO 96/15501

1919

Conver class

l918-z handie in1o a
class pointer

Generate a new

1921 = | \cance handie

Insert the new
Instance handie

192 == __ inio the handle

table

Add it 1o the

19231_ parents list of

Update the
b subtree count.

=t

PCT/US95/15028

Return Bad
Class Handle

70 /377

Fig. 69



WO 96/15501 PCT/US95/15028

-

Notify the File
Manager to add
the instance to
secondary
storage

1925 = _ |

1926 ——= _| Add Instance
Compiete

Fig. 70

M [917



WO 96/15501 PCT/US95/15028

Convert the
2600 iclass handleto a
class pointer

Retum Delete of]|
class not 2604
allowed =

Delete All
2606 |Instances of this
AN class
Delete all
2607 Attributes at
this

Fig. 71

1] 917



WO 96/15501

o

Unlink this class
26& from the parent

No Fatal Database
Error
5
Instruct the file manager to
26& delete this object from
secondary storage

2613 |Delete Compiete

23/2497

PCT/US95/15028

Fig. 72



WO 96/15501

Convert the
auribute handle

18602= |\ an auribute

1861

1867

pointer

Did the
conversion

Search for this
atribute in ALL
1863=2==__| parameters of
instances in this

subtree

Unlink this

PCT/US95/15028

Rewrn Bad
Atribute Handle!

1862

Undefine
parameters

referring to this fmSs— 865

atribute

atmibute from its
| defining class

Fatal Database

74 (3%

Fig. 73



W0 .96/15501

)

/.

Delete the 1869
Auribute Object —

Instruct the file
manager to
delete the |~ 1870
atribute from |
secondary
storage

Delete Complete S_—l87 1

6/ 4+

PCT/US95/15028

Fig. 74



WO 96/15501 PCT/US95/15028

|Convent Instance

2000=2=__| handicto

Did the No Retum Bad
200t conversion Instance Handle‘s

Yes

Unlink the

the owning class

W04 =__ | Delete the
Instance object

Update the

Notify the File
Manager to
2006 update
= Secondary
Storage

2007 21 Compiete

3

Fig. 75

3 1298



WO 96/15501

1800
10 move, new
parent class,
position in new

no

PCT/US95/15028

1802

5

Find common
1807 —=___| | anscestor of both

N

7 /21t

Fig. 76



WO 96/15501 PCT/US95/15028

1808

s common ancestor th
class being moved?

Unhook
1809 move class

from parent

1810 Add move class
“Z—] 10 new parent

1811 > Update subtree

' count of new
parent

y

Update subtrec
1812 s count of old
parent

y

Update the disk
B3 2= 17 fies

I/ :
’ LL R"""""""] Fig. 77

%] 97%




WO 96/15501 PCT/US95/15028

181 Get class pointer for parent

Get list of
1816 -~ subclasses for

1817

Delete the class

1818 ~> __| from the parent
| subclass list

Fig. 78

79/ 277



WO 96/15501

Set class handlc
1820 2= 10 move class
: handic
1821 .
.
Get parent of class

Add parent class
182> | handie 1o kistl

1823
1s parent class the root?
1824 Set ciass handle
"Z—{ 10 parent class
handie

Y

Add parent class
1826== " pandic to lis2

2 /297

PCT/US95/15028

/‘ 1831

Set class handle to moved to
class

B S
N

Fig. 79



WO 96/15501 PCT/US95/15028

1828

Set class handle
to parent class
handle

1827

Is parent class the root?

heme‘lhtough listl and list2,
1829L lookxngc lt;osl's farst m::chmg

1830 LE.eam matching MJ

Fig. 80

g4 277



WO 96/15501

1070 \

PCT/US95/15028

connection list pointer

message

5| start time. ume of last request, ime of last
= 10m

T

total API call count 21072

pointer o RPC connection information

pointer to associated database manager —_
info 1074

read-only flag

pointer 10 associated query manager | <. 1076

72/ 277

Fig. 81



WO 96/15501 PCT/US95/15028

Look up pointcr from
750 guery handle -

752
Retum error condition
to calier

751

Create query
753 = result and add to
query manager

v

Get the class poinier for
754 =S | the query class handle
from thc class manager

Y

Get the instance list for
755 == | this class from the class

manager
1'%

756~=_ | Get list of selectors for
this query

758 —-=—"
Get an instance

y

ore instances PO Associate instance list (
with query result
query k Retumn locallcrj

b
d 761/‘/

Fig. 82

759




WO 96/15501 PCT/US95/15028

762
A Get a sciector
/69
763 More selectorsi2 N0 Add instance 10 query
result instance Isit
yes

764 = | Get instance's parameter
for attribuic in sclector

Fig. 83

€4 /2733



WO 96/15501 PCT/US95/15028

Look up pointer from
770 query handle

77

Retum error condition m™m
to calier

Crecate query
773 = result and add 10
query manager

{

Apply the
query locally| (.S T4
to class

4

Get list of subclasses for
class L~— 775

776
: More no
subclasses?
yes

Gel class handic of
2815 | subclass

Associate instance list

S| with query result

T

Retum 1o caller
7804 ]

Fig. 84

Ys/29>



WO 96/15501

PCT/US95/15028

7% Look up pointer from
query handle
792
T /
no Retumn error condition
791 4 D to caller
ycs
_S/ Get the class pointer for
793 the query class handle
from the class manager
294 —S"" | Get list of selectors for -
this query

795

A Appl
r9r —S | |Apply Query

Fig.85

K /273



WO 96/15501 PCT/US95/15028

'

Fig. 86

¥7 /273



WO 96/15501 PCT/US95/15028

Match Component | Component | Matched? |
Base Number | 2901

Prefix | LM No

Suffix B Yes
Manufacturer AMD No

# of Classes Found 1 Yes

Fig. 87

33 /273



WO 96/15501

PCT/US95/15028

fil pimntey... §[ £t} wako. |

.ln.uu i cme: ]

89/ 2133



WO 96/15501 PCT/US95/15028

e pess e et
e \’gnra—ﬁ.ﬁ'ﬁ"ﬁ-wmn"."

L Qamdiors

g5 S0b 513 14 515

30/29% | Fro 8



WO 96/15501 PCT/US95/15028

21 I User Opens Class (double
click on closed folder)

!

Display open folder and class
name and get list of
belasses

524

z

Display document page
icon

I Display closed folder and
class name

Ar€ there more subclass:
list to display?

527

Gemrn control 10 nsﬁ_s“" 528

Fig. 90

34|23+



WO 96/15501 PCT/US95/15028

Jear s

.omt

92/ 29>



WO 96/15501 PCT/US95/15028

User moves
533 a subtree

534 Use selects subtree to be
T moved

v

535 User drags seiected subtree T

H

Interface guids user to legal . .
$36 classes which tree can be A illegal drop cursor is
dropped dispiayed

\L 538

ass being draged oves 2
hild or a sibling of selec
class

537

539 A legal drop cursor is
.L displayed

540 User drops subtree No

Yes

knowledge base is updated
to represent new tree
structure

/m
Schema editor is updated u] w
542 LLreprexm nSw tree structure Requm control to the user

J
Fig. 92

W]

23/233



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

