

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2419029 A1 2002/02/28

(21) **2 419 029**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2001/08/23
(87) Date publication PCT/PCT Publication Date: 2002/02/28
(85) Entrée phase nationale/National Entry: 2003/02/11
(86) N° demande PCT/PCT Application No.: EP 2001/009751
(87) N° publication PCT/PCT Publication No.: 2002/015701
(30) Priorité/Priority: 2000/08/25 (60/227,956) US

(51) Cl.Int.⁷/Int.Cl.⁷ A01N 63/00, C12N 15/82, C12N 15/62,
C07K 14/325, C12N 15/32, C12N 5/10, C07K 19/00

(71) **Demandeur/Applicant:**
SYNGENTA PARTICIPATIONS AG, CH

(72) **Inventeurs/Inventors:**
CAROZZI, NADINE BARBARA, US;
RABE, SCOTT M., US;
MILES, PAUL J., US;
WARREN, GREGORY WAYNE, US;
DE HAAN, PETRUS THEODORUS, NL

(74) **Agent:** FETHERSTONHAUGH & CO.

(54) Titre : PROTEINE HYBRIDES CRISTALLINE DU BACILLUS THURINGIENSIS

(54) Title: BACILLUS THURINGIENSIS CRYSTAL PROTEIN HYBRIDS

(57) Abrégé/Abstract:

Synthetic nucleotide sequences optimized for expression in plants encode varying forms of the hybrid *Bacillus thuringiensis* delta-endotoxin H04, the toxin portion of which contains domains I and II of Cry1Ab and domain III of Cry1C. Compositions and formulations containing the insecticidal toxins are capable of controlling insect pests. The invention is further drawn to methods of making the hybrid toxins and to methods of using the nucleotide sequences, for example in microorganisms to control insect pests and in transgenic plants to confer insect resistance.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
28 February 2002 (28.02.2002)

PCT

(10) International Publication Number
WO 02/15701 A2

(51) International Patent Classification⁷: A01N 63/00

(21) International Application Number: PCT/EP01/09751

(22) International Filing Date: 23 August 2001 (23.08.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/227,956 25 August 2000 (25.08.2000) US

(71) Applicant (for all designated States except US): SYNGENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CAROZZI, Nadine, Barbara [US/US]; Syngenta, 3045 Cornwallis Road, Research Triangle Park, NC 27709 (US). RABE, Scott, M. [US/US]; Syngenta, 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). MILES, Paul, J. [US/US]; Syngenta, 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). WARREN, Gregory, Wayne [US/US]; Syngenta, 3054 Cornwallis Road, Research Triangle Park, NC 27709 (US). DE HAAN, Petrus, Theodorus [NL/NL]; Syngenta Seeds B.V., Westeinde 62, NL-1601 BK Enkhuizen (NL).

(74) Agent: BASTIAN, Werner; c/o Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/15701 A2

(54) Title: NOVEL INSECTICIDAL TOXINS DERIVED FROM *BACILLUS THURINGIENSIS* INSECTICIDAL CRYSTAL PROTEINS

(57) Abstract: Synthetic nucleotide sequences optimized for expression in plants encode varying forms of the hybrid *Bacillus thuringiensis* delta-endotoxin H04, the toxin portion of which contains domains I and II of Cry1Ab and domain III of Cry1C. Compositions and formulations containing the insecticidal toxins are capable of controlling insect pests. The invention is further drawn to methods of making the hybrid toxins and to methods of using the nucleotide sequences, for example in microorganisms to control insect pests and in transgenic plants to confer insect resistance.

Novel insecticidal toxins derived from *Bacillus thuringiensis* insecticidal crystal proteins

The invention relates to novel insecticidal toxins derived from *Bacillus thuringiensis* insecticidal crystal proteins, nucleic acid sequences whose expression results in said toxins, and methods of making and methods of using the toxins and corresponding nucleic acid sequences 5 to control insects.

Insect pests are a major cause of crop losses. Solely in the US, billions of dollars are lost every year due to infestation by various genera of insects. In addition to losses in field crops, insect pests are also a burden to vegetable and fruit growers, to producers of ornamental flowers, and they are a nuisance to gardeners and homeowners.

10 Insect pests are mainly controlled by intensive applications of chemical insecticides, which are active through inhibition of insect growth, prevention of insect feeding or reproduction, or death of the insects. Good insect control can thus be reached, but these chemicals can sometimes also affect other, beneficial insects. Another problem resulting from the wide use of chemical pesticides is the appearance of resistant insect varieties. This has 15 been partially alleviated by various resistance management strategies, but there is an increasing need for alternative pest control agents.

Biological insect control agents, such as *Bacillus thuringiensis* strains expressing 20 insecticidal toxins have also been applied with satisfactory results, offering an alternative or a complement to chemical insecticides. *Bacillus thuringiensis* belongs to the large group of gram-positive, aerobic, endospore-forming bacteria. Unlike other very closely related species of *Bacillus* such as *B. cereus* or *B. anthracis*, the majority of the hitherto known *Bacillus thuringiensis* species produce in the course of their sporulation a parasporal inclusion body which, on account of its crystalline structure, is generally referred to also as a crystalline body. This crystalline body is composed of insecticidally active crystalline protoxin proteins, the so- 25 called δ -endotoxins. These protein crystals are responsible for the toxicity to insects of *Bacillus thuringiensis*. The δ -endotoxin does not exhibit its insecticidal activity until after oral intake of the crystalline body, when the latter is dissolved in the intestinal juice of the target insects. In most cases the actual toxic component is released from the protoxin as a result of proteolytic cleavage caused by the action of proteases from the digestive tract of the insects.

The δ -endotoxins of the various *Bacillus thuringiensis* strains are characterized by high specificity with respect to certain target insects, especially with respect to various Lepidoptera, Coleoptera and Diptera larvae, and by a high degree of activity against these larvae. A further advantage in using δ -endotoxins of *Bacillus thuringiensis* resides in the fact that the toxins are 5 harmless to humans, other mammals, birds and fish.

Based on sequence homology and insecticidal specificity, *Bacillus thuringiensis* crystal proteins have been categorized into different classes. Best studied are the Cry1 class of proteins, which are produced as 140 kDa pro-toxins and are active towards lepidopterans. To some extent the mode of action of crystal proteins has been elucidated. After oral uptake the 10 crystals dissolve in the alkaline environment of the larval midgut. The solubilized proteins are subsequently processed by midgut proteinases (e.g. trypsin) to a proteinase-resistant toxic fragment of about 65kDa that binds to receptors on epithelial cells of the insect midgut and penetrates the cell membrane. This eventually leads to bursting of the cells and death of the larvae.

15 The activity spectrum of a particular crystal protein is to a large extent determined by the occurrence of receptors on the midgut epithelial cells of susceptible insects. The spectrum is co-determined by the efficiency of solubilization of the crystal protein and its proteolytic activation *in vivo*. The importance of the binding of the crystal protein to midgut epithelial receptors is further demonstrated where insects have developed resistance to one of the crystal 20 proteins in that the binding of crystal proteins to midgut epithelial cells in resistant insects is significantly reduced.

In the past several years, the genes coding for some of these crystal proteins have been isolated and their expression in heterologous hosts have been shown to provide another tool for the control of economically important insect pests. In particular, the expression of 25 insecticidal toxins in transgenic plants, such as *Bacillus thuringiensis* crystal proteins, has provided efficient protection against selected insect pests, and transgenic plants expressing such toxins have been commercialized, allowing farmers to reduce applications of chemical insect control agents. Furthermore, it is also possible to express recombinant toxins that have a chosen combination of functions designed to enhance the degree of insecticidal activity against 30 a particular insect or insect class, or to expand the spectrum of insects against which the toxin

protein is active. For example, chimeric insecticidal proteins can be constructed having novel sequences not found in nature by combining the toxin portion from one δ -endotoxin with the protoxin (tail) portion of a different δ -endotoxin. *See, for example, WO 98/15170, incorporated herein by reference.*

5 Toxic fragments of crystal proteins are thought to be composed of three distinct structural domains. Domain I, the most N-terminal domain, consists of 7 α -helices and probably is partially or entirely inserted in the target cell membrane. Domain II comprises 3 β -sheets in a so-called Greek key-conformation. Domain II is believed by most researchers to interact with receptors and to thereby determine toxin specificity. Indeed, there is much 10 evidence implicating domain II residues in specific toxicity and in high affinity binding. Domain III, the most C-terminal domain, consists of two β -sheets in a so-called jellyroll conformation and has also been implicated in determining specificity. Swapping domain III between toxins, such as by *in vivo* recombination between the coding regions, can result in changes in specific 15 activity. Binding experiments using such hybrids have shown that domain III is involved in binding to putative receptors of target insects, suggesting that domain III may exert its role in specificity through a role in receptor recognition. If projected on Cry1 sequences, domain I runs from about amino acid residue 28 to 260, domain II from about 260 to 460 and domain III from about 460 to 600. *See, Nakamura et al., Agric. Biol. Chem. 54(3): 715-724 (1990); Li et al., Nature 353: 815-821 (1991); Ge et al., J. Biol. Chem. 266(27): 17954-17958 (1991);* 20 *and Honee et al., Mol. Microbiol. 5(11): 2799-2806 (1991); each of which are incorporated herein by reference. U.S. Pat. No. 5,736,131, incorporated herein by reference describes Bacillus thuringiensis hybrid toxin fragments comprising at their C-terminus domain III of a first Cry protein and at its N-terminus domains I and II of a second Cry protein. Such hybrid crystal proteins have altered insecticidal specificity. For example, the H04 hybrid toxin, which is also 25 described in De Maagd et al., Appl. Environ. Microbiol. 62(5): 1537-1543 (1996), comprises at its N-terminus domains I and II of Cry1Ab and at its C-terminus domain III of Cry1C. H04 is reportedly highly toxic to *Spodoptera exigua* (beet armyworm) compared with the parental Cry1Ab toxin and significantly more toxic than the Cry1C parental toxin. See also, Bosch et al., FEMS Microbiology Letters 118: 129-134 (1994); Bosch et al., Bio/Technology 12: 915-918 (1994); De*

Maagd *et al.*, *Appl. Environ. Microbiol.* 62(8): 2753-2757 (1996); and De Maagd *et al.*, *Mol. Microbiol.* 31(2): 463-471 (1999); each of which is incorporated herein by reference.

Despite the previous successes realized by incorporation of insect resistant genes through breeding programs and genetic engineering, there remains a long-felt but unfulfilled need to discover new and effective insect control agents. Particularly needed are control agents that are targeted to economically important insect pests such as European Corn Borer and Fall Army Worm and that efficiently control insect species resistant to existing insect control agents. Furthermore, agents whose application minimizes the burden on the environment are desirable.

10

The present invention addresses the aforementioned needs by providing novel gene sequences that encode hybrid *Bacillus thuringiensis* toxins, including synthetic nucleotide sequences optimized for expression in plants. In preferred embodiments, the novel gene sequences encode varying forms of the hybrid *Bacillus thuringiensis* delta-endotoxin H04, the toxin portion of which contains domains I and II of Cry1Ab and domain III of Cry1C. The hybrid *Bacillus thuringiensis* toxins encoded by the novel gene sequences are highly active against economically important insect pests such as fall armyworm, pink bollworm, tobacco budworm, European cornborer, and diamondback moth. The hybrid *Bacillus thuringiensis* toxins can be used in multiple insect control strategies, resulting in maximal efficiency with minimal impact on the environment.

The invention is further drawn to the hybrid insecticidal toxins resulting from the expression of the nucleotide sequences of the invention, and to compositions and formulations containing the hybrid insecticidal toxins, which are capable of inhibiting the ability of insect pests to survive, grow or reproduce, or of limiting insect-related damage or loss in crop plants. 25 The invention is further drawn to a method of making the hybrid toxins and to methods of using the nucleotide sequences, for example in transgenic plants to confer insect resistance, and to methods of using the toxins, and compositions and formulations comprising the toxins, for example applying the toxins, composition, or formulation to insect infested areas, or to prophylactically treat insect susceptible areas or plants to confer protection or resistance 30 against harmful insects. The hybrid toxins can be used in multiple insect control strategies, resulting in maximal efficiency with minimal impact on the environment.

According to one aspect, the present invention provides a method for controlling an insect selected from the group consisting of fall armyworm, pink bollworm, tobacco budworm, European cornborer and diamondback moth, comprising delivering to the insect an effective amount of a hybrid *Bacillus thuringiensis* toxin comprising domains I and II from a Cry1Ab toxin joined in the amino to carboxy direction to domain III from a Cry1C toxin. In a preferred embodiment, the hybrid *Bacillus thuringiensis* toxin comprises an amino acid sequence at least 90% identical to SEQ ID NO:2, 4, 6, 8, or 10. In a more preferred embodiment, the hybrid *Bacillus thuringiensis* toxin comprises SEQ ID NO:2, 4, 6, 8, or 10.

In another embodiment of the above-described method of the invention, the hybrid *Bacillus thuringiensis* toxin further comprises a C-terminal tail region, such as a Cry1C tail region or a Cry1Ab tail region. The C-terminal tail region may be full-length or may be truncated, such as to approximately 40 amino acids in length.

In a preferred embodiment of the above-described method of the invention, delivering an effective amount of the hybrid *Bacillus thuringiensis* toxin to the insect comprises feeding or contacting the insect with transgenic plant tissue transformed with recombinant DNA comprising a nucleotide sequence that encodes the hybrid *Bacillus thuringiensis* toxin, wherein expression of the hybrid *Bacillus thuringiensis* toxin in said transgenic plant tissue confers resistance to the insect. Preferably, said nucleotide sequence is substantially identical to SEQ ID NO:1, 3, 5, 7, or 9.

According to another aspect, the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a hybrid *Bacillus thuringiensis* toxin comprising: (a) an N-terminal toxin portion comprising domains I and II from a Cry1Ab toxin joined in the amino to carboxy direction to domain III from a Cry1C toxin; and (b) a C-terminal tail region from a Cry1Ab toxin. Preferably, the hybrid *Bacillus thuringiensis* toxin comprises an amino acid sequence at least 90% identical to SEQ ID NO:6, 8, or 10. More preferably, the hybrid *Bacillus thuringiensis* toxin comprises SEQ ID NO: 6, 8, or 10. Even more preferably, said nucleotide sequence is at least 90% identical to SEQ ID NO:5, 7, or 9. Most preferably, said nucleotide sequence comprises SEQ ID NO: 5, 7, or 9.

The present invention further provides a chimeric gene comprising a heterologous promoter sequence operatively linked to a nucleic acid molecule of the invention, as described above; a recombinant vector comprising such a chimeric gene; a transgenic host cell (e.g., a

plant cell) comprising such a chimeric gene; a transgenic plant (e.g., a maize, cotton, rice, or cabbage plant) comprising such a transgenic plant cell; and seed from such a transgenic plant.

According to yet another aspect, the present invention provides a method of protecting a plant against insects, comprising expressing a hybrid *Bacillus thuringiensis* toxin in a plant 5 transformed with a chimeric gene comprising: (a) a nucleic acid promoter sequence that promotes in a plant the transcription of an associated coding sequence at elevated levels, and (b) a nucleic acid molecule according to the invention operatively linked to said promoter sequence, wherein expression of the hybrid *Bacillus thuringiensis* toxin in said plant protects said plant against insects.

According to still another aspect, the present invention provides a method of producing 10 a hybrid *Bacillus thuringiensis* toxin that is active against insects, comprising: (a) obtaining a transgenic host cell according to the invention; and (b) expressing the nucleic acid molecule of the invention in said transgenic host cell, which results in a hybrid *Bacillus thuringiensis* toxin that is active against insects.

According to still another aspect, the present invention provides a method of producing 15 a plant resistant to insects, comprising introducing a nucleic acid molecule according to the present invention into said plant, wherein said nucleic acid molecule is expressible in said plant in an amount effective to control insects.

According to another aspect, the present invention provides an isolated nucleic acid 20 molecule comprising SEQ ID NO:3, 5, 7, 9, 11, 12, 13, 14, 15, 16 or 17; a chimeric gene comprising a heterologous promoter sequence operatively linked to such a nucleic acid molecules; a recombinant vector comprising such a chimeric gene; a transgenic host cell (e.g., a plant cell) comprising such a chimeric gene; a transgenic plant (e.g., a maize, cotton, rice, or cabbage plant) comprising such a transgenic plant cell; and seed from such a transgenic plant.

According to a still further aspect, the present invention provides a hybrid *Bacillus thuringiensis* toxin, comprising: (a) an N-terminal toxin portion comprising domains I and II from a Cry1Ab toxin joined in the amino to carboxy direction to domain III from a Cry1C toxin; and (b) a C-terminal tail region from a Cry1Ab toxin. Preferably, the hybrid *Bacillus thuringiensis* toxin of the invention comprises an amino acid sequence at least 90% identical to 30 SEQ ID NO:6, 8, or 10. More preferably, the hybrid *Bacillus thuringiensis* toxin of the invention comprises SEQ ID NO:6, 8, or 10.

According to a further aspect, the present invention provides a composition comprising the hybrid *Bacillus thuringiensis* toxin of the invention in an amount effective to control insects.

Other aspects and advantages of the present invention will become apparent to those skilled in the art from a study of the following description of the invention and non-limiting examples.

BRIEF DESCRIPTION OF THE SEQUENCES IN THE SEQUENCE LISTING

SEQ ID NO:1 shows the nucleotide sequence encoding the H04 hybrid toxin described in 10 De Maagd *et al.*, *Appl. Environ. Microbiol.* 62(5): 1537-1543 (1996), the toxin portion of which comprises at its N-terminus domains I and II of Cry1Ab and at its C-terminus domain III of Cry1C, plus a full-length Cry1C tail portion.

SEQ ID NO:2 shows the amino acid sequence of the H04 hybrid toxin encoded by the nucleotide sequence depicted in SEQ ID NO:1, comprising toxin domains I and II of Cry1Ab and 15 toxin domain III of Cry1C, plus a full-length Cry1C tail portion.

SEQ ID NO:3 shows a synthetic nucleotide sequence encoding the toxin portion of H04 without a tail, as if the trypsin site had been cleaved.

SEQ ID NO:4 shows the amino acid sequence of the H04 toxin portion encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:3.

20 SEQ ID NO:5 shows a synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion.

SEQ ID NO:6 shows the amino acid sequence of the H04 + Cry1Ab tail encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:5.

25 SEQ ID NO:7 shows another synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion.

SEQ ID NO:8 shows the amino acid sequence of the H04 + Cry1Ab tail encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:7.

SEQ ID NO:9 shows a synthetic nucleotide sequence encoding the toxin portion of H04 plus the first 40 amino acids of the Cry1Ab tail.

30 SEQ ID NO:10 shows the amino acid sequence of the H04 + 40-amino acid truncated Cry1Ab tail encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:9.

SEQ ID NO:11 shows the nucleotide sequence of construct pNOV1308, which contains the constitutive maize ubiquitin promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 without a tail, as set forth in SEQ ID NO:3.

SEQ ID NO:12 shows the nucleotide sequence of construct pNOV1436, which contains 5 the root-preferred maize MTL promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion, as set forth in SEQ ID NO:5.

SEQ ID NO:13 shows the nucleotide sequence of construct pNOV1441, which contains 10 the constitutive maize ubiquitin promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion, as set forth in SEQ ID NO:5.

SEQ ID NO:14 shows the nucleotide sequence of construct pNOV1305, which contains 15 the constitutive maize ubiquitin promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion, as set forth in SEQ ID NO:7.

SEQ ID NO:15 shows the nucleotide sequence of construct pNOV1313, which contains the constitutive maize ubiquitin promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion, as set forth in SEQ ID NO:7.

SEQ ID NO:16 shows the nucleotide sequence of construct pNOV1435, which contains 20 the root-preferred maize MTL promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 plus the first 40 amino acids of the Cry1Ab tail, as set forth in SEQ ID NO:9.

SEQ ID NO:17 shows the nucleotide sequence of construct pZU578, which contains 25 the Arabidopsis actin-2 promoter operatively linked to the synthetic nucleotide sequence encoding the toxin portion of H04 plus the first 40 amino acids of the Cry1Ab tail, as set forth in SEQ ID NO:9.

DEFINITIONS

“Activity” of the toxins of the invention is meant that the toxins function as orally 30 active insect control agents, have a toxic effect, or are able to disrupt or deter insect feeding, which may or may not cause death of the insect. When a toxin of the invention is delivered to

the insect, the result is typically death of the insect, or the insect does not feed upon the source that makes the toxin available to the insect.

“Associated with / operatively linked” refer to two nucleic acid sequences that are related physically or functionally. For example, a promoter or regulatory DNA sequence is 5 said to be “associated with” a DNA sequence that codes for an RNA or a protein if the two sequences are operatively linked, or situated such that the regulator DNA sequence will affect the expression level of the coding or structural DNA sequence.

“Binding site” means a site on a molecule wherein the binding between site and toxin is reversible such that the K_a between site and toxin is on the order of at least $10^4 \text{dm}^3 \text{mole}^{-1}$.

10 A “chimeric gene” is a recombinant nucleic acid sequence in which a promoter or regulatory nucleic acid sequence is operatively linked to, or associated with, a nucleic acid sequence that codes for an mRNA or which is expressed as a protein, such that the regulator nucleic acid sequence is able to regulate transcription or expression of the associated nucleic acid sequence. The regulator nucleic acid sequence of the chimeric gene is not normally 15 operatively linked to the associated nucleic acid sequence as found in nature.

A “coding sequence” is a nucleic acid sequence that is transcribed into RNA such as mRNA, rRNA, tRNA, snRNA, sense RNA or antisense RNA. Preferably the RNA is then translated in an organism to produce a protein.

20 Complementary: “complementary” refers to two nucleotide sequences that comprise antiparallel nucleotide sequences capable of pairing with one another upon formation of hydrogen bonds between the complementary base residues in the antiparallel nucleotide sequences.

25 “Conservatively modified variations” of a particular nucleic acid sequence refers to those nucleic acid sequences that encode identical or essentially identical amino acid sequences, or where the nucleic acid sequence does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number 30 of functionally identical nucleic acids encode any given polypeptide. For instance the codons CGT, CGC, CGA, CGG, AGA, and AGG all encode the amino acid arginine. Thus, at every position where an arginine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded protein. Such nucleic acid variations are “silent variations” which are one species of “conservatively modified variations.”

Every nucleic acid sequence described herein which encodes a protein also describes every possible silent variation, except where otherwise noted. One of skill will recognize that each codon in a nucleic acid (except ATG, which is ordinarily the only codon for methionine) can be modified to yield a functionally identical molecule by standard techniques. Accordingly, each 5 "silent variation" of a nucleic acid which encodes a protein is implicit in each described sequence.

Furthermore, one of skill will recognize that individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids (typically less than 5%, more typically less than 1%) in an encoded sequence are 10 "conservatively modified variations," where the alterations result in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. The following five groups each contain amino acids that are conservative substitutions for one another: Aliphatic: Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I); Aromatic: Phenylalanine (F), Tyrosine (Y), Tryptophan (W); Sulfur-containing: Methionine (M), Cysteine (C); Basic: Arginine (R), 15 Lysine (K), Histidine (H); Acidic: Aspartic acid (D), Glutamic acid (E), Asparagine (N), Glutamine (Q). *See also*, Creighton (1984) *Proteins*, W.H. Freeman and Company. In addition, individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence are also "conservatively modified 20 variations."

To "control" insects means to inhibit, through a toxic effect, the ability of insect pests to survive, grow, feed, and/or reproduce, or to limit insect-related damage or loss in crop plants. To "control" insects may or may not mean killing the insects, although it preferably means killing the insects.

25 Corresponding to: in the context of the present invention, "corresponding to" or "corresponds to" means that when the nucleic acid coding sequences or amino acid sequences of different δ -endotoxins of *Bacillus thuringiensis* are aligned with each other, the nucleic or amino acids that "correspond to" certain enumerated positions are those that align with these positions but that are not necessarily in these exact numerical positions relative to the 30 particular δ -endotoxin's respective nucleic acid coding sequence or amino acid sequence.

Likewise, when the coding or amino acid sequence of a particular δ-endotoxin (for example, Cry1B) is aligned with the coding or amino acid sequence of a reference δ-endotoxin (for example, Cry1Ab), the nucleic acids or amino acids in the Cry1B sequence that “correspond to” certain enumerated positions of the Cry1Ab sequence are those that align with these 5 positions of the Cry1Ab sequence, but are not necessarily in these exact numerical positions of the Cry1B toxin’s respective nucleic acid coding sequence or amino acid sequence.

To “deliver” a toxin means that the toxin comes in contact with an insect, resulting in toxic effect and control of the insect. The toxin can be delivered in many recognized ways, e.g., orally by ingestion by the insect or by contact with the insect via transgenic plant 10 expression, formulated protein composition(s), sprayable protein composition(s), a bait matrix, or any other art-recognized toxin delivery system.

“Expression cassette” as used herein means a nucleic acid sequence capable of directing expression of a particular nucleotide sequence in an appropriate host cell, comprising a promoter operably linked to the nucleotide sequence of interest which is operably linked to 15 termination signals. It also typically comprises sequences required for proper translation of the nucleotide sequence. The expression cassette comprising the nucleotide sequence of interest may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette may also be one which is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. 20 Typically, however, the expression cassette is heterologous with respect to the host, i.e., the particular nucleic acid sequence of the expression cassette does not occur naturally in the host cell and must have been introduced into the host cell or an ancestor of the host cell by a transformation event. The expression of the nucleotide sequence in the expression cassette may be under the control of a constitutive promoter or of an inducible promoter which initiates 25 transcription only when the host cell is exposed to some particular external stimulus. In the case of a multicellular organism, such as a plant, the promoter can also be specific to a particular tissue, or organ, or stage of development.

Gene: the term “gene” is used broadly to refer to any segment of DNA associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences 30 required for their expression. Genes also include nonexpressed DNA segments that, for

example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.

"Gene of interest" refers to any gene which, when transferred to a plant, confers upon the plant a desired characteristic such as antibiotic resistance, virus resistance, insect resistance, disease resistance, or resistance to other pests, herbicide tolerance, improved nutritional value, improved performance in an industrial process or altered reproductive capability. The "gene of interest" may also be one that is transferred to plants for the production of commercially valuable enzymes or metabolites in the plant.

As used herein, "H04" refers to the hybrid *Bt* toxin described in De Maagd *et al.*, *Appl. Environ. Microbiol.* 62(5): 1537-1543 (1996), the toxin fragment of which comprises at its N-terminus domains I and II of Cry1Ab and at its C-terminus domain III of Cry1C.

Heterologous nucleic acid sequence: The terms "heterologous nucleic acid [or DNA] sequence", "exogenous nucleic acid [or DNA] segment" or "heterologous gene," as used herein, each refer to a sequence that originates from a source foreign to the particular host cell or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell but has been modified through, for example, the use of codon optimization. The terms also includes non-naturally occurring multiple copies of a naturally occurring sequence. Thus, the terms refer to a nucleic acid segment that is foreign or heterologous to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous nucleic acid segments are expressed to yield exogenous polypeptides.

A "homologous" nucleic acid [or DNA] sequence is a nucleic acid [or DNA] sequence naturally associated with a host cell into which it is introduced.

"Homologous recombination" is the reciprocal exchange of nucleic acid fragments between homologous nucleic acid molecules.

"Homoplasmidic" refers to a plant, plant tissue or plant cell wherein all of the plastids are genetically identical. This is the normal state in a plant when the plastids have not been transformed, mutated, or otherwise genetically altered. In different tissues or stages of development, the plastids may take different forms, e.g., chloroplasts, proplastids, etioplasts, amyloplasts, chromoplasts, and so forth.

The terms "identical" or percent "identity" in the context of two or more nucleic acid or protein sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described below or by visual inspection.

"Insecticidal" is defined as a toxic biological activity capable of controlling insects, preferably by killing them.

A nucleic acid sequence is "isocoding with" a reference nucleic acid sequence when the nucleic acid sequence encodes a polypeptide having the same amino acid sequence as the polypeptide encoded by the reference nucleic acid sequence.

An "isolated" nucleic acid molecule or an isolated enzyme is a nucleic acid molecule or enzyme that, by the hand of man, exists apart from its native environment and is therefore not a product of nature. An isolated nucleic acid molecule or enzyme may exist in a purified form or may exist in a non-native environment such as, for example, a recombinant host cell.

A "juncture" between toxin domains in a hybrid toxin, i.e., between domains II and III of a hybrid insecticidal toxin according to the invention, is the homologous crossover region or site in the hybrid. Amino acids to the left of the crossover site are from one parental toxin, whereas amino acids to the right of the crossover site are from the other parental toxin.

Mature Protein: protein that is normally targeted to a cellular organelle and from which the transit peptide has been removed.

Minimal Promoter: promoter elements, particularly a TATA element, that are inactive or that have greatly reduced promoter activity in the absence of upstream activation. In the presence of a suitable transcription factor, the minimal promoter functions to permit transcription.

Native: refers to a gene that is present in the genome of an untransformed cell.

Naturally occurring: the term "naturally occurring" is used to describe an object that can be found in nature as distinct from being artificially produced by man. For example, a protein or nucleotide sequence present in an organism (including a virus), which can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory, is naturally occurring.

Nucleic acid: the term "nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar 5 to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (*e.g.* degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted 10 with mixed-base and/or deoxyinosine residues (Batzer *et al.*, *Nucleic Acid Res.* 19: 5081 (1991); Ohtsuka *et al.*, *J. Biol. Chem.* 260: 2605-2608 (1985); Rossolini *et al.*, *Mol. Cell. Probes* 8: 91-98 (1994)). The terms "nucleic acid" or "nucleic acid sequence" may also be used interchangeably with gene, cDNA, and mRNA encoded by a gene.

"ORF" means Open Reading Frame.

15 By "part" of a protein is meant a peptide comprised by said protein and having at least 80% of the consecutive sequence thereof.

A "plant" is any plant at any stage of development, particularly a seed plant.

20 A "plant cell" is a structural and physiological unit of a plant, comprising a protoplast and a cell wall. The plant cell may be in form of an isolated single cell or a cultured cell, or as a part of higher organized unit such as, for example, plant tissue, a plant organ, or a whole plant.

"Plant cell culture" means cultures of plant units such as, for example, protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, ovules, embryo sacs, zygotes and embryos at various stages of development.

25 "Plant material" refers to leaves, stems, roots, flowers or flower parts, fruits, pollen, egg cells, zygotes, seeds, cuttings, cell or tissue cultures, or any other part or product of a plant.

A "plant organ" is a distinct and visibly structured and differentiated part of a plant such as a root, stem, leaf, flower bud, or embryo.

30 "Plant tissue" as used herein means a group of plant cells organized into a structural and functional unit. Any tissue of a plant *in planta* or in culture is included. This term

includes, but is not limited to, whole plants, plant organs, plant seeds, tissue culture and any groups of plant cells organized into structural and/or functional units. The use of this term in conjunction with, or in the absence of, any specific type of plant tissue as listed above or otherwise embraced by this definition is not intended to be exclusive of any other type of plant tissue.

A "promoter" is an untranslated DNA sequence upstream of the coding region that contains the binding site for RNA polymerase II and initiates transcription of the DNA. The promoter region may also include other elements that act as regulators of gene expression.

A "protoplast" is an isolated plant cell without a cell wall or with only parts of the cell wall.

Purified: the term "purified," when applied to a nucleic acid or protein, denotes that the nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein which is the predominant species present in a preparation is substantially purified. The term "purified" denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least about 50% pure, more preferably at least about 85% pure, and most preferably at least about 99% pure.

Two nucleic acids are "recombined" when sequences from each of the two nucleic acids are combined in a progeny nucleic acid. Two sequences are "directly" recombined when both of the nucleic acids are substrates for recombination. Two sequences are "indirectly recombined" when the sequences are recombined using an intermediate such as a cross-over oligonucleotide. For indirect recombination, no more than one of the sequences is an actual substrate for recombination, and in some cases, neither sequence is a substrate for recombination.

"Regulatory elements" refer to sequences involved in controlling the expression of a nucleotide sequence. Regulatory elements comprise a promoter operably linked to the nucleotide sequence of interest and termination signals. They also typically encompass sequences required for proper translation of the nucleotide sequence.

Substantially identical: the phrase "substantially identical," in the context of two nucleic acid or protein sequences, refers to two or more sequences or subsequences that have at least 60%, preferably 80%, more preferably 90, even more preferably 95%, and most preferably at least 99% nucleotide or amino acid residue identity, when compared and aligned for maximum 5 correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. Preferably, the substantial identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are substantially identical over at least about 150 residues. In a most preferred embodiment, the sequences are substantially identical over the 10 entire length of the coding regions. Furthermore, substantially identical nucleic acid or protein sequences perform substantially the same function.

For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated if necessary, and 15 sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2: 482 (1981), by the homology 20 alignment algorithm of Needleman & Wunsch, *J. Mol. Biol.* 48: 443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Nat'l. Acad. Sci. USA* 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by visual inspection (*see generally*, Ausubel *et al.*, *infra*).

One example of an algorithm that is suitable for determining percent sequence identity 25 and sequence similarity is the BLAST algorithm, which is described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short 30 words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is

referred to as the neighborhood word score threshold (Altschul *et al.*, 1990). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for 5 nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when the cumulative alignment score falls off by the quantity X from its maximum achieved value, the cumulative score goes to zero or below due to the accumulation 10 of one or more negative-scoring residue alignments, or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 15 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (*see* Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA* 89: 10915 (1989)).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (*see, e.g.*, Karlin & Altschul, *Proc. Nat'l. Acad. Sci. USA* 90: 5873-5787 (1993)). One measure of similarity 20 provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a test nucleic acid sequence is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid sequence to the reference nucleic acid sequence is less than about 0.1, more preferably less 25 than about 0.01, and most preferably less than about 0.001.

Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions. The phrase "hybridizing specifically to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a 30 complex mixture (*e.g.*, total cellular) DNA or RNA. "Bind(s) substantially" refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and

embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target nucleic acid sequence.

"Stringent hybridization conditions" and "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments such as Southern and Northern hybridizations are sequence dependent, and are different under different environmental parameters. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) *Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes* part I chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays" 5 Elsevier, New York. Generally, highly stringent hybridization and wash conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. Typically, under "stringent conditions" a probe will hybridize to its target subsequence, but to no other sequences.

The T_m is the temperature (under defined ionic strength and pH) at which 50% of the 10 target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the T_m for a particular probe. An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is 50% formamide with 1 mg of heparin at 42°C, with the hybridization being carried out overnight. An example of highly stringent wash 15 conditions is 0.1 5M NaCl at 72°C for about 15 minutes. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see, Sambrook, *infra*, for a description of SSC buffer). Often, a high stringency wash is preceded by a low stringency wash to remove 20 background probe signal. An example medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is 1x SSC at 45°C for 15 minutes. An example low stringency wash for a duplex of, e.g., more than 100 nucleotides, is 4-6x SSC at 40°C for 15 minutes. For short 25 probes (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.0M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30°C. Stringent conditions can also be achieved with the addition of destabilizing agents such 30 as formamide. In general, a signal to noise ratio of 2x (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific

hybridization. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.

5 The following are examples of sets of hybridization/wash conditions that may be used to clone homologous nucleotide sequences that are substantially identical to reference nucleotide sequences of the present invention: a reference nucleotide sequence preferably hybridizes to the reference nucleotide sequence in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 2X SSC, 0.1% SDS at 50°C, more desirably in 10 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 1X SSC, 0.1% SDS at 50°C, more desirably still in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.5X SSC, 0.1% SDS at 50°C, preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 1 mM EDTA at 50°C with washing in 0.1X SSC, 0.1% SDS at 50°C, more preferably in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO₄, 15 1 mM EDTA at 50°C with washing in 0.1X SSC, 0.1% SDS at 65°C.

20 A further indication that two nucleic acid sequences or proteins are substantially identical is that the protein encoded by the first nucleic acid is immunologically cross reactive with, or specifically binds to, the protein encoded by the second nucleic acid. Thus, a protein is typically substantially identical to a second protein, for example, where the two proteins differ only by conservative substitutions.

25 The phrase "specifically (or selectively) binds to an antibody," or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, antibodies raised to the protein with the amino acid sequence encoded by any of the nucleic acid sequences of the invention can be selected to obtain antibodies 30 specifically immunoreactive with that protein and not with other proteins except for polymorphic variants. A variety of immunoassay formats may be used to select antibodies

specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays, Western blots, or immunohistochemistry are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) *Antibodies, A Laboratory Manual*, Cold Spring Harbor Publications, New York 5 "Harlow and Lane"), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity. Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.

A "subsequence" refers to a sequence of nucleic acids or amino acids that comprise a part of a longer sequence of nucleic acids or amino acids (e.g., protein) respectively.

10 "Synthetic" refers to a nucleotide sequence comprising structural characters that are not present in the natural sequence. For example, an artificial sequence that resembles more closely the G+C content and the normal codon distribution of dicot and/or monocot genes is said to be synthetic.

15 "Transformation" is a process for introducing heterologous nucleic acid into a host cell or organism. In particular, "transformation" means the stable integration of a DNA molecule into the genome of an organism of interest. Transformed cells, tissues, or insects are understood to encompass not only the end product of a transformation process, but also transgenic progeny thereof.

20 "Transformed / transgenic / recombinant" refer to a host organism such as a bacterium or a plant into which a heterologous nucleic acid molecule has been introduced. The nucleic acid molecule can be stably integrated into the genome of the host or the nucleic acid molecule can also be present as an extrachromosomal molecule. Such an extrachromosomal molecule can be auto-replicating. Transformed cells, tissues, or plants are understood to encompass not only the end product of a transformation process, but also transgenic progeny thereof. A 25 "non-transformed", "non-transgenic", or "non-recombinant" host refers to a wild-type organism, e.g., a bacterium or plant, which does not contain the heterologous nucleic acid molecule.

30 Nucleotides are indicated by their bases by the following standard abbreviations: adenine (A), cytosine (C), thymine (T), and guanine (G). Amino acids are likewise indicated by the following standard abbreviations: alanine (Ala; A), arginine (Arg; R), asparagine (Asn; N), aspartic acid (Asp; D), cysteine (Cys; C), glutamine (Gln; Q), glutamic acid (Glu; E),

glycine (Gly; G), histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), and valine (Val; V). Furthermore, (Xaa; X) represents any amino acid.

5

This invention relates to novel nucleic acid sequences whose expression results in novel toxins, and to the making and using of the toxins to control insect pests. In particular, the present invention concerns synthetic gene sequences optimized for expression in plants that encode varying forms of the hybrid *Bacillus thuringiensis* delta-endotoxin H04, the toxin portion of which contains domains I and II of Cry1Ab and domain III of Cry1C. The hybrid gene encoding the H04 hybrid toxin, as constructed from the native cry1Ab and Cry1C genes is described in U.S. Pat. No. 5,736,131 and De Maagd *et al.*, *Appl. Environ. Microbiol.* 62(5): 10 1537-1543 (1996). The preferred method for constructing the synthetic H04 genes of the invention is set forth in WO 93/07278. The hybrid *Bacillus thuringiensis* toxins encoded by the novel 15 gene sequences are highly active against economically important insect pests such as fall armyworm, pink bollworm, tobacco budworm, European cornborer, and diamondback moth. The hybrid *Bacillus thuringiensis* toxins can be used in multiple insect control strategies, resulting in maximal efficiency with minimal impact on the environment.

The present invention encompasses DNA molecules comprising nucleotide sequences 20 that encode the insecticidal toxins of the invention. The present invention further encompasses recombinant vectors comprising the nucleic acid sequences of this invention. In such vectors, the nucleic acid sequences are preferably comprised in expression cassettes comprising regulatory elements for expression of the nucleotide sequences in a host cell capable of expressing the nucleotide sequences. Such regulatory elements usually comprise promoter and 25 termination signals and preferably also comprise elements allowing efficient translation of proteins encoded by the nucleic acid sequences of the present invention. Vectors comprising the nucleic acid sequences are usually capable of replication in particular host cells, preferably as extrachromosomal molecules, and are therefore used to amplify the nucleic acid sequences of this invention in the host cells. In one embodiment, host cells for such vectors are 30 microorganisms, such as bacteria, in particular *Bacillus thuringiensis* or *E. coli*. In another embodiment, host cells for such recombinant vectors are endophytes or epiphytes. A preferred

host cell for such vectors is a eukaryotic cell, such as a plant cell. Plant cells such as maize cells are most preferred host cells.

In a particularly preferred embodiment, an insecticidal toxin of the invention is expressed in a plant. In this case, transgenic plants expressing effective amounts of the toxins 5 protect themselves from insect pests. When the insect starts feeding on such a transgenic plant, it also ingests the expressed toxins. This will deter the insect from further biting into the plant tissue or may even harm or kill the insect.

The nucleic acid sequences described in this application can be incorporated into plant cells using conventional recombinant DNA technology. Generally, this involves inserting a 10 coding sequence of the invention into an expression system to which the coding sequence is heterologous (i.e., not normally present) using standard cloning procedures known in the art. The vector contains the necessary elements for the transcription and translation of the inserted protein-coding sequences. A large number of vector systems known in the art can be used, 15 such as plasmids, bacteriophage viruses and other modified viruses. Suitable vectors include, but are not limited to, viral vectors such as lambda vector systems λ gtl1, λ gtl0 and Charon 4; plasmid vectors such as pBI121, pBR322, pACYC177, pACYC184, pAR series, pKK223-3, pUC8, pUC9, pUC18, pUC19, pLG339, pRK290, pKC37, pKC101, pCDNAII; and other similar systems. Transformed cells can be regenerated into whole plants such that the nucleotide sequences of the invention confer insect resistance to the transgenic plants.

20 Plants transformed in accordance with the present invention may be monocots or dicots and include, but are not limited to, maize, wheat, barley, rye, sweet potato, bean, pea, chicory, lettuce, cabbage, cauliflower, broccoli, turnip, radish, spinach, asparagus, onion, garlic, pepper, celery, squash, pumpkin, hemp, zucchini, apple, pear, quince, melon (e.g., watermelon), plum, cherry, peach, nectarine, apricot, strawberry, grape, raspberry, blackberry, pineapple, avocado, 25 papaya, mango, banana, soybean, tomato, sorghum, sugarcane, sugarbeet, sunflower, rapeseed, clover, tobacco, carrot, cotton, alfalfa, rice, potato, eggplant, cucumber, *Arabidopsis*, and woody plants such as coniferous and deciduous trees. Once a desired nucleotide sequence has been transformed into a particular plant species, it may be propagated in that species or moved into other varieties of the same species, particularly including 30 commercial varieties, using traditional breeding techniques.

For their expression in transgenic plants, the nucleotide sequences of the invention may require modification and optimization. Although in many cases genes from microbial organisms can be expressed in plants at high levels without modification, low expression in transgenic plants may result from microbial nucleotide sequences having codons that are not preferred in plants. It is known in the art that all organisms have specific preferences for codon usage, and the codons of the nucleotide sequences described in this invention can be changed to conform with plant preferences, while maintaining the amino acids encoded thereby. Furthermore, high expression in plants is best achieved from coding sequences that have at least 35% about GC content, preferably more than about 45%, more preferably more than about 50%, and most preferably more than about 60%. Microbial nucleotide sequences which have low GC contents may express poorly in plants due to the existence of ATTAA motifs which may destabilize messages, and AATAAA motifs which may cause inappropriate polyadenylation. Although preferred gene sequences may be adequately expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific codon preferences and GC content preferences of monocotyledons or dicotyledons as these preferences have been shown to differ (*Murray et al. Nucl. Acids Res.* 17: 477-498 (1989)). In addition, the nucleotide sequences are screened for the existence of illegitimate splice sites that may cause message truncation. All changes required to be made within the nucleotide sequences such as those described above are made using well known techniques of site directed mutagenesis, PCR, and synthetic gene construction using the methods described in the published patent applications EP 0 385 962, EP 0 359 472, and WO 93/07278.

For efficient initiation of translation, sequences adjacent to the initiating methionine may require modification. For example, they can be modified by the inclusion of sequences known to be effective in plants. Joshi has suggested an appropriate consensus for plants (NAR 25 15: 6643-6653 (1987)) and Clontech suggests a further consensus translation initiator (1993/1994 catalog, page 210). These consensuses are suitable for use with the nucleotide sequences of this invention. The sequences are incorporated into constructions comprising the nucleotide sequences, up to and including the ATG (whilst leaving the second amino acid unmodified), or alternatively up to and including the GTC subsequent to the ATG (with the 30 possibility of modifying the second amino acid of the transgene).

Expression of the nucleotide sequences in transgenic plants is driven by promoters shown to be functional in plants. The choice of promoter will vary depending on the temporal and spatial requirements for expression, and also depending on the target species. Thus, expression of the nucleotide sequences of this invention in leaves, in ears, in inflorescences (e.g. spikes, panicles, cobs, *etc.*), in roots, and/or seedlings is preferred. In many cases, however, protection against more than one type of insect pest is sought, and thus expression in multiple tissues is desirable. Although many promoters from dicotyledons have been shown to be operational in monocotyledons and *vice versa*, ideally dicotyledonous promoters are selected for expression in dicotyledons, and monocotyledonous promoters for expression in monocotyledons. However, there is no restriction to the provenance of selected promoters; it is sufficient that they are operational in driving the expression of the nucleotide sequences in the desired cell.

Preferred promoters that are expressed constitutively include promoters from genes encoding actin or ubiquitin and the CaMV 35S and 19S promoters. The nucleotide sequences of this invention can also be expressed under the regulation of promoters that are chemically regulated. This enables the insecticidal toxins to be synthesized only when the crop plants are treated with the inducing chemicals. Preferred technology for chemical induction of gene expression is detailed in the published application EP 0 332 104 and US patent 5,614,395. A preferred promoter for chemical induction is the tobacco PR-1a promoter.

A preferred category of promoters is that which is wound inducible. Numerous promoters have been described which are expressed at wound sites and also at the sites of phytopathogen infection. Ideally, such a promoter should only be active locally at the sites of infection, and in this way the insecticidal toxins only accumulate in cells which need to synthesize the insecticidal toxins to kill the invading insect pest. Preferred promoters of this kind include those described by Stanford *et al.*, *Mol. Gen. Genet.* 215: 200-208 (1989), Xu *et al.*, *Plant Molec. Biol.* 22: 573-588 (1993), Logemann *et al.*, *Plant Cell* 1: 151-158 (1989), Rohrmeier & Lehle, *Plant Molec. Biol.* 22: 783-792 (1993), Firek *et al.*, *Plant Molec. Biol.* 22: 129-142 (1993), and Warner *et al.*, *Plant J.* 3: 191-201 (1993).

Preferred tissue specific expression patterns include green tissue specific, root specific, stem specific, and flower specific. Promoters suitable for expression in green tissue include many which regulate genes involved in photosynthesis and many of these have been cloned

from both monocotyledons and dicotyledons. A preferred promoter is the maize PEPC promoter from the phosphoenol carboxylase gene (Hudspeth & Grula, *Plant Molec. Biol.* 12: 579-589 (1989)). A preferred promoter for root specific expression is the maize metallothionein-like (MTL) promoter described by de Framond (*FEBS* 290: 103-106 (1991); 5 EP 0 452 269. A preferred stem specific promoter is that described in US patent 5,625,136 which drives expression of the maize *trpA* gene.

Especially preferred embodiments of the invention are transgenic plants expressing at least one of the nucleotide sequences of the invention in a root-preferred or root-specific fashion. Further preferred embodiments are transgenic plants expressing the nucleotide 10 sequences in a wound-inducible or pathogen infection-inducible manner.

In addition to the selection of a suitable promoter, constructions for expression of an insecticidal toxin in plants require an appropriate transcription terminator to be attached downstream of the heterologous nucleotide sequence. Several such terminators are available and known in the art (e.g. *tm1* from CaMV, E9 from *rbcS*). Any available terminator known 15 to function in plants can be used in the context of this invention.

Numerous other sequences can be incorporated into expression cassettes described in this invention. These include sequences which have been shown to enhance expression such as intron sequences (e.g. from *Adh1* and *bronze1*) and viral leader sequences (e.g. from TMV, MCMV and AMV).

20 It may be preferable to target expression of the nucleotide sequences of the present invention to different cellular localizations in the plant. In some cases, localization in the cytosol may be desirable, whereas in other cases, localization in some subcellular organelle may be preferred. Subcellular localization of transgene encoded enzymes is undertaken using techniques well known in the art. Typically, the DNA encoding the target peptide from a known organelle-targeted gene product is manipulated and fused upstream of the nucleotide 25 sequence. Many such target sequences are known for the chloroplast and their functioning in heterologous constructions has been shown. The expression of the nucleotide sequences of the present invention is also targeted to the endoplasmic reticulum or to the vacuoles of the host cells. Techniques to achieve this are well-known in the art.

30 Vectors suitable for plant transformation are described elsewhere in this specification. For *Agrobacterium*-mediated transformation, binary vectors or vectors carrying at least one T-

DNA border sequence are suitable, whereas for direct gene transfer any vector is suitable and linear DNA containing only the construction of interest may be preferred. In the case of direct gene transfer, transformation with a single DNA species or co-transformation can be used (Schocher *et al.* Biotechnology 4: 1093-1096 (1986)). For both direct gene transfer and *Agrobacterium*-mediated transfer, transformation is usually (but not necessarily) undertaken with a selectable marker which may provide resistance to an antibiotic (kanamycin, hygromycin or methotrexate) or a herbicide (basta). Examples of such markers are neomycin phosphotransferase, hygromycin phosphotransferase, dihydrofolate reductase, phosphinothricin acetyltransferase, 2, 2-dichloropropionic acid dehalogenase, acetohydroxyacid synthase, 5-enolpyruvyl-shikimate-phosphate synthase, haloarylnitrilase, protoporphyrinogen oxidase, acetyl-coenzyme A carboxylase, dihydropteroate synthase, chloramphenicol acetyl transferase, and β -glucuronidase. Another type of marker providing for positive selection is the mannose-6-phosphate isomerase (MPI/PMI) gene, which provides the ability to metabolize mannose-6-phosphate isomerase. The choice of selectable or screenable marker for plant transformation is not, however, critical to the invention.

The recombinant DNA described above can be introduced into the plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant targeted for transformation. Suitable methods of transforming plant cells include microinjection (Crossway et al., *BioTechniques* 4:320-334 (1986)), electroporation (Riggs et al., *Proc. Natl. Acad. Sci. USA* 83:5602-5606 (1986), *Agrobacterium*-mediated transformation (Hinchee et al., *Biotechnology* 6:915-921 (1988); *See also*, Ishida et al., *Nature Biotechnology* 14:745-750 (June 1996) for maize transformation), direct gene transfer (Paszkowski et al., *EMBO J.* 3:2717-2722 (1984); Hayashimoto et al., *Plant Physiol.* 93:857-863 (1990)(rice)), and ballistic particle acceleration using devices available from Agracetus, Inc., Madison, Wisconsin and Dupont, Inc., Wilmington, Delaware (see, for example, Sanford et al., U.S. Patent 4,945,050; and McCabe et al., *Biotechnology* 6:923-926 (1988)). *See also*, Weissinger et al., *Annual Rev. Genet.* 22:421-477 (1988); Sanford et al., *Particulate Science and Technology* 5:27-37 (1987)(onion); Svab et al., *Proc. Natl. Acad. Sci. USA* 87: 8526-8530 (1990) (tobacco chloroplast); Christou et al., *Plant Physiol.* 87:671-674 (1988)(soybean); McCabe et al., *Bio/Technology* 6:923-926 (1988)(soybean); Klein et al., *Proc. Natl. Acad. Sci. USA*, 85:4305-4309 (1988)(maize); Klein

et al., *Bio/Technology* 6:559-563 (1988) (maize); Klein *et al.*, *Plant Physiol.* 91:440-444 (1988) (maize); Fromm *et al.*, *Bio/Technology* 8:833-839 (1990); and Gordon-Kamm *et al.*, *Plant Cell* 2: 603-618 (1990) (maize); Koziel *et al.*, *Biotechnology* 11: 194-200 (1993) (maize); Shimamoto *et al.*, *Nature* 338: 274-277 (1989) (rice); Christou *et al.*, *Biotechnology* 9: 957-962 (1991) (rice); Datta *et al.*, *Bio/Technology* 8:736-740 (1990) (rice); European Patent Application EP 0 332 581 (orchardgrass and other *Pooideae*); Vasil *et al.*, *Biotechnology* 11: 1553-1558 (1993) (wheat); Weeks *et al.*, *Plant Physiol.* 102: 1077-1084 (1993) (wheat); Wan *et al.*, *Plant Physiol.* 104: 37-48 (1994) (barley); Jahne *et al.*, *Theor. Appl. Genet.* 89:525-533 (1994)(barley); Umbeck *et al.*, *Bio/Technology* 5: 263-266 (1987) (cotton); Casas *et al.*, *Proc. Natl. Acad. Sci. USA* 90:11212-11216 (Dec. 1993) (sorghum); Somers *et al.*, *Bio/Technology* 10:1589-1594 (Dec. 1992) (oat); Torbert *et al.*, *Plant Cell Reports* 14:635-640 (1995) (oat); Weeks *et al.*, *Plant Physiol.* 102:1077-1084 (1993) (wheat); Chang *et al.*, WO 94/13822 (wheat) and Nehra *et al.*, *The Plant Journal* 5:285-297 (1994) (wheat). A particularly preferred set of embodiments for the introduction of recombinant DNA molecules into maize by microprojectile bombardment can be found in Koziel *et al.*, *Biotechnology* 11: 194-200 (1993), Hill *et al.*, *Euphytica* 85:119-123 (1995) and Koziel *et al.*, *Annals of the New York Academy of Sciences* 792:164-171 (1996). An additional preferred embodiment is the protoplast transformation method for maize as disclosed in EP 0 292 435. Transformation of plants can be undertaken with a single DNA species or multiple DNA species (*i.e.* co-transformation) and both these techniques are suitable for use with a coding sequence of the invention.

In another preferred embodiment, a nucleotide sequence of the present invention is directly transformed into the plastid genome. A major advantage of plastid transformation is that plastids are generally capable of expressing bacterial genes without substantial modification, and plastids are capable of expressing multiple open reading frames under control of a single promoter. Plastid transformation technology is extensively described in U.S. Patent Nos. 5,451,513, 5,545,817, and 5,545,818, in PCT application no. WO 95/16783, and in McBride *et al.* (1994) *Proc. Natl. Acad. Sci. USA* 91, 7301-7305. The basic technique for chloroplast transformation involves introducing regions of cloned plastid DNA flanking a selectable marker together with the gene of interest into a suitable target tissue, *e.g.*, using biolistics or protoplast transformation (*e.g.*, calcium chloride or PEG mediated

transformation). The 1 to 1.5 kb flanking regions, termed targeting sequences, facilitate homologous recombination with the plastid genome and thus allow the replacement or modification of specific regions of the plastome. Initially, point mutations in the chloroplast 16S rRNA and rps12 genes conferring resistance to spectinomycin and/or streptomycin are 5 utilized as selectable markers for transformation (Svab, Z., Hajdukiewicz, P., and Maliga, P. (1990) *Proc. Natl. Acad. Sci. USA* 87, 8526-8530; Staub, J. M., and Maliga, P. (1992) *Plant Cell* 4, 39-45). This resulted in stable homoplasmic transformants at a frequency of approximately one per 100 bombardments of target leaves. The presence of cloning sites 10 between these markers allowed creation of a plastid targeting vector for introduction of foreign genes (Staub, J.M., and Maliga, P. (1993) *EMBO J.* 12, 601-606). Substantial increases in transformation frequency are obtained by replacement of the recessive rRNA or r-protein 15 antibiotic resistance genes with a dominant selectable marker, the bacterial *aadA* gene encoding the spectinomycin-detoxifying enzyme aminoglycoside-3'-adenyltransferase (Svab, Z., and Maliga, P. (1993) *Proc. Natl. Acad. Sci. USA* 90, 913-917). Previously, this marker had been used successfully for high-frequency transformation of the plastid genome of the 20 green alga *Chlamydomonas reinhardtii* (Goldschmidt-Clermont, M. (1991) *Nucl. Acids Res.* 19: 4083-4089). Other selectable markers useful for plastid transformation are known in the art and encompassed within the scope of the invention. Typically, approximately 15-20 cell division cycles following transformation are required to reach a homoplasmidic state. Plastid 25 expression, in which genes are inserted by homologous recombination into all of the several thousand copies of the circular plastid genome present in each plant cell, takes advantage of the enormous copy number advantage over nuclear-expressed genes to permit expression levels that can readily exceed 10% of the total soluble plant protein. In a preferred embodiment, a nucleotide sequence of the present invention is inserted into a plastid targeting vector and transformed into the plastid genome of a desired plant host. Plants homoplasmic for 30 plastid genomes containing a nucleotide sequence of the present invention are obtained, and are preferentially capable of high expression of the nucleotide sequence.

EXAMPLES

The invention will be further described by reference to the following detailed examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified. Standard recombinant DNA and molecular cloning techniques used here are well known in the art and are described by Ausubel (ed.), *Current Protocols in Molecular Biology*, John Wiley and Sons, Inc. (1994); T. Maniatis, E. F. Fritsch and J. Sambrook, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor laboratory, Cold Spring Harbor, NY (1989); and by T.J. Silhavy, M.L. Berman, and L.W. Enquist, *Experiments with Gene Fusions*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984).

10

Example 1: Expression and Purification of an H04 Toxin Fragment

A truncated form of the H04 hybrid toxin gene (described in De Maagd *et al.*, *Appl. Environ. Microbiol.* 62(5): 1537-1543 (1996), which encodes a Bt toxin consisting essentially of domains I and II of Cry1Ab and domain III of Cry1C, is cloned into an expression vector such as pBluescript SK-, *Bacillus* shuttle vector, or pET 21b(+) for overexpression in *E. coli*. Cells are grown in LB media containing 50 micrograms/ml ampicillin for 24 to 48 h at 37°C shaker (250 rpm). Cells are harvested by centrifugation for 10 min at 7,000 rpm. The pellet is sonicated with a Bronson sonifier for 2 min 30 sec with 2 sec pulse. Complete sonication is checked 15 under microscope. Soluble fractions are removed by centrifugation at 10,000 rpm for 10 min. The resulting pellet containing crystal proteins is washed 4-5 times with 2% Triton X-100 containing 0.5 M NaCl. Continuous washing is done with 0.5 M NaCl (4-5 times) and the final 20 pellet is washed with distilled water (2 times). The resulting pellet is solubilized in 50 mM Na₂CO₃ buffer containing 10 mM dithiothreitol at 37°C for 2 h. Solubilized protein is separated from insoluble materials by centrifugation at 12,000 rpm for 10 min. Protein samples 25 are dialyzed with 50 mM Na₂CO₃, pH 9.0 buffer for bioassays.

Example 2: Bioassays

LC50's are performed on fall armyworm, pink bollworm, tobacco budworm, and European cornborer using purified truncated H04 protein that is produced, for example, as described above in Example 1. Results are as follows:

5 LC50 fall armyworm 133 ng/cm²
 LC50 pink bollworm 691 ng/cm²
 LC50 tobacco budworm 299 ng/cm²
 LC50 European cornborer 31 ng/cm²

Example 3: Synthetic H04 Gene Construction

10

A synthetic nucleotide sequence encoding the toxin portion of H04 is designed by backtranslating the amino acid sequence of the H04 hybrid toxin fragment described in De Maagd *et al.*, *Appl. Environ. Microbiol.* 62(5): 1537-1543 (1996) (domains I and II of Cry1Ab and domain III of Cry1C) using the "Backtranslation" program found in the University of Wisconsin GCG 15 group of programs using a maize preference codon table (Murray *et al.*, *Nucl. Acids Res.* 17:477-498, 1989, incorporated herein by reference). Preferably, the most frequently used maize codon is used for each amino acid, as described in WO 93/07278.

The synthetic nucleotide sequence encoding the toxin portion of H04 may be constructed in several fragments. Each fragment is constructed by hybridization of ten pairs of oligomers 20 60-75 nucleotides in length representing both strands of the gene. An approximately 15 nucleotide overlap is designed between sequential oligonucleotide pairs for correct orientation and assembly. Oligonucleotides may be synthesized by, for example, Genosys Biotechnologies Inc., TX. Each pair of oligomers is hybridized and phosphorylated using the enzyme polynucleotide kinase from, e.g., New England Biolabs, Inc., MA using conditions specified by 25 the vendor. Kinased fragment pairs are then hybridized and ligated into a high copy plasmid vector containing, e.g., an ampicillin resistance gene and transformed into, e.g., competent DH5 α cells. The cells are plated onto ampicillin containing media and incubated overnight at 37°C. Colonies are screened for inserted DNA. The DNA is sequenced and clones containing 30 the correct sequence are selected. The fragments are then joined by restriction digestion, ligation and transformation using unique restriction sites between the fragments.

SEQ ID NO:3 shows the synthetic nucleotide sequence encoding the 631-amino acid toxin portion of H04 (without a protoxin tail region), and SEQ ID NO:4 shows the amino acid sequence of the H04 toxin encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:3. SEQ ID NO:11 shows the nucleotide sequence of construct pNOV1308, which contains the constitutive 5 maize ubiquitin promoter operatively linked to the synthetic H04 gene sequence set forth in SEQ ID NO:3.

In addition to the above-described synthetic gene (SEQ ID NO:3) that encodes only the toxin portion of the H04 hybrid (domains I and II of Cry1Ab and domain III of Cry1C), additional synthetic H04 genes are constructed with all or a portion of the synthetic *cry1Ab* tail region 10 described in U.S. Patent No. 5,625,136 (herein incorporated by reference) fused to the 3' end of the H04 toxin portion. These synthetic H04 gene sequences with *cry1Ab* tails are described below:

SEQ ID NO:5 shows a synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion, and SEQ ID NO:6 shows the amino acid sequence of the 15 H04 + Cry1Ab tail encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:5. SEQ ID NO:12 shows the nucleotide sequence of construct pNOV1436, which contains the root-preferred maize MTL promoter operatively linked to the synthetic H04 gene sequence set forth in SEQ ID NO:5. SEQ ID NO:13 shows the nucleotide sequence of construct pNOV1441, which 20 contains the constitutive maize ubiquitin promoter operatively linked to the synthetic H04 gene sequence set forth in SEQ ID NO:5.

SEQ ID NO:7 shows another synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion, and SEQ ID NO:8 shows the amino acid sequence of the H04 + Cry1Ab tail encoded by the synthetic nucleotide sequence depicted in SEQ ID NO:7. SEQ ID NO:14 shows the nucleotide sequence of construct pNOV1305, which contains the 25 constitutive maize ubiquitin promoter operatively linked to the synthetic H04 gene sequence set forth in SEQ ID NO:7. SEQ ID NO:15 shows the nucleotide sequence of construct pNOV1313, which contains the constitutive maize ubiquitin promoter operatively linked to the synthetic H04 gene sequence set forth in SEQ ID NO:7.

SEQ ID NO:9 shows a synthetic nucleotide sequence encoding the toxin portion of H04 plus only the first 40 amino acids of the Cry1Ab tail, and SEQ ID NO:10 shows the amino acid 30 sequence of the H04 + 40-amino acid truncated Cry1Ab tail encoded by the synthetic nucleotide

sequence depicted in SEQ ID NO:9. SEQ ID NO:16 shows the nucleotide sequence of construct pNOV1435, which contains the root-preferred maize MTL promoter operatively linked to the synthetic H04 gene sequence set forth in SEQ ID NO:9. SEQ ID NO:17 shows the nucleotide sequence of construct pZU578, which contains the Arabidopsis actin-2 promoter operatively linked 5 to the synthetic H04 gene sequence set forth in SEQ ID NO:9.

Example 4: Modification of Coding Sequences and Adjacent Sequences

The nucleotide sequences described in this application can be modified for expression 10 in transgenic plant hosts. A host plant expressing the nucleotide sequences and which produces the insecticidal toxins in its cells has enhanced resistance to insect attack and is thus better equipped to withstand crop losses associated with such attack.

The transgenic expression in plants of genes derived from microbial sources may require the modification of those genes to achieve and optimize their expression in plants. In 15 particular, bacterial ORFs that encode separate enzymes but that are encoded by the same transcript in the native microbe are best expressed in plants on separate transcripts. To achieve this, each microbial ORF is isolated individually and cloned within a cassette which provides a plant promoter sequence at the 5' end of the ORF and a plant transcriptional terminator at the 3' end of the ORF. The isolated ORF sequence preferably includes the initiating ATG codon 20 and the terminating STOP codon but may include additional sequence beyond the initiating ATG and the STOP codon. In addition, the ORF may be truncated, but still retain the required activity; for particularly long ORFs, truncated versions which retain activity may be preferable for expression in transgenic organisms. By "plant promoter" and "plant transcriptional terminator" it is intended to mean promoters and transcriptional terminators which operate 25 within plant cells. This includes promoters and transcription terminators which may be derived from non-plant sources such as viruses (an example is the Cauliflower Mosaic Virus).

In some cases, modification to the ORF coding sequences and adjacent sequence is not required. It is sufficient to isolate a fragment containing the ORF of interest and to insert it downstream of a plant promoter. For example, Gaffney *et al.* (Science 261: 754-756 (1993)) 30 have expressed the *Pseudomonas nahG* gene in transgenic plants under the control of the CaMV 35S promoter and the CaMV *tml* terminator successfully without modification of the

coding sequence and with x bp of the *Pseudomonas* gene upstream of the ATG still attached, and y bp downstream of the STOP codon still attached to the *nahG* ORF. Preferably as little adjacent microbial sequence should be left attached upstream of the ATG and downstream of the STOP codon. In practice, such construction may depend on the availability of restriction sites.

In other cases, the expression of genes derived from microbial sources may provide problems in expression. These problems have been well characterized in the art and are particularly common with genes derived from certain sources such as *Bacillus*. These problems may apply to the nucleotide sequence of this invention and the modification of these genes can be undertaken using techniques now well known in the art. The following problems may be encountered:

1. Codon Usage.

The preferred codon usage in plants differs from the preferred codon usage in certain microorganisms. Comparison of the usage of codons within a cloned microbial ORF to usage in plant genes (and in particular genes from the target plant) will enable an identification of the codons within the ORF which should preferably be changed. Typically plant evolution has tended towards a strong preference of the nucleotides C and G in the third base position of monocotyledons, whereas dicotyledons often use the nucleotides A or T at this position. By modifying a gene to incorporate preferred codon usage for a particular target transgenic species, many of the problems described below for GC/AT content and illegitimate splicing will be overcome.

2. GC/AT Content.

Plant genes typically have a GC content of more than 35%. ORF sequences which are rich in A and T nucleotides can cause several problems in plants. Firstly, motifs of ATTTA are believed to cause destabilization of messages and are found at the 3' end of many short-lived mRNAs. Secondly, the occurrence of polyadenylation signals such as AATAAA at inappropriate positions within the message is believed to cause premature truncation of transcription. In addition, monocotyledons may recognize AT-rich sequences as splice sites (see below).

3. Sequences Adjacent to the Initiating Methionine.

Plants differ from microorganisms in that their messages do not possess a defined ribosome binding site. Rather, it is believed that ribosomes attach to the 5' end of the message and scan for the first available ATG at which to start translation. Nevertheless, it is believed that there is a preference for certain nucleotides adjacent to the ATG and that expression of microbial genes can be enhanced by the inclusion of a eukaryotic consensus translation initiator at the ATG. Clontech (1993/1994 catalog, page 210, incorporated herein by reference) have suggested one sequence as a consensus translation initiator for the expression of the *E. coli uidA* gene in plants. Further, Joshi (NAR 15: 6643-6653 (1987), incorporated herein by reference) has compared many plant sequences adjacent to the ATG and suggests another consensus sequence. In situations where difficulties are encountered in the expression of microbial ORFs in plants, inclusion of one of these sequences at the initiating ATG may improve translation. In such cases the last three nucleotides of the consensus may not be appropriate for inclusion in the modified sequence due to their modification of the second AA residue. Preferred sequences adjacent to the initiating methionine may differ between different plant species. A survey of 14 maize genes located in the GenBank database provided the following results:

20 Position Before the Initiating ATG in 14 Maize Genes:

	<u>-10</u>	<u>-9</u>	<u>-8</u>	<u>-7</u>	<u>-6</u>	<u>-5</u>	<u>-4</u>	<u>-3</u>	<u>-2</u>	<u>-1</u>
C	3	8	4	6	2	5	6	0	10	7
T	3	0	3	4	3	2	1	1	1	0
A	2	3	1	4	3	2	3	7	2	3
25 G	6	3	6	0	6	5	4	6	1	5

This analysis can be done for the desired plant species into which the nucleotide sequence is being incorporated, and the sequence adjacent to the ATG modified to incorporate the preferred nucleotides.

30

4. Removal of Illegitimate Splice Sites.

Genes cloned from non-plant sources and not optimized for expression in plants may also contain motifs which may be recognized in plants as 5' or 3' splice sites, and be cleaved, thus generating truncated or deleted messages. These sites can be removed using the techniques well known in the art.

5 Techniques for the modification of coding sequences and adjacent sequences are well known in the art. In cases where the initial expression of a microbial ORF is low and it is deemed appropriate to make alterations to the sequence as described above, then the construction of synthetic genes can be accomplished according to methods well known in the art. These are, for example, described in the published patent disclosures EP 0 385 962, EP 0
10 359 472 and WO 93/07278, all of which are incorporated herein by reference. In most cases it is preferable to assay the expression of gene constructions using transient assay protocols (which are well known in the art) prior to their transfer to transgenic plants.

Example 5: Construction of Plant Expression Cassettes

15

Coding sequences intended for expression in transgenic plants are first assembled in expression cassettes behind a suitable promoter expressible in plants. The expression cassettes may also comprise any further sequences required or selected for the expression of the transgene. Such sequences include, but are not restricted to, transcription terminators, 20 extraneous sequences to enhance expression such as introns, vital sequences, and sequences intended for the targeting of the gene product to specific organelles and cell compartments. These expression cassettes can then be easily transferred to the plant transformation vectors described below. The following is a description of various components of typical expression cassettes.

25

1. Promoters

The selection of the promoter used in expression cassettes will determine the spatial and temporal expression pattern of the transgene in the transgenic plant. Selected promoters will express transgenes in specific cell types (such as leaf epidermal cells, mesophyll cells, root 30 cortex cells) or in specific tissues or organs (roots, leaves or flowers, for example) and the selection will reflect the desired location of accumulation of the gene product. Alternatively,

the selected promoter may drive expression of the gene under various inducing conditions. Promoters vary in their strength, i.e., ability to promote transcription. Depending upon the host cell system utilized, any one of a number of suitable promoters can be used, including the gene's native promoter. The following are non-limiting examples of promoters that may be 5 used in expression cassettes.

a. Constitutive Expression, the Ubiquitin Promoter:

Ubiquitin is a gene product known to accumulate in many cell types and its promoter has been cloned from several species for use in transgenic plants (e.g. sunflower - Binet *et al.* Plant 10 Science 79: 87-94 (1991); maize - Christensen *et al.* Plant Molec. Biol. 12: 619-632 (1989); and *Arabidopsis* - Norris *et al.*, *Plant Mol. Biol.* 21:895-906 (1993)). The maize ubiquitin promoter has been developed in transgenic monocot systems and its sequence and vectors 15 constructed for monocot transformation are disclosed in the patent publication EP 0 342 926 which is herein incorporated by reference. Taylor *et al.* (Plant Cell Rep. 12: 491-495 (1993)) describe a vector (pAHC25) that comprises the maize ubiquitin promoter and first intron and 20 its high activity in cell suspensions of numerous monocotyledons when introduced via microprojectile bombardment. The *Arabidopsis* ubiquitin promoter is ideal for use with the nucleotide sequences of the present invention. The ubiquitin promoter is suitable for gene expression in transgenic plants, both monocotyledons and dicotyledons. Suitable vectors are derivatives of pAHC25 or any of the transformation vectors described in this application, modified by the introduction of the appropriate ubiquitin promoter and/or intron sequences.

b. Constitutive Expression, the CaMV 35S Promoter:

Construction of the plasmid pCGN1761 is described in the published patent application 25 EP 0 392 225 (Example 23), which is hereby incorporated by reference. pCGN1761 contains the "double" CaMV 35S promoter and the *tml* transcriptional terminator with a unique *EcoRI* site between the promoter and the terminator and has a pUC-type backbone. A derivative of pCGN1761 is constructed which has a modified polylinker which includes *NotI* and *XhoI* sites 30 in addition to the existing *EcoRI* site. This derivative is designated pCGN1761ENX. pCGN1761ENX is useful for the cloning of cDNA sequences or coding sequences (including microbial ORF sequences) within its polylinker for the purpose of their expression under the

control of the 35S promoter in transgenic plants. The entire 35S promoter-coding sequence-*tml* terminator cassette of such a construction can be excised by *HindIII*, *SphI*, *SalI*, and *XbaI* sites 5' to the promoter and *XbaI*, *BamHI* and *BglII* sites 3' to the terminator for transfer to transformation vectors such as those described below. Furthermore, the double 35S promoter 5 fragment can be removed by 5' excision with *HindIII*, *SphI*, *SalI*, *XbaI*, or *PstI*, and 3' excision with any of the polylinker restriction sites (*EcoRI*, *NotI* or *XbaI*) for replacement with another promoter. If desired, modifications around the cloning sites can be made by the introduction of sequences that may enhance translation. This is particularly useful when overexpression is desired. For example, pCGN1761ENX may be modified by optimization of the translational 10 initiation site as described in Example 37 of U.S. Patent No. 5,639,949, incorporated herein by reference.

c. Constitutive Expression, the Actin Promoter:

Several isoforms of actin are known to be expressed in most cell types and consequently 15 the actin promoter is a good choice for a constitutive promoter. In particular, the promoter from the rice *ActI* gene has been cloned and characterized (McElroy *et al.* *Plant Cell* 2: 163-171 (1990)). A 1.3kb fragment of the promoter was found to contain all the regulatory elements required for expression in rice protoplasts. Furthermore, numerous expression vectors based on the *ActI* promoter have been constructed specifically for use in 20 monocotyledons (McElroy *et al.* *Mol. Gen. Genet.* 231: 150-160 (1991)). These incorporate the *ActI*-intron 1, *AdhI* 5' flanking sequence and *AdhI*-intron 1 (from the maize alcohol dehydrogenase gene) and sequence from the CaMV 35S promoter. Vectors showing highest expression were fusions of 35S and *ActI* intron or the *ActI* 5' flanking sequence and the *ActI* 25 intron. Optimization of sequences around the initiating ATG (of the GUS reporter gene) also enhanced expression. The promoter expression cassettes described by McElroy *et al.* (*Mol. Gen. Genet.* 231: 150-160 (1991)) can be easily modified for gene expression and are particularly suitable for use in monocotyledonous hosts. For example, promoter-containing fragments is removed from the McElroy constructions and used to replace the double 35S 30 promoter in pCGN1761ENX, which is then available for the insertion of specific gene sequences. The fusion genes thus constructed can then be transferred to appropriate transformation vectors. In a separate report, the rice *ActI* promoter with its first intron has

also been found to direct high expression in cultured barley cells (Chibbar *et al.* *Plant Cell Rep.* 12: 506-509 (1993)).

d. Inducible Expression, the PR-1 Promoter:

5 The double 35S promoter in pCGN1761ENX may be replaced with any other promoter of choice that will result in suitably high expression levels. By way of example, one of the chemically regulatable promoters described in U.S. Patent No. 5,614,395, such as the tobacco PR-1a promoter, may replace the double 35S promoter. Alternately, the *Arabidopsis* PR-1 promoter described in Lebel *et al.*, *Plant J.* 16:223-233 (1998) may be used. The promoter of 10 choice is preferably excised from its source by restriction enzymes, but can alternatively be PCR-amplified using primers that carry appropriate terminal restriction sites. Should PCR-amplification be undertaken, then the promoter should be re-sequenced to check for amplification errors after the cloning of the amplified promoter in the target vector. The chemically/pathogen regulatable tobacco PR-1a promoter is cleaved from plasmid pCIB1004 15 (for construction, see example 21 of EP 0 332 104, which is hereby incorporated by reference) and transferred to plasmid pCGN1761ENX (Uknes *et al.*, *Plant Cell* 4: 645-656 (1992)). pCIB1004 is cleaved with *NcoI* and the resultant 3' overhang of the linearized fragment is rendered blunt by treatment with T4 DNA polymerase. The fragment is then cleaved with *HindIII* and the resultant PR-1a promoter-containing fragment is gel purified and cloned into 20 pCGN1761ENX from which the double 35S promoter has been removed. This is done by cleavage with *XhoI* and blunting with T4 polymerase, followed by cleavage with *HindIII* and isolation of the larger vector-terminator containing fragment into which the pCIB1004 promoter fragment is cloned. This generates a pCGN1761ENX derivative with the PR-1a 25 promoter and the *tml* terminator and an intervening polylinker with unique *EcoRI* and *NotI* sites. The selected coding sequence can be inserted into this vector, and the fusion products (*i.e.* promoter-gene-terminator) can subsequently be transferred to any selected transformation vector, including those described *infra*. Various chemical regulators may be employed to induce expression of the selected coding sequence in the plants transformed according to the present invention, including the benzothiadiazole, isonicotinic acid, and salicylic acid 30 compounds disclosed in U.S. Patent Nos. 5,523,311 and 5,614,395.

e. Inducible Expression, an Ethanol-Inducible Promoter:

A promoter inducible by certain alcohols or ketones, such as ethanol, may also be used to confer inducible expression of a coding sequence of the present invention. Such a promoter is for example the *alcA* gene promoter from *Aspergillus nidulans* (Caddick et al. (1998) *Nat. Biotechnol* 16:177-180). In *A. nidulans*, the *alcA* gene encodes alcohol dehydrogenase I, the expression of which is regulated by the AlcR transcription factors in presence of the chemical inducer. For the purposes of the present invention, the CAT coding sequences in plasmid palcA:CAT comprising a *alcA* gene promoter sequence fused to a minimal 35S promoter (Caddick et al. (1998) *Nat. Biotechnol* 16:177-180) are replaced by a coding sequence of the present invention to form an expression cassette having the coding sequence under the control of the *alcA* gene promoter. This is carried out using methods well known in the art.

f. Inducible Expression, a Glucocorticoid-Inducible Promoter:

Induction of expression of a nucleic acid sequence of the present invention using systems based on steroid hormones is also contemplated. For example, a glucocorticoid-mediated induction system is used (Aoyama and Chua (1997) *The Plant Journal* 11: 605-612) and gene expression is induced by application of a glucocorticoid, for example a synthetic glucocorticoid, preferably dexamethasone, preferably at a concentration ranging from 0.1mM to 1mM, more preferably from 10mM to 100mM. For the purposes of the present invention, the luciferase gene sequences are replaced by a nucleic acid sequence of the invention to form an expression cassette having a nucleic acid sequence of the invention under the control of six copies of the GAL4 upstream activating sequences fused to the 35S minimal promoter. This is carried out using methods well known in the art. The trans-acting factor comprises the GAL4 DNA-binding domain (Keegan et al. (1986) *Science* 231: 699-704) fused to the transactivating domain of the herpes viral protein VP16 (Triezenberg et al. (1988) *Genes Devel.* 2: 718-729) fused to the hormone-binding domain of the rat glucocorticoid receptor (Picard et al. (1988) *Cell* 54: 1073-1080). The expression of the fusion protein is controlled by any promoter suitable for expression in plants known in the art or described here. This expression cassette is also comprised in the plant comprising a nucleic acid sequence of the invention fused to the 6xGAL4/minimal promoter. Thus, tissue- or organ-specificity of the fusion protein is achieved leading to inducible tissue- or organ-specificity of the insecticidal toxin.

g. Root Specific Expression:

Another pattern of gene expression is root expression. A suitable root promoter is the promoter of the maize metallothionein-like (MTL) gene described by de Framond (FEBS 290: 103-106 (1991) and also in U.S. Patent No. 5,466,785, incorporated herein by reference. This "MTL" promoter is transferred to a suitable vector such as pCGN1761ENX for the insertion of a selected gene and subsequent transfer of the entire promoter-gene-terminator cassette to a transformation vector of interest.

10 h. Wound-Inducible Promoters:

Wound-inducible promoters may also be suitable for gene expression. Numerous such promoters have been described (e.g. Xu *et al.* Plant Molec. Biol. 22: 573-588 (1993), Logemann *et al.* Plant Cell 1: 151-158 (1989), Rohrmeier & Lehle, Plant Molec. Biol. 22: 783-792 (1993), Firek *et al.* Plant Molec. Biol. 22: 129-142 (1993), Warner *et al.* Plant J. 3: 191-201 (1993)) and all are suitable for use with the instant invention. Logemann *et al.* describe the 5' upstream sequences of the dicotyledonous potato *wunI* gene. Xu *et al.* show that a wound-inducible promoter from the dicotyledon potato (*pin2*) is active in the monocotyledon rice. Further, Rohrmeier & Lehle describe the cloning of the maize *WipI* cDNA which is wound induced and which can be used to isolate the cognate promoter using standard techniques. Similar, Firek *et al.* and Warner *et al.* have described a wound-induced gene from the monocotyledon *Asparagus officinalis*, which is expressed at local wound and pathogen invasion sites. Using cloning techniques well known in the art, these promoters can be transferred to suitable vectors, fused to the genes pertaining to this invention, and used to express these genes at the sites of plant wounding.

25 i. Pith-Preferred Expression:

Patent Application WO 93/07278, which is herein incorporated by reference, describes the isolation of the maize *trpA* gene, which is preferentially expressed in pith cells. The gene sequence and promoter extending up to -1726 bp from the start of transcription are presented. 30 Using standard molecular biological techniques, this promoter, or parts thereof, can be transferred to a vector such as pCGN1761 where it can replace the 35S promoter and be used

to drive the expression of a foreign gene in a pith-preferred manner. In fact, fragments containing the pith-preferred promoter or parts thereof can be transferred to any vector and modified for utility in transgenic plants.

5 j. Leaf-Specific Expression:

A maize gene encoding phosphoenol carboxylase (PEPC) has been described by Hudspeth & Grula (Plant Molec Biol 12: 579-589 (1989)). Using standard molecular biological techniques the promoter for this gene can be used to drive the expression of any gene in a leaf-specific manner in transgenic plants.

10

k. Pollen-Specific Expression:

WO 93/07278 describes the isolation of the maize calcium-dependent protein kinase (CDPK) gene which is expressed in pollen cells. The gene sequence and promoter extend up to 1400 bp from the start of transcription. Using standard molecular biological techniques, this 15 promoter or parts thereof, can be transferred to a vector such as pCGN1761 where it can replace the 35S promoter and be used to drive the expression of a nucleic acid sequence of the invention in a pollen-specific manner.

l. Receptor Mediated Transactivation In The Presence Of A Chemical Ligand:

20 U.S. Patent No. 5,880,333, incorporated herein by reference, describes a system whereby class II hormone receptors such as Ecdysone Receptor (EcR) and Ultraspiracle (USP), which function together as a heterodimer, regulate the expression of a target polypeptide in a plant cell in the presence of an appropriate chemical ligand, e.g. tebufenozide.

25 2. Transcriptional Terminators

A variety of transcriptional terminators are available for use in expression cassettes. These are responsible for the termination of transcription beyond the transgene and its correct polyadenylation. Appropriate transcriptional terminators are those that are known to function 30 in plants and include the CaMV 35S terminator, the *tml* terminator, the nopaline synthase terminator and the pea *rbcS* E9 terminator. These can be used in both monocotyledons and dicotyledons. In addition, a gene's native transcription terminator may be used.

3. Sequences for the Enhancement or Regulation of Expression

Numerous sequences have been found to enhance gene expression from within the transcriptional unit and these sequences can be used in conjunction with the genes of this 5 invention to increase their expression in transgenic plants.

Various intron sequences have been shown to enhance expression, particularly in monocotyledonous cells. For example, the introns of the maize *AdhI* gene have been found to significantly enhance the expression of the wild-type gene under its cognate promoter when introduced into maize cells. Intron 1 was found to be particularly effective and enhanced 10 expression in fusion constructs with the chloramphenicol acetyltransferase gene (Callis *et al.*, Genes Develop. 1: 1183-1200 (1987)). In the same experimental system, the intron from the maize *bronze1* gene had a similar effect in enhancing expression. Intron sequences have been routinely incorporated into plant transformation vectors, typically within the non-translated leader.

15 A number of non-translated leader sequences derived from viruses are also known to enhance expression, and these are particularly effective in dicotyledonous cells. Specifically, leader sequences from Tobacco Mosaic Virus (TMV, the "W-sequence"), Maize Chlorotic Mottle Virus (MCMV), and Alfalfa Mosaic Virus (AMV) have been shown to be effective in enhancing expression (e.g. Gallie *et al.* Nucl. Acids Res. 15: 8693-8711 (1987); Skuzeski *et al.* 20 Plant Molec. Biol. 15: 65-79 (1990)).

4. Targeting of the Gene Product Within the Cell

Various mechanisms for targeting gene products are known to exist in plants and the sequences controlling the functioning of these mechanisms have been characterized in some 25 detail. For example, the targeting of gene products to the chloroplast is controlled by a signal sequence found at the amino terminal end of various proteins which is cleaved during chloroplast import to yield the mature protein (e.g. Comai *et al.* J. Biol. Chem. 263: 15104-15109 (1988)). These signal sequences can be fused to heterologous gene products to effect 30 the import of heterologous products into the chloroplast (van den Broeck, et al. Nature 313: 358-363 (1985)). DNA encoding for appropriate signal sequences can be isolated from the 5' end of the cDNAs encoding the RUBISCO protein, the CAB protein, the EPSP synthase

enzyme, the GS2 protein and many other proteins which are known to be chloroplast localized. *See also*, the section entitled “Expression With Chloroplast Targeting” in Example 37 of U.S. Patent No. 5,639,949.

Other gene products are localized to other organelles such as the mitochondrion and the peroxisome (e.g. Unger *et al.* *Plant Molec. Biol.* 13: 411-418 (1989)). The cDNAs encoding these products can also be manipulated to effect the targeting of heterologous gene products to these organelles. Examples of such sequences are the nuclear-encoded ATPases and specific aspartate amino transferase isoforms for mitochondria. Targeting cellular protein bodies has been described by Rogers *et al.* (*Proc. Natl. Acad. Sci. USA* 82: 6512-6516 (1985)).

In addition, sequences have been characterized which cause the targeting of gene products to other cell compartments. Amino terminal sequences are responsible for targeting to the ER, the apoplast, and extracellular secretion from aleurone cells (Koehler & Ho, *Plant Cell* 2: 769-783 (1990)). Additionally, amino terminal sequences in conjunction with carboxy terminal sequences are responsible for vacuolar targeting of gene products (Shinshi *et al.* *Plant Molec. Biol.* 14: 357-368 (1990)).

By the fusion of the appropriate targeting sequences described above to transgene sequences of interest it is possible to direct the transgene product to any organelle or cell compartment. For chloroplast targeting, for example, the chloroplast signal sequence from the RUBISCO gene, the CAB gene, the EPSP synthase gene, or the GS2 gene is fused in frame to the amino terminal ATG of the transgene. The signal sequence selected should include the known cleavage site, and the fusion constructed should take into account any amino acids after the cleavage site which are required for cleavage. In some cases this requirement may be fulfilled by the addition of a small number of amino acids between the cleavage site and the transgene ATG or, alternatively, replacement of some amino acids within the transgene sequence. Fusions constructed for chloroplast import can be tested for efficacy of chloroplast uptake by *in vitro* translation of *in vitro* transcribed constructions followed by *in vitro* chloroplast uptake using techniques described by Bartlett *et al.* In: Edelmann *et al.* (Eds.) *Methods in Chloroplast Molecular Biology*, Elsevier pp 1081-1091 (1982) and Wasmann *et al.* *Mol. Gen. Genet.* 205: 446-453 (1986). These construction techniques are well known in the art and are equally applicable to mitochondria and peroxisomes.

The above-described mechanisms for cellular targeting can be utilized not only in conjunction with their cognate promoters, but also in conjunction with heterologous promoters so as to effect a specific cell-targeting goal under the transcriptional regulation of a promoter that has an expression pattern different to that of the promoter from which the targeting signal derives.

Example 6: Construction of Plant Transformation Vectors

Numerous transformation vectors available for plant transformation are known to those of ordinary skill in the plant transformation arts, and the genes pertinent to this invention can be used in conjunction with any such vectors. The selection of vector will depend upon the preferred transformation technique and the target species for transformation. For certain target species, different antibiotic or herbicide selection markers may be preferred. Selection markers used routinely in transformation include the *nptII* gene, which confers resistance to kanamycin and related antibiotics (Messing & Vierra. *Gene* 19: 259-268 (1982); Bevan et al., *Nature* 304:184-187 (1983)), the *bar* gene, which confers resistance to the herbicide phosphinothricin (White et al., *Nucl. Acids Res* 18: 1062 (1990), Spencer et al. *Theor. Appl. Genet* 79: 625-631 (1990)), the *hph* gene, which confers resistance to the antibiotic hygromycin (Blochinger & Diggelmann, *Mol Cell Biol* 4: 2929-2931), and the *dhfr* gene, which confers resistance to methotrexate (Bourouis et al., *EMBO J.* 2(7): 1099-1104 (1983)), the EPSPS gene, which confers resistance to glyphosate (U.S. Patent Nos. 4,940,935 and 5,188,642), and the mannose-6-phosphate isomerase gene, which provides the ability to metabolize mannose (U.S. Patent Nos. 5,767,378 and 5,994,629).

1. Vectors Suitable for *Agrobacterium* Transformation

Many vectors are available for transformation using *Agrobacterium tumefaciens*. These typically carry at least one T-DNA border sequence and include vectors such as pBIN19 (Bevan, *Nucl. Acids Res.* (1984)) and pXYZ. Below, the construction of two typical vectors suitable for *Agrobacterium* transformation is described.

30

a. pCIB200 and pCIB2001:

The binary vectors pCIB200 and pCIB2001 are used for the construction of recombinant vectors for use with *Agrobacterium* and are constructed in the following manner. pTJS75kan is created by *NarI* digestion of pTJS75 (Schmidhauser & Helinski, *J. Bacteriol.* 164: 446-455 (1985)) allowing excision of the tetracycline-resistance gene, followed by insertion of an *AccI* fragment from pUC4K carrying an NPTII (Vieira & Messing, *Gene* 19: 259-268 (1982); Bevan et al., *Nature* 304: 184-187 (1983); McBride et al., *Plant Molecular Biology* 14: 266-276 (1990)). *XhoI* linkers are ligated to the *EcoRV* fragment of PCIB7 which contains the left and right T-DNA borders, a plant selectable *nos/nptII* chimeric gene and the pUC polylinker (Rothstein et al., *Gene* 53: 153-161 (1987)), and the *Xhol*-digested fragment are cloned into *SalI*-digested pTJS75kan to create pCIB200 (see also EP 0 332 104, example 19). pCIB200 contains the following unique polylinker restriction sites: *EcoRI*, *SstI*, *KpnI*, *BglII*, *XbaI*, and *SalI*. pCIB2001 is a derivative of pCIB200 created by the insertion into the polylinker of additional restriction sites. Unique restriction sites in the polylinker of pCIB2001 are *EcoRI*, *SstI*, *KpnI*, *BglII*, *XbaI*, *SalI*, *MluI*, *BclI*, *AvrII*, *Apal*, *HpaI*, and *StuI*. pCIB2001, in addition to containing these unique restriction sites also has plant and bacterial kanamycin selection, left and right T-DNA borders for *Agrobacterium*-mediated transformation, the RK2-derived *trfA* function for mobilization between *E. coli* and other hosts, and the *OriT* and *OriV* functions also from RK2. The pCIB2001 polylinker is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

20

b. pCIB10 and Hygromycin Selection Derivatives thereof:

The binary vector pCIB10 contains a gene encoding kanamycin resistance for selection in plants and T-DNA right and left border sequences and incorporates sequences from the wide host-range plasmid pRK252 allowing it to replicate in both *E. coli* and *Agrobacterium*. Its construction is described by Rothstein et al. (*Gene* 53: 153-161 (1987)). Various derivatives of pCIB10 are constructed which incorporate the gene for hygromycin B phosphotransferase described by Gritz et al. (*Gene* 25: 179-188 (1983)). These derivatives enable selection of transgenic plant cells on hygromycin only (pCIB743), or hygromycin and kanamycin (pCIB715, pCIB717).

30

2. Vectors Suitable for non-*Agrobacterium* Transformation

Transformation without the use of *Agrobacterium tumefaciens* circumvents the requirement for T-DNA sequences in the chosen transformation vector and consequently vectors lacking these sequences can be utilized in addition to vectors such as the ones described above which contain T-DNA sequences. Transformation techniques that do not rely on *Agrobacterium* include transformation via particle bombardment, protoplast uptake (e.g. 5 PEG and electroporation) and microinjection. The choice of vector depends largely on the preferred selection for the species being transformed. Below, the construction of typical vectors suitable for non-*Agrobacterium* transformation is described.

10 a. pCIB3064:

pCIB3064 is a pUC-derived vector suitable for direct gene transfer techniques in combination with selection by the herbicide basta (or phosphinothricin). The plasmid pCIB246 comprises the CaMV 35S promoter in operational fusion to the *E. coli* GUS gene and the CaMV 35S transcriptional terminator and is described in the PCT published application 15 WO 93/07278. The 35S promoter of this vector contains two ATG sequences 5' of the start site. These sites are mutated using standard PCR techniques in such a way as to remove the ATGs and generate the restriction sites *SspI* and *PvuII*. The new restriction sites are 96 and 37 bp away from the unique *SalI* site and 101 and 42 bp away from the actual start site. The resultant derivative of pCIB246 is designated pCIB3025. The GUS gene is then excised from 20 pCIB3025 by digestion with *SalI* and *SacI*, the termini rendered blunt and religated to generate plasmid pCIB3060. The plasmid pJIT82 is obtained from the John Innes Centre, Norwich and the a 400 bp *SmaI* fragment containing the *bar* gene from *Streptomyces viridochromogenes* is excised and inserted into the *HpaI* site of pCIB3060 (Thompson *et al.* EMBO J 6: 2519-2523 25 (1987)). This generated pCIB3064, which comprises the *bar* gene under the control of the CaMV 35S promoter and terminator for herbicide selection, a gene for ampicillin resistance (for selection in *E. coli*) and a polylinker with the unique sites *SphI*, *PstI*, *HindIII*, and *BamHI*. This vector is suitable for the cloning of plant expression cassettes containing their own regulatory signals.

30 b. pSOG19 and pSOG35:

pSOG35 is a transformation vector that utilizes the *E. coli* gene dihydrofolate reductase (DFR) as a selectable marker conferring resistance to methotrexate. PCR is used to amplify the 35S promoter (-800 bp), intron 6 from the maize Adh1 gene (-550 bp) and 18 bp of the GUS untranslated leader sequence from pSOG10. A 250-bp fragment encoding the *E. coli* dihydrofolate reductase type II gene is also amplified by PCR and these two PCR fragments are assembled with a *SacI-PstI* fragment from pB1221 (Clontech) which comprises the pUC19 vector backbone and the nopaline synthase terminator. Assembly of these fragments generates pSOG19 which contains the 35S promoter in fusion with the intron 6 sequence, the GUS leader, the DHFR gene and the nopaline synthase terminator. Replacement of the GUS leader in pSOG19 with the leader sequence from Maize Chlorotic Mottle Virus (MCMV) generates the vector pSOG35. pSOG19 and pSOG35 carry the pUC gene for ampicillin resistance and have *HindIII*, *SphI*, *PstI* and *EcoRI* sites available for the cloning of foreign substances.

15 3. Vector Suitable for Chloroplast Transformation

For expression of a nucleotide sequence of the present invention in plant plastids, plastid transformation vector pPH143 (WO 97/32011, example 36) is used. The nucleotide sequence is inserted into pPH143 thereby replacing the PROTOX coding sequence. This vector is then used for plastid transformation and selection of transformants for spectinomycin resistance. 20 Alternatively, the nucleotide sequence is inserted in pPH143 so that it replaces the aadH gene. In this case, transformants are selected for resistance to PROTOX inhibitors.

Example 7: Transformation

25 Once a nucleic acid sequence of the invention has been cloned into an expression system, it is transformed into a plant cell. Methods for transformation and regeneration of plants are well known in the art. For example, Ti plasmid vectors have been utilized for the delivery of foreign DNA, as well as direct DNA uptake, liposomes, electroporation, micro-injection, and microprojectiles. In addition, bacteria from the genus *Agrobacterium* can be utilized to 30 transform plant cells. Below are descriptions of representative techniques for transforming

both dicotyledonous and monocotyledonous plants, as well as a representative plastid transformation technique.

1. Transformation of Dicotyledons

5 Transformation techniques for dicotyledons are well known in the art and include *Agrobacterium*-based techniques and techniques that do not require *Agrobacterium*. Non-*Agrobacterium* techniques involve the uptake of exogenous genetic material directly by protoplasts or cells. This can be accomplished by PEG or electroporation mediated uptake, particle bombardment-mediated delivery, or microinjection. Examples of these techniques are
10 described by Paszkowski *et al.*, EMBO J 3: 2717-2722 (1984), Potrykus *et al.*, Mol. Gen. Genet. 199: 169-177 (1985), Reich *et al.*, Biotechnology 4: 1001-1004 (1986), and Klein *et al.*, Nature 327: 70-73 (1987). In each case the transformed cells are regenerated to whole plants using standard techniques known in the art.

15 *Agrobacterium*-mediated transformation is a preferred technique for transformation of dicotyledons because of its high efficiency of transformation and its broad utility with many different species. *Agrobacterium* transformation typically involves the transfer of the binary vector carrying the foreign DNA of interest (e.g. pCIB200 or pCIB2001) to an appropriate *Agrobacterium* strain which may depend of the complement of *vir* genes carried by the host *Agrobacterium* strain either on a co-resident Ti plasmid or chromosomally (e.g. strain CIB542
20 for pCIB200 and pCIB2001 (Uknes *et al.* Plant Cell 5: 159-169 (1993)). The transfer of the recombinant binary vector to *Agrobacterium* is accomplished by a triparental mating procedure using *E. coli* carrying the recombinant binary vector, a helper *E. coli* strain which carries a plasmid such as pRK2013 and which is able to mobilize the recombinant binary vector to the target *Agrobacterium* strain. Alternatively, the recombinant binary vector can be transferred to
25 *Agrobacterium* by DNA transformation (Höfgen & Willmitzer, Nucl. Acids Res. 16: 9877 (1988)).

Transformation of the target plant species by recombinant *Agrobacterium* usually involves co-cultivation of the *Agrobacterium* with explants from the plant and follows protocols well known in the art. Transformed tissue is regenerated on selectable medium
30 carrying the antibiotic or herbicide resistance marker present between the binary plasmid T-DNA borders.

Another approach to transforming plant cells with a gene involves propelling inert or biologically active particles at plant tissues and cells. This technique is disclosed in U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer 5 surface of the cell and afford incorporation within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the desired gene. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried yeast cells, dried bacterium or a bacteriophage, each containing DNA sought to be 10 introduced) can also be propelled into plant cell tissue.

2. Transformation of Monocotyledons

Transformation of most monocotyledon species has now also become routine. Preferred techniques include direct gene transfer into protoplasts using PEG or electroporation 15 techniques, and particle bombardment into callus tissue. Transformations can be undertaken with a single DNA species or multiple DNA species (*i.e.* co-transformation) and both these techniques are suitable for use with this invention. Co-transformation may have the advantage of avoiding complete vector construction and of generating transgenic plants with unlinked loci for the gene of interest and the selectable marker, enabling the removal of the selectable 20 marker in subsequent generations, should this be regarded desirable. However, a disadvantage of the use of co-transformation is the less than 100% frequency with which separate DNA species are integrated into the genome (Schocher *et al.* Biotechnology 4: 1093-1096 (1986)).

Patent Applications EP 0 292 435, EP 0 392 225, and WO 93/07278 describe techniques for the preparation of callus and protoplasts from an elite inbred line of maize, transformation 25 of protoplasts using PEG or electroporation, and the regeneration of maize plants from transformed protoplasts. Gordon-Kamm *et al.* (Plant Cell 2: 603-618 (1990)) and Fromm *et al.* (Biotechnology 8: 833-839 (1990)) have published techniques for transformation of A188-derived maize line using particle bombardment. Furthermore, WO 93/07278 and Koziel *et al.* (Biotechnology 11: 194-200 (1993)) describe techniques for the transformation of elite inbred 30 lines of maize by particle bombardment. This technique utilizes immature maize embryos of

1.5-2.5 mm length excised from a maize ear 14-15 days after pollination and a PDS-1000He Biolistics device for bombardment.

Transformation of rice can also be undertaken by direct gene transfer techniques utilizing protoplasts or particle bombardment. Protoplast-mediated transformation has been described for *Japonica*-types and *Indica*-types (Zhang *et al.* *Plant Cell Rep* 7: 379-384 (1988); Shimamoto *et al.* *Nature* 338: 274-277 (1989); Datta *et al.* *Biotechnology* 8: 736-740 (1990)). Both types are also routinely transformable using particle bombardment (Christou *et al.* *Biotechnology* 9: 957-962 (1991)). Furthermore, WO 93/21335 describes techniques for the transformation of rice via electroporation.

Patent Application EP 0 332 581 describes techniques for the generation, transformation and regeneration of Pooideae protoplasts. These techniques allow the transformation of *Dactylis* and wheat. Furthermore, wheat transformation has been described by Vasil *et al.* (*Biotechnology* 10: 667-674 (1992)) using particle bombardment into cells of type C long-term regenerable callus, and also by Vasil *et al.* (*Biotechnology* 11: 1553-1558 (1993)) and Weeks *et al.* (*Plant Physiol.* 102: 1077-1084 (1993)) using particle bombardment of immature embryos and immature embryo-derived callus. A preferred technique for wheat transformation, however, involves the transformation of wheat by particle bombardment of immature embryos and includes either a high sucrose or a high maltose step prior to gene delivery. Prior to bombardment, any number of embryos (0.75-1 mm in length) are plated onto MS medium with 3% sucrose (Murashiga & Skoog, *Physiologia Plantarum* 15: 473-497 (1962)) and 3 mg/l 2,4-D for induction of somatic embryos, which is allowed to proceed in the dark. On the chosen day of bombardment, embryos are removed from the induction medium and placed onto the osmoticum (*i.e.* induction medium with sucrose or maltose added at the desired concentration, typically 15%). The embryos are allowed to plasmolyze for 2-3 h and are then bombarded. Twenty embryos per target plate is typical, although not critical. An appropriate gene-carrying plasmid (such as pCIB3064 or pSG35) is precipitated onto micrometer size gold particles using standard procedures. Each plate of embryos is shot with the DuPont Biolistics® helium device using a burst pressure of ~1000 psi using a standard 80 mesh screen. After bombardment, the embryos are placed back into the dark to recover for about 24 h (still on osmoticum). After 24 hrs, the embryos are removed from the osmoticum and placed back onto induction medium where they stay for about a month before

regeneration. Approximately one month later the embryo explants with developing embryogenic callus are transferred to regeneration medium (MS + 1 mg/liter NAA, 5 mg/liter GA), further containing the appropriate selection agent (10 mg/l basta in the case of pCIB3064 and 2 mg/l methotrexate in the case of pSOG35). After approximately one month, developed 5 shoots are transferred to larger sterile containers known as "GA7s" which contain half-strength MS, 2% sucrose, and the same concentration of selection agent.

Transformation of monocotyledons using *Agrobacterium* has also been described. See, WO 94/00977 and U.S. Patent No. 5,591,616, both incorporated herein by reference.

10 3. Transformation of Plastids

Seeds of *Nicotiana tabacum* c.v. 'Xanthi nc' are germinated seven per plate in a 1" circular array on T agar medium and bombarded 12-14 days after sowing with 1 μ m tungsten particles (M10, Biorad, Hercules, CA) coated with DNA from plasmids pPH143 and pPH145 essentially as described (Svab, Z. and Maliga, P. (1993) *PNAS* 90, 913-917). Bombarded 15 seedlings are incubated on T medium for two days after which leaves are excised and placed abaxial side up in bright light (350-500 μ mol photons/m²/s) on plates of RMOP medium (Svab, Z., Hajdukiewicz, P. and Maliga, P. (1990) *PNAS* 87, 8526-8530) containing 500 μ g/ml spectinomycin dihydrochloride (Sigma, St. Louis, MO). Resistant shoots appearing underneath the bleached leaves three to eight weeks after bombardment are subcloned onto the 20 same selective medium, allowed to form callus, and secondary shoots isolated and subcloned. Complete segregation of transformed plastid genome copies (homoplasmicity) in independent subclones is assessed by standard techniques of Southern blotting (Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor). BamHI/EcoRI-digested total cellular DNA (Mettler, I. J. (1987) *Plant Mol Biol Reporter* 5, 346-349) is separated on 1% Tris-borate (TBE) agarose gels, transferred to nylon 25 membranes (Amersham) and probed with ³²P-labeled random primed DNA sequences corresponding to a 0.7 kb BamHI/HindIII DNA fragment from pC8 containing a portion of the *rps7/12* plastid targeting sequence. Homoplasmic shoots are rooted aseptically on spectinomycin-containing MS/IBA medium (McBride, K. E. et al. (1994) *PNAS* 91, 7301-30 7305) and transferred to the greenhouse.

Example 8: Breeding

The plants obtained via transformation with a nucleic acid sequence of the present invention can be any of a wide variety of plant species, including those of monocots and dicots; 5 however, the plants used in the method of the invention are preferably selected from the list of agronomically important target crops set forth *supra*. The expression of a gene of the present invention in combination with other characteristics important for production and quality can be incorporated into plant lines through breeding. Breeding approaches and techniques are known in the art. See, for example, Welsh J. R., *Fundamentals of Plant Genetics and Breeding*, John 10 Wiley & Sons, NY (1981); *Crop Breeding*, Wood D. R. (Ed.) American Society of Agronomy Madison, Wisconsin (1983); Mayo O., *The Theory of Plant Breeding*, 2nd Edition, Clarendon Press, Oxford (1987); Singh, D.P., *Breeding for Resistance to Diseases and Insect Pests*, Springer-Verlag, NY (1986); Wricke and Weber, *Quantitative Genetics and Selection Plant Breeding*, Walter de Gruyter and Co., Berlin (1986).

15 The genetic properties engineered into the transgenic seeds and plants described above are passed on by sexual reproduction or vegetative growth and can thus be maintained and propagated in progeny plants. Generally said maintenance and propagation make use of known agricultural methods developed to fit specific purposes such as tilling, sowing or harvesting. Specialized processes such as hydroponics or greenhouse technologies can also be applied. As 20 the growing crop is vulnerable to attack and damages caused by insects or infections as well as to competition by weed plants, measures are undertaken to control weeds, plant diseases, insects, nematodes, and other adverse conditions to improve yield. These include mechanical measures such as tillage of the soil or removal of weeds and infected plants, as well as the application of agrochemicals such as herbicides, fungicides, gametocides, nematicides, growth 25 regulators, ripening agents and insecticides.

Use of the advantageous genetic properties of the transgenic plants and seeds according to the invention can further be made in plant breeding, which aims at the development of plants with improved properties such as tolerance of pests, herbicides, or stress, improved nutritional value, increased yield, or improved structure causing less loss from 30 lodging or shattering. The various breeding steps are characterized by well-defined human intervention such as selecting the lines to be crossed, directing pollination of the parental lines,

or selecting appropriate progeny plants. Depending on the desired properties, different breeding measures are taken. The relevant techniques are well known in the art and include but are not limited to hybridization, inbreeding, backcross breeding, multiline breeding, variety blend, interspecific hybridization, aneuploid techniques, etc. Hybridization techniques also 5 include the sterilization of plants to yield male or female sterile plants by mechanical, chemical, or biochemical means. Cross pollination of a male sterile plant with pollen of a different line assures that the genome of the male sterile but female fertile plant will uniformly obtain properties of both parental lines. Thus, the transgenic seeds and plants according to the 10 invention can be used for the breeding of improved plant lines, that for example, increase the effectiveness of conventional methods such as herbicide or pestidice treatment or allow one to dispense with said methods due to their modified genetic properties. Alternatively new crops with improved stress tolerance can be obtained, which, due to their optimized genetic 15 "equipment", yield harvested product of better quality than products that were not able to tolerate comparable adverse developmental conditions.

15

Example 9: Seed Production

In seed production, germination quality and uniformity of seeds are essential product characteristics, whereas germination quality and uniformity of seeds harvested and sold by the 20 farmer is not important. As it is difficult to keep a crop free from other crop and weed seeds, to control seedborne diseases, and to produce seed with good germination, fairly extensive and well-defined seed production practices have been developed by seed producers, who are experienced in the art of growing, conditioning and marketing of pure seed. Thus, it is common practice for the farmer to buy certified seed meeting specific quality standards instead 25 of using seed harvested from his own crop. Propagation material to be used as seeds is customarily treated with a protectant coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides, or mixtures thereof. Customarily used protectant coatings comprise compounds such as captan, carboxin, thiram (TMTD[®]), methalaxyl (Apron[®]), and pirimiphos-methyl (Actellic[®]). If desired, these compounds are formulated 30 together with carriers, surfactants or application-promoting adjuvants customarily employed in

formulation art to protect against damage caused by bacterial, fungal or animal pests. The protectant coatings may be applied by impregnating propagation material with a liquid formulation or by coating with a combined wet or dry formulation. Other methods of application are also possible such as treatment directed at the buds or the fruit.

5

Example 10: Maize Plant Analysis

Maize plants transformed with plasmids pNOV1436, pNOV1441, and pNOV1313 via Agrobacterium-mediated transformation give 100% mortality against European cornborer and 10 fall armyworm. ELISA data is set forth below:

Event Number	Plasmid	Pro-moter	Maize Genotype	T0/T1 ELISA (ng/mg)				
				leaf	silk	husk	pith	rind
3275-2	pNOV1436	MTL	A188	125/299			4465/1913	4351/2611
3277-2	pNOV1436	MTL	A188	218/234	136	798	743/3251	613/3055
3279-1	pNOV1436	MTL	A188	108/398			1566/2505	1457/2514
3309-6	pNOV1436	MTL	A188	168/326			1164/1017	1527/2391
3324-1	pNOV1436	MTL	A188	192	0	203	1068	1437
3330-2	pNOV1436	MTL	A188	262/800	0	542	5565	3366
3331-1	pNOV1436	MTL	A188	236/347			1010	1341
3338-1	pNOV1436	MTL	A188	287/457	13		4578	1795
3357-1	pNOV1436	MTL	A188	349/551	61	780	3968	2022
3360-1	pNOV1436	MTL	A188	300/428	0	392	2026	1764
3717-2	pNOV1441	Mz Ubi	Hi II	2142	374	1719	NS	NS
3723-5	pNOV1441	Mz Ubi	Hi II	2302			13757	7215
3838-1	pNOV1441	Mz Ubi	Hi II	2188			24013	13564
3847-2	pNOV1441	Mz Ubi	Hi II	741	699	3707	NS	NS
3877-1	pNOV1441	Mz Ubi	Hi II	991	436	1349	15105	10904
3720-1	pNOV1441	Mz Ubi	Hi II	1437			3854	2719
3833-3	pNOV1441	Mz Ubi	Hi II	878	166	799		
4013-5	pNOV1441	Mz Ubi	Hi II	944	174	1918		
4029-4	pNOV1441	Mz Ubi	Hi II	1661				
4708-1	pNOV1313	Mz Ubi	Hill	832				
4709-2	pNOV1313	Mz Ubi	Hill	581				
4710-5	pNOV1313	Mz Ubi	Hill	625				
4711-2	pNOV1313	Mz Ubi	Hill	570				
4713-2	pNOV1313	Mz Ubi	Hill	962				
4717-1	pNOV1313	Mz Ubi	Hill	881				

MTL = maize metallothionein-like

Mz Ubi = maize ubiquitin

Example 11. Rice Plant Analysis

Rice plants transformed with plasmid pNOV1305 via Agrobacterium-mediated transformation give 100% mortality against European cornborer and fall armyworm. ELISA data is set forth below:

Event Number	Plasmid	Promoter	T0 ELISA (ng/mg) Leaf
639	pNOV1305	MTL	294
640	pNOV1305	MTL	241
643	pNOV1305	MTL	153
650	pNOV1305	MTL	149
847	pNOV1305	MTL	173
871	pNOV1305	MTL	244
872	pNOV1305	MTL	252
886	pNOV1305	MTL	185
888	pNOV1305	MTL	160
893	pNOV1305	MTL	168
1148	pNOV1305	MTL	1816
1149	pNOV1305	MTL	224
1152	pNOV1305	MTL	173
1154	pNOV1305	MTL	142
1163	pNOV1305	MTL	139
1164	pNOV1305	MTL	138
1167	pNOV1305	MTL	284
1168	pNOV1305	MTL	137
1177	pNOV1305	MTL	167
1349	pNOV1305	MTL	164
1350	pNOV1305	MTL	115
1357	pNOV1305	MTL	132
1363	pNOV1305	MTL	119
1497	pNOV1305	MTL	94

MTL = maize metallothionein-like

Example 12. Cabbage Plant Analysis

Cabbage plants transformed with plasmid pZU578 (SEQ ID NO:17) via Agrobacterium-mediated transformation were tested against *Plutella xylostella* (Diamondback moth).

5 Transgenic and control plants were infested with 16 larvae (1-3 instar), 4 on each of 4 leaves transferred with a paint brush from a caged *Plutella* culture (with cabbage plants). Infested plants were transferred to 1x1x1m cages for the duration of the test. Control plants included non-transformed cabbage plants (susceptible control) and non-transformed cabbage plants sprayed with the commercial Bt pesticide Dipel (resistant control). Scoring (after 2 weeks) 10 was: - = no damage (or only tiny holes = resistant); + = large holes on plant (= susc.); ++ many large holes, plant heavily damaged (= susc.). Dipel plants always scored -, susceptible controls scored ++. Insect damage ratings for transgenic and control plants and ELISA data is set forth below.

Event Number	Plasmid	Pro-moter	Damage Rating	T0 ELISA (ng/mg)	
				Leaf	Whole Plant
04-05-01-01	pZU578	Act2	++	0	
04-05-01-02	pZU578	Act2	++	0	
07-11-01	pZU578	Act2	-	921	
10-25-05	pZU578	Act2	++	0	
10-39-06	pZU578	Act2	-	270	
304-F-07	pZU578	Act2	-		
304-F-11	pZU578	Act2	-		
304-F-15	pZU578	Act2	-		
304-F-16	pZU578	Act2	-		
304-F-38	pZU578	Act2	-		
304-g-07	pZU578	Act2	-		
304-g-08	pZU578	Act2	-		
304-g-12	pZU578	Act2	-		
304-g-21	pZU578	Act2	-		

304-g-24	pZU578	Act2	+	0
304-H-01	pZU578	Act2	-	
304-H-08	pZU578	Act2	-	
304-H-09	pZU578	Act2	-	
304-H-34	pZU578	Act2	-	
304-H-35	pZU578	Act2	-	
391-J-08	pZU578	Act2	-	
394-F-5	pZU578	Act2	-	
394-H-12	pZU578	Act2	-	

Act2 = *Arabidopsis actin 2*

The above disclosed embodiments are illustrative. This disclosure of the invention will place
5 one skilled in the art in possession of many variations of the invention. All such obvious and
foreseeable variations are intended to be encompassed by the present invention.

SEQUENCE LISTING

<110> Syngenta Participations AG

<120> Novel insecticidal toxins derived from *Bacillus thuringiensis* insecticidal crystal proteins

<130> Case S-31282A

<140>

<141>

<150> US 60/227956

<151> 2000-08-25

<160> 17

<170> PatentIn Ver. 2.1

<210> 1

<211> 3579

<212> DNA

<213> Artificial Sequences

<220>

<223> Description of Artificial Sequence: H04 with Cry1C tail

<220>

<221> CDS

<222> (1)..(3579)

<223> H04 with Cry1C tail

<300>

<303> Appl. Environ. Microbiol.

<304> 62

<305> 5

<306> 1537-1543

<307> 1996

<300>

<310> 5,736,131

<400> 1

atg gat aac aat ccg aac atc aat gaa tgc att cct tat aat tgt tta 48
 Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu
 1 5 10 15

agt aac cct gaa gta gaa tta ggt gga gaa aga ata gaa act ggt 96
 Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly
 20 25 30

tac acc cca atc gat att tcc ttg tcg cta acg caa ttt ctt ttg agt 144
 Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser
 35 40 45

gaa ttt gtt ccc ggt gct gga ttt gtg tta gga cta gtt gat ata ata 192
 Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile
 50 55 60

tgg gga att ttt ggt ccc tct caa tgg gac gca ttt ctt gta caa att	240
Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile	
65 70 75 80	
gaa cag tta att aac caa aga ata gaa gaa ttc gct agg aac caa gcc	288
Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala	
85 90 95	
att tct aga tta gaa gga cta agc aat ctt tat caa att tac gca gaa	336
Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu	
100 105 110	
tct ttt aga gag tgg gaa gca gat cct act aat cca gca tta aga gaa	384
Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu	
115 120 125	
gag atg cgt att caa ttc aat gac atg aac agt gcc ctt aca acc gct	432
Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala	
130 135 140	
att cct ctt ttt gca gtt caa aat tat caa gtt cct ctt tta tca gta	480
Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val	
145 150 155 160	
tat gtt caa gct gca aat tta cat tta tca gtt ttg aga gat gtt tca	528
Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser	
165 170 175	
gtg ttt gga caa agg tgg gga ttt gat gcc gcg act atc aat agt cgt	576
Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg	
180 185 190	
tat aat gat tta act agg ctt att ggc aac tat aca gat cat gct gta	624
Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val	
195 200 205	
cgc tgg tac aat acg gga tta gag cgt gta tgg gga ccg gat tct aga	672
Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg	
210 215 220	
gat tgg ata aga tat aat caa ttt aga aga gaa tta aca cta act gta	720
Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val	
225 230 235 240	
tta gat atc gtt tct cta ttt ccg aac tat gat agt aga acg tat cca	768
Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro	
245 250 255	
att cga aca gtt tcc caa tta aca aga gaa att tat aca aac cca gta	816
Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val	
260 265 270	
tta gaa aat ttt gat ggt agt ttt cga ggc tcg gct cag ggc ata gaa	864
Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu	
275 280 285	
gga agt att agg agt cca cat ttg atg gat ata ctt aac agt ata acc	912
Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr	
290 295 300	

atc tat acg gat gct cat aga gga gaa tat tat tgg tca ggg cat caa	960
Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln	
305 310 315 320	
ata atg gct tct cct gta ggg ttt tcg ggg cca gaa ttc act ttt ccg	1008
Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro	
325 330 335	
cta tat gga act atg gga aat gca gct cca caa cgt att gtt gct	1056
Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala	
340 345 350	
caa cta ggt cag ggc gtg tat aga aca tta tcg tcc act tta tat aga	1104
Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg	
355 360 365	
aga cct ttt aat ata ggg ata aat aat caa caa cta tct gtt ctt gac	1152
Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp	
370 375 380	
ggg aca gaa ttt gct tat gga acc tcc tca aat ttg cca tcc gct gta	1200
Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val	
385 390 395 400	
tac aga aaa agc gga acg gta gat tcg ctg gat gaa ata ccg cca cag	1248
Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln	
405 410 415	
aat aac aac gtg cca cct agg caa gga ttt agt cat cga tta agc cat	1296
Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His	
420 425 430	
gtt tca atg ttt cgt tca ggc ttt agt aat agt agt gta agt ata ata	1344
Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile	
435 440 445	
aga gct cct atg ttc tct tgg ata cat cgt agt gca act ctt aca aat	1392
Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn	
450 455 460	
aca att gat cca gag aga att aat caa ata cct tta gtg aaa gga ttt	1440
Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe	
465 470 475 480	
aga gtt tgg ggg ggc acc tct gtc att aca gga cca gga ttt aca gga	1488
Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly	
485 490 495	
ggg gat atc ctt cga aga aat acc ttt ggt gat ttt gta tct cta caa	1536
Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln	
500 505 510	
gtc aat att aat tca cca att acc caa aga tac cgt tta aga ttt cgt	1584
Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg	
515 520 525	
tac gct tcc agt agg gat gca cga gtt ata gta tta aca gga gcg gca	1632
Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala	
530 535 540	
tcc aca gga gtg gga ggc caa gtt agt gta aat atg cct ctt cag aaa	1680

Ser	Thr	Gly	Val	Gly	Gly	Gln	Val	Ser	Val	Asn	Met	Pro	Leu	Gln	Lys	
545				550					555			560				
act	atg	gaa	ata	ggg	gag	aac	tta	aca	tct	aga	aca	ttt	aga	tat	acc	1728
Thr	Met	Glu	Ile	Gly	Glu	Asn	Leu	Thr	Ser	Arg	Thr	Phe	Arg	Tyr	Thr	
	565					570				575						
gat	ttt	agt	aat	cct	ttt	tca	ttt	aga	gct	aat	cca	gat	ata	att	ggg	1776
Asp	Phe	Ser	Asn	Pro	Phe	Ser	Phe	Arg	Ala	Asn	Pro	Asp	Ile	Ile	Gly	
	580			585						590						
ata	agt	gaa	caa	cct	cta	ttt	ggt	gca	ggt	tct	att	agt	agc	ggt	gaa	1824
Ile	Ser	Glu	Gln	Pro	Leu	Phe	Gly	Ala	Gly	Ser	Ile	Ser	Ser	Gly	Glu	
	595				600					605						
ctt	tat	ata	gat	aaa	att	gaa	att	att	cta	gca	gat	gca	aca	ttt	gaa	1872
Leu	Tyr	Ile	Asp	Lys	Ile	Glu	Ile	Ile	Leu	Ala	Asp	Ala	Thr	Phe	Glu	
	610				615					620						
gca	gaa	tct	gat	tta	gaa	aga	gca	caa	aag	gcg	gtg	aat	gcc	ctg	ttt	1920
Ala	Glu	Ser	Asp	Leu	Glu	Arg	Ala	Gln	Lys	Ala	Val	Asn	Ala	Leu	Phe	
	625			630					635			640				
act	tct	tcc	aat	caa	atc	ggg	tta	aaa	acc	gat	gtg	acg	gat	tat	cat	1968
Thr	Ser	Ser	Asn	Gln	Ile	Gly	Leu	Lys	Thr	Asp	Val	Thr	Asp	Tyr	His	
	645				650					655						
att	gat	caa	gta	tcc	aat	tta	gtg	gat	tgt	tta	tca	gat	gaa	ttt	tgt	2016
Ile	Asp	Gln	Val	Ser	Asn	Leu	Val	Asp	Cys	Leu	Ser	Asp	Glu	Phe	Cys	
	660				665					670						
ctg	gat	gaa	aag	cga	gaa	ttg	tcc	gag	aaa	gtc	aaa	cat	gcg	aag	cga	2064
Leu	Asp	Glu	Lys	Arg	Glu	Leu	Ser	Glu	Lys	Val	Lys	His	Ala	Lys	Arg	
	675				680					685						
ctc	agt	gat	gag	cg	aat	tta	ctt	caa	gat	cca	aac	ttc	aga	ggg	atc	2112
Leu	Ser	Asp	Glu	Arg	Asn	Leu	Leu	Gln	Asp	Pro	Asn	Phe	Arg	Gly	Ile	
	690				695					700						
aat	aga	caa	cca	gac	cgt	ggc	tgg	aga	gga	agt	aca	gat	att	acc	atc	2160
Asn	Arg	Gln	Pro	Asp	Arg	Gly	Trp	Arg	Gly	Ser	Thr	Asp	Ile	Thr	Ile	
	705				710					715			720			
caa	gga	gga	gat	gac	gta	ttc	aaa	gag	aat	tac	gtc	aca	cta	ccg	ggt	2208
Gln	Gly	Gly	Asp	Asp	Val	Phe	Lys	Glu	Asn	Tyr	Val	Thr	Leu	Pro	Gly	
	725					730				735						
acc	gtt	gat	gag	tgc	tat	cca	acg	tat	tta	tat	cag	aaa	ata	gat	gag	2256
Thr	Val	Asp	Glu	Cys	Tyr	Pro	Thr	Tyr	Leu	Tyr	Gln	Lys	Ile	Asp	Glu	
	740				745					750						
tcg	aaa	tta	aaa	gct	tat	acc	cgt	tat	gaa	tta	aga	ggg	tat	atc	gaa	2304
Ser	Lys	Leu	Lys	Ala	Tyr	Thr	Arg	Tyr	Glu	Leu	Arg	Gly	Tyr	Ile	Glu	
	755					760					765					
gat	agt	caa	gac	tta	gaa	atc	tat	ttg	atc	cgt	tac	aat	gca	aaa	cac	2352
Asp	Ser	Gln	Asp	Leu	Glu	Ile	Tyr	Leu	Ile	Arg	Tyr	Asn	Ala	Lys	His	
	770				775					780						
gaa	ata	gta	aat	gtg	cca	ggc	acg	ggt	tcc	tta	tgg	ccg	ctt	tca	gcc	2400
Glu	Ile	Val	Asn	Val	Pro	Gly	Thr	Gly	Ser	Leu	Trp	Pro	Leu	Ser	Ala	

785	790	795	800	
caa agt cca atc gga aag tgt gga gaa ccg aat cga tgc gcg cca cac				2448
Gln Ser Pro Ile Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His				
805	810		815	
ctt gaa tgg aat cct gat cta gat tgt tcc tgc aga gac ggg gaa aaa				2496
Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys				
820	825		830	
tgt gca cat cat tcc cat cat ttc acc ttg gat att gat gtt gga tgt				2544
Cys Ala His His Ser His His Phe Thr Leu Asp Ile Asp Val Gly Cys				
835	840		845	
aca gac tta aat gag gac tta ggt gta tgg gtg ata ttc aag att aag				2592
Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys				
850	855		860	
acg caa gat ggc cat gca aga cta ggg aat cta gag ttt ctc gaa gag				2640
Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu				
865	870		875	880
aaa cca tta tta ggg gaa gca cta gct cgt gtg aaa aga gcg gag aag				2688
Lys Pro Leu Leu Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys				
885	890		895	
aag tgg aga gac aaa cga gag aaa ctg cag ttg gaa aca aat att gtt				2736
Lys Trp Arg Asp Lys Arg Glu Lys Leu Gln Leu Glu Thr Asn Ile Val				
900	905		910	
tat aaa gag gca aaa gaa tct gta gat gct tta ttt gta aac tct caa				2784
Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln				
915	920		925	
tat gat aga tta caa gtg gat acg aac atc gcg atg att cat gcg gca				2832
Tyr Asp Arg Leu Gln Val Asp Thr Asn Ile Ala Met Ile His Ala Ala				
930	935		940	
gat aaa cgc gtt cat aga atc cgg gaa gcg tat ctg cca gag ttg tct				2880
Asp Lys Arg Val His Arg Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser				
945	950		955	960
gtg att cca ggt gtc aat gcg gcc att ttc gaa gaa tta gag gga cgt				2928
Val Ile Pro Gly Val Asn Ala Ala Phe Glu Glu Leu Glu Gly Arg				
965	970		975	
att ttt aca gcg tat tcc tta tat gat gcg aga aat gtc att aaa aat				2976
Ile Phe Thr Ala Tyr Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn				
980	985		990	
ggc gat ttc aat aat ggc tta tta tgc tgg aac gtg aaa ggt cat gta				3024
Gly Asp Phe Asn Asn Gly Leu Leu Cys Trp Asn Val Lys Gly His Val				
995	1000		1005	
gat gta gaa gag caa aac aac cac cgt tcg gtc ctt gtt atc cca gaa				3072
Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Ile Pro Glu				
1010	1015		1020	
tgg gag gca gaa gtg tca caa gag gtt cgt gtc tgt cca ggt cgt ggc				3120
Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly				
1025	1030		1035	1040

tat atc ctt cgt gtc aca gca tat aaa gag gga tat gga gag ggc tgc Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys 1045 1050 1055	3168	
gta acg atc cat gag atc gaa gac aat aca gac gaa ctg aaa ttc agc Val Thr Ile His Glu Ile Glu Asp Asn Thr Asp Glu Leu Lys Phe Ser 1060 1065 1070	3216	
aac tgt gta gaa gag gaa gta tat cca aac aac aca gta acg tgt aat Asn Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn 1075 1080 1085	3264	
aat tat act ggg act caa gaa gaa tat gag ggt acg tac act tct cgt Asn Tyr Thr Gly Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg 1090 1095 1100	3312	
aat caa gga tat gac gaa gcc tat ggt aat aac cct tcc gta cca gct Asn Gln Gly Tyr Asp Glu Ala Tyr Gly Asn Asn Pro Ser Val Pro Ala 1105 1110 1115 1120	3360	
gat tac gct tca gtc tat gaa gaa aaa tcg tat aca gat gga cga aga Asp Tyr Ala Ser Val Tyr Glu Glu Lys Ser Tyr Thr Asp Gly Arg Arg 1125 1130 1135	3408	
gag aat cct tgt gaa tct aac aga ggc tat ggg gat tac aca cca cta Glu Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu 1140 1145 1150	3456	
ccg gct ggt tat gta aca aag gat tta gag tac ttc cca gag acc gat Pro Ala Gly Tyr Val Thr Lys Asp Leu Glu Tyr Phe Pro Glu Thr Asp 1155 1160 1165	3504	
aag gta tgg att gag atc gga gaa aca gaa gga aca ttc atc gtg gat Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp 1170 1175 1180	3552	
agc gtg gaa tta ctc ctt atg gag gaa Ser Val Glu Leu Leu Leu Met Glu Glu 1185 1190	3579	
<210> 2 <211> 1193 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: H04 with Cry1C tail		
<400> 2 Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu 1 5 10 15		
Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly 20 25 30		
Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser 35 40 45		
Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile 50 55 60		

Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile
 65 70 75 80
 Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala
 85 90 95
 Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu
 100 105 110
 Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu
 115 120 125
 Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala
 130 135 140
 Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val
 145 150 155 160
 Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser
 165 170 175
 Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg
 180 185 190
 Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val
 195 200 205
 Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg
 210 215 220
 Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val
 225 230 235 240
 Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro
 245 250 255
 Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val
 260 265 270
 Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu
 275 280 285
 Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr
 290 295 300
 Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln
 305 310 315 320
 Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro
 325 330 335
 Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala
 340 345 350
 Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg
 355 360 365
 Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp
 370 375 380

Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val
 385 390 395 400
 Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln
 405 410 415
 Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His
 420 425 430
 Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Val Ser Ile Ile
 435 440 445
 Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn
 450 455 460
 Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe
 465 470 475 480
 Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly
 485 490 495
 Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln
 500 505 510
 Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg
 515 520 525
 Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala
 530 535 540
 Ser Thr Gly Val Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys
 545 550 555 560
 Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr
 565 570 575
 Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly
 580 585 590
 Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu
 595 600 605
 Leu Tyr Ile Asp Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu
 610 615 620
 Ala Glu Ser Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe
 625 630 635 640
 Thr Ser Ser Asn Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His
 645 650 655
 Ile Asp Gln Val Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys
 660 665 670
 Leu Asp Glu Lys Arg Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg
 675 680 685
 Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile
 690 695 700
 Asn Arg Gln Pro Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile

705	710	715	720
Gln Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly			
725	730	735	
Thr Val Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu			
740	745	750	
Ser Lys Leu Lys Ala Tyr Thr Arg Tyr Glu Leu Arg Gly Tyr Ile Glu			
755	760	765	
Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His			
770	775	780	
Glu Ile Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Ala			
785	790	795	800
Gln Ser Pro Ile Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His			
805	810	815	
Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys			
820	825	830	
Cys Ala His His Ser His His Phe Thr Leu Asp Ile Asp Val Gly Cys			
835	840	845	
Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys			
850	855	860	
Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu			
865	870	875	880
Lys Pro Leu Leu Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys			
885	890	895	
Lys Trp Arg Asp Lys Arg Glu Lys Leu Gln Leu Glu Thr Asn Ile Val			
900	905	910	
Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln			
915	920	925	
Tyr Asp Arg Leu Gln Val Asp Thr Asn Ile Ala Met Ile His Ala Ala			
930	935	940	
Asp Lys Arg Val His Arg Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser			
945	950	955	960
Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg			
965	970	975	
Ile Phe Thr Ala Tyr Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn			
980	985	990	
Gly Asp Phe Asn Asn Gly Leu Leu Cys Trp Asn Val Lys Gly His Val			
995	1000	1005	
Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Ile Pro Glu			
1010	1015	1020	
Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly			
1025	1030	1035	1040

Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys
 1045 1050 1055
 Val Thr Ile His Glu Ile Glu Asp Asn Thr Asp Glu Leu Lys Phe Ser
 1060 1065 1070
 Asn Cys Val Glu Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn
 1075 1080 1085
 Asn Tyr Thr Gly Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg
 1090 1095 1100
 Asn Gln Gly Tyr Asp Glu Ala Tyr Gly Asn Asn Pro Ser Val Pro Ala
 105 1110 1115 1120
 Asp Tyr Ala Ser Val Tyr Glu Glu Lys Ser Tyr Thr Asp Gly Arg Arg
 1125 1130 1135
 Glu Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu
 1140 1145 1150
 Pro Ala Gly Tyr Val Thr Lys Asp Leu Glu Tyr Phe Pro Glu Thr Asp
 1155 1160 1165
 Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp
 1170 1175 1180
 Ser Val Glu Leu Leu Leu Met Glu Glu
 185 1190

<210> 3
 <211> 1896
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: synthetic gene
 encoding the toxin portion of H04 without a tail

 <220>
 <221> CDS
 <222> (1)..(1896)
 <223> H04 toxin portion without a tail

 <400> 3
 atg gac aac aac ccc aac atc aac gag tgc atc ccc tac aac tgc ctg 48
 Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu
 1 5 10 15

 agc aac ccc gag gtg gag gtg ctg ggc ggc gag cgc atc gag acc ggc 96
 Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly
 20 25 30

 tac acc ccc atc gac atc agc ctg agc ctg acc cag ttc ctg ctg agc 144
 Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser
 35 40 45

 gag ttc gtg ccc ggc gcc ggc ttc gtg ctg ggc ctg gtg gac atc atc 192

Glu	Phe	Val	Pro	Gly	Ala	Gly	Phe	Val	Leu	Gly	Leu	Val	Asp	Ile	Ile	
50					55					60						
tgg ggc atc ttc ggc ccc agc cag tgg gac gcc ttc ctg gtg cag atc															240	
Trp	Gly	Ile	Phe	Gly	Pro	Ser	Gln	Trp	Asp	Ala	Phe	Leu	Val	Gln	Ile	
65					70				75					80		
gag cag ttg ata aac caa cgc ata gag gaa ttc gcc cgc aac cag gcc															288	
Glu	Gln	Leu	Ile	Asn	Gln	Arg	Ile	Glu	Glu	Phe	Ala	Arg	Asn	Gln	Ala	
						85			90				95			
atc agc cgc ctg gag ggc ctg agc aac ctg tac caa atc tac gcc gag															336	
Ile	Ser	Arg	Leu	Glu	Gly	Leu	Ser	Asn	Leu	Tyr	Gln	Ile	Tyr	Ala	Glu	
						100			105			110				
agc ttc cgc gag tgg gag gcc gac ccc acc aac ccc gcc ctg cgc gag															384	
Ser	Phe	Arg	Glu	Trp	Glu	Ala	Asp	Pro	Thr	Asn	Pro	Ala	Leu	Arg	Glu	
						115			120			125				
gag atg cgc atc cag ttc aac gac atg aac agc gcc ctg acc acc gcc															432	
Glu	Met	Arg	Ile	Gln	Phe	Asn	Asp	Met	Asn	Ser	Ala	Leu	Thr	Thr	Ala	
						130			135			140				
atc ccc ctg ttc gcc gtg cag aac tac cag gtg ccc ctg ctg agc gtg															480	
Ile	Pro	Leu	Phe	Ala	Val	Gln	Asn	Tyr	Gln	Val	Pro	Leu	Leu	Ser	Val	
						145			150			155		160		
tac gtg cag gcc gcc aac ctg cac ctg agc gtg ctg cgc gac gtc agc															528	
Tyr	Val	Gln	Ala	Ala	Asn	Leu	His	Leu	Ser	Val	Leu	Arg	Asp	Val	Ser	
						165			170			175				
gtg ttc ggc cag cgc tgg ggc ttc gac gcc gcc acc atc aac agc cgc															576	
Val	Phe	Gly	Gln	Arg	Trp	Gly	Phe	Asp	Ala	Ala	Thr	Ile	Asn	Ser	Arg	
						180			185			190				
tac aac gac ctg acc cgc ctg atc ggc aac tac acc gac cac gcc gtg															624	
Tyr	Asn	Asp	Leu	Thr	Arg	Leu	Ile	Gly	Asn	Tyr	Thr	Asp	His	Ala	Val	
						195			200			205				
cgc tgg tac aac acc ggc ctg gag cgc gtg tgg ggt ccc gac agc cgc															672	
Arg	Trp	Tyr	Asn	Thr	Gly	Leu	Glu	Arg	Val	Trp	Gly	Pro	Asp	Ser	Arg	
						210			215			220				
gac tgg atc agg tac aac cag ttc cgc cgc gag ctg acc ctg acc gtg															720	
Asp	Trp	Ile	Arg	Tyr	Asn	Gln	Phe	Arg	Arg	Glu	Leu	Thr	Leu	Thr	Val	
						225			230			235		240		
ctg gac atc gtg agc ctg ttc ccc aac tac gac agc cgc acc tac ccc															768	
Leu	Asp	Ile	Val	Ser	Leu	Phe	Pro	Asn	Tyr	Asp	Ser	Arg	Thr	Tyr	Pro	
						245			250			255				
atc cgc acc gtg agc cag ctg acc cgc gag att tac acc aac ccc gtg															816	
Ile	Arg	Thr	Val	Ser	Gln	Leu	Thr	Arg	Glu	Ile	Tyr	Thr	Asn	Pro	Val	
						260			265			270				
ctg gag aac ttc gac ggc agc ttc cgc ggc agc gcc cag ggc atc gag															864	
Leu	Glu	Asn	Phe	Asp	Gly	Ser	Phe	Arg	Gly	Ser	Ala	Gln	Gly	Ile	Glu	
						275			280			285				
ggc agc atc cgc agc ccc cac ctg atg gac atc ctg aac agc atc acc															912	
Gly	Ser	Ile	Arg	Ser	Pro	His	Leu	Met	Asp	Ile	Leu	Asn	Ser	Ile	Thr	

290	295	300	
atc tac acc gac gcc cac cgc ggc gag tac tac tgg agc ggc cac cag Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln 305 310 315 320			960
atc atg gcc agc ccc gtc ggc ttc agc ggc ccc gag ttc acc ttc ccc Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro 325 330 335			1008
ctg tac ggc acc atg ggc aac gct gca cct cag cag cgc atc gtg gca Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala 340 345 350			1056
cag ctg ggc cag gga gtg tac cgc acc ctg agc agc acc ctg tac cgt Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg 355 360 365			1104
cga cct ttc aac atc ggc atc aac aac cag cag ctg agc gtg ctg gac Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp 370 375 380			1152
ggc acc gag ttc gcc tac ggc acc agc agc aac ctg ccc agc gcc gtg Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val 385 390 395 400			1200
tac cgc aag agc ggc acc gtg gac agc ctg gac gag atc ccc cct cag Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln 405 410 415			1248
aac aac aac gtg cca cct cga cag ggc ttc agc cac cgt ctg agc cac Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His 420 425 430			1296
gtg agc atg ttc cgc agt ggc ttc agc aac agc agc gtg agc atc atc Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile 435 440 445			1344
cgt gca ccc atg ttc agc tgg att cac cgc agc gcc acc ctg acc aac Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn 450 455 460			1392
acc atc gac ccc gag cgc atc aac cag atc ccc ctg gtg aag ggc ttc Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe 465 470 475 480			1440
cggtgtgtggggaccagcgtgatcaccggcccccggttcaccgg Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly 485 490 495			1488
ggc gac atc ctg cgc aga aac acc ttc ggc gac ttc gtg agc ctg cag Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln 500 505 510			1536
gtg aac atc aac agc ccc atc acc cag cgt tac cgc ctg cgc ttc cgc Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg 515 520 525			1584
tac gcc agc agc cgc gac gcc cgt gtg atc gtg ctg act ggc gcc gct Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala 530 535 540			1632

agc acc ggt gtg ggc ggt cag gtg agc gtg aac atg ccc ctg cag aag	1680
Ser Thr Gly Val Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys	
545 550 555 560	
act atg gag atc ggc gag aac ctg act agt cgc acc ttc cgc tac acc	1728
Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr	
565 570 575	
gac ttc agc aac ccc ttc agc ttc cgc gcc aac ccc gac atc atc ggc	1776
Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly	
580 585 590	
atc agc gag cag ccc ctg ttc ggt gcc ggc agc atc agc agc ggc gag	1824
Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu	
595 600 605	
ctg tac atc gac aag atc gag atc atc ctg gcc gac gcc acc ttc gag	1872
Leu Tyr Ile Asp Lys Ile Glu Ile Leu Ala Asp Ala Thr Phe Glu	
610 615 620	
gcc gag agc gac ctg gag cgc taa	1896
Ala Glu Ser Asp Leu Glu Arg	
625 630	

<210> 4

<211> 631

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: synthetic gene
encoding the toxin portion of H04 without a tail

<400> 4

Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu	
1 5 10 15	
Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly	
20 25 30	
Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser	
35 40 45	
Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile	
50 55 60	
Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile	
65 70 75 80	
Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala	
85 90 95	
Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu	
100 105 110	
Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu	
115 120 125	
Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala	
130 135 140	
Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val	
145 150 155 160	
Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser	
165 170 175	
Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg	
180 185 190	
Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val	
195 200 205	
Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg	

210	215	220
Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg	Glu Leu Thr Leu Thr Val	
225	230	235
Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro		240
245	250	255
Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val		
260	265	270
Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu		
275	280	285
Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr		
290	295	300
Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln		
305	310	315
Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro		
325	330	335
Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala		
340	345	350
Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg		
355	360	365
Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp		
370	375	380
Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val		
385	390	395
Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln		
405	410	415
Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His		
420	425	430
Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile		
435	440	445
Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn		
450	455	460
Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe		
465	470	475
Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly		
485	490	495
Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln		
500	505	510
Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg		
515	520	525
Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala		
530	535	540
Ser Thr Gly Val Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys		
545	550	555
Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr		
565	570	575
Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly		
580	585	590
Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu		
595	600	605
Leu Tyr Ile Asp Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu		
610	615	620
Ala Glu Ser Asp Leu Glu Arg		
625	630	

<210> 5

<211> 3582

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic gene
encoding H04 with full-length Cry1Ab tail

<220>

<221> CDS

<222> (1)..(3582)

<223> H04 with full-length Cry1Ab tail

<400> 5

atg	gac	aac	aac	ccc	aac	atc	aac	gag	tgc	atc	ccc	tac	aac	tgc	ctg	48
Met	Asp	Asn	Asn	Pro	Asn	Ile	Asn	Glu	Cys	Ile	Pro	Tyr	Asn	Cys	Leu	
1		5					10						15			

agc aac ccc gag gtg gag gtg ctg ggc ggc gag cgc atc gag acc ggc 96

Ser	Asn	Pro	Glu	Val	Glu	Val	Leu	Gly	Gly	Glu	Arg	Ile	Glu	Thr	Gly	
							25					30				
20																

tac acc ccc atc gac atc agc ctg agc ctg acc cag ttc ctg ctg agc 144

Tyr	Thr	Pro	Ile	Asp	Ile	Ser	Leu	Ser	Leu	Thr	Gln	Phe	Leu	Leu	Ser	
							35					40		45		

gag ttc gtg ccc ggc gcc ggc ttc gtg ctg ggc ctg gtg gac atc atc 192

Glu	Phe	Val	Pro	Gly	Ala	Gly	Phe	Val	Leu	Gly	Leu	Val	Asp	Ile	Ile	
							50				60					

tgg ggc atc ttc ggc ccc agc cag tgg gac gcc ttc ctg gtg cag atc 240

Trp	Gly	Ile	Phe	Gly	Pro	Ser	Gln	Trp	Asp	Ala	Phe	Leu	Val	Gln	Ile	
							65				70		75		80	

gag cag ttg ata aac caa cgc ata gag gaa ttc gcc cgc aac cag gcc 288

Glu	Gln	Leu	Ile	Asn	Gln	Arg	Ile	Glu	Glu	Phe	Ala	Arg	Asn	Gln	Ala	
							85				90		95			

atc agc cgc ctg gag ggc ctg agc aac ctg tac caa atc tac gcc gag 336

Ile	Ser	Arg	Leu	Glu	Gly	Leu	Ser	Asn	Leu	Tyr	Gln	Ile	Tyr	Ala	Glu	
							100				105		110			

agc ttc cgc gag tgg gag gcc gac ccc acc aac ccc gcc ctg cgc gag 384

Ser	Phe	Arg	Glu	Trp	Glu	Ala	Asp	Pro	Thr	Asn	Pro	Ala	Leu	Arg	Glu	
							115				120		125			

gag atg cgc atc cag ttc aac gac atg aac agc gcc ctg acc acc gcc 432

Glu	Met	Arg	Ile	Gln	Phe	Asn	Asp	Met	Asn	Ser	Ala	Leu	Thr	Thr	Ala	
							130				135		140			

atc ccc ctg ttc gcc gtg cag aac tac cag gtg ccc ctg ctg agc gtg 480

Ile	Pro	Leu	Phe	Ala	Val	Gln	Asn	Tyr	Gln	Val	Pro	Leu	Leu	Ser	Val	
							145				150		155		160	

tac gtg cag gcc gcc aac ctg cac ctg agc gtg ctg cgc gac gtc agc 528

Tyr	Val	Gln	Ala	Ala	Asn	Leu	His	Leu	Ser	Val	Leu	Arg	Asp	Val	Ser	
							165				170		175			

gtg ttc ggc cag cgc tgg ggc ttc gac gcc gcc acc atc aac agc cgc 576

Val	Phe	Gly	Gln	Arg	Trp	Gly	Phe	Asp	Ala	Ala	Thr	Ile	Asn	Ser	Arg	
							180				185		190			

tac aac gac ctg acc cgc ctg atc ggc aac tac acc gac cac gcc gtg 624

Tyr	Asn	Asp	Leu	Thr	Arg	Leu	Ile	Gly	Asn	Tyr	Thr	Asp	His	Ala	Val	
							195				200		205			

cgc tgg tac aac acc ggc ctg gag cgc gtg tgg ggt ccc gac agc cgc	672
Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg	
210 215 220	
gac tgg atc agg tac aac cag ttc cgc cgc gag ctg acc ctg acc gtg	720
Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val	
225 230 235 240	
ctg gac atc gtg agc ctg ttc ccc aac tac gac agc cgc acc tac ccc	768
Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro	
245 250 255	
atc cgc acc gtg agc cag ctg acc cgc gag att tac acc aac ccc gtg	816
Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val	
260 265 270	
ctg gag aac ttc gac ggc agc ttc cgc ggc agc gcc cag ggc atc gag	864
Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu	
275 280 285	
ggc agc atc cgc agc ccc cac ctg atg gac atc ctg aac agc atc acc	912
Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr	
290 295 300	
atc tac acc gac gcc cac cgc ggc gag tac tac tgg agc ggc cac cag	960
Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln	
305 310 315 320	
atc atg gcc agc ccc gtc ggc ttc agc ggc ccc gag ttc acc ttc ccc	1008
Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro	
325 330 335	
ctg tac ggc acc atg ggc aac gct gca cct cag cag cgc atc gtg gca	1056
Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala	
340 345 350	
cag ctg ggc cag gga gtg tac cgc acc ctg agc agc acc ctg tac cgt	1104
Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg	
355 360 365	
cga cct ttc aac atc ggc atc aac aac cag cag ctg agc gtg ctg gac	1152
Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp	
370 375 380	
ggc acc gag ttc gcc tac ggc acc agc agc aac ctg ccc agc gcc gtg	1200
Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val	
385 390 395 400	
tac cgc aag agc ggc acc gtg gac agc ctg gac gag atc ccc cct cag	1248
Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln	
405 410 415	
aac aac aac gtg cca cct cga cag ggc ttc agc cac cgt ctg agc cac	1296
Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His	
420 425 430	
gtg agc atg ttc cgc agt ggc ttc agc aac agc agc gtg agc atc atc	1344
Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile	
435 440 445	

cgt gca ccc atg ttc agc tgg att cac cgc agc gcc acc ctg acc aac	1392
Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn	
450 455 460	
acc atc gac ccc gag cgc atc aac cag atc ccc ctg gtg aag ggc ttc	1440
Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe	
465 470 475 480	
cgg gtg tgg ggc ggc acc agc gtg atc acc ggc ccc ggc ttc acc gga	1488
Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly	
485 490 495	
ggc gac atc ctg cgc aga aac acc ttc ggc gac ttc gtg agc ctg cag	1536
Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln	
500 505 510	
gtg aac atc aac agc ccc atc acc cag cgt tac cgc ctg cgc ttc cgc	1584
Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg	
515 520 525	
tac gcc agc agc cgc gac gcc cgt gtg atc gtg ctg act ggc gcc gct	1632
Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala	
530 535 540	
agc acc ggt gtg ggc ggt cag gtg agc gtg aac atg ccc ctg cag aag	1680
Ser Thr Gly Val Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys	
545 550 555 560	
act atg gag atc ggc gag aac ctg act agt cgc acc ttc cgc tac acc	1728
Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr	
565 570 575	
gac ttc agc aac ccc ttc agc ttc cgc gcc aac ccc gac atc atc ggc	1776
Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly	
580 585 590	
atc agc gag cag ccc ctg ttc ggt gcc ggc agc atc agc agc ggc gag	1824
Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu	
595 600 605	
ctg tac atc gac aag atc gag atc atc ctg gcc gac gcc acc ttc gag	1872
Leu Tyr Ile Asp Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu	
610 615 620	
gcc gag agc gac ctg gag cgc gcc cag aag gcc gtg aac gcc ctg ttc	1920
Ala Glu Ser Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe	
625 630 635 640	
acc agc agc aac cag atc ggc ctg aag acc gac gtg acc gac tac cac	1968
Thr Ser Ser Asn Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His	
645 650 655	
atc gac cag gtg agc aac ctg gtg gac tgc tta agc gac gag ttc tgc	2016
Ile Asp Gln Val Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys	
660 665 670	
ctg gac gag aag aag gag ctg agc gag aag gtg aag cac gcc aag cgc	2064
Leu Asp Glu Lys Lys Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg	
675 680 685	
ctg agc gac gag cgc aac ctg ctg cag gac ccc aac ttc cgc ggc atc	2112

Leu	Ser	Asp	Glu	Arg	Asn	Leu	Leu	Gln	Asp	Pro	Asn	Phe	Arg	Gly	Ile	
690						695					700					
aac	cgc	cag	ctg	gac	cgc	ggc	tgg	cga	ggc	agc	acc	gat	atc	acc	atc	2160
Asn	Arg	Gln	Leu	Asp	Arg	Gly	Trp	Arg	Gly	Ser	Thr	Asp	Ile	Thr	Ile	
705				710					715				720			
cag	ggc	ggc	gac	gac	gtg	tgc	aag	gag	aac	tac	gtg	acc	ctg	cag	ggc	2208
Gln	Gly	Gly	Asp	Asp	Val	Phe	Lys	Glu	Asn	Tyr	Val	Thr	Leu	Gln	Gly	
725					730				735							
acc	tgc	gac	gag	tgc	tac	ccc	acc	tac	ctg	tac	cag	ccg	atc	gac	gag	2256
Thr	Phe	Asp	Glu	Cys	Tyr	Pro	Thr	Tyr	Leu	Tyr	Gln	Pro	Ile	Asp	Glu	
740					745					750						
agc	aag	ctg	aag	gcc	tac	acc	cgc	tac	cag	ctg	cgc	ggc	tac	atc	gag	2304
Ser	Lys	Leu	Lys	Ala	Tyr	Thr	Arg	Tyr	Gln	Leu	Arg	Gly	Tyr	Ile	Glu	
755					760				765							
gac	agc	cag	gac	ctg	gaa	atc	tac	ctg	atc	cgc	tac	aac	gcg	aag	cac	2352
Asp	Ser	Gln	Asp	Leu	Glu	Ile	Tyr	Leu	Ile	Arg	Tyr	Asn	Ala	Lys	His	
770				775					780							
gag	acc	gtg	aac	gtg	ccc	ggc	acc	ggc	agc	ctg	tgg	ccc	ccg	agc	gcc	2400
Glu	Thr	Val	Asn	Val	Pro	Gly	Thr	Gly	Ser	Leu	Trp	Pro	Pro	Ser	Ala	
785				790				795				800				
ccc	agc	ccc	atc	ggc	aag	tgc	ggg	gag	ccg	aat	cga	tgc	gct	ccg	cac	2448
Pro	Ser	Pro	Ile	Gly	Lys	Cys	Gly	Glu	Pro	Asn	Arg	Cys	Ala	Pro	His	
805					810				815							
ctg	gag	tgg	aac	ccg	gac	cta	gac	tgc	agc	tgc	agg	gac	ggg	gag	aag	2496
Leu	Glu	Trp	Asn	Pro	Asp	Leu	Asp	Cys	Ser	Cys	Arg	Asp	Gly	Glu	Lys	
820				825					830							
tgc	gcc	cac	cac	agc	cac	ttc	agc	ctg	gac	atc	gac	gtg	ggc	tgc		2544
Cys	Ala	His	His	Ser	His	His	Phe	Ser	Leu	Asp	Ile	Asp	Val	Gly	Cys	
835				840				845								
acc	gac	ctg	aac	gag	gac	ctg	ggc	gtg	tgg	gtg	atc	ttc	aag	atc	aag	2592
Thr	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Val	Trp	Val	Ile	Phe	Lys	Ile	Lys	
850				855					860							
acc	cag	gac	ggc	cac	gcc	cgc	ctg	ggc	aat	cta	gag	ttc	ctg	gag	gag	2640
Thr	Gln	Asp	Gly	His	Ala	Arg	Leu	Gly	Asn	Leu	Glu	Phe	Leu	Glu	Glu	
865				870				875				880				
aag	ccc	ctg	gtg	ggc	gag	gcc	ctg	gcc	cgc	gtg	aag	cgt	gct	gag	aag	2688
Lys	Pro	Leu	Val	Gly	Glu	Ala	Leu	Ala	Arg	Val	Lys	Arg	Ala	Glu	Lys	
885				890					895							
aag	tgg	cgc	gac	aag	cgc	gag	aag	ctg	gag	tgg	gag	acc	aac	atc	gtg	2736
Lys	Trp	Arg	Asp	Lys	Arg	Glu	Lys	Leu	Glu	Trp	Glu	Thr	Asn	Ile	Val	
900				905					910							
tac	aag	gag	gcc	aag	gag	agc	gtg	gac	gcc	ctg	ttc	gtg	aac	agc	cag	2784
Tyr	Lys	Glu	Ala	Lys	Glu	Ser	Val	Asp	Ala	Leu	Phe	Val	Asn	Ser	Gln	
915				920					925							
tac	gac	cgc	ctg	cag	gcc	gac	acc	aac	atc	gcc	atg	atc	cac	gcc	gcc	2832
Tyr	Asp	Arg	Leu	Gln	Ala	Asp	Thr	Asn	Ile	Ala	Met	Ile	His	Ala	Ala	

930	935	940	
gac aag cgc gtg cac agc att cgc gag gcc tac ctg ccc gag ctg agc			2880
Asp Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser			
945	950	955	960
gtg atc ccc ggt gtg aac gcc gcc atc ttc gag gaa ctc gag ggc cgc			2928
Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg			
965	970	975	
atc ttc acc gcc ttc agc ctg tac gac gcc cgc aac gtg atc aag aac			2976
Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn			
980	985	990	
ggc gac ttc aac aac ggc ctg agc tgc tgg aac gtg aag ggc cac gtg			3024
Gly Asp Phe Asn Asn Gly Leu Ser Cys Trp Asn Val Lys Gly His Val			
995	1000	1005	
gac gtg gag gag cag aac aac cac cgc agc gtg ctg gtg gtg ccc gag			3072
Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu			
1010	1015	1020	
tgg gag gcc gag gtg agc cag gag gtg cgc gtg tgc ccc ggc cgc ggc			3120
Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly			
1025	1030	1035	1040
tac atc ctg cgc gtg acc gcc tac aag gag ggc tac ggc gag ggc tgc			3168
Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys			
1045	1050	1055	
gtg acc atc cac gag atc gag aac aac acc gac gag ctc aag ttc agc			3216
Val Thr Ile His Glu Ile Glu Asn Asn Thr Asp Glu Leu Lys Phe Ser			
1060	1065	1070	
aac tgc gtg gag gag gtt tac ccc aac aac acc gtg acc tgc aac			3264
Asn Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn			
1075	1080	1085	
gac tac acc gcg acc cag gag gag tac gaa ggc acc tac acc tct cgc			3312
Asp Tyr Thr Ala Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg			
1090	1095	1100	
aac agg ggt tac gac ggc gcc tac gag tcc aac agc tcc gtg cca gct			3360
Asn Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Val Pro Ala			
1105	1110	1115	1120
gac tac gcc agc gcc cac gag gag aaa gcc tac acc gac ggt aga cgc			3408
Asp Tyr Ala Ser Ala His Glu Glu Lys Ala Tyr Thr Asp Gly Arg Arg			
1125	1130	1135	
gac aac cca tgt gag agc aac aga ggc tac ggc gac tac acc ccc ctg			3456
Asp Asn Pro Cys Glu Ser Asn Arg Gly Tyr Glu Asp Tyr Thr Pro Leu			
1140	1145	1150	
ccc gct gga tac gtg acc aag gag ctg gag tac ttc ccc gag acc gac			3504
Pro Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp			
1155	1160	1165	
aag gtg tgg atc gag att ggc gag acc gag ggc acc ttc atc gtg gac			3552
Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp			
1170	1175	1180	

agc gtg gag ctg ctg ctg atg gag gag tag 3582
 Ser Val Glu Leu Leu Leu Met Glu Glu
 1185 1190

<210> 6
 <211> 1193
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic gene
 encoding H04 with full-length Cry1Ab tail

<400> 6
 Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu
 1 5 10 15
 Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly
 20 25 30
 Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser
 35 40 45
 Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile
 50 55 60
 Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile
 65 70 75 80
 Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala
 85 90 95
 Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu
 100 105 110
 Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu
 115 120 125
 Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala
 130 135 140
 Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val
 145 150 155 160
 Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser
 165 170 175
 Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg
 180 185 190
 Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val
 195 200 205
 Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg
 210 215 220
 Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val
 225 230 235 240
 Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro
 245 250 255
 Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val
 260 265 270
 Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu
 275 280 285
 Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr
 290 295 300
 Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln
 305 310 315 320
 Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro
 325 330 335
 Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala
 340 345 350
 Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg
 355 360 365
 Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp

370	375	380													
Gly	Thr	Glu	Phe	Ala	Tyr	Gly	Thr	Ser	Ser	Asn	Leu	Pro	Ser	Ala	Val
385						390				395				400	
Tyr	Arg	Lys	Ser	Gly	Thr	Val	Asp	Ser	Leu	Asp	Glu	Ile	Pro	Pro	Gln
									405		410			415	
Asn	Asn	Asn	Val	Pro	Pro	Arg	Gln	Gly	Phe	Ser	His	Arg	Leu	Ser	His
									420		425			430	
Val	Ser	Met	Phe	Arg	Ser	Gly	Phe	Ser	Asn	Ser	Ser	Val	Ser	Ile	Ile
									435		440			445	
Arg	Ala	Pro	Met	Phe	Ser	Trp	Ile	His	Arg	Ser	Ala	Thr	Leu	Thr	Asn
									450		455			460	
Thr	Ile	Asp	Pro	Glu	Arg	Ile	Asn	Gln	Ile	Pro	Leu	Val	Lys	Gly	Phe
									465		470			475	
Arg	Val	Trp	Gly	Gly	Thr	Ser	Val	Ile	Thr	Gly	Pro	Gly	Phe	Thr	Gly
									485		490			495	
Gly	Asp	Ile	Leu	Arg	Arg	Asn	Thr	Phe	Gly	Asp	Phe	Val	Ser	Leu	Gln
									500		505			510	
Val	Asn	Ile	Asn	Ser	Pro	Ile	Thr	Gln	Arg	Tyr	Arg	Leu	Arg	Phe	Arg
									515		520			525	
Tyr	Ala	Ser	Ser	Arg	Asp	Ala	Arg	Val	Ile	Val	Leu	Thr	Gly	Ala	Ala
									530		535			540	
Ser	Thr	Gly	Val	Gly	Gly	Gln	Val	Ser	Val	Asn	Met	Pro	Leu	Gln	Lys
									545		550			555	
Thr	Met	Glu	Ile	Gly	Glu	Asn	Leu	Thr	Ser	Arg	Thr	Phe	Arg	Tyr	Thr
									565		570			575	
Asp	Phe	Ser	Asn	Pro	Phe	Ser	Phe	Arg	Ala	Asn	Pro	Asp	Ile	Ile	Gly
									580		585			590	
Ile	Ser	Glu	Gln	Pro	Leu	Phe	Gly	Ala	Gly	Ser	Ile	Ser	Ser	Gly	Glu
									595		600			605	
Leu	Tyr	Ile	Asp	Lys	Ile	Glu	Ile	Ile	Leu	Ala	Asp	Ala	Thr	Phe	Glu
									610		615			620	
Ala	Glu	Ser	Asp	Leu	Glu	Arg	Ala	Gln	Lys	Ala	Val	Asn	Ala	Leu	Phe
									625		630			635	
Thr	Ser	Ser	Asn	Gln	Ile	Gly	Leu	Lys	Thr	Asp	Val	Thr	Asp	Tyr	His
									645		650			655	
Ile	Asp	Gln	Val	Ser	Asn	Leu	Val	Asp	Cys	Leu	Ser	Asp	Glu	Phe	Cys
									660		665			670	
Leu	Asp	Glu	Lys	Lys	Glu	Leu	Ser	Glu	Lys	Val	Lys	His	Ala	Lys	Arg
									675		680			685	
Leu	Ser	Asp	Glu	Arg	Asn	Leu	Leu	Gln	Asp	Pro	Asn	Phe	Arg	Gly	Ile
									690		695			700	
Asn	Arg	Gln	Leu	Asp	Arg	Gly	Trp	Arg	Gly	Ser	Thr	Asp	Ile	Thr	Ile
									705		710			715	
Gln	Gly	Gly	Asp	Asp	Val	Phe	Lys	Glu	Asn	Tyr	Val	Thr	Leu	Gln	Gly
									725		730			735	
Thr	Phe	Asp	Glu	Cys	Tyr	Pro	Thr	Tyr	Leu	Tyr	Gln	Pro	Ile	Asp	Glu
									740		745			750	
Ser	Lys	Leu	Lys	Ala	Tyr	Thr	Arg	Tyr	Gln	Leu	Arg	Gly	Tyr	Ile	Glu
									755		760			765	
Asp	Ser	Gln	Asp	Leu	Glu	Ile	Tyr	Leu	Ile	Arg	Tyr	Asn	Ala	Lys	His
									770		775			780	
Glu	Thr	Val	Asn	Val	Pro	Gly	Thr	Gly	Ser	Leu	Trp	Pro	Pro	Ser	Ala
									785		790			795	
Pro	Ser	Pro	Ile	Gly	Lys	Cys	Gly	Glu	Pro	Asn	Arg	Cys	Ala	Pro	His
									805		810			815	
Leu	Glu	Trp	Asn	Pro	Asp	Leu	Asp	Cys	Ser	Cys	Arg	Asp	Gly	Glu	Lys
									820		825			830	
Cys	Ala	His	His	Ser	His	His	Phe	Ser	Leu	Asp	Ile	Asp	Val	Gly	Cys
									835		840			845	
Thr	Asp	Leu	Asn	Glu	Asp	Leu	Gly	Val	Trp	Val	Ile	Phe	Lys	Ile	Lys
									850		855			860	

Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu
 865 870 875 880
 Lys Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys
 885 890 895
 Lys Trp Arg Asp Lys Arg Glu Lys Leu Glu Trp Glu Thr Asn Ile Val
 900 905 910
 Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln
 915 920 925
 Tyr Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala
 930 935 940
 Asp Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser
 945 950 955 960
 Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg
 965 970 975
 Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn
 980 985 990
 Gly Asp Phe Asn Asn Gly Leu Ser Cys Trp Asn Val Lys Gly His Val
 995 1000 1005
 Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu
 1010 1015 1020
 Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly
 1025 1030 1035 1040
 Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys
 1045 1050 1055
 Val Thr Ile His Glu Ile Glu Asn Asn Thr Asp Glu Leu Lys Phe Ser
 1060 1065 1070
 Asn Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn
 1075 1080 1085
 Asp Tyr Thr Ala Thr Gln Glu Glu Tyr Glu Gly Thr Tyr Thr Ser Arg
 1090 1095 1100
 Asn Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Val Pro Ala
 1105 1110 1115 1120
 Asp Tyr Ala Ser Ala His Glu Glu Lys Ala Tyr Thr Asp Gly Arg Arg
 1125 1130 1135
 Asp Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu
 1140 1145 1150
 Pro Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp
 1155 1160 1165
 Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp
 1170 1175 1180
 Ser Val Glu Leu Leu Leu Met Glu Glu
 1185 1190

<210> 7

<211> 3582

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic gene
encoding H04 with full-length Cry1Ab tail

<220>

<221> CDS

<222> (1)..(3582)

<223> H04 with full-length Cry1Ab tail

<400> 7

atg gac aac aac ccc aac atc aac gag tgc atc ccc tac aac tgc ctg 48

Met	Asp	Asn	Asn	Pro	Asn	Ile	Asn	Glu	Cys	Ile	Pro	Tyr	Asn	Cys	Leu	
1				5				10						15		
agc	aac	ccc	gag	gtg	gag	gtg	ctg	ggc	ggc	gag	cgc	atc	gag	acc	ggc	96
Ser	Asn	Pro	Glu	Val	Glu	Val	Leu	Gly	Gly	Glu	Arg	Ile	Glu	Thr	Gly	
				20				25						30		
tac	acc	ccc	atc	gac	atc	agc	ctg	agc	ctg	acc	cag	ttc	ctg	ctg	agc	144
Tyr	Thr	Pro	Ile	Asp	Ile	Ser	Leu	Ser	Leu	Thr	Gln	Phe	Leu	Leu	Ser	
				35				40						45		
gag	ttc	gtg	ccc	ggc	gcc	ggc	ttc	gtg	ctg	ggc	ctg	gtg	gac	atc	atc	192
Glu	Phe	Val	Pro	Gly	Ala	Gly	Phe	Val	Leu	Gly	Leu	Val	Asp	Ile	Ile	
				50				55						60		
tgg	ggc	atc	ttc	ggc	ccc	agc	cag	tgg	gac	gcc	ttc	ctg	gtg	cag	atc	240
Trp	Gly	Ile	Phe	Gly	Pro	Ser	Gln	Trp	Asp	Ala	Phe	Leu	Val	Gln	Ile	
				65				70						80		
gag	cag	ttg	ata	aac	caa	cgc	ata	gag	gaa	ttc	gcc	cgc	aac	cag	gcc	288
Glu	Gln	Leu	Ile	Asn	Gln	Arg	Ile	Glu	Glu	Phe	Ala	Arg	Asn	Gln	Ala	
				85				90						95		
atc	agc	cgc	ctg	gag	ggc	ctg	agc	aac	ctg	tac	caa	atc	tac	gcc	gag	336
Ile	Ser	Arg	Leu	Glu	Gly	Leu	Ser	Asn	Leu	Tyr	Gln	Ile	Tyr	Ala	Glu	
				100				105						110		
agc	ttc	cgc	gag	tgg	gag	gcc	gac	ccc	acc	aac	ccc	gcc	ctg	cgc	gag	384
Ser	Phe	Arg	Glu	Trp	Glu	Ala	Asp	Pro	Thr	Asn	Pro	Ala	Leu	Arg	Glu	
				115				120						125		
gag	atg	cgc	atc	cag	ttc	aac	gac	atg	aac	agc	gcc	ctg	acc	acc	gcc	432
Glu	Met	Arg	Ile	Gln	Phe	Asn	Asp	Met	Asn	Ser	Ala	Leu	Thr	Thr	Ala	
				130				135						140		
atc	ccc	ctg	ttc	gcc	gtg	cag	aac	tac	cag	gtg	ccc	ctg	ctg	agc	gtg	480
Ile	Pro	Leu	Phe	Ala	Val	Gln	Asn	Tyr	Gln	Val	Pro	Leu	Leu	Ser	Val	
				145				150						160		
tac	gtg	cag	gcc	aac	ctg	cac	ctg	agc	gtg	ctg	cgc	gac	gtc	agc	528	
Tyr	Val	Gln	Ala	Ala	Asn	Leu	His	Leu	Ser	Val	Leu	Arg	Asp	Val	Ser	
				165				170						175		
gtg	ttc	ggc	cag	cgc	tgg	ggc	ttc	gac	gcc	gcc	acc	atc	aac	agc	cgc	576
Val	Phe	Gly	Gln	Arg	Trp	Gly	Phe	Asp	Ala	Ala	Thr	Ile	Asn	Ser	Arg	
				180				185						190		
tac	aac	gac	ctg	acc	cgc	ctg	atc	ggc	aac	tac	acc	gac	cac	gcc	gtg	624
Tyr	Asn	Asp	Leu	Thr	Arg	Leu	Ile	Gly	Asn	Tyr	Thr	Asp	His	Ala	Val	
				195				200						205		
cgc	tgg	tac	aac	acc	ggc	ctg	gag	cgc	gtg	tgg	ggt	ccc	gac	agc	cgc	672
Arg	Trp	Tyr	Asn	Thr	Gly	Leu	Glu	Arg	Val	Trp	Gly	Pro	Asp	Ser	Arg	
				210				215						220		
gac	tgg	atc	agg	tac	aac	cag	ttc	ctg	ctg	acc	ctg	acc	gtg		720	
Asp	Trp	Ile	Arg	Tyr	Asn	Gln	Phe	Arg	Arg	Glu	Leu	Thr	Leu	Thr	Val	
				225				230						240		
ctg	gac	atc	gtg	agc	ctg	ttc	ccc	aac	tac	gac	agc	cgc	acc	tac	ccc	768
Leu	Asp	Ile	Val	Ser	Leu	Phe	Pro	Asn	Tyr	Asp	Ser	Arg	Thr	Tyr	Pro	

245	250	255	
atc cgc acc gtg agc cag ctg acc cgc gag att tac acc aac ccc gtg Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val 260	265	270	816
ctg gag aac ttc gac ggc agc ttc cgc ggc agc gcc cag ggc atc gag Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu 275	280	285	864
ggc agc atc cgc agc ccc cac ctg atg gac atc ctg aac agc atc acc Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr 290	295	300	912
atc tac acc gac gcc cac cgc ggc gag tac tac tgg agc ggc cac cag Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln 305	310	315	960
atc atg gcc agc ccc gtc ggc ttc agc ggc ccc gag ttc acc ttc ccc Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro 325	330	335	1008
ctg tac ggc acc atg ggc aac gct gca cct cag cag cgc atc gtg gca Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala 340	345	350	1056
cag ctg ggc cag gga gtg tac cgc acc ctg agc agc acc ctg tac cgt Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg 355	360	365	1104
cga cct ttc aac atc ggc atc aac aac cag cag ctg agc gtg ctg gac Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp 370	375	380	1152
ggc acc gag ttc gcc tac ggc acc agc agc aac ctg ccc agc gcc gtg Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val 385	390	395	1200
tac cgc aag agc ggc acc gtg gac agc ctg gac gag atc ccc cct cag Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln 405	410	415	1248
aac aac aac gtg cca cct cga cag ggc ttc agc cac cgt ctg agc cac Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His 420	425	430	1296
gtg agc atg ttc cgc agt ggc ttc agc aac agc agc gtg agc atc atc Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Val Ser Ile Ile 435	440	445	1344
cgt gca ccc atg ttc agc tgg att cac cgc agc gcc acc ctg acc aac Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn 450	455	460	1392
acc atc gac ccc gag cgc atc aac cag atc ccc ctg gtg aag ggc ttc Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe 465	470	475	1440
cgg gtg tgg ggc ggc acc agc gtg atc acc ggc ccc ggc ttc acc gga Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly 485	490	495	1488

ggc gac atc ctg cgc aga aac acc ttc ggc gac ttc gtg agc ctg cag	500	505	510	1536
Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln				
gtg aac atc aac agc ccc atc acc cag cgt tac cgc ctg cgc ttc cgc	515	520	525	1584
Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg				
tac gcc agc agc cgc gac gcc cgt gtg atc gtg ctg act ggc gcc gct	530	535	540	1632
Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala				
agc acc ggt gtg ggc ggt cag gtg agc gtg aac atg ccc ctg cag aag	545	550	555	1680
Ser Thr Gly Val Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys				
act atg gag atc ggc gag aac ctg act agt cgc acc ttc cgc tac acc	565	570	575	1728
Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr				
gac ttc agc aac ccc ttc agc ttc cgc gcc aac ccc gac atc atc ggc	580	585	590	1776
Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly				
atc agc gag cag ccc ctg ttc ggt gcc ggc agc atc agc agc ggc gag	595	600	605	1824
Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu				
ctg tac atc gac aag atc gag atc atc ctg gcc gac gcc acc ttc gag	610	615	620	1872
Leu Tyr Ile Asp Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu				
gcc gag agc gac ctg gag cgc gcc cag aag gcc gtg aac gcc ctg ttc	625	630	635	1920
Ala Glu Ser Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe				
acc agc agc aac cag atc ggc ctg aag acc gac gtg acc gac tac cac	645	650	655	1968
Thr Ser Ser Asn Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His				
atc gac cag gtg agc aac ctg gtg gac tgc tta agc gac gag ttc tgc	660	665	670	2016
Ile Asp Gln Val Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys				
ctg gac gag aag aag gag ctg agc gag aag gtg aag cac gcc aag cgc	675	680	685	2064
Leu Asp Glu Lys Lys Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg				
ctg agc gag cgc aac ctg ctg cag gac ccc aac ttc cgc ggc atc	690	695	700	2112
Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile				
aac cgc cag ctg gac cgc ggc tgg cga ggc agc acc gat atc acc atc	705	710	715	2160
Asn Arg Gln Leu Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile				
cag ggc ggc gac gac gtg ttc aag gag aac tac gtg acc ctg cag ggc	725	730	735	2208
Gln Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Gln Gly				

acc ttc gac gag tgc tac ccc acc tac ctg tac cag ccg atc gac gag	2256
Thr Phe Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Pro Ile Asp Glu	
740 745 750	
agc aag ctg aag gcc tac acc cgc tac cag ctg cgc ggc tac atc gag	2304
Ser Lys Leu Lys Ala Tyr Thr Arg Tyr Gln Leu Arg Gly Tyr Ile Glu	
755 760 765	
gac agc cag gac ctg gaa atc tac ctg atc cgc tac aac gcg aag cac	2352
Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His	
770 775 780	
gag acc gtg aac gtg ccc ggc acc ggc agc ctg tgg ccc ctg agc gcc	2400
Glu Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Ala	
785 790 795 800	
ccc agc ccc atc ggc aag tgc ggg gag ccg aat cga tgc gct ccg cac	2448
Pro Ser Pro Ile Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His	
805 810 815	
ctg gag tgg aac ccg gac cta gac tgc agc tgc agg gac ggg gag aag	2496
Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys	
820 825 830	
tgc gcc cac cac agc cac ctc ttc agc ctg gac atc gac gtg ggc tgc	2544
Cys Ala His His Ser His His Phe Ser Leu Asp Ile Asp Val Gly Cys	
835 840 845	
acc gac ctg aac gag gac ctg ggc gtg tgg gtg atc ttc aag atc aag	2592
Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys	
850 855 860	
acc cag gac ggc cac gcc cgc ctg ggc aat cta gag ttc ctg gag gag	2640
Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu	
865 870 875 880	
aag ccc ctg gtg ggc gag gcc ctg gcc cgc gtg aag cgt gct gag aag	2688
Lys Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys	
885 890 895	
aag tgg cgc gac aag cgc gag aag ctg gag tgg gag acc aac atc gtg	2736
Lys Trp Arg Asp Lys Arg Glu Lys Leu Glu Trp Glu Thr Asn Ile Val	
900 905 910	
tac aag gag gcc aag gag agc gtg gac gcc ctg ttc gtg aac agc cag	2784
Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln	
915 920 925	
tac gac cgc ctg cag gcc gac acc aac atc gcc atg atc cac gcc gcc	2832
Tyr Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala	
930 935 940	
gac aag cgc gtg cac agc att cgc gag gcc tac ctg ccc gag ctg agc	2880
Asp Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser	
945 950 955 960	
gtg atc ccc ggt gtg aac gcc gcc atc ttc gag gaa ctc gag ggc cgc	2928
Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu Glu Leu Glu Gly Arg	
965 970 975	
atc ttc acc gcc ttc agc ctg tac gac gcc cgc aac gtg atc aag aac	2976

Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val Ile Lys Asn		
980	985	990
ggc gac ttc aac aac ggc ctg agc tgc tgg aac gtg aag ggc cac gtg		3024
Gly Asp Phe Asn Asn Gly Leu Ser Cys Trp Asn Val Lys Gly His Val		
995	1000	1005
gac gtg gag gag cag aac aac cac cgc agc gtg ctg gtg gtg ccc gag		3072
Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val Pro Glu		
1010	1015	1020
tgg gag gcc gag gtg agc cag gag gtg cgc gtg tgc ccc ggc cgc ggc		3120
Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro Gly Arg Gly		
1025	1030	1035
tac atc ctg cgc gtg acc gcc tac aag gag ggc tac ggc gag ggc tgc		3168
Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly Glu Gly Cys		
1045	1050	1055
gtg acc atc cac gag atc gag aac aac acc gac gag ctc aag ttc agc		3216
Val Thr Ile His Glu Ile Glu Asn Asn Thr Asp Glu Leu Lys Phe Ser		
1060	1065	1070
aac tgc gtg gag gag gtt tac ccc aac aac acc gtg acc tgc aac		3264
Asn Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr Cys Asn		
1075	1080	1085
gac tac acc gcg acc cag gag gag tac gaa ggc acc tac acc tct cgc		3312
Asp Tyr Thr Ala Thr Gln Glu Glu Tyr Gly Thr Tyr Thr Ser Arg		
1090	1095	1100
aac agg ggt tac gac ggc gcc tac gag tcc aac agc tcc gtg cca gct		3360
Asn Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Ser Val Pro Ala		
1105	1110	1115
1120		
gac tac gcc agc gcc tac gag gag aaa gcc tac acc gac ggt aga cgc		3408
Asp Tyr Ala Ser Ala Tyr Glu Glu Lys Ala Tyr Thr Asp Gly Arg Arg		
1125	1130	1135
gac aac cca tgt gag agc aac aga ggc tac ggc gac tac acc ccc ctg		3456
Asp Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr Thr Pro Leu		
1140	1145	1150
ccc gct gga tac gtg acc aag gag ctg gag tac ttc ccc gag acc gac		3504
Pro Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp		
1155	1160	1165
aag gtg tgg atc gag att ggc gag acc gag ggc acc ttc atc gtg gac		3552
Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp		
1170	1175	1180
agc gtg gag ctg ctg atg gag gag tag		3582
Ser Val Glu Leu Leu Met Glu Glu		
1185	1190	

<210> 8

<211> 1193

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: synthetic gene

encoding H04 with full-length Cry1Ab tail

<400> 8
 Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu
 1 5 10 15
 Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly
 20 25 30
 Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser
 35 40 45
 Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile
 50 55 60
 Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile
 65 70 75 80
 Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala
 85 90 95
 Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu
 100 105 110
 Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu
 115 120 125
 Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala
 130 135 140
 Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val
 145 150 155 160
 Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser
 165 170 175
 Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg
 180 185 190
 Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val
 195 200 205
 Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg
 210 215 220
 Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val
 225 230 235 240
 Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro
 245 250 255
 Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val
 260 265 270
 Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu
 275 280 285
 Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr
 290 295 300
 Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln
 305 310 315 320
 Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro
 325 330 335
 Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala
 340 345 350
 Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg
 355 360 365
 Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp
 370 375 380
 Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val
 385 390 395 400
 Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln
 405 410 415
 Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His
 420 425 430
 Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile
 435 440 445
 Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn
 450 455 460

Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe
 465 470 475 480
 Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly
 485 490 495
 Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln
 500 505 510
 Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg
 515 520 525
 Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala
 530 535 540
 Ser Thr Gly Val Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys
 545 550 555 560
 Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr
 565 570 575
 Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly
 580 585 590
 Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu
 595 600 605
 Leu Tyr Ile Asp Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu
 610 615 620
 Ala Glu Ser Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe
 625 630 635 640
 Thr Ser Ser Asn Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His
 645 650 655
 Ile Asp Gln Val Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys
 660 665 670
 Leu Asp Glu Lys Lys Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg
 675 680 685
 Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile
 690 695 700
 Asn Arg Gln Leu Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile
 705 710 715 720
 Gln Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Gln Gly
 725 730 735
 Thr Phe Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Pro Ile Asp Glu
 740 745 750
 Ser Lys Leu Lys Ala Tyr Thr Arg Tyr Gln Leu Arg Gly Tyr Ile Glu
 755 760 765
 Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg Tyr Asn Ala Lys His
 770 775 780
 Glu Thr Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Ala
 785 790 795 800
 Pro Ser Pro Ile Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His
 805 810 815
 Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys Arg Asp Gly Glu Lys
 820 825 830
 Cys Ala His His Ser His His Phe Ser Leu Asp Ile Asp Val Gly Cys
 835 840 845
 Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val Ile Phe Lys Ile Lys
 850 855 860
 Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu Glu Phe Leu Glu Glu
 865 870 875 880
 Lys Pro Leu Val Gly Glu Ala Leu Ala Arg Val Lys Arg Ala Glu Lys
 885 890 895
 Lys Trp Arg Asp Lys Arg Glu Lys Leu Glu Trp Glu Thr Asn Ile Val
 900 905 910
 Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu Phe Val Asn Ser Gln
 915 920 925
 Tyr Asp Arg Leu Gln Ala Asp Thr Asn Ile Ala Met Ile His Ala Ala
 930 935 940
 Asp Lys Arg Val His Ser Ile Arg Glu Ala Tyr Leu Pro Glu Leu Ser

945	950	955	960
Val Ile Pro Gly Val Asn Ala Ala Ile Phe	Glu Glu Leu Glu Gly	Arg	
965	970	975	
Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg Asn Val	Ile Lys Asn		
980	985	990	
Gly Asp Phe Asn Asn Gly Leu Ser Cys Trp Asn Val Lys	Gly His Val		
995	1000	1005	
Asp Val Glu Glu Gln Asn Asn His Arg Ser Val Leu Val Val	Pro Glu		
1010	1015	1020	
Trp Glu Ala Glu Val Ser Gln Glu Val Arg Val Cys Pro	Gly Arg Gly		
1025	1030	1035	1040
Tyr Ile Leu Arg Val Thr Ala Tyr Lys Glu Gly Tyr Gly	Glu Gly Cys		
1045	1050	1055	
Val Thr Ile His Glu Ile Glu Asn Asn Thr Asp Glu Leu Lys	Phe Ser		
1060	1065	1070	
Asn Cys Val Glu Glu Val Tyr Pro Asn Asn Thr Val Thr	Cys Asn		
1075	1080	1085	
Asp Tyr Thr Ala Thr Gln Glu Glu Tyr Glu Gly Thr Tyr	Thr Ser Arg		
1090	1095	1100	
Asn Arg Gly Tyr Asp Gly Ala Tyr Glu Ser Asn Ser Ser	Val Pro Ala		
1105	1110	1115	1120
Asp Tyr Ala Ser Ala Tyr Glu Glu Lys Ala Tyr Thr Asp	Gly Arg Arg		
1125	1130	1135	
Asp Asn Pro Cys Glu Ser Asn Arg Gly Tyr Gly Asp Tyr	Thr Pro Leu		
1140	1145	1150	
Pro Ala Gly Tyr Val Thr Lys Glu Leu Glu Tyr Phe Pro	Glu Thr Asp		
1155	1160	1165	
Lys Val Trp Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe	Ile Val Asp		
1170	1175	1180	
Ser Val Glu Leu Leu Leu Met Glu Glu			
1185	1190		

<210> 9

<211> 2007

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic gene
encoding H04 plus the first 40 amino acids of the
Cry1Ab tail

<220>

<221> CDS

<222> (1)..(2007)

<223> H04 with truncated Cry1Ab tail

<400> 9

atg gac aac aac ccc aac atc aac gag tgc atc ccc tac aac tgc ctg	48
Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu	
1 5 10 15	

agc aac ccc gag gtg gag gtg ctg ggc ggc gag cgc atc gag acc ggc	96
Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly	
20 25 30	

tac acc ccc atc gac atc agc ctg agc ctg acc cag ttc ctg ctg agc	144
Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser	
35 40 45	

gag ttc gtg ccc ggc gcc ggc ttc gtg ctg ggc ctg gtg gac atc atc	50	55	60	192
Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile				
tgg ggc atc ttc ggc ccc agc cag tgg gac gcc ttc ctg gtg cag atc	65	70	75	240
Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile				
gag cag ttg ata aac caa cgc ata gag gaa ttc gcc cgc aac cag gcc	85	90	95	288
Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala				
atc agc cgc ctg gag ggc ctg agc aac ctg tac caa atc tac gcc gag	100	105	110	336
Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu				
agc ttc cgc gag tgg gag gcc gac ccc acc aac ccc gcc ctg cgc gag	115	120	125	384
Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu				
gag atg cgc atc cag ttc aac gac atg aac agc gcc ctg acc acc gcc	130	135	140	432
Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala				
atc ccc ctg ttc gcc gtg cag aac tac cag gtg ccc ctg ctg agc gtg	145	150	155	480
Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val				
tac gtg cag gcc gcc aac ctg cac ctg agc gtg ctg cgc gac gtc agc	165	170	175	528
Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser				
gtg ttc ggc cag cgc tgg ggc ttc gac gcc gcc acc atc aac agc cgc	180	185	190	576
Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg				
tac aac gac ctg acc cgc ctg atc ggc aac tac acc gac cac gcc gtg	195	200	205	624
Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val				
cgc tgg tac aac acc ggc ctg gag cgc gtg tgg ggt ccc gac agc cgc	210	215	220	672
Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg				
gac tgg atc agg tac aac cag ttc cgc cgc gag ctg acc ctg acc gtg	225	230	235	720
Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val				
ctg gac atc gtg agc ctg ttc ccc aac tac gac agc cgc acc tac ccc	245	250	255	768
Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro				
atc cgc acc gtg agc cag ctg acc cgc gag att tac acc aac ccc gtg	260	265	270	816
Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val				
ctg gag aac ttc gac ggc agc ttc cgc ggc agc gcc cag ggc atc gag	275	280	285	864
Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu				

ggc	agc	atc	cgc	agc	ccc	cac	ctg	atg	gac	atc	ctg	aac	agc	atc	acc	912
Gly	Ser	Ile	Arg	Ser	Pro	His	Leu	Met	Asp	Ile	Leu	Asn	Ser	Ile	Thr	
290															300	
atc	tac	acc	gac	gcc	cac	cgc	ggc	gag	tac	tac	tgg	agc	ggc	cac	cag	960
Ile	Tyr	Thr	Asp	Ala	His	Arg	Gly	Glu	Tyr	Tyr	Trp	Ser	Gly	His	Gln	
305															320	
atc	atg	gcc	agc	ccc	gtc	ggc	tcc	agc	ggc	ccc	gag	tcc	acc	tcc	ccc	1008
Ile	Met	Ala	Ser	Pro	Val	Gly	Phe	Ser	Gly	Pro	Glu	Phe	Thr	Phe	Pro	
325															335	
ctg	tac	ggc	acc	atg	ggc	aac	gct	gca	cct	cag	cag	cgc	atc	gtg	gca	1056
Leu	Tyr	Gly	Thr	Met	Gly	Asn	Ala	Ala	Pro	Gln	Gln	Arg	Ile	Val	Ala	
340															350	
cag	ctg	ggc	cag	gga	gtg	tac	cgc	acc	ctg	agc	agc	acc	ctg	tac	cgt	1104
Gln	Leu	Gly	Gln	Gly	Val	Tyr	Arg	Thr	Leu	Ser	Ser	Thr	Leu	Tyr	Arg	
355															365	
cga	cct	tcc	aat	atc	ggc	atc	aat	acc	cag	cag	ctg	agc	gtg	ctg	gac	1152
Arg	Pro	Phe	Asn	Ile	Gly	Ile	Asn	Asn	Gln	Gln	Leu	Ser	Val	Leu	Asp	
370															380	
ggc	acc	gag	tcc	gcc	tac	ggc	acc	agc	agc	acc	ctg	ccc	agc	gcc	gtg	1200
Gly	Thr	Glu	Phe	Ala	Tyr	Gly	Thr	Ser	Ser	Asn	Leu	Pro	Ser	Ala	Val	
385															400	
tac	cgc	aag	agc	ggc	acc	gtg	gac	agc	ctg	gac	gag	atc	ccc	cct	cag	1248
Tyr	Arg	Lys	Ser	Gly	Thr	Val	Asp	Ser	Leu	Asp	Glu	Ile	Pro	Pro	Gln	
405															415	
aac	aac	aac	gtg	cca	cct	cga	cag	ggc	tcc	agc	cac	cgt	ctg	agc	cac	1296
Asn	Asn	Asn	Val	Pro	Pro	Arg	Gln	Gly	Phe	Ser	His	Arg	Leu	Ser	His	
420															430	
gtg	agc	atg	tcc	cgc	agt	ggc	tcc	agc	aac	agc	agc	gtg	agc	atc	atc	1344
Val	Ser	Met	Phe	Arg	Ser	Gly	Phe	Ser	Asn	Ser	Ser	Val	Ser	Ile	Ile	
435															445	
cgt	gca	ccc	atg	tcc	agc	tgg	att	cac	cgc	agc	gcc	acc	ctg	acc	aac	1392
Arg	Ala	Pro	Met	Phe	Ser	Trp	Ile	His	Arg	Ser	Ala	Thr	Leu	Thr	Asn	
450															460	
acc	atc	gac	ccc	gag	cgc	atc	aat	cag	atc	ccc	ctg	gtg	aag	ggc	tcc	1440
Thr	Ile	Asp	Pro	Glu	Arg	Ile	Asn	Gln	Ile	Pro	Leu	Val	Lys	Gly	Phe	
465															480	
cgg	gtg	tgg	ggc	acc	agc	gtg	atc	acc	ggc	ccc	ggc	tcc	acc	gga	1488	
Arg	Val	Trp	Gly	Gly	Thr	Ser	Val	Ile	Thr	Gly	Pro	Gly	Phe	Thr	Gly	
485															495	
ggc	gac	atc	ctg	cgc	aga	aac	acc	tcc	ggc	gac	tcc	gtg	agc	ctg	cag	1536
Gly	Asp	Ile	Leu	Arg	Arg	Asn	Thr	Phe	Gly	Asp	Phe	Val	Ser	Leu	Gln	
500															510	
gtg	aac	atc	aac	agc	ccc	atc	acc	cag	cgt	tac	cgc	ctg	cgc	tcc	cgc	1584
Val	Asn	Ile	Asn	Ser	Pro	Ile	Thr	Gln	Arg	Tyr	Arg	Leu	Arg	Phe	Arg	
515															525	
tac	gcc	agc	agc	cgc	gac	gcc	cgt	gtg	atc	gtg	ctg	act	ggc	gcc	gct	1632

Tyr	Ala	Ser	Ser	Arg	Asp	Ala	Arg	Val	Ile	Val	Leu	Thr	Gly	Ala	Ala
						530		535			540				
agc	acc	ggt	gtg	ggc	ggt	cag	gtg	agc	gtg	aac	atg	ccc	ctg	cag	aag
Ser	Thr	Gly	Val	Gly	Gly	Gln	Val	Ser	Val	Asn	Met	Pro	Leu	Gln	Lys
						550				555				560	
act	atg	gag	atc	ggc	gag	aac	ctg	act	agt	cgc	acc	ttc	cgc	tac	acc
Thr	Met	Glu	Ile	Gly	Glu	Asn	Leu	Thr	Ser	Arg	Thr	Phe	Arg	Tyr	Thr
						565			570				575		
gac	ttc	agc	aac	ccc	ttc	agc	ttc	cgc	gcc	aac	ccc	gac	atc	atc	ggc
Asp	Phe	Ser	Asn	Pro	Phe	Ser	Phe	Arg	Ala	Asn	Pro	Asp	Ile	Ile	Gly
						580			585				590		
atc	agc	gag	cag	ccc	ctg	ttc	ggt	gcc	ggc	agc	atc	agc	agc	ggc	gag
Ile	Ser	Glu	Gln	Pro	Leu	Phe	Gly	Ala	Gly	Ser	Ile	Ser	Ser	Gly	Glu
						595		600			605				
ctg	tac	atc	gac	aag	atc	gag	atc	atc	ctg	gcc	gac	gcc	acc	ttc	gag
Leu	Tyr	Ile	Asp	Lys	Ile	Glu	Ile	Ile	Leu	Ala	Asp	Ala	Thr	Phe	Glu
						610		615			620				
gcc	gag	agc	gac	ctg	gag	cgc	gcc	cag	aag	gcc	gtg	aac	gcc	ctg	ttc
Ala	Glu	Ser	Asp	Leu	Glu	Arg	Ala	Gln	Lys	Ala	Val	Asn	Ala	Leu	Phe
						625		630			635			640	
acc	agc	agc	aac	cag	atc	ggc	ctg	aag	acc	gac	gtg	acc	gac	tac	cac
Thr	Ser	Ser	Asn	Gln	Ile	Gly	Leu	Lys	Thr	Asp	Val	Thr	Asp	Tyr	His
						645			650				655		
atc	gac	cag	gtg	agc	aac	ctg	gtg	gac	tgc	tta	agc	tag			2007
Ile	Asp	Gln	Val	Ser	Asn	Leu	Val	Asp	Cys	Leu	Ser				
						660			665						

<210> 10
<211> 668
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic gene
encoding H04 plus the first 40 amino acids of the
Cry1Ab tail

Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala
 130 135 140
 Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val
 145 150 155 160
 Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser
 165 170 175
 Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg
 180 185 190
 Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp His Ala Val
 195 200 205
 Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg
 210 215 220
 Asp Trp Ile Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val
 225 230 235 240
 Leu Asp Ile Val Ser Leu Phe Pro Asn Tyr Asp Ser Arg Thr Tyr Pro
 245 250 255
 Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val
 260 265 270
 Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu
 275 280 285
 Gly Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr
 290 295 300
 Ile Tyr Thr Asp Ala His Arg Gly Glu Tyr Tyr Trp Ser Gly His Gln
 305 310 315 320
 Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro
 325 330 335
 Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala
 340 345 350
 Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg
 355 360 365
 Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp
 370 375 380
 Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val
 385 390 395 400
 Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln
 405 410 415
 Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His
 420 425 430
 Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile
 435 440 445
 Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Thr Leu Thr Asn
 450 455 460
 Thr Ile Asp Pro Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe
 465 470 475 480
 Arg Val Trp Gly Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly
 485 490 495
 Gly Asp Ile Leu Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln
 500 505 510
 Val Asn Ile Asn Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg
 515 520 525
 Tyr Ala Ser Ser Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala
 530 535 540
 Ser Thr Gly Val Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys
 545 550 555 560
 Thr Met Glu Ile Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr
 565 570 575
 Asp Phe Ser Asn Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly
 580 585 590
 Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu
 595 600 605
 Leu Tyr Ile Asp Lys Ile Glu Ile Leu Ala Asp Ala Thr Phe Glu

610	615	620
Ala Glu Ser Asp Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe		
625	630	635
Thr Ser Ser Asn Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His		640
	645	650
Ile Asp Gln Val Ser Asn Leu Val Asp Cys Leu Ser		655
	660	665

<210> 11

<211> 13269

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pNOV1308

<220>

<221> misc_feature

<222> (1)..(1896)

<223> synthetic nucleotide sequence encoding the toxin portion of H04, without a tail

<220>

<221> misc_feature

<222> (2102)..(4083)

<223> Zea mays ubiquitin promoter

<220>

<221> misc_feature

<222> (4180)..(5283)

<223> PMI marker gene

<220>

<221> misc_feature

<222> (11247)..(12647)

<223> Zm Ubi promoter

<400> 11

atggacaaca accccaacat caacgagtgc atcccataca actgcctgag caaccccgag 60
gtggaggtgc tggcgccgca ggcgcattcgc accggctaca ccccccattcga catcagcctg 120
agcctgaccc agttcctgct gagcgagttc gtgcccggcg ccggcttcgt gctggccctg 180
gtggacatca tctggggcat cttcgccccc agccagtggg acgccttcct ggtgcagatc 240
gagcagttga taaaccaacg catagaggaa ttccggccgca accaggccat cagccgcctg 300
gagggcctga gcaacctgta ccaaattctac gccgagagct tccgcgagtg ggaggccgac 360
cccaccaacc cggccctgca cgaggagatg cgcattccagt tcaacgacat gaacagcgcc 420
ctgaccaccg ccatccccct gttcgccgtg cagaactacc aggtgcccct gctgagcgtg 480
tacgtgcagg cgcaccaacct gcacctgagc gtgctgcgca acgtcagcgt gttcgccag 540
cgctggggct tcgacgcccgc caccatcaac agccgctaca acgacactgac ccgcctgatc 600
ggcaactaca ccgaccacgc cgtgcgtgg tacaacaccg gcctggagcg cgtgtgggg 660
cccgacagcc gcgactggat caggtacaac cagttccgca gcgagctgac cctgaccgtg 720
ctggacatcg tgagcctgtt ccccaactac gacagccgca cttacccat ccgcaccgtg 780
agccagctga cccgcgagat ttacaccaac cccgtgtgg agaacttcga cggcagcttc 840
cgccggcagcg cccaggcat cgaggccagc atccgcagcc cccacactgat ggacatcctg 900
aacagcatca ccatctacac cgacgcccac cgccggcagtg actactggag cggccaccag 960
atcatggcca gccccgtcgg cttcagcggc cccgagttca cttccccct gtacggcacc 1020
atgggcaacg ctgcacccatca gcagcgcattc gtggcacagc tggccagg agtgtaccgc 1080
accctgagca gcaccctgta cctgcgaccc ttcaacatcg gcatcaacaa ccagcagctg 1140
agcgtgtgg acggcaccga gttcgccatc ggcaccagca gcaacctgca cagccgcgtg 1200
taccgcaaga gcggcaccgt ggacagccctg gacgagatcc cccctcagaa caacaacgtg 1260

ccacctcgac agggcttcag ccaccgtctg agccacgtga gcatgttccg cagtggcttc 1320
 agcaacagca gcgtgagcat catccgtgca cccatgttca gctggattca ccgcagcgcc 1380
 accctgacca acaccatcga ccccggcgc atcaaccaga tccccctgggt gaaggggcttc 1440
 cgggtgtgg gcggcaccag cgtgatcacc ggccccggct tcaccggagg cgacatcctg 1500
 cgcagaaaca cttcggcga ctctgtgagc ctgcaggtga acatcaacag ccccatcacc 1560
 cagcgttacc gcctgcgtt ccgctacgccc agcagccgccc acgcccgtgt gatcgctg 1620
 actggcgccg ctagcaccgg tgtggcggt caggtgagcg tgaacatgcc cctgcagaag 1680
 actatggaga tcggcgagaa cctgactagt cgcaccctcc gctacaccga cttcagcaac 1740
 cccttcagct tccgcgccaa ccccgacatc atcggcatca gcgagcagcc cctgttcgg 1800
 gccggcagca tcagcagcgg cgagctgtac atcgacaaga tcgagatcat cctggccgac 1860
 gccacctcg aggccgagag cgacctggag cgctaagatc tttctgcac aaagtggagt 1920
 agtcagtcat cgatcaggaa ccagacacca gacttttatt catacagtga agtgaagtga 1980
 agtgcagtgc agtgagttgc tggttttgt acaacttagt atgtatttgt atttgtaaaa 2040
 tacttctatc aataaaattt ctaattccta aaacccaaaat ccaggggtac cagcttgcac 2100
 gcctgcagtgc cagcgtgacc cggcgtgccc cctctctaga gataatgagc attgcattgc 2160
 taagttataa aaaattacca catattttt ttgtcacact ttttgaagt gcagtttatac 2220
 tatctttata cataatattt aactttactc tacgaataat ataatctata gtactacaat 2280
 aatatcagtgc tttagagaa tcataataat gaacagttttag acatggtcta aaggacaatt 2340
 gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcattgt gttctccctt 2400
 tttttgcaaa atagcttcac ctatataata cttcatccat tttttagta catccattta 2460
 gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt ttattctatt 2520
 ttagcctcta aattaagaaa actaaaactc tatttttagtt ttttattta ataattttaga 2580
 tataaaatag aataaaataa agtactaaa aattaaacaa ataccctta agaaattaaa 2640
 aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt aaacgcccgtc 2700
 gacgagtcta acggacacca accagcgaac cagcagcgtc gctcgggccc aagcgaagca 2760
 gacggcacgg catctctgtc gtcgcctctg gaccctctc gagagttccg ctccaccgtt 2820
 ggacttgcgc cgctgtcgcc atccagaaat tgcgtggcgg agcggcagac gtgagccggc 2880
 acggcaggcg gcctcctcct cctctcacgg caccggcagc tacggggat tccttccca 2940
 ccgctccctc gcttccctt cctcgccccgc cgtataataat agacaccccc tccacaccct 3000
 ctttcccaa cctcgtgtt ttcggagcgc acacacac aaccagatct ccccaaatac 3060
 caccggcgg caccccgct tcaaggtacg ccgctcgtcc tccccccccc cccctctcta 3120
 ctttctctag atcggcggtc cggccatgg ttagggcccg gtagttctac ttctgttcat 3180
 gtttgttta gatccgtgtt tttgttagat ccgtgtgtt gacgttgcata cacggatgc 3240
 acctgtacgt cagacacgtt ctgattgtca acttgcgtt gtttctcttt gggaaatcct 3300
 gggatggctc tagccgttcc gcagacggga tcgatttcat gattttttt gttcgttgc 3360
 atagggtttg gtttgcctt ttcctttatt tcaatataat ccgtgcactt gtttgcggg 3420
 tcatcttttca atgcttttt ttgtcttgg tttgtatgtt tggctgtt gggcggtcgt 3480
 tctagatcggtt agtagaattt ttttcaaaatc tacctgggtt atttattaaat tttggatctg 3540
 tatgtgtgtt ccatacatat tcatagttac gaatttgaaga tttttttt gtttgcggg 3600
 ctaggatagg tatacatgtt gatcggtt ttactgtatc atatacagag atgcttttgc 3660
 ttgcgttgg tttgtatgtt tgggtgggtt gggcggtcgt tcattcggtc tagatcggt 3720
 tagaataactg tttcaaaacta cctgggttat ttattaaattt tggactgtt tttgtgtgtc 3780
 atacatcttc atagttacga gtttaagatg gatggaaata tcgatctagg ataggtatac 3840
 atgttgcgtt gggtttact gatgcataat catgtggca tatgcagcat ctattcatat 3900
 gctctaacct ttagtaccta tctattataa taaacaagta tttttataa ttattttgtat 3960
 cttgtatatac ttggatgtat gcatatgcag cagctatatg tggattttt tagccctgccc 4020
 ttcatatcgat atttatttgc ttggatgtt ttctttgtc gatgctcacc ctgtgtttt 4080
 gtgttacttc tgcaggatc cccgatcatg caaaaactca ttaactcagt gcaaaaactat 4140
 gcctggggca gcaaaaacggc gttgactgaa ctttatggta tggaaaatcc gtccagccag 4200
 ccgatggcccg agctgtggat gggcgacat ccgaaaaagca gttcagcagt gcagaatgcc 4260
 gcccggagata tcgtttact gctgtatgtt attgagatgt ataaatcgac tctgctcgga 4320
 gaggccgtt ccaaaccgtt tggcgaactg ctttccctgt tcaaagtatt atgcgcagca 4380
 cagccactct ccattcaggt tcatccaaatc aaacacaatt ctgaaatcggt ttttgcctaa 4440
 gaaaatgccg caggtatccc gatggatgcc gccgagcgtt actataaaga tccttaaccac 4500
 aagccggagc tggttttgc gctgacgcct ttcccttgcga tgaacgcgtt tcgtgaattt 4560
 tccgagatttgc tctccctact ccagccggc gcaggtgcac atccggcgat tgctcacttt 4620
 ttacaacagc ctgtatgccga acgtttaaatc gaactgttgc ccagcctgtt gaatatgcag 4680
 ggtgaagaaa aatcccgccg gctggcgatt tttttttttt ccctcgatag ccagcagggt 4740
 gaaccgtggc aaacgattcg tttttttttt gatggatgtt ccgaaagacag cggtctgttc 4800
 tccccgctat tgctgaatgt ggtgaaattt aaccctggcg aagcgatgtt cctgttgcct 4860
 gaaacaccgc acgcttacact gcaaggcgtt gcgctggaaatc tggatggcaaa ctccgataac 4920

gtgctgcgtg cgggtctgac gcctaaatac attgatattc cgaaactggc tgccaatgtg 4980
 aaattcgaag ccaaaccggc taaccagttt ttgaccaggc cggtgaaaca aggtgcagaa 5040
 ctggacttcc cgattccagt ggatgatttt gccttctcgc tgcacatgaccc tagtgataaa 5100
 gaaaccacca ttagccagca gagtgccgccc attttgttct gcgtcgaagg cgatgcaacg 5160
 ttgtggaaag gttctcagca gttacagctt aaaccgggtg aatcagcgaa tattgccc 5220
 aacgaatcac cggtgactgt caaaggccac ggccgtttag cgctgttta caacaagctg 5280
 taagagctta ctgaaaaaat taacatctct tgctaagctg ggagctcgat ccgtcgaccc 5340
 gcagatcggtt caaacatttgc gcaataaaat ttcttaagat tgaatcctgt tgccggctt 5400
 gcgatgatta tcataataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa 5460
 tgcacatgacgt tattttatgag atgggtttt atgatttagag tcccgcattt atacattaa 5520
 tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg cgccgtgtca 5580
 tctatgttac tagatctgct agccctgcag gaaatttacc ggtgcccggg cggccagcat 5640
 ggccgtatcc gcaatgtgtt attaagttgt ctaagcgta atttgtttac accacaata 5700
 atcctgcccac cagccagcca acagctcccc gaccggcagc tcggcacaaa atcaccactc 5760
 gatacaggca gcccatcaga attaattctc atgtttgaca gcttatcatc gactgcacgg 5820
 tgcaccaatg cttctggcgt caggcagcca tcggaagctg tggatggct gtgcaggctg 5880
 taaatcactg cataattcgt gtcgctcaag ggcactccc gttctggata atgtttttt 5940
 cgccgacatc ataacggttc tggcaaatat tctgaaatga gctgttgaca attaatcatc 6000
 cggctcgat aatgtgtgga attgtgagcg gataacaatt tcacacagga aacagaccat 6060
 gagggaaagcg ttgatgccc aagtatcgac tcaactatca gaggtagttg gcgtcatcga 6120
 gcgcacatctc gaaccgacgt tgctggccgt acattgtac ggctccgcag tggatggcgg 6180
 cctgaagcca cacagtgata ttgatttgcg gttacgggt accgtaaggc ttgatgaaac 6240
 aacgcggcga gctttgatca acgacccccc ggaaacttcg gcttccctg gagagagcga 6300
 gattctccgc gctgtagaag tcaccattgt tgcacatc gacatcattt cgtggcgta 6360
 tccagcttaag cgcaactgc aatttggaga atggcagcgc aatgacattt ttgcaggat 6420
 cttcgagcca gccacgatcg acattgatct ggctatctt ctgacaaaag caagagaaca 6480
 tagcgttgcc ttggtaggtc cagcggcgg ggaactctt gatccggttc ctgaacagga 6540
 tctatttgag ggcctaaatg aaaccttaac gctatggaaac tcgcccggc actgggctgg 6600
 cgatgagcga aatgttagtgc ttacgttgcg ccgcatttgg tacagcgcag taacggcaa 6660
 aatcgcccg aaggatgtcg ctgcccactg ggcaatggag cgcctgccc cccagtatca 6720
 gcccgtcata cttgaagcta ggcaggctt tcttggacaa gaagatcgct tggctcgccg 6780
 cgcaagatcg ttggaagaat ttgttcaacta cgtgaaaggc gagatcacca aagtagtcgg 6840
 caaataaagc tcttagtggat ctccgtaccc ccgggggatc tggctcgccg cggacgcacg 6900
 acgcccggc gagaccatag gcgatctcct aaatcaatag tagctgttaac ctcgaagcgt 6960
 ttcacttgcg acaacgattt agaatttttgc tcataaaatt gaaataactt gttcgattt 7020
 ttgtcatccg cggtcagccg caattctgac gaactgccc tttagctgga gatgattgt 7080
 catccttcac gtgaaaattt ctcaagcgct gtgaacaagg gttcagattt tagattgaaa 7140
 ggtgagccgt tggaaacacgt tcttcttgc gatgacgacg tcgctatgcg gcatcttatt 7200
 attgaataacc ttacgatcca cgccttcaaa gtgaccggcgg tagccgacag caccagttc 7260
 acaagagttac tctttccgc gacggtcgat gtcgtgggtt ttgatctaaa tttaggtcgt 7320
 gaagatgggc tcgagatcg tctgtaatctg gcccggaaatg ctgatattcc aatcataatt 7380
 atcagtggcg accgccttga ggagacggat aaagtgttg cactcgactt aggagcaatg 7440
 gattttatcg ctaagccgtt cagttatcaga gagttcttag cacgcattcg gtttgcctt 7500
 cgccgtgcgc ccaacgttgc ccgttccaaa gaccgacggt cttttgttt tactgactgg 7560
 acacttaatc tcaggcaacg tcgcttgcg tccgaagctg gcccgggggtt gaaacttacg 7620
 gcaggtgagt tcaatcttgc cctcgctt tttagagaaac cccgcgacgt tctatcgcc 7680
 gagcaacttc tcattgcccag tcgagttacgc gacgaggagg tttatgacag ggtatagat 7740
 gttctcattt tgaggctgcg ccgcggaaatc gaggcagatc cgtcaagccc tcaactgata 7800
 aaaacagcaa gaggtggccgg ttattttttt gacgcccggc tgcagggttc gcacgggggg 7860
 acgatggcgag cctgagccaa ttcccggatccc cccggggaaat cggcgtgagc ggtcgcaac 7920
 catccggccc ggtacaaatc ggcggccgc tgggtgatga cctgggtggag aagttgaagg 7980
 cccgcgacggc cggccggccg caacgcacatcg aggccggatc acgccccggt gaatcgcc 8040
 aagcggccgc tgatcgatcc cgcaaaagaaat cccggcaacc gccggcagcc ggtcgccgt 8100
 cgatttaggaa gccggccaaatc ggcggccgc aaccagattt tttcgatccg atgctctatg 8160
 acgtgggcac cccgcgatgt cgcacatcg tggacgtggc cgtttccgt ctgtcgaaac 8220
 gtgaccggacg agctggcgag gtatccgcg acgacgttcc agacgggcac gtagaggattt 8280
 cccgcggggcc ggccggccatg gccagttgtgt gggattacga cctgggtactg atggcggtt 8340
 cccatctaac cgaatccatg aaccgatacc gggaaaggaa gggagacaag cccggccgc 8400
 tggccgtcc acacgttgcg gacgtactca agttctgccc gcgagccgat ggcggaaagc 8460
 agaaagacga cctggtagaa acctgcattt ggttaaacac cacgcacgtt gccatgcagc 8520
 gtacgaagaa ggccaagaac ggccgcctgg tgacggatc cgagggtgaa gccttgatta 8580

gccgctacaa gatcgtaaag agcgaaaccg ggcggccgga gtacatcgag atcgagctag 8640
 ctgattggat gtaccgcgag atcacagaag gcaagaaccc ggacgtgctg acggttacc 8700
 ccgattactt tttgatcgat cccggcatcg gccgtttct ctaccgcctg gcacgcccgc 8760
 ccgcaggcaa ggcagaagcc agatgggtgt tcaagacgt ctacgaacgc agtggcagcg 8820
 ccggagagtt caagaagttc tgtttaccg tgcgcaagct gatcggtca aatgacctgc 8880
 cggagtaacgat tttgaaggag gaggcggggc aggctggccc gatcctagtc atgcctacc 8940
 gcaacctgat cgagggcgaa gcatccgccc gttcctaatt tacggagcag atgctagggc 9000
 aaattgcctt agcagggaa aaaggtcgaa aaggtctctt tcctgtggat agcacgtaca 9060
 ttgggaaccc aaagccgtac attggaaacc ggaacccgta cattggaaac ccaaagccgt 9120
 acattggaa ccggtcacac atgtaagtga ctgatataaa agaaaaaaa ggcgattttt 9180
 ccgcctaaaaa ctctttaaaaa cttattaaaaa ctctttaaaac ccgcctggcc tgtgcataac 9240
 tgtctggcca ggcacagcc gaagagctgc aaaaagcgcc tacccttcgg tcgctgcgt 9300
 ccctacgccc cgccgcttcg cgtcgcccta tcgcggccgc tggccgctca aaaatggctg 9360
 gcctacggcc aggcaatcta ccagggcgcg gacaagccgc gccgtcgcca ctcgaccgccc 9420
 ggcgctgagg tctgcctcgta gaagaaggtg ttgctgactc ataccaggcc tgaatcgccc 9480
 catcatccag ccagaaagtg agggagccac ggttcatgag agctttgtt taggtggacc 9540
 agttggtcat tttgaacttt tgctttgcca cggAACGGTC tgcgttgcg ggaagatgcg 9600
 tcatctgatc cttcaactca gcaaaagttc gatttattca acaaagccgc cgtcccgtca 9660
 agtcagcgta atgctctgcc agtggttacaa ccaattaaacc aattctgatt agaaaaactc 9720
 atcgagcatc aaatgaaact gcaatttatt catatcagga ttatcaatac catattttg 9780
 aaaaagccgt ttctgtatg aaggagaaaa ctcaccgagg cagttccata ggtggcaag 9840
 atcctggat cggctcgca ttccgactcg tccaaacatca atacaaccta ttaatttccc 9900
 ctcgtcaaaa ataaggatcat caagtgagaa atcaccatga gtgacgactg aatccggta 9960
 gaatggcaaa agctctgcat taatgaatcg gccaacgcgc ggggagaggc ggttgcgt 10020
 ttggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggcgtt cggctgcggc 10080
 gagcggtatac agctcactca aaggcggtaa tacggttatac cacagaatca ggggataacg 10140
 cagggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccggt 10200
 tgctggcggtt tttccatagg ctccgccccct ctgacgagca tcacaaaaat cgacgctcaa 10260
 gtcagagggtg gcgaaaccccg acaggactat aaagatacca ggcgtttccc cctggaaagct 10320
 ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc 10380
 ctccggaaag cgtggcgctt tctcatagct cacgctgttag gtatctcagt tcgggttagg 10440
 tcggtcgctc caagctggc tgggtgcacg aaccccccgt tcagccgac cgctgcgcct 10500
 tatccggtaa ctatcgctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 10560
 cagccactgg taacaggatt agcagagcga ggtatgttagg cgggtctaca gagttttga 10620
 agtggtggcc taactacggc tacactagaa gaacagtatt tggtatctgc gctctgcgt 10680
 agccagttac cttcggaaaaa agagttggta gctcttgatc cggcaaaacaa accaccgctg 10740
 gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 10800
 aagatccctt gatctttct acggggctcg acgctcagtg gaacgaaaac tcacgtaaag 10860
 ggatttttgtt catgagatta tcaaaaagga tcttccaccta gatccttttgc atccggatt 10920
 aattcctgtg gttggcatgc acataaaaaat ggacgaacgg ataaacctt tcacgcccctt 10980
 ttaaatatcc gattattcta ataaacgctc ttttctctta ggttaccccg ccaatatac 11040
 ctgtcaaaca ctgatagttt aaactgaagg cggaaacga caatctgatc atgagcggag 11100
 aattaaggga gtcacgttat gaccccgcc gatgacgcgg gacaagccgt tttacgtttt 11160
 gaactgacag aaccgcaacg ctgcaggaat tggccgcagc ggccattaa atcaattggg 11220
 cgcggccgaat tcgagctcgg tacaagcttgc catgcctgca gtgcagcgtg acccggtcgt 11280
 gcccctctt agagataatg agcattgcatt gtctaaaggat taaaaaattt ccacatattt 11340
 ttttgcac acttgcatttttgc agtgcagttt atctatctt atacatatac ttaaacttta 11400
 ctctacgaat aatataatct atagtactac aataatatca gtgttttgcgaaatgggg 11460
 aatgaacagt tagacatggt ctaaaggaca attgaggatt ttgacaacag gactctacag 11520
 ttttatctt ttagtgcatttttgc tgggttttttgc caaatagctt cacctatata 11580
 atacttcattc catttttgcatttttgc gtacatccat ttagggtttgc gggtaatgg tttttataga 11640
 ctaatttttgcatttttgc tagtacatctt attttattctt attttagcct ctaaattaag aaaactaaaa 11700
 ctctatttttgcatttttgc ttaataatttgcatttttgc agatataaaaaa tagaataaaaaa taaagtgcatt 11760
 aaaaatttttgcatttttgc ttaaggaaatttgcatttttgc aaaaaaacttgcatttttgc agggaaacatt tttcttgcatttttgc 11820
 cgagtagata atgcccggctt gttaaacgcgc gtcgacgagt ctaacggaca ccaaccagcg 11880
 aaccaggcgc gtcgctcgat gccaaggcgc gcaagacggca cggcatctct gtcgctgcct 11940
 ctggaccctt ctcgagagtttgc cccgtccacc gttggacttgc ctccgctgca ggcattccaga 12000
 aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcccgttgcctt ctcctctca 12060
 cggcacggca gctacggggcattccttcc caccgcttgcctt tcgcttccccc ttcctcgccc 12120
 gccgtataaa atagacacccc cctccacacc ctctttccccca aacctcgatgt tggtcgagc 12180
 gcacacacac acaaccagat ctcccccaaa tccacccgtc ggcacccgtc cttcaaggtt 12240

cgccgctcg t cttcccccc cccccctctc taccttctct agatcgccgt tccggccat 12300
 ggtagggcc cggtagttct acttctgttc atgttgtgt tagatccgtg tttgtgttag 12360
 atccgtgctg ctacgttgc tacacggatg cgacctgtac gtcagacacg ttctgattgc 12420
 taacttgcca gtgtttctct ttggggaaatc ctggatggc tctagccgtt ccgcagacgg 12480
 gatcgatttc atgattttt ttgtttcggt gcatagggtt tgggttgcctt tttccctta 12540
 tttcaatata tgccgtgcac ttgtttgtcg ggtcatctt tcatgcttt tttgtcttg 12600
 gttgtgatga tgtggtctgg ttgggcggc gttctagatc ggagtagaat tctgtttcaa 12660
 actacctggt ggatttatta attttggatc tttatgtgtg tgccatacat attcatagtt 12720
 acgaattgaa gatgatggat gaaatatcg atctaggata ggtatacatg ttgtatgcggg 12780
 ttttactgtat gcatatacag agatgcttt ttttcgttgc gttgtgatga tgtgggtgtgg 12840
 ttgggcggc gttcattcg tctagatcg agtagaaatc ttttcaaac tacctgggtgt 12900
 atttattaaat ttggaaactg tatgtgtgtg tcatacatct tcatagttac gagtttaaga 12960
 tggatggaaa tatcgatcta ggataggtat acatgttgc gttgggttta ctgtatgcata 13020
 tacatgtatgg catatgcagc atctattcat atgctctaac cttgagtacc tatctattat 13080
 aataaaacaag tatgtttat aattattttg atcttgatat acttggatga tggcatatgc 13140
 agcagctata tgtggatttt tttagccctg ctttcatacg ctatttattt gcttggtaact 13200
 gtttcttttgc tcgatgctca ccctgttgc tgggttact tctgcaggc gactctagag 13260
 gatccaaca 13269

<210> 12

<211> 16179

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pNOV1436

<220>

<221> misc_feature

<222> (1)..(3582)

<223> synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion

<220>

<221> misc_feature

<222> Complement((10390)..(11598))

<223> PhosphoMannose Isomerase (PMI) marker gene

<220>

<221> misc_feature

<222> Complement((12718)..(13608))

<223> Maize ubiquitin (Zm Ubi) promoter

<220>

<221> misc_feature

<222> (13613)..(16170)

<223> MTL promoter

<400> 12

atggacaaca accccaacat caacgagtgc atcccatac actgcctgag caaccccgag 60
 gtggaggtgc tggcgccgca ggcgcattcgacc accggctaca ccccccattcgatcatcgcctg 120
 agcctgaccc agttcctgct gagcgatgtc gtgcggcgcc cgccgttcgt gctggccctg 180
 gtggacatca tctggggcat cttcgccccc agccagtggtt acgccttcctt ggtgcagatc 240
 gagcagttga taaaccaacg catagaggaa ttccgcggca accaggccat cagccgcctg 300
 gagggccctga gcaacctgtt ccaaattctac gccgagagct tccgcgagtg ggaggccgac 360
 cccaccaacc cccgcctgcg cgaggagatg cgcattccagt tcaacgcacat gaacagcgcc 420
 ctgaccaccg ccattccctt gttcgccgtt cagaactacc aggtgcctt gctgagcgtt 480
 tacgtgcagg ccgccaaccc gcacctgagc gtgcgcgc acgtcagcgtt gttcgccag 540
 cgctggggct tcgacgcccgc caccatcaac agccgctaca acgacctgac ccgcctgatc 600

ggcaactaca ccgaccacgc cgtgcgctgg tacaacaccg gcctggagcg cgtgtgggt 660
 cccgacagcc gcgactggat caggtacaac cagttccgcc gcgagctgac cctgaccgtg 720
 ctggacatcg tgagcctgtt ccccaactac gacagccgca cctacccat ccgcaccgtg 780
 agccagctga cccgcgagat ttacaccaac cccgtgctgg agaacttcga cggcagcttc 840
 cgccggcagcg cccagggcat cgagggcagc atccgcagcc cccacactgat ggacatcctg 900
 aacagcatca ccatctacac cgacgcccac cgccggcaggt actactggag cggccaccag 960
 atcatggcca gccccgtcgg cttcagcggc cccgagttca cttccccct gtacggcacc 1020
 atgggcaacg ctgcacccatca gcagcgcatac gtggcacagc tggccaggg agtgtaccgc 1080
 accctgagca gcaccctgtt ccttcgacact ttcaacatcg gcatcaacaa ccagcagctg 1140
 agcgtgctgg acggcaccga gttcgcctac ggcaccagca gcaacctgcc cagcgcgtg 1200
 taccgcaaga gcggcaccgt gacagcctg gacgagatcc cccctcagaa caacaacgtg 1260
 ccacctcgac agggcttcag ccaccgtctg agccacgtga gcatgttccg cagtggcttc 1320
 agcaacagca gcgtgagcat catccgtgca cccatgttca gctggattca ccgcagcgcc 1380
 accctgacca acaccatcgat ccccgagcgc atcaaccaga tccccctggt gaaggcgttc 1440
 cgggtgtggg gcggcaccag cgtgatcacc ggccccggct tcaccggagg cgacatcctg 1500
 cgcagaaaca cttcggcga cttcgtgagc ctgcaggtga acatcaacag ccccatcacc 1560
 cagcgttacc gcctgcgtt cgcgtacgcg agcagccgcg acgcccgtgt gatcgtgctg 1620
 actggcggcg ctagcaccgg tggggcggt caggtgagcg tgaacatgcc cctgcagaag 1680
 actatggaga tcggcgagaa cctgacttagt cgcaccccttcc gctacaccga cttcagcaac 1740
 cccttcagct tccgcgccaa ccccgacatc atcggcatca gcgagcagcc cctgttcgg 1800
 gccggcagca tcagcagcgg cgagctgtac atcgacaaga tcgagatcat cttggccgac 1860
 gccacctcg aggccgagag cgacctggag cgcccccaga aggccgtgaa cgccctgttc 1920
 accagcagca accagatcgg cctgaagacc gacgtgaccg actaccacat cgaccaggtg 1980
 agcaacctgg tggactgctt aagcgacgag ttctgcctgg acgagaagaa ggagctgagc 2040
 gagaaggtga agcacgccaa ggcctgagc gacgagcgc acctgctgca ggaccccaac 2100
 ttccgcggca tcaaccgcca gctggaccgc ggctggcgag gcagcaccga tatcaccatc 2160
 cagggcggcg acgacgtgtt caaggagaac tacgtgaccc tgcagggcac cttcgacgag 2220
 tgctacccca cttacctgtt ctagccgatc gacgagagca agctgaaggc ctacacccgc 2280
 taccagctgc gcggctacat cgaggacagc caggacactgg aaatctacat gatccgctac 2340
 aacgcgaagc acgagaccgt gaacgtgccc ggcaccggca gcctgtggcc cccgagcgcc 2400
 cccagcccca tcggcaagtgc cggggagccg aatcgatgcg ctccgcaccc ggagtggAAC 2460
 ccggacctag actgcagctg cagggacggg gagaagtgcg cccaccacag ccaccacttc 2520
 agcctggaca tcgacgtggg ctgcaccgac ctgaacgagg acctggcggt gtgggtgatc 2580
 ttcaagatca agacccagga cggccacgccc cgcctggca atctagagtt cctggaggag 2640
 aagcccctgg tggcgaggc cctggcccgc gtgaagcgtg ctgagaagaa gtggcgac 2700
 aagcgcgaga agctggagtgc ggagaccaac atcgtgtaca aggaggccaa ggagagcgtg 2760
 gacgcccgt tcgtgaacag ccagtacgc cgcctgcagg ccgacaccaa catgcctatg 2820
 atccacgccc ccgacaacgc cgtgcacagc attcgcgagg cctacctgcc cgagctgagc 2880
 gtgatccccg gtgtgaacgc cgccttc gaggaactcg agggccgcat cttcaccgac 2940
 ttcaagctgt acgacgccc caacgtgatc aagaacggcg acttcaacaa cggcctgagc 3000
 tgctggaaacg tgaagggcca cgtggacgtg gaggagcaga acaaccaccc cagcgtgctg 3060
 gtgggtcccc agtggggaggc cgaggtgagc caggaggtgc gcgtgtgccc cggccgcggc 3120
 tacatcctgc gcgtgaccgc ctacaaggag ggctacggcg agggctgcgt gaccatccac 3180
 gagatcgaga acaacaccga cgagctcaag ttcaagcaact gcgtggagga ggaggttac 3240
 cccaacaaca ccgtgacccgc caacgactac accgcgaccc accaggagta cgaaggcacc 3300
 tacacctctc gcaacagggg ttacgacggc gcctacgagt ccaacagctc cgtgccagct 3360
 gactacgcca gcgcaccaac ggagaaagcc tacaccgacg gtacgcga caaccatgt 3420
 gagagcaaca gaggctacgg cgactacacc cccctgcccct ctggatacgat gaccaaggag 3480
 ctggagttact tccccgagac cgacaagggt tgatcgaga ttggcgagac cgagggcacc 3540
 ttcatcgtgg acagcgtggc gctgcgtgt atggaggag attagatctg ttctgcacaa 3600
 atggagtag tcagtcatcg atcaggaacc agacaccaga cttttattca tacagtgaag 3660
 tgaagtgaag tgcagtgcag tgagttgtg gttttgtac cacttagtat gtatttgtat 3720
 ttgtaaaata cttctatcaa taaaattct aattcctaaa accaaaatcc agtgggtacc 3780
 agcttgggct gagtggctcc ttcaacgttg cggttctgtc agttccaaac gtaaaacggc 3840
 ttgtcccgcg tcatacgccgg gggtcataac gtgactccct taattctccg ctcatgatca 3900
 gattgtcggt tcccccttc agttaaact atcagtgtt gacaggatat attggcggt 3960
 aaacctaaga gaaaagagcg tttattagaa taacggatat taaaaggc gtgaaaaggt 4020
 ttatccgttc gtccattgt atgtgcacgc caaccacagg gttccctcg ggagtgcctg 4080
 gcattccgtt cgataatgac ttctgttcaa ccacccaaac gtcggaaagc ctgacgcacgg 4140
 agcagcattc caaaaagatc cttggctcg tctggtcgg cttagaaggc gagtggctg 4200
 ctgtggcttg atccctcaac gcggtcgcgg acgtacgcgc gcgccgaaaa atcctcgatc 4260

gcaaatccga cgctgtcgaa aagcgtgatc tgcttgcgc tcttcggcc gacgtcctgg 4320
 ccagtcatca cgcgccaaag ttccgtcaca ggatgatctg ggcgcgatgg ctggatctcg 4380
 ccttcaatcc gggctgtgg cgggaactcc acgaaaatat ccgaacgcag caagatcg 4440
 gaccaattct tgaagacgaa agggcctcg gatacgccctt tttttatagg ttaatgtcat 4500
 gataataatg gtttctttaga cgtcaggtgg cactttcg ggaaatgtgc gcggaaacccc 4560
 tatttgtta ttttctaaa tacattcaaa tatgtatccg ctcatgagac aataaccctg 4620
 ataaatgctt caataatatt gaaaaaggaa gagttatgagt attcaacatt tccgtgtcgc 4680
 ctttattccc tttttgcgg cattttgcct tcctgtttt gtcacccag aaacgctggt 4740
 gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg gtttacatcg aactggatct 4800
 caacagcggt aagatcctt gagtttccg ccccaagaa cttttccaa tggatgagc 4860
 ttttaaagtt ctgctatgtg ggcgcgttatt atcccggtt gacgcggc aagagcaact 4920
 cggtcgccc atacactatt ctcagaatga cttgggttag tactcaccag tcacagaaaa 4980
 gcatcttacg gatggcatga cagtaagaga attatgcgt gtcacccatccaa ccatgagtc 5040
 taacactgcg gccaacttac ttctgacaaac gatcgagga ccgaaggagc taaccgc 5100
 tttgcacaac atgggggatc atgttaactcg cttgtatcg tgggaaccgg agctgaatga 5160
 agccatacca aacgacgagc gtgacaccac gatgcctgca gggggggggg ggggggggac 5220
 atgaggttgc cccgtattca gtgtcgctga tttgtattgt ctgaagttgt ttttacgtta 5280
 agttgtatgca gatcaattaa tacgataacct gcgtcataat tgattattt acgtggttt 5340
 atggcctcca cgcacgtt gatatgtaga tgataatcat tatcactt cgggtc 5400
 ccgggtatcc gacaggttac ggggcggcga cctcgcgggt tttcgctatt tatgaaaatt 5460
 ttccggttta aggcgttcc gttcttctc gtcataactt aatgtttta tttaaaatac 5520
 cctctgaaaa gaaagggaaac gacaggtgct gaaagcgagg cttttggcc tctgtcg 5580
 ccttctctg ttttgcggc tggaatgaac aatggaaatc ccccccccccc cccccccctg 5640
 cagcaatggc aacaacgtt gcaaaactat taactggcga actacttact ctagttccc 5700
 ggcaacaatt aatagactgg atggaggcgg ataaagttgc aggaccatt ctgcgtcg 5760
 cccttcggc tggctggttt attgctgata aatctggagc cggtgagcgt gggctcg 5820
 gtatcatgc agcaactggg ccagatggta agccctcccg ttcgtatgtt atctacacga 5880
 cggggagtca ggcaactatg gatgaacgaa atagacagat cgtcgatataa ggtcgctc 5940
 tgattaagca ttggtaactg tcagaccaag tttactcata tatactttt attgatttaa 6000
 aacttcattt ttaattttaa aggatctagg tgaagatcct ttttgataat ctcatgacca 6060
 aaatccctt aacgtgagtt tcgttccact gagcgtcaga ccccgtagaa aagatcaaag 6120
 gatcttcggc agatccttt tttctgcgcg taatctgctg cttgcaaaaca aaaaaaccac 6180
 cgctaccaggc ggtgggttgc ttgcggatc aagagctacc aactctttt ccgaaggtaa 6240
 ctggcttcag cagagcgcag ataccaaata ctgtccttct agttagccg tagttaggc 6300
 accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaattc ctgttaccag 6360
 tggctgtgc cagtgccat aagtcgtgtc ttaccgggtt ggactcaaga cgatagttac 6420
 cgataaggc gcagcggcgt ggctgaacgg ggggttcgtg cacacagccc agctggagc 6480
 gaacgaccta caccgaactg agataacctac acgtcgatct atgagaaagc gccacgcttc 6540
 ccgaaggagaa aaggcggac aggtatccgg taagcggcag ggtcgaaaca ggagagcgca 6600
 cgagggagct tccagggggaa aacgcctggg atctttatag tcctgtcg 6660
 tctgacttgc gcgtcgattt ttgtgtatgc cgtcaggggg gcggagccata tggaaaaacg 6720
 ccagcaacgc ggcctttta cggttcctgg cttttgctg gcctttgct cacatgttct 6780
 ttcctgcgtt atcccctgtat tctgtggata accgttattac cgcctttgag tgagctgata 6840
 ccgctcgccg cagccgaacg accgagcgc gcgagtcgt gagcgaggaa gcggaagagc 6900
 gcctgatgcg gtatttctc cttacgcatt tgcgtgtat ttcacaccgc atatggtca 6960
 ctctcagtagc aatctgtct gatgccat agttaagcca gtatacactc cgctatcg 7020
 acgtgactgg gtcatggctg cggccgaca cccgccaaca cccgctgacg cggccgtacg 7080
 ggcttgcgtg ctccggcat cggcttacag acaagctgtg accgtctccg ggagctgcat 7140
 gtgtcagagg ttttccacgt catcaccgaa acgcgcgagg cagcagatcc cccgatcaag 7200
 tagatacact acatatatct acaatagaca tcgagccggaa aggtgatgtt tacttcc 7260
 aaatccccag caattttagg ccagtttta cccaaagactt cgcctctaacc ataaattata 7320
 gtacccaaat ctggcaaaag gtttacaaag tggcagcaac ggattcgcaa acctgtc 7380
 cttttgtgc caaaagccgc gccagggttgc gatccgctg tgccaggcgt taggcgtcat 7440
 atgaagattt cggtgatccc tgagcaggtg gcggaaacat tggatgctga gaaccatttc 7500
 attgttcgtg aagtgttcga tgcaccaaa tccgaccaag gctttgaact atctaccaga 7560
 agtgtgagcc cttaccggaa ggattacatc tcggatgtatc actctgatga agactctg 7620
 tgctatgcgt cattcatcga ccaagagctt gtcggaaaga ttgaactcaa ctcaacatgg 7680
 aacgatctag cctctatcga acacattgtt gtgtcgacca cgcaccgagg caaaggagtc 7740
 ggcacagtc tcatcgaatt tgcgaaaaag tggcactaa gcagacagct cttggcata 7800
 cgatttagaga cacaacgaa caatgtaccc gcctgcaatt tgcgtcaaaa atgtggctt 7860
 actctcgccg cattgaccc gttcacgtat aaaactagac ctcaagtctc gaacgaaaca 7920

gcatgtact ggtactgggt ctcgggagca caggatgacg cctaacaatt cattcaagcc 7980
gacaccgctt cgccggcgccg cttatttcag gagttaaaca tcattgaggga agcgggtatc 8040
gccgaagtat cgactcaact atcagaggta gttggcgtca tcgagcgcca tctcgaaccg 8100
acgttgctgg ccgtacattt gtacggctcc gcagtggatg gcggcctgaa gcccacacgt 8160
gatattgatt tgctggttac ggtgaccgta aggcttgcgt aaacaacgca gcgagctttg 8220
atcaacgacc ttttggaaac ttcggcttcc cctggagaga gcgagattct ccgcgtgt 8280
gaagtcacca ttgttgtgca cgacgacatc attccgtggc gttatccagc taagcgca 8340
ctgcaatttgc gagaatggca gcgcaatgac attcttgcag gtatcttcga gccagccacg 8400
atcgacatttgc atctggctat cttgctgaca aaagcaagag aacatagcgt tgccttggta 8460
ggtccagcgg cggaggaact ctttgcgtcc gttcctgaac aggatctatt tgaggcgcta 8520
aatgaaacct taacgctatg gaactcgccg cccgactggg ctggcgatga gcgaaatgta 8580
gtgcttacgt tgtcccgcat ttggtaacgc gcagtaaccg gcaaaatcgc gccgaaggat 8640
gtcgctgccc actgggcaat ggagcgctg ccggcccagt atcagccgt catacttgaa 8700
gctaggcagg cttatcttgg acaagaagat cgcttggcct cgccgcaga tcagttggaa 8760
gaatttggtc actacgtgaa aggcgagatc accaaggtag tcggcaaaata atgtctaaca 8820
attcgttcaa gccgacgccc cttcgccggc cgcttaact caagcgtag agagctgggg 8880
aagactatgc gcgatctgtt gaaggtgggt ctaagcctcg tacttgcgt ggcatcgggg 8940
caggcacttgc ctgacctgccc aattgttttta gtggatgaag ctcgtcttcc ctatgactac 9000
tccccatcca actacgacat ttctccaagc aactacgaca actccataag caattacgac 9060
aatagtccat caaattacga caactctgag agcaactacg ataatagttc atccaattac 9120
gacaatagtc gcaacggaaa tcgtaggctt atatatacgca caaatgggtc tcgcactttc 9180
gccggctact acgtcattgc caacaatggg acaacgaact tctttccac atctggcaaa 9240
aggatgttct acaccccaaa aggggggcgc ggcgtctatg gcggcaaaga tggagcttc 9300
tgcggggcat tggtcgcat aaatggccaa tttcgcttg ccctgacaga taacggcctg 9360
aagatcatgt atctaagcaa ctgcgtct ctctaataaa atgttaggcc tcaacatcta 9420
gtcgcaagct gaggggaacc actagtgtca tacgaacctc caagagacgg ttacacaaac 9480
gggtacatttgc ttgatgtcat gtatgacaat cgcccaagta agtatccagc tgtgttcaga 9540
acgtacgtcc gaatttatttgc atcgggggtac ggtcgacgt cgtcaacgtt cacttctaaa 9600
gaaatagcgc cactcagctt cctcagcggc tttatccagc gatttcctat tatgtcggca 9660
tagttctcaa gatcgacagc ctgtcacggc taagcgagaa atgaataaga aggctgataa 9720
ttcggatctc tgcgagggag atgatatttgc atcacaggca gcaacgctct gtcatcgta 9780
caatcaacat gctaccctcc gcgagatcat ccgtgtttca aacccggcag cttagttgcc 9840
gttcttccga atagcatcggt taacatgagc aaagtctgccc gccttacaac ggctctcccg 9900
ctgacgcccgt cccggactga tggctgcct gtatcgagtgt gtgattttgt gccgagctgc 9960
cggtcgggga gctgttggct ggctgggtgc aggatattatt gtggtgtaaa caaattgacg 10020
cttagacaac ttaataacac attgcggacg ttttaatgt actgaattgt ctagacccgg 10080
ggatctcatg tttgacagct tatcatcggt tctagtaaca tagatgacac cgccgcgcgt 10140
aatttatcct agtttgcgcg ctatattttgc ttttctatcg cgtattaaat gtataattgc 10200
gggactctaa tcataaaaaac ccatctcata aataacgtca tgcattacat gtttatttt 10260
acatgcttaa cgtatttgcg cagaaattttgc atgataatca tcgcaagacc ggcaacagga 10320
ttcaatctta agaaacttta ttgccaaatgt tttgaacgtat ctctgcaggc cgacggatcg 10380
agctcccaggc ttagcaagag atgttaattt tttcagtaag ctcttacagc ttgttgtaaa 10440
cacgcgctaa acggccgtgg ctttgcacat tcaccggta ttcgttggcg gcaataaacg 10500
ctgattcacc cggtttaagc tgtaactgct gagaacctt ccacaacgtt gcatcgccct 10560
cgacgcagaa caaaatggcg gcactctgct ggctaattgt gtttcttta tcactaagg 10620
catgcagcga gaaggcaaaa tcattccactg gaatcggaa gtccagttct gcaccttgg 10680
tcaccggctg ggtcaacacaac tggtagccg gtttggcttc gaatttcaca ttggcaacca 10740
gttccggaaat atcaatgtat ttaggcgtca gacccgcacg cagcacgtt tcggagttt 10800
ccatcacttc cagcgccacg ctttgcaggta aagcgtgcgg tggggagaac agaccgctgt 10920
tcgcttcgccc agggttcaat ttcaccacat tcagcaatag cggttccccc tgctggctat 10980
cttccggta aaattcagaa attaaacgaa tcgtttgcca ttcaccctgc atattcaaca 11040
cgagggccga tttaaaatc gccagcgccgc gggatttttc ttccaccgc atattcaaca 11100
ggctggcgaa cagttcgctt aaacgttccgg catcaggctg ttgtaaaaag tgagcaatcg 11160
ccggatgtgc acctgcgacc ggctggagta gggagacaat ctcggaaaat tcacgaaacg 11220
cgttcatcgca aaggaaaggc gtcagcgcaaa aaaccagctc cggcttgggg ttaggatctt 11280
tatagttacg ctcggccggc tccatcggt tacctgcggc atttctttg gcaaaaccga 11340
tttcagaatt gtgtttgtt ggttgcgtt gatggagatc tggctgtct gcgcataata 11400
cttgaacag gaaaggcagt tcgccaaagc gtttggcaac ggcctctccg agcagagtcg 11460
atttatcact ctcaatcaca tcacgcgtt aaacgatatc tccggccggca ttctgcactc 11520
gtgaactgtt tttcgatgt gcgcccatcc acagctcggt catcggttgg ctggacggat 11580
tttccataacc ataaaqttca qtcaacgcgt tttgctgccc caggcatagt tttgcactga 11580

gttaatgagt ttttgcata tcggggatcc ctgcagaagt aacaccaaac aacagggtga 11640
 gcatcgacaa aagaaacagt accaagcaaa taaatagcgt atgaaggcag ggctaaaaaa 11700
 atccacatat agctgctgca tatgccatca tccaagtata tcaagatcaa aataattata 11760
 aaacataactt gtttattata atagataggt actcaagggtt agagcatatg aatagatgct 11820
 gcatatgccca tcatagtatata gcatcagtaa aacccacatc aacatgtata cctatcctag 11880
 atcgatattt ccatccatct taaactcgta actatgaaga tgtatgacac acacatacag 11940
 ttccaaaatt aataaataca ccaggtagtt tgaaacggcg tctactccga tctagaacga 12000
 atgaacgacc gcccaaccac accacatcat cacaaccaag cgaacaaaaa gcatactctgt 12060
 atatgcataca gtaaaacccg catcaacatg tatacctatc ctatgcatac atttccatcc 12120
 atcatcttca attcgtaact atgaatatgt atggcacaca catacagatc caaaattaat 12180
 aaatccacca ggtagttga aacagaattc tactccgatc tagaacgacc gcccaaccag 12240
 accacatcat cacaaccaag aaaaaaaaaa gcatgaaaag atgaccgcac aaacaagtgc 12300
 acggcatata ttgaaataaa ggaaaaggc aaaccaaacc ctatgcaacg aaacaaaaaa 12360
 aatcatgaaa tcgatcccgt ctgcggAACg gctagagcca tcccaggatt ccccaaagag 12420
 aaacactggc aagttagcaa tcagaacgtg tctgacgtac aggtcgcatc cgtgtacgaa 12480
 cgctagcagc acggatctaa cacaaacacg gatctaacac aaacatgaac agaagtagaa 12540
 ctaccgggcc ctaaccatgg accggaacgc cgatctagag aaggtagaga gggggggggg 12600
 gggaggacga gcggcgtaacc ttgaagcgga ggtgccgacg ggtggattt gggagatct 12660
 ggttgtgtgt gtgtgcgctc cgaacaaacac gaggttgggg aaagagggtg tggaggggg 12720
 gtctatttat tacggcgggc gaggaaggga aagcgaagga gcggtggaa aggaatcccc 12780
 cgtagctgcc gtgccgtgag aggaggagga ggccgcctgc cgtgccggct cacgtctgcc 12840
 gctccgccccac gcaatttctg gatgccgaca gcggagcaag tccaacggtg gagcggaaact 12900
 ctcgagaggg gtccagaggc agcgcacagag atgccgtgcc gtctgcttcg cttggcccga 12960
 cgcgacgctg ctggttcgct gttgggtgtc cgtagactc gtcgacggcg tttaacaggc 13020
 tggcattatc tactcgaaac aagaaaaatg tttccttagt ttttttaatt tcttaaaggg 13080
 tatttgttta atttttagtc actttatttt attctatttt atatctaaat tattaaataa 13140
 aaaaactaaa atagagttt agtttctta atttagaggc taaaatagaa taaaatagat 13200
 gtactaaaaa aattagtcta taaaaaccat taaccctaaa ccctaaatgg atgtactaat 13260
 aaaatggatg aagtattata taggtgaagc tatttgcaaa aaaaaaggag aacacatgca 13320
 cactaaaaag ataaaactgt agagtcctgt tgtcaaaata ctcaattgtc ctttagacca 13380
 tgtctaactg ttcattata tgattctcta aaacactgt attattgtat tactatagat 13440
 tatattattc gtagagtaaa gtttaaatat atgtataaag atagataaac tgcacttcaa 13500
 acaagtgtga caaaaaaaaaat atgtggtaat ttttataac tttagacatgc aatgctcatt 13560
 atctctagag aggggcacga ccgggtcacg ctgcactgca ggcatgcaag cttgcacatg 13620
 acaacaattt gtaagaggatg gagaccacaa cgatccaaca atacttctgc gacgggctgt 13680
 gaagtataga gaagttaaac gcccaaaaagc cattgtgtt ggaattttt gttattctat 13740
 ttttcatgat gtatcttcct ctaacatgcc ttaatttgca aatttggat aactactgtat 13800
 tgaaaaatata tgtatgtaaa aaaataactaa gcataattgtt gaagctaaac atgatgttat 13860
 ttaagaaaaat atgttgttaa cagaataaga ttaatatcga aatggaaaca tctgtaaatt 13920
 agaattcatct tacaagctaa gagatgtca cgcttgaga aacttctca gatcatgacc 13980
 gtagaagtag ctctccaaga ctcacacgag gctgctgcaaa ttccacaaat gcatgacatg 14040
 catccttgc accgtcgctg ccgctataaa cacggataac tcaattccct gctccatcaa 14100
 tttagaaatg agcaagcaag cacccgatcg ctcacccat atgcaccaat ctgactccca 14160
 agtctctgtt tcgcattagt accgcccagca ctccacctat agtaccaat tgagaccttt 14220
 ccagcctaag cagatcgatt gatcggttgcgtt gtcggaaaggt tggtggatcg ggtactttaa 14280
 ctaccatgga atgatggggc gtatgttgcgtt gcggaaagcg cctccctacg cggaacaaca 14340
 ccctcgccat gccgctcgac tacagcctcc tcctcgctgg ccgcccacaa cgagggagcc 14400
 cgtggcgca gccaccgacc agcatgtctc tgtgtctcg tccgacctcg acatgtcatg 14460
 gcaaacagtc ggacgcccagc accagactga cgacatgagt ctctgaagag cccgccacct 14520
 agaaagatcc gagccctgct gctggtagtg gtaaccatt tcgtcgct gacgcccgg 14580
 gcgagaggcc agaaatttat agcgactgac gctgtggcag gcacgctatc ggaggttacg 14640
 acgtggcgccc tcactcgacg cggagttcac aggtctatc cttgcacatgc tcggccgg 14700
 gtttacggga cttatcctta cgacgtgctc taagggttgcg ataacggcgc gaggaggc 14760
 tgtggcgatgc ggagacgggtt tatacacgtt gtgtcgccg gttgtttcg tagacgcggg 14820
 aaagcagcagc gacttacgaa gtttagtggg ggaggaggac acactaaaat caggacgca 14880
 gaaactctt tattatagta gtagagaaga gattatagga gtgtgggtt attctaaaga 14940
 aaatcgacgc aggacaaccg tcaaaaacggg tgcttataa tagtagatat atatataat 15000
 agagagagag aaagtacaaa ggatgcatt gtgtctgcatt atgatcgag tattactaac 15060
 ggccgtcgta agaaggcaca tcatacgatgg agcgagccca tttgggttgcgtt tgtcaggccg 15120
 cagttaaaggc ctccatataat gattgtcgat gggccataa cagcatctcc tccaccagtt 15180
 tattgttataa ataaatataa tagagatatt tgtcgtcgaa cagaagaaac ttggacaaga 15240

agaagaagca agctaggcca atttcttgcc ggcaagagga agatagtggc ctctagttta 15300
tatatcggcg tcatgtatgtat gctccttagct agaaatgaga gaagaaaaaac ggacgcgtgt 15360
ttggtgtgtg tcaatggcgt ccatccttcc atcagatcag aacgatgaaa aagtcaagca 15420
cgccatgcat agtatatgtat tagcttgttt tagtgtggct ttgctgagac gaatgaaagc 15480
aacggcgggc atattttca gtggctgttag ctttcaggct gaaagagacg tggcatgcaa 15540
taattcaggg aattcgtcag ccaattgagg tagctagtc acttgtacat tggtgcgagc 15600
aattttccgc actcaggagg gctagtttga gagtccaaaa actataggag attaaagagg 15660
ctaaaatcct ctccttattt aattttaaat aagtagtgtt tttgtattt aactcctcca 15720
acccttccga ttttatggct ctcaaaactag cattcagtct aatgcattgca tgcttggcta 15780
gaggtcgtat ggggttgtta atagcatagc tagctacaag ttaaccgggt cttttatatt 15840
taataaggac aggcaaaagta ttacttacaa ataaagaata aagctaggac gaactcgtgg 15900
attattacta aatcgaaatg gacgtaatat tccaggcaag aataattgtt cgatcaggag 15960
acaagtgggg cattggaccg gttcttgcaa gcaagagcct atggcgtggc gacacggcgc 16020
gttgcacata catcatgcct ccatcgatga tccatcctca cttgctataa aaagaggtgt 16080
ccatgggtgct caagctcagc caagcaaata agacgacttg ttcattgat tcttcaagag 16140
atcgagcttc tttgcacca caaggtcgag gatccaaca 16179

<210> 13

<211> 15643

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pNOV1441

<220>

<221> misc_feature

<222> (14) .. (1414)

<223> Maize ubiquitin (Mz Ubi) promoter

<220>

<221> misc_feature

<222> (2037)..(5618)

<223> synthetic nucleotide sequence encoding the toxin portion of H04 plus a full-length Cry1Ab tail portion

<220>

<221> misc_feature

<222> (5821)..(6711)

<223> Mz Ubi promoter

<220>

<221> misc_feature

<222> (7831)..(9039)

<223> PMI

<400> 13

gagagttccg ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg 780
 acgggcagac gtgagccggc acggcaggcg gcctcctcct cctctcacgg cacggcagct 840
 acggggatt ctttcccac cgctccttcg cttcccttc ctcgcccggc gtaataaata 900
 gacacccctt ccacaccctc tttcccaac ctctgttgc tcggagcgca cacacacaca 960
 accagatctc ccccaaatcc acccggtcggc acctcagctt caaggtaacgc cgctcgctt 1020
 cccccccccc ccctctctac cttctctaga tcggcggtcc gttccatggg tagggcccgg 1080
 tagttctact tctgttcatg tttgtgttag atccgtgttt gtgttagatc cgtgctgcta 1140
 gcttcgtac acggatgcga cctgtacgtc agacacgttc tgattgctaa cttgccagt 1200
 tttctctttg ggaatcctg gatggctct agccgttccg cagacggat cgattcatg 1260
 atttttttt ttcgttgca tagggtttgg tttgccttt tccttattt caatatatgc 1320
 cgtgcacccg tttgtcggtt catctttca tgctttttt tgtctgggtt gtgtatgt 1380
 ggtctgggtt ggcggtcgtt ctagatcgga gtagaattct gtttcaaact acctgggtgg 1440
 tttattaaatt ttggatctgt atgtgtgtgc catacatatt catagttacg aattgaagat 1500
 gatggatgga aatatcgatc taggataggt atacatgtt atgcgggtt tactgatgca 1560
 tatacagaga tgcttttttgcgttgggtt gtgtatgtt ggtgtgggtt ggcggtcgtt 1620
 cattcggtct agatcgagttt agaataactgt ttcaaaactac ctgggttatttattt 1680
 ggaactgtat gtgtgtgtca tacatcttca tagttacgag tttaaatgg atggaaatat 1740
 cgatcttagga taggtatatac tttgtatgtt ggtttactg atgcataatc atgatggcat 1800
 atgcagcatc tattcatatg ctctaacctt gagtacctat ctattataat aaacaagtt 1860
 gtttataat tattttgatc ttgtatatact tggatgtatgg catatgcagc agctatatgt 1920
 ggattttttt agccctgcct tcatacgcta tttattttgtt tggtactgtt tctttgtcg 1980
 atgctcaccc ttgtgtttgg ttgtacttct gcaggtcgac tctagaggat ccaacaatgg 2040
 acaacaaccc caacatcaac gagtgcattcc cctacaactg cctgagcaac cccgaggtgg 2100
 aggtgctggg cggcgagcgc atcgagaccg gctacacccc catcgacatc agcctgagcc 2160
 tgaccaggatt cctgctgagc gagttcgtgc ccggcgccgg cttcgtctg ggcctgggtgg 2220
 acatcatctg gggcatcttc ggccccagcc agtgggacgc cttcctgggt cagatcgagc 2280
 agttgataaa ccaacgcata gaggaattcg cccgcaacca ggcacatcagc cgcctggagg 2340
 gcctgagcaa cctgtaccaa atctacgccc agagcttccg cgagtggag gccgacccca 2400
 ccaacccgc cctgcgcgag gagatgcgc tccagttcaa cgacatgaac agcgcctgta 2460
 ccaccgcacat cccctgttc gccgtgcaga actaccaggt gcccctgctg agcgtgtacg 2520
 tgcaggccgc caacctgcac ctgagcgtgc tgcgcgacgt cagcgttgc ggcctggcgt 2580
 ggggcttcga cgccgcaccat atcaacagcc gctacaacga cctgacccgc ctgatcgca 2640
 actacaccga ccacgcgtg cgctggtaca acaccggcct ggagcgcgtg tgggtcccgg 2700
 acagccgcga ctggatcagg tacaaccagt tccgcgcga gctgaccctg accgtgtgg 2760
 acatcgtagg cctgttcccc aactacgaca gccgcaccta ccccatccgc accgtgagcc 2820
 agctgacccg cgagatttac accaaccccg tgctggagaa cttcgacggc agctccgcg 2880
 gcagcgccca gggcatcgag ggcagcatcc gcagccccca cctgatggac atcctgaaca 2940
 gcatcaccat ctacaccgac gcccacccgc gcgagttacta ctggagcggc caccagatca 3000
 tggccagccc cgctggcttc agcggccccc agttcacctt cccctgtac ggcacccatgg 3060
 gcaacgtgc acctcagcag cgcatcgtgg cacagctggg ccaggagtg taccgcaccc 3120
 tgagcagcac cctgtaccgt cgacctttca acatcgcat caacaaccag cagctgagcg 3180
 tgctggacgg caccgagttc gcctacggca ccagcagcaa cctgcccagc gccgtgtacc 3240
 gcaagagcgg caccgtggac agcctggacg agatcccccc tcagaacaaac aacgtgccac 3300
 ctcgacaggg cttcagccac cgtctgagcc acgtgagcat gttccgcagt ggcttcagca 3360
 acagcagcgt gagcatcatc cgtgcacccca tgttcagctg gattcaccgc agcgcaccc 3420
 tgaccaacac catcgacccca gagcgcacatca accagatccc cctggtaag ggcttcggg 3480
 tgtggggcgg caccagcgat atcaccggcc cggcgttac cggaggcgac atcctgcgc 3540
 gaaacacccctt cggcgacttc gtgagcctgc aggtgaacat caacagcccc atcaccac 3600
 gttaccgcct gcgcttccgc tacgcccagca gccgcgcacgc ccgtgtgatc gtgtactg 3660
 gcgccgctag caccgggttg ggcggcagg tgagcgtgaa catgcccctg cagaagacta 3720
 tggagatcgg cgagaacctg actagtcgc cttccgcata caccgacttc agcaacccct 3780
 tcagcttccg cgccaaacccc gacatcatcg gcatcagcga gcagccccctg ttcgggtccg 3840
 gcagcatcag cagcggcgag ctgtacatcg acaagatcga gatcatcctg gccgacgcca 3900
 cttcgaggc cgagagcgac ctggagcgcgc cccagaaggc cgtgaacgccc ctgttacca 3960
 gcagcaacca gatcggcctg aagaccgacg tgaccgacta ccacatcgac caggtgagca 4020
 acctgggtga ctgcttaagc gacgaggatct gcctggacga gaagaaggag ctgagcgaga 4080
 aggtgaagca cgccaaagcgc ctgagcgcac agcgcaaccc gctgcaggac cccaaacttcc 4140
 gggcatcaa cggccagctg gaccgcggct ggcgaggcag caccgatatac accatccagg 4200
 gggcgacga cgtgttcaag gagaactacg tgaccctgca gggcaccttc gacgagtgtct 4260
 accccaccta cctgtaccag ccgatcgacg agagcaagct gaaggcctac acccgctacc 4320
 agctgcgcgg ctacatcgag gacagccagg acctggaaat ctacatcgatc cgctacaac 4380

cgaagcacga gaccgtgaac gtgcccggca ccggcagcct gtggccccc agcgcccca 4440
cccccatcg caagtgcggg gagccgaatc gatgcgctcc gcacctggag tggAACCCGG 4500
acctagactg cagctgcagg gacggggaga agtgcgccc ccacagccac cacttcagcc 4560
tggacatcg cgtgggctgc accgacctga acgaggacct gggcgtgtgg gtatcttca 4620
agatcaagac ccaggacggc cacgcccggcc tggcaatct agagttcctg gaggagaagc 4680
ccctgggtgg cgaggccctg gcccgcgtga agcgtgctga gaagaagtgg cgcgacaagc 4740
gcgagaagct ggagtggag accaacatcg tgtacaagga gccaaggag agcgtggacg 4800
ccctgttcgt gaacagccag tacgaccgccc tgcaggccga cacaacatc gccatgatcc 4860
acggcccgca caagcgcgtg cacagcattc gcgaggccta cctgcccggag ctgagcgtga 4920
tccccggtgt gaacgcccgc atcttcgagg aactcgaggg ccgcatttc accgccttca 4980
gcctgtacga cgcccgcaac gtatcaaga acggcgactt caacaacggc ctgagctgct 5040
ggaacgtgaa gggccacgtg gacgtggagg agcagaacaa ccaccgcagc gtgctgggtgg 5100
tgcccggatg ggaggccgag gtgagccagg aggtgcgcgt gtgccccggc cgccggctaca 5160
tcctgcgcgt gaccgcctac aaggaggcgt acggcgaggg ctgcgtgacc atccacgaga 5220
tcgagaacaa caccgacgag ctcaagttca gcaactgcgt ggaggaggag gtttaccca 5280
acaacaccgt gacctgcaac gactacaccg cgaccaggaa ggagtacgaa ggcacctaca 5340
cctctcgcaa caggggttac gacggcgcct acgagtccaa cagctccgtg ccagctgact 5400
acgcccagcgc ccacgaggag aaagcctaca ccgacggtag acgcgacaac ccatgtgaga 5460
gcaacagagg ctacggcgac tacacccccc tgcccgctgg atacgtgacc aaggagctgg 5520
agtacttccc cgagaccgac aagggtgtgg tcgagattgg cgagaccgag ggcaccttca 5580
tcgtggacag cgtggagctg ctgctgatgg aggatgtgta gatcttttct gcacaaagtg 5640
gagtagtcag tcatcgatca ggaaccagac accagactt tattcataca gtgaagtgaa 5700
gtgaagtgca gtgcagttag ttgctggtt ttgtaccact tagtatgtat ttgtatttgt 5760
aaaataacttc tatcaataaa atttctaatt cctaaaacca aaatccagtg ggtaccagct 5820
tgcatgcctg cagtgcagcg tgaccggcgt gtgcctctct ctagagataa tgagcattgc 5880
atgtctaagt tataaaaaat taccacatat ttttttgc acacttgcgt 5940
ttatctatct ttatcacat attttaactt tactctacga ataataataat ctatagtact 6000
acaataatat cagtgtttt gagaatcata taaatgaaca gttagacatg gtctaaagga 6060
caattgagta ttttgacaac aggactctac agtttatct ttttagtgtg catgtttct 6120
ccttttttt tgcaaatacg ttcacctata taataacttca tccattttat tagtacatcc 6180
atttagggt tagggttaat gtttttata gactaattt ttttagtacat ctattttatt 6240
ctatttttagc ctctaaatata agaaaactaa aactctattt tagttttttt attaataat 6300
ttagatataa aatagaataa aataaagtga ctaaaaatta aacaaatacc ctttaagaaa 6360
ttaaaaaaaac taaggaaaca ttttcttgc ttcgagtaga taatgccagc ctgttaaacg 6420
ccgtcgacga gtctaacggc caccaaccag cgaaccagca gcgtcgccgt gggccaagcg 6480
aagcagacgg cacggcatct ctgtcgctgc ctctggaccc ctctcgagag ttccgctcca 6540
ccggtggact tgctccgctg tcggcatcca gaaattgcgt ggcggagcgg cagacgtgag 6600
ccggcacggc aggccggctc ctcctccctc cacggcacgg cagctacggg ggattcctt 6660
cccaccgctc cttcgcttcc cttcctcgtc ccgcccgtaat aaatagacac cccctccaca 6720
ccctcttcc ccaacctcgt gttgtcgga ggcacacac acacaaccag atctccccca 6780
aatccacccg tcggcacctc cgcttcaagg tacggcgtc gtcctccccctc 6840
tctaccttct ctagatcggtc gttccgggtcc atggtaggg cccggtagtt ctacttctgt 6900
tcatgtttgt gtttagatccg tgttgtgtt agatccgtgc tgctagcggt cgtacacgg 6960
tgcgacctgt acgtcagaca cgttctgatt gctaacttgc cagtgtttct ctttggggaa 7020
tcctgggatg gctctagccg ttccgcagac gggatcgatt tcatgatttt tttgtttcg 7080
ttgcataggg tttggtttgc cttttcctt tatttcaata tatgccgtgc acttgggtgt 7140
cgggtcatct tttcatgctt tttttgtct tggtgtgat gatgtggct gttggccgg 7200
tcgttctaga tcggagtaga attctgtttc aaactacctg gtggatttat taattttgga 7260
tctgtatgtg tgtgccatac atattcatag ttacgaattt aagatgatgg atggaaatat 7320
cgatctagga taggtataca ttttgcgtcg ggtttactg atgcataatac agagatgctt 7380
tttggcgct tggtgtgt gatgtgggt ggttggccgg tcgttcatcc gttctagatc 7440
ggagtagacg ccgtttcaaa ctacctggtg tatttattaa ttttggaaact gtatgtgtgt 7500
gtcatacatc ttcatagttt cgagtttaag atggatggaa atatcgatct aggataggta 7560
tacatgttga tgtgggtttt actgatgcattt atacatgtat gcatatgcag catctattca 7620
tatgctctaa ctttgagtac ctatcttattta taataaacaa gtatgttttta taatttatttt 7680
gatcttgcatac tacttggatg atggcatatg cagcagctat atgtggattt ttttagccct 7740
gccttcatac gctattttt tgcttggatc tgtttctttt gtcgtgcgc accctgttgc 7800
ttgggtgttac ttctgcaggat atccccgatc atgcaaaaac tcattaactc agtcaaaaac 7860
tatgcctggg gcagcaaaac gcgttgcactg aactttatgg tatggaaaat ccgtccagcc 7920
agccgatggc cgagctgtgg atggcgac atccgaaaag cagttcacga gtgcagaatg 7980
ccggccggaga tatcgttca ctgcgtgatc tgattgagag tgataaatcg actctgctcg 8040

gagaggccgt tgccaaacgc tttggcgaac tgccttcct gttcaaagta ttatgcgcag 8100
 cacagccact ctccattcag gttcatccaa acaaacacaa ttctgaaatc gggtttgcca 8160
 aagaaaatgc cgccaggatc ccgatggatg ccgcccgcg taactataaa gatcctaacc 8220
 acaagccgga gctggtttt gcgctgacgc ctttcctgc gatgaacgcg tttcgtgaat 8280
 tttccgagat tgtctcccta ctccagccgg tcgcaggtgc acatccggcg attgctact 8340
 ttttacaaca gcctgatgcc gaacgtttaa gcgaactgtt cgccagcctg ttgaatatgc 8400
 agggtgaaga aaaatcccgc gcgctggcga tttaaaatc ggcctcgat agccagcagg 8460
 gtgaaccgtg gcaaacgatt cgtttaattt ctgaatttta cccggaagac agcggctgt 8520
 tctccccgtt attgctgaat gtgggtgaaat tgaaccctgg cgaagcgatg ttcctgttcg 8580
 ctgaaacacc gcacgcttac ctgcaaggcg tggcgctgga agtgcggca aactccgata 8640
 acgtgctgcg tgccggctcg acgcctaaat acattgatc tccggactg gttgccaaatg 8700
 taaaaattcga agccaaaccg gctaaccagt tggtgaccca gccggtgaaa caaggtgcag 8760
 aactggactt cccgattcca gtggatgatt ttgccttctc gctgcgtac cttagtgata 8820
 aagaaaccac cattagccag cagagtgcgc ccattttgtt ctgcgtcgaa ggcgtatgca 8880
 cgttgtggaa aggttctcg cagttacagc taaaaccggg tgaatcagcg tttattgccc 8940
 ccaacgaatc accgggtgact gtcaaaggcc acggccgtt agcgcgtt tacaacaagc 9000
 tgtaagagct tactgaaaaa attaacatct ctgcctaagc tggagctcg atccgtcgac 9060
 ctgcagagat cgttcaaaca tttggcaata aagtttctt aagtttgcg 9120
 tcttgcgtatc attatcatct aatttctgtt gaattacgtt aagcatgtaa taattaacat 9180
 gtaatgcgt acgttattt tgagatgggt ttttatgatt agagtccgc aattatacat 9240
 ttaatacgcg atagaaaaca aaatatacg cgcaaactag gataaattat cgcgcgcgt 9300
 gtcatctatg ttactagatc cgatgataag ctgtcaaaca tgagatcccc gggcttagac 9360
 aattcagtagc attaaaaacg tccgcaatgt gttattaagt tgtctaagcg tcaatttgc 9420
 tacaccacaa tatatcctgc caccagccag ccaacagctc cccgaccggc agctcgac 9480
 aaaatcacca ctcgatacag gcagccatc agtccgggac ggcgtcagcg ggagagccgt 9540
 tgtaaggcgg cagactttgc tcgtgttacc gatgctattc ggaagaacgg caactaagct 9600
 gccgggtttg aaacacggat gatctcgccg agggtagcat gttgattgta acgtgacag 9660
 agcgttgcgt cctgtatca aatatcatct ccctcgac gatccgaatt atcagccttc 9720
 ttattcattt ctgcctaac cggtacaggc tgctgatctt gagaactatg ccgacataat 9780
 agggaaatcgc tggataaagc cgctgaggaa gctgagtggc gctatttctt tagaagtgaa 9840
 cgttgcgtatc cgtcgaccgt accccgatga attaattcgg acgtacgtt tgaacacagc 9900
 tggataactt cttggccgtatc tgctcatacat gacatcaaca atgtacccgt ttgtgtacc 9960
 gtctcttggc ggttcgtatc acactagtgg ttcccctcg cttgcacta gatgttggg 10020
 cctaacattt tattagagag caggctagtt gcttagatac atgatctca ggccgttatac 10080
 tgtcagggca agcgaaaatt gcccatttat gacgaccaat gccccgcaga agctcccatac 10140
 tttggcccca tagacgcccgc gcccccttt tgggggtgt aacatcctt tgccagatgt 10200
 ggaaaaagaag ttctgttgc cattgttggc aatgacgtt tagccggcga aagtgcgaga 10260
 cccatttgcg ctatataaa gcctacgatt tccgtgcga ctattgtcg aattggatga 10320
 actattatcg tagttgcctc cagagtgtc gtaatttgcg ggactattgt cgtaatttgc 10380
 tatggagttg tcgttagttgc ttggagaaaat gtcgttagtt gatggggagt agtcataggg 10440
 aagacgagct tcataccacta aaacaattgg caggtcagca agtgcctgca ccgatgccat 10500
 cgcaagtacg aggcttagaa ccaccttcaa cagatcgcc atagtcttc ccagctctct 10560
 aacgcttgcg ttaagccgcg ccgcgaagcg gcgtcggctt gaacgaattt ttagacatta 10620
 tttggccact accttggta tctcgccctt cacgtagtga gtaagcacta catttcgtc 10860
 tgcgcgcgag gccaagcgat cttcttgcgc aagataagcc tgcttagctt caagatgac 10740
 gggctgatac tggggccggca ggcgtccat tgcccagtcg gcagcgacat cttccggcgc 10800
 gattttgccg gttactgcgc tgtaccaaatt gcgggacaac gtaagcacta catttcgtc 10920
 atcgccagcc cagtcggcg gcgagttcca tagcgttaag gttcattta ggcgcctcaaa 10980
 tagatccgtt tcaggaaccg gatcaaagag ttccctccgc gctggaccta ccaaggcaac 11040
 gctatgttct cttgttttgc tgcaagat agccagatca atgtcgatcg tggctggc 11100
 gaagataacct gcaagaatgt cattgcgtc ccatttccca aattgcgtt cgcgtttagc 11160
 tggataacgc cacggaatga tgctgtcg cacaacaatg gtgacttcta cagcgcggag 11220
 aatctcgctc tctccagggg aagccgaagt ttccaaaagg tcgttgcata aagctcgccg 11280
 cgttgcgttca tcaagccttca cggtcaccgt aaccagcaaa tcaatatcac tgtgtggctt 11340
 caggccgcca tccactgcgg agccgtacaa atgtacggcc agcaacgtcg gttcgagatg 11400
 gcgctcgatc acgccaacta cctctgatag ttgagtcgt acttcggcga tcaccgcttc 11460
 cctcatgtatc ttaactccttca gaattaaagcc ggcggccgaa gcggtgtcg cttgaatgaa 11520
 ttgttaggcg tcatacgttgc ctcccgagaa ccagtaccat tacatcgctg tttcggtcg 11580
 gacttgaggt ctagtttgc acgtgaacag gtcaatgcgc ccgagagtaa agccacattt 11640
 tgcgtacaaa ttgcaggcag gtacattgtt cgttgtgtc tctaatacgta tgccaaggag 11700
 ctgtctgcgtt agtgccttca ttttcgtcaaa ttgcgtgaga ctgtgcgcga ctcccttgcc

tcgggtgcgtg tgccacacaa caatgtgttc gatagaggct agatcggtcc atgttgagtt 11760
gagttcaatc ttcccgacaa gctcttggtc gatgaatgcg ccatagcaag cagagtcttc 11820
atcagagtca tcatccgaga tgtaatcctt ccggtagggg ctcacacttc tggtagatag 11880
ttcaaaggct tggtcggata ggtgcacatc gaacacttca cgaacaatga aatggttctc 11940
agcatccaat gtttccgcca cctgctcagg gatcaccgaa atcttcatat gacgcctaac 12000
gcctggcaca gcggatcgca aacctggcgc ggctttggc acaaaaggcg tgacaggtt 12060
gcgaatccgt tgctgccact tgttaaccct tttgccagat ttggtaacta taatttatgt 12120
tagaggcgaa gtcttggta aaaactggcc taaaattgct gggattca ggaaagtaaa 12180
catcaccttc cggctcgatg tctattgtag atatatgtag tgtatctact tgatcgggg 12240
atctgctgcc tcgcgcgtt cggtgatgac ggtaaaaacc tctgacacat gcagctccc 12300
gagacggtca cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcg 12360
tcagcgggtg ttggcgggtg tcggggcgca gccatgaccc agtcacgtag cgatagcg 12420
gtgtatactg gcttaactat gcggcatcag agcagattgt actgagagtg caccatatgc 12480
ggtgtgaaat accgcacaga tgcgttaagga gaaaataccg catcaggcg tcttccgctt 12540
cctcgctcac tgactcgctg cgctcggtcg ttcggctgca gcgagcggta tcagctcact 12600
caaaggcggt aatacggta tccacagaat cagggataa cgaggaaag aacatgtgag 12660
caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg ttttccata 12720
ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagttagagg tggcgaaacc 12780
cgacaggact ataaagatac caggcgtttcc cccctggaag ctccctcg 12840
ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga agcgtggcg 12900
tttctcatag ctcacgctgt aggtatctca gttcgggtga gtcgttcgc tccaagctgg 12960
gctgtgtca cgaacccccc gttcagcccg accgctgcgc cttatccgt aactatcg 13020
ttgagtccaa cccggttaaga cacgacttat cgccactggc agcagccact ggttaacagga 13080
ttagcagagc gaggtatgta ggcggtgcta cagagtctt gaagtgggtg cctaactacg 13140
gctacactag aaggacagta tttggtatct gcgtctgct gaagccagtt accttcggaa 13200
aaagagttgg tagcttttga tccggcaaac aaaccaccgc tggtagcggt ggttttttg 13260
tttgcagca gcagattacg cgcagaaaaaa aaggatctca agaagatcct ttgatcttt 13320
ctacgggtc tgacgctcag tggAACgaaa actcacgtt aaggatttt gtcatgagat 13380
tatcaaaaaag gatcttcacc tagatcctt taaattaaaa atgaagttt aaatcaatct 13440
aaagtatata ttagttaact tggcttgaca gttaccaatg cttaatcagt gaggcaccta 13500
tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccgtc gtgtagataa 13560
ctacgatacg ggagggctt ccacatctggcc ccagtgtgc aatgataaccg cgagaccac 13620
gctcaccggc tccagattt tcagcaataa accagccagc cggaagggcc gagcgcagaa 13680
gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgcgg gaagctagag 13740
taagtagttc gccagttaat agttgcgc acgttggc cattgctgca gggggggggg 13800
ggggggggga cttccattgt tcattccacg gacaaaaaca gagaaaggaa acgacagagg 13860
ccaaaaagcc tcgctttcag cacctgtcg ttcccttctt ttcagagggt attttaaata 13920
aaaacattaa gttatgacga agaagaacgg aaacgcctt aaccggaaaa ttttcataaa 13980
tagcgaaaac ccgcgaggc gcccggcgt aacctgtcg atcaccggaa aggaccgtca 14040
aagtgataat gattatcatc tacatatcac aacgtgcgtg gaggccatca aaccacgt 14100
aataatcaat tatgacgcag gtatcgatt aattgatctg catcaactt acgtaaaaac 14160
aacttcagac aatacaaatc agcgacactg aatacggggc aacctcatgt cccccccccc 14220
ccccccctg caggcatcgt ggtgtcacgc tcgtcggtt gtatggcttc attcagctcc 14280
ggttcccaac gatcaaggcg agttacatga tccccatgt tgtcaaaaaa agcggtagc 14340
tccttcggtc ctccgatcgt tgtcagaagt aagttggccg cagtgttatac actcatgg 14400
atggcagcac tgcataattc tcttactgtc atgccatccg taagatgct ttctgtgact 14460
ggtgagttact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc 14520
ccggcgtcaa cacggataa taccggcaca catagcagaa cttaaaaagt gctcatcatt 14580
ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgtttag atccagttcg 14640
atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgttct 14700
gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataaggc gacacggaaa 14760
tggtgaatac tcataactttt ccttttcaa tattattgaa gcatttatca gggttattgt 14820
ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg gttccgcgc 14880
acatttcccc gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc 14940
tataaaaaata ggcgtatcac gaggccctt cgtcttcaag aattggtcga cgatcttgct 15000
gcgttcggat attttcgtgg agttcccgcc acagaccgg attgaaggcg agatccagca 15060
actcgccca gatcatcctg tgacggact ttggcgcgtg atgactggcc aggacgtcgg 15120
ccgaaagagc gacaaggaga tcacgcttt cgacagcgtc ggatttgcga tcgaggattt 15180
ttcggcgctg cgctacgtcc gcgaccgcgt tgaggatca agccacagca gcccactcga 15240
ccttctagcc gaccagacg agccaaggga tcttttggaa atgctgctcc gtcgtcaggc 15300
tttccqacgt ttgggtqggtt gaacagaagt cattatcgta cggaatgcca agactcccc 15360

aggggaaccc tgtggttggc atgcacatac aaatggacga acggataaac ctttcacgc 15420
 ccttttaaat atccgttatt ctaataaacg ctcttttc tttaggttac ccgccaatat 15480
 atcctgtcaa acactgatag tttaaactga aggccggaaa cgacaatctg atcatgagcg 15540
 gagaattaag ggagtacgt tatgacccccc gccgatgacg cgggacaagc cgtttacgt 15600
 ttggaactga cagaaccgca acgttgaagg agccactcag ccc 15643

<210> 14

<211> 15503

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pNOV1305

<220>

<221> misc_feature

<222> (1)..(3582)

<223> synthetic nucleotide sequence encoding the toxin
 portion of H04 plus a full-length Cry1Ab tail
 portion

<220>

<221> misc_feature

<222> (3790)..(5771)

<223> Zm Ubi promoter

<220>

<221> misc_feature

<222> (5868)..(6971)

<223> PMI

<220>

<221> misc_feature

<222> (12934)..(15494)

<223> MTL promoter

<400> 14

atggacaaca accccaacat caacgagtgc atcccatac actgcctgag caaccccgag 60
 gtggaggtgc tggcgccgca ggcgcattcgag accggctaca ccccatcgat catcagcctg 120
 agcctgaccc agttcctgct gagcgagtcc gtgcggcgcc ccggcttcgt gctggcctg 180
 gtggacatca tctggggcat cttcgcccccc agccagtggg acgccttcct ggtcgagatc 240
 gagcagttaaaaccaacg catagagggaa ttgcggccgca accaggccat cagccgcctg 300
 gagggcctga gcaacctgta ccaaattctac gccgagagct tccgcgagtg ggaggccgac 360
 cccaccaacc cggccctgca cgaggagatg cgcatccagt tcaacgacat gaacagcgcc 420
 ctgaccaccg ccatccccct gttcgccgtg cagaactacc aggtgcccct gctgagcgtg 480
 tacgtgcagg cggccaaacct gcacctgagc gtgctgcgtg acgtcagcgt gttcgccag 540
 cgctgggct tcgacgcccgc caccatcaac agccgttaca acgacactgac ccgcctgatc 600
 ggcaactaca cggaccacgc cgtgcgtgg tacaacaccg gcctggagcg cgtgtgggt 660
 cccgacagcc gcgactggat caggtacaac cagttccgccc gcgagctgac cctgaccgtg 720
 ctggacatcg tgagcctgtt ccccaactac gacagccgca cctacccat ccgcaccgtg 780
 agccagctga cccgcgagat ttacaccaac cccgtgtgg agaacttcga cggcagcttc 840
 cgcggcagcg cccaggccat cgaggccagc atccgcagcc cccacctgat ggacatcctg 900
 aacagcatca ccatctacac cgacgcccac cgcggcgagt actactggag cggccaccag 960
 atcatggcca gccccgtcgg cttcagcggc cccgagttca cttccccct gtacggcacc 1020
 atgggcaacg ctgcacccatca gcagcgcattc gtggcacagc tggccaggg agtgtaccgc 1080
 accctgagca gcaccctgta ccgtcgaccc ttcaacatcg gcatcaacaa ccagcagctg 1140
 agcgtgctgg acggcaccga gttcgcttac ggcaccagca gcaacctgccc cagccgcgtg 1200
 taccgcaaga gcggcaccgt ggacagcctg gacgagatcc cccctcagaa caacaacgtg 1260
 ccacctcgac agggcttcag ccaccgtctg agccacgtga gcatgttccg cagttggcttc 1320
 agcaacagca gcgtgagcat catccgtgca cccatgttca gctggattca ccgcagcgcc 1380

accctgacca acaccatcga ccccgagcgc atcaaccaga tccccctggc gaaggggcttc 1440
 cgggtgtggg gcggcaccag cgtgatcacc ggccccggct tcaccggagg cgacatcctg 1500
 cgcagaaaca cttcggcga ctgcgtgagc ctgcaggtga acatcaacag ccccatcacc 1560
 cagcgtaacc gcctgcgctt ccgctacgccc agcagccgccc acgcccgtgt gatcgtgctg 1620
 actggcggccg ctagcaccgg tgtggcggt caggtgagcg tgaacatgcc cctgcagaag 1680
 actatggaga tcggcgagaa cctgactagt cgcaccccttcc gctacaccga cttcagcaac 1740
 cccttcagct tccgcgccaa ccccgacatc atcggcatca gcgagcagcc cctgttcgg 1800
 gccggcagca tcagcagcgg cgagctgtac atcgacaaga tcgagatcat cctggccgac 1860
 gccaccttcg aggccgagag cgacctggag cgcccccaga aggccgtgaa cgccctgttc 1920
 accagcagca accagatcgg cctgaagacc gacgtgaccg actaccacat cgaccagg 1980
 agcaacctgg tggactgctt aagcgacgag ttctgcctgg acgagaagaa ggagctgagc 2040
 gagaaggtga agcacgccaa gcgcctgagc gacgagcgc acctgctgca ggaccccaac 2100
 ttccgcggca tcaaccgcca gctggaccgc ggctggcgag gcagcaccga tatcaccatc 2160
 cagggcggcg acgacgtgtt caaggagaac tacgtgaccc tgcagggcac cttcgacgag 2220
 tgctacccca cctacctgta ccagccgatc gacgagagca agctgaaggc ctacacccgc 2280
 taccagctgc gcggctacat cgaggacacgc caggacctgg aaatctacct gatccgctac 2340
 aacgcgaagc acgagaccgt gaacgtgccc ggcaccggca gcctgtggcc cctgagcgc 2400
 cccagcccca tcggcaagtg cggggagccg aatcgatgca ctccgcaccc ggagtggaaac 2460
 cccgacccatg actgcagctg cagggacggg gagaagtgcg cccaccacag ccaccactc 2520
 agcctggaca tcgacgtggg ctgcacccgac ctgaacgagg acctggcggt gtgggtgatc 2580
 ttcaagatca agacccagga cggccacgccc cgccctggca atctagagtt cctggaggag 2640
 aagccctgg tgggcgaggc cctggcccgcc gtgaagcgtg ctgagaagaa gtggcgcgac 2700
 aagcgcgaga agctggagtg ggagaccaac atcggtaca aggaggccaa ggagagcgt 2760
 gacgcccgt tcgtgaacag ccagtacgac cgcctgcagg ccgacaccaa catgcctatg 2820
 atccacgccc cgcacaagcg cgtgcacacgc attcgcgagg cctacctgccc cgagctgagc 2880
 gtgatccccg gtgtgaacgc gcgcacatctt cggaaactcg agggccgcat cttcaccgccc 2940
 ttcagccgt acgacgccc cAACGTGATC aagaacggcg acttcaacaa cggcctgagc 3000
 tgctggAACG tgaagggcca cgtggacgtg gaggaggaga acaaccacg cagcgtgctg 3060
 gtgggtgccc agtgggaggc cgaggtgagc caggagggtgc gcgtgtgccc cggccgcggc 3120
 tacatccctgc gcgtgaccgc ctacaaggag ggctacggcg agggctgcgt gaccatccac 3180
 gagatcgaga acaacacccga cgagctcaag ttcagcaact gcgtggagga ggaggtttac 3240
 cccaacaaca cgcgtacccgc caacgactac accgcgaccc aggaggagta cgaaggcacc 3300
 tacaccttc gcaacagggg ttacgacggc gcctacgagt ccaacagctc cgtgccagct 3360
 gactacgcca gcgcctacga ggagaaagcc tacaccgacg gtagacgcga caacccatgt 3420
 gagagcaaca gaggctacgg cgactacacc cccctgccc ctggatacgt gaccaaggag 3480
 ctggagtagt tccccgagac cgacaagggtg tggatcgaga ttggcgagac cgagggcacc 3540
 ttcatcgtagg acagcgtgga gctgctgctg atggaggagt agtagatctg ttctgcacaa 3600
 agtggagtag tcagtcatcg atcaggaacc agacaccaga cttttattca tacagtgaag 3660
 tgaagtgaag tgcagtgcag tgagttgctg gttttgtac aacttagtat gtattgtat 3720
 ttgtaaaata cttctatcaa taaaatttct aattctaaa accaaaatcc aggggtacca 3780
 gcttgcattgc ctgcagtgcg gcgtgacccg gtcgtgcccc tctctagaga taatgagcat 3840
 tgcatgtcta agttataaaa aattaccaca tattttttt gtcacacttg tttgaagtgc 3900
 agtttatcta tctttatatac tatattttaa cttaactcta cgaataat aatctatag 3960
 actacaataa tatcagtgtt ttagagaatc atataaatga acagttagac atggctaaa 4020
 ggacaattga gtatttgac aacaggactc tacagtttac tctttttatgt gtgcattgtgt 4080
 tccatatttttttttttgcataat agcttacccat atataataact tcatccattt tattagtaca 4140
 tccatatttttttttttttgcataat agcttacccat atataataact ttttttagta catctat 4200
 attctatattttt agcctctaaa ttaagaaaac taaaactcta ttttagttt ttttatttaat 4260
 aatttagata taaaatagaa taaaataaaag tgactaaaaa taaaacaaat acccttaag 4320
 aaattaaaaa aactaaggaa acattttct tggatcgagt agataatgcc agcctgttaa 4380
 acgcccgtcga cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcggccaa 4440
 gcgaaggcaga cggcacggca tctctgtcgc tgcctctggc cccctctcga gagttccgct 4500
 ccaccgttgg acttgctccg ctgtcgccat ccagaaattt cgtggcgag cggcagacgt 4560
 gagccggcac ggcaggcggc ctccctctcc tctcacggca cggcagcta cgggggattc 4620
 ctttcccacc gtccttcgc tttcccttcc tcgccccggc taataaaatag acacccctc 4680
 cacaccctct tttcccaacc tcgtgttgc tggagcgcac acacacacaa ccagatctcc 4740
 cccaaatcca cccgtcgca cctccgcttc aaggtacgcc gtcgtcctc ccccccccc 4800
 cctctctacc ttctcttagat cggcggtccg gtccatgggtt agggcccggt agttctactt 4860
 ctgttcatgt ttgtgttaga tccgtgtttg tgtagatcc gtgcgtctag cgttcgtaca 4920
 cggatgcgac ctgtacgtca gacacgttct gattgtaac ttgccagtgt ttctctttgg 4980
 ggaatcctgg gatggctcta gccgttccgc agacggatc gatttcatga tttttttgt 5040

tcgcatttt gtcatccgcg gtcagccgca attctgacga actgcccatt tagctggaga 8760
 tgattgtaca tccttcacgt gaaaatttct caagcgctgt gaacaagggt tcagattta 8820
 gattgaaagg tgagccgtt aAACACGTT ctttgcgtca tgacgacgtc gctatgcggc 8880
 atcttattat tgaataacctt acgatccacg cttcaaaagt gaccgcggta gccgacagca 8940
 cccagttcac aagagtactc tcttccgcga cggtcgtatgt cgtggttgtt gatctaaatt 9000
 taggtcgtga agatgggctc gagatcggtc gtaatctggc ggcaaagtct gatattccaa 9060
 tcataattat cagtggcgac cgccttgagg agacggataa agttgttgc a ctcgagctag 9120
 gagcaagtga ttttacgt aagccgttca gtatcagaga gtttctagca cgcattcggg 9180
 ttgccttgcg cgtgcgcggc aacgttgc gctccaaaga ccgacggctt tttgtttta 9240
 ctgactggac acttaatctc aggcaacgtc gcttgcgtc cgaagctggc ggtgaggtga 9300
 aacttacggc aggtgagttc aatcttctcc tcgcgtttt agagaaaacc cgcgacgttc 9360
 tatcgccgca gcaacttctc attgcccgtc gagtacgcg cggagggtt tatgacagga 9420
 gtatagatgt tctcatttt aggctgcgc gcaaacttga ggcagatccg tcaagccctc 9480
 aactgataaa aacagcaaga ggtgccggg atttcttgc cgcggacgtg caggttcgc 9540
 acggggggac gatggcagcc tgagccatt cccagatccc cgaggaatcg gcgtgagcgg 9600
 tcgcaaacc a tccggcccg tacaatccg cgcggcgctg ggtgatgacc tggggagaa 9660
 gttgaaggcc ggcgcaggccg cccagcggca acgcattcg cagaagacac gccccgggtga 9720
 atcgtggcaa gcggccgctg atcgaatccg caaagaatcc cggcaaccgc cggcagccgg 9780
 tgcgcgtcg attaggaagc cgcggcaagg cgcattcg cagcatttt tcgttccgat 9840
 gctctatgac gtgggcaccc gcgatagtcg cagcatcatg gacgtggccg tttccgtct 9900
 gtcgaagcgt gaccgacgag ctggcgaggt gatccgctac gagcttccag acgggcacgt 9960
 agaggttcc gcagggccgg cggcatggc cagtgtgtt gattacgacc tggtaactgat 10020
 ggcggtttcc catctaaccg aatccatgaa cgcattccgg gaagggaagg gagacaagcc 10080
 cggccgcgtg ttccgtccac acgttgcggc cgtactcaag ttctgcccggc gagccgatgg 10140
 cggaaagcag aaagacgacc tggtagaaac ctgcattcg ttaaacacca cgcacgttgc 10200
 catgcacgt acgaagaagg ccaagaacgg cgccttgc acggatccg agggtaagc 10260
 cttgattagc cgctacaaga tcgtaaagag cggaaaccggg cggccggagt acatcgagat 10320
 cgagctagct gattggatgt accgcgagat cacagaaggc aagaaccgg acgtgctgac 10380
 gttcaccc gattacttt tgatcgatcc cggcatccgg cgtttctt accgcctggc 10440
 acgcccgcgc gcaggcaagg cagaagccag atgggttgc aagacgatct acgaacgcag 10500
 tggcagcgc gggaggtca agaagttctg tttcaccgtg cgcacgtga tcgggtcaaa 10560
 tgacctgccg ggtacgatt tgaaggagga ggcggggcag gctggccga tcctagtc 10620
 ggcctaccgc aacctgatcg agggcgaagc atccggcgtt tcctaattgtt cggagcagat 10680
 gctagggcaa attgccttag caggggaaaa aggtcgaaaa ggtctttt ctgtggatag 10740
 cacgtacatt gggaaacc a gccgtacat tgggaaccgg aaccgtaca ttggaaaccc 10800
 aaagccgtac attggaaacc ggtcacacat gtaagtact gatataaaag agaaaaaaagg 10860
 cgattttcc gcctaaaact cttaaaaact tattaaaact cttaaaaaccc gcctggcctg 10920
 tgcataactg tctggccagc gcacagccga agagctgca a aagcgccta cccttcggc 10980
 gctgcgtcc ctacgccccg cgccttcgcg tcggcctatc gcggccgctg gccgctcaaa 11040
 aatggctggc ctacggccag gcaatctacc agggcgcggc aagccgcgc cgtcgccact 11100
 cgaccgcgg cgctgaggc tgcctcgta agaagggttt gctgactcat accaggcctg 11160
 aatcgccca tcatccagcc agaaagttagg ggagccacgg ttgtatgagag ctttggatgt 11220
 ggtggaccag ttggtagtt tgaactttt ctttgcacgg aacggctcg cgttgcggg 11280
 aagatgcgtg atctgatcc tcaactcagc aaaagttca tttattcaac aaagccgcgg 11340
 tcccgtcaag tcagcgtaat gctctgccag ttttacaacc aattaacca ttctgattag 11400
 aaaaactcat cgagcatcaa atgaaactgc aatttattca tatcaggatt atcaatacca 11460
 tattttgaa aaagccgtt ctgtatgaa ggagaaaact caccgaggca gttccatagg 11520
 atggcaagat cctggatcg gtctgcgtt ccgactcgatc caacatcaat acaacctatt 11580
 aatttccct cgtcaaaaat aaggttatca agtggaaaat caccatgat gacgactgaa 11640
 tccggtgaga atggcaaaaat ctctgcatta atgaatccgc caacgcgcgg ggagaggcgg 11700
 tttgcgtatt gggcgctt ccgcttcctc gctcactgac tcgctgcgt cggcgttcc 11760
 gctgcggcga ggggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg 11820
 ggataacgca gggaaagaa ttttgcgttcc ggcggtaata aaggccaggg aaggccagg a cccgtaaaaa 11880
 ggccgcgtt ctggcggtt tccataggct ccgcggccctt gacgagcatc acaaaaaatcg 11940
 acgctcaagt cagagggtgc gaaaccgcg aggactataa agataccagg cgtttcccc 12000
 tggaaagctcc ctcgtgcgt ctccgttcc gaccctccgg cttaccggat acctgtccgc 12060
 ctttctccct tcggaaagcg tggcgctt tcatacgatca cgctgttaggt atctcagttc 12120
 ggtgttaggtc gttcgcttca agctgggctg ttttgcgttcc ccccccgtt agcccgaccg 12180
 ctgcgcctt a tccggtaact atcgttgc gtcacccg gtaagacacg acttatacgcc 12240
 actggcagca gccactggta acaggattag cagagcgagg tatgttaggcg gtgttacaga 12300
 gttcttgcgtt gggggccta actacggcta cactagaaga acagtattt gatctgcgc 12360

<210> 15
<211> 14946
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pNOV1313

<220>
<221> misc_feature
<222> (12)..(1993)
<223> Zm Ubi promoter

<220>
<221> misc_feature
<222> (2016)..(5597)
<223> synthetic nucleotide sequence encoding the toxin
portion of H04 plus a full-length Cry1Ab tail
portion

<220>
<221> misc_feature
<222> (5805)..(7786)
<223> Zm Ubi promoter

```
<220>
<221> misc_feature
<222> (7883)..(8986)
<223> PMI
```

agttcgtgcc cggcgccggc ttcgtgctgg gcctgggtgga catcatctgg ggcacatctcg 2220
 gccccagcca gtgggacgccc ttccctgggtgc agatcgagca gttgataaaac caacgcatacg 2280
 aggaattcgc ccgcaaccag gccatcagcc gcctggaggg cctgagcaac ctgtaccaaa 2340
 tctacgcccga gagcttccgc gagtgggagg ccgaccacac caaccccgcc ctgcgcgagg 2400
 agatgcgcac ccagttcaac gacatgaaca gcgcctgac caccgcacat cccctgttcg 2460
 ccgtgcagaa ctaccaggtg cccctgctga gcgtgtacgt gcaggccgccc aacctgcacc 2520
 tgagcgtgct gcgcgacgtc agcgtgttcg gccagcgctg gggcttcgac gccgccacca 2580
 tcaaacagccg ctacaacgac ctgaccgcct tgatcgccaa ctacaccgac cacggcgac 2640
 gctggtacaa caccggcctg gagcgcgtgt ggggtcccgaa cagccgcac tggatcaggt 2700
 acaaccagtt cccgcgcgag ctgaccctga ccgtgtggaa catcgtagc ctgttcccc 2760
 actacgacag cccgacccat cccatccgca ccgtgagccaa gctgaccgcgagatttaca 2820
 ccaaccccggt gctggagaac ttgcacggca gcttccgcgg cagccccag ggcacatcgagg 2880
 gcagcatccg cagccccac ctgatggaca tcctgaacag catcaccatc tacaccgacg 2940
 cccaccgcgg cgagtactac tggagcggcc accagatcat ggcacggccc gtcggcttca 3000
 gcgcccccgaa gttcacccctt cccctgtacg gcaccatggg caacgctgca cctcagcagc 3060
 gcatcgtggc acagctggc cagggagtgt accgcaccctt gagcagcacc ctgtaccgtc 3120
 gacccttcaa catcgccatc aacaaccaggc agctgagcgt gctggacggc accgagttcg 3180
 cctacggcac cagcagcaac ctgcccagcg ccgtgtaccg caagagcgcc accgtggaca 3240
 gcctggacga gatccccctt cagaacaaca acgtgccacc tcgacaggcgtt ttcagccacc 3300
 gtctgagcca cgtgagcatg ttccgcagtgc gcttcagcaa cagcagcgtg agcatcatcc 3360
 gtgcacccat gttcagctgg attcaccgcg gcccacccctt gaccaacacc atcgaccccg 3420
 agcgcatcaa ccagatcccc ctggtaagg gcttccgggt gtggggcgcc accagcgtga 3480
 tcaccggccc cggcttccacc ggaggcgaca tcctgcgcag aaacacccctt ggcgacttcg 3540
 tgagcctgca ggtgaacatc aacagcccc tcaccaggcg ttaccgcctt cgcttccgct 3600
 acgcccagcag cccgcacgc cgtgtgatcg tgctgactgg cgccgctagc accgggtgtgg 3660
 gcggtcaggt gagcgtgaac atgcccctgc agaagactat ggagatcgcc gagaacctga 3720
 ctagtcgcac cttccgcctac accgacttca gcaacccctt cagcttccgcg gccaaccccg 3780
 acatcatcggt catcagcgag cagccccctgt tcggtgccgg cagcatcagc agcggcgagc 3840
 tgtacatcga caagatcgag atcatcctgg ccgacgccac cttcgaggcc gagagcgacc 3900
 tggagcgcgc cccagaaggcc gtgaacgcggc tggtaaccagg cagcaaccagg atcggcctga 3960
 agaccgacgt gaccgactac cacatcgacc aggtgagcaa cctggtgac tgcttaagcg 4020
 acgagttctg cctggacgag aagaaggagc tgagcgagaa ggtgaagcac gccaagcgcc 4080
 tgagcgtacga gcgcaacctg ctgcaggacc ccaacttccg cggcatcaac cgccagctgg 4140
 accgcggctg gcgaggcagc accgatatac ccatccaggg cggcgacgc gtgttcaagg 4200
 agaactacgt gaccctgcag ggcacccctgc acgagtgcata ccccacctac ctgtaccagc 4260
 cgatcgacga gagcaagctg aaggccatca cccgctacca gctgcgcggc tacatcgagg 4320
 acagccagga cctggaaatc tacctgatcc gctacaacgc gaagcacgag accgtgaacg 4380
 tgcccgac cggcaggctg tggccctga gcgcctccag cccatcgcc aagtgcgggg 4440
 agccgaatcg atgcgcctcg cacctggagt ggaaccccgaa cctagactgc agctgcagg 4500
 acggggagaa gtgcgcccac cacagccacc acttcagcct ggacatcgac gtggctgca 4560
 ccgacctgaa cgaggacctg ggcgtgtgg tgatcttcaa gatcaagacc caggacggcc 4620
 acgcccgcct gggcaatcta gagttccctgg aggagaagcc cctggtgcc gaggccctgg 4680
 cccgcgtgaa gcgtgtgag aagaagtggc gcgacaaagcg cgagaagctg gagtgggaga 4740
 ccaacatcgt gtacaaggag gccaaggaga gcgtggacgc cctgttcgtg aacagccagt 4800
 acgaccgcct gcaggccgac accaacatcg ccatgatcca cggccggc aagcgcgtgc 4860
 acagcattcg cgaggccctac ctgcccggac tgagcgtgat ccccggtgt aacgccgcca 4920
 tcttcgagga actcgagggc cgcatttcgc cccgccttcag cctgtacgac gcccgcac 4980
 ttagtcaagaa cggcgacttc aacaacggcc tgagctgctg gaaacgtgaag ggccacgtgg 5040
 acgtggagga gcagaacaac caccgcagcg tgctgggtt gcccgagtgg gaggccgagg 5100
 ttagccagga ggtgcgcgtg tgcccccggcc gcggctacat cctgcgcgtg accgcctaca 5160
 aggagggcta cggcgaggcc tgcgtgacca tccacagagat cgagaacaac accgacgagc 5220
 tcaagttcag caactgcgtg gaggaggagg tttaccccaa caacaccgtg acctgcaacg 5280
 actacaccgc gacccaggag gactacgaag gcacccatcac ctctcgcaac aggggttacg 5340
 acggcgccct cggatccaac agctccgtgc cagctgacta cggccaggcc tacgaggaga 5400
 aagcctacac cgacggtaga cgcgacaaacc catgtgagag caacagaggc tacggcgact 5460
 acaccccccgt gcccgcgtgg tacgtgacca aggagctgg gtacttcccc gagaccgaca 5520
 aggtgtggat cgagattggc gagaccgagg gcacccatcat cgtggacagc gtggagctgc 5580
 tgctgtatggc ggagtagtag atctgttctg cacaatgtgg agtagtcgt catcgatcag 5640
 gaaccagaca ccagactttt attcatacag tgaagtgaag tgaagtgcag tgcagtgag 5700
 tgctggtttt tgtacaactt agtatgtatt tgtatttgc aaataacttct atcaataaaa 5760
 tttctaattc ctaaaaccaa aatccagggg taccagcttgc catgcctgca gtgcagcgtg 5820

acccggtcgt gcccctctct agagataatg agcattgcat gtcttaagtta taaaaaatta 5880
 ccacatattt ttttgtcac acttgtttga agtgcagttt atctatctt atacatata 5940
 ttaaacttta ctctacgaat aatataatct atagtactac aataatatca gtgttttaga 6000
 gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag 6060
 gactctacag ttttatctt ttagtgcata ttttttttgc caaatagctt 6120
 cacctatata atacttcatc cattttatta gtacatccat ttagggtta gggtaatgg 6180
 ttttataga ctaattttt tagtacatct attttattct atttttagcct ctaaattaag 6240
 aaaactaaaa ctctattta gtttttttta ttaataattt agatataaaa tagaataaaaa 6300
 taaagtact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta aggaaacatt 6360
 tttcttgttt cgagtagata atgccagctt gttaaagcgc gtcgacgagt ctaacggaca 6420
 ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct 6480
 gtcgctgcct ctggaccct ctcgagagtt ccgctccacc gttggacttg ctccgctgtc 6540
 ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct 6600
 ctcctctca cggcaccggc agctacgggg gattccttc ccaccgctcc ttgcgtttcc 6660
 ctcctctcgc cggcgtaata aatagacacc ccctccacac cctctttccc caacctcg 6720
 ttgttcggag cgcacacaca cacaaccaga tctccccca atccacccgt cggcacctcc 6780
 gcttcaaggt acgcccgtcg tcctcccccc ccccccctct ctaccttctc tagatcg 6840
 ttccggtcca tggtagggc ccggtagttc tacttctgtt catgtttgtt ttagatccgt 6900
 gttgtgtta gatccgtgct gctagcgttc gtacacggat ggcacacta cgtcagacac 6960
 gttctgattt ctaacttgcc agtgtttctc tttggggat cctggatgg ctctagccgt 7020
 tccgcagacg ggatcgattt catgatttt tttgttctc tgcatagggt ttggggcc 7080
 ctttcctt atttcaatat atgccgtca cttgtttgtc gggtcatctt ttcatgctt 7140
 ttttgcctt ggttgtatg atgtggctcg gttggcggt cgttctagat cggagtagaa 7200
 ttctgttca aactacctgg tggatttatt aattttggat ctgtatgtgt gtgcatacaca 7260
 tattcatagt tacgaattga agatgatgga tggaaatatc gatctaggat aggtatacat 7320
 gttgatgcgg gttttactga tgcataataca gagatgtttt ttgttcgtt ggttgtatg 7380
 atgtgggtgt gttggcggt cgttcattcg ttctagatcg gagtagaata ctgtttcaaa 7440
 ctacctggtg tatttattaa ttttggact gtatgtgtgt gtcatacatac ttcatagtt 7500
 cgagtttaag atggatggaa atatcgatct aggataggta tacatgttga tgggggttt 7560
 actgatgcat atacatgatg gcatatgcag catctattca tatgtctaa ctttgcgtac 7620
 ctatctatta taataaaacaa gtatgtttta taatttattt gatcttgata tactggatg 7680
 atggcatatg cagcagctat atgtggattt ttttagccct gccttcatac gctattttt 7740
 tgcttggtac tgtttcttt gtcgatgctc accctgttgc ttgggtttac ttctgcagg 7800
 atccccgatc atgcaaaaac tcattaactc agtgcggaaatc tatgcctggg gcagcaaaac 7860
 ggcgttact gaaactttatg gtatggaaaa tccgtccagc cagccatgg ccgagctgt 7920
 gatggcgca catccgaaaa gcagttcagc agtgcagaat gccgcggag atatgtttc 7980
 actgcgtat gtgattgaga gtgataaattc gactctgctc ggagaggccg ttgcaaaacg 8040
 ctttggcgaa ctgccttcc tggtaaaatg attatgcga gcacagccac tctccattca 8100
 gtttcatcca aacaaacaca attctgaaat cggttttgc aaagaaaatg ccgcaggat 8160
 cccgatggat gcccggagc gtaactataa agatcctaagc cacaagccgg agctggttt 8220
 tgcgctgacg ctttccttg cgatgaacgc gtttgcgttgc ttgttcgttgc 8280
 actccagccg gtcgcagggt cacatccggc gattgctcac ttttacaac agcctgatgc 8340
 cgaacgtta agcgaactgt tcgcccggct gttgaatatg cagggtaag aaaaatcccg 8400
 cgcgtggcg attttaaaat cggccctcgat tagccagcag ggtgaaccgt ggcaacgt 8460
 tcgttaatt tctgaatttt acccgaaaga cagcggtctg ttctccccgc tattgctgaa 8520
 tgggtgaaa ttgaaccctg gcgaaagcgat gttcctgttc gctgaaacac cgacacgtt 8580
 cctgcaaggc gtggcgctgg aagtgatggc aaactccgat aacgtgctgc gtgcgggtct 8640
 gacgcctaaa tacattgata ttccggaaact gtttgccttgc gtgaaattcg aagccaaacc 8700
 ggctaaccag ttgttgcacc agccggtgaa acaagggtca gaactggact tcccgattcc 8760
 agtggatgat ttgccttct cgctgcatga ccttagtgcattaa agaaaacca ccattagcca 8820
 gcagagtgcc gcccatttgc tctgcgtcg aggcatgc acgttgcggaa aaggtctca 8880
 gcagttacag cttaaaccgg gtgaatcagc gtttatttgc gccaacgat caccggtgac 8940
 tgtcaaaggc cacggccgtt tagcgctgtt ttacaacaatg ctgtaagagc ttactgaaaa 9000
 aattaacatc tcttgctaag ctgggagctc gatccgtcg cctgcagatc gttcaaacat 9060
 ttggcaataa agtttcttaa gattgaatcc tggccgggt cttgcgtatc ttatcatata 9120
 atttctgttgc aattacgtta agcatgtat aattaacatc taatgcatac cgttatttt 9180
 gagatgggtt ttatgatta gatcccgcattatacatc taatacgca tagaaaacaa 9240
 aatatacgcc gcaaactagg ataaattatc gcgccgggt tcattatgt tactagatct 9300
 gctagccctg cagggaaattt accggtgccc gggcgccag catggccgtt tccgcaatgt 9360
 gttttaagt tgtctaagcg tcaatttgcattacaccatc tatatcctgc caccagccag 9420
 ccaacagctc cccgaccggc agctcgaccaaaaatcacca ctcgatacag gcagccatc 9480

agaattaatt ctcatgtttg acagcttatac atcgactgca cggtgcacca atgcttctgg 9540
 cgtcaggcag ccatcgaaag ctgtggatg gctgtgcagg tcgtaaatca ctgcataatt 9600
 cgtgtcgctc aaggcgact cccgttctgg ataatgttt ttgcggcgcac atcataacgg 9660
 ttctggcaaa tattctgaaa tgagctgtt acaattaatc atccggctcg tataatgtgt 9720
 ggaattgtga gcggataaca atttcacaca ggaaacagac catgagggaa gcgtgtatcg 9780
 ccgaagtatac gactcaacta tcagaggtag ttggcgtcat cgagcgccat ctcgaaccga 9840
 cgttgctggc cgtacattt tacggctccg cagtggatgg cggcctgaag ccacacagt 9900
 atattgattt gctggttacg gtgaccgtaa ggcttcatga aacaacgcgg cgagcttga 9960
 tcaacgaccc tttggaaact tcggcttccc ctggagagag cgagattctc cgcgctgtag 10020
 aagtaccat tgggtgcac gacgacatca ttccgtggcg ttatccagct aagcgcgaac 10080
 tgcaatttgg agaatggcag cgcaatgaca ttcttgcagg tatcttcgag ccagccacga 10140
 tcgacattga tctggctatac ttgctgacaa aagcaagaga acatagcggt gccttggtag 10200
 gtccagcggc ggaggaactc tttgatccgg ttcctgaaca ggatctattt gaggcgctaa 10260
 atgaaacctt aacgctatgg aactcgccgc ccgactggc tggcgatgag cgaatgttag 10320
 tgcttacgtt gtcccgatt tggcacagcg cagtaaccgg caaaatcgcg ccgaaggatg 10380
 tcgctgcga ctggcaatg gagcgcctgc cggccagta tcagccgtc atacttgaag 10440
 ctaggcaggc ttatcttgg caagaagatc gcttggcctc gcgcgcagat cagttggaaag 10500
 aatttgtca ctacgtaaa ggcgagatca ccaaagtatc cggcaaataa agctctatgt 10560
 gatctccgtt cccccggggg atctggctcg cggcggacgc acgacgcgg ggcgagacca 10620
 taggcgatct cctaaatcaa tagtagctgt aacctcgaa cgtttcaattt gtaacaacga 10680
 ttgagaattt ttgtcataaa attgaaatac ttggttcgca tttttgtcat ccgcggtcag 10740
 ccgcaattct gacgaactgc ccatttagct ggagatgattt gtacatcattt cacgtaaaa 10800
 tttctcaagc gctgtgaaca agggttcaga ttttagattt aaagggtgagc cgttggaaaca 10860
 cgttcttctt gtcgtatgcg acgtcgctat gcggcatctt attattgaat accttacat 10920
 ccacgccttc aaagtgaccg cggtagccga cagcacccag ttcacaagag tactctttc 10980
 cgcgacggc gatgtcggtt ttgttgcattt aaatttaggt cgtgaagatg ggctcgagat 11040
 cgttcgtaat ctggcgcaaa agtctgatattt tccaatcata attatcgtt ggcgcgcct 11100
 tgaggagacg gataaagttt ttgcactcgat gctaggagca agtattttt tcgctaagcc 11160
 gttcagtatc agagagttt tagcacgcattt tcgggttgc ttgcgcgtgc gccccaaacgt 11220
 tgtccgctcc aaagaccgac ggtctttttt ttttactgac tggacactta atctcaggca 11280
 acgtcgctt atgtccgaag ctggcggtt ggtgaaactt acggcaggatg agttcaatct 11340
 tctcctcgatc ttttagaga aaccccgca cgttctatcg cgcgagcaac ttctcattgc 11400
 cagtcgatgtt cgcgacgagg aggtttatga caggagtata gatgttctca ttttggggct 11460
 ggcggcaaaa cttgaggcag atccgtcaag ccctcaactt gaaaaaacag caagaggtgc 11520
 cggttatttc ttgacgcgg acgtgcagg ttcgcacggg gggacgatgg cagcctgagc 11580
 caattcccgat atccccggg aatcggcgat agcggcgatc aaccatccgg cccggatcaa 11640
 atcggcgccg cgtgggttgc tgacctgggtt gagaagttt gggccgcgca ggccgcccag 11700
 cggcaacgca tcgaggcaga agcacgcggg ggtgaatcgat ggcaagcggc cgctgatcga 11760
 atccgcaaaatccggca accggccggca gccggcgcc gtcgattttt gaaagccccc 11820
 aagggcgacg agcaaccaga ttttttgcgtt ccgtatgcgtt atgacgtggg caccgcgt 11880
 agtgcgacgtatc tcatggacgt ggccgtttt cgtctgtcga agcgtgaccg acgagctggc 11940
 gaggtgatcc gctacgagct tccagacggg cacgtatggg tttccgcagg gccggccggc 12000
 atggccagttt ttttttttttgcgtt ccgtatgcgtt ctgtatggggg tttccatct aaccgaatcc 12060
 atgaaccatc accggggagg gaagggagac aagccggcc gctgttccg tccacacgtt 12120
 gcggacgtatc tcaagttctt ccggcgagcc gatggcgaa agcagaaaga cgacactggta 12180
 gaaacctgtca ttccgttaaa caccacgcac gttgcatttgc agcgtacgaa gaaggccaag 12240
 aacggccggcc ttgtgacggat atccgggggtt gaagcatttgc ttagccgttca caagatcgta 12300
 aagagcgaaa ccggcgccggcc ggagtatcgc gagatcgatc tagctgattt gatgtaccgc 12360
 gagatcacatc aaggcaagaa cccggacgtt ctgacggatcc accccgatattt ctttttgcgtt 12420
 gatcccgccatc tcggccgttt tctctaccgc ctggcacttgc ggcgcgcagg caaggcagaa 12480
 gccagatgtt ttttgcgtt gatctacgttgc cgcgttgcgca ggcgcggaga gttcaagaag 12540
 ttctgtttca ccgtgcgtt gctgtatggg tcaaatgacc tgccggatgtt cgttgcgtt 12600
 gaggaggcgg ggcaggctgg cccgatcgtt gtcgtatgcgtt accgcaaccc gatcgaggc 12660
 gaagcatccg ccgttgcgtt atgtacggat cagatgttttgc ggcgttgcgtt cctagcagg 12720
 gaaaaaggatc gaaaaggatc ttttgcgtt gatgtatggt acattggaa cccaaagccg 12780
 tacattggatc accggaaatcc gtacattggg aacccaaatcc cgttgcgtt gaaaccgtca 12840
 cacatgtatc ttttgcgtt gatctacgttgc cgcgttgcgtt tttccgttca aaactctttt 12900
 aaacttattt aaactcttac aacccgcgtt gcgtatgcgtt aactgtctgg ccagcgcaca 12960
 gccgaagagc tgcaaaaaagc gcctaccctt cggcgatcgtt gtcgcctacg cccggccgt 13020
 tcgcgtccggc ctatcgccgc cgctggccgc tcaaaaaatgg ctggcctacg gccaggcaat 13080
 ctaccaggc gcggacaagc cgcgcgttgc ccactcgacc gccggcgctg aggtctgcct 13140

cgtgaagaag gtgttgcgtga ctcataccag gcctgaatcg ccccatcatc cagccagaaa 13200
 gtgagggagc cacgggttgcgtat gagagctttg ttgttaggtgg accagttggt gattttgaac 13260
 ttttgcgttgcgtat ccacggaaacg gtctgcgttgcgtat tcggaaagat gcgtgatctg atccttcaac 13320
 tcagcaaaag ttgcatttat tcaacaaagc cgccgtcccg tcaagtgcgtat gtaatgcgtct 13380
 gccagtgta caaccaatta accaattctg attagaaaaaa ctcatgcgtat gtaatgcgtct 13440
 actgcaattt attcatatca ggattatcaa taccatattt ttgaaaaaaggc cgtttctgtat 13500
 atgaaggaga aaactcaccg aggcagttcc ataggatggc aagatcctgg tatcggtctg 13560
 cgattccgac tcgtccaaca tcaatacaac ctattaattt cccctcgtaaaaataaggat 13620
 tatcaagtga gaaatcacca tgagtgcgtat ctgaatccgg tgagaatggc aaaagctctg 13680
 cattaatgaa tcggccaacg cgccgggaga ggcgggttgc gtattggcgctcttc 13740
 tcctcgctca ctgactcgct ggcgtcggtc gttcggtcgtat ggcgagcggt atcagctcac 13800
 tcaaaggcgg taatacggtt atccacagaa tcagggata acgcaggaaa gaacatgtga 13860
 gcaaaaaggcc agcaaaaaggc caggaaccgt aaaaaggccg cggtgcgtat gttttccat 13920
 aggctccgccc cccctgacga gcatcacaaa aatgcacgtat caagtcagag gtggcgaaac 13980
 ccgacagggac tataaagata ccaggcgat cccctggaa gctccctcgat ggcgtctcct 14040
 gttccgaccc tgccgcttac cgatcacgt tccgccttc tcccttcggg aagcgtggcg 14100
 ctttctcata gtcacgctg taggtatctc agttcggtgt aggtcgatcg ctccaaagctg 14160
 ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcgtat cttatccgg taactatcg 14220
 cttagtcca acccggttaag acacgactta tcgcccactgg cagcagccac tggtaacagg 14280
 attagcagag cgaggtatgt aggcgggtgt acagagttct tgaagtgggt gcctaactac 14340
 ggctacacta gaagaacagt atttggtac tgcgtctgc tgaagccagt taccttcgg 14400
 aaaagagttt gtagctcttgc atccggcaaa caaaccaccgt ctggtagcggtt ggtttttt 14460
 gtttgcaggc agcagattac ggcggggaaa aaaggatctc aagaagatcc tttgatctt 14520
 tctacgggtt ctgacgctca gtggaaacgaa aactcacgtt aagggtttt ggtcatgaga 14580
 ttatcaaaaaa gtagtccatc ctagatcctt ttgatccggat taaattccgtt gttttggca 14640
 tgcacatata aatggacgaa cggataaacc ttttgcgtat cttttaataa tccgattatt 14700
 ctaataaacg ctctttctc ttaggtttac ccgcataat atcctgtcaa acactgatag 14760
 tttaaactga aggccggaaa cgacaatctg atcatgagcg gagaattaag ggagtcacgt 14820
 tatgacccccc ggcgtgcgtat cgggacaaggcgttacgt ttggaaactga cagaaccgca 14880
 acgctgcagg aattggccgc agcggccatt taaatcaatt gggcgcgcgg aattcgagct 14940
 cggtac 14946

<210> 16

<211> 14603

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pNOV1435

<220>

<221> misc_feature

<222> (1)..(2007)

<223> synthetic nucleotide sequence encoding the toxin portion of H04 plus the first 40 amino acids of the Cry1Ab tail

<220>

<221> misc_feature

<222> Complement((8814)..(10022))

<223> PMI

<220>

<221> misc_feature

<222> (11142)..(12032)

<223> Maize ubiquitin promoter

<220>

<221> misc_feature

<222> (12037)..(14594)

<223> MTL promoter

<400> 16

atggacaaca accccaacat caacgagtgc atcccatac actgcctgag caaccccgag 60
gtggagggtgc tggcgccgca gcgcacatcgag accggctaca ccccatcgat catagcctg 120
agcctgaccc agttcctgct gagcgagttc gtgcccggcg ccggcttcgt gctgggcctg 180
gtggacatca tctggggcat cttcgccccc agccagtgaa acgccttcct ggtgcagatc 240
gagcagttga taaaccaacg catagaggaa ttcgccccca accaggccat cagccgcctg 300
gagggcctga gcaacctgta ccaaatactac gccgagagct tccgcgagtg ggaggccgac 360
cccaccaacc cgcgcctgca cgaggagatg cgcatccagt tcaacgacat gaacagcgcc 420
ctgaccaccg ccatccccct gttcgccgtg cagaactacc aggtgcccct gctgagcgtg 480
tacgtgcagg cgcgcacact gcacctgagc gtgctgcgtg acgtcagcgt gttcgccag 540
cgctgggct tcgacgcccgc caccatcaac agccgctaca acgacactgac ccgcctgatc 600
ggcaactaca cgcaccacgc cgtgcgtgg tacaacaccg gcctggagcg cgtgtgggt 660
cccgacagcc ggcactggat caggtacaac cagttccgc gcgagctgac cctgaccgtg 720
ctggacatcg tgagcctgtt ccccaactac gacagccgca cctacccat ccgcaccgtg 780
agccagctga cccgcgagat ttacaccaac cccgtgtgg agaacttcga cggcagcttc 840
cgccgcagcg cccagggcat cgagggcagc atccgcagcc cccacactgat ggacatcctg 900
aacagcatca ccatctacac cgacgcccac cgccgcgagt actactggag cggccaccag 960
atcatggcca gccccgtcgg cttcagcggc cccgagttca cttccccct gtacggcacc 1020
atgggcaacg ctgcacacta gcagcgcata gtggcacagc tggccaggg agtgtaccgc 1080
accctgagca gcaccctgta cgcgtacact ttcaacatcg gcatcaacaa ccagcagctg 1140
agcgtgtgg acggcaccga gttcgctac ggcaccagca gcaacctgcc cagccgcgtg 1200
taccgcaaga gcccgcaccgt ggacagcctg gacgagatcc cccctcagaa caacaacgtg 1260
ccacctcgac agggcttcag ccaccgtctg agccacgtga gcatgttccg cagtggttc 1320
agcaacagca gcgtgagcat catccgtca cccatgttca gctggattca ccgcagcgcc 1380
accctgacca acaccatcgca ccccgagcgc atcaaccaga tccccctggt gaagggcttc 1440
cggtgtggg gcccgcaccag cgtgatcacc ggcggccgt tcaccggagg cgacatcctg 1500
cgcaaaaaca cttcgcgcga cttcgtgagc ctgcaggtga acatcaacag cccatcacc 1560
cagcgttacc gcctgcgtt ccgcgtacgca agcagccgcg acgcccgtgt gatcgtgtg 1620
actggcgccg cttagcaccgg tggggcggt caggtgagcg tgaacatgcc cctgcagaag 1680
actatggaga tcggcgagaa cctgactagt cgcaccttcc gctacaccga cttcagcaac 1740
cccttcagct tccgcgccaa ccccgacatc atcggcatca gcgagcagcc cctgttcgg 1800
gccggcagca tcagcagcgg cgagctgtac atcgacaaga tcgagatcat cctggccgac 1860
gccacccctcg aggccgagag cgacctggag cgcccccaga aggccgtgaa cgccctgttc 1920
accagcagca accagatcgg cctgaagacc gacgtgaccg actaccacat cgaccaggtg 1980
agcaacctgg tggactgctt aagctagaga tctgttctgc acaaagtgg atagtcagtc 2040
atcgatcagg aaccagacac cagactttt ttcatacagt gaagtgaagt gaagtgcagt 2100
gcagttagtt gctggttttt gtaccactt gtatgtatt gtattttaa aataactcta 2160
tcaataaaat ttctaattcc taaaaccaaa atccagtgaa taccagcttgg ggctgagtgg 2220
ctccttcac gttcggttc tgcgttcc aaacgtaaaa cggcttgcgc cgcgtcatcg 2280
gcgggggtca taacgtgact cccttaattc tccgctcatg atcagattgt cggttccgc 2340
cttcagttt aactatcagt gtttgcacagg atatattggc ggttaaacct aagagaaaag 2400
agcgtttatt agaataacgg atatttaaaa gggcgtgaaa agtttatcc gttcgtccat 2460
ttgtatgtgc atgccaacca cagggttccc ctcggagtg cttggcattc cgtacgataa 2520
tgacttctgt tcaaccaccc aaacgtcgaa aagcctgacg acggagcagc attccaaaaa 2580
gatcccttgg ctcgtctgg tcggctagaa ggtcgagtgg gctgctgtgg cttgatccct 2640
caacgcggtc gcggacgtag cgcagcgcgc aaaaatcctc gatcgcaaat ccgacgctgt 2700
cgaaaagcgt gatctgttg tcgtctttc ggccgacgtc ctggccagtc atcacgcgcc 2760
aaagttccgt cacaggatga tctggcgca gttgctggat ctcgccttca atccgggtct 2820
gtggcgggaa ctccacgaaa atatccgaac gcagcaagat cgtcgaccaa ttcttgaaga 2880
cgaaaggccc tcgtgatacg cctattttt taggttaatg tcatgataat aatggttct 2940
tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctattt tttattttc 3000
taaatacatt caaatatgtt tccgctcatg agacaataac cctgataat gcttcaataa 3060
tattgaaaaa ggaagagtat gaggattcaa cattttccgt tcgccttat tcccttttt 3120
gcggcatttt gccttcctgt ttttgcac ccagaaacgc tggtaaaatg aaaagatgct 3180
gaagatcagt tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc 3240
ctttagagtt ttcgcggccga agaacgtttt ccaatgtga gcactttaa agttctgcta 3300
tgtggcgcgg tattatcccgt tggtaacgac gggcaagagc aactcggtcg ccgcatacac 3360
tattctcaga atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc 3420
atgacagtaa gagaattatg cagtgcgtcc ataaccatga gtgataacac tgccggcaac 3480

ttacttctga caacgatcgg aggaccgaag gagctaaccg ctttttgca caacatgggg 3540
gatcatgtaa ctcgccttga tcgttggaa ccggagctga atgaagccat accaaacgac 3600
gagcgtgaca ccacgatgcc tgcagggggg gggggggggg ggacatgagg ttgccccgta 3660
ttcagtgtcg ctgattttaa ttgtctgaag ttgttttac gttaagttga tgcagatcaa 3720
ttaatacgat acctgcgtca taattgatta tttgacgtgg tttgatggcc tccacgcacg 3780
ttgtgatatg tagatgataa tcattatcac tttacgggtc ctttccggg atccgacagg 3840
ttacggggcg gcgacctcgc gggtttcgc tatttatgaa aattttccgg tttaaggcgt 3900
ttccgttctt ctgcgtcata acttaatgtt ttttattaaa ataccctctg aaaagaaagg 3960
aaacgacagg tgctgaaagc gaggctttt ggcctctgtc gtttccttc tctgttttg 4020
tccgtggaat gaacaatgga agtccccccc ccccccccccc cctgcagcaa tggcaacaac 4080
gttgcgcaaa ctattaactg gcgaaactact tactctagct tcccgcaac aattaataga 4140
ctggatggag gcggataaaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg 4200
gtttattgct gataaatctg gagccgggtga gcgtgggtct cgccgtatca ttgcagcact 4260
ggggccagat ggtaagccct cccgtatcgt agttatctac acgacggga gtcaggcaac 4320
tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta 4380
actgtcagac caagtttact catatatact ttagattgat ttaaaaacttc attttaatt 4440
taaaaggatc taggtgaaaga tccttttga taatctcatg accaaaatcc cttaacgtga 4500
gttttcgttc cactgagcgt cagacccgt agaaaaagatc aaaggatctt cttgagatcc 4560
ttttttctg cgcgtaatct gctgcttgca aacaaaaaaaaa ccaccgtac cagcgggttgt 4620
ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 4680
gcagatacca aatactgtcc ttcttagtga gccgtagttt ggccaccact tcaagaactc 4740
tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 4800
cgataagtgc tgtcttaccg gttggactc aagacgatag ttaccggata aggccgcagcg 4860
gtcgggctga acggggggtt cgtgcacaca gcccagctt gaggcaacga cctacaccga 4920
actgagatac ctacagcgtg agctatgaga aagcgcacg cttcccgaa ggagaaaggc 4980
ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgacaggggg agctccagg 5040
ggaaacgcc tggtatctt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 5100
attttgcgtga tgctcgtag gggggcggag cctatggaaa aacgcagca acgcggcctt 5160
tttacggttc ctggccttt gctggcctt tgctcacatg ttcttcctg cgatccccc 5220
tgattctgtg gataaccgta ttaccgcctt tgagttagct gataccgctc gccgcagccg 5280
aacgaccgag cgcagcgtt cagttagcga ggaagcggaa gagcgcctga tgcgttattt 5340
tctccttacg catctgtgcg gtatttcaca ccgcataatgg tgcaactctca gtacaatctg 5400
ctctgatgcc gcatagttaa gccagtatac actccgctat cgctacgtga ctgggtcatg 5460
gctgcgcccc gacacccgcc aacacccgct gacgcgcctt gacgggctt tctgtcccg 5520
gcatccgctt acagacaagc tgtgaccgtc tccggagct gcatgtgtca gaggtttca 5580
ccgtcatcac cgaaacgcgc gaggcagcag atccccctt caagtagata cactacatat 5640
atctacaata gacatcgagc cggaaaggta tgtttacttt cctgaaaatcc ccagcaattt 5700
taggccagtt tttacccaag acttcgcctc taacataaat tatagttacc aaatctggca 5760
aaagggttaa caagtggcag caacggattc gcaaacctgt cacgcctttt gtgcaaaaag 5820
ccgcgcagg tttgcgtatcc gctgtgccag gcgttaggctg tcatatgaag atttcgtga 5880
tccctgagca ggtggcgaa acattggatg ctgagaacca tttcattgtt cgtgaagtgt 5940
tcgatgtgca cctatccgac caaggctttg aactatctac cagaagtgtg agcccttacc 6000
ggaaggatta catctcggt gatgactctg atgaagactc tgcttgctat ggcgcattca 6060
tcgaccaaga gcttgcggg aagattgaac tcaactcaac atggaacgtat ctagcctcta 6120
tcgaacacat tttgtgtcg cacacgcacc gaggcaaagg agtcgcgcac agtctcatcg 6180
aatttgcgaa aaagtggca ctaagcagac agtccttgg catacgatta gagacacaaa 6240
cgaacaatgt acctgcctgc aatttgcgt caaaatgtgg cttaactctc ggcggcattt 6300
acctgttcac gtataaaaact agacctaag tctcgaacga aacagcgatg tactggact 6360
ggttctcggtt agcacaggat gacgcctaacc aattcattca agccgacacc gcttcgcggc 6420
gcggcttaat tcaggagtt aacatcatga gggaaagggt gatgccgaa gtatcgactc 6480
aactatcaga ggtagttggc gtcatcgagc gccatctcga accgacgttg ctggccgtac 6540
atttgcgttgc ctccgcgttg gatggccggc tgaagccaca cagtgatatt gattgctgg 6600
ttacgggtac cgtaaggctt gatgaaaacaa cgccggcggc tttgatcaac gaccttttgg 6660
aaacttcggc ttcccctgga gagagcgaga ttctccgcgc tgtagaagtc accattgttg 6720
tgcacgcgca catcattccg tggcggtatc cagctaagcg cgaactgcaa tttggagaat 6780
ggcagcgcaca tgacattctt gcaggttatct tcgagccagc cacgatcgac attgatctgg 6840
ctatcttgct gacaaaagca agagaacata gcgttgcctt ggtaggtcca gcggcggagg 6900
aactcttga tccggttcctt gaacaggatc tatttggggc gctaaatgaa acctaacgc 6960
tatggaaactc gccgcccgc tgggctggcg atgagcgaaa tgttagtgctt acgtgtccc 7020
gcatttggta cagcgcagta accggcaaaa tcgcgcggaa ggtatcgct gccgactggg 7080
caatggagcg cctgcggcc cagtagtcact ccgtcataact tgaagctagg caggcttac 7140

ttggacaaga agatcgcttg gcctcgcgcg cagatcagtt ggaagaattt gttcactacg 7200
 taaaaaggcga gatcaccaag gtagtcggca aataatgtct aacaattcgt tcaagccgac 7260
 gccgcttcgc ggcgcggctt aactcaagcg ttagagagct ggggaagact atgcgcgatc 7320
 ttttgaaggt gtttctaagc ctcgtacttg cgatggcattc ggggcaggca cttgtgacc 7380
 tgccaattgt ttttagtggat gaagctcgtc ttccctatga ctactccccca tccaaactacg 7440
 acatttctcc aagcaactac gacaactcca taagcaatta cgacaatagt ccatcaaatt 7500
 acgacaactc tgagagcaac tacgataata gttcatccaa ttacgacaat agtcgcaacg 7560
 gaaatcgtag gcttatatat agcgcaaattt ggtctcgac tttcgccggc tactacgtca 7620
 ttgccaacaa tgggacaacg aacttctttt ccacatctgg caaaaggatg ttctacaccc 7680
 caaaaggggg ggcgcggcgtc tatggcggca aagatgggag cttctgcggg gcattggtcg 7740
 tcataaatgg ccaattttcg cttgcccgtga cagataacgg cctgaagatc atgtatctaa 7800
 gcaactagcc tgctctctaa taaaatgtta ggcctcaaca tctagtcgca agctgagggg 7860
 aaccactagt gtcatacgaa cctccaagag acggttacac aaacgggtac attgttgcgt 7920
 tcatgtatga caatcgccca agtaagtatc cagctgtgtt cagaacgtac gtccgaatta 7980
 attcatcggtt gtacggtcga cgatcgtaa cgttcacttc taaagaaata ggcgcactca 8040
 gcttcctcag cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga 8100
 cagcctgtca cggtaagcg agaaatgaat aagaaggctg ataattcggta tctctgcgag 8160
 ggagatgata tttgatcaca ggcagcaacg ctctgtcattc gttacaatca acatgctacc 8220
 ctccgcgaga tcatccgtgt ttcaaaccggc gcagcttagt tgccgttctt ccgaatagca 8280
 tcggtaacat gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga 8340
 ctgatggct gcctgtatcg agtggtgatt ttgtgcccgg cttccggctg gggagctgtt 8400
 ggctggctgg tggcaggata tattgtgggtg taaacaaattt gacgcttaga caacttaata 8460
 acacattgcg gacgaaaaat atgtactgaa ttgtctagac ccggggatct catgtttgac 8520
 agcttacatc cggatctagt aacatagatg acaccgcgcg cgataattt tcctagttt 8580
 cgcgctatat tttgtttct atcgcgtatt aaatgtataa ttgcgggact ctaatcataa 8640
 aaacccatct cataaataac gtcatgcatt acatgttaat tattacatgc ttaacgtaat 8700
 tcaacagaaa ttagatgata atcatcgcaaa gaccggcaac aggattcaat cttaagaaac 8760
 ttattgcca aatgtttgaa cgatctctgc aggtcgacgg atcagactcc cagcttagca 8820
 agagatgtaa atttttcag taagctctta cagcttggat taaacacgcg ctaaacggcc 8880
 gtggcctttg acagtcaccg gtgattcggtt ggcggcaata aacgctgatt caccgggtt 8940
 aagctgttaac tgctgagaac cttccacaa cttgcacatcg cttccgacgc agaacaataat 9000
 ggcggcactc tgctggctaa tgggtggttc tttatcacta aggtcatgca gcgagaaggc 9060
 aaaatcatcc actggaatcg ggaagtccag ttctgcaccc ttttcacccg gctgggtcaa 9120
 caactggtaa gccgggttgg cttcgaattt cacattggca accagttccg gaatatcaat 9180
 gtatttaggc gtcagacccg cacgcacgc gttatcgag tttgcacatca cttccagcgc 9240
 cacgccttcg aggttaagcgt gcgggtttc agcgaacacgg aacatcgctt cgcgggtt 9300
 caatttcacc acattcagca atagcggggaa gaacagacccg ctgtcttccg gttaaaattt 9360
 agaaattaaa cgaatcgaaa ggcacggttc accctgctgg ctatcgagg ccgatttaa 9420
 aatcgccagc ggcgggatt tttcttcacc ctgcacattt aacaggctgg cgaacagttc 9480
 gcttaaacgt tcggcatcag gctgttggtaa aaagttagca atcgcggat gtgcacctgc 9540
 gaccggctgg agtagggaga caatctcgaa aaattcacga aacgcgttca tcgcaaggaa 9600
 aggcgtcagc gcaaaaaacca gctccggctt gtgggttaga tctttatagt tacgctcggc 9660
 ggcacccatc gggataacctg cggcattttcc tttggcaaaa ccgatttcag aattgtgttt 9720
 gtttggatga acctgaatgg agagtggctg tgctgcgcatt aatactttga acaggaaagg 9780
 cagttcgcca aagcggttgg caacggcctc tccgagcaga gtcgatttat cactctcaat 9840
 cacatcacgc agtggaaacga tatctccggc ggcattctgc actcgtaac tgctttcgg 9900
 atgtgcggcc atccacagct cggccatcggtt ctggctggac ggattttcca taccataaag 9960
 ttcatgtcaac gcgttttgc gccccaggca tagtttgcattt ctgagttat gagttttgc 10020
 atgatcgaaaatccctgcag aagtaaacacc aaacaaacagg gtgagcatcg acaaaaagaaa 10080
 cagttaccaag caaataaaata gctgtatgaa gctgggtttaa aaaaatccac atatagctgc 10140
 tgcatatgcc atcatccaag tatataaaga tcaaaaataat tataaaacat actgtttat 10200
 tataatagat aggtactcaa gtttagagca tatgaataga tgctgcattt gccatcatgt 10260
 atatgcattca gtaaaaacccaa catcaacatg tataaccttctc ctagatcgat atttccatcc 10320
 atcttaaact cgttaactatg aagatgtatg acacacacat acagttccaa aattaataaa 10380
 tacaccaggat agtttggaaac ggcgtctactt ccgatctaga acgaatgaac gaccggccaa 10440
 ccacaccaca tcatacacaac caagcgaaca aaaagcatct ctgtatatgc atcgtaaaa 10500
 cccgcataaa catgtataacc tttccatgtatc cgatatttcc atccatcatc ttcaattcgt 10560
 aactatgaat atgtatggca cacacataca gatccaaaat taataaaatcc accaggtgt 10620
 ttgaaacaga attctactcc gatctagaac gaccggccaa ccagaccaca tcatacacaac 10680
 caagacaaaaaaa aaaagcatga aaagatgacc cgacaaacaa gtgcacggca tatattgaaa 10740
 taaaggaaaaaaa gggcaacca aaccctatgc aacgaaacaa aaaaatcat gaaatcgatc 10800

ccgtctgcgg aacggctaga gccatcccag gattccccaa agagaaacac tggcaagtta 10860
 gcaatcagaa cgtgtctgac gtacaggtcg catccgtgt a cgaacgctag cagcacggat 10920
 ctaacacaaa cacggatcta acacaaacat gaacagaagt agaactaccg ggccttaacc 10980
 atggaccgga acgcccgtct agagaaggta gagagggggg gggggggagg acgagcggcg 11040
 taccttgaag cggaggtgcc gacgggtgga tttgggggag atctggttgt gtgtgtgtgc 11100
 gctccgaaca acacgagggtt gggaaagag ggtgtggagg ggtgtctat ttattacggc 11160
 gggcgaggaa gggaaagcga aggagcggtg ggaaaggaat ccccgtagc tgccgtgccg 11220
 tgagaggagg aggagggccgc ctgcccgtgcc ggctcacgtc tgccgtccg ccacgcaatt 11280
 tctggatgcc gacagcggag caagtccaa ac ggtggagcgg aactctcgag aggggtccag 11340
 aggcagcgc acagatgccg tgccgtctgc ttgcgttggc ccgacgcgc ac gctgctggtt 11400
 cgctgggtgg tgcgtttagt actcgtcgac ggcgtttaac aggctggcat tatctactcg 11460
 aaacaagaaa aatgtttcct tagttttt aatttcttaa agggtatttgg tttatatttt 11520
 agtcactta ttttattcta ttttataatct aaattattaa ataaaaaaac taaaatagag 11580
 ttttagttt cttatatttag aggctaaaat agaataaaat agatgtacta aaaaaattag 11640
 tctataaaaa ccattaaaccc taaaccctaa atggatgtac taataaaatg gatgaagtat 11700
 tatataggtg aagctatttgg caaaaaaaaa ggagaacaca tgcacactaa aaagataaaaa 11760
 ctgttagagtc ctgttgc当地 aataactcaat tgcgtttagt accatgtcta actgttcatt 11820
 tatatgattc tctaaaacac tgatattttt gtagtactat agattatattt attcgttagag 11880
 taaagttaa atatatgtat aaagatagat aaactgcact tcaaacaagt gtgacaaaaaa 11940
 aaatatgtgg taattttta taacttagac atgcaatgtc cattatctt agagagggc 12000
 acgaccgggt cacgctgcac tgcaggcatg caagcttgca catgacaaca attgttagag 12060
 gatggagacc acaacgatcc aacaataactt ctgcacggg ctgtgaagta tagagaagtt 12120
 aaacgccccaa aagccattgt gtttggatt ttttagttt ctattttca tgatgtatct 12180
 tcctctaaca tgccttaatt tgcaaatttgg gtataactac tgattgaaaa tatatgtatg 12240
 taaaaaaaata ctaagcatat ttgtgaagct aaacatgtatg ttatthaaga aaatatgttg 12300
 ttaacagaat aagattaata tcgaaatggaa aacatctgtc aattttagatc atcttacaag 12360
 ctaagagatg ttcacgctt gagaacttc ttcagatcat gaccgttagaa gtagctctcc 12420
 aagactcaac gaaggctgct gcaattccac aaatgcata catgcatttct tgtaaccgtc 12480
 gtcgccccta taaacacggta taactcaatt ccctgcttca tcaattttaga aatgagcaag 12540
 caagcaccccg atcgctcacc ccatatgcac caatctgact cccaaatctc tggttcgc当地 12600
 tagtaccgccc agcactccac ctatagctac caatttggac ctttccagcc taagcagatc 12660
 gattgatcgt tagagtcaaa gagttgggtg tacgggtact ttaacttacca tggaatgtatg 12720
 gggcgtgatg tagagcggaa agcgcctccc tacgcggaaac aacaccctcg ccatgccc当地 12780
 cgactacagc ctcctcctcg tcggccgccc acaacgaggg agccgtggc cgccagccacc 12840
 gaccagcatg tctctgtgtc ctcgtccgac ctcgacatgt catggcaaac agtcggacgc 12900
 cagcaccaga ctgacgacat gagtctctga agagcccgcc acctagaaag atccgagccc 12960
 tgctgcttgtt agtggtaacc atttctgtcg cgctgacgcg gagagcgaga ggccagaaat 13020
 ttatagcgac tgacgctgtg gcaggcacgc tatcgaggt tacgacgtgg cgggtcactc 13080
 gacgcggagt tcacaggtcc tattccttgc tcgctcggc cggagtttac gggacttac 13140
 cttacgacgt gctctaaggta tgcgataacg ggcggaggaa ggcgtgtggc gtgcggagac 13200
 ggtttatata cctgtgtgc gggagtgtgt ttcgttagacg cggaaaagca cgacgactta 13260
 cgaaggtagt tggaggagga ggacacacta aaatcaggac gcaagaaact cttctattat 13320
 agtagtagag aagagattt aggagtgtgg gttgatttca aagaaaatcg acgcaggaca 13380
 accgtcaaaa cgggtgtttt aatataatgt atatataat atagagagag agagaaagta 13440
 caaaggatgc atttgtgtct gcatatgtc ggagtattac taacggccgt cgtaagaagg 13500
 tccatcatgc gtggagccgag cccatttgg tggttgtcag gccgcagtttta aggccctccat 13560
 atatgattgt cgtcgccccc ataacagcat ctcctccacc agtttattgt aagaataaat 13620
 taatgttaga tatttgc当地 cggccagaag aaacttggac aagaagaaga agcaagctag 13680
 gccaatttct tgccggcaag aggaagatag tggccctctag tttatataatc ggcgtgtatga 13740
 ttagtgc当地 agctagaaat gagagaagaa aaacggacgc gtgtttgggtg tgtgtcaatg 13800
 gcgccatcc ttccatcaga tcagaacgt gaaaaagtca agcacggcat gcatagtata 13860
 tgtatagctt gtttttagtgg ggctttgtc agacgaatga aagcaacggc gggcatattt 13920
 ttcagtggct gtagcttca ggctgaaaga gacgtggcat gcaataattc agggatttcg 13980
 tcagccaaattt gaggttagcta gtcaacttgc acatttggc gagcaatttt ccgcactc当地 14040
 gagggcttagt ttgagagtcc aaaaactata ggagattaaa gaggctaaaa tcctctc当地 14100
 atttaatttt aaataatgt ttttttttgc ttttaactcc tccaaaccctt ccgatattt 14160
 ggctctcaaa ctagcattca gtctaatgc tgcgttgc当地 gctagaggtc gtatgggtt 14220
 gttaatagca tagcttagcta caagttacc gggctttta tatttaataa ggacaggcaa 14280
 agtattactt acaaataaaag aataaagcta ggacgaactc gtggatttactaaatcg 14340
 aatggacgtt atattccagg caagaataat ttttttttgc ggagacaatg gggcattgg 14400
 accggttctt gcaagcaaga gcctatggcg tggtgacacgc ggcgttgc当地 cccatcatcat 14460

gcctccatcg atgatccatc ctcacttgct ataaaaagag gtgtccatgg tgctcaagct 14520
 cagccaagca aataagacga cttgtttcat tgattttca agagatcgag cttctttgc 14580
 accacaaggt cgaggatcca aca 14603

<210> 17

<211> 11127

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: pZU578

<220>

<221> misc_feature

<222> (1485)..(3491)

<223> synthetic nucleotide sequence encoding the toxin portion of H04 plus the first 40 amino acids of the Cry1Ab tail

<220>

<221> misc_feature

<222> (5052)..(6271)

<223> PMI

<220>

<221> misc_feature

<222> (3859)..(5030)

<223> SMAS promoter

<220>

<221> misc_feature

<222> (56)..(1475)

<223> Actin 2 promoter U41998

<400> 17

ggccgcagcg	gccatttaaa	tcaattgggc	gcgccaaatt	cgagctcggt	accctgcatt	60
cctgcaggtc	gacaaaattt	agaacgaact	taattatgat	ctcaaataca	ttgatacata	120
tctcatctag	atctaggta	tcattatgt	agaaagttt	gacgaatatg	gcacgacaaa	180
atggctagac	tcgatgtat	tggtatctca	actcaacatt	atacttatac	caaacattag	240
ttagacaaaa	tttaaacaac	tatTTTTat	gtatgcaaga	gtcagcatat	gtataattga	300
ttcagaatcg	tttgacgag	ttcggatgt	gtatgtcca	ttatttaatg	tacataactaa	360
tcgtgaatag	tgaatatgt	gaagcattgt	atcttattgt	ataaaatatcc	ataaacacat	420
catgaaagac	actttcttc	acggctgaa	ttaattatga	cacaattcta	atagaaaaacg	480
aattaaat	cgttgaattt	tatgaaatct	aattgaacaa	gccaaaccacg	acgacgacta	540
acgttgcctg	gattgactcg	gtttaagtta	accactaaaa	aaacggagct	gtcatgtAAC	600
acgcggatcg	agcaggtcac	agtcatgaag	ccatcaaagc	aaaagaacta	atccaagggc	660
tgagatgatt	aattagttt	aaaattagtt	aacacgaggg	aaaaggctgt	ctgacagccA	720
ggtcacgtt	tctttacctg	tggcgaaat	gattcgtgtc	tgtcgatttt	aattatttt	780
ttgaaaggcc	gaaaataaaag	ttgtaagaga	taaaccggcc	tatataaatt	cataatttt	840
cctctccgct	ttgaattgtc	tcgttgcct	cctcactttc	atcagccgtt	ttgaatctcc	900
ggcgacttga	cagagaagaa	caaggaagaa	gactaagaga	gaaagtaaga	gataatccag	960
gagattcatt	ctccgtttt	aatcttcctc	aatctcatct	tcttcgctc	tttctttcca	1020
aggtaatagg	aactttctgg	atctacttta	tttgctggat	ctcgatcttgc	ttttctcaat	1080
ttccttgaga	tctggattt	gtttaatttgc	gatctgtgaa	cctccactaa	atctttgggt	1140
tttactagaa	tcgatctaag	ttgaccgatc	agtttagctcg	attatagcta	ccagaatttg	1200
gcttgacctt	gatggagaga	tccatgttca	tgttacctgg	gaaatgattt	gtatatgtga	1260
attgaaatct	gaactgttga	agtttagatttgc	aatctgaaca	ctgtcaatgt	tagattgaat	1320
ctgaacactg	ttaagtttgc	atgaagtttgc	tgtatagatttgc	cttcgaaact	tttaggatttgc	1380
tagtgcgtt	cgttgaacag	aaagcttatttgc	ctgattcaat	cagggtttat	ttgactgtat	1440
tgaactctt	ttgtgtgttt	gcagctcata	aaaaggatcc	aacaatggac	aacaacccca	1500

acatcaacga	gtgcaccccc	tacaactgcc	tgagcaaccc	cgagggtggag	gtgctggcgc	1560
gcgagcgcac	cgagaccggc	tacaccccca	tcgacatcag	cctgagcctg	acccagttcc	1620
tgctgagcga	gttcgtgccc	ggcgccggct	tcgtgtggg	cctgggtggac	atcatctggg	1680
gcatcttcgg	ccccagccag	tgggacgcct	tcctggtgca	gatcgagcag	ttgataaacc	1740
aacgcataga	ggaattcgcc	cgcaaccagg	ccatcagccg	cctggagggc	ctgagcaacc	1800
tgtaccaaata	ctacgcccag	agcttccgctg	agtggggaggc	cgaccccacc	aaccccgccc	1860
tgcgcgagga	gatgcgcac	cagttcaacg	acatgaacag	cgccctgacc	accgcacatcc	1920
ccctgttcgc	cgtgcagaac	taccagggtgc	ccctgctgag	cgtgtacgtg	caggccgcca	1980
acctgcaccc	gagcgtgctg	cgcgacgtca	gcgtgttcgg	ccagcgtctg	ggcttcgacg	2040
ccgcccaccat	caacagccgc	tacaacgacc	tgaccggcct	gatcgcaac	tacaccgacc	2100
acgccgtgcg	ctggtacaac	accggcttgg	agcgcgtgt	gggtcccgac	agccgcact	2160
ggatcaggtt	caaccagttc	cgcgcgagc	tgaccctgac	cgtgctggac	atcgtgagcc	2220
tgttccccaat	ctacgacagc	cgcacccattc	ccatccgcac	cgtgagccag	ctgaccggcg	2280
agatttacac	caacccctgt	ctggagaact	tcgacggcag	cttccgcggc	agcgcggcagg	2340
gcatcgaggg	cagcatccgc	agccccccacc	tgatggacat	cctgaacagc	atcaccatct	2400
acaccgacgc	ccaccggcgc	gagtactact	ggagcggcca	ccagatcatg	gccagccccg	2460
tcggcttcag	cggcccccag	ttcacccccc	ccctgtacgg	caccatggc	aacgctgcac	2520
ctcagcagcg	catcgtggca	cagctggcc	agggagtgta	ccgcaccctg	agcagcaccc	2580
tgtaccgtcg	acctttcaac	atcggcatca	acaaccagca	gctgagcgtg	ctggacggca	2640
ccgagttcgc	ctacggcacc	agcagcaacc	tgcccagcgc	cgtgtaccgc	aagagcggca	2700
ccgtggacag	cctggacgag	atccccccctc	agaacaacaa	cgtgccac	cgacaggcgt	2760
tcagccaccg	tctgagccac	gtgagcatgt	tccgcagtgg	cttcagcaac	agcagcgtga	2820
gcatcatccg	tgcacccatg	ttcagctgga	ttcaccgcag	cgccaccctg	accaacacca	2880
tcgaccccg	gcgcatcaac	cagatcccc	tggtaaggg	cttccgggtg	tggggcggca	2940
ccagcgtat	caccggcccc	ggcttacccg	gaggcgacat	cctgcccaga	aacacccctcg	3000
gcgacttcgt	gagcctgcag	gtgaacatca	acagccccat	caccagcgt	taccgcctgc	3060
gcttccgcta	cgcgcagcgc	cgcgcacccc	gtgtgatcg	gctgactggc	gccgctagca	3120
ccggtgtggg	cgttcagggt	agcgtgaaca	tgcccctgca	gaagactatg	gagatcggcg	3180
agaacctgac	tagtcgcacc	ttccgctaca	ccgacttcag	caaccccttc	agcttccgca	3240
ccaaccccg	catcatccgc	atcagcgac	agcccccttt	cggtgccggc	agcatcagca	3300
gccccgagct	gtacatcgac	aagatcgaga	tcatccctggc	cgacgccacc	ttcgaggccg	3360
agagcgaccc	ggagcgcgcc	cagaaggccg	tgaacgcctt	gttcaccagc	agcaaccaga	3420
tcggcctgaa	gaccgacgtg	accgactacc	acatcgacca	ggtgagcaac	ctggtgact	3480
gcttaagcta	gagatccct	agagtcgacc	atggtgatca	ctgcagatcg	ttcaaaccatt	3540
tggcaataaa	gtttcttaag	attgaatcct	gttgcgggtc	ttgcgatgat	tatcatataa	3600
tttctgttga	attacgtttaa	gcatgtataa	attaacatgt	aatgcatgac	gttattttatg	3660
agatgggttt	ttatgattag	agtcccgaa	ttatacattt	aatacgcgt	agaaaacaaa	3720
atatagcgcg	caaccttagga	taaattatcg	cgcgcgggt	catctatgtt	actagatctc	3780
tagaaagctt	cgtacgttaa	ttaattcgaa	tccggagcgg	ccgcagggt	agcatcgatg	3840
gtaccgagct	cgagactata	caggccaaat	tcgctcttag	ccgtacaata	ttactcaccg	3900
gtgcgatgcc	ccccatcgta	ggtgaagggt	gaaattaatg	atccatcttg	agaccacagg	3960
cccacaacag	ctaccagttt	cctcaagggt	ccacaaaaaa	cgtaaagcgt	tacgtacatg	4020
gtcgataaga	aaaggcaatt	tgtagatgtt	aacatccaac	gtcgcttca	gggatcccga	4080
attccaagct	tggaattcgg	gatcctacag	gccaaattcg	ctcttagccg	tacaatatta	4140
ctcaccgggt	cgatcccccc	catcgtaggt	gaaggtggaa	attaatgatc	catcttgaga	4200
ccacaggccc	acaacagcta	ccagttccct	caagggtcca	ccaaaaacgt	aagcgcttac	4260
gtacatggtc	gataagaaaa	ggcaattttgt	agatgttaac	atccaacgtc	gcttcagggt	4320
atcccgaatt	ccaagcttgg	aattcgggt	cctacaggcc	aaattcgctc	ttagccgtac	4380
aatattactc	accgggtgcga	tccccccatc	gtaggtgaag	gtggaaatta	atgatccatc	4440
ttgagaccac	aggcccacaa	cagctaccag	tttccctcaag	ggtccaccaa	aaacgtaagc	4500
gcttacgtac	atggtcgata	agaaaaaggca	atttgttagat	gttaacatcc	aacgtcgctt	4560
tcagggatcc	cgaattccaa	gcttgggtcg	caggtcaatc	ccattgctt	tgaagcagct	4620
caacattgat	ctctttctcg	agggagattt	ttcaaattcg	tgcgcagac	gtgacgtaag	4680
tatccgagtc	agtttttatt	tttctactaa	tttggtcgtt	tatccggcg	tgtaggacat	4740
ggcaaccggg	cctgaatttc	gcgggtattc	tgtttctatt	ccaaactttt	cttgcattccgc	4800
agccattaaac	gactttgaa	tagatacgct	gacacgccaa	gcctcgctag	tcaaaagtgt	4860
accaaacaac	gctttacagc	aagaacggaa	tgcgctgtac	gctcgccgtg	acgcatttc	4920
gccttttcag	aaatggataa	atagccttgc	ttccttattat	atcttcccaa	attaccaata	4980
cattacacta	gcatctgaat	ttcataacca	atctcgatac	accaaattcg	gatctgcagg	5040
gatccccgat	catgcaaaaa	ctcattaact	cagtcaaaaa	ctatgcctgg	ggcagcaaaa	5100
cggcggttgcac	tgaactttat	ggtatggaaa	atccgtccag	ccagccgatg	gccgagctgt	5160

ggatggcg	acatccaaa	agcagttcac	gagtgcagaa	tgccgccg	gatatcg	ttt	5220	
cactgcgt	tgtgattgag	agtgataaaat	cgactctg	cgaggagg	gttgc	aaac	5280	
gctttggc	actgccttc	ctgttcaaag	tattatgc	agcacagcc	ctctccat	tc	5340	
aggttcat	aaacaaacac	aattctgaaa	tcggtttgc	caaagaaaat	gccgcagg	ta	5400	
tcccgat	tgccgccg	cgtaactata	aagatcctaa	ccacaagcc	gagctgg	tt	5460	
ttgcgt	gccttc	gcatgaac	cgtttgc	atttccg	attgtct	ccc	5520	
tactccag	ggtcg	caggt	gcacatccg	cgattgc	cttttacaa	cagcctgat	g	5580
ccgaacgt	aagcgaact	ttcgccag	tgttgaat	gcagggt	aaaaaat	ccc	5640	
gcfgctgg	gattttaaaa	tcggccct	atagccag	gggtgaacc	tggcaa	acga	5700	
ttcgtt	taatt	tacccg	acagcg	gttctccc	ctattg	ctg	5760	
atgtgg	attgaacc	tttgc	tggttgc	cgctgaa	ccgcac	gctt	5820	
acctgca	aggcgt	gaagtgt	caaactcc	taacgt	cgtgcgg	gtc	5880	
tgacgc	ctaa	atacattgat	attccg	tgtgaaattc	gaagcc	aaac	5940	
cggcta	acca	gttgg	cagccg	agaactgg	ttcccgatt	c	6000	
cagtgg	at	tttgc	tcgctgc	accttag	taaagaaacc	accattag	cc	6060
agcagag	tg	ttctgc	tggtgtc	aaggcg	aacgtt	ttc	6120	
agcagtt	aca	gctt	ggtaatc	cg	cgccaa	tcaccgg	tg	6180
ctgtca	aaagg	ccacgg	ttagcgc	tttaca	gctgt	actg	aaa	6240
aaatta	acat	ctcttgc	gttgg	cg	tcgaatt	gcagatcg	tt	6300
caaaca	atttgc	gcaataa	ttcttaa	tgaatc	tgccgg	tgcgatgat	ttt	6360
tcatata	atttgc	atctgt	atgtt	tttaca	gctgt	ttactg	aaa	6420
tat	ttat	atgggtt	atgatt	tcccgc	atacattt	tacgcgat	aa	6480
aaaaca	aaat	atagcgc	acctagg	aattatcg	cgccgt	tctatgtt	ttac	6540
tagat	ctcta	gaact	gttgg	cctgc	atttaccg	gcccggc	gg	6600
ccagcat	ggc	cgtatcc	atgttt	aagttgt	agcgtca	ttttac	acc	6660
acaat	atatc	ctgcc	acc	ccagcc	gctccc	cggcag	gcacaa	6720
accact	cgat	acaggc	ac	catcaga	aattctc	tttgac	atcatcg	6780
tgcacgg	tg	accatgc	tttgc	tgagccat	gcagccat	gaagctgt	ttgtgt	6840
cagg	tcg	taactgc	attcgt	gctcaagg	cactcc	ctggataat	g	6900
tttttgc	gc	acatcata	acgg	caaatttct	gaaatgag	gttacaatt	tt	6960
aatcat	ccg	tcgtataat	tgtgg	tgagcgg	acaatttca	acaggaa	ac	7020
gaccat	gagg	gaagcgg	tgccg	atcgact	ctatcag	tagtggc	gt	7080
catcg	agc	catctcg	ac	cgacgtt	ttgtacgg	ccgcagt	gg	7140
tggcgg	cct	aagcc	caca	gtgatatt	tttgctgg	acggta	cc	7200
tgaaaca	acg	cggc	gagc	tgatca	cctttgg	acttcgg	ttt	7260
gagc	gag	ctccgc	ctg	tagtcc	cattgtt	cacgac	tcattcc	7320
gcgtt	atcca	gcta	agcgc	aactgc	tgg	ggataat	g	7380
aggtat	ttc	gagcc	cgatc	gatctgg	atcttg	atcttgct	caaa	7440
agaacat	agc	gatc	gac	tgatctgg	tgatc	ctcttgatc	cggtcct	7500
acaggat	cta	tttgagg	gc	tagtcc	ggctt	atttgg	cg	7560
ggctgg	cgat	gagc	gaaat	gttgc	tttgc	taca	tcacca	7620
cg	aaaatc	gcgc	gagg	atgtcg	cgact	atggagc	gc	7680
gtatc	agcc	gtcata	tttgc	aagctagg	ggctt	ggaca	atcg	7740
ctcg	cg	gatc	gttgg	tttgc	tttgc	tttgc	tttgc	7800
agt	cg	aaat	gat	tttgc	tttgc	tttgc	tttgc	7860
cg	cccg	ggta	cccg	tttgc	tttgc	tttgc	tttgc	7920
gc	aggcc	cagc	ggca	tttgc	tttgc	tttgc	tttgc	7980
gg	ccgctg	cga	atcc	tttgc	tttgc	tttgc	tttgc	8040
tag	aggcc	ccca	aggc	tttgc	tttgc	tttgc	tttgc	8100
gg	gaccc	gat	atcg	tttgc	tttgc	tttgc	tttgc	8160
cc	gacg	gttgc	gagg	tttgc	tttgc	tttgc	tttgc	8220
agg	ccgg	ggc	atcc	tttgc	tttgc	tttgc	tttgc	8280
tct	taacc	tcc	atcc	tttgc	tttgc	tttgc	tttgc	8340
cc	gttgc	ccac	atcc	tttgc	tttgc	tttgc	tttgc	8400
ag	acgac	tttgc	atcc	tttgc	tttgc	tttgc	tttgc	8460
ga	agaagg	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	8520
ct	acaagat	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	8580
tt	ggatgt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	8640
tt	actgc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	8700
agg	caagg	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	8760
ag	agttca	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	8820

gtacgatttg aaggaggagg	cggggcaggc tggcccgatc	ctagtcatgc gctaccgcaa	8880
cctgatcgag ggcgaagcat	ccgcccgttc ctaatgtacg	gagcagatgc tagggcaaat	8940
tgccctagca gggaaaaaag	gtcgaaaagg tctcttcct	gtggatagca cgtacattgg	9000
gaacccaaag ccgtacattg	ggaaccggaa cccgtacatt	ggaaacccaa agccgtacat	9060
tgggaaccgg tcacacatgt	aagtgactga tataaaagag	aaaaaaggcg attttccgc	9120
ctaaaactct ttaaaaactta	ttaaaaactct taaaaccgc	ctggcctgtg cataactgtc	9180
tggccagcgc acagccgaag	agctgcaaaa aggcctacc	cttcggtcgc tgcgctccct	9240
acgccccgccc gttcgcgtc	ggcctatcgc ggccgctggc	cgctaaaaaa tggctggcct	9300
acggccaggc aatctaccag	ggcgccggaca agccgcgccc	tcgcccactcg accgcccggcg	9360
ctgaggtctg ctcgtgaag	aaggtgttgc tgactcatac	caggcctgaa tcgccccatc	9420
atccagccag aaagtgaggg	agccacggtt gatgagagct	ttgtttagg tggaccagtt	9480
ggtgattttg aactttgct	ttgccacgga acggctctgc	ttgtcgggaa gatgcgtgat	9540
ctgatccttc aactcagcaa	aagttcgatt tattcaacaa	agccgcccgtc ccgtaagtc	9600
agcgtaatgc tctgccagt	ttacaaccaa ttaaccaatt	ctgattagaa aaactcatcg	9660
agcatcaaat gaaactgcaa	tttattcata tcaggattat	caataccata ttttggaaa	9720
agccgtttct gtaatgaagg	agaaaaactca ccgaggcagt	tccataggat ggcaagatcc	9780
tgttatcggt ctgcgattcc	gactcgcca acatcaatac	aacctattaa tttccctcg	9840
tcaaaaataa gtttatcaag	tgagaaatca ccatgagtga	cgactgaatc cggtgagaat	9900
ggcaaaagct ctgcattaaat	gaatcggcca acgcgcgggg	agaggcggtt tgcgtattgg	9960
gcgctcttcc gttcctcgc	tcactgactc gctgcgctcg	gtcggtcgcc tgcggcgagc	10020
ggtatcagct cactcaaagg	cggttaatacg gttatccaca	gaatcagggg ataacgcagg	10080
aaagaacatg tgagcaaaag	gccagcaaaa ggccaggaac	cgtaaaaagg ccgcgttgct	10140
ggcggttttc cataggctcc	gccccctga cgagcatcac	aaaaatcgac gctcaagtca	10200
gaggtggcga aacccgacag	gactataaag ataccaggcg	tttccccctg gaagctccct	10260
cgtgcgtct cctgttccga	ccctggcgct taccggatac	ctgtccgcct ttctcccttc	10320
gggaagcgtg gcgtttctc	aatgctcacg ctgtaggtat	ctcagttcgg tgtaggtcgt	10380
tcgctccaag ctggcgttg	tgcacgaacc cccggttcag	cccgaccgct gcgccttatac	10440
cggtaactat cgtttgagt	ccaaacccggt aagacacgac	ttatcgccac tggcagcagc	10500
cactggtaac aggattagca	gagcgaggta tgtaggggt	gctacagagt tcttgaagtg	10560
gtggcctaac tacggctaca	ctagaaggac agtatttgg	atctgcgtc tgctgaagcc	10620
agttacccctc gaaaaaagag	ttggtagctc ttgatccggc	aaacaaacca ccgcgtggtag	10680
cggtggtttt tttgttgca	agcagcagat tacgcgcaga	aaaaaaggat ctcaagaaga	10740
tcctttgatc tttctacgg	ggtctgacgc tcagtggAAC	aaaaactcac gttaaggat	10800
tttggtcatg agattatcaa	aaaggatctt cacctagatc	ctttgatcc ggaattaatt	10860
cctgtggttt gcatgcacat	acaaatggac gaacggataa	acctttcac gccctttaa	10920
atatccgatt attctaataa	acgcttttt ctcttaggtt	tacccgccaa tatatcctgt	10980
caaacactga tagttaaac	tgaaggcggg aaacgacaat	ctgatcatga gcggagaatt	11040
aagggagtca cgttatgacc	cccgccgatg acgcgggaca	agccgtttta cgtttggAAC	11100
tgacagaacc gcaacgctgc	aggaatt		11127

What is claimed is:

1. A method for controlling an insect selected from the group consisting of fall armyworm, pink bollworm, tobacco budworm, European cornborer, and diamondback moth comprising 5 delivering to the insect an effective amount of a hybrid *Bacillus thuringiensis* toxin comprising domains I and II from a Cry1Ab toxin joined in the amino to carboxy direction to domain III from a Cry1C toxin.
2. The method of claim 1, wherein the hybrid *Bacillus thuringiensis* toxin comprises an 10 amino acid sequence at least 90% identical to SEQ ID NO:2, 4, 6, 8, or 10.
3. The method of claim 2, wherein the hybrid *Bacillus thuringiensis* toxin comprises SEQ 15 ID NO:2, 4, 6, 8, or 10.
4. The method of claim 1, wherein the hybrid *Bacillus thuringiensis* toxin further comprises a C-terminal tail region.
5. The method of claim 4, wherein the C-terminal tail region is a Cry1C tail region.
- 20 6. The method of claim 4, wherein the C-terminal tail region is a Cry1Ab tail region.
7. The method of claim 4, wherein the C-terminal tail region is approximately 40 amino acids in length.
- 25 8. The method of claim 1, wherein delivering an effective amount of the hybrid *Bacillus thuringiensis* toxin to the insect comprises feeding or contacting the insect with transgenic plant tissue transformed with recombinant DNA comprising a nucleotide sequence that encodes the hybrid *Bacillus thuringiensis* toxin, wherein expression of the hybrid *Bacillus thuringiensis* toxin in said transgenic plant tissue confers resistance to the insect.

9. The method of claim 8, wherein said nucleotide sequence is substantially identical to SEQ ID NO:1, 3, 5, 7, or 9.
10. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a hybrid *Bacillus thuringiensis* toxin comprising:
 - 5 (a) an N-terminal toxin portion comprising domains I and II from a Cry1Ab toxin joined in the amino to carboxy direction to domain III from a Cry1C toxin; and
 - (b) a C-terminal tail region from a Cry1Ab toxin.
11. The nucleic acid molecule of claim 10, wherein the hybrid *Bacillus thuringiensis* toxin comprises an amino acid sequence at least 90% identical to SEQ ID NO:6, 8, or 10.
12. The nucleic acid molecule of claim 11, wherein the hybrid *Bacillus thuringiensis* toxin comprises SEQ ID NO:6, 8, or 10.
13. The nucleic acid molecule of claim 10, wherein said nucleotide sequence is at least 90% identical to SEQ ID NO:5, 7, or 9.
14. The nucleic acid molecule of claim 13, wherein said nucleotide sequence comprises SEQ ID NO:5, 7, or 9.
15. A chimeric gene comprising a heterologous promoter sequence operatively linked to the nucleic acid molecule of claim 10.
16. A recombinant vector comprising the chimeric gene of claim 15.
17. A transgenic host cell comprising the chimeric gene of claim 15.
18. A transgenic host cell according to claim 17, which is a plant cell.
19. A transgenic plant comprising the transgenic plant cell of claim 18.

20. A transgenic plant according to claim 19, which is a maize, cotton, rice, or cabbage plant.

5 21. Seed from the transgenic plant of claim 19.

22. A method of protecting a plant against insects, comprising expressing a hybrid *Bacillus thuringiensis* toxin in a plant transformed with a chimeric gene comprising:

10 (a) a nucleic acid promoter sequence that promotes in a plant the transcription of an associated coding sequence at elevated levels, and

(b) a nucleic acid molecule according to claim 10 operatively linked to said promoter sequence, wherein expression of the hybrid *Bacillus thuringiensis* toxin in said plant protects said plant against insects.

15 23. A method of producing a hybrid *Bacillus thuringiensis* toxin that is active against insects, comprising:

(a) obtaining a transgenic host cell according to claim 17; and

(b) expressing the nucleic acid molecule in said transgenic host cell, which results in a hybrid *Bacillus thuringiensis* toxin that is active against insects.

20

24. A method of producing a plant resistant to insects, comprising introducing a nucleic acid molecule according to claim 10 into said plant, wherein said nucleic acid molecule is expressible in said plant in an amount effective to control insects.

25 25. An isolated nucleic acid molecule comprising SEQ ID NO:3, 5, 7, 9, 11, 12, 13, 14, 15, 16, or 17.

26. The nucleic acid molecule of claim 25, comprising SEQ ID NO:3, 5, 7, or 9.

30 27. The nucleic acid molecule of claim 25, comprising SEQ ID NO: 11, 12, 13, 14, 15, 16, or 17.

28. A chimeric gene comprising a heterologous promoter sequence operatively linked to the nucleic acid molecule of claim 26.
- 5 29. A recombinant vector comprising the chimeric gene of claim 28.
30. A transgenic host cell comprising the chimeric gene of claim 28.
31. A transgenic host cell according to claim 30, which is a plant cell.
- 10 32. A transgenic plant comprising the transgenic plant cell of claim 31.
33. A transgenic plant according to claim 32, which is a maize, cotton, rice, or cabbage plant.
- 15 34. Seed from the transgenic plant of claim 33.
35. A transgenic plant cell comprising the DNA molecule of claim 27.
- 20 36. A transgenic plant comprising the transgenic plant cell of claim 35.
37. A transgenic plant according to claim 36, which is a maize, cotton, rice, or cabbage plant.
- 25 38. Seed from the transgenic plant of claim 36.
39. A hybrid *Bacillus thuringiensis* toxin, comprising:
 - (a) an N-terminal toxin portion comprising domains I and II from a Cry1Ab toxin joined in the amino to carboxy direction to domain III from a Cry1C toxin; and
 - 30 (b) a C-terminal tail region from a Cry1Ab toxin.

40. The hybrid *Bacillus thuringiensis* toxin of claim 39, comprising an amino acid sequence at least 90% identical to SEQ ID NO:6, 8, or 10.

41. The hybrid *Bacillus thuringiensis* toxin of claim 40, comprising SEQ ID NO:6, 8, or 5 10.

42. A composition comprising the hybrid *Bacillus thuringiensis* toxin of claim 39 in an amount effective to control insects.