L'invention concerne un dispositif et un procédé de segmentation d'objets dans une image. Le procédé comprend les étapes de :
- définition approximative d'un contour extérieur de l'objet à segmenter, ledit contour comprenant une pluralité de points dits de contrôle (V_0);
- détermination d'un voisinage de points candidats (V_{i,j}) au voisinage de chaque point de contrôle (V_i);
- détermination d'une énergie associée à chaque point candidat (V_{i,j}) du voisinage de chaque point de contrôle,
- convergence de chacun des points de contrôle (V_i) vers le point candidat (V_{i,j}) qui minimise ladite énergie fournisant ainsi un contour estimé de l'objet à segmenter.

Selon l'invention, l'énergie associée à chaque point candidat (V_{i,j}) comprend un terme de discrimination de couleur.
L'invention concerne un dispositif et une méthode de segmentation d'images.

La segmentation d'objets dans des images par analyse automatique d'images est en général d'une très grande complexité, insoluble en l'absence de l'assistance d'un opérateur humain. La raison en est qu'il n'existe pas de critère universel au niveau de l'image permettant de caractériser l'objet et de le séparer de son environnement, un objet sémantique étant susceptible d'être constitué de plusieurs régions de couleurs et de textures très différentes.

La segmentation d'objets sémantiques trouve diverses applications dans des domaines très variés et notamment :

- en post-production de films, afin d'effectuer des corrections de couleur limitées à des objets, ou d'isoler un objet dans une séquence afin de l'incruster dans une autre séquence,
- en codage vidéo, afin d'améliorer le taux de compression en codant l'objet dans une seule trame puis en ne transmettant que ses variations de position,
- en indexation vidéo, afin d'extraire des informations sémantiquement pertinentes sur le contenu des images.

On connaît des méthodes de segmentation d'objets sémantiques basées sur le formalisme des contours actifs (« snakes » en anglais), qui consistent à faire évoluer une approximation initiale du contour de l'objet en s'accrochant sur des fronts de l'image, tout en satisfaisant des contraintes de régularité de la courbe de contour.

On connaît également des méthodes de segmentation d'objets basées sur la couleur, effectuant une classification des pixels de l'image ou d'une région de l'image en pixels de l'objet et pixels de l'arrière-plan sur la base de leur localisation dans un espace couleur.

La présente invention propose une méthode basée sur les contours actifs et prenant en compte également une contrainte de discrimination de couleur entre l'objet à segmenter et l'arrière-plan.
A cet effet, la présente invention propose un procédé de segmentation d'objets dans une image comprenant les étapes de

- définition approximative d'un contour externe de l'objet à segmenter, le contour comprenant une pluralité de points dits de contrôle,
- détermination d'un voisinage de points candidats au voisinage de chaque point de contrôle,
- détermination d'une énergie associée à chaque point candidat du voisinage de chaque point de contrôle,
- convergence de chacun des points de contrôle vers le point candidat qui minimise l'énergie fournissant ainsi un contour estimé de l'objet à segmenter.

Selon l'invention, l'énergie associée à chaque point candidat comprend un terme de discrimination de couleur.

De cette manière, le terme d'énergie est plus robuste et les résultats obtenus permettent de parvenir à une segmentation de l'objet très proche du contour réel de l'objet comparé aux méthodes existantes qui n'utilisent pas de discrimination de couleur.

Selon un mode préféré de réalisation, le procédé comprend une étape de calcul automatique d'un contour inscrit au contour estimé et d'un contour circonscrit au contour estimé, de telle sorte que le contour inscrit soit intérieur à l'objet à segmenter et que le contour circonscrit soit extérieur à l'objet à segmenter.

Selon un mode préféré de réalisation, le procédé comprend une étape de classification en deux régions des pixels situés dans l'espace compris entre le contour inscrit et le contour circonscrit, les pixels dont la couleur est plus proche de la distribution des couleurs de l'objet que de la distribution des couleurs du fond au voisinage de l'objet étant étiquetés objet et les autres pixels étant étiquetés fond.
Selon un mode préféré de réalisation, le procédé comprend une étape d’étiquetage des points candidats de chaque point de contrôle du contour estimé, l’étiquette identifiant si chaque point candidat est intérieur au contour estimé ou extérieur au contour estimé.

Selon un mode préféré de réalisation, le procédé comprend une étape de comptage des pixels pour chaque point candidat dans le voisinage de chaque point de contrôle du nombre de points N_1 et N_2 définis ainsi :

- N_1 est le nombre de points étiquetés comme intérieur au contour estimé et dont la couleur est étiquetée objet,
- N_2 est le nombre de points étiquetés comme extérieur au contour estimé et dont la couleur est étiquetée fond.

Selon un mode préféré de réalisation, l’énergie associée à chaque point candidat est constituée d’une pondération, outre du terme de discrimination de couleur, d’un terme de gradient attirant le contour approximatif dessiné par l’utilisateur vers les fronts de l’image, d’un terme de tension minimisant la longueur du contour et d’un terme de régularisation de second ordre minimisant les courbures trop prononcées.

Selon un mode préféré de réalisation, la minimisation du terme d’énergie relative au terme de discrimination de couleur consiste à sélectionner pour chaque point de contrôle le point candidat du voisinage du point de contrôle pour lequel la somme $N_1 + N_2$ est minimale.

L’invention concerne également un dispositif de segmentation d’objets dans une image comprenant des moyens de

- définition approximative d’un contour extérieur, le contour comprenant une pluralité de points dits de contrôle,
- détermination d’un voisinage de points candidats au voisinage de chaque point de contrôle,
- détermination d’une énergie associée à chaque point candidat du voisinage de chaque point de contrôle.
- convergence de chacun des points de contrôle vers le point candidat qui minimise l’énergie fournisant ainsi un contour estimé de l’objet à segmenter.

Selon l’invention, l’énergie associée à chaque point candidat comprend un terme de discrimination de couleur.

L’invention sera mieux comprise et illustrée au moyen d’exemples de modes de réalisation et de mise en œuvre avantageux, nullement limitatifs, en référence aux figures annexées sur lesquelles :

- la figure 1 représente une vue du contour actif et du contour vrai de l’objet que l’on cherche à estimer,
- la figure 2 représente les différentes étapes représentatives du calcul du terme de discrimination de couleur,
- la figure 3 illustre le procédé de calcul d’un polygone inscrit et d’un polygone circonscrit à un polygone initial,
- la figure 4 représente les régions de référence délimitées par les différents contours,
- la figure 5 représente un schéma fonctionnel de calcul du modèle de couleur pour le fond et pour l’objet à segmenter,
- la figure 6 illustre une méthode alternative de classification binaire entre fond et objet, basée sur l’algorithme de « seeded region growing ».

Les modules représentés sont des unités fonctionnelles, qui peuvent ou non correspondre à des unités physiquement distinguables. Par exemple, ces modules ou certains d’entre eux peuvent être regroupés dans un unique composant, ou constituer des fonctionnalités d’un même logiciel. À contrario, certains modules peuvent être éventuellement composés d’entités physiques séparées.

Selon le procédé décrit par l’invention, lorsqu’un utilisateur veut segmenter un objet qu’il visualise sur un écran, il trace un contour approximatif des frontières de l’objet qui doit être extérieur à l’objet. Un objet
de l'invention est de définir un procédé permettant de faire converger ce contour approximatif initial vers le contour réel de l'objet à segmenter. Ce procédé s'appuie sur un schéma algorithmique des contours actifs.

La figure 1 représente le contour réel de l'objet à segmenter et le contour actif, à une étape de son processus de convergence à partir du contour initial fourni par l'utilisateur.

Le contour actif est défini par un certain nombre de points de contrôle V_i, correspondant aux extrémités des arcs formant le contour. Dans le cas où le contour est modélisé par un polygone, ces arcs sont des segments de droite, et les points de contrôle sont constitués des extrémités de ces segments. Le nombre de points de contrôle V_i varie en fonction de la complexité du contour.

Selon l'invention, on fait converger les points de contrôle V_i vers le contour réel de l'objet, selon un schéma de convergence connu sous le nom de contours actifs. On définit un contour actif comme une courbe paramétrée dans une image, qui approche itérativement la frontière d'un objet sous l'influence de forces internes, calculées à partir de la courbe de contour elle-même, et de forces externes, qui dépendent de l'image. Les forces internes contraignent la forme de la courbe à satisfaire des contraintes de régularité, les forces externes optimisent le positionnement de la courbe relativement au contenu de l'image. L'application de ces forces se traduit par la minimisation d'une fonctionnelle d'énergie.

Bien qu'il soit théoriquement possible de rechercher une convergence simultanée de l'ensemble des points de contrôle en effectuant une minimisation globale de la fonctionnelle d'énergie, la convergence du contour actif est en pratique réalisée à l'aide d'un algorithme glouton (« greedy algorithm ») proposé initialement dans l'article de D.J. Williams et M. Shah, intitulé « A Fast Algorithm for Active Contours and Curvature Estimation », paru dans la revue CVGIP : Image Understanding, volume 55 n° 1, Janvier 1992, pages 14 à 26.
Suivant cet algorithme, la minimisation de l'énergie est effectuée itérativement sur chacun des points de contrôle, jusqu'à stabilisation du contour. A cet effet, une fenêtre de recherche est définie au voisinage de chaque point de contrôle. Chaque point à l'intérieur de cette fenêtre constitue un point candidat pour la position du nouveau point de contrôle. Le point de contrôle est déplacé dans la fenêtre vers le point candidat pour lequel une certaine fonctionnelle appelée énergie est minimale. Ce processus est appliqué successivement sur tous les points de contrôle, jusqu'à convergence du contour.

La taille de la fenêtre peut par exemple être fixée à 21 pixels sur 21 pixels. Dans d'autres modes de réalisation, la taille de la fenêtre peut être différente. La taille de la fenêtre à utiliser dépend de l'application visée et de la résolution de l'image traitée.

En référence à la Figure 1, on appelle V_i la position courante d'un point de contrôle du contour actif. On cherche à faire converger V_i vers le contour vrai en calculant, pour chaque point V_i d'une fenêtre de recherche autour de V_i, l'énergie du contour obtenu en remplaçant V_i par V_k, et en sélectionnant comme nouveau point de contrôle celui qui fournit l'énergie minimale.

Suivant un procédé connu de segmentation par contours actifs, l'énergie $E(i)$ du point de contrôle V_i est définie comme étant la somme pondérée des trois termes suivants :

1. un terme de continuité favorisant un espacement constant entre points de contrôle, ce terme peut par exemple être défini en fonction de la distance de V_i aux points de contrôle adjacents V_{i-1} et V_{i+1} et de la distance moyenne \overline{d} entre points de contrôle :

$$E_{\text{continuité}}(i, V_j) = \frac{\| V_j - V_{i-1} \|^2 + \| V_j - V_{i+1} \|^2 - 2 \overline{d}^2}{\text{Max} E_{\text{continuité}}(k)}$$

2. un terme de régularisation de deuxième ordre visant à éviter des courbures trop prononcées du contour, que l'on peut
définir, approximant la courbure par des différences finies, comme:

$$E_{\text{courbure}}(i, V_j) = \frac{V_{j+1} - 2V_j + V_{j-1}}{\max_k E_{\text{courbure}}(k)}$$

3. un terme de gradient qui attire le contour vers des fronts de l'image, en privilégiant les fronts dont la direction est parallèle au contour estimé : ce terme peut être calculé en fonction du vecteur gradient $G(V_j)$ au voisinage de V_j et de la normale extérieure $n_{\text{ext}}(i)$ au contour en V_i par :

$$E_{\text{gradient}}(i, V_j) = -\frac{n_{\text{ext}}(i) G(V_j)}{\max_i G(V_i)}$$

La pondération de ces termes est définie par l'utilisateur en fonction des propriétés du contour. Il pourra par exemple réduire le poids des termes de régularité dans le cas de formes très tourmentées.

Le procédé de segmentation par contours actifs, tel que décrit ci-dessus, repose essentiellement sur la détection des frontières de l'objet. L'objet de l'invention est d'introduire dans le procédé de segmentation par contours actifs une contrainte supplémentaire assurant une certaine homogénéité en termes de couleur de la région délimitée du contour, afin d'améliorer la qualité et la robustesse de la segmentation obtenue.

L'invention concerne plus particulièrement les moyens de déterminer un terme supplémentaire de la fonctionnelle d'énergie conditionnant la convergence du contour actif. Ce terme de discrimination de couleur $E_{\text{couleur}}(i, V_j)$ repose sur la classification des pixels au voisinage du contour estimé en pixels « objet » et « non-objet » en fonction de leur couleur, classification qui est effectuée à partir d'une connaissance initiale sur la distribution des couleurs de l'objet et de son voisinage. $E_{\text{couleur}}(i, V_j)$ modifie le positionnement du contour de manière à favoriser, dans un voisinage du contour, le placement de pixels classifiés « objet » à l'intérieur du contour, et le classement de pixels classifiés « fond » à l'extérieur du contour.
La figure 2 donne un schéma bloc décrivant les moyens de calculer le terme de discrimination de couleur.

En premier lieu, lors d'une étape E1, on définit à partir du contour initial, un contour inscrit, intérieur à l'objet, et un contour circonscrit, extérieur à l'objet. A titre d'exemple, la figure 3 illustre une méthode géométrique de construction d'un contour inscrit et d'un contour circonscrit, lorsque le contour est modélisé par un polygone. Pour chaque sommet V_i du contour initial, on construit la bissectrice de l'angle formé par les deux segments adjacents au sommet et passant par le sommet. On associe à V_i un sommet du polygone circonscrit (respectivement inscrit) en déplaçant V_i d'une distance prédéfinie d_{circ} (respectivement d_{inscr}) vers l'extérieur (respectivement vers l'intérieur) le long de la bissectrice.

Le bon fonctionnement de l'invention nécessite que le contour inscrit soit entièrement intérieur à l'objet et que le contour circonscrit soit dans sa totalité extérieur à l'objet. Si nécessaire, il peut être fait appel à l'opérateur humain pour ajuster les contours calculés automatiquement par la méthode décrite ci-dessus, afin que ces deux conditions soient remplies.

Lors d'une étape E2, chacun des pixels situés dans la zone d'incertitude encadrée par les contours inscrit et circonscrit est classifié en pixel « objet » ou « non-objet » en fonction de sa couleur, ce qui fournit une carte de classification binaire dans cette zone. Divers procédés de classification sont applicables à cette fin. Deux procédés sont décrits plus bas à titre illustratif :

- un procédé basé sur la construction de modèles de la distribution couleur de l'objet et de celle du fond, où les pixels sont classifiés en fonction de la proximité de leur couleur à ces distributions,

- un procédé basé sur l'algorithme connu sous le nom de « Seeded Region Growing », procédant par croissance de régions à partir de points de référence répartis sur le contour circonscrit et sur le contour inscrit.
Les étapes E1 et E2 sont effectuées préalablement au lancement du processus de convergence du contour actif. Les autres étapes du procédé E3 à E5, décrites ci-dessous, sont répétées à chaque itération du processus de convergence du contour actif au voisinage d’un point de contrôle.

Lors d’une étape E3, une deuxième carte de segmentation binaire est construite dans la fenêtre de recherche d’un nouveau point de contour au voisinage du point de contrôle courant V_i. Cette carte, recalculée pour chaque position candidate V_i du nouveau point de contour, affecte à chaque pixel de la fenêtre une étiquette précisant si le pixel se trouve à l’intérieur ou à l’extérieur du contour obtenu en considérant V_i comme nouveau point de contour. Lorsque le contour est modélisé par un polygone, le calcul de ces cartes peut s’appuyer sur des algorithmes bien connus en infographie, permettant de tester si un point se trouve ou non à l’intérieur d’un polygone.

Une étape E4 utilise la carte de segmentation basée sur la couleur en pixels « objet » et « non-objet » issue de l’étape E2 d’une part, et la carte de segmentation en pixels intérieur et extérieur au contour candidat, issue de l’étape E3, d’autre part. À partir de ces deux cartes est effectué un comptage, à l’intérieur de la fenêtre de recherche au voisinage de V_i, des pixels vérifiant les conditions suivantes :

- pixel détecté à l’étape E2 comme appartenant à l’objet et étiqueté à l’étape E3 comme se trouvant à l’intérieur du contour passant par V_j, soient N_1 pixels,

- pixel détecté à l’étape E2 comme n’appartenant pas à l’objet et étiqueté à l’étape E3 comme se trouvant à l’extérieur du contour passant par V_j, soient N_2 pixels.

La nouvelle position du point de contrôle V_i est celle du pixel V_j pour lequel la somme $(N_1 + N_2)$ est maximale, ce qui revient à minimiser l’opposé de la somme $(N_1 + N_2)$ dans le terme d’« énergie du contour actif ».

Le nombre de pixels $(N_1 + N_2)$ obtenu est normalisé dans l’étape E5 par le nombre total de pixels de la fenêtre de recherche, et multiplié par un...
coefficient pour fournir le terme de discrimination couleur de l'énergie du contour actif $E_{couleur}(i,v)$. Ce coefficient multiplicatif doit être négatif et peut être par exemple fixé à -1.

Le terme $E_{couleur}(i,v)$ ainsi obtenu est ensuite additionné aux autres termes connus de l'énergie associée à un contour actif, après multiplication par un facteur de pondération défini par l'utilisateur, et la convergence du contour est obtenue itérativement en sélectionnant, au voisinage de chaque point de contour, le point candidat qui minimise l'énergie totale. La prise en compte du terme $E_{couleur}(i,v)$ permet d'intégrer dans le processus d'estimation du contour une contrainte de discrimination couleur, qui tend à positionner le contour de manière à assurer une homogénéité d'une part de l'ensemble des couleurs contenues dans l'intérieur du contour, et d'autre part de l'ensemble des couleurs contenues dans un voisinage extérieur du contour.

On présente ci-après deux méthodes possibles de mise en œuvre de l'étape E2 de classification des pixels situés dans la zone comprise entre les contours inscrit et circonscrit.

Un première méthode utilisée dans le mode de réalisation préféré, repose sur la construction de modèles de la distribution de couleurs de l'objet et de son voisinage extérieur. La construction de ces modèles nécessite la définition de deux régions de référence dans l'image, représentées sur la figure 4:

- une première région de référence R_{obj} est définie comme l'intérieur du contour inscrit,
- une deuxième région R_{arp} est définie comme la région comprise entre le contour circonscrit au contour estimé, dénommé par la suite « contour circonscrit intérieur », et un nouveau contour circonscrit au contour intérieur, dénommé « contour circonscrit extérieur ».

En raison des contraintes imposées dans la construction du contour inscrit et du contour circonscrit intérieur, R_{obj} se trouve nécessairement à l'intérieur de l'objet, alors que R_{arp} est située dans un voisinage extérieur à l'objet.
Disposant des régions de référence R_{obj} et R_{arp}, on peut construire un modèle de la distribution de couleur de l'objet et un modèle de la distribution de couleurs de l'arrière-plan au voisinage de l'objet. Une méthode de construction de ces modèles est représentée sur la figure 5, dans l'hypothèse où l'on adopte une modélisation statistique de chacune de ces distributions de couleurs par une somme de lois Gaussiennes ou « mélange de Gaussiennes ».

Suivant cette méthode, en référence à la figure 5, lors d'une première étape S1, on construit la liste des pixels intérieurs à la région de référence considérée, c'est-à-dire R_{obj} pour le calcul du modèle de la distribution de couleurs de l'objet et R_{arp} pour le calcul du modèle de la distribution de couleurs de l'arrière-plan.

Ensuite, on procède, lors d'une étape S2, à la construction de l'histogramme de couleurs de la région. On rappelle brièvement que cette opération, classique en traitement d'image, utilise une loi de quantification de l'espace de représentation de la couleur utilisé, loi que l'on se donne a priori. On peut par exemple adopter une quantification uniforme à N niveaux suivant chacun des 3 axes de couleur, ce qui revient à quantifier chaque composante couleur en N valeurs possibles. L'espace couleur est alors divisé en N^3 zones. On définit l'histogramme de couleur de la région comme un tableau de N^3 cases ou « bins », chaque bin étant associé bijectivement à une zone. La valeur stockée dans un bin de l'histogramme représente le nombre de pixels de la région de l'image traitée dont les composantes couleur sont localisées dans la zone de l'espace couleur associée au bin. La construction de l'histogramme est effectuée en traitant successivement tous les pixels de la région considérée de la façon suivante : les composantes couleur de chaque pixel sont quantifiées, ce qui détermine la zone de l'espace couleur dans laquelle le pixel est localisé ; la valeur du bin associé à cette zone est alors incrémentée d'une unité.

L'histogramme de couleur fournit un premier modèle de la distribution de couleurs de la région, que l'on cherche à simplifier pour obtenir un modèle
paramétrique avec un faible nombre de paramètres. Dans ce but, on effectue à l’étape S3 une détection des régions de l’histogramme à forte densité. Des algorithmes de détection de pics ou « peak-picking », largement répandus en infographie, peuvent être utilisés à cet effet. La sortie de l’étape S3 consiste en une liste de pics de l’histogramme, correspondant à des couleurs dominantes fortement représentées dans la région considérée.

L’étape S4 a pour objet de dériver un modèle statistique paramétrique de l’histogramme de couleur, en utilisant la liste des pics détectés à l’étape S3. On assimile le voisinage de chaque pic à une distribution Gaussienne tri-dimensionnelle dans l’espace de couleur, ce qui revient à modéliser la distribution totale des couleurs par un mélange de Gaussiennes (en anglais « Gaussian Mixture Model » ou « GMM »). Chacune des distributions Gaussiennes constituant le GMM est entièrement déterminée par sa moyenne et sa matrice de covariance ; ces paramètres du modèle sont estimés à partir des valeurs des bins de l’histogramme au voisinage du pic considéré.

On dispose ainsi à la sortie de l’étape S4 d’un modèle paramétrique de la distribution de couleur de la région, sous la forme d’un mélange de Gaussiennes. On peut par conséquent construire, à partir des régions « objet » R_{obj} et « arrière-plan » R_{arp}, un modèle M_{obj} de la distribution de couleur de l’objet et un modèle M_{arp} de la distribution de couleur de l’arrière-plan. La classification binaire d’un pixel correspondant à l’étape E2 du schéma de la figure 2 peut alors être obtenue en calculant les vraisemblances $v_{r_{obj}}$ et $v_{r_{arp}}$ du pixel pour les modèles M_{obj} et M_{arp} respectivement : si $v_{r_{obj}}$ est supérieur à $v_{r_{arp}}$, le pixel sera classifié « objet », dans le cas contraire le pixel sera classifié « non-objet ».

Une deuxième méthode de mise en œuvre de l’étape E2 de classification binaire des pixels comme « objet » ou « non-objet », en référence à la figure 2, consiste à utiliser un algorithme de « Seeded Region Growing » ou « SRG », dont on pourra trouver une description détaillée dans l’article de R. Adams et L. Bischof intitulé « Seeded region growing », paru
dans la revue IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 16 n° 6, juin 1994, pages 641 à 647.

L'algorithme de SRG classe l'ensemble des pixels d'une zone de l'image en faisant croître de petites régions définies à l'origine et dont les classes sont connues. Dans le contexte de cette invention, et conformément au schéma de la figure 6, les régions initiales sont constituées par des petits voisinages de points répartis uniformément sur les périmètres des contours inscrit et circonscrit. Les régions adjacentes au contour inscrit appartiennent à l'objet puisque le contour inscrit est intérieur à l'objet. De la même manière, les régions adjacentes au contour circonscrit appartiennent à l'arrière-plan.

L'algorithme de SRG maintient une liste des pixels non encore classifiés, à l'intérieur de la zone à traiter, qui sont adjacents à une région existante. Dans cette liste, chaque pixel est associé à une distance à sa région adjacente, et les pixels de la liste sont triés en ordre croissant de leur distance. La distance entre un pixel et une région représente un critère d'homogénéité entre la couleur du pixel et la ou les couleurs représentatives de la région. Dans une mise en œuvre très simplifiée, cette distance peut être définie comme la distance euclidienne, dans l'espace de représentation de la couleur, entre la couleur du pixel et la couleur moyenne de la région.

Une itération de l'algorithme consiste à effectuer les opérations suivantes :

- affecter le premier pixel de la liste (dont l'attribut de distance est le plus faible) à la région à laquelle il est adjacent,
- mettre à jour les propriétés de la région (par exemple sa couleur moyenne) en conséquence,
- mettre à jour le voisinage de la région.

Ce processus est appliqué itérativement jusqu'à ce que la liste soit vide, ce qui signifie que tous les pixels de la zone à classifier ont été affectés à une région initiale. La classification des pixels est alors définie par la classification de la région initiale à laquelle il a été affecté : « objet » si cette
région était initialement adjacente au contour inscrit, « non-objet » dans le cas contraire.

L’invention ne se limite pas aux exemples de réalisation donnés ci-dessus.
Revendications

1. Procédé de segmentation d'objets dans une image comprenant les étapes de
 - définition approximative d'un contour extérieur de l'objet à segmenter, ledit contour comprenant une pluralité de points dits de contrôle (V_i),
 - détermination d'un voisinage de points candidats (V_{ij}) au voisinage de chaque point de contrôle (V_i),
 - détermination d'une énergie associée à chaque point candidat (V_{ij}) du voisinage de chaque point de contrôle,
 - convergence de chacun des points de contrôle (V_i) vers le point candidat (V_{ij}) qui minimise ladite énergie fourissant ainsi un contour estimé de l'objet à segmenter,
 caractérisé en ce que l'énergie associée à chaque point candidat (V_{ij}) comprend un terme de discrimination de couleur.

2. Procédé selon la revendication 1 caractérisé en ce qu'il comprend une étape (E1) de calcul automatique d'un contour inscrit au contour estimé et d'un contour circonscrit au contour estimé, de telle sorte que le contour inscrit soit intérieur à l'objet à segmenter et que le contour circonscrit soit extérieur à l'objet à segmenter.

3. Procédé selon la revendication 2 caractérisé en ce qu'il comprend une étape (E2) de classification en deux régions des pixels situés dans l'espace compris entre le contour inscrit et le contour circonscrit, les pixels dont la couleur est plus proche de la distribution des couleurs de l'objet que de la distribution des couleurs du fond au voisinage de l'objet étant étiquetés objet et les autres pixels étant étiquetés fond.

4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce qu'il comprend une étape (E3) d'étiquetage des points candidats (V_{ij}) de chaque point de contrôle (V_i) du contour estimé, l'étiquette identifiant si
chaque point candidat \((V_{ij})\) est intérieur au contour estimé ou extérieur au contour estimé.

5. Procédé selon la revendication 4 caractérisé en ce qu'il comprend une étape \((E4)\) de comptage des pixels pour chaque point candidat \((V_{ij})\) dans le voisinage de chaque point de contrôle \((V_i)\), du nombre de points \(N_1\) et \(N_2\) définis ainsi :
 - \(N_1\) est le nombre de points étiquetés comme intérieur au contour estimé et dont la couleur est étiquetée objet,
 - \(N_2\) est le nombre de points étiquetés comme extérieur au contour estimé et dont la couleur est étiquetée fond.

6. Procédé selon l'une des revendications précédentes caractérisé en ce que l'énergie associée à chaque point candidat \((V_{ij})\) est constituée d'une pondération, outre du terme de discrimination de couleur, d'un terme de gradient \((E_{gradient}(i, V_{ij}))\) attirant le contour approximatif dessiné par l'utilisateur vers les fronts de l'image, d'un terme de tension \((E_{continuite}(i, V_{ij}))\) minimisant la longueur du contour et d'un terme de régularisation \((E_{courbure}(i, V_{ij}))\) de second ordre minimisant les courbures trop prononcées.

7. Procédé selon la revendication 10 caractérisé en ce que la minimisation du terme d'énergie relative au terme de discrimination de couleur consiste à sélectionner pour chaque point de contrôle \((V_i)\) le point candidat \((V_{ij})\) du voisinage dudit point de contrôle \((V_i)\) pour lequel la somme \(N_1 + N_2\) est minimale.

8. Dispositif de segmentation d'objets dans une image comprenant des moyens de
 - définition approximative d'un contour extérieur à l'objet à segmenter, ledit contour comprenant une pluralité de points dits de contrôle \((V_i)\),
 - détermination d'un voisinage de points candidats \((V_{ij})\) au voisinage de chaque point de contrôle \((V_i)\),
- détermination d'une énergie associée à chaque point candidat \((V_{ij})\) du voisinage de chaque point de contrôle ,

- convergence de chacun des points de contrôle \((V_i)\) vers le point candidat \((V_{ij})\) qui minimise ladite énergie fournissant ainsi un contour estimé de l'objet à segmenter,

caractérisé en ce que l'énergie associée à chaque point candidat \((V_{ij})\) comprend un terme de discrimination de couleur.
Fig 1

Frontière de l'Objet

Contour Actif

Fig 6

Région des pixels à classifier
"objet" ou "non-objet"
Fig 2
Fig 5

S1: Identification des Pixels Intérieurs à la Région

S2: Construction de l'Histogramme de Couleur

S3: Détectio des Pics

S4: Modèle de Mélange de Gaussiennes 3D pour la Distribution de Couleur de la Région

S4: Identification d'un modèle Gaussien 3D Diagonal

Liste des Pixels de la Région

Histogramme de Couleur pour la Région

Liste des Couleurs Dominantes

Autour de chaque Pic
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 901 240 A (LUO ET AL) 4 mai 1999 (1999-05-04) * colonne 6, ligne 12 - colonne 9, ligne 28 *</td>
<td>1,8</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES

RECHERCHES (Int.CL.7)

G06T

Date d'achèvement de la recherche

21 juillet 2005

Examinateur

Tibaux, M

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5901240 A</td>
<td>04-05-1999</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82