
(19) United States 
US 20060098662A1 

(12) Patent Application Publication (10) Pub. No.: US 2006/0098662 A1 
Gupta et al. (43) Pub. Date: May 11, 2006 

(54) MEMORY AND PROCESSOR EFFICIENT 
NETWORK COMMUNICATIONS 
PROTOCOL 

(76) Inventors: Sunil Gupta, Weston, FL (US); Tanner 
Robert Andrews, DeLand, FL (US); 
David Michael Cole, Pembroke Pines, 
FL (US); Sekar Udayamurthy, Plano, 
TX (US); Corey Brady, Charlottesville, 
VA (US); Patrick Michael Milheron, 
Allen, TX (US) 

Correspondence Address: 
TEXAS INSTRUMENTS INCORPORATED 
PO BOX 655474, M/S 3999 
DALLAS, TX 75265 

(21) Appl. No.: 10/984,139 

(22) Filed: Nov. 9, 2004 

807 

SERVER 

Publication Classification 

(51) Int. Cl. 
H04L I/00 (2006.01) 

(52) U.S. Cl. ............................................ 370/401; 370/394 
(57) ABSTRACT 
System and method for a full featured network communi 
cations protocol that is both memory and processor efficient. 
A preferred embodiment comprises a method for transmit 
ting information between electronic devices, the method 
comprising creating a connection between a pair of elec 
tronic devices, sending a packet between the pair, acknowl 
edging a receipt of the packet by a receiver of the packet, and 
dissolving the connection when it is no longer needed. The 
creating of the connection comprises assigning a port num 
ber to the connection at an initiating electronic device and 
then transmitting a connection request containing the port 
number to a servicing electronic device. After the transmit 
ting, the creating further comprises receiving a second port 
number to the connection from the servicing electronic 
device. 

805 

CLENT TRANSMTS PACKET TO SERVER fi'. 

812: 810 

w - cuer Resuspect to seen a 

ai 
ano, SERVERTRANSMTS ACK TOCUENT 
ss a {822 

a SERVERTRANSMTSNAKTO CLIENT 
was 826 

2. 
a SERVERTRANSMIS NAKTO CLIENT . 

  

    

    

  



Patent Application Publication May 11, 2006 Sheet 1 of 7 US 2006/0098662 A1 

TRANSPORT 
LAYER 

NETWORK 
LAYER 

  



US 2006/0098662 A1 Patent Application Publication May 11, 2006 Sheet 2 of 7 

ng '81-I 

  

  



Patent Application Publication May 11, 2006 Sheet 3 of 7 US 2006/0098662 A1 

400 N 

Fig. 4 

  



US 2006/0098662 A1 

|NEWBHON| 

May 11, 2006 Sheet 4 of 7 Patent Application Publication 

  

  

  



US 2006/0098662 A1 

01/ 

Patent Application Publication May 11, 2006 Sheet 5 of 7 

  

  

  

  

  



Patent Application Publication May 11, 2006 Sheet 6 of 7 US 2006/0098662 A1 

807 

SERVER 

805 

812: 810 
w8 {814 

cars 

ano, SERVERTRANSMISACK TO CLIENT Y 
CLENT TRANSMTS PACKET TO SERVER 822 

(824. SERVER TRANSMTS NAKTO CLJENT 

was {826 

a SERVERTRANSMISNAKTO CLIENT . 

Fig. 8 

900 N 

905 910 915 920 925 930 935 940 

MAGIC SOURCE | DEST PAYLOAD PAYLOAD HOP SEQUENCE HEADER 
NUMBER ADDR ADDR ERROR CHECK SIZE COUNT NUMBER CHECKSUM 

Fig. 9 

  

  

  

  



Patent Application Publication May 11, 2006 Sheet 7 of 7 US 2006/0098662 A1 

1001 
CLENT HOST 1002 

APPLICATION SERVICES 

1003-N 
1005: REQUEST REP -1004 

i009, REQUEST OWNERSHIP 
Actrictly 101. 

• "wss 1013: MODIFY PARAMETER : 

•rses. 

UPDATE REP 

SEND REP 

Fig. 10a | 

1031 1032 1051 1052 
HOST CLENT CUENT HOST 

APPLICATION APPLICATION APPLICATION APPLICATION 

452. CHAL LENGE is SUBMTDATA 

RESPONSE iO37. 

Fig. 10b Fig. 10c 

  

  



US 2006/0098662 A1 

MEMORY AND PROCESSOR EFFICIENT 
NETWORK COMMUNICATIONS PROTOCOL 

TECHNICAL FIELD 

0001. The present invention relates generally to a system 
and method for digital communications, and more particu 
larly to a system and method for a full featured network 
communications protocol that is both memory and processor 
efficient. 

BACKGROUND 

0002 There are a large number of network communica 
tions protocols that can be used to provide a way for 
electronic devices, such as computers, personal digital assis 
tants, electronic calculators, telemetry devices, and so forth, 
to exchange information and data. The capabilities of the 
available network communications protocols can vary 
widely, ranging from simple and Small to large and complex. 
0003. The simple and small network communications 
protocols typically trade-off a rich feature set and fault 
tolerance for the ability to operate on electronic devices with 
limited processing capability and memory capacity. Further 
more, the simple and Small network communications pro 
tocols usually offer good performance due to Smaller over 
head. The large and complex network communications 
protocols usually require electronic devices with some mini 
mum level of processing capacity and memory. However, in 
return, the large and complex network communications 
protocols will usually provide a wide variety of message 
routing options and the ability to tolerate certain types of 
faults. 

0004 While the large and complex network communi 
cations protocols offer a rich feature set, along with fault 
tolerance, their computation and memory requirements may 
preclude their use in applications wherein the electronic 
devices do not meet the requirements. However, there are 
situations wherein these electronic devices require the abil 
ity to route messages in several different ways as well as the 
ability to tolerate certain types of faults. 
0005 One approach that can be used to meet the com 
munications requirement of the electronic devices would be 
to add additional capability to an existing network commu 
nications protocol, wherein the existing network communi 
cations protocol provided some but not all of the needed 
functionality and had computation and memory require 
ments that could be met by the electronic devices. This 
approach can have the advantage of making use of an 
existing and well-tested network communications protocol 
that may have a large set of development tools. 
0006. One disadvantage of the prior art is even if the 
existing network communications protocol has computation 
and memory requirements that can be met by the electronic 
devices, there may not be any assurance that the electronic 
devices will be able to meet the computation and memory 
requirements of the modified network communications pro 
tocol. 

0007. A second disadvantage of the prior art is that if too 
many modifications are made to the existing network com 
munications protocol, the amount of development may be 
similar to the development required to create a network 
communications protocol from scratch and will not adhere 

May 11, 2006 

to the standards set by the protocol. Hence tools that are built 
for that protocol may no longer work. 

SUMMARY OF THE INVENTION 

0008. These and other problems are generally solved or 
circumvented, and technical advantages are generally 
achieved, by preferred embodiments of the present invention 
which provides for a memory and processor efficient net 
work communications protocol. 
0009. In accordance with a preferred embodiment of the 
present invention, a method for communicating between 
electronic devices in a communications network is provided. 
The method comprises creating a connection between a first 
electronic device and a second electronic device, wherein 
the creating comprises, assigning a first port number to the 
connection at the first electronic device, transmitting a 
connection request to the second electronic device, and 
receiving a second port number to the connection from the 
second electronic device. The method further comprises 
sending a packet between the first electronic device and the 
second electronic device, wherein the packet contains at 
least a portion of the communications being transmitted, 
wherein the packet can originate at either the first electronic 
device or the second electronic device, acknowledging a 
receipt of the packet by a receiver of the packet, and 
dissolving the connection. 
0010. In accordance with another preferred embodiment 
of the present invention, a header for a transmission packet 
is provided. The header comprises an identifier field com 
prising data to distinguish traffic type, a source address field 
following the identifier field, the source address field com 
prising an address of a source device and a source port of the 
header, a destination address field following the source 
address field, the destination address field comprising an 
address of a destination device and a destination port of the 
header, a payload error check code field following the 
destination address field, the payload error check code field 
comprising an error check for a data payload contained in 
the transmission packet, a payload size field following the 
payload error check code field, the payload size field com 
prising a size indicator of the data payload, a hop count field 
following the payload size field, the hop count field com 
prising a count of a maximum number of routes the trans 
mission packet can traverse, a sequencing field following the 
hop count field, the sequencing field comprising a value used 
to order the transmission packet and a header error check 
code field following the sequencing field, the header error 
check code field comprising an error check for the header. 
0011. An advantage of a preferred embodiment of the 
present invention is that it has been designed to provide a 
wide range of routing functionality with a degree of fault 
tolerance with Small processor and memory requirements. 
0012. A further advantage of a preferred embodiment of 
the present invention is that since it has been designed with 
specific requirements in mind, it has minimal overhead, just 
Sufficient to meet the requirements. 
0013 Yet another advantage of a preferred embodiment 
of the present invention is that with Small processor and 
memory requirements, the present invention can be used in 
a wide range of applications with a variety of electronic 
devices. 



US 2006/0098662 A1 

0014. The foregoing has outlined rather broadly the fea 
tures and technical advantages of the present invention in 
order that the detailed description of the invention that 
follows may be better understood. Additional features and 
advantages of the invention will be described hereinafter 
which form the subject of the claims of the invention. It 
should be appreciated by those skilled in the art that the 
conception and specific embodiments disclosed may be 
readily utilized as a basis for modifying or designing other 
structures or processes for carrying out the same purposes of 
the present invention. It should also be realized by those 
skilled in the art that such equivalent constructions do not 
depart from the spirit and scope of the invention as set forth 
in the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.015 For a more complete understanding of the present 
invention, and the advantages thereof, reference is now 
made to the following descriptions taken in conjunction with 
the accompanying drawings, in which: 
0016 FIGS. 1a through 1c are diagrams of several 
computational network configurations of a point-to-point 
network; 
0017 FIG. 2 is a diagram of detailed view of a compu 
tational network containing a host device and an electronic 
device; 
0018 FIGS. 3a and 3b are diagrams of sequences of 
events in transmitting information and creating a connection 
between electronic devices, according to a preferred 
embodiment of the present invention: 
0.019 FIG. 4 is a diagram of a computational network 
with a plurality of exemplary connections, according to a 
preferred embodiment of the present invention; 
0020 FIG. 5 is a diagram of a start-up sequence of events 
when an electronic device initially connects to a network, 
according to a preferred embodiment of the present inven 
tion; 
0021 FIGS. 6a and 6b are diagrams of sequences of 
events for detecting and handling out-of-order packets, 
according to a preferred embodiment of the present inven 
tion; 
0022 FIGS. 7a and 7b are diagrams of sequences of 
events for generating and processing ACK and NAK pack 
ets, according to a preferred embodiment of the present 
invention; 
0023 FIG. 8 is a diagram of an exemplary series of 
transmissions between a client device and a server device, 
according to a preferred embodiment of the present inven 
tion; 
0024 FIG. 9 is a diagram of a header for a transmission 
packet, according to a preferred embodiment of the present 
invention; and 
0.025 FIGS. 10a through 10c are diagrams of packet 
interchanges between devices on a network, according to a 
preferred embodiment of the present invention. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

0026. The making and using of the presently preferred 
embodiments are discussed in detail below. It should be 

May 11, 2006 

appreciated, however, that the present invention provides 
many applicable inventive concepts that can be embodied in 
a wide variety of specific contexts. The specific embodi 
ments discussed are merely illustrative of specific ways to 
make and use the invention, and do not limit the scope of the 
invention. 

0027. The present invention will be described with 
respect to preferred embodiments in a specific context, 
namely a point-to-point network comprising a host and a 
plurality of client devices, wherein the client devices may 
have limited computational capability and memory. The 
invention may also be applied, however, to other networks, 
including broadcast and shared medium, wherein a proces 
sor and memory efficient network communications protocol 
that is capable of a degree of fault tolerance is desired. 
0028. With reference now to FIGS. 1a through 1c, there 
are shown diagrams illustrating several different computa 
tional network configurations of a point-to-point network. 
FIG. 1a illustrates a computational network 100 wherein a 
host device 105 is connected to an electronic device 110 via 
a network connection 112. Being a point-to-point network, 
the network connection 112 connects a pair of devices (in 
this case, the host device 105 and the electronic device 110). 
0029 Note the term computational network is used 
herein to describe a plurality of electronic devices (the host 
device 105 and the electronic device 110) that are connected 
to each other via a network (the network connection 112). 
While the term communications network is typically used to 
describe the collection of communications devices and 
transmission medium upon which data and information is 
transferred between the plurality of electronic devices, the 
use of the term computational network should not be con 
Strued as limiting the electronic devices to being computers. 
In fact, examples of electronic devices that can be used in a 
computational network may include, but are not limited to: 
computers and peripherals, personal digital assistants, cal 
culators, data storage devices, multimedia Sources (such as 
Video cameras and multimedia-on-demand services), multi 
media sinks (such as video and audio display devices), 
telemetry equipment, environmental sensors, and so forth. 
0030) A point-to-point network can also be used to permit 
the connection of multiple devices to a single device. FIG. 
1b illustrates a computational network 120 wherein a point 
to-point network connects the host device 105 to a plurality 
of electronic devices (such as the electronic device 110). 
Since the network is a point-to-point network, a network 
connection 122 between the host device 105 and the elec 
tronic device 110 couples only those two devices and 
additional network connections are needed to connect the 
host device 105 to the remaining electronic devices. 
0031 FIG. 1c illustrates a computational network 140 
wherein a hub 145 is used to connect the host device 105 to 
a plurality of electronic devices (such as the electronic 
device 110). The hub 145 permits the sharing of a single 
network connection 147 between the plurality of electronic 
devices. The hub 145 is then connected to the electronic 
devices (such as the electronic device 110) via a network 
connection 149. The use of the hub 145 can permit the host 
device 105 connect to a plurality of electronic devices 
without having to have multiple network connections. For 
example, if the host device 105 has only one network 
connection, without the use of the hub 145, the host device 



US 2006/0098662 A1 

105 may only be able to connect to a single electronic 
device. However, through the use of the hub 145, the host 
device 105 can connect to multiple electronic devices. 
0032. With reference now to FIG. 2, there is shown a 
diagram illustrating a computational network 200 containing 
the host device 105 and the electronic device 110, wherein 
a detailed view is provided of the host device 105 and the 
electronic device 110. The host device 105 and the electronic 
device 110 can couple to a network 205 via a network 
interface 210. The network interface 210 can be logically 
partitioned into a series of layers, with a seven-layer OSI 
(Open Systems Interconnection) model being a commonly 
used representation. The network interface 210, shown in 
FIG. 2, is partitioned into two layers, a transport layer 215 
and a network layer 220, with the remaining five layers of 
the seven-layer OSI model not being shown. The transport 
layer 215 accepts information from higher level layers and 
performs any necessary coding and partitioning of the 
information in preparation for transmission. The network 
layer 220 can be used to control the operation of the network 
205 and how the information (typically in the form of 
packets) is moved through the network 205. 
0033. Depending upon the functionality of the electronic 
devices coupled to a computational network and set of 
desired properties for the computational network, it can be 
possible to determine a Suitable network communications 
protocol, e.g., specify the network layer 220. For the present 
invention, the network communications protocol should 
have the following properties: 1) devices can discover (be 
assigned) protocol addresses, 2) devices need protocol 
addresses, 3) devices resolve protocol addresses to reach 
peers, 4) broadcast capable, 5) affirmative congestion con 
trol. 6) connection (stream) oriented, 7) connectionless 
(datagram) oriented, 8) end-to-end delivery, not just single 
segment, 9) can return errors to sender, e.g. oversize packet, 
10) forward error correcting, 11) can fragment and re 
assemble packets, 12) easy layered implementation, 13) 
independent of specific hardware, 14) protocol is light 
weight (low number of overhead bytes), 15) header satisfies 
Some condition, so it is easy to recognize packets, 16) 
multicast capable, 17) can re-order out-of-order packets, 18) 
capable of operating over peer-to-peer link, 19) quality of 
service may be specified or adjusted, 20) re-transmit, 21) can 
be forwarded by routers, 22) packet sequence numbering, 
23) handles multiple apps simultaneously, 24) handles 
shared media, 25) limits on payload sizes, 26) can Subnet, 
27) unicast, and 28) outstanding packets permitted. 
0034. With the specification of the desired properties of 
the network communications protocol, it may be possible to 
determine if an existing network communications protocol 
possesses the specified properties. For example, one existing 
network communications protocol commonly referred to as 
“NULL, which performs as a pass-through from layer five 
to layer two of the seven-layer OSI model, supports only 
Some of the desired properties, such as properties: 7) con 
nectionless (datagram) oriented, 8) end-to-end delivery, not 
just single-segment, 12) easy layered implementation, and 
so forth. Clearly, the NULL protocol is not a suitable 
candidate. Another existing network communications pro 
tocol commonly referred to as “IPv4 (Internet Protocol 
version 4. Supports a majority of the desired properties, 
with notable exceptions including property 14) protocol is 
light-weight (low number of overhead bytes). However, to 

May 11, 2006 

provide Substantially complete Support for the desired prop 
erties, additional protocols may need to be layered over 
IPv4. For example, to ensure reliable packet delivery, trans 
mission control protocol (TCP) needs to be layered over 
IPv4, while the user datagram protocol (UDP) is needed to 
provide “best effort datagram transmission. The addition of 
these protocols (and others) can significantly increase the 
memory footprint (the amount of memory required to 
execute the network communications protocol), the process 
ing requirements (the computational power required to Sup 
port the network communications protocol), and the overall 
overhead of the network communications protocol. These 
factors can help to preclude the use of IPv4 (and other 
network communications protocols) in electronic devices 
with limited capability or resources. 

0035) Since an existing network communications proto 
col that efficiently meets the desired properties without 
requiring electronic devices with a significant memory foot 
print and processing power is not readily available, a custom 
designed network communications protocol is needed. The 
use of a custom design techniques permit the creation of a 
network communications protocol that is exactly tailored to 
meet the desired properties without the presence of 
unwanted properties (features), the presence of which can 
lead to an inefficient protocol. Furthermore, a custom 
designed network communications protocol may not require 
the addition of extra protocols that would unnecessarily 
increase memory footprint and processor power require 
ments. Additionally, the addition of extra protocols increases 
the overall network communications protocol overhead, 
resulting in a decrease in performance. 

0036) A description of a network communications pro 
tocol can be achieved by a discussion of its behavior (in 
terms of establishing communications between electronic 
devices, management of packets, response to errors, and so 
forth) and the structure of its header. A detailed discussion 
of the behavior of a preferred embodiment of the present 
invention and the header used is presented below. 

0037. With reference now to FIG. 3a, there is shown a 
diagram illustrating a sequence of events 300 in transmitting 
information between electronic devices, according to a pre 
ferred embodiment of the present invention. To transmit 
information between electronic devices, be it using a point 
to-point connection, a shared medium connection, or So 
forth, a sequence of operations may need to be performed. 
Prior to transmitting information, a connection between the 
transmitting electronic devices needs to be created (block 
305). A detailed discussion of the creation of a connection 
between a pair of electronic devices is provided below. After 
the connection between the electronic devices is made, then 
the information can be transmitted between the electronic 
devices (block 310). The way in which the information is 
transmitted can be dependent upon the nature of the con 
nection, for example, if the connection is a full-duplex 
connection, then the electronic devices can exchange infor 
mation simultaneously, while if the connection is a half 
duplex connection, then the electronic devices may have to 
wait for access to the connection. 

0038. In order to provide a measure of robustness to the 
communications, acknowledgments can be transmitted back 
to an originator of a transmission once the transmission has 
been received (block 315). An acknowledgement can be 



US 2006/0098662 A1 

used to indicate that the transmission was successfully 
received or that it was unsuccessfully received. A detailed 
discussion concerning the generation and processing of 
acknowledgments is provided below. Once the electronic 
devices have completed their transmissions, the connection 
may be dissolved (block 320). The elimination of a connec 
tion after it is no longer needed can be helpful in the reuse 
of important resources that may be in short Supply. 

0039. With reference now to FIG. 3b, there is shown a 
diagram illustrating a sequence of events 305 in creating a 
connection between two electronic devices, according to a 
preferred embodiment of the present invention. The 
sequence of events can be descriptive of operations taking 
place in the creating of a connection block (block 305) 
discussed in FIG. 3a. A connection can be a virtual com 
munications link between a pair of electronic devices over a 
physical link that can be used to carry packets (data, control, 
and combinations thereof) between the pair of electronic 
devices. A connection can be uniquely defined by address 
and port number of the pair of electronic devices. Note that 
the sole use of the addresses of the pair of electronic devices 
is not sufficient to define a connection since it is possible to 
Support multiple applications (each with its own connec 
tions) on a single physical link. 

0040. The creation of a connection can be initiated when 
an electronic device that wants to create the connection 
(referred to as a client) assigns a port number to the 
connection (block 340). After the client assigns a port 
number to the connection, the client can transmit a connec 
tion request message to an electronic device to which it 
wants to communicate (referred to as a server) (block 345). 
According to a preferred embodiment of the present inven 
tion, the connection request message can contain informa 
tion such as the address of the client, the port number 
assigned to the connection, and the address of the server. 
When the server receives the connection request message, 
the server can assign a port to the connection (block 350) 
and then returns information regarding the connection to the 
client (block 355). The information returned to the client can 
include the number of the port assigned to the connection by 
the server. Note that in order for the server to accept 
connections to a port, the server must already be listening for 
transmissions addressed to the port. 

0041. The use of client and server port numbers as well 
as addresses can enable a wide variety of connections. For 
example, it can be possible for a single server to maintain 
multiple connections to many clients on a single port. Also, 
it can be possible for a client to maintain multiple connec 
tions to a single port on a single server as well as connections 
to a single port number of multiple servers. 

0042. With reference now to FIG. 4, there is shown a 
diagram illustrating a computational network 400 with a 
plurality of exemplary connections, according to a preferred 
embodiment of the present invention. The computational 
network 400, as shown in FIG. 4, includes four electronic 
devices: a first client “Client 1405, a second client “Client 
2410, a first server “Server 1415, and a second server 
“Server 2420. As discussed previously, each of the elec 
tronic devices (such as the first client 405) may have a 
plurality of ports (the first client 405 is shown to have N 
ports: port 1406, port 2407, and port N 408). Note that while 

May 11, 2006 

each electronic device is shown in FIG. 4 as having N ports, 
the number of ports available on an electronic device can 
vary for different devices. 
0043 FIG. 4 displays a plurality of exemplary connec 
tions that can be supported by a preferred embodiment of the 
present invention. A first connection 425 is a connection 
from port 1406 of the first client 405 to port 1 of the first 
server 415. A second connection 430 is a plurality of 
connections from port 2407 of the first client 405 to port 2 
of the first server 415. One possible use of the second 
connection 430 can be a situation wherein multiple appli 
cations are executing on the first client 405 and each of the 
applications has a need to communicate with the first server 
415. Note that it may not be necessary for the connections 
from the various applications executing on the first client 
405 to use the same port nor is it necessary for the connec 
tions from the various applications to communicate via the 
same port on the first server 415. 
0044) A third connection 435 is comprised of two con 
nections, a connection 437 from port N 408 of the first client 
405 to port 3 of the first server 415 and a connection 439 
from port N 408 of the first client 405 to port 3 of the second 
server 420. An example of a possible use of Such a connec 
tion could be a situation wherein an application executing on 
the first client 405 can be serving streaming video and/or 
audio to the first server 415 and the second server 420. A 
fourth connection 440 is a connection from port 1 of the 
second client 410 to port 1 of the first server 415. In 
combination with the first connection 425, the connections 
illustrate multiple connections from different client devices 
(with the same port number) to a single port on a server. 
Such a connection can be used by a server to serve infor 
mation to the different client devices. 

0045. With reference now to FIG. 5, there is shown a 
flow diagram illustrating a start-up sequence of events 500 
occurring when an electronic device is initially connected to 
a network, according to a preferred embodiment of the 
present invention. When a device is initially connected to a 
network, the device is expected to send a packet to a host 
service (executing on a host device) seeking a protocol 
address (block 505). The host service can then respond to the 
packet, providing the device with its protocol address (block 
510). After the device receives its protocol address from the 
host service, the device can reset its sequence number (used 
to enable packet reordering) prior to transmitting any addi 
tional packets (block 515). The sequence number is prefer 
ably reset to a value of one. 
0046 According to a preferred embodiment of the 
present invention, in-order packet delivery is Supported. If 
packets are received out-of-order, then a mechanism is 
provided to detect the out-of-order receipt of the packets and 
to reorder the packets. One method that can be used to 
Support in-order packet delivery and packet reordering is the 
use of packet numbering. Individually numbering packets 
can permit the detection of an out-of-order packet as well as 
the reordering of received packets. It can be possible to 
number packets based upon individual pairs of applications 
sharing packets. However, since multiple applications on a 
pair of devices can have individual connections, the use of 
packet numbering for individual pairs of applications can 
consume a considerable amount of memory. 
0047. With reference now to FIGS. 6a and 6b, there is 
shown a diagram illustrating a sequence of events 600 for 



US 2006/0098662 A1 

detecting an out-of-order packet and an alternate way to 
handle out-of-order packets, according to a preferred 
embodiment of the present invention. Instead of maintaining 
packet numbers based on individual pairs of applications, 
packet numbering can be performed on pairs of communi 
cating devices. The packet numbers can be referred to as 
sequence numbers or sequencing numbers. Since a pair of 
communicating devices can have multiple pairs of commu 
nicating applications, a reduction in memory usage needed 
to maintain packet numbers can be achieved. The sequence 
of events 600 can be used to process received packets and to 
notify a sender of the receipt of an out-of-order packet. 
0.048. The sequence of events 600 can begin with a 
receiver device receiving a packet from a sender device 
(block 605). Note that since both ends of a communicating 
devices pair can send packets as well as receive packets, 
each device should have the ability to process received 
packets and to determine if an out-of-order packet has been 
received. After receiving the packet, the receiver device can 
check to determine if the packet has a correct sequence 
number (block 610). This can be performed simply by 
comparing the sequence number of the packet with a 
sequence number stored in memory that corresponds to a 
sequence number of a last packet received from the sender 
device. If the packet has the correct sequence number, then 
the sequence number stored in memory can be incremented 
(block 615), the contents of the packet can be processed 
(block 620), and the sequence of events 600 can end. 
0049. If however, the sequence number of the packet is 
not correct, then the receiver device can return a negative 
acknowledgment packet (NAK) to the sender device to 
inform the sender device of the out-of-order packet (block 
625) and the sequence of events 600 can terminate. A more 
elaborate packet processing system is shown in FIG. 6b and 
can be implemented to improve packet reception perfor 
mance, albeit at the expense of additional memory, through 
the use of a buffer to store the packet with the incorrect 
sequence number. After determining that the sequence num 
ber of the packet is not correct (block 610 (FIG. 6a)), the 
receiver device can check to see if there is sufficient space 
in a buffer to store the out-of-order packet (block 650). If 
there is sufficient space, then the receiver device can insert 
the packet in the buffer (block 655). If there is insufficient 
space, then the receiver device can return a NAK to the 
sender device (block 660). 
0050. By buffering the packet, the receiver device can 
wait for additional packet(s) to arrive and if the additional 
packet(s) has the correct sequencing number, then the pack 
ets can be reordered at the receiver. In this case, the sender 
device does not need to be informed of the out-of-order 
packet. For example, if the correct sequence number is six 
(6) but the packet received has a sequence number of seven 
(7), the packet can be buffered. Additional packets can be 
buffered and until the buffer fills, the receiver device can 
continue to receive packets. If a packet with sequence 
number six (6) is received prior to the buffer overflowing, 
then the received packets can be processed (as long as the 
sequence numbers of the received packets continue to be 
correct). For example, if after the packet with the sequence 
number seven (7) was received, packets with sequence 
numbers eight (8), nine (9), ten (10), and six (6) was 
received, then the entire buffer (containing packets with 
sequence numbers six, seven, eight, nine, and ten) can be 

May 11, 2006 

cleared since the buffered packets can be reordered into a 
properly ordered sequence of packets. 
0051 When a packet is received (or not received) and if 
the packet is received in proper condition or if the packet 
contains an error, a receiver of the packet can transmit back 
to a sender of the packet an acknowledgment (ACK) or a 
negative acknowledgment (NAK) packet. An ACK packet 
can be used to indicate the receipt of a packet that does not 
contain errors while a NAK packet can be used to indicate 
the receipt of a packet that has errors or the non-receipt of 
a packet. 

0.052 With reference now to FIGS. 7a and 7b, there are 
shown flow diagrams illustrating algorithms for the genera 
tion of ACK and NAK packets at a receiver (algorithm 700 
(FIG. 7a)) and processing of ACK and NAK packets at a 
transmitter (algorithm 750 (FIG. 7b)), according to a pre 
ferred embodiment of the present invention. 
0053. The diagram shown in FIG. 7a illustrates an algo 
rithm 700 that can be used to generate ACK and NAK 
packets for packets received at a receiver. After a packet is 
received at the receiver (block 705), then the receiver can 
check to determine if the packet has been damaged (block 
710). If the packet has not been damaged, the receiver can 
return an ACK packet to the transmitter of the packet (block 
715). However, if the packet has been damaged, the receiver 
can return a NAK packet to the transmitter of the packet 
(block 720). 
0054 If the packet has not been damaged and the ACK 
packet has been returned (block 715), then the packet can 
then be processed by the receiver (block 725). Examples of 
processing can be determining if the packet is a control 
packet (such as an ACK or NAK packet), determining the 
sequencing number of the packet, determining if the packet 
is in order, and so forth. If the packet is not a control packet 
and if it is not in order, e.g., the sequencing number of the 
packet is different from the sequencing number associated 
with the transmitter-receiver pair, then the packet can be 
buffered for subsequent reordering. Before the packet can be 
buffered, a check must be made to determine if there is space 
in the buffer (block 730). If the buffer is not full, then the 
packet can be buffered (block 735) and the algorithm 700 
can terminate until another packet is received. If the buffer 
is full, then the packet cannot be buffered. The receiver can 
return a NAK to indicate that a packet with a correct 
sequencing number has not been received (block 740). 
Additionally, the receiver can flush the buffer of any packets 
associated with the same transmitter-receiver pair with 
sequence numbers higher than the correct sequencing num 
ber. After returning the NAK packet, the algorithm 700 can 
terminate until another packet is received. As an alternative 
to waiting for a buffer overflow, a NAK packet can be 
generated if the receiver has spent a specified amount of time 
waiting for the arrival of a packet from the transmitter with 
a specific sequencing number. In yet another alternative, a 
NAK packet can be generated if either the buffer overflows 
or the specified amount of time has elapsed. 
0055. The diagram shown in FIG. 7b illustrates an algo 
rithm 750 that can be used to process ACK and NAK packets 
at a transmitter. According to a preferred embodiment of the 
present invention, after a packet is received by the trans 
mitter and after it has been checked for errors, the packet can 
be processed to determine if it is a control packet (for 



US 2006/0098662 A1 

example, an ACK or NAK packet). If the transmitter has 
received either an ACK or a NAK packet (block 755), then 
the transmitter can begin processing the ACK/NAK packet. 
0056. The transmitter can begin processing by determin 
ing if the packet is an ACK packet (block 760), if the packet 
is an ACK packet, then a sequencing number can be 
retrieved from the ACK packet and the ACK can be an 
acknowledgment of a Successful receipt of a packet with the 
same sequencing number as well as any packets with Smaller 
sequencing numbers with outstanding ACK packets (block 
765). For example, if the transmitter has transmitted packets 
with sequencing numbers four (4), five (5), six (6), and 
seven (7) and it receives an ACK packet with sequencing 
number six (6), then the ACK packet with the sequencing 
number six (6) will not only function as an ACK packet for 
the packet with the sequencing number six (6) but it will also 
function as an ACK packet for packets with the sequencing 
numbers four (4) and five (5). Note that the packet with the 
sequencing number seven (7) will have to wait for its own 
ACK packet (or an ACK packet for a packet with a greater 
sequencing number). 
0057) If the packet is a NAK packet (block 760), then the 
sequencing number retrieved from the NAK packet can 
inform the transmitter that a packet with the same sequenc 
ing number either arrived at the receiver in a damaged 
condition or did not arrive at the transmitter at all. Therefore, 
the transmitter will need to retransmit the packet with the 
same sequencing number as the NAK packet (block 770). 
Furthermore, if the transmitter has transmitted packets with 
sequencing numbers that are greater than the sequencing 
number of the NAK packet, then the transmitter may have 
to retransmit those packets as well. After the transmitter has 
retransmitted the packet(s) or scheduled to retransmit the 
packet(s), then the algorithm 750 can terminate until the 
transmitter receives another ACK/NAK packet. 
0.058 With reference now to FIG. 8, there is shown a 
diagram illustrating an exemplary series of packet transmis 
sions between a client device 805 and a server device 807, 
according to a preferred embodiment of the present inven 
tion. An initial transmission (shown as oval 810) of a packet 
from the client device 805 to the server device 807 arrives 
successfully at the server device 807. As a result, the server 
device 807 transmits (shown as oval 812) an ACK packet 
back to the client device 805. The client device 805 then 
transmits three packets (shown as ovals 814, 816, and 818) 
to the server device 807. A possible reason for the client 
device 805 transmitting packets prior to receipt of an ACK 
packet may be perhaps that the client device 805 transmits 
the second and the third packets before the first packet 
arrives at the server device 807. 

0059. With three consecutive packets arriving from the 
client device 805, the server device 807 can either transmit 
three ACK packets, one for each of the arriving packets, or 
the server device 807 can transmit a single ACK packet 
(shown as oval 820) that has a sequence number that is the 
same as that of the last of the three consecutive packets. The 
use of the single ACK packet in place of the three ACK 
packets can help to reduce the control packet traffic and 
therefore reduce overhead in the network. 

0060. In a next transmission (shown as oval 822) the 
client device 805 transmits a packet to the server device 807. 
However, the packet arrives at the server device 807 with an 

May 11, 2006 

error. As a result, the server device 807 transmits a NAK 
packet back to the client device 805 (shown as oval 824). 
When the client device 805 receives and decodes the NAK 
packet from the server device 807, the client device 805 
retransmits the packet to the server device 807 (shown as 
oval 826). Before the client device 805 receives either an 
ACK or a NAK packet for the packet that it retransmitted, 
the client device 805 transmits another packet to the server 
device 807 (shown as oval 828). Once again, the packet 
arrives at the server device 807 with an error, so the server 
device 807 returns a NAK packet to the client device 805 
(shown as oval 830). After sending the NAK packet, the 
server device 807 receives an earlier packet retransmitted by 
the client device 805 (shown as oval 826) and returns an 
ACK packet to the client device 805 (shown as oval 832). 
0061 According to a preferred embodiment of the 
present invention, each packet transmitted in the network, be 
it a control packet or a packet containing data or informa 
tion, contains a header. The header contains information 
Such as a source of the packet, a destination of the packet, 
error check information, the packet's sequence number, 
routing performance information, and so forth. 

0062). With reference now to FIG. 9, there is shown a 
diagram illustrating an exemplary packet 900, according to 
a preferred embodiment of the present invention. The header 
900 comprises a plurality of fields, each serving a specific 
purpose in helping a packet containing the header 900 arrive 
at its intended destination. A first field 905, referred to as a 
magic number field, can be used to contain an indicator to 
differentiate different types of packet traffic on the network. 
For example, if the first field 905 contains a specified value, 
then the packet containing the header 900 is of a certain type 
of traffic. The first field 905 can be used to help readily 
distinguish between packets of different types and simplify 
the detection. Preferably, the first field 905 is two bytes in 
size. A second field 910, referred to as a source address field, 
can be used to contain a protocol address of a source device 
of the packet. According to a preferred embodiment of the 
present invention, the second field 910 can also contain a 
port address corresponding to a source port of the packet. 
Preferably, the second field 910 is four bytes in size. 

0063 A third field 915, referred to as a destination 
address field, can be used to contain a protocol address of a 
destination device of the packet. Again, the third field 915 
can also contain a port address corresponding to a destina 
tion port of the packet. Preferably, the third field 915 is four 
bytes in size. A fourth field 920, referred to as a payload error 
check field, can contain an error check code (preferably a 
cyclic redundancy code error check) for data being carried 
in the packet. Note that if the packet is not containing data, 
then the fourth field 920 can be left blank. Preferably, the 
fourth field 920 is two bytes in size. A fifth field 925, referred 
to as a payload size field, can be used to indicate a size of 
the data payload being carried by the packet. Preferably, the 
fifth field 925 is one byte in size. A sixth field 930, referred 
to as a hop count field, can be used to indicate a maximum 
number of hops the packet may traverse, wherein a hop can 
be defined as the traversal of a single network link. Prefer 
ably, the sixth field 930 is one byte in size. 

0064.) A seventh field 935, referred to as a sequence 
number field, can contain a value corresponding to a 
sequencing number of the packet. The sequencing number 



US 2006/0098662 A1 

can be used to ensure in-order delivery of packets. Prefer 
ably, the seventh field 935 is one byte in size and values zero 
(O) and 255 are reserved for system use. An eighth field 940, 
referred to as a header checksum field, can be used to contain 
an error check code (preferably a simply byte-wise sum) for 
the header 900. Preferably, the eighth field 940 is one byte 
in size. 

0065. In addition to the aspects of the preferred embodi 
ment of the present invention discussed above, which are 
directly viewable in packets and headers used in the net 
work, there are aspects of a communications protocol that 
may not be directly visible in the packets. These aspects can 
affect performance, memory consumption, bandwidth 
requirements, and so forth. These aspects can be tunable 
values that can be made by each device in the network and 
can be based upon considerations such as available memory, 
processing power, perceived quality of the network connec 
tion, and so on. 

0.066 The tunable values that can be set to specify these 
aspects can include: a retry timer, a retry limit, a packet 
window size, a byte window size, and a default hop count. 
The retry timer can specify an amount of time that a device 
is required to wait before it can declare that a packet is lost 
and that it should retransmit the packet. The retry limit can 
specify an amount of times that a retransmission can be 
attempted before a packet is deemed undeliverable. The 
packet window size can specify a maximum number of 
unacknowledged packets before further transmissions are 
stopped. The byte window size can specify a maximum 
number of bytes of data that can remain unacknowledged 
before further transmissions are stopped. The default hop 
count can specify a maximum number of routing hops that 
a packet can undergo, to prevent infinite routing loops. 

0067. According to a preferred embodiment of the 
present invention, a preferred network is a point-to-point 
network with a host device and a plurality of client devices 
coupled to the host device. Note however, that the present 
invention can be applicable to other types of networks. Such 
as shared medium networks, broadcast networks, and so 
forth. An exemplary use of the preferred network can be in 
a classroom (or teaching) situation, wherein an instructor 
using a host device can interact with students, wherein each 
student is using a client device. The instructor can perform 
tasks such as provide lessons or homework, ask questions, 
prompt for answers, give examinations, and so forth. The 
students, on the other hand, can perform tasks Such as 
answer questions, provide demonstrations, request assis 
tance, and so on. The host device may be a personal 
computer or an electronic calculator, while the client devices 
can range from electronic calculators of varying capability 
to personal computers. 

0068. With reference now to FIGS. 10a through 10c, 
there are shown diagrams illustrating interchanges of pack 
ets between devices on a network for several different 
scenarios, according to a preferred embodiment of the 
present invention. The different scenarios shown in FIGS. 
10a through 10c can be representative of the types of packet 
interchanges that can be performed in an instructional envi 
ronment and are used to demonstrate the capabilities of a 
preferred embodiment of the present invention. The FIGS. 
10a through 10c illustrate packet exchanges between appli 

May 11, 2006 

cations and services executing on client devices and host 
devices and potential computations on the client and host 
devices over time. 

0069. With reference to FIG. 10a, a scenario is shown 
wherein students can create and share objects (for example, 
mathematical functions) on their client devices in a collabo 
rative fashion so that the student can virtually cooperate in 
the construction of a common object. A common object with 
several parameters can be shared among a group of students. 
Each student has a potential to take ownership of one or 
more parameters, either Voluntarily or by assignment. 

0070 The scenario can be implemented as follows: a 
student (represented herein as a client application 1001) can 
request from a host (represented herein as host services 
1002) a representation of the common object (shown as oval 
1005), to which the host services 1002 responds with a 
delivery of the common object (shown as oval 1007). A 
dashed vertical line, such as line 1003, can represent opera 
tions occurring at a device (on an application or service 
executing on the device), such as the client application 1001 
executing on a client device, while a large Solid vertical line, 
Such as line 1004, can represent computations occurring at 
a device, such as the host services 1002 performing some 
computations to determine if the client application 1001 
should be provided a representation of the common object. 
Upon receipt of the common object, the client application 
1001 can make a request for ownership of one or more 
parameters of the common object (shown as oval 1009). The 
host services 1002 may accept or deny the request for 
ownership from the client application 1001 (shown as oval 
1011) due to reasons such as the parameter having already 
been requested, the client application 1001 has requested too 
many parameters, and so forth. 

0071. After being granted ownership of one or more 
parameters, the client application 1001 can make modifica 
tions to the parameter(s) (shown as oval 1013) and once the 
modifications are complete, the client application 1001 can 
send the modified parameters back to the host services 1002 
(shown as oval 1015). Whenever the host services 1002 
receives a modified parameter(s), the host services 1002 can 
make changes to the common object (shown as oval 1017). 
Alternatively, the host services 1002 can wait until it 
receives all of the assigned parameters back from the dif 
ferent client applications before it makes changes to the 
common object. With the common object changed, the host 
services 1002 can update each client application with the 
changed common object (shown as oval 1019). 

0072. With reference to FIG. 10b, a scenario is shown 
wherein an instructor can pose a question (a challenge) to 
students on their client devices and then the students can 
Submit their responses to the instructor. An example of Such 
a scenario can be the instructor providing a quiz question to 
the students and the students can submit their answers to the 
quiz question to the instructor for evaluation. The scenario 
can be implemented as follows: the instructor (represented 
herein as a host application 1031) can provide a question (a 
challenge) to the students (represented herein as a client 
application 1032). The question can be provided to the 
students in the form of a packet(s) transmitted to the client 
application 1032 (shown as oval 1035). After receiving the 
question from the instructor, each of the students can for 



US 2006/0098662 A1 

mulate a response to the question and when complete, each 
student can transmit a response back to the instructor (shown 
as oval 1037). 
0073. With reference to FIG. 10c, a scenario is shown 
wherein students can Submit information to their instructor, 
who could combine the information provided by the students 
and provide an aggregation of the information to the stu 
dents. The scenario can be implemented as follows: a 
student (represented herein as a client application 1051) can 
Submit data to the instructor (shown herein as a host appli 
cation 1052). The transmission of the data to the host 
application 1052 is shown as oval 1055. Multiple client 
applications may be transmitting data to the host application 
1052. Upon receipt of the data, the host application 1052 can 
combine (aggregate) the data together (shown as oval 1057) 
and after combining, the host application 1052 can transmit 
results of the combination to the client application(s) (shown 
as oval 1059). 
0074 Although the present invention and its advantages 
have been described in detail, it should be understood that 
various changes, Substitutions and alterations can be made 
herein without departing from the spirit and scope of the 
invention as defined by the appended claims. 
0075 Moreover, the scope of the present application is 
not intended to be limited to the particular embodiments of 
the process, machine, manufacture, composition of matter, 
means, methods and steps described in the specification. As 
one of ordinary skill in the art will readily appreciate from 
the disclosure of the present invention, processes, machines, 
manufacture, compositions of matter, means, methods, or 
steps, presently existing or later to be developed, that 
perform Substantially the same function or achieve Substan 
tially the same result as the corresponding embodiments 
described herein may be utilized according to the present 
invention. Accordingly, the appended claims are intended to 
include within their scope Such processes, machines, manu 
facture, compositions of matter, means, methods, or steps. 
What is claimed is: 

1. A method for communicating between electronic 
devices in a communications network, the method compris 
ing: 

creating a connection between a first electronic device and 
a second electronic device, wherein the creating com 
prises, 

assigning a first port number to the connection at the 
first electronic device; 

transmitting a connection request to the second elec 
tronic device; 

receiving a second port number to the connection from 
the second electronic device; 

sending a packet between the first electronic device and 
the second electronic device, wherein the packet con 
tains at least a portion of the communications being 
transmitted, wherein the packet can originate at either 
the first electronic device or the second electronic 
device; 

acknowledging a receipt of the packet by a receiver of the 
packet; and 

dissolving the connection. 

May 11, 2006 

2. The method of claim 1 further comprising after the 
sending, repeating the sending and acknowledging for addi 
tional packets. 

3. The method of claim 1 further comprising, at the 
second electronic device: 

receiving the connection request from the first electronic 
device; 

assigning the second port number to the connection at the 
second electronic device; and 

transmitting the second port number to the connection to 
the first electronic device. 

4. The method of claim 1, wherein the creating is repeated 
for every pair of electronic devices that are communicating. 

5. The method of claim 1, wherein an electronic device 
can execute multiple applications simultaneously, wherein 
multiple connections between a single pair of electronic 
devices can exist, and wherein each connection connects a 
different pair of applications. 

6. The method of claim 1 further comprising prior to the 
creating, acquiring a protocol address for the first electronic 
device and the second electronic device. 

7. The method of claim 6, wherein the acquiring com 
prises: 

sending an inquiry to a host when an electronic device is 
connected to the communications network; and 

receiving a protocol address from the host. 
8. The method of claim 7, wherein the acquiring further 

comprises resetting a sequence number after the receiving. 
9. The method of claim 1 further comprising after the 

sending, reordering the packet. 
10. The method of claim 9, wherein the reordering com 

prises: 
comparing a sequence number from the packet with an 

internal sequence number associated with the connec 
tion; 

if the sequence number from the packet is equal to the 
internal sequence number, 
incrementing the internal sequence number; 
processing contents of the packet; and 

if the sequence number from the packet is not equal to the 
internal sequence number, 
resequencing the packet. 

11. The method of claim 10, wherein the packet has a 
Source, and wherein the resequencing comprises sending a 
negative acknowledgment to the source of the packet. 

12. The method of claim 10, wherein the packet has a 
Source, and wherein the resequencing comprises: 

checking for sufficient space in a buffer to store the 
packet; 

inserting the packet in the buffer if there is sufficient space 
in the buffer; and 

sending a negative acknowledgment to the Source of the 
packet if there is insufficient space in the buffer. 

13. The method of claim 1, wherein the acknowledging 
comprises: 

checking the packet for damage: 



US 2006/0098662 A1 

sending a negative acknowledgment if the packet is 
damaged; 

if the packet is undamaged, 
sending an acknowledgment; 
processing the packet; 
checking a sequence number of the packet with an 

internal sequence number, 
buffering the packet if the sequence number of the 

packet is not equal to the internal sequence number 
and if there is sufficient space in a buffer to store the 
packet; and 

sending a negative acknowledgment if there is no space 
in the buffer to store the packet. 

14. The method of claim 1 further comprising after the 
acknowledging, processing the packet. 

15. The method of claim 14, wherein the packet has a 
sequence number, and wherein the processing comprises: 

determining if the packet is either an ACK packet or a 
NAK packet; 

if the packet is an ACK packet, marking transmitted 
packets with sequence numbers less than or equal to a 
sequence number in the ACK packet as successfully 
transmitted; 

if the packet is a NAK packet, resending transmitted 
packets with sequence number greater than or equal to 
a sequence number in the NAK packet; 

if the packet is not an ACK packet or a NAK packet, 
providing the packet to an application associated with 
the connection. 

16. A header for a transmission packet comprising: 
an identifier field comprising data to distinguish traffic 

type; 

a source address field following the identifier field, the 
Source address field comprising an address of a source 
device and a source port of the header; 

a destination address field following the source address 
field, the destination address field comprising an 
address of a destination device and a destination port of 
the header; 

May 11, 2006 

a payload error check code field following the destination 
address field, the payload error check code field com 
prising an error check for a data payload contained in 
the transmission packet; 

a payload size field following the payload error check 
code field, the payload size field comprising a size 
indicator of the data payload; 

a hop count field following the payload size field, the hop 
count field comprises a count of a maximum number of 
routes the transmission packet can traverse; 

a sequencing field following the hop count field, the 
sequencing field comprising a value used to order the 
transmission packet; and 

a header error check code field following the sequencing 
field, the header error check code field comprising an 
error check for the header. 

17. The header of claim 16, wherein the header comprises 
a sixteen byte binary stream. 

18. The header of claim 17, wherein the identifier field 
comprises a two byte binary stream, wherein the source 
address field comprises a four byte binary stream, wherein 
the destination address field comprises a four byte binary 
stream, wherein the payload error check code field com 
prises a two byte binary stream, wherein the payload size 
field comprises a one byte binary stream, wherein the hop 
count field comprises a one byte binary stream, wherein the 
sequencing number comprises a one byte binary stream, and 
wherein the header error check code field comprises a one 
byte binary stream. 

19. The header of claim 16, wherein the error check in the 
payload error check code field comprises a value computed 
using a cyclic redundancy code of length 16 (CRC-16) code, 
and wherein a polynomial expressed as: X'+X'+X+1 is 
used to generate the CRC-16 value. 

20. The header of claim 16, wherein the sequencing field 
comprises a value ranging from 1 to 254. 

21. The header of claim 16, wherein the data payload 
immediately follows the header in the transmission packet. 


