发明名称 二维条码激光标记方法

摘要

在标记执行模式中，初始化后，以预定标记数据和条件数据为基础的扫描控制信号被传送给扫描头，以使 YAG 激光束的束点在工件表面上的二维条码标记区域中预定的第一黑单元内部进行螺旋扫描。完成第一黑单元内部螺旋扫描后，激光束点从扫描终点跳跃到与那个终点相邻的第二黑单元的扫描起点。然后，以类似于上述的单元绘制图形扫描第二黑单元内部。然后，在第三和后续黑单元上重复执行上述的螺旋扫描。在完成最后黑单元螺旋扫描基础上，结束标记活动。
1. 一种激光标记装置中所执行的两维条码激光标记方法，其中，所述激光标记装置包括控制部件和扫描头，所述扫描头包括：X轴扫描镜和Y轴扫描镜，用于反射激光束在工件的表面上；两个电流计，用于响应从所述控制部件输出的X轴和Y轴扫描控制信号，分别旋转X轴扫描镜和Y轴扫描镜，于是来自所述扫描头的一个激光束在一个工件的表面上进行扫描以进行照射，从而利用以所希望图形安排的具有作为单元照射区域的第一单元和作为单元非照射区域的第二单元的矩阵阵列的两维条码进行标记，所述方法包括如下步骤：
 利用所述激光束的束点在所述第一单元的每一个上进行螺旋扫描以形成一个单元照射区域，和
以预定顺序逐一在所述第一单元上进行所述的螺旋扫描，其中是在按扫描顺序彼此相邻的两个所述第一单元之间，所述激光束的束点从所述相邻单元前一个的预定扫描终点跳跃到所述相邻单元后一个的预定扫描起点。

2. 根据权利要求1所述的激光标记方法，其中是在所述第一单元上沿着从所述两维条码的四个角之一开始并从外侧向内侧螺旋行进到所有单元的路径按阵列顺序进行所述扫描。
说明 书

两维条码激光标记方法

技术领域

本发明涉及一种用于建立矩阵型两维条码的激光标记方法。

背景技术

近来，开始流行利用具有两维方向信息的两维条码签字，所述两维条
码包括由具有利用它的垂直和水平表示垂直堆叠以显示信息的一维条码组
成的堆积条形码，和在垂直和水平方向中以镶嵌方式(矩阵型)安排的黑和白
单元组成并用于显示信息的矩阵型条码。

图 14 示出了作为矩阵类型一般标准的数据码。

数据码包括由被连续安排成一个 L 的黑单元组成的 L 形引导单元或边缘单元；由交替安置在所述边缘单元对面的黑和白单元组成的定时单元；
和由被放置在所述边缘单元和所述定时单元内侧的基于所述显示数据的以任意图形的黑和白单元组成的的数据区域。

为了读出这种两维条码，利用一个 CCD 照相机将整个条码作为一个图像进行读取并使用图像识别技术译码整个条码。在这种情况下，经过所述图像处理，在所述边缘单元基础上识别所述两维条码的旋转(角度)位置和方向并相对于所述定时单元确定每个单元的坐标，然后，将所述数据区域内的黑和白单元位置的阵列图形重新安装成原来的代码。

为了识别在这个图像表示中的每个单元 CE，它识别在所述单元 CE 中的一个预定点(表示点)RP 是黑还是白，如图 15A 到 15C 所示。然后，在上述识别的基础上，执行一个它是一个白单元还是一个黑单元的判定。根据所述表示点 RP 的数量，具有例如一点方法(图 15A)、4 点方法(图 15B)和 5 点方法(图 15C)。

另一方面，可以利用各种印刷方法建立两维条码。在这些方法中，激光标记方法具有一个优点，即所述两维条码可以被直接印刷在工件的表面上，因此，对直接标记到半导体晶片、IC 组件等上是有效的。

如图 16 所示，在用于建立两维条码的传统激光标记方法中，激光束的
来点 BS 穿越所述工件表面水平传送而获得一个扫描线 HS，然后，水平扫描线 HS 被垂直移位一个预定节距 d 以便迭代所述扫描作用预定的次数。通常，多个线被分配一条线中的多个单元。

因此，每个黑单元 CE_b 是一个其中在所述垂直方向内并置一系列水平扫描线 HS 的单元区域。另一方面，所述白单元 CE_w 是一个其中不存在(跳过)这种水平扫描线 HS 的单元区域，没有作图。

附带说一下，在根据具有一个激光直径的单一激光束点形成单一黑单元的情况下，所述单元中心可能会有不合适地深陷进去的凹槽，从而导致识别图像的困难。

在图 16 中，为了表示方便起见，在等于所述点直径的节距处以间断的方式示出了所述激光束点的轨迹(扫描线)，但是实际上，所述轨迹是以连续直线方式存在的。

上述二维条码是由一个误差校正功能支持的，从而即便是在缺少数据区域 20-30％的情况下，也能够保证正确的关系。但是，这个误差校正功能只有利用整个条码才是可行的，这并不意味着允许各个单元的粗糙显示内容。它必须确定的显示出所述各个单元是黑单元还是白单元。

在上述这种传统的激光标记方法中，对上述单元显示质量的要求是通过增加水平扫描线 HS 的密度满足的。

但是，与所述束点 BS 在每个黑单元 CE_b 内进行扫描的时间(由图 16 所示实线或断续线指出的时间部分)比较，每个水平扫描线 HS 需要比较长的时间(由点划线指出的时间部分)以便使所述束点 BS 从每个黑单元 CE_b 的结束端(右手端)跃过所述白单元区域 CE_w 到达相邻黑单元 CE_b 的开始端(左手端)，另外，在每个白单元 CE_w 上重复进行这种跳跃。

此外，为了避免所述标记质量在所述条码的相对端降低，如图 17 所示，还在所述端的外侧上执行了水平扫描线的转换操作，这导致了不必要的损耗时间。

发明内容

本发明是从上述问题的角度出发的。因此，本发明的目的是提供一种能够保证高质量和有效标记二维条码的激光标记方法。

根据本发明的各方面，为了实现上述目的，提供了一种激光标记装
置中所执行的二维条码激光标记方法，其中，所述激光标记装置包括控制
部件和扫描头，所述扫描头包括：X轴扫描镜和Y轴扫描镜，用于反射激
光束在工件的表面上；两个电流计，用于响应从所述控制部件输出的X轴
和Y轴扫描控制信号，分别驱动X轴扫描镜和Y轴扫描镜。在这种方法中，
来自所述扫描头的一个激光束扫描工件表面以进行照射，从而利用具有以
所希望图形排列的作为单元照射区域的第一单元和作为单元非照射区域的
第二单元的矩阵排列的二维条码标记所述表面，所述方法包括下述步骤：
利用所述激光束的束点在所述第一单元内部螺旋扫描以形成一个单元照射
区域；和按照预定顺序逐一在所述第一单元上螺旋扫描。

在该方法中，在接扫描顺序彼此相邻的两个第一单元之间，所述激光
束的束点从前一个相邻单元的预定扫描束点跳跃到后面一个相邻单元的
预定扫描开始点。

根据本发明的第二方面，与本发明第一方面相关，提供了一种激光标
记方法，其中，按阵列顺序沿从二维条码4个角之一开始的路径在所述第
一单元上进行扫描，并从外侧到内侧螺旋前进到所有单元。

如在这里所使用的，“螺旋”的意思是指所述路径持续或间断地从外周
向其中心，或相反从其中心向外周以任意形状旋转前进。因此，所述螺旋
形不仅包括一般的圆形螺旋形，而且还包括矩形或其它的多边形。它还包
括一个由所述圆螺旋形和所述多边螺旋形的组合螺旋形。

如在这里所使用的，所述“单元照射区域”和“单元非照射区域”是
根据存在或不存在所述激光束的照射最佳可读但不一定是黑或白的两个不
同单元区域。

附图说明

图1的透视图示出了根据本发明第一实施例用于执行激光标记的扫描
型YAG激光标记装置的外形；

图2的框图示出了在该实施例激光标记装置中电源单元和激光振荡单
元的主要结构；

图3的透视图示出了本实施例激光标记装置中扫描头的扫描机构的结
构例子；

图4示出了在本实施例中由用于设定输入的控制模块执行的处理的流
程；
图 5 的正视图示出了本实施例中的设定输入屏幕；
图 6 简要示出了本实施例中被位映像的二维代码；
图 7 简要示出了本实施例中利用单元绘图数据规定的绘图模式的一个
例子；
图 8 示出了本实施例中利用用于标记作用的控制模块执行的处理的流
程；
图 9 简要示出了本实施例中利用所述标记作用获得的二维条码的整
个图形的一个例子；
图 10 示出了本实施例中单元上的扫描顺序；
图 11 示出了本实施例中用于确定单元上扫描顺序的路径；
图 12 示出了本实施例中激光束点的运动轨迹；
图 13 示出了本实施例中单元绘制图形的某些变化；
图 14 示出了作为阵型二维条码一个例子的数据码的显示图形；
图 15A 到 15C 中的每一个都示出了用于读所述阵型系统二维条码的方
法；
图 16 示出了在传统的激光标记方法中激光束点的运动轨迹；和
图 17 示出了在传统的激光标记方法中激光束点的运动轨迹。

具体实施方式
下面结合表示了本发明最佳实施例的图 1 到图 13 描述本发明。
图 1 示出了根据本发明一个实施例中的激光标记方法中使用的扫描
型 YAG(钇铝石榴石)激光标记装置。所述 YAG 激光标记装置包括一个控制
电源单元 10、一个激光振荡单元 12 和一个扫描头 20。
控制电源单元 10 包括一个被提供有由显示单元组成的显示器 13 的上
构件、一个被提供有键盘和控制板的中间构件(前门 14 的背后)和一个具有
在其中安置激光电源电路、激光冷却装置等的下构件(前门 16 的背后)。扫
描控制信号由在中间构件内的控制单元产生并经过预定信号线(未示出)传
递给扫描头 20。扫描头 20 被安置在振荡单元 12 的激光发射部分，工作台
18 被置于该扫描头的下面。工件 W 被放置在所述工作台 18 上并被进行标
记。
图 2 示出了控制电源单元 10 和激光振荡单元 12 的主要部分。

激光振荡单元 12 包括用于使进行标记的 YAG 激光束 L_M 进行振荡的 YAG 激光振荡器 22 和用于产生具有高度方向性的可视光、例如是红引导光 L_G 的以 He-Ne 激光器形式存在的引导束激光器 24 或半导体激光器。YAG 激光振荡器 22 振荡的 YAG 激光束 L_M 具有一个最佳路径，它首先被镜子 26 直角弯折，然后被镜子 28 直角弯折和直线前进进入所述扫描头 20。由引导束激光器 24 产生的引导束 L_G 具有一个最佳路径，它首先被镜子 30 直角弯折，然后被镜子 32 直角弯折并从后面经过镜子 28 之后，直线前进到扫描头 20。

控制电源单元 10 包括一个 YAG 激光电源 34，一个引导束激光电源 36，控制单元 38，显示单元 40，输入单元 42 和接口电路 44。YAG 激光电源 34 在控制电路 38 的控制下将电能提供给在 YAG 激光振荡器 22 中的激光激励装置(例如一个激励灯)，引导束激光电源 36 在所述控制单元 38 的控制下将电能提供给引导束激光器 24。

显示单元 40 根据来自控制单元 38 的图像数据和显示控制在显示器 13 上提供一个屏幕。输入单元 42 包括诸如键盘、鼠标和图像扫描器输入装置，接口电路 44 被用于和外部装置(未示出)交换数据和控制信号等。

控制电路 38 以微机形式存在，用于根据存储在其内部存储器中的预定软件执行所需数据处理以提供对所述装置中各单元的控制。具体地说，控制单元 38 在设定输入模式或后面将要描述的标记执行模式执行所需处理。在所述标记执行模式下，控制单元 38 经过信号线 46 向所述扫描头 20 中的扫描驱动电路馈送一个用于控制扫描头 20 的扫描操作的扫描控制信号。YAG 激光振荡器 22 具有一个机内 Q 开关，用于采集具有极高峰值输出(峰值)的脉冲激光束，该 Q 开关还由控制电路 38 经过一个控制线(未示出)控制。

图 3 借助于例子示出了在所述扫描头 20 中一个扫描机构的结构。所述扫描机构包括分别安装在旋转轴 52a 和 54a 上的 X 轴扫描镜 52 和 Y 轴扫描镜 54，所述旋转轴 52a 和 54a 彼此相互垂直，所述旋转机构还包括分别用于旋转振荡(旋转)镜子 52 和 54 的 X 轴电流计 56 和 Y 轴电流计 58。

进入扫描头 20 之后，来自动激光振荡单元 12 的激光 L_M 和引导激光 L_G 首先撞击在 X 轴扫描镜 52 上，在该 X 轴扫描镜 52 处，所述光被全反射到 Y 轴扫描镜 54 上，在 Y 轴扫描镜 54 处，所述光被全反射并穿过 f0 透镜 60,
最后汇聚在被照射工件 W 的表面上。束点 BS 在标记表面上的位置在 X 轴方向上取决于 X 轴扫描镜 52 的偏转角度，在 Y 方向上取决于 Y 轴扫描镜 54 的偏转角度。

X 轴扫描镜 52 被允许由 X 轴扫描电流计 56 驱动而沿箭头 A 和 A' 指出的方向旋转振荡(旋转)。另一方面，Y 轴扫描镜 54 被允许由 Y 轴电流计 58 驱动而沿箭头 B 和 B' 指出的方向旋转振荡(旋转)。

X 轴电流计 56 采用耦合到 X 轴扫描镜 52 的运动电枢(转子), 连接到可运动电枢的控制弹簧和固定到定子上的驱动线圈组成。X 轴电流计驱动电路(未示出)根据 X 方向扫描控制信号经过电缆 62 向位于 X 轴电流计 56 中的驱动线圈供给驱动电流，以便使运动电枢(转子)与所述 X 轴扫描镜 52 一起相对于所述控制弹簧旋转所述 X 方向扫描控制信号规定的角度。

Y 轴电流计 58 也具有相同的结构。即 Y 轴电流计驱动电路(未示出)根据 Y 轴方向扫描控制信号经过电缆 64 向在 Y 轴电流计 58 中的驱动线圈提供驱动电流，以便使位于 Y 轴电流计 58 中的运动电枢(转子)与所述 Y 轴扫描镜 54 一起旋转所述 Y 方向扫描控制信号规定的角度。

由此，在来自激光振荡单元 12 并在预定定时处进入扫描头 20 的 YAG 激光束 L_m 和引导束 L_g 同步的情况下，两个电流计 56 和 58 响应 X 方向和 Y 方向扫描控制信号将 X 轴扫描镜 52 和 Y 轴扫描镜 54 旋转它们各自预定的角度，从而使激光束 L_m 和引导束 L_g 的束点 BS 在工件 W 的标记表面上扫描。

下面将描述本实施例中用于建立二维条码的设定输入，图 4 的流程示出了在设定输入模式下由控制单元 38 执行的处理。

这个设定输入模式在显示单元 40 的显示器 13 上提供一个如图 5 所示的设定输入屏幕，用于获得经过输入单元 42 的鼠标或键盘输入的二维条码元素的设定值(步骤 S1)。

在数据码的情况下，二维条码的元素包括显示数据以及条码尺寸(正方形一测的长度)，误差校正电平(ECC 型)和可得到的字符类型格式(FORMAT ID)。

在图 5 的例子中，输入条码尺寸为 2mm 的字符串 ABCD 作为显示数据。选择 ECC-0(扩展率 0％)作为误差校正电平，选择 FORMAT3(字母和空间、数字、符号等)作为格式。
然后，控制单元 38 将输入的显示数据(在图 5 中例子的字符串 ABCD)编码成一个两维条码从而以图 6 所示的位映像(BMP)形式建立一个数据文件(步骤 S2)。在这个位映像的两维条码中，“1”和“0”分别对应于在目标两维条码中例是是一个黑单元的被照射单元(第一单元)和非照射单元或白单元(第二单元)。

然后，控制单元 38 将位映像的两维条码转换成用于激光扫描的标记数据(步骤 S3)。所述标记数据包括指出所述单元、具体地是在一个目标两维条码中的黑单元 CE_b 位置的位置数据和用于根据预定绘制图形利用所述激光束点螺旋扫描每个黑单元 CE_b 内部的单元绘图数据。

图 7 示出了一个由所述单元绘图数据规定的单元绘制图形的例子。如所示，预先登记了一个类似于矩形螺旋转绘图形 PA 的基本绘制图形，所述基本图形被进行坐标变换以使其符合地应于所述两维条码尺寸(设定值)的单元尺寸，并借此获得指出单元绘制图形 PA 的单元绘图数据。

在图 7 所示例的情况下，单元绘制图形 PA 由起点 F0、弯曲点 F1 到 F6 和终点 F7 的坐标或由其中的每一个用于连接所述点的线段矢量来确定。

控制单元 38 将如此建立的标记数据存储和登记在预定的存储区域中(步骤 S4)。

除了上述两维条码元素的设定输入之外，所述设定输入模式允许在另一个屏幕(未示出)上设定输入与标记作用相关的条件，例如是 Q 开关频率、扫描速率、灯电流和最大束幅值的各种条件数据。

下面描述在这个实施例中用于建立两维条码的标记作用。

图 8 示出了在这个实施例的标记执行模式中执行的控制单元 38 的处理。

当建立标记执行模式时，控制单元 38 首先执行所希望的初始化(步骤 S11)。在这个初始化过程中，在上述的所有数据之中识别被规定的起始号以便从所述存储器中提取与所述起始号对应的标记数据和条件数据。

控制单元 38 借助于 YAG 激光电源 34 和引导来激光电源 36 激活 YAG 激光振荡器 22 和引导来激光器 24，从而允许发射 YAG 激光束 L_M 和引导束 L_G。

然后，根据所提取标记数据和条件数据的扫描控制信号被传递给扫描头 20，从而使 YAG 激光束 L_M 和引导束 L_G 的束点 BS 以单元绘制图形在所
述工件 W 表面上两维条码标记区域中的预定第一黑单元 CE_{b} 内进行螺旋扫描（步骤 S12 和 S13）。

这个扫描作用允许工件 W 表面的一个瞬间区域，所述 YAG 激光束 L_{m} 的束点 BS 在该区域内撞击以至被瞬间蒸发或被所述激光能量改变颜色，从而使束点 BS 的轨迹形成一个类似于单元绘制图形 PA 的螺旋图形的标记。

在如上所述完成第一黑单元 CE_{b} 内的螺旋扫描之后，束点 BS 从扫描终点 (F7) 跳跃到与上述终点 (F7) 相邻的第二黑单元 CE_{b} 的扫描起点 (F0) （步骤 S14、S15、S16、S12），然后，利用束点 BS 以单元绘制图形 PA 与上述类似地螺旋扫描这个第二黑单元 CE_{b} 的内部。

然后，对第三和后续的所有黑单元 CE_{b} 重复执行上述相同的螺旋扫描，并在最后一个黑单元 CE_{b} 内的螺旋扫描完成时完成所有的标记操作（步骤 S12、S13、S14、S15、S17）。

图 9 所示出了根据这个实施例通过标记作用获得的所述二维条码的总体图形。如图所示，在所有的黑单元 CE_{b} 内以相同的绘制图形形成了一个螺旋标记。而在白单元 CE_{w} 内不形成标记，从而允许工件 W 的所述表面如其原来样子保持暴露状态。

在如上所述的本实施例的激光标记作用中，目标二维条码的所有黑单元 CE_{b} 都被连续逐一进行螺旋扫描。这个扫描顺序可以是随机的，但最好是在某个规则的基础上确定的，以便使完成所有标记作用的时间最少。

在如图所示数据码的情况下，不可避免的包括具有由黑单元构成的 L 形阵列的边缘单元和具有与所述边缘单元相对并由其它黑单元和白单元组成的反 L 形阵列的定时单元。

根据图 9 所示，数据码（二维条码）黑单元上的扫描顺序是沿前进方向所述阵列顺序的基础上确定的，如图 10 和 11 所示。

具体地说，在整个条码中，置位于边缘单元一端的黑单元 CE_{b} 被规定为扫描起点 G_{0}。然后，扫描从这个起点 G_{0} 沿 L 形边缘单元向所述边缘单元的终点 G_{1} 进行，在所述终点处，扫描被传输给定时单元。然后，扫描沿反 L 形定时单元进行到终点 G_{2}，在该终点 G_{2} 处，扫描被传输给边缘单元的中间内部单元阵列。此后，扫描在其扩展方向以螺旋方式向中心进行以建立一个路径，该路径唯一地确定黑单元上的扫描顺序。
根据所述螺旋扫描顺序，可以如图10所示通过在其中白单元CEW聚集
在所述条码一端附近的区域处由点划线K指出的最短路径对角跳跃，这保
证了在很短的时间周期内进行有效的标记操作。

很清楚，可以沿着与如上所述允许从外周向向所述中心螺旋进行路径
相反的从所述中心向外周边螺旋行进的路径确定所述扫描顺序。

图12示出了激光束点BS运动的局部轨迹。在这个实施例中，根据图
7所示的绘制图形PA使用所述激光束点BS在每个黑单元CEB的内部进行
螺旋扫描。作为这个扫描的结果，单一的持续扫描操作能够连续形成所述
黑单元CEB内的方形单元黑区域。

此外，在这个实施例中，在完成一个黑单元CEB内的扫描操作之后，
激光束点BS从那个扫描终点跳跃到下一个黑单元CEB的扫描起点，在单一
或多个白单元CEW位于两个黑单元CEB之间的情况下，激光束点BS在这
些白单元CEW区域上跳跃的次数仅仅是1。和传统的这种激光标记方法(见
图16)比较，这使得跳跃所占用的时间明显减少，从而明显减少两维条码所
需的总标记时间。

在图12中还可以注意到，为了便于表示，激光束点BS的轨迹(扫描线)
以等干所述点直径的节距间断地绘出的，但实际上，所述轨迹通常是以连
续直线表示的。

但是，通过使用具有较长周期的激光束作为用于标记的激光束LM，还
可以使用由虚线指出的扫描线。

很明显，在上述实施例中的矩形螺旋单元绘制图形PA仅仅是个例子，
其它各种螺旋绘制图形也是可行的。

图13示出了单元绘制图形的某些变化。图形PA1是一种矩形螺旋图形，
该图形类似于上述实施例的图形但螺旋的数量较少。反之，它可以增加螺
旋的数量。图形PA2由具有所述矩形螺旋图形的前一半和具有圆形螺旋图
形的后一半组成。在这种方式下，可以任意组合不同的螺旋形式。此外，
图形PA3是一个圆形螺旋图形，图形PA4是一个五边形螺旋图形。

在上述的实施例中，利用激光束点BS在每个黑单元CEB的内部从外周
边向内侧(中心部分)方向进行螺旋扫描，但是，与此相反，也可以在从内侧
(中心部分)向外侧的方向进行螺旋扫描。

上述实施例涉及用于建立数据码两维条码的激光标记，但是，本发明
还可以应用于诸如 RQ 码、VERI 码和 CO 码的其它矩阵系统的两维条码的标记。

如上所述，根据本发明的激光标记方法，一个激光束点在导致单元黑区域的多个第一单元中的一个内部螺旋扫描，以形成一个单元黑区域，和以预定顺序在剩余的所述第一单元上逐一进行螺旋扫描，借此，利用有效的标记作用建立高质量的两维条码。
图 1
图 4

S1: 输入一组二维条码的元素值

S2: 将显示数据转换成二维码

S3: 将数据变换成标记数据

S4: 在存储器中寄存标记数据

结束

图 13

CE8

PA1

CE8

PA2

CE8

PA3

CE8

PA4