

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/102733 A1

(43) International Publication Date

3 July 2014 (03.07.2014)

WIPO | PCT

(51) International Patent Classification:

G01N 23/225 (2006.01) G01N 23/203 (2006.01)

(21) International Application Number:

PCT/IB2013/061349

(22) International Filing Date:

26 December 2013 (26.12.2013)

(25) Filing Language:

English

(26) Publication Language:

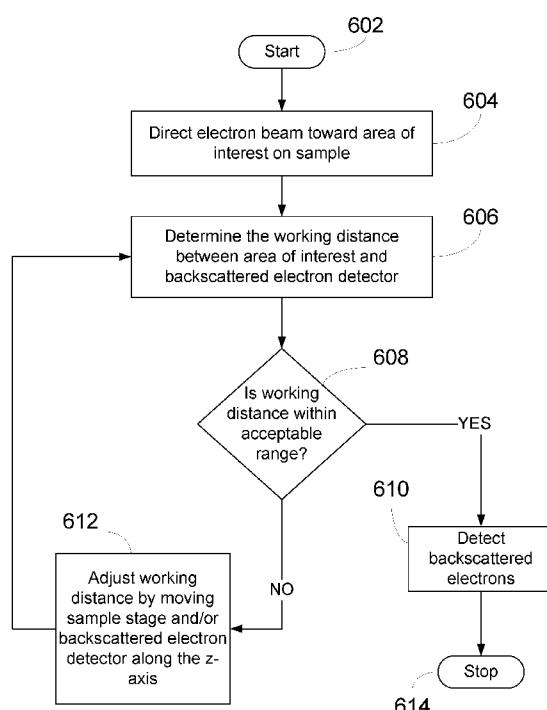
English

(30) Priority Data:

13/730,358 28 December 2012 (28.12.2012) US

(71) Applicant: FEI COMPANY [US/US]; 5350 Ne Dawson Creek Dr, Hillsboro, Oregon 97214 (US).

(72) Inventors: MICHAEL D., Smith; 50 Ninth Ave, St. Lucia, Queensland 4067 (AU). KURT, Moeller; Unit 4, 33 Ascog Tce, Toowong, Queensland 4066 (AU).


(74) Agents: KELLY, John B. et al.; Po Box 164140, Austin, Texas 78716 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PROCESS FOR PERFORMING AUTOMATED MINERALOGY

(57) Abstract: A method and system for determining the mineral content of a sample using an electron microscope. The method includes directing an electron beam toward an area of interest of a sample, the area of interest comprising an unknown composition of minerals. The working distance between the backscattered electron detector of the microscope and the area of interest of the sample is determined. Compensation is made for the difference between the working distance and a predetermined working distance in which the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons. One way of compensating for working distance variation is to use an autofocus feature of the microscope to adjust the working distance. Backscattered electrons from the area of interest of the sample are then detected.

FIG. 6

Published:

— *with international search report (Art. 21(3))*

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

A PROCESS FOR PERFORMING AUTOMATED MINERALOGY

Technical Field of the Invention

[0000] The present invention relates to the field of automated mineralogy, and in particular to the use of charged particle beams in automated mineralogy systems.

Background of the Invention

[0001] Mineral analysis systems, such as the QEMSCAN and MLA available from FEI Company, Hillsboro, Oregon, have been used for many years to analyze mineral samples. To determine the type and relative quantity of minerals present in a mine, a sample in the form of small granules, is fixed in epoxy and placed in a vacuum chamber. An electron beam is directed toward a sample and, in a process called “energy dispersive x-ray spectroscopy” or “EDS,” the energies of x-rays coming from the sample in response to the electron beam are measured and plotted in a histogram to form a spectrum. The measured spectrum can be compared to the known spectra of various elements to determine which elements and minerals are present, and in what proportion. FIG. 1 shows a typical sample 100 having granules 102 embedded in epoxy.

[0002] It takes considerable time to accumulate an x-ray spectrum. When an electron in the primary beam impacts the sample, the electron loses energy by a variety of mechanisms. One energy loss mechanism includes transferring the electron energy to an inner shell electron, which can be ejected from the atom as a result. An outer shell electron will then fall into the inner shell, and a characteristic x-ray may be emitted. The energy of the characteristic x-ray is determined by the difference in energies between the inner shell and the outer shell. Because the energies of the shells are characteristic of the element, the energy of the x-ray is also characteristic of the material from which it is emitted. When the number of x-rays at different energies is plotted on a graph, one obtains a characteristic spectrum, such as the spectrum of pyrite shown in FIG. 2. The peaks are named for the corresponding original and final shell of the electron that originated the x-ray. FIG. 2 shows the sulfur K α peak, the iron K α peak and the iron K β peaks.

[0003] Other emissions besides characteristic x-rays are detectable when an electron beam impacts a sample surface. Emitted background or bremsstrahlung radiation x-rays are spread over a wide range of frequencies and can obscure characteristic x-ray peaks. Secondary electrons, Auger electrons, elastically and inelastically forward or back scattered electrons, and light can be emitted from the surface upon impact of a primary electron beam

and can be used to form an image of the surface or to determine other properties of the surface. Backscattered electrons are typically detected by a solid state detector in which each backscattered electron is amplified as it creates many electron-hole pairs in a semiconductor detector. The backscattered electron detector signal is used to form an image as the beam is scanned, with the brightness of each image point determined by the number of backscattered electrons detected at the corresponding point on the sample as the primary beam moves across the sample.

[0004] Backscattering of electrons depends on the atomic number of the elements in the surface and upon the geometric relationship between the surface, the primary beam, and the detector. Obtaining a backscattered electron image requires collecting only a sufficient number of electrons at each point to produce a reasonable contrast between points having different properties and therefore is significantly quicker than obtaining a sufficient number of x-rays to compile a complete spectrum at each point. Also, the probability of an electron being backscattered is greater than the probability of the electron causing the emission of a characteristic x-ray of a particular frequency. Obtaining a backscattered electron image typically takes less time than acquiring sufficient x-rays to obtain an analyzable spectrum at a single dwell point.

[0005] In one mode of operating the MLA system, an image is first acquired using a backscattered electron detector, and the image is then processed to identify regions that appear from the contrast to have the same elemental composition. The beam is then positioned at the centroid of each identified region for a longer dwell time to collect an x-ray spectrum representative of the region.

[0006] When performing automated mineralogy on difficult samples using x-ray and back-scattered electron (BSE) information, BSE accuracy and repeatability are critical to differentiating minerals that have similar chemical formulas. For example, when analyzing iron ore it is important to accurately detect and differentiate between hematite (Fe_2O_3) and magnetite (Fe_3O_4). Although magnetite and hematite can be easily distinguished qualitatively using optical microscopy, quantitative characterization by automated scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM-EDS), such as MLA, is challenging because hematite and magnetite are similar in their chemical composition and BSE brightness. The x-ray spectra for these minerals are nearly identical when collected on standard silicon drift detectors (SDD) with energy ranges of 20eV at low x-ray counts. FIG. 3 shows an exemplary EDS x-ray spectrum 300 of magnetite (Fe_3O_4). FIG. 4 shows an exemplary EDS x-ray spectrum 400 of hematite (Fe_2O_3). A comparison of magnetite

spectrum 300 and hematite spectrum 400 shows that the two spectra are very similar. Iron characteristic 102 and iron characteristic 202 are nearly identical. Oxygen characteristic 104 and oxygen characteristic 204 are also nearly identical. This similarity makes differentiating hematite and magnetite difficult for automated mineralogy applications. What is needed in the art is an improved method for automatically differentiating between minerals that have similar chemical formulas.

Summary of the Invention

[0007] An object of the invention is to provide an improved method and apparatus for identifying unknown compounds in a sample material. Embodiments of the present invention are directed to a method for determining the mineral content of a sample using an electron microscope. The method includes directing an electron beam toward an area of interest of a sample, the area of interest comprising an unknown composition of minerals. The working distance between the backscattered electron detector of the microscope and the area of interest of the sample is determined. Compensation is made for the difference between the working distance and a predetermined working distance in which the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons. One way of compensating for working distance variation is to use an autofocus feature of the microscope to adjust the working distance. Backscattered electrons from the area of interest of the sample are then detected.

Other embodiments of the present invention are directed to a system for determining the mineral content of a sample using an electron microscope. The system includes a scanning electron microscope, one or more energy dispersive x-ray detectors, one or more backscatter electron detectors, and a system controller. The system controller includes a computer processor and a non-transitory computer-readable medium. The non-transitory computer-readable medium is encoded with computer instructions that, when executed by the computer processor, cause the system controller to direct an electron beam toward an area of interest of a sample, the area of interest comprising an unknown composition of minerals. The working distance between the backscattered electron detector of the microscope and the area of interest of the sample is determined. Compensation is made for the difference between the working distance and a predetermined working distance in which the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons. One way of compensating for working distance variation is to use an autofocus feature of the microscope to adjust the working distance.

Backscattered electrons from the area of interest of the sample are then detected.

[0008] The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.

Brief Description of the Drawings

[0009] For a more thorough understanding of the present invention, and advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

[0010] FIG. 1 shows a typical sample plug 100 for viewing in an EDS analysis system;

[0011] FIG. 2 shows an exemplary EDS x-ray spectrum of pyrite, which includes iron and sulfur;

[0012] FIG. 3 shows an exemplary EDS x-ray spectrum 300 of magnetite (Fe_3O_4);

[0013] FIG. 4 shows an exemplary EDS x-ray spectrum 400 of hematite (Fe_2O_3);

[0014] FIG. 5 shows a scanning electron beam system 500 with an x-ray detector 540 and a backscatter electron detector 542 suitable for practicing embodiments of the present invention;

[0015] FIG. 6 shows a flowchart of a method for operating an automated mineralogy system in accordance with one or more embodiments of the present invention;

[0016] FIG. 7 shows a flowchart of an alternative method for operating an automated mineralogy system in accordance with one or more embodiments of the present invention;

[0017] FIG. 8 shows a segmented BSE histogram reflecting standard BSE calibration; and

[0018] FIG. 9 shows a segmented BSE histogram reflecting enhanced or stretched BSE calibration.

Detailed Description of Preferred Embodiments

[0019] Embodiments of the present invention include a method for automatically configuring a scanning electron microscope (SEM)

[0020] In the MLA approach, mineral phases are first distinguished by their BSE grayscale levels during an on-line segmentation operation and then by their energy dispersive x-ray (EDX) spectrum. Minerals associated with a similar BSE values are segmented into a single phase. The results of a BSE mineral analysis determines the mineral phases and boundaries in a sample. This method of image segmentation allows BSE detectors to outline the regions of varying compounds in a sample which provides an easy means of separating the compounds and determining the overall content of a sample.

[0021] FIG. 8 shows a segmented BSE histogram reflecting standard BSE calibration. Standard BSE calibration is set to that the mounting media (resin) is kept at backscatter brightness values below 15, and gold at value of 250. This setting covers the BSE range of all common minerals. Iron oxides typically range from 115 to 120 BSE grayscale levels. Discriminating between magnetite (Fe_3O_4) and hematite (Fe_2O_3) is difficult because both minerals appear within the narrow band of about four or five BSE grayscale levels between 115 and 120. Enhanced or stretched BSE calibration helps discriminate between the iron oxides.

[0022] FIG. 9 shows a segmented BSE histogram reflecting enhanced or stretched BSE calibration. When the contrast and brightness is increased to extend the mounting media to backscatter brightness close to 0, and chalcopyrite to 250, a bimodal peak for iron oxides emerges, ranging from 195 to 215. The bimodal peak can be separated into its two modes representing hematite (200) and magnetite (208).

[0023] For a given set of beam sample current, contrast, and brightness settings, BSE grayscale values are most impacted by changes to the distance between the sample surface and the BSE detector (the “working distance”). Therefore, to obtain the bimodal peak shown in FIG. 9, the working distance must be consistently maintained across measurements. Embodiments of the present invention utilize the “Auto Focus” feature of the SEM at each sample block to determine the focal depth and hence the current physical working distance between the surface of the sample and the BSE detector and adjusts the Z axis to bring the sample to a configured physical working distance and sets the focal depth to that same distance. Exemplary autofocus systems for electron microscopes are described, for example, in U.S. Patent No. 5,084,618. By using autofocus to determine and adjust working distance the physical working distance is kept consistent across measurements. In the prior art, autofocus is used to keep an electron microscope image in focus. In embodiments of the present invention, autofocus is used to keep the working distance within an acceptable range. That is, if the working distance is not within an acceptable range, then the sample is moved

so that if the electron microscope image is no longer in focus, but the working distance is brought within the acceptable range. The image can be brought back into focus after the working distance has been brought within the acceptable range.

[0024] In alternative embodiments, other means of determining the working distance may be used, such as a laser interferometer or a capacitive sensor. In other alternative embodiments, the effects of physical working distance variations are modeled to resultant BSE level and autofocus or other means is used to determine the current physical working distance then calculate a BSE adjustment. This embodiment is useful for systems with no Z axis adjustment capability.

[0025] For example, a sample holder may have fourteen or more “hockey puck” style samples. The center of each sample is measured to determine how high the sample is and determine the working distance between the surface of the sample and the BSE detector. In a six-inch stage, these measurements can differ by 500 micrometers or more between samples. Since only 50 micrometers of working distance or focal distance can affect the results of a BSE analysis by one grayness level, it becomes very important to maintain a constant working distance between the sample surface and the backscatter electron detector. With the measurements of the samples being potentially off by 500 micrometers or more due to imperfections in the samples, the auto focus feature is seen to be critical to the device and method disclosed. The auto focus feature will determine the precise height, on the z-axis, that every sample point will have, and adjust the height of the stage or sample to ensure a consistent working distance and focal distance.

[0026] FIG. 5 shows a scanning electron beam system 500 with an x-ray detector 540 and a backscatter electron detector 542 suitable for practicing embodiments of the present invention. A scanning electron microscope 541, along with power supply and control unit 545, is provided with system 500. An electron beam 532 is emitted from a cathode 553 by applying voltage between cathode 553 and an anode 554. Electron beam 532 is focused to a fine spot by means of a condensing lens 556 and an objective lens 558. Electron beam 532 is scanned two-dimensionally on the specimen by means of a deflection coil 560. Operation of condensing lens 556, objective lens 558, and deflection coil 560 is controlled by power supply and control unit 545. Scanning electron beam system 500 also includes auto focus system 560. Auto focus system 560 determines the focal depth of electron beam 532 and adjusts the lenses and deflection coil to bring the electron beam into the desired focus.

[0027] A system controller 533 controls the operations of the various parts of scanning electron beam system 500. The vacuum chamber 510 is evacuated with ion pump 568 and

mechanical pumping system 569 under the control of vacuum controller 532.

[0028] Electron beam 532 can be focused onto sample 502, which is on movable X-Y stage 504 within lower vacuum chamber 510. When the electrons in the electron beam strike sample 502, the sample gives off x-rays whose energy correlated to the elements in the sample. X-rays 572 having energy inherent to the elemental composition of the sample are produced in the vicinity of the electron beam incident region. Emitted x-rays are collected by x-ray detector 540, preferably an energy dispersive detector of the silicon drift detector type, although other types of detectors could be employed, which generates a signal having an amplitude proportional to the energy of the detected x-ray. Backscattered electrons are detected by backscatter electron detector 542, preferably a segmented BSE detector.

[0029] Output from detector 540 is amplified and sorted by the processor 520, which counts and sorts the total number of X-rays detected during a specified period of time, at a selected energy and energy resolution, and a channel width (energy range) of preferably between 10-20 eV per channel. Processor 520 can comprise a computer processor; operator interface means (such as a keyboard or computer mouse); program memory 522 for storing data and executable instructions; interface means for data input and output, executable software instructions embodied in executable computer program code; and display 544 for displaying the results of a multivariate spectral analysis by way of video circuit 592.

[0030] Processor 520 can be a part of a standard laboratory personal computer, and is typically coupled to at least some form of computer-readable media. Computer-readable media, which include both volatile and nonvolatile media, removable and non-removable media, may be any available medium that can be accessed by processor 520. By way of example and not limitation, computer-readable media comprise computer storage media and communication media. Computer storage media include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and that can be accessed by processor 520.

[0031] Program memory 522 can include computer storage media in the form of removable and/or non-removable, volatile and/or nonvolatile memory and can provide storage of computer-readable instructions, data structures, program modules and other data.

Generally, the processor 520 is programmed by means of instructions stored at different times in the various computer-readable storage media of the computer. Programs and operating systems are typically distributed, for example, on floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable storage media when such media contain instructions or programs for implementing the steps described below in conjunction with a microprocessor or other data processor. The invention also includes the computer itself when programmed according to the methods and techniques described herein.

[0032] An x-ray spectrum obtained as described above can be stored in a portion of memory 522, such as the measured spectra memory portion 523. Data template memory portion 524 stores data templates, such as known spectra of elements or, in some embodiments, known diffraction patterns of materials. Weighing Factor Memory portion 525 stores weighting factor for each of the data templates, the weighting factors combining with the data templates to produce a calculated spectrum approximating the measured spectrum. The weighting factors correlated to the abundance in the sample of the element corresponding to the data template. Processor 520 uses the methods described above to minimize an error value which represents the difference between the measured pattern and the combination of the data templates and weighting factors.

[0033] FIG. 6 shows a flowchart of a method for operating an automated mineralogy system in accordance with one or more embodiments of the present invention. The method shown in FIG. 6 is particularly suited for systems that have a means for adjusting the working distance between sample 502 and backscatter electron detector 542. For example, sample stage 504 can be adjustable in the z-axis to translate sample stage 504 closer to or farther from backscatter electron detector 542. The method begins at start block 602. Electron beam 532 is directed toward an area of interest on the sample surface (step 604). System controller 533 can automatically configure SEM 541 by setting and measuring the sample beam current of electron beam 532 and automatically setting contrast and brightness levels using two standard materials. For example, when analyzing iron ore, chalcopyrite and quartz can be used as standard materials.

[0034] Auto focus system 560 is then used to determine the working distance between sample 502 and backscatter electron detector 542 (step 606). The system then determines whether the working distance is within a predetermined acceptable range (step 608). The

predetermined acceptable range is the narrow range of working distances for which, given set of beam sample current, contrast, and brightness settings, produce the BSE grayscale values best discriminate between the elements or compounds that are being identified. If the working distance is within the predetermined acceptable range, then the system proceeds with backscatter electron detection (step 610). If the working distance is not within the predetermined acceptable range, then the system adjusts the working distance between sample 502 and backscatter electron detector 542 so that the working distance is within the predetermined acceptable range (step 612). In one embodiment, sample stage 504 is translated in the z-axis to move sample 502 closer to or farther from the backscatter electron detector 542. If the working distance is smaller than the predetermined acceptable range, then sample stage 504 is translated in the z-axis away from the backscatter electron detector 542 so the working distance is increased until the working distance is within the predetermined acceptable range. If the working distance is larger than the predetermined acceptable range, then sample stage 504 is translated in the z-axis toward the backscatter electron detector 542 so the working distance is decreased until the working distance is within the predetermined acceptable range. In alternative embodiments, backscatter electron detector 542 is translated in the z-axis to bring the working distance within the predetermined acceptable range. Once the working distance is within the predetermined acceptable range, then the system proceeds with backscatter electron detection (step 610). The process ends at stop block 614.

[0035] FIG. 7 shows a flowchart of an alternative method for operating an automated mineralogy system in accordance with one or more embodiments of the present invention. The method shown in FIG. 7 is particularly suited for systems that do not have a means for adjusting the working distance between sample 502 and backscatter electron detector 542. For example, sample stage 504 might only translate in the x and y direction and might be fixed in the z-axis and unable to translate sample stage 504 closer to or farther from backscatter electron detector 542. The method begins at start block 702. Electron beam 532 is directed toward an area of interest on the sample surface (step 704). System controller 533 can automatically configure SEM 541 by setting and measuring the sample beam current of electron beam 532 and automatically setting contrast and brightness levels using two standard materials. For example, when analyzing iron ore, chalcopyrite and quartz can be used as standard materials.

[0036] Auto focus system 560 is then used to determine the working distance between sample 502 and backscatter electron detector 542 (step 706). The system then determines

whether the working distance is within a predetermined acceptable range (step 708). The predetermined acceptable range is the narrow range of working distances which produce the BSE grayscale values that best discriminate between the elements or compounds that are being identified. If the working distance is within the predetermined acceptable range, then the system proceeds with backscatter electron detection (step 710). If the working distance is not within the predetermined acceptable range, then the system calculates a BSE adjustment level based on modeled working distance variations and the measured working distance (step 712). The system proceeds with backscatter electron detection (step 710) and adjusts the detected BSE levels using the calculated BSE adjustment level (step 714). The process ends at stop block 716.

[0037] According to some embodiments of the present invention, a method for determining the mineral content of a sample using an electron microscope comprises directing an electron beam toward a first area of interest of a sample, the first area of interest comprising an unknown composition of minerals; determining a first working distance, the first working distance being the distance between a backscattered electron detector of the microscope and the first area of interest of the sample; compensating for the difference between the first working distance and a predetermined working distance, the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons; and detecting backscattered electrons from the first area of interest of the sample.

[0038] In some embodiments, the method further comprises directing an electron beam toward a second area of interest of the sample, the second area of interest comprising an unknown composition of minerals; determining a second working distance, the second working distance being the distance between the backscattered electron detector and the second area of interest of the sample; compensating for the difference between the second working distance and the first working distance; and detecting backscattered electrons from the second area of interest of the sample. In some embodiments, compensating for the difference between the second working distance and the first working distance further comprises modeling the effect of a plurality of working distance variations on detected backscattered electron levels; calculating a backscattered electron level adjustment based on the difference between the second working distance and the first working distance; and adjusting one or more of the detected backscattered electron levels based on the calculated backscattered electron level adjustment. In some embodiments, the method comprises determining the mineral composition of the first area of interest based on the detected

backscattered electron levels from the first area of interest; and determining the mineral composition of the second area of interest based on the detected backscattered electron levels from second area of interest.

[0039] In some embodiments, determining the first working distance further comprises determining a focal depth of the first area of interest, the focal depth being determined using an auto-focus feature of the microscope. In some embodiments, determining the second working distance further comprises determining a focal depth of the second area of interest, the focal depth being determined using an auto-focus feature of the microscope.

[0040] In some embodiments, compensating for the difference between the first working distance and a predetermined working distance further comprises adjusting the z-axis position of a sample stage and/or the backscattered electron detector so that there is substantially no difference between the first working distance and the predetermined working distance.

[0041] In some embodiments compensating for the difference between the first working distance and a predetermined working distance further comprises modeling the effect of a plurality of working distance variations on detected backscattered electron levels; calculating a backscattered electron level adjustment based on the difference between the first working distance and the predetermined working distance; and adjusting one or more of the detected backscattered electron levels based on the calculated backscattered electron level adjustment.

[0042] In some embodiments, the method further comprises determining the mineral composition of the first area of interest based on the detected backscattered electron levels.

[0043] In some embodiments, the method further comprises detecting the energy of x-rays emitted in response to the electron beam; and determining the mineral composition of the first area of interest based on the detected backscattered electron levels and the detected x-ray energies.

[0044] According to some embodiments of the present invention, a method for determining the mineral content of a sample using an electron microscope comprises directing an electron beam toward a first area of interest of a sample, the first area of interest comprising an unknown composition of minerals; determining a first focal depth of the first area of interest, the first focal depth being determined using an auto-focus feature of the microscope; determining a first working distance based on the first focal depth, the first working distance being the distance between a backscattered electron detector of the microscope and the first area of interest of the sample; detecting backscattered electrons from the first area of interest of the sample; directing an electron beam toward a second area of interest of a sample, the second area of interest comprising an unknown composition of

minerals; determining a second focal depth of the second area of interest, the second focal depth being determined using an auto-focus feature of the microscope; determining a second working distance based on the second focal depth, the second working distance being the distance between the backscattered electron detector of the microscope and the second area of interest of the sample; adjusting the z-axis position of a sample stage and/or the backscattered electron detector so that there is substantially no difference between the second working distance and the first working distance; and detecting backscattered electrons from the second area of interest of the sample.

[0045] According to some embodiments of the present invention, a system for determining the mineral content of a sample using a electron microscope comprises a scanning electron microscope; one or more energy dispersive x-ray detectors; one or more backscatter electron detectors; a system controller comprising a computer processor and a non-transitory computer-readable medium, the non-transitory computer-readable medium being encoded with computer instructions that, when executed by the computer processor, cause the system controller to perform the steps of directing an electron beam toward a first area of interest of a sample, the first area of interest comprising an unknown composition of minerals; determining a first working distance, the first working distance being the distance between a backscattered electron detector of the microscope and the first area of interest of the sample; compensating for the difference between the first working distance and a predetermined working distance, the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons; and detecting backscattered electrons from the first area of interest of the sample.

[0046] In some embodiments, the system further comprises computer instructions for directing an electron beam toward a second area of interest of the sample, the second area of interest comprising an unknown composition of minerals; determining a second working distance, the second working distance being the distance between the backscattered electron detector and the second area of interest of the sample; compensating for the difference between the second working distance and the first working distance; and detecting backscattered electrons from the second area of interest of the sample.

[0047] In some embodiments, the computer instructions for determining the second working distance further comprise computer instructions for determining a focal depth of the second area of interest, the focal depth being determined using an auto-focus feature of the microscope. In some embodiments, the computer instructions for compensating for the difference between the second working distance and the first working distance further

comprises computer instructions for modeling the effect of a plurality of working distance variations on detected backscattered electron levels; calculating a backscattered electron level adjustment based on the difference between the second working distance and the first working distance; and adjusting one or more of the detected backscattered electron levels based on the calculated backscattered electron level adjustment.

[0048] In some embodiments, the system further comprises computer instructions for determining the mineral composition of the first area of interest based on the detected backscattered electrons from the first area of interest; and determining the mineral composition of the second area of interest based on the detected backscattered electrons from the second area of interest.

[0049] In some embodiments, the computer instructions for determining the first working distance further comprise computer instructions for determining a focal depth of the first area of interest, the focal depth being determined using an auto-focus feature of the microscope. In some embodiments, the computer instructions for compensating for the difference between the first working distance and a predetermined working distance further comprise computer instructions for adjusting the z-axis position of a sample stage and/or the backscattered electron detector so that there is substantially no difference between the first working distance and the predetermined working distance.

[0050] In some embodiments, the computer instructions for compensating for the difference between the first working distance and a predetermined working distance further comprises computer instructions for modeling the effect of a plurality of working distance variations on detected backscattered electron levels; calculating a backscattered electron level adjustment based on the difference between the first working distance and the predetermined working distance; and adjusting one or more of the detected backscattered electron levels based on the calculated backscattered electron level adjustment.

[0051] In some embodiments, the system further comprises computer instructions for determining the mineral composition of the first area of interest based on the detected backscattered electrons. In some embodiments, the system further comprises computer instructions for detecting the energy of x-rays emitted in response to the electron beam; and determining the mineral composition of the first area of interest based on the detected backscattered electron levels and the detected x-ray energies.

[0052] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended

claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

[0053] We claim as follows:

CLAIMS

1. A method for determining the mineral content of a sample using an electron microscope, said method comprising:

directing an electron beam toward a first area of interest of a sample, the first area of interest comprising an unknown composition of minerals;

determining a first working distance, the first working distance being the distance between a backscattered electron detector of the microscope and the first area of interest of the sample;

compensating for the difference between the first working distance and a predetermined working distance, the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons; and

detecting backscattered electrons from the first area of interest of the sample.

2. The method of claim 1, further comprising:

directing an electron beam toward a second area of interest of the sample, the second area of interest comprising an unknown composition of minerals;

determining a second working distance, the second working distance being the distance between the backscattered electron detector and the second area of interest of the sample;

compensating for the difference between the second working distance and the first working distance; and

detecting backscattered electrons from the second area of interest of the sample.

3. The method of claim 1 or claim 2, in which determining the first working distance further comprises determining a focal depth of the first area of interest, the focal depth being determined using an auto-focus feature of the microscope.

4. The method of claim 2, in which determining the second working distance further comprises determining a focal depth of the second area of interest, the focal depth being determined using an auto-focus feature of the microscope.

5. The method of any of claims 1 – 4, in which compensating for the difference between the first working distance and a predetermined working distance further comprises adjusting the z-axis position of a sample stage and/or the backscattered electron detector so that there is substantially no difference between the first working distance and the predetermined working distance.

6. The method of any of claims 1 – 4, in which compensating for the difference between the first working distance and a predetermined working distance further comprises:

modeling the effect of a plurality of working distance variations on detected backscattered electron levels;
calculating a backscattered electron level adjustment based on the difference between the first working distance and the predetermined working distance; and
adjusting one or more of the detected backscattered electron levels based on the calculated backscattered electron level adjustment.

7. The method of any of claims 1 – 6, further comprising determining the mineral composition of the first area of interest based on the detected backscattered electron levels.

8. The method of claim 2 or claim 4, further comprising:
determining the mineral composition of the first area of interest based on the detected backscattered electron levels from the first area of interest; and
determining the mineral composition of the second area of interest based on the detected backscattered electron levels from second area of interest.

9. The method of any of claims 1 – 7, further comprising:
detecting the energy of x-rays emitted in response to the electron beam; and
determining the mineral composition of the first area of interest based on the detected backscattered electron levels and the detected x-ray energies.

10. A method for determining the mineral content of a sample using an electron microscope, said method comprising:

directing an electron beam toward a first area of interest of a sample, the first area of interest comprising an unknown composition of minerals;

determining a first focal depth of the first area of interest, the first focal depth being determined using an auto-focus feature of the microscope;

determining a first working distance based on the first focal depth, the first working distance being the distance between a backscattered electron detector of the microscope and the first area of interest of the sample;

detecting backscattered electrons from the first area of interest of the sample;
directing an electron beam toward a second area of interest of a sample, the second area of interest comprising an unknown composition of minerals;

determining a second focal depth of the second area of interest, the second focal depth being determined using an auto-focus feature of the microscope;

determining a second working distance based on the second focal depth, the second working distance being the distance between the backscattered electron detector of the microscope and the second area of interest of the sample;

adjusting the z-axis position of a sample stage and/or the backscattered electron detector so that there is substantially no difference between the second working distance and the first working distance; and

detecting backscattered electrons from the second area of interest of the sample.

11. A system for determining the mineral content of a sample using a electron microscope, said system comprising:

a scanning electron microscope;

one or more energy dispersive x-ray detectors;

one or more backscatter electron detectors;

a system controller, the system controller comprising a computer processor and a non-transitory computer-readable medium, the non-transitory computer-readable medium being encoded with computer instructions that, when executed by the computer processor, cause the system controller to perform the steps of:

directing an electron beam toward a first area of interest of a sample, the first area of interest comprising an unknown composition of minerals;

determining a first working distance, the first working distance being the distance between a backscattered electron detector of the microscope and the first area of interest of the sample;

compensating for the difference between the first working distance and a predetermined working distance, the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons; and

detecting backscattered electrons from the first area of interest of the sample.

12. The system of claim 11, further comprising computer instructions for:

directing an electron beam toward a second area of interest of the sample, the second area of interest comprising an unknown composition of minerals;

determining a second working distance, the second working distance being the distance between the backscattered electron detector and the second area of interest of the sample;

compensating for the difference between the second working distance and the first working distance; and

detecting backscattered electrons from the second area of interest of the sample.

13. The system of claim 11 or claim 12, in which the computer instructions for determining the first working distance further comprise computer instructions for determining

a focal depth of the first area of interest, the focal depth being determined using an auto-focus feature of the microscope.

14. The system of claim 12, in which the computer instructions for determining the second working distance further comprise computer instructions for determining a focal depth of the second area of interest, the focal depth being determined using an auto-focus feature of the microscope.

15. The system of any of claims 11 – 14, in which the computer instructions for compensating for the difference between the first working distance and a predetermined working distance further comprise computer instructions for adjusting the z-axis position of a sample stage and/or the backscattered electron detector so that there is substantially no difference between the first working distance and the predetermined working distance.

16. The system of any of claims 11 – 14, in which the computer instructions for compensating for the difference between the first working distance and a predetermined working distance further comprises computer instructions for:

- modeling the effect of a plurality of working distance variations on detected backscattered electron levels;

- calculating a backscattered electron level adjustment based on the difference between the first working distance and the predetermined working distance; and

- adjusting one or more of the detected backscattered electron levels based on the calculated backscattered electron level adjustment.

17. The system of any of claims 11 – 16, further comprising computer instructions for determining the mineral composition of the first area of interest based on the detected backscattered electrons.

18. The system of claim 12 or claim 14, further comprising computer instructions for:

- determining the mineral composition of the first area of interest based on the detected backscattered electrons from the first area of interest; and

- determining the mineral composition of the second area of interest based on the detected backscattered electrons from second area of interest.

19. The system of any of claims 11 – 17, further comprising computer instructions for:

- detecting the energy of x-rays emitted in response to the electron beam; and

- determining the mineral composition of the first area of interest based on the detected backscattered electron levels and the detected x-ray energies.

1/7

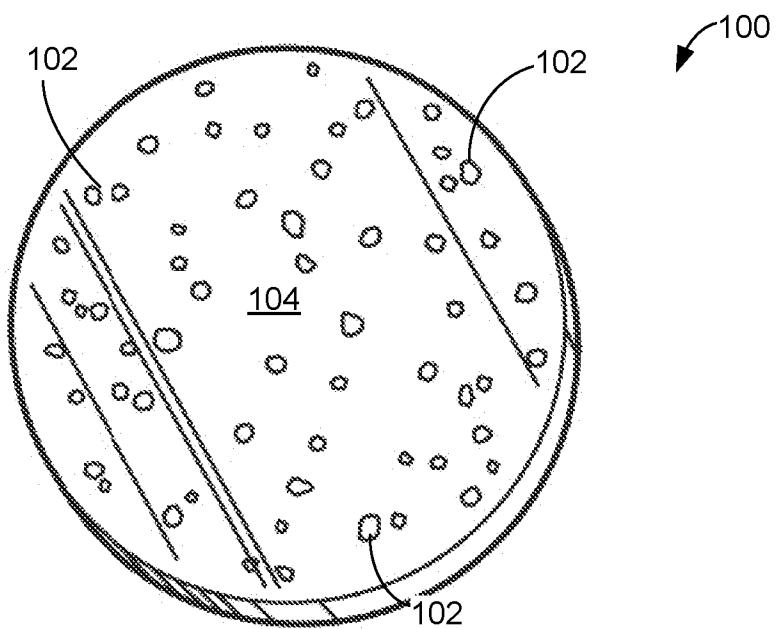


FIG. 1

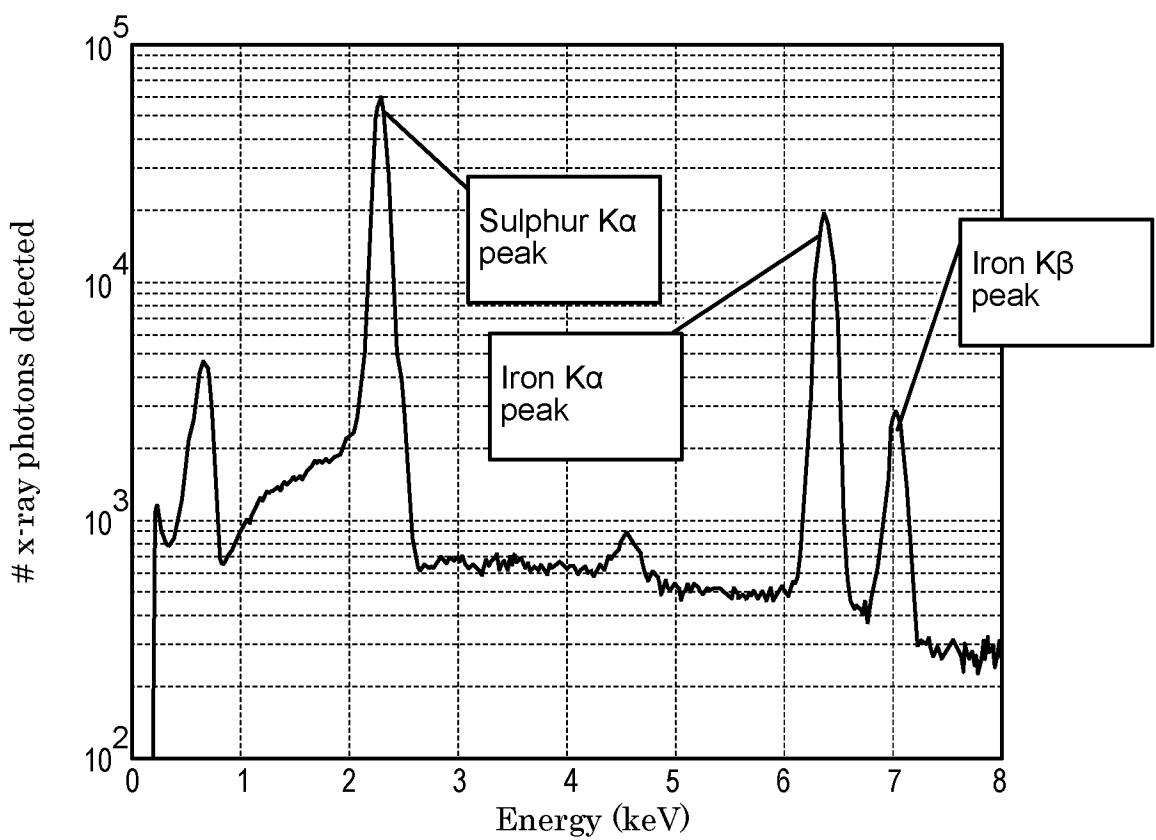


FIG. 2

2/7

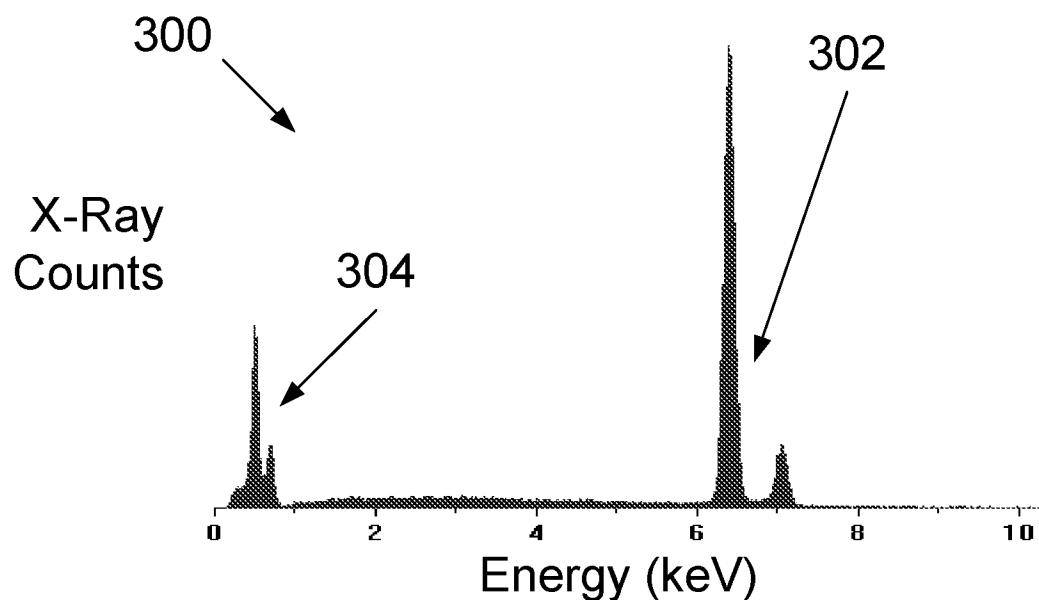


FIG. 3

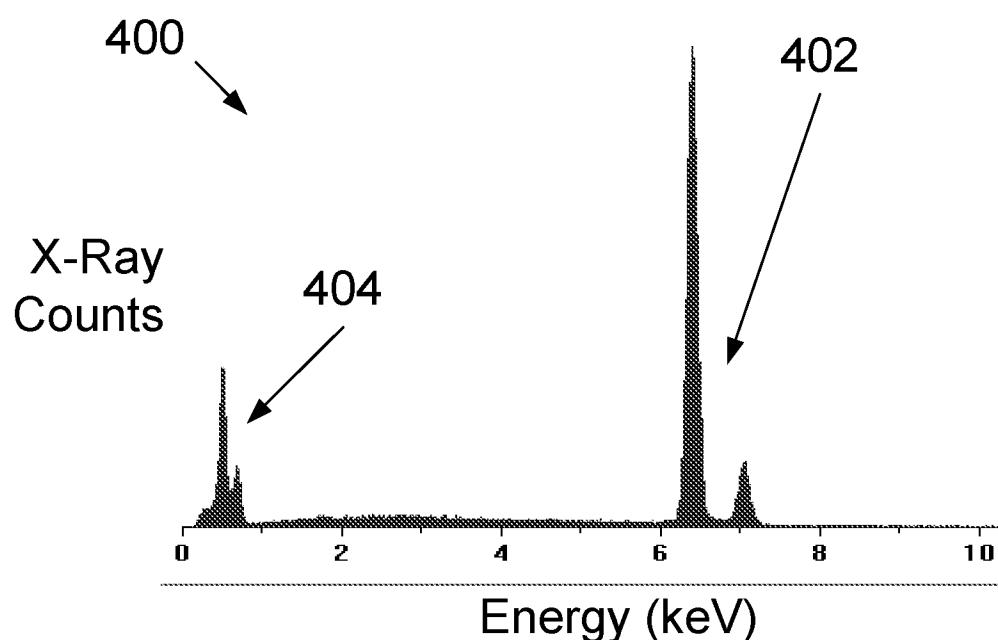
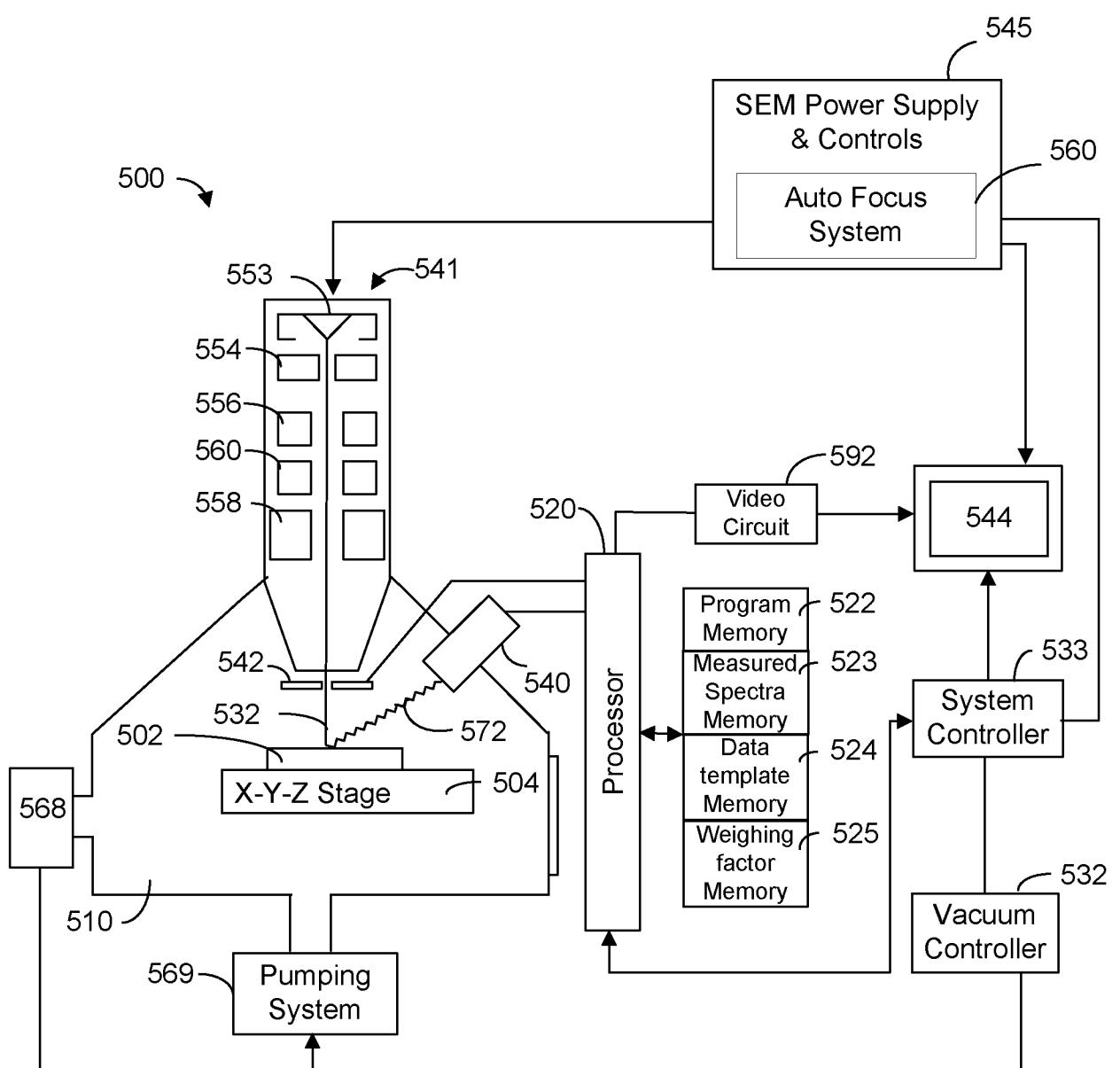



FIG. 4

FIG. 5

4/7

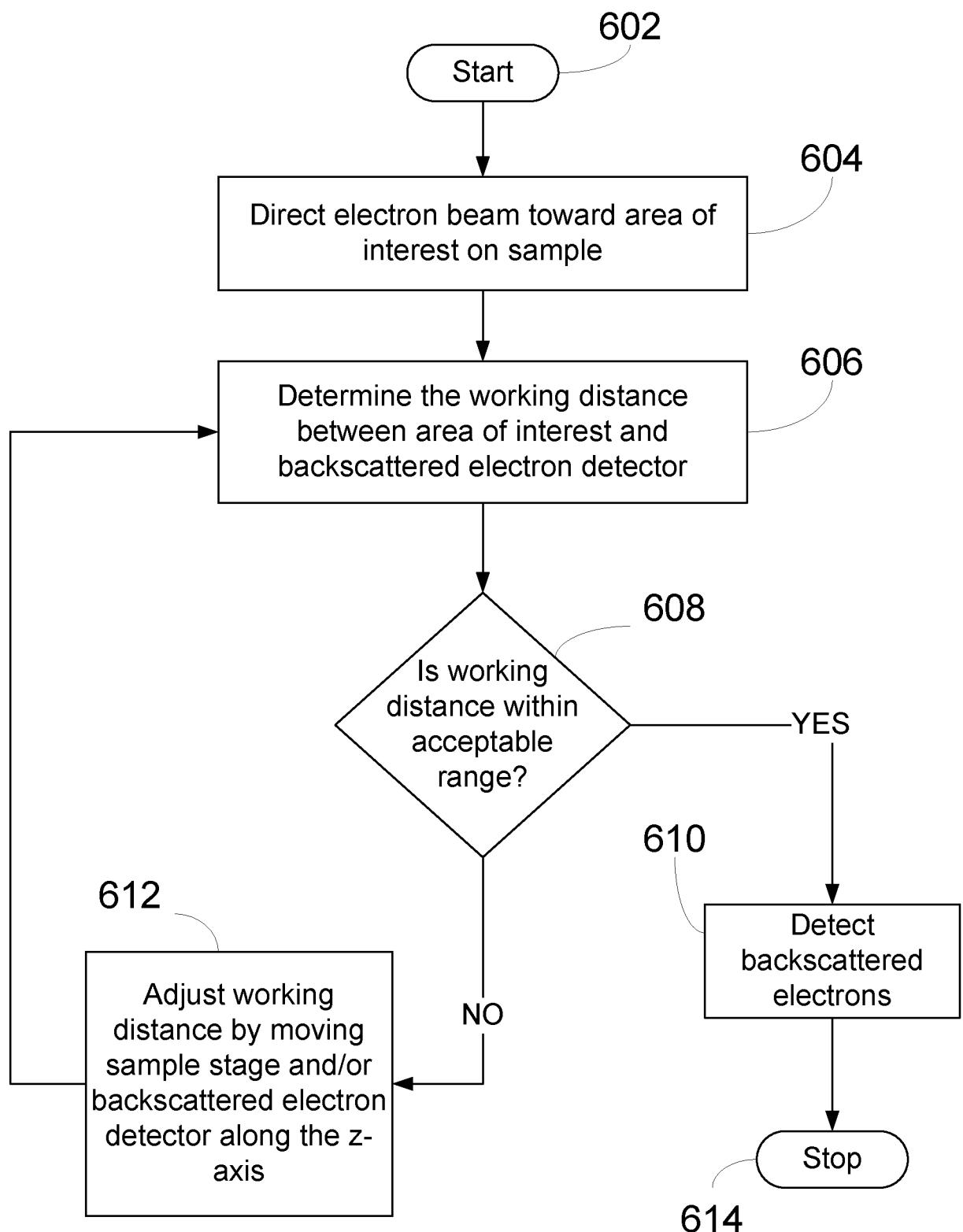


FIG. 6

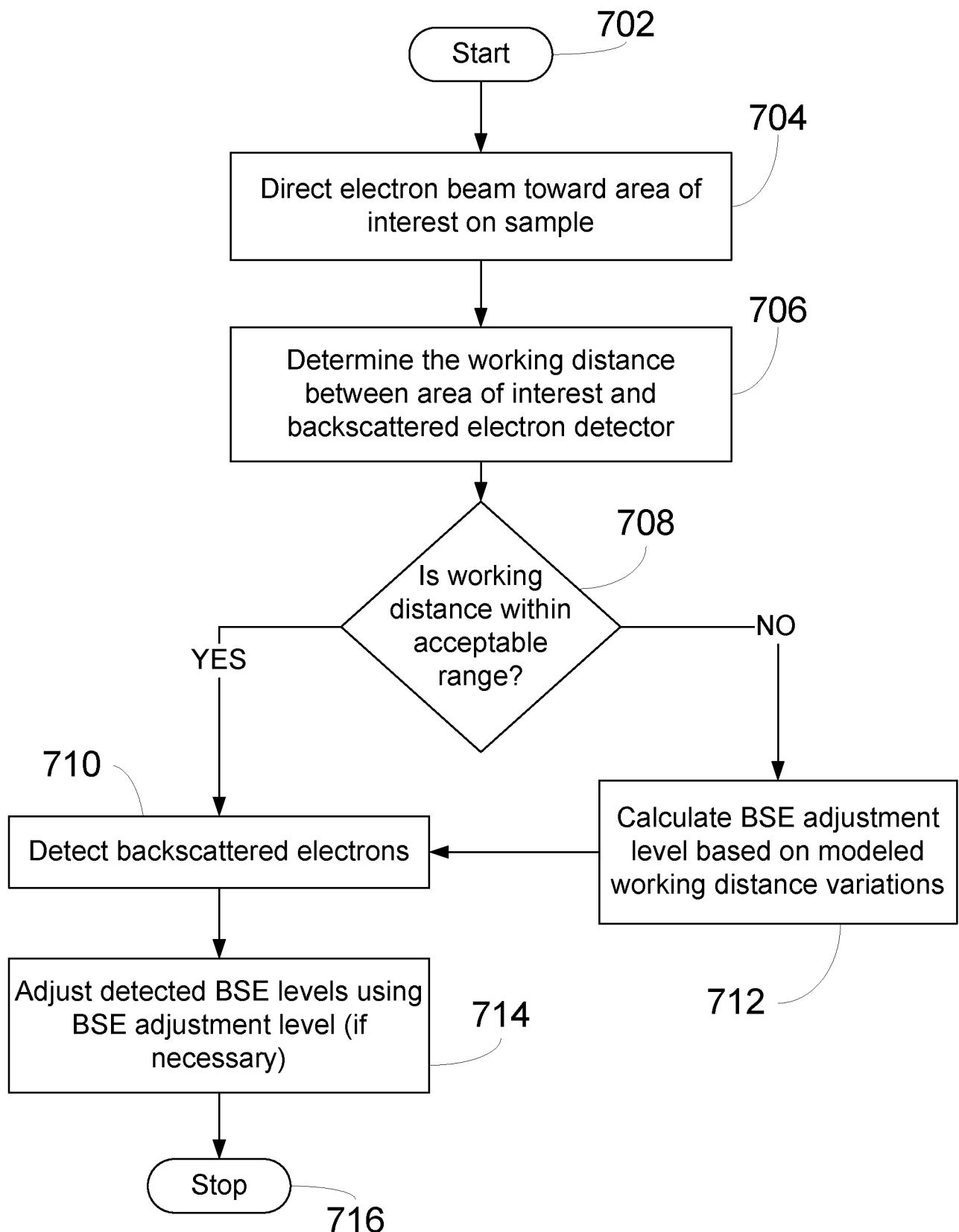


FIG. 7

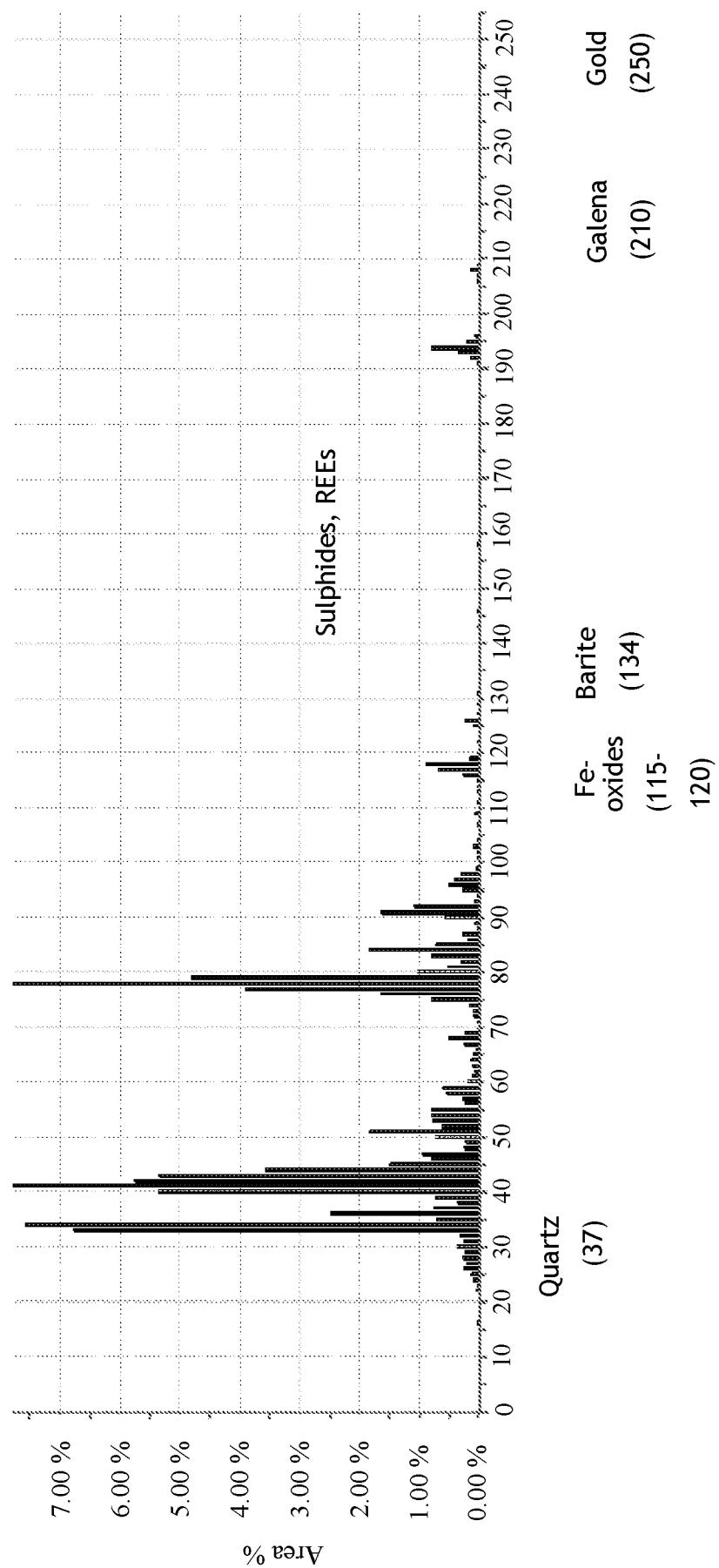


FIG. 8

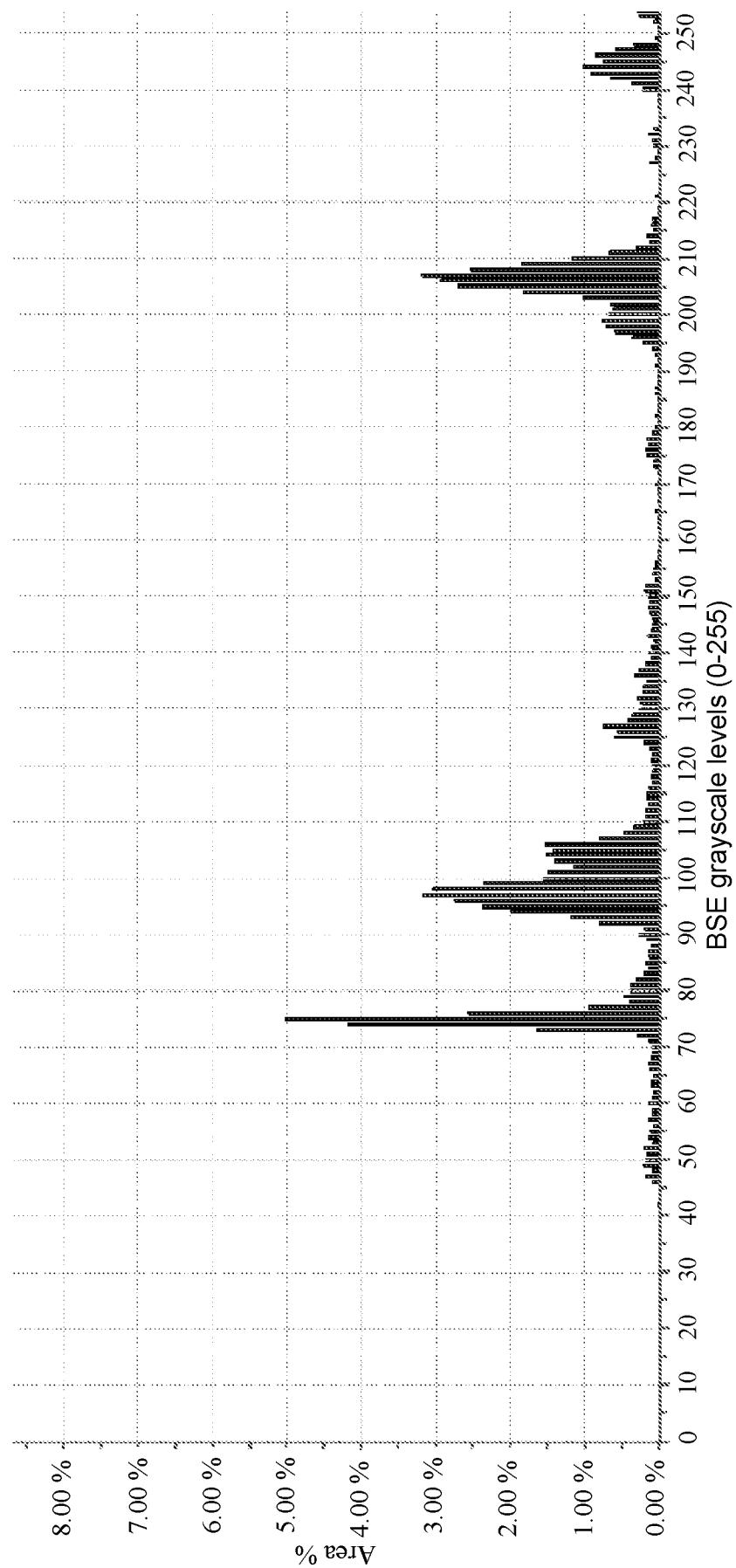


FIG. 9

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2013/061349**A. CLASSIFICATION OF SUBJECT MATTER****G01N 23/225(2006.01)i, G01N 23/203(2006.01)i**

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01N 23/225; G01N 1/28; A61B 1/00; G01B 11/24; G01N 21/64; G01N 23/00; G01N 21/17; H01J 37/26; G01N 21/86; G01N 23/203

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: SEM, compensate, detector, focus, distance and mineral**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5841149 A (SPINK et al.) 24 November 1998 See column 6, line 22 - column 11, line 32 and figure 1.	1-4, 8, 10-14, 18
Y	US 6166380 A (KITAGAWA et al.) 26 December 2000 See column 1, line 60 - column 6, line 30 and figure 1.	1-4, 8, 10-14, 18
A	JP 2009-075071 A (CANON INC.) 09 April 2009 See paragraphs 5-13 and figure 1.	1-4, 8, 10-14, 18
A	US 2010-0044566 A1 (DONITZ et al.) 25 February 2010 See paragraphs 6-29 and figure 1a.	1-4, 8, 10-14, 18
A	US 2012-0314206 A1 (SPIZIG et al.) 13 December 2012 See abstract, paragraphs 80-89 and figure 1b.	1-4, 8, 10-14, 18

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
25 April 2014 (25.04.2014)Date of mailing of the international search report
28 April 2014 (28.04.2014)Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

AHN, Jae Yul

Telephone No. +82-42-481-8525

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB2013/061349**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 5-7,9,15-17,19 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/IB2013/061349

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5841149 A	24/11/1998	EP 0755530 A1 EP 0755530 B1 EP 0801760 A1 EP 0822436 A2 EP 0822436 A3 EP 0822436 B1 EP 0827002 A2 EP 0827002 A3 EP 0827002 B1 JP 09-511579 A JP 09-512922 A US 5953114 A US 6043890 A WO 95-27917 A1 WO 95-27918 A3	11/08/1999 07/06/2000 13/09/2000 04/02/1998 04/11/1998 22/01/2003 04/03/1998 04/11/1998 09/06/2004 18/11/1997 22/12/1997 14/09/1999 28/03/2000 19/10/1995 21/03/1996
US 6166380 A	26/12/2000	EP 0877409 A2 EP 0877409 A3 EP 0877409 B1 JP 04007305 B2 JP 11-025898 A JP 2004-111401 A KR 10-0345362 B1	11/11/1998 03/01/2001 24/08/2005 14/11/2007 29/01/1999 08/04/2004 18/11/2002
JP 2009-075071 A	09/04/2009	JP 04859250 B2 US 2009-0057559 A1 US 7737402 B2	25/01/2012 05/03/2009 15/06/2010
US 2010-0044566 A1	25/02/2010	DE 102008001812 A1 DE 102008001812 B4 US 8283641 B2 WO 2009-138134 A1	03/12/2009 29/05/2013 09/10/2012 19/11/2009
US 2012-0314206 A1	13/12/2012	DE 202010010932 U1 EP 2561392 A1 JP 2013-525838 A WO 2011-131311 A1	07/10/2011 27/02/2013 20/06/2013 27/10/2011