(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

14 June 2001 (14.06.2001) PCT WO 01/41527 A2

(51) International Patent Classification: Not classified (81) Designated States (national): AL, AM, AT, AU, AZ, BA,
BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES,

(21) International Application Number: PCT/US00/20944 FL, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG,
(22) International Filing Date: 31 July 2000 (31.07.2000) MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
. . SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU,
(25) Filing Language: English ZA, ZW.
(26) Publication Language: English
(84) Designated States (regional): ARIPO patent (GH, GM,
(30) Priority Data: KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
09/467,545 10 December 1999 (10.12.1999) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(71) Applicant: BRODIA [US/US]; Suite 1530, 221 Main IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
Street, San Francisco, CA 94105 (US). CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors: HERMAN, Gary; 1040 Dolores Street #307,
San Francisco, CA 94110 (US). GOLDSTEIN, Theodore,
C.; 875 LaPara Avenue, Palo Alto, CA 94306 (US). MAR-
TINEZ, Ronald, G.; 226 Francisco Street, San Francisco,
CA 94133 (US).

Published:
— Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: GLENN, Michael, A. et al.; Glenn Patent Group, ance Notes on Codes and Abbreviations" appearing at the begin-
Suite L, 3475 Edison Way, Menlo Park, CA 94025 (US). ning of each regular issue of the PCT Gazette.

(54) Title: SMART ELECTRONIC RECEIPT SYSTEM

(57) Abstract: A smart electronic receipt system that provides intelligent receipts, called Smart Receipts, that electronically docu-
e ment a transaction between two parties and maintains a persistent connection between the two parties following a successful online
transaction. A Trusted Agent on the Buyer’s client system creates an order record which is stored in a database on a Trusted Agent
Server and starts the transaction process with the merchant. A Smart Receipt is delivered by a Smart Receipt Agent over a secure
I~ connection from the merchant to the Trusted Agent Server upon successful completion of a purchase and reflects the details of the
O\ transaction. It is stored in a secure database on the Trusted Agent Server and is made available to the Buyer (user) through a Trusted
Agent located on his machine. The Trusted Agent Server compares the order record Limited Edition Digital Objects (LEDOs) stored
in database with the Smart Receipt’s LEDO to find the corresponding order record. The Smart Receipt provides the customer with
~~ detailed information about an online purchase in a standardized format. Hyperlinks embedded in the Smart Receipt enable the cus-
tomer to access customer service and order status. The merchant may also embed additional services within the Smart Receipt,
including special offers for future purchases. Offers provided in a Smart Receipt can be personalized to a user’s preferences which
are stored on the Trusted Agent Server. Each Smart Receipt is comprised of a chain of LEDOs with each LEDO object having a
unique owner. A Smart Receipt is a dynamic entity and is continuously updated until the Buyer deletes it from the Trusted Agent
Server.

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Smart Electronic Receipt System

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

The invention relates to electronic commerce in a computer environment. More
particularly, the invention relates to the creation of intelligent receipts for electronic
commerce and impartial intermediation for electronic negotiations in a computer
environment.

DESCRIPTION OF THE PRIOR ART

Electronic commerce systems have grown dramatically in popularity in a very
short time. More and more consumers are switching from shopping in the local
shopping malls to shopping online across the Internet.

The current models for electronic commerce deal mostly with secure transactions
at the purchase stage. Digital certificates and Secure Socket Layers (SSL) are
used to ensure that the buyer’s transaction is secure from outside eyes.

However, the receipt stage of the transaction where the buyer receives
confimation of a purchase is still rather primitive. The current approaches to
issuing a receipt for a transaction are simply to send an email to the buyer
describing the transaction details or force the buyer to print out a transaction
summary web page. These approaches do not take advantage of the power of
the Internet and the buyer’s computer system.

Issuing a dynamic receipt to a buyer gives merchants and manufacturers an
opportunity to supply the buyer with more information about their products and
services, both present and future. Further, it gives the buyer a chance to give
merchants and manufacturers valuable feedback.

It would be advantageous to provide a smart electronic receipt system that
creates dynamic, smart receipts that allow merchants and manufacturers to
present value added services to the buyer. It would futher be advantageous to

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

provide a smart electronic receipt system that allows merchants and
manufacturers to constantly update the smart receipt to keep the buyer up to
date with current changes and information.

SUMMARY OF THE INVENTION

The invention provides a smart electronic receipt system. The system creates
smart receipts that allow merchants and manufacturers to include value added
services to the smart receipts. In addition, the invention provides a system that
allows the smart receipts to be dynamically updated with new information from
merchants and manufacturers.

A preferred embodiment of the invention provides intelligent receipts, called
Smart Receipts, that electronically document a transaction between two parties.
Smart Receipts maintain a persistent connection between two parties following a
successful online transaction. A Trusted Agent on the Buyer's client system
creates an order record which is stored in a database on a Trusted Agent Server.
The order record starts the transaction process with the merchant.

A Smart Receipt is delivered by a Smart Receipt Agent over a secure
connection from the merchant to the Trusted Agent Server upon successful
completion of a purchase. The Smart Receipt reflects the details of the
transaction. It is stored in a secure database on the Trusted Agent Server and is
made available to the Buyer (user). The user can sort and browse his Smart
Receipts through a Trusted Agent located on his machine.

The Trusted Agent Server compares the order record Limited Edition Digital
Objects (LEDOs) stored in database with the Smart Receipt’s LEDO to find the
corresponding order record. A transaction cannot be completed without a
matching order and Smart Receipt record pair.

The Smart Receipt provides the customer with detailed information about an
online purchase in a standardized format. Hyperlinks embedded in the Smart
Receipt enable the customer to access customer service and order status. The
merchant may also embed additional services within the Smart Receipt, including
special offers for future purchases. Offers provided in a Smart Receipt can be
personalized to a user's preferences which are stored on the Trusted Agent
Server.

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Each Smart Receipt is comprised of a chain of LEDOs with each LEDO object
having a unique owner. Smart Receipts are dynamic entities and are continuously
updated until the Buyer deletes it from the Trusted Agent Server.

The dynamic nature of Smart Receipts allow a merchant or manufacturer to
update a Smart Receipt at any time to notify a customer of new events. A
merchant can specify that a retum receipt be sent to the merchant when the user
receives the associated Smart Receipt. Merchants can also provide post-
purchase services to a customer by embedding additional information within a
Smart Receipt.

A further embodiment of the invention provides a Trusted Agent Server to act as
an impartial trusted intermediary between parties involved in a negotiation. each
step of the negotiation process is recorded as a LEDO in a Smart Receipt. The
Smart Receipt is stored on a secure database on the Trusted Agent Server in
the same manner as normal Smart Receipts. A Trusted Agent on each party’s
client system submits a party’s offer, counter-offer, or acceptance LEDO to the
Trusted Agent Server. Each party can browse the Smart Receipt through their
Trusted Agent.

Other aspects and advantages of the invention will become apparent from the
following detailed description in combination with the accompanying drawings,
illustrating, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an overview of an embodiment of a virtual property system according to
the invention;

Fig. 2 illustrates the basic relationships among elements of an embodiment of a
virtual property system according to the invention;

Fig. 3 illustrates a consumer login scenario used in connection with an
embodiment of a virtual property system according to the invention;

Fig. 4 illustrates a web purchase scenario used in connection with an embodiment
of a virtual property system according to the invention;

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Fig. 5 illustrates an account checking procedure used in connection with an
embodiment of a virtual property system according to the invention;

Fig. 6 illustrates a procedure for posting a newly created object for sale in
connection with an embodiment of a virtual property system according to the
invention;

Fig. 7 illustrates a procedure for posting a previously acquired object for resale in
connection with an embodiment of a virtual property system according to the

invention;

Fig. 8 illustrates the structure of a limited edition digital object used in connection
with an embodiment of a virtual property system according to the invention;

Fig. 9 illustrates aspects of a procedure according to Fig. 6;

Fig. 10 is a flow diagram showing a trusted agent process according to the
invention;

Fig. 11 is a block schematic diagram showing a customer in communication with
both a trust agent server and various business according to the invention;

Fig. 12 is a block schematic diagram that depicts the indirect technique according
to the invention;

Fig. 13 is a block schematic diagram that depicts the direct techniques according
to the invention;

Fig. 14 is a block schematic diagram that depicts the trusted agent storing
business objects on behalf of the customer according to the invention;

Fig. 15 is a block schematic diagram that depicts the customer sign up process
according to the invention;

Fig. 16 is a flow diagram that depicts the use of the trusted agent by a customer
during a commercial transaction with a merchant according to the invention;

Fig. 17 is a flow diagram showing the creation of a trusted agent according to the
invention;

10

15

20

WO 01/41527 PCT/US00/20944

Fig. 18 is a flow diagram showing merchant initiated user trusted service
registration according to the invention.

Fig. 19 is a block schematic diagram that depicts a merchant site communicating
with a trusted agent server according to the invention;

Fig. 20 is a block schematic diagram of a buyer/merchant transaction with a trusted
agent server hosting the smart receipt according to the invention;

Fig. 21 is a block schematic diagram of an exemplary smart receipt according to
the invention;

Fig. 22 is a block schematic diagram of a Limited Edition Digital Object (LEDO)
chain in a smart receipt according to the invention;

Fig. 23 is a block schematic diagram of a trusted agent server acting as a trusted
intermediary between two parties according to the invention; and

Fig. 24 is a block schematic diagram of an exemplary LEDO chain in a smart
receipt containing negotiation events according to the invention.

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

DETAILED DESCRIPTION OF THE INVENTION

The invention is embodied in a smart electronic receipt system in a computer
environment. A system according to the invention creates smart receipts that are
capable of presenting dynamic information to a buyer after the completion of a
transaction. In addition, the invention provides a system that allows merchants
and manufacturers to make value added services readily accessible to customers
through the smart receipts.

Overview of a Virtual Property System

A preferred embodiment of a property ownership and transfer system according
to the present invention is illustrated in Fig. 1 and Fig. 2 and referred to herein as a
"Transactor" system. The illustrated Transactor system involves a database 10, a
Transactor server 20, end-users 30, a Transactor broker 40, and an application
service provider (e.g., a game server) 50. End users 30 comprise end-user
computers (or "terminals") 31, 32, and 33, and end-user individuals 35, 36, 37,
and 38.

The illustrated Transactor system may include any number of end-users and/or
end-user terminals; an additional terminal and an additional user labeled ". . . " are
included in Fig. 1 to illustrate this fact. Database 10 and Transactor server 20 may
each comprise a plurality of databases and servers, respectively. Embodiments
ofthe system optionally may include any number of Transactor brokers and
application service providers with any number of associated end users.

The application service provider may be a general Intemet service provider
(e.g., AOL, CompuServe, Pacific Bell), a game specific service provider (e.g.,
Mpath, Heat, TEN), an open network market-specific service, a closed or private
network service, or any other service provided over a computer network. For
illustrative purposes only, the below discussion emphasizes the example of a
Transactor system in which the application service provider comprises a game
server, and the end-users comprise game clients.

End users 30 interact with one another and with game server 50 over a computer
network (e.g., the Intemet) 60 in a virtual world (e.g., an interactive environment
governed by a prescribed set of rules) provided by game server 50 and

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

supported by Transactor server 20. In this virtual world, digital property can be
owned by, used, and transferred among end users. End users can also transfer
digital property while offline (i. e., not in communication with the game or
Transactor servers). Transactor server 20 communicates with Transactor broker
40 over the Internet 60 or, optionally, by a direct communications link.

As llustrated in Fig. 2, other optional participants in the illustrated Transactor
system include Transactor-enabled vendors (e.g., web sites) 70, a consumer's
credit account holder 80, and a consumer's bank account 90. Transactor-enabled
vendors preferably are accessible via the Intemet 60, as are consumer's credit
account holder 80 and consumer's bank account 90. The illustrated Transactor
entities can be categorized broadly as clients and/or servers. Some entities may
act as both a client and a server at the same time, but always as one or the other
with regard to other specific entities. For example, a game server acts as a client
to a Transactor server, but as a server to its game clients.

The main categories of computing entities in the overall Transactor hierarchy are:

1) Transactor servers;

2) Transactor clients;

3) game servers; and

4) game clients (who are implicitly also Transactor clients).

o~ e~

It should be noted that these computing entities do not necessarily map directly
onto individuals, companies, or organizations. An individual, for example, may
have more than one Transactor account. Similarly, a game company may set up
game servers with more than one Transactor account.

1. Transactor Servers

As described further below, Transactor servers provide transaction and
ownership authentication to their clients, who may be other Transactor servers,
game servers, game users (which are game clients acting through a game server)
and Transactor users (which are not acting through any game server). Transactor
servers operate on Transactor user accounts and encapsulated Transactor
objects; they need not know the details of any particular game world that may
exist. '

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The Transactor servers essentially define a marketplace in which safe transactions
may occur, and existence and ownership may be asserted and verified under
rules (i e., "Transactor Laws ofNature") defined for the Transactor system as a
whole. The primary purpose of the Transactor system is to provide a safe
marketplace for objects and owners outside the scope of any game in which
those objects and owners might participate. If a potential game does not require
its game objects to exist outside the scope of its game universe, then using
Transactor to determine authenticity and ownership is not necessary. It may,
however, be more convenient or easier to use Transactor services than to create
a special-purpose property ownership and transfer system for that game.

A given Transactor server is responsible for the objects and users defined in its
own database. A Transactor server trusts other Transactor servers for validation
of all other objects and users. It can, however, detect certain kinds of cheating that
might occur in its conversations with those other Transactor servers.

In some embodiments, a group of Transactor servers have secure access to a
shared distributed database. In such embodiments, the group of servers
appears, for most purposes, as a single large Transactor server acting on a single
database.

2. Transactor Users

Transactor users are users that are in direct communication with a Transactor server
rather than in communication through an intermediary game server. Thus, they are
limited to the core Transactor activities of creating objects, making transactions,
and authenticating ownership and existence. All other activities are performed
through a game server.

3. Game Servers

To a Transactor server, a game server is a Transactor user that performs
transactions and limited types of authentications (e.g., verify game membership).
Among themselves, however, game servers define, in a conventional manner, a
game "universe" or "virtual world" for their clients, and operate on a set of game
objects using game rules that the game designer defines for that game. A game
universe includes all servers that run the game, the game software's behavior,
and the rules that define possible behavior for that game.

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

4, Game users

Game users are the participants in a game universe that exists on one or more
game servers. Preferably, most Transactor operations on the game's owned
objects are brokered by the game server, acting on behalf of the game user. In
such embodiments, the only time a game user appears as a Transactor user is
when object ownership must be authenticated or changed. Even then, however,
this activity may be brokered by the game server acting within the scope of the
game universe's possible actions.

The components of the illustrated Transactor system, along with their
implementation and use, are described in more detail herein. Prior to such
description, however, basic operations and transactions in an embodiment of a
Transactor system are described.

Scenario Examples

This section describes various uses of a Transactor system in the form of
exemplary "scenarios," which are illustrated in Figs. 3, 4, 5, 6, and 7. A scenario is
an exemplary use of Transactor technology to accomplish some purpose for a
user. A user may be a consumer, a vendor, or any other user of the Transactor
technology, including an intermediate server program that subscribes to Intemet-
based Transactor services; for convenience, the user is referred to consistently in
these scenarios as a consumer. ‘

The illustrated scenarios are representative examples only. Other scenarios and
their implementation will be apparent to those of ordinary skill in the art based on
the present disclosure. The scenarios refer to the elements of the Transactor
system illustrated in Figs. 1 and 2, along with certain details and components
described further herein.

The Login Scenario (Fig. 3)
Fig. 3 describes a process in which a user logs on, and optionally registers as a
Transactor user, in an exemplary embodiment of a Transactor system. As

illustrated in Fig. 3, the following steps take place:

In step 1 (illustrated at 102), the consumer (e.g., user 35) logs onto the
Internet 60.

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

In step 2 (at 104), the consumer logs onto a Transactor enabled service
provider (or onto a Transactor server).

At this point, there are several possibilities. The consumer may decide to
register as a Transactor user (step 3, at 106). Alternatively, the consumer may
decide not to register as a Transactor user and, consequently, leave the site (step
14, at 128). Alternatively, the consumer may already be a registered Transactor
user (step 8, at 118) and have no need to register as a Transactor user.

Assuming the consumer decides to register as a Transactor user, the consumer
fils out a registration form (step 4, at 108), identifying his or her charge account
and bank account information. When the consumer has entered the requested
information, the information is submitted to a Transactor server (step 5, at 110).
The Transactor server creates a new account and issues private data (e.g., user
key, password) to the consumer (step 6, at 1 12). The consumer receives and
stores the keys and other data, and obtains the Transactor client software (e.g.,
by download or mail) (step 7, at 114).

After the consumer has become a registered Transactor user (after completing
step 7 or step 8), the consumer logs into the client-side Transactor object
manager (which is described further herein and abbreviated "TOM") as a valid
user (step 9, at 116).

After logging in as a valid user, the consumer has a variety of options. The
consumer may decide (Step 10) to make a purchase (illustrated at 120 and n
Fig. 4). The consumer may decide (step 11) to check his Transactor account
(illustrated at 122 and in Fig. 5). The consumer may decide (step 12) to post an
object that he has created for sale (illustrated at 124 and in Fig. 6). The consumer
may decide (step 13) to post a previously acquired object for resale (illustrated
at 126 and in Fig. 7).

The Consumer Web-Purchase Scenario (Fig. 4)
Fig. 4 describes the process in which a user makes a simple purchase from a
web sales site and uses the new object on the network in an exemplary

embodiment of a Transactor system. As illustrated in Fig. 4, the following steps
take place:

10

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

In step 1 (at 202), a consumer (e.g., user 35) decides to make a purchase. The
consumer's TOM sends (step 2, at 204) signals indicating an intent to purchase,
along with the appropriate user ID and product information, to the vendor's web
site. The vendor's Transactor broker module creates (step 3, at 206) a transaction
record that incorporates necessary vendor IDs, product information and vendor
signatures with consumer's information.

The vendor then sends (step 4, at 208) a transaction record, as described further
herein, to the Consumer's TOM for signature. The consumer's TOM confirms
(step 5, at 210)the vendor's signature and transaction record contents, and signs
and forwards (step 6, at 212) the transaction record to the Transactor server. The
consumer's TOM also notifies (step 7, at 214) the vendor's server that the
transaction has been signed and a record has been forwarded to the Transactor
server.

The Transactor server then validates (step 8, at 216) the Transaction record and
contents, issuing an OK (i.e., transaction is valid) or a rejection (transaction is
invalid). If the validation is not OK, the operation is not performed and the user is
so notified (step 9a, at 218). If the validation is OK, the Transactor changes (step
9b, at 220) the object's ownership in the relevant database and determines all
splits and fees for all accounts involved (e.g., buyer, reseller, maker, service
provider); transactions for each account are then logged and new account
balances are computed.

The Transactor server then sends (step 10, at 222) a purchase OK to the
vendor's server, and the vendor's server receives (step 11, at 224) the OK and
repackages the existing unit with the consumer's ID.

The vendor's server then sends (step 12, at 226) the object to the consumer or
sends notification of where to download the object via FTP. The sale is logged as
complete.

Finally, the consumer's TOM server receives (step 13, at 228) notice of the sale
and downloads the object according to the instructions received in step 12.
When the object is subsequently used online, a Transactor server will verify the

ownership of the object.

The Consumer Account-Check Scenario (Fig. 5)

11

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Fig. 5 describes the process in which a consumer checks his Transactor account.
As illustrated in Fig. 5, the following steps take place:

In step 1 (at 302), a consumer (e.g., user 35) decides to check his
Transactor account.

The consumer's TOM sends (step 2, at 304) intent-to-purchase account
information (with appropriate user IDs) to the Transactor Server, either directly or
via a Transactor enabled web site or broker server. The TOM may operate
independently or through other Transactor enabled client software. The
Transactor server then sends (step 3, at 306) a validation challenge to the
consumer's TOM, and the consumer's TOM responds (step 4, at 308) to the
validation challenge. The Transactor server receives the response (step 5, at
310).

If the validation is not OK, the operation is not performed and the user is notified
of the failure (step 6a, at 312).

If the validation is OK, the Transactor server allows (step 6b, at 314Phe client
software (e.g. Java applets) to download the consumer's account information (not
persistent). The consumers TOM downloads (step 7, at 316), decrypts and
displays account information using applets (or other client software) embedded in
the web page (part of broker module, described herein).

The consumer then reviews (step 8, at 318) account information (along with othér
communications from the Transactor server, if any have been received) and logs
off or proceeds to other Transactor activity.

The Sale of Created Object Scenario (Fig. 6)

Fig. 6 describes the process in which a registered Transactor user posts an
object that he created for sale. As illustrated in Fig. 6, the following steps take
place:

In step 1 (at 402), a registered Transactor user (e.g., user 35) decides to
post an object that he has created for sale. The user the (step 2, at 404) logs into
the TOM to "package" his object, the TOM enters (step 3, at 406) the user ID
(e.g., AIA1A1) into the object package fields, and the user inputs data regarding,
for example, price, revenue model, and number available.

12

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The user logs on (step 4, at 408) to a Transactor Server directly or a Transactor-
enabled service provider, and is validated by a Transactor Server. The user then
uploads (step 5, at 410) the packaged object and fields with instructions for the
Transactor Server to create a new product.

The Transactor Server then verifies (step 6, at 412) that it received the data
correctly, and proceeds to create a product, giving it a unique product 1D
(B1B1B1). The Transactor Server then sends (step 7, at 414) the unique
product ID, and other product-related information, back to the user.

When copies of the product are sold, the Transactor Server will verify (step 8, at
416) buyer's (37) Transactor User status and the existence of available unsold
units for the buyer-designated product ID.

If the validation of user ID or product ID is not OK, the operation is not performed
and the user is so notified (step 9, at 418).

If the user ID and product ID are OK (step 9b, at 420) to produce a new unit of
the product, the Transactor Server creates a new unique unit ID and assigns
ownership of that unit to the buyer in its intemal ownership databases. The
Transactor Server then packages (step 10, at 422) the unit ID with ownership
information and the digital product itself, encrypts portions of the resulting data,
and sends the result to the user or informs the user where the packaged object
may be downloaded. The Transactor Server also updates (step 11, at 424) all
relevant accounts, computes and distributes splits.

The Sale of Previously Acquired Object Scenario (Fig. 7).

Fig. 7 describes the process in which a registered Transactor user posts a
previously acquired object for sale. As illustrated in Fig. 7, the following steps
take place:

In step 1 (at 502), the Consumer decides to post a previously acquired
object for resale. Using the TOM, the Consumer then indicates (step 2, at 504)
the asking price for the object and sends posting (and appropriate 1Ds including
TOM signature) to the Transactor Server.

13

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The Transactor Server then sends (step 3, at 506) a validation challenge to the
Consumer's TOM. The Consumer's TOM responds (step 4, at 508) to the
validation challenge. The Transactor Server receives (step 5, at 510) the
response.

If the validation is not OK, the operation is not performed and the user is so
notified (step 6a, at 512).

If the validation is OK, the Transactor Server includes (step 6b, at 5 14) the
object posting

in a log of objects currently for sale “classifieds." The object, or a pointer to the
object, is stored at a Broker Server for resale.

Another valid Transactor user, for example Consumer 36, logs on (step 7, at
516) to a Transactor enabled web site and activates her TOM to search for an
object to purchase. Consumer 36 searches (step 8, at 518) the Transactor
"classifieds" by object name, universe, price, or any other conventional search
criteria to find the desired object. '

Consumer 36 then locates (step 9, at 520) the object posted by Consumer 35
and decides to make a purchase. The TOM for Consumer 36 then sends (step
10, at 522) its intent to purchase (and appropriate IDs) to the Broker Server via
the Transactor-enabled web site. The purchase process continues (step 11, at
524) as in Fig. 4, with the Broker Server acting as vendor.

Limited Edition Digital Object

The Transactor system allows for the ownership and sale of limited edition digital
objects. An exemplary limited edition digital object (a "LEDO") 600 is illustrated
in Fig. 8. '

As shown in Fig. 8, LEDO 600 comprises a payload 606, a unit ID 602, and an
owner ID 604. Each of these elements are illustrated in corresponding dashed
boxes. Examples of LEDOs for use in game environment in connection with an
embodiment of a Transactor system comprise tools, characters, keys, spells,
levels, abilities, behaviors. A variety of additional types of LEDOs for use with
embodiments of a Transactor system will be apparent to those skilled in the art
from the present disclosure. In this example, each LEDO has a unique,

14

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

immutable unit ID, an owner ID indicating the current owner of the object and a
payload comprising binary data which defines the object characteristics.

Unit ID 602 is assigned to the unit during object creation and incorporated in the
LEDO during the initial object purchase. The owner ID 604 is assigned to the
user during User Registration and incorporated in the LEDO during object
purchase. Payload 606 comprises data which defines the object (e.g., textures,
data pointers, Al, object attributes). In preferred embodiments, the objects are
persistent such that they are accessible both when the user is in communication
with a server (e.g., a game server) and when the user is not in communication
with the server.

The number of LEDOs of a particular type can be closed or limited (e.g., the
product run is capped at a predetermined number) or open-ended. The unit ID
for each LEDO is assigned at its creation and is unique. The unit ID is immutable
in the sense that a change in the unit ID for a particular LEDO can be detected
and, in preferred embodiments, the LEDO loses functionality (e.g., it cannot be
used in the relevant game world) if it has been altered.

Additional Aspects of the Sale of Created Object Scenario (Fig. 9)

Fig. 9 describes the process in which a registered Transactor user posts an
object that he has created for sale in accordance with the previous description in
Fig. 6. The following description of the steps in this process uses the Fig. 6
reference numerals and step numbers, along with the Fig. 9 reference numerals:

In step 1 (at 402), a registered Transactor user (e.g., user 35) decides to post an
object that he has created for sale. The user the (step 2, at 404) logs into the
TOM to "package" his object, the TOM enters (step 3, at 406) the user ID (e.g.,
AlAIA1) into the object package fields, and the user inputs data regarding, for
example, price, revenue model, and number available.

The user logs on (step 4, at 408) to a Transactor Server directly or a Transactor-
enabled service provider, and is validated by a Transactor Server.

Steps 1 through 4 above are further illustrated in Fig. 9 by User 35 (identified by
code A1A1A1), digital object 700 (e.g., a file containing binary data), transactor
package 710 which wraps the object as described herein, and data fields 720.
Data fields 720 include a product ID field 722 for the identification code

15

10

15

20

25

30

35.

WO 01/41527 PCT/US00/20944

associated with the object (in this case, B1BIB1), a seller ID field 724 for entering
an identification code associated with the seller of the object (in this case,
A1A1A1), an owner ID field 726 for entering an identification code associated
with the owner of the object (in this case, A1A1A1), a price field 728 for entering
the requested price for the object (in this case, $5.00), a maker ID field 730 for
indicating the identity of the maker of the object (in this case, A1A1A1, the
owner), a revenue model field 732 to indicate financial terms associated with the
sale of the object (in this case, a straight sale), a total available field 734 indicating
the total number of objects of this type that are available for sale, and an FTP
field 736 indicating the delivery details for the object. In this case, for example,
the field shows a URL for a web site from which the buyer can download his
purchased object. The object is encrypted so that it can only be “unpacked"
(opened) by the buyer.

The user then uploads (step 5, at 410) the packaged object and fields with
instructions for the Transactor Server (illustrated at 740) to create a new product.

The Transactor Server (740) then verifies (step 6, at 412) that it received the
data correctly, and proceeds to create a product (illustrated at 750), giving it a
unique product ID (B1BIBI) shown in data field 762. The Transactor Server then
sends (step 7, at 414) the unique product ID, and other product-related
information, back to the user.

When copies of the product are sold, the Transactor Server will verify (step 8, at
416) buyer's (in this case, user 37) Transactor User status and the existence of
available unsold units for the buyer-designated product ID.

If the validation of user ID or product ID is not OK, the operation is not performed
and the user is so notified (step 9, at 418).

If the user ID and product ID are OK (step 9b, at 420) to produce a new unit of
the product, the Transactor Server creates a new unigue unit ID (illustrated at data
field 768 and, in this case, D1D1D1) and assigns ownership of that unit from the
seller (A1A1A1, illustrated in data field 764) to the buyer (C1C1C1 illustrated in
data field 766) in its internal ownership databases and in the new object (relevant
data is illustrated in data fields 760). The Transactor Server then packages (step
10, at 422; also illustrated at 770) the unit D with ownership information and the
digital product itself, encrypts portions of the resulting data, and sends the result
to the user or informs the user where the packaged object (illustrated at 770) may

16

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

be downloaded. The Transactor Server also updates (step 11, at 424) al
relevant accounts,
computes and distributes splits.

Trust Relationships

The illustrated Transactor system is predicated upon various trust relationships
among the Transactor entities illustrated in Figs. 1 and 2. These trust relationships
are as follows:

1. Transactor Servers

A Transactor Server trusts other Transactor Servers to correctly authenticate
objects and
accounts which are outside its own knowledge. This trust is mutual.

A Transactor Server does not trust a Transactor User. Accordingly, a Transactor
Server does not trust a game Server. All transactions and authentication must be
valid according to the Transactor protocol rules, or a transaction request will be
rejected. Both participants in any transaction are independently authenticated by
the Transactor Server.

2. Transactor Users

A Transactor User trusts all Transactor Servers to give correct information about
transactions, objects, and accounts.

A Transactor User does not trust another Transactor User, except to the extent
authenticated by a Transactor Server.

3. Game Servers

Game Servers, like other Transactor Users, trust their Transactor Servers to
perform valid ownership transfers, and to correctly authenticate user-accounts and
object ownership. Game Servers also trust the Transactor Server to authenticate
game objects themselves (i.e., detect data tampering), but only insofar as the
originally registered game object was itself correct in the game universe. That is,
if the originally registered game object was flawed or illegal for the game

17

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

universe, it will be "correct" as far as the Transactor Server is concerned, but will
be "incorrect" when the game server tries to use it.

Game servers need not trust their game users. In some embodiments, however,
game servers may trust game users without a Transactor server authentication.

Game servers trust other game servers that help create the game universe.
4. Game Users

Game users trust game servers to "play a fair game” (i. e., follow the rules of the
game universe). Game servers that do not play a fair game are unlikely to be
successful in the game market, but there is no final Transactor arbiter of what
constitutes a "fair game."

A game user need not trust another game user, except insofar as confirmed by
the game server for the given game universe.

Transactor Brokering

This section includes a description of how, in an embodiment of a Transactor
system according to the present invention, objects may be bought, sold, and
traded using a mutually trusted third party (a broker) in order to effect transactions
in other than real-time. For illustrative purposes, this is described in terms of a
"game," the rules of which define a model of conventional real-world brokering
and agency. A typical problem involving a game, game-players, and ownership
transfer is first presented. This example is followed by a brief analysis of a
"simple solution," which can be used in simple embodiments of a Transactor
system. Finally, there is a discussion of brokers, their actions, rules, and how this
solves the basic ownership-transfer problem when implemented in more
complex embodiments of a Transactor system.

1. An Exemplary Game Scenario and Implementation Problem
This example involves a simple multi-player game, running on a server machine.
The players own some Transactor objects, which reside on their own machines.

A few players decide to play a game using some (but not all) of their owned
objects, using the game server to run the "game world."

18

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The rules of this game allow game objects (encapsulated as Transactor objects
and initially existing on the player's machines) to be involuntarily "plundered” by
the brute force or trickery of any player, as well as voluntarily traded away, or
simply lost or dropped. In this game, possession equals ownership. Lost or
dropped objects not picked up by another player are "owned" by the game (or
game service provider). A Transactor server is contacted and a transaction (a
Transactor ownership transfer) made each time a game-object changes
ownership (e.g., it is plundered, traded away, lost, dropped).

To begin playing the game, users upload (or otherwise identify) their objects to
the game server, which authenticates ownership and validity with the Transactor
server. During play, an object changes hands, so an ownership transfer occurs,
and the Transactor server is again contacted, with all the overhead such an
ownership change entails. Each transaction also requires the owner's client
machine to participate, since that is where the user's digital keys, required for
ownership transfer, reside.

The basic problem is how a game server or anyone else in the above scenario
can truly enforce transferring ownership involuntarily; that is, without the active
assent of the object's original owner. Under ordinary circumstances, the owner
cannot be compelled to use or disclose his private key and, without it, ownership
cannot be taken away. Even if the game-client software running on the player's
machine automatically responded to a game server request to transfer
ownership, the user could have hacked the software to not permit ownership
transfers. Thus, in conventional circumstances, the game server would have no
way to enforce ownership transfer to the object's new owner.

One conceivable solution might be to have the game server certify to the
Transactor server that a new player is the actual owner, and to somehow confirm
that it really is the game server requesting this. This approach appears simple,
but would require greater underlying complexity in the overall Transactor system.
There would then be two kinds of transactions: a voluntary kind where both
participants willingly state that a transaction should occur (normal sale or trade),
and one where a third participant (the game server) says that a transaction should
occur, even if the owner doesn't agree. This arrangement would also require that
Transactor servers trust all game servers, thus opening up potential holes in the
overall system security model and greatly expanding the required trust
relationships in the overall system. It would also require that Transactor servers

19

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

distinguish a game-server account from other kinds of accounts, and treat them
differently.

In a large game with a persistent universe, this apparent solution would force the
Transactor servers to process huge numbers of transactions (one for every trade,
steal, plunder, or take), and require that the game servers certify that each
involuntary trade was legal (to guard against fraud or hacking). All this network
traffic must occur in real-time, or at least with an asynchronous capability. But that
asynchronicity can propagate to any depth, since objects may rapidly change
owners again before a prior ownership transfer has completed. This quickly
leads to a large "roll-back" problem that a game server must handle on its own.

2. The "Simple" Solution

In some embodiments, to solve the above-described problem, a game player
gives a "power of attorney" privilege to a game server during game play, and
rescinds it when the game ends or the player withdraws from play. Under these
"powers of attorney," the game server takes ownership of every object brought
into play, keeping track of the "true" owner. The game server then runs the game
according to its rules for who owns what and how they got it, and finally resolves
end-game ownership by transferring the objects to their most recent game-level
owners.

During game play, the game server must tag each object with it's current
"designated owner," starting with the ID of the original owner. The game server
stil owns the object, as far as the Transactor system is concemed, so the
designated owner is just a part of how the game is played. The tag is simply the
Transactor .user-ID of whoever has game-level ownership of the obiject.
Plundered objects are tagged with the user-ID of thelplunderer. Objects traded
voluntarily are tagged with the new owner's ID. Lost or dropped objects are
tagged with the Transactor user-ID of the game itself (i.e. the game service
provider's ID). When a player withdraws and takes his objects out of play, the
game server (which owns all in-play objects) transfers actual Transactor-level
ownership to the player. If a player's connection goes out, the game server
maintains the "designated owner" tags, subject to plundering by other players
within the game context. ‘

This arrangement requires only that game players trust the game server, which is
already required as described above. No additional trust is required between

20

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

game servers and Transactor servers. All transactions still involve only two equal
parties. The Transactor server need not distinguish between game-server ID's
and ordinary-user ID's, nor treat any user in a special way.

One downside to this arrangement is that, if a game is played and no objects
change “true" owners, there is an initial ownership transfer from the players to the
game server, plus a closing transfer back to the original owner. In embodiments
employing this "simple solution," there is no way to avoid this, because without it
the game server has no enforceable authority to transfer objects that are in play.
Fortunately, this activity is largely confined to game startings and endings.

These "power-of-attorney" transfers can occur asynchronously at the beginning of
the game, but players will probably want them to occur synchronously at game-
end. Mid-game "cash-outs" that remove objects from play (assuming the game
rules allow this) can be performed asynchronously, to minimize impact on game
play. In some embodiments, servers spawn sub-processes or call on concurrent
server-side programs to perform cash-outs synchronously, rather than burdening
the game-program with such non-game details.

In some embodiments, a game server provides “free parking" to game players
who want to keep their objects on the server and avoid most uploading and
downloading. The server retains ownership of the objects, but they are not
active in any game. These "parked objects" are not available to the player for
out-of-game trading, but can be reacquired by the player at any time.

3. Brokers and Brokering

The term broker in this description refers to any mutually trusted third party who
acts on behalf of two other parties to effect some pre-determined action. A
broker is trusted to act on behalf of the original authority, but only within the
boundaries defined at the time of the brokering agreement, and only for specific
designated objects. In order to actually complete a transaction, both participants
in the brokered transaction must trust the brokering agent to act on their behalf.
Thus, a broker is a mutually trusted intermediary in a transaction that occurs
between two other individuals, neither one of whom need trust the other.

As described below, a Transactor Server provides a means by which an
individual may grant trust to another individual in the Transactor system. This will
become clear from the following description of a "brokering game."

21

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

In a "Brokering Game," a broker is an agent. Its actions result in a safe trustworthy
transaction between two other parties, who are the "players" in the Brokering
Game.

A broker operates on an object, acting as intermediary in transferring ownership
between the original owner and the buyer. Users (players) in the Brokering
Game participate voluntarily, and willingly transfer ownership of their objects to
the broker with the understanding that they will get them back if the broker does
not sell the object.

The Game Universe of the Brokering Game consists of all the objects that a
given broker has for sale or trade, and the identity of each object's original owner
(the "designated owner"). The Brokering Universe may also contain requests by
players for the broker to seek out and obtain a certain kind or class of object.
These requests would require a more sophisticated Brokering Game program.

There may be any number of different Brokering Game Universes running at
once, on any number of different servers from different providers. They need not
communicate with one another directly, since each is only responsible for its own
objects and players (users).

Any particular instance of the Brokering Game may charge a fee to "play". That
is, it may charge a fee in order to broker a transaction. This fee is different from
the Maker's Fee computed by the Transactor Server. Fees are defined by
whoever creates a particular Brokering Game.

Brokers are typically connected through the Internet to a number of other brokers
(although they need not be). These brokers may communicate requests to one
another in order to complete transactions. These inter-broker communication
protocols are yet to be defined, but must be standardized for all brokers.

Brokers that do not communicate directly with other brokers behave as simple
public or private store-fronts for the sale of their users' objects (sort of a -
"consignment store"). This may entail a web connection (HTTP server) in addition

" to the brokering services, or it may be a "closed game" in which only registered

users can log on and participate. That is a decision to be made by the game
designer. It is not a Transactor rule or law.

22

WO 01/41527 PCT/US00/20944

The basic rules of the Brokering Game, or of any other game which acts as a
broker for its users, are as follows.

10

15

20

25

30

35

(1) All objects actively being brokered must first have their Transactor-
ownership transferred to the broker itself. This confers the power to sell
the object on the brokering agent and have the ownership transferred to
the buyer immediately, without requiring the original owner to participate
directly or in real-time.

(2) The broker can own objects that are not actively being brokered
because one or more criteria of the brokering agreement have lapsed.
For example, an agreement may place an end-date beyond which the
object cannot be sold. Since the user will probably not be logged in at
that exact moment, the broker must immediately take the object out of
active brokering "play", and hold it in "parking" or "escrow" until the user
reclaims the object. The broker cant simply email the object back to the
owner, because the owner's keys are required for the ownership transfer.

(3) players must trust the broker to retum unsold objects on demand, or
according to some predetermined criteria, such as after an expiration date.
This requires that the broker keep a record of the original owner, along with
all necessary relevant Transactor information about the owner, and the
criteria of the brokering agreement. The broker must retum these objects
as requested by the original owner, as authenticated by a Transactor
Server.

(4) Brokers must notify the original owner with all due haste when an
object has been sold. This is more than just a courtesy to players, since
the original owner may be a game server that requires some real-time
notification of a sales transaction in order to run its game in something
approaching real time.

Brokers should also notify the original owner when one of the limiting
criteia of the brokering agreements lapses, when the brokering
agreement itself expires, or some other criterion takes the object out of
active brokering "play.

The basic rules of brokering given above define a fundamental set of ground
rules by which brokers act for users. But they are not limited just to game servers

23

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

that only play the Brokering Game. If any game implements these rules using a
game-as-broker design, it can act as a broker on behalf of all its users, for
whatever purpose the game designers choose. One important such purpose is
to implement “plundering" (also called "stealing") and borrowing within a Game
Universe.

Plundering is a game rule that allows a game user to gain ownership of a
Transactor object simply by taking it (possession equals ownership). Normally
Transactor objects are useless to those who would simply take them (i e. copy
the file), because the object itself is encrypted under the owner's key, and
because a Transactor server would disallow the object's use except by the
owner. If, however, a game universe acts as a broker, then it owns all objects
that are in play, and no Transactor server is needed to "change owners”. Instead,
the game servers maintain a "designated owner," which starts out as the object's
original Transactor owner, but may be altered according to the game rules for
plundering when another user encounters the object. Since the game server is
acting as a broker, the player who brings the object into play must voluntarily
transfer ownership to the game server, fully agreeing that the game-play rules
determine who will eventually get actual Transactor-cettified ownership of the
object. If the game design allows objects to be taken out of play, then the most
recent "designated owner" receives actual Transactor-certified ownership of the
object, and receives the object from the game-as-broker, not from the object's
original owner.

Borrowing is a game rule or rules that define how an object may be used by
someone other than its owner, and perhaps how ownership of the borrowed
object may be transferred without the owner's direct permission should the
borrower "lose" the object. As with plundering, the game server acts as a broker
and actually owns the object as far as a Transactor server is concerned. Thus, any
rules that the game designer makes will be carried out on objects already owned.
Also as with plundering, there is a "designated owner" who can take the object
out of play and become the "actual owner" (i e. the Transactor-certified owner). A
borrower would typically be prevented from taking the object out of play by the
game rules. [f this is not done, then there is no difference in fact between a
borrower and a plunderer (since possession would equal ownership), and a
borrower would simply be a plunderer to whom you gave the object voluntarily
rather than involuntarily.

Other games that involve brokering comprise the following:

24

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

(1) Sales: More than just a neutral broker, a Sales agent would eam its
fee by actively seeking out buyers for the goods it has been charged with
selling. Like any broker, it owns the goods it is trying to sell, at least
according to an authenticating Transactor server. The "designated owner"
is the individual who wants the goods sold, and to whom ownership will
revert according to the agreed-upon rules and constraints, should the item
not be sold.

(2) Collectors and Searchers: A collector agent would seek out sellers of
goods described or designated to it by its users. It would then buy or
trade to acquire those goods, according to the instructions it was given by .
a particular user. A Collector agent may have several users who all want
the same object. The arbitration rules for deciding who actually gets an
object are for the designer to define. They are not a Transactor law or rule.
First-come first-served is one example of such a rule. Highest finder's-fee
is another. Bribery might be another. These are all valid Collector rules in
the Transactor universe.

(8) Gambling/Gaming: A casino or gambling house acts as a broker for its
patrons. It may charge a fee, or it may take a cut of winnings, or any other
arrangement. The objects wagered can be private currency or barterable
objects, depending on the house rules.

The above rules of brokering can be altered to give different fundamental play
experiences. For example, if the "designated owner" concept was eliminated,
then all objects brought into play would be in one large pool of unowned objects.
A raffle or other gambling situation might then distribute objects based on some
game-play rules, or just randomly. In this game, players would be willing to
relinquish all ownership claims to an object in the hope of getting some better
object brought into play by someone else. The game broker would retain
ownership of all unclaimed or unwanted objects. Users would have no
expectation of getting any of their own objects back.

Some brokering agreements may ignore the "retum on demand" rule, and only
retum objects to their owners when the brokering agreement expires. Certain
commercial operations such as auction houses might need this rule variation, to
guarantee to bidders that an object remained "in play" until all bids were in or the
brokering agreement expired. This would apply for real-time as well as delayed

25

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

auctions. These agreements will also probably have a minimum price that the
object must be sold for, just as real-world auctions do.

Services, Capabilities and Support Modules

Services, capabilities, and support modules used in an embodiment of a
Transactor system according to the present invention are set forth below, along
with a description of how these elements interact to produce the desired
outcome. ‘

It will be apparent to those skilled in the art, based on the present disclosure, that
embodiments of Transactor server and client software may be implemented n
many computer languages such as, for example, C/Ca or Java, and that
embodiments may be implemented in a manner that is portable across
Window/Windows NT and selected UNIX environments.

1. Transactor Elements and Services

A Transactor system according to the present invention can be broken down into
several elements and services. The primary division is into client-side elements
(termed tools) and server-side elements (termed services). Some elements,
such as embedded applets, can be viewed as lying somewhere between
these two elements, because they originate from and communicate with a server
yet run and operate on a client machine.

A tool is a distinct identifiable program or capability residing on a client's
computer. It is invoked directly by a user to accomplish a specific purpose. It is
more like a tool in a Word toolbar, rather than like a command-line tool in Unix.

Publicly accessible server-side elements appear simply as services on a
network, with no specific requirement that they be implemented as separate
server processes on a particular server machine or cluster of machines. A
particular service may be provided by a class or thread within a single server
program, or by a distinct server process on a machine, or by a group of server
machines, or even or by a distributed self-updating service like the Intemet's
Domain Name System (DNS). As long as the client users and other servers
know how to obtain the service, the details of providing it can vary.

26

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

In addition to supplying or integrating with Transactor services, a typical Transactor
merchant will also need to supply other conventional vendor services as
appropriate (e.g., a sales mechanism or metaphor, a stocking mechanism,
billing).

2. Transactor Client-Side Tools

Transactor client-side tools, discussed below, reside on and run from the client's
machine. Preferably, they are not embedded in web pages. A wide variety of
techniques for constructing the below tools will be apparent to those skilled in the
art, based on the present disclosure.

(a) Object Manager: The object manager collects objects into lists and
groups, examines

or browses objects, including unowned ones, etc. This is the "root"
Transactor tool from which all other actions (owner acceptance, wrapping,
unwrapping, etc.) can be performed.

(b) Owner Acceptor: The owner acceptor accepts a password or pass-
phrase typed in, applies it to a Transactor "keychain", and allows use of
resulting Transactor keys, if successful. In some embodiments, this tool is
implemented as an inherent part of the Object Manager.

(c) Object Trader: The object trader enables an accepted owner to
engage in object trading (selling or buying) directly with another Transactor
user. In some embodiments, this tool is implemented as an inherent part
of the Object Manager.

(d) Wrapper: The wrapper wraps a raw digital object (which may be an
existing digital object in the user's possession or a digital object newly
created by the user) with an owner's Transactor info, resulting in a
Transactor object.

(e) Unwrapper: The unwrapper unwraps an owned object, resulting in a
raw digital object and a separate file holding the data from the Transactor

fields.

3. Transactor Server-Side Services

27

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

These services are provided to both end-user clients as well as to other
distributed servers that need intermediate access to the service (i.e. vendor-
servers subscribing to the Transactor services). A wide variety of techniques for
implementing the below services will be apparent to those skilled in the an,
based on the present disclosure. |

(@) User Registrar: The user registrar register new users, issuing
Transactor ID's (TID's); allows registered users te edit their info; and
responds to a Bookkeeper's requests to validate TID's. It does not
validate objects or ownership, only the identity of users.

(b) Bookkeeper: The bookkeeper receives, confims, and logs all
transactions and transfers of objects; maintains accounts (distributes splits
to other users, etc.); and performs collect-and-forward transactions to other
mercantile servers (bank-cards and bank-deposits).

(c) Object Registrar: The object registrar register new objects, issuing
Object ID's (OID's); validates objects and ownership thereof, for
Bookkeeper; and performs ownership transfers in support of
Bookkeeper.

4. Vendor 's Server-Side Services

In some embodiments, a Transactor vendor will have utiize a Storekeeper
service, which keeps an inventory list; keeps a sales log of transactions; and
communicates with the User Registrar, Bookkeeper, and Object Registrar.

(a) Transactor Support Modules:

The above tools and services are built upon a common set of support modules.
A module should be treated as a related set of facilities or .capabilities, not
necessarily as a software-design element corresponding to a library, package, or
class. The core support modules are:

» Database Module

* Cryptography/Security Module
« Transactor-field Module

* Logging Module

* Financial Module

28

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Not all client-side tools or networked services will use every support module, but
they all use the same module whenever there is a need for shared data. For
example, all parts of Transactor use the same cryptography and Transactor-field
modules (and the same revision-level thereof); otherwise any exchange would
appear as gibberish to one side or the other.

Networking software may be provided either as a standard library (e.g., as for C
or C++), or as a standard part of the language system (e.g., as for Java).

(b) Database Module:

All information about transactions, users, objects, etc. is kept in databases.
Because some information is very valuable or sensitive, while other information
may change at a rapid rate, several actual databases preferably are maintained,
rather than a single all-encompassing database.

(c) Cryptography/Security Module:

This module is responsible for encrypting and decrypting all Transactor objects
and communications. It is also responsible for generating unique cryptography
keys, Transactor ID's, and Object ID's. Finally, it validates a password or pass-
phrase entered by a user to gain access to the Transactor "key-chain" file (i. e., it
provides client-side key-management functions).

(d) Transactor-Field Module:

This module allows other modules to read or write the Transactor fields of a given
object's Transactor wrapper independent of any actual game or other use. This
module also performs wrap and unwrap of raw digital objects.

(e) Financial Module:

Using the values from an object's Transactor fields, as received from the
Transactor-Field Module, this module computes splits, fees, etc. for all the
participants in a sales transaction according to an object's predetermined
Revenue Model. This module also distributes those amounts to each user
account in the database, and writes entries in the log. This module also interfaces
to third-party "bankware" to perform payments and billing of all user accounts. A

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

policy is defined so as to determine when, how often, at what amount, what
activity level, etc, to actually initiate a banking transaction involving the bankware.

A Revenue Model is a server-side software element that determines how
revenues accrue to Owners, Makers, etc. In some embodiments, it is preferable
to define several standard Revenue Models. In some embodiments, a "plug-in"
type architecture for additional Revenue Model components is also used.

(f) Logging Module:

A log provides a complete serialized list of every change to any Transactor
database. This acts not only as a backup in case of database corruption, but also
as an independent accounting audit trail for all transactions. The Logging module
maintains several such logs, serving different purposes as outlined in more detail
later. Most logging occurs on the server-side, but a client-side Logging Module is
responsible for logging a user's transaction history in the local transaction log. This
is purely for user information purposes.

Additional Features of Modules
1. The Cryptography/Security Module

Cryptography provides several features within Transactor: data invisibility, data
integrity, authentication, etc. Data invisibility means that the data is not visible to
any but an authorized user/owner. This is accomplished with encryption. Data
integrity means that data can be determined as being in an untampered form.
This is accomplished with secure hashing and digital signatures. Authentication
means that two parties who do not trust each other can each determine that the
other entity is who it claims to be. This is accomplished with authenticating
protocols that may employ encryption, hashing, digital signatures, etc.

This module is responsible for encryption and decryption of objects and other
data, as well as creation of cryptography keys. A Transactor ID and an Object ID
are part of the authentication system and, preferably, are uniquely identifiable and
cryptographically secure. User ID's may simply be sequentially assigned
numbers, from a pre-determined range allotted to a particular Transactor server.
Uniqueness is the only requirement. Object ID's may include a sequentially
assigned number, as well as hashed information about the object's contents,
maker, registration time, etc. These values are essentially impossible to forge or

30

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

fake, nor do they allow an altered or forged object or user to be improperly
recognized as valid. Since the user and object databases contain every known
ID, all objects and users can always be verified.

A Transactor users data may change over time, such as from a change of
address. This does not alter the originally issued Transactor ID. The registered
user simply enters the new data, while using the same ID originally calculated and
assigned.

A Transactor object does not change over time, so its Object ID (or a related
message digest or hash) can always be recalculated to verify that it has not been
tampered with. This is how objects can be verified as unaltered even without
transferring their entire contents to the Transactor Bookkeeper service.

The fact that objects are, in this sense, immutable once registered does not
prevent time-varying properties from accruing to the object. It only prevents that
variable property from being verified by the Bookkeeper. For example, a
game weapon may have a variable power level, but that variable must be kept
outside the "wrapper" provided for Transactor object validation. The weapon
itself may define intemal constants that limit valid power levels, and these would
be inside the wrapper to prevent tampering. Thus, the worst effect from
tampering is to gain a full power level.

One variable property that the Bookkeeper does track is existence (e.g. was the
object destroyed). Destroyed objects are still kept in the database, but are
marked as destroyed (or are moved to a separate "destroYéa"' database). This
makes such objects recognizable but unusable. An administrator may enact a
retirement policy that removes the majority of a destroyed object's data after
some period of time, to keep database size manageable. As long as Object
ID's, message digests, or hashes are retained so an object can be recognized as
destroyed, the object's entire original data-package need not be preserved.

2. The Transactor-Field Module

Every Transactor digital object preferably contains several data fields in the
object itself that identify the object and its owner, its original creator, the revenue
model, and how sales splits are computed. The Transactor registered-object
database holds the correct values of all unalterable fields, so any tampered field
can be easily identified and set right.

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Other Transactor modules use the Transactor-field values to determine how to
handle the object, or how to handle transactions involving the object. This
module provides unifoorm access to all readable fields, and constrained but
uniform access to writable fields. For example, anyone can read the Current
Owner field and retrieve the ID kept there, but only the accepted and verified
owner can write to that field. But even the owner cant do everything. An owner
can set a new price, but can't change the Maker or Spilit fields. The latter can only
be changed by the original Maker. |

3. The Financial Module

The Financial Module acts as the intermediary between Transactor transactions
and actual banking or payment-system (bankware) transactions. This module's
main purpose is to calculate and distribute the fee splits designated by the object
being sold. In the simplest case, this is basically a "calculate and forward" module,
and every Transactor transaction immediately results in one or more bankware
transactions. Such a simple implementation might not even need to keep any
account-balance information of its own, instead relying entirely on the bank-
maintained accounts to determine a user's balances.

A more sophisticated Financial Module might instead maintain its own "summary"
accounts for every user, and only perform bankware transactions at the end of the
day, and only for those accounts whose resulting daily balance was larger than
some predefined amount (e.g. more than $2.00 credit or deficit), or had gone
longer than 30 days without a transaction. By aggregating the bankware
transactions in this way, users and vendors are spared the overhead of large
numbers of tiny banking transactions. The detailed transaction logs and the
corresponding reporting tools provide a complete audit trail to determine every
detail that went into any aggregated banking transaction.

In such a "summary account" system, the user's current account balance is either a
positive or negative amount. At the end of each day (or other policy-defined
biling period), the cument balance is. zeroed out, and translated into an
appropriate credit deposit or debit charge against the user's designated outside
financial accounts. That is, a single bankware transaction occurs. If the amount is
small enough, it is simply carried forward to the next biling period and no
bankware transactions are performed for that user's account. The precise details
of “small enough", as well as other particulars such as a small balance carried for a

32

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

long enough period of time, will be determined by further research or an arbitrary
decision in the design. In any case, these parameters must be tunable.

There are advantages and disadvantages to any particular Financial Module
design, anywhere along the continuum between the two possible methods
presented above. These benefits and risks must be completely enumerated
and analyzed in further Financial Module design. In particular, issues of security,
expected server load, and customer or bank liability will be considered, along
with any legal or financial responsibility requirements.

A Revenue Model is a software element that calculates how ownership transfers
generate revenue for sellers or makers. A Revenue Model is designated by an
ID in the Transactor object itself, designated when the object was created by its
maker. The Revenue Model software component is passed information about
the object, the sale price, etc. and is responsible for calculating how much of the
sale price goes to seller, maker, broker, etc. These values are then retumed to
the main Financial Module for actual disbursement. Thus, the Revenue Model
software component has no knowledge or interaction with accounts, bankware,
etc. It only calculates shares in a revenue stream.

The above variations in underlying design should not be interpreted as
uncertainty in the Transactor design or bankware interfaces. Rather, they should
be treated as available options or modules determined either by the vendor
who installs a Transactor system, or as required to support different payment
options that may operate under different constraints (e.g., credit-cards, debit-
accounts, DigiCash).

4. The Logging Module

Depending on the capabilities of the database selected (for example, Oracle),
most data collected and processed by the different Transactor services is kept in
redundant form. The primary storage facilities are the various databases.
Redundant information is kept by time-stamping and logging every transaction
that alters any database. This log acts as both an accounting audit trail and as a
backup mechanism.

As an audit trail, the log can be searched (off-line using yet-to-be-defined tools)
to discover reasons for problems like, for example, account balance disparities or

33

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

contested purchases. It also clearly shows the time at which each transaction was
made.

As a backup mechanism, the log can be used to restore the databases should
they become corrupted. This is accomplished by starting with a valid backup
database and sequentially applying every logged alteration. The result is an up-
to-date database. In the safest setup, all log files are kept on a different physical
hard disk than the database files.

Note that separately implemented logging facilties may be eliminated as
redundant, as fault tolerance services of the Oracle database may more easily or
simply meet these requirements. However, the logging module is nonetheless
described here to illuminate the required functionality.

Rules of Logging

* Log-files must always be secured -- they hold sensitive or valuable data.

¢ Data is only appended to a log-file, never deleted.

e Every log-entry is automatically time-stamped with its entry-time into the log.
* Every transaction is logged, both valid and invalid ones.

* One log entry may correspond to several changes in the databases.

* Log-file formats should be compact (i.e. binary, not ASCII text).

Note that even rejected transactions are logged, since they indicate some kind of
problem (data loss, theft attempt, etc.). To prevent the log file from growing too
large, the Logging Module can switch to another log-file at any time, under
administrative direction (manually, at a scheduled time (e.g. midnight), etc.). A log-
file switch is performed using the algorithm outlined below. Log entries received
during the switch are queued up and eventually written to the new log-file. The
logger must never overwrite, truncate, or delete a file itself. If i fails to create a
new empty unique log-file, it will refuse to switch log files.

Log-files need not be kept forever. They can be moved off-line after some
period of time and retained only until their backup media is reused. The
scheduling of this should be one of the policies determined by the Transactor
administrators or owners, and implemented as a configuration option of the
Transactor software.

34

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Since log-files contain valuable sensitive data, they must be kept secure at all
times, even when off-ine. Log files may be encrypted to protect against
possible snooping. This option must only alter the data written to the log, not
any other aspect of its nature.

5. Log-File Switchover

A log may be 'reset' so that log-files do not grow too large. This does not
actually delete any data from the log. Instead, the logger switches to a new log-
file, leaving the prior log-file intact. Failure at any point aborts the log-switch, and
logging continues in the original file, with a log-entry made that a log-switch failed.
This switch is accomplished as follows:

0) a memory-based queue is created to hold log-entries received during
the switch. Entries are time-stamped with their entry-time into the queue.

1) a new file is created under a temporary name. It will be automatically
renamed after a successful log-switch has occurred. Failing file creation, no
log-switch occurs, so stop now.

2) On successful file creation, a transfer time-stamp is made. This time-
stamp will be used in several following operations.

3) A “transfer entry" is written to the new log file, stamped with the transfer
time-stamp. -

4) The prior log-file is written with an identical "transfer entry", and the file is
flushed to disk.

5) The prior log-file is closed.

6) The prior log-file is renamed by appending the transfer time-stamp to
the existing name, in an acceptable ASCII format (i e. no illegal characters
for the machine).

7) The new log-file is renamed to the old log-file's name. Depending on

the platform, this may require closing the new log-file, renaming it, then
reopening it and seeking to the end.

35

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

8) The new log-file is written with a "linkage entry" noting the new name of
the prior log-file. This entry is time-stamped with the actual time of log-
switch completion, not the earlier transfer time.

9) All queued log-entries are appended to the new log-file.

After completion of the above steps, the old log-file can be moved off-line, or to
backup media, or whatever. New log entries will be appended to the new log-
file, which starts out with at least two entries: the transfer entry and the linkage
entry. Any log-entries received during switchover are also in the new log-file.

Transactions and Transaction Records

A Transactor transaction occurs whenever ownership of an object is transferred
from its cument owner to a new owner. A transaction record is the collection of
data that describes all the entities involved in that transaction and the type of
transaction requested. Transaction records can be valid or invalid, solely
depending on their contents. A critical Transactor service is to recognize and
prohibit all invalid transfers by rejecting invalid transaction records. It is the
Bookkeeper that performs this service, with support from the Object and User
Registrars.

A transaction record basically looks like this:

Type: Seller sold Buyer this Object on Date for Price, by time X; signed
by Seller, then Buyer.

This directly translates into a data representation format:
T: S sold B this O on D for P, by X; signed: SS, BB.

T is the type of transaction record, identifying the rest of the data for the Transactor
server. Sis the Seller's TID, which must also be the original owner of the object.
B is the Buyer's TID, which will be the new owner of the object. O is the
transferred object's unique Object ID (OID), or some yet-to-be-determined
unforgeable token representing the object itself (e.g. a message digest or secure
hash). D is the date and time (expressed in GMT for uniformity) at which the
transaction occurred. P is the agreed-upon price, if it was a sale for money as
opposed to barter. X is an expiration-time a short time after the transaction

36

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

record is completed. Its purpose is explained below. The entire transaction
record is then digitally signed by the Seller SS, then by the Buyer BB. This
collection of data is then sent to the Bookkeeper service for validation and
approval. If approved, the given object's ownership is transferred to the buyer,
and the new ownership is recorded in the database. If rejected, there is no
ownership transfer, but the Bookkeeper retains the record so it can detect
pattems of fraud or other difficulties.

The Seller constructs the transaction record and fills in all fields, then signs it. The
transaction record is then sent to the Buyer, who decrypts it, verifies the Seller's
signature, then signs it, encrypts it again, and sends it to the Bookkeeper service.
These last steps requires the Buyer's cooperation, so the Seller must trust the
buyer to actually sign and forward the transaction record. Without the expiration-
time X, this would be a security flaw, since Sellers are not required to trust
Buyers. Adding an expiration-time declares a deadline after which the transaction
record is automatically invalid, so the Seller is no longer entirely dependent on the
Buyer's good behavior. The Buyer must submit the transaction record to the
Transactor server before this deadline, otherwise it will be rejected, even if all
other data is correct. This deadline prevents the Buyer from holding the Seller's
object "hostage" for an indeterminate time, effectively preventing its sale or use
elsewhere. After the deadline, the Seller can sell the object to someone else
without fear that a bogus delayed transaction record will be sent in by an
unscrupulous Buyer. A short deadline (say 30 seconds) can be used as the
inttial time-out, but if network delays cause rejection, this can be automatically
increased by somé increment up to some reasonable upper limit (say 3
minutes) that both Seller and Buyer agree on first.

Because both the Buyer and the Seller sign the transaction record with their
private digital-signatures, neither one can later claim ignorance of the transaction
and demand that ownership be restored tie. the protocol provides non-
repudiation). If either one detects cheating or improper data uéing its own
knowledge, it can simply refuse to sign the transaction record. Both signings are
voluntary.

In preferred embodiments, rather than validating individual users or objects, only
entire transaction records are validated. If any part of the transaction record is
invalid, the entire transaction is rejected and a reason retumed. [f the complete
transaction is validated, then approval is given, and the clients then transfer the
data.

37

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

When a transaction record is rejected, it can be for various reasons. Invalid ID's for
any participant is one reason, invalid signatures is another, and unintelligible data
is yet another.

Some reasons may be embarrassing for either Buyer or Seller, such as
"insufficient funds”, so not all reasons for rejection are sent to the clients, only
some. A detailed design must list all rejection reasons and which are sent to
clients.

When a transaction record is accepted, the Bookkeeper tells the Financial Module
to calculate and distribute sales splits, fees, etc. It also updates the object and
ownership databases to reflect the resulting object transfer. All intelligible
transaction records, whether accepted or rejected, are logged to a transaction log-
file. Certain patterns of rejections may send a security notification to an
administrator, or take some other predefined action. Garbled transaction-record
attempts are not logged to the transaction log, but may append an entry to -a
"problem with host H" file for later perusal and action by an administrator.

1. Identifying Authentic Objects

The value of O in a transaction record must be something more than just the OID
of the object. This is to prevent various fraud schemes whereby having an
object's ID would be equivalent to having the object. One way to avoid such
problems is to have the O value be a collection or composite of several values
that not only identify the object, but also act as an assurance that the object is
really in S's possession, and really owned by S. One part of this composite is
the OID. The "assurance value" needs to be something that can only be
calculated by the object's true owner, such as a message-digest of the object's
decrypted contents (only possible for the owner and the Bookkeeper)
combined with the values for B and D to introduce unpredictability. Without the
unpredictable values of B & D (and perhaps some other random strings), a
cheater could have precalculated the object's message-digest, and it would
never change even after the object was sold or destroyed. Thus, the main
reason for using a message-digest would be lost.

2. Transaction Types

38

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Although entire transaction records are the only thing validated by the
Bookkeeper, each transaction record has a type identifier in it, and certain idiomatic
patterns of data in the records. Here are some obvious forms, although there are
probably more that are useful.

All the following patterns have idiomatic values defined in the transaction record
formed as:

T: S sold B this O on D for P, by X; signed: SS, BB.

Only the idiomatic distinctions are pointed out, while all other fields retain their
normal meaning. In particular, the D field always contains the date/time of the
request, and the content are always signed by at least one participant. Some
fields have no meaning outside of sales transactions, such as the price P, which is
zero on all the following.

Verify a User (TID) S is the user making the request. B is the TID being
checked. O is all zeros. The record is only signed by SS. An "OK" response
means that B is a valid TID. Rejection may mean any error.

Validate an Owned Object S equals B, and is the user making the request.
O is the object identifier/digest. The record is only signed by SS. An "OK"
response means that the object is valid and is owned by S. Rejection may mean
any error.

Validate an Unowned Object S is all zeros. B is the user making the
request. O is the object identifier/digest. The record is only signed by BB. An
"OK" response means that the object itself is valid, but its ownership t
undetermined. This prevents non-owners from inferring another user's owned
objects by probing with valid Object ID's. Rejection may mean any error.

Special Object Properties and Situations

The Transactor software system is a flexible general-purpose system for
establishing ownership and for conveying products and payments. It is not
limited to real-world monetary transactions, nor to purely digital objects. Following
are some specialized features that are available, in some embodiments, as
options to Transactor service providers.

39

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

1. Preview Objects

When an ordinary user is offering an owned object for sale or trade, it is useful for
the buyer to examine the on-screen representations of the actual object tie. its
image or sound) on his own machine. These may be beauty shots or the actual
images that are part of the object. It does not include any of the object's
behaviors, however.

These previews are one use of a special property that can be given to a
Transactor object: the transient property. Transient objects provide a mechanism
to allow exchange of data between users or client and server that exploits the
security and consistency of the Transactor protocols, while not transferring
ownership or utility to the receiver. Transient objects cannot be stored in a user's
inventory, and they automatically disappear when the connection with their
originator is broken.

To create a previewable object without transferring the entire real object (which
could be much larger), the original complete object may contain or refer to a small
embedded transient "preview" of itself which can be separately extracted and
sent to the prospective buyer. This transient object has no value, is unusable in
play, and cannot be traded or retained in the user's inventory. It is purely for
examination before purchase. Its Object ID does not exist in any Transactor-
server database, since it is created on-the-fly, so it cannot be traded.

Not all Transactor objects must contain previews. The user may already have all
the previewable images or elements possible for a game or other scenario (e.g.
on the original CD-ROM), and it would suffice for the buyer to know that a Model
X41 Laser Pistol was being offered. The software would then load the
previewing images or other representations from the buyer's local machine (hard
disk or CD-ROM), and no preview object would be needed.

2. Membership Cards

In principle, a membership card is a persistent "entry visa" to other services or
privileges. It is persistent in that it cannot be spent or expended like currency,
and has no inherent value as currency (but may have collectible value). It allows
entry or access to services, because the service provider can see the user
present a valid card. Membership cards usually have an expiration date, nor are

40

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

they transferable to another user except by the issuer. A passport is one
example of a "membership card", as is a driver's license.

A membership card also identifies the holder as a member of the issuing
organization, but this is primarily for use by other organizations, since in an
electronic world an organization may be presumed to have an available
database of members, making membership cards superfluous. As a real-world
example, membership cards may be used across organizations, such as
showing a specific aidine's frequent-flyer card to receive a discount at a particular
car-rental agency. The car-rental agency cant redeem miles, but can give a
discount after seeing a valid card. Thus possession of the card has value, even if
not as currency.

Membership cards are one application of a special property of Transactor
objects: the assigned property. An assigned object is owned like any other
Transactor object, but its ownership cannot be changed by the owner, only by
the makerfissuer. Specifically, the assigned object cannot be sold or traded
away until after it expires (thus not interfering with any potential collectibles
market). If the issuer creates the object with an expiration date, then the object is
only valid until that date.

All assigned objects contain the nomal Transactor fields identifying the owner,
maker, etc. But since these fields are inherently alterable, the assigned object
must have an override mechanism. That override is contained in the digitally-
signed and inherently unalterable body of the object. It consists of an additional
packet of data labeled as "assignment data" and appearing in a standardized
form, which contains the TID of the issuing organization, the TID of the assigned
owner, and an assignment expiration date. These unalterable fields automatically
override the nomal Transactor fields, and thus prevent the object from being
traded away or transferred. Since the issuer and assignee TID's are visible, the
user's membership in that particular issuing organization is confirmed to any third
party who requests a membership card.

The assignment data packet may also hold an expiration date. When used
beyond that date, the object is no longer valid, and should be treated as if the
object did not exist. For the case of membership cards, this represents the
membership expiration date. For other kinds of assigned objects, it may
represent a deadline or some other fixed date or timestamp, as defined by that

“ kind of object' s unique requirements.

41

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Membership cards may be defined by the issuer/maker to hold preferences or
other demographic data about the assigned owner. This data may be
encrypted, visible only to the issuer, or it may be cleartext, visible to any
organization that the card is presented to. In the real world, for example, driver's
licenses are effectively membership cards. A "motorcycle" endorsement or
"corrective lenses" restriction are owner-specific information encoded on the card
itself.

3. Private Currencies

A private currency is any fungible valuable medium of exchange that does not
represent actual money. The term fungible means that the nature of the object
makes it replaceable and non-unique, such as grain or cash is in the real world.
The term valuable simply means that people might have a reason to collect
pieces of the exchange medium, other than as collector's items. So private
currencies do have real value, even if not directly convertible to cash. Some real-
world examples are frequent-flyer miles that accrue and earn airline tickets or hotel
stays, or the "bonus points" awarded by some long-distance phone camiers that
can be redeemed for phone-time or merchandise. But perhaps the best-known
example is S&H green stamps — they are fungible and valuable, but have no
actual cash value.

When a Transactor system is installed, its medium of exchange is defined as
either money or a private currency. If the private currency option is chosen, then
a CurrencyConversion supporting module is configured and installed in the
system. This module converts private currency amounts into money amounts, as
needed by other modules in the system (e.g. the billing department). The actual
conversion data is defined in a vendor-specific database, which is kept secure on
the vendor's servers, and can be edited by the vendor at any time.

A private-currency Transactor system requires conversion into and out of the
private currency. Conversion into private currency is made as a money-purchase
of some number of units of the private currency. For example, a user spends
$10 and has 1000 quatloos credited to his account. This can be a straight linear
conversion, or it can be tiered (e.g. spend $20 and get 2500 quatloos), all as
defined in the conversion database.

42

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Normal spending of the private currency is simply a “redemption” of the private
currency in exchange for an object. This needs no conversion, only the price of
the object expressed in the private currency, e.g. 200 quatloos to purchase a
new laser-pistol digital object. The buyer's account is debited and the object is
transferred to the new owner. If the seller were another user, then the -seller's
account would be credited. Nowhere is a conversion out of the private currency
required. Note that this is true even when physical objects are being purchased
(e.g. the example of S&H green stamps did not require cash, either).

Conversions out of the private currency only occur when outside organizations
are involved. For example, if a phone company were offering conversion of
quatloos at 50 per minute of long-distance time, then a conversion would need to
be performed. This information is contained in the database, and identifies not
only the conversion rate, but the identity of the offerer (phone company), the
expiration date of the offer, and any other limits on conversion (not more than
5000 quatloos per individual). All this data is used to perform an outside
transaction, according to the protocols for physical objects (described next).

Purchasing Physical Objects

Physical objects can be bought and sold on a Transactor system, in addition to or
as an alternative to purely digital objects. For example, a user can buy a T-shirt
or a game accessory as easily as a new digital game object. The user
immediately receives an assigned digital object representing the purchase of the
physical object, and later receives the actual physical object via a shipping
channel. Any conventional shipping channel may be used for this purpose.

The purchase of physical objects requires an interface between the Transactor
server and a merchandise supplier. This is similar in concept to the interface
between the Transactor server and financial institutions, and is accomplished using
identical supporting software and interfaces; that is, the merchandise supplier
appears to the system as just another outside organization providing “financial"
services. The only difference is that the middleware deals in merchandise orders
rather than in monetary transfers. Both types of transactions involve transfer of
value, account reconciling, security aspects, etc.

When a user purchases a physical object, his account is debited in the normal
way. A new digital object is created and transferred to the user. This digital object
represents the merchandise order, and contains all the information one would find

43

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

on a regular order receipt: date of order, price, tracking number, buyer, seller,
shipper, shipping address, etc. Thus, the digital object serves as a digital
receipt. The digital object, however, can also contain other elements, such as
beauty shots of the purchased physical object (e.g. JPEG images), preferably
rendered to match any optional features, like color or size. This digital object is an
assigned object having no intrinsic value (described above, under "Membership
Cards"). Since it is assigned only to the buyer, it cannot be traded away,
although it can be deleted from the owner's inventory at any time, if desired.

When the user's account is debited, an order is placed with the merchandise
supplier, as if that supplier were being "credited" with the amount deducted from
the user. In reality, the "credit transaction" is an order for the merchandise,
incorporating all the shipping information and other account information needed to
process the order. At that point, it is the supplier's responsibility to ship the order
to the user, and the Transactor system is not involved any further.

This protocol for purchasing physical objects works for any Transactor-supported
sales mechanism, including direct object sales as well as flyers. The flyer for a
physical object is no different than that for a digital object, since both actually refer
to a service provided by a supplier, as outlined above.

Cryptographic Protocols

A variety of cryptographic protocols to provide security for the above-described
Transactor system and other Transactor systems according to the present
invention will be apparent to those skilled in the att based on the present
disclosure. This section presents a preferred set of mechanisms and protocols
used to provide security in connection with the Transactor system discussed
above. These security features are discussed in the context of, and are
particularly useful in embodiments, involving interactive games which may allow
ownership and transfer of various kinds of objects, both online and offline.

In the game setting, objects are typically owned by players (in some cases, they
may be simply lying discarded somewhere, owned by no player, in which case
ownership may be assigned to the game server). An object is not necessarily
represented by an "object" in some programming language (though this would
be a natural way to represent it). Game objects are usually owned by someone,
and have specific attributes, which may change over time.

44

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

In some game embodiments, objects are owned by independent agents acting
in the game world. This can be considered to be a form of ownership by the
game server. In the worldview of the players, however, the objects will be
owned by another entity.

Objects and Cheating
It is desirable to resist several kinds of cheating, which include:
a. Unauthorized creation - Most objects cannot be created by players.

b. Unauthorized transfer - Some objects can only be transferred under
special conditions.

¢. Unauthorized destruction - Most objects cannot be destroyed by
players, or can only be destroyed under special conditions.

d. Impermissible multiple transfers - A player may try to transfer the same
object sequentially to many other players, which is inappropriate for most
objects as a previously transferred object is no longer in the first player's
possession.

e. Queries - A player may try to determine what objects are in the
possession of other players, or those objects' attributes.

f. Unwanted Transfer - A player may try to transfer an object to or from
another player, without that player's approval.

g. Resurrection - A player may try to bring back an object that has been
destroyed.

h. Alteration - A player may try to alter the attributes of an object, i. e.
increasing the number of charges some magic item has.

i. Multiple Play - A player may try to play in many different games (in any

mode but Server-Mode), and use the same objects in each. This is an
extension of the idea of multiple transfers.

45

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The following protocols and data structures allow the Transactor system to resist
unauthorized creation, queries, and unwanted transfers at all times. All the other
attacks can be resisted in real-time only in Server-Mode, and otherwise will allow
the cheating to be caught later.

Notation

In this section, several protocols are described using the following simple
notation:

.a. Encryption using a symmetric algorithm, such as DES, 3DES, or RC4,
is shown as E_{Key}(Data), where Key is the key and Data is the data
being encrypted.

b. Hashing using a one-way hash function, such as MD5 or SHA1, is
shown as hash(Data).

c. Public-key signing using an algorithm such as RSA, DSA, or ETGamai,
is shown as Sign_{PrivateKey}(Data), where PrivateKey is the signer's
private key, and Data is the data being signed.

d. Public-key encryption, using an algorithm such as RSA or E1Gamal, is
shown as

PKE_{PublicKey}(Data), where PublicKey is the public key of the
message's intended recipient, and Data is the data being encrypted.
Typically, this is used only to send random encryption keys for symmetric
algorithms.

e. All protocol steps start with a header value, labeled something like:

U1 = hash(“Transactor System-Exit Visa Request").
This is used to ensure that both the sender and the receiver always can
immediately tell which message of which protocol they have received.
These can be precomputed and stored in the source code as constants,
or the actual text string can be used to calculate this at run time.

f. Many protocols require some random numbers or keys. These are
assumed to be coming from a high-quality cryptographic random bit
generator. Good cryptographic libraries, such as BSAFE, RSAREF, and
CryptoLib, have good software routines for starting with a random seed

46

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

value too unpredictable to be guessed, and using it to derive a long
sequence of unpredictable values. Typically, the problem is in getting a
sufficiently random initial seed. Methods to do this are described in the
last part of this section. A variety of protocols and algorithms are known to
those skilled in the art (see, Scheier, Applied Cryptography, 2nd Edition
(John Wiley & Sons, 1996)) and, based on the present disclosure, may
be used in connection with embodiments of the present invention.
Implementation of the Protocols
Each protocol message has a unique 160-bit identifier at its beginning, followed
by a 32-bit version identifier, and a 32-bit value giving the length of the whole
final message. This is intended to allow an implementation to parse each
incoming message immediately.
Preferably, there is one universally-accepted message:
UO = hash("Transactor System-Error Message")
VO = version
LO = total message length
Ux = the header of the previous message
CO = error code
LOa = Length of freeform error recovery data (may be zero).
DO = freeform error recovery data
X0 = U0,V0,L0,hash(prev message *),C0,L0Oa,DO
* When there is no previous message, this is an all-zero field.

The total message is:

MO = X0,Sign{SK_{Sender}}(X0).

47

10

15

20 -

25

30

35

WO 01/41527 PCT/US00/20944

As stated below, all lengths are given in bits (to accommodate odd lengths of
key or data), but all fields are padded out with zeros to the next full byte
boundary.

The above described bit fields are examples only. Other embodiments having
different bit fields and protocol implementations will be apparent to those skilled
in the art based on the present disclosure.

Programming Models

A variety of interactive game design approaches for use in connection with a
Transactor system will be apparent to those skilled in the art based on the
present disclosure. In some embodiments, there is one central server, which
holds the "world," and with which all players' machines interact to leam about and
influence their world. This is an inherently simple way of implementing a game. It
suffers from the problems that it may be hard to find a trusted server machine
which has the computational ability and bandwidth to and from each player's
machine to do this effectively. Essentially, this is related to centrally maintaining
one big database with various kinds of access restrictions. The security model
described below is most effective in connection with this type of game setting.

Modes of Play
This security system relates to the following four basic modes of play:

(1) Server-Mode: The most secure design for all of the security issues is
simply to have each player interacting constantly with the server. The
server can always arbitrate in disputes.

(2) Proxy-Mode: Some other entity is acting as proxy for the server. This

would typically be the case when a small group of users wanted to play a
"local' game. The proxy will prevent unwarranted creation, destruction,
and alteration of objects in the local game, and will try to guarantee that no
cheating done in the local game (even involving all participants) can allow
cheating in the global game. Note that in many circumstances, one player
in a group might be trusted enough to be the proxy.

(3) Group-Mode: A small group of players is interacting without even a
proxy server. In this case, the group themselves must probably take on

48

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

the proxy server's tasks, probably by delegating one of their machines to
“server as the proxy server.

(4) Player-Mode: In Player Mode, there is a single player playing the
game alone. His machine is effectively the proxy server.

In any of these modes, objects may be transferred around between players,
and may also (in some cases) be discarded or picked up. It may make sense to
have a user ID for a player called "nobody," and have this user ID possess
things that have been discarded. There may be one such user ID used for each
different game or "world" that's going on, i.e. each Proxy Server may have its
own.

Server-Mode

In Server-Mode, security concems almost disappear. Presenting users with
signed versions of their ownership certificates is unimportant, as is verifying those
signatures; instead, the server keeps track of everything. This mode needs only
two protocols-the one for preparing to leave this mode for some other mode,
and the one for coming back to this mode from some other mode. Here, we also
discuss the format of object ownership documents and object transfer
documents.

1. Ownership Documents
An ownership document is a signed document from the server, affirming that at
some time, T, a given player was in possession of a given object, with a given

set of attributes and conditions.

Thus, it is structured as:

field name

a. hash("Transaction System-Ownership Document" 160
b. Version ’ 32

c. length of document 32

d. PlayerlD 64

e. PlayerPublic Key 1024-
2048

49

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

f. ObjectIlD 64

g. Object Data and Attributes variable
h. Attribute Transfer Condition variable*
. Time at which this document was made. 32

j. Time at which this document expires. 32

k. Signature on fields a... 1024-
2048

* Variable-length fields always start with a 32-bit length identifier. All lengths are
given in bits, but all fields are continued out to the next full byte. If the length field
is zero, then that's all the data in that field.
** Object Data and Attributes may change after this document is issued in some
cases, i.e., a gun with a limited number of bullets. Implementations need to be
flexible enough to allow this, while doing some object-type specific tests to
ensure that (for example) the magic lamp hasn't wound up with more wishes than
it started with.
A variety of different implementations and structures for ownership documents
used in connection with embodiments of a Transactor system will be apparent to
those skilled in the art based on the present disclosure.
2. Exit Protocol
The player wants to be able to play at some other mode. Therefore, he
requests an “exit visa" from the central server, to allow him to take part in other
games. This works as follows:
a. The Player forms

U0 = hash("Transactor System-Exit Visa Request")

VO = version

LO = length of final message, including signature.

RO = a random number of 64 bits

50

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

X0 = U0,V0,L0,RO
and sends to the Server
MO L X0,Sign_{SK_P}(X0)
b. The Server forms
U1 = hash("Transactor System-Challenge for Exit Visa Request")
V1 = version
L1 =length of final message, including signature.
R1 = a random number of 64 bits
XI=U1,V1,L1 ,hasH(MO),R1
and sends to the Player
M1 = X1,Sign_{SK_S}(X1).
c. The Player forms
U2 = hash("Transactor System-Response for Exit Visa Request")
V2 = version
L2 = length of whole final message, including signature.
X2 =U2,V2,L2 hash(M1)
and sends to the Server
M2 = X2,Sign_{SK_P}(X2).
d. The Server forms

U3 = hash("Transactor System-Exit Visa Transmission")

51

10

15

20

25

30

35

WO 01/41527

U3a = hash("Transactor System-Exit Visa")

V3 = version

L3 = length of whole message, including signature.
L3a = length of whole ExitVisa, including signature.

SO[1..n], where SQOJi] = signed object ownership statement for object i,
and n = the number of objects owned by the user.

TS = valid time span

C' = certificate of P's public key

R3 = a random number of 64 bits

K3 = a random encryption key

X3 = U3a,V3,L3a,hash(M2),R3,CP,TS,SO[1..n]
ExitVisa = X3,Sign_{SK_S}(X3)

and sends to the Player

M3 = U3,V3,L3,PKE_{PK_P}(K3),E_{K3}(ExitVisa)

3. Entrance Protocol

a. The Player forms

U0 = hash("Transactor System-Entrance Visa Request3
VO = version
LO = length of whole final message, including signature

RO = a random number of 64 bits

52

PCT/US00/20944

10

15

20

25

30

35

WO 01/41527

X0 = U0,VO,LO,RO

and sends to the Server

MO = X0,Sign_{SK_P}(X0)

b. The Server forms

U1 = hash("Transactor System-Entrance Visa Challenge")

V1 = version

L1 =length of whole final message, including signature.

R1 = a random number of 64 bits

X1 = U1,V1,L1 ,hash(MO),R1

and sends to the Player

M1 = X1,Sign_{SK_S}(X1)

¢. The Player forms

U2 = hash("Transactor System-Entrance Visa Transmission")

U2a = hash("Transactor System-Entrance Visa")

V2 = version

L2 = length of whole signed and encrypted message

L2a = length of EntranceVisa

PCT/US00/20944

ProxyExitVisa = the exit visa from the proxy server or the central server.

K2 = a random encryption key

53

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

X2 = U2a,V2,L2a,hash(M1),ProxyExitVisa

EntranceVisa = X2,Sign(X2)

and sends to the Server

M2 = U2,V2,L2,PKE_{PK_S} (K2),E_{K2}(EntranceVisa)
d. After this message has been decrypted and verified, the Server checks to
see if any of the changes are in contradiction with other things (restrictions on
objects, existing lownership records, etc.). If not, then the Server forms:

U3 = hash(“Transactor System-Entrance Visa Acknowledgment")

V3 = version

L3 = final length of M3

MESSAGE = any message that needs to be sent to the Player (This
could be encrypted if necessary).

X3 = U3 ,V3,L3,hash(M2),MESSAGE

and sends back to the Player

M3 = X3,Sign_{SK_S}(X3)
Proxy-Mode
Proxy-Mode is also relatively easy to secure. The Proxy takes on the tasks of
the Server- so long as these are done honestly, the whole system should work
almost exactly like Server-Mode. However, if the Proxy is dishonest, then its
dishonesty (at least in changing around object ownerships) should be easily

detected.

1. Transfer Documents in Proxy-Mode

54

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

In this mode, transfers without revealing objects' histories. directly to the receiving
users are allowed. This prevents our system revealing things which players
might want to keep secret.

(For example, if Alice really hates Bob, she may not want to trade with Carol, if
she knows that Carol is also trading with Bob. In the real world, objects usually

don't know their previous owners.)

In Proxy-Mode, the Proxy Server issues transfer documents. These are of the
following general format:

a. hash("Transactor System-Transfer Document”)

b. Version

c. Length of whole transfer document, including signature

d. FromPlayerlD - ID of the player from whom object was transferred.
e. ToPlayerlD - ID of the player to whom the object was transferred.
f. Proxy Server ID and Certificate.

g. ObjectIlD

h. Object bata and Attributes

i. Conditions on Transfers

J- Time of Transfer

k. Time this Document Expires

l. AuditTrail, as discussed below.

m. Sign_{SK_{ProxyServer}}(Fields a..l).

2. AuditTrails

55

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Audit trails to ensure that the Server can untangle fraud or errors in object transfers
can
be implemented in this mode. An audit trail contains the previous transfer
document, encrypted under the server's public key. This document will get larger
for each transfer, which will leak information about this object's past. This limited
infformation leakage does not present a problem, however, in many
embodiments.
The structure of an AuditTrail is:

a. U0 = hash(“Transactor System-AuditTrail (Proxy)")

b. version

c. length of whole AuditTrail.

d. PKE_{PK_S}(K0), where KO is a random encryption key.

e. E_{KO}(Previous TransferDocument)

Note that if there is no previous transfer document, we simply set the length field
here to 224, which makes it clear that there's nothing that follows this field.

3. Entrance Protocol
Entrance into the game being run by the proxy server occurs as follows:
a. The Player forms

U0 = hash("Transactor System-Entry Request (Proxy)")

VO = version

LO = length of whole final message, including signature

RO = a random number of 64 bits

CP = certificate of player's public key, from ExitVisa.

56

10

15

20

25

30

35

WO 01/41527

X0 = Uo,Vvo,L0,R0O,CP

and sends to the Proxy Server

MO = X0,Sign_{SK_P}(X0)

PCT/US00/20944

b. The Proxy Server verifies the certificate and signature, and then forms:

U1 = hash("Transactor System-Entry Challenge (Proxy)")

V1 = version

L1 = length of whole final message, including signature.

RI = a random number of 64 bits

C_Q = certificate of the proxy server's public key, given by the central

server.

X1 = U1,VI,LI ,hash(MO),R1,CS

and sends to the Player

M1 = X1,Sign_{SK_Q}(X1).

c. The Player forms

U2 = hash("Transactor System-Entry Response Envelope (Proxy)")

U2a = hash("Transactor System-Entry Response (Proxy)")

V2 = version

L2 = final length of M2

L2a = final length of Y2

K2 = a random encryption key

57

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

R2 = a random number of 64 bits

ExitVisa = the Exit Visa given by the central server earlier.
X2 = U2a,V2,L.2a,hash(M1),R2,ExitVisa

Y2 = X2,Sign_{SK_P}(X2)

and sends to the Proxy Server

M2 = U2,V2,L2,PKE_{PK_Q}K2),E_{K2}(Y2).

d. The Proxy Server forms

U3 = hash("Transactor System-Entry Acceptance Envelope (Proxy)")
U3a = hash("Transactor System-Entry Acceptance (Proxy)")

V3 = version

L3 = final length ofM3

Léa = final length of Y3

PlayerData = Data needed by the player to join the garne.

X3 = U3a,V3,L3a,hash(M2),PlayerData

Y3 = X3,Sign_{SK_Q}(X3)

K3 = a random encryption key

and sends to the Player

M3 = U3,V3,L3,PKE_{PK_P}(K3),E_{K3}(Y3).

e. The Proxy makes some kind of note to tell the central Server that the Player
joined the game at this time. When this is delivered, the central Server is able to

58

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

detect various kinds of cheating. To form this note (whose method of delivery is
still unspecified), the Proxy forms:

U4 = hash("Transactor System-Entry Acceptance Note (Proxy)3

V4 = version

L4 - final length of M4

IDP = ID of player

T =timestamp

X4 = U4,V4,L4,ID_P,T,hash(ExitVisa)

and sends to the central Server

M4 = X4,Sign_{SK_Q}(X4).
4. Exit Protocol
Exit from the game being run by the proxy server is relatively simple. The
transfers have all been sent, and the Proxy Server knows enough to form the
messages needed to convince the Server that things are on the level.
a. The Player forms

UO = hash("Transactor System-Exit Visa Request (Proxy)")

RO = a random number of 64 bits

VO = version

LO = final length of MO

X0 = U0,VO,LO,RO

and sends to the Proxy

59

10

15

20

25

30

35

WO 01/41527

MO = X0,Sign_{SK_P}(X0).

b. The Proxy forms

PCT/US00/20944

U1 = hash("Transactor System-Exit Visa Challenge (Proxy)")

R1 = a random number of 64 bits

V1 = version

L1 =final length ofM1

X1=U1,V1,L1 ,hash(MO),R 1

and sends to the Player

M1 = X1,Sign_{SK_Q}(X1).

c. The Player forms

U2 = hash("Transactor System-Exit Visa Response (Proxy)q

V2 = version

L2 = final length of M2

X2 = U2,V2,L.2,hash(M1)

and sends to the Proxy

M2 = X2,Sign_{SK_P}(X2).

d. The Proxy forms

U3 = hash("Transactor System-Exit Visa Response Envelope (Proxy)")

U3a = hash("Transactor System-Exit Visa Response (Proxy)")

V3 = version

60

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

L3 = final length of M3

L3a = final length of Y3

TO[1..n] transfer chains for all n objects the Player has transferred.

ExitVisa = the ExitVisa issued to this Player by the central Server.

X3 = U3a,V3,L3a,hash(M2),ExitVisa,TO[1..n]

ProxyExitVisa = X3,Sign{SK_Q}(X3)

K3 = a random encryption key

K4 = a random encryption key

and sends to the Player

M3 = U3,V3,L3,PKE_{PK_P}(K3),E_{K3}(ProxyExitVisa),

and sends to the central Server (possibly through a slower channel)

M3a = U3,V3,W,PKE_{PK_S}(K4),E_{K4}(ProxyExitVisa).
In step d, it is not a security problem if K3 = K4-the protocol is specified this way
to allow implementations where it would be harder to use the same key for both
messages. Also note that if K3=K4, it is very important that proper padding
schemes be used in some public key schemes, such as RSA, to avoid various
kinds of problems.
5. Transfer of Object
Transference of an object during play is simple: In the following, Alice is the
player that starts out owning the object, and Bob is the player that ends up

owning the object.

a. Alice forms

61

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

U0 = hash("Transactor System-Transfer Request Envelope (Proxy)")

UOa = hash("Transactor System-Transfer Request (Proxy)")

VO = version

LO = final length of MO including encryption.

LOa = final length of YO

IDB = Bob's ID

RO = a random number of 64 bits

ObjectDocument = the current object ownership document

X0 = U0a,V0,L0a,R0,IDB,ObjectDocument

Y0 = X0,Sign_{SK_A}(X0)

KO = a random encryption key

and sends to the Proxy

MO = U0,V0,L0,PKE_{PK_Q} (KO0),E_{KO}(YO).

b. The Proxy decrypts and verifies the message. If all is well, it forms:

U1 = hash("Transactor System-Transfer Challenge 1 Envelope (Proxy)")

U1la = hash(“Transactor System-Transfer Challenge 1 (Proxy)”)

V1 = version

L1 = final length of M1

L1a = final length of Y1

R1 = a random number of 64 bits

62

WO 01/41527 PCT/US00/20944

Description = A description of the requested transfer, including
descriptions of the object and any changes or costs from the Proxy
Server.

X1=U1a,V1,L1a,R1,Description
Y1 = X1,Sign_{SK_Q}(X1)
K1 = a random encryption key
and sends to Bob
M1=U1,V1,L1,PKE_{PK_B}K1),E_{K1}Y1).
c. Bob decrypts and verifies the message. If he doesn't want to allow the

transfer, he can send any message that isn't the expected response, and the
transfer will fail. If he does want to allow the transfer, then he forms”

20

25

30

35

U2 = hash("Transactor System-Transfer Response 1 (Proxy)")
V2 = version

L2 =final length of M2

R2 = a random number of 64 bits

X2 = U2,V2,L2,hash(M1),R2

and sends to the Proxy Server

M2 = X2,Sign_{SK_B}(X2).

d. The Proxy verifies this message. If all is well, then it next forms:

U3 = hash("Transactor System-Transfer Challenge 2 (Proxy)”)

L3 = final length of M3

63

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

V3 = version
R3 = a random number of 64 bits
X3 = U3,V3,L3,hash(M0),R3
and sends to Alice
M3 = X3,Sign_{SK_Q}(X3).
e. Alice verifies this message. If all is well, she then forms:
U4 = hash(“Transactor System-Transfer Response 2 (Proxy)")
L4 = final length of M4
V4 = version
X4 = U4,V4,.4,hash(M3)
and sends to the Proxy
M4 = X4,Sign_{SK_A}(X4).
f. The Proxy verifies this message. If all is well, it then forms:
U5 = hash("Transactor System-Transfer Notification Envelope (Proxy)")
U5a = hash("Transactor System-Transfer Notification (Proxy)")
V5 = version
L5 = final length of M5
L5a = final length of Y5
TransferDocument = a transfer document, as described above.

X5 = U5a,V5,L5a,hash(M2), TransferDocument

64

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Y5 = X5,Sign_{SK_Q}(X5)

K5 = a random encryption key

and sends to Bob

M5 = U5,V5,L5,PKE_{PK_B} (K5),E_{K5}(Y5).
Group-Mode
In Group-Mode, a group of two or more players get together without a mutually
trusted server. This makes the protocols much harder to make resistant to various
kinds of cheating. The preferred solution is to designate one of the players'
machines as the Proxy Server, and implement the proxy mode security system
described above.
Player-Mode
In Player-Mode, the Player controls his own computer. There are many
opportunities for cheating here, but none of them should involve transfer of
objects between this Player and others.
A wide variety of error message formats in all these protocols will be apparent to
those skilled in the art based on the present disclosure. A simple set of

exemplary error codes are set forth below.

Error Code Meaning

0x00000000 No Error - Generally Not Used
0x00000001 Ownership document version invalid

- 0x00000002 Ownership document structure invalid
0x00000003 Ownership document signature invalid
0x00000004 Ownership document time range invalid
0x00000005 Ownership document length field invalid
0x00000006 Ownership document - miscellaneous error
0x00000007 Message length invalid
0x00000008 Message version invalid
0x00000009 Message signature invalid

65

10

15

20

25

30

35

WO 01/41527

PCT/US00/20944

0x0000000a Message hash chain invalid

0x0000000b Message header invalid

0x0000000c Message not decrypted successfully
0x0000000d Message format invalid

0x0000000e Message out of sequence

0x0000000f Message - miscellaneous error
0x00000011 Wrapped message length invalid
0x00000012 Wrapped message version invalid
0x00000013 Wrapped message signature invalid
0x00000014 Wrapped message hash chain invalid
0x00000015 Wrapped message header invalid
0x00000016 Wrapped message not decrypted successfully
0x00000017 Wrapped message format invalid
0x00000018 Wrapped message out of sequence
0x00000019 Wrapped message - -miscellaneous error
0x0000001a Certificate signature invalid

0x0000001b Certificate expired

0x0000001e Certificate format invalid

0x0000001d Certificate - -miscellaneous error
0x0000001e Transfer Document version invalid
0x0000001f Transfer Document length invalid
0x00000020 Transfer Document ID invalid

0x00000021 Transfer Document Proxy Server ID invalid
0x00000022 Transfer Document Object ID invalid
0x00000023 Transfer Document Object Data/Attributes invalid
0x00000024 Transfer Document Conditions on Transfers invalid
0x00000025 Transfer Document Time of Transfer Invalid
0x00000026 Transfer Document Expired

0x00000027 Transfer Document Signature Invalid
0x00000028 Transfer Document - Miscellaneous Error
0x00000029 Player ID invalid

0x0000002a Object ID invalid

0x0000002b Miscellaneous error

0x0000002¢ Intemal error

Trusted Agent

The trusted agent server can be thought of as a third party that holds and
manages the user's business affairs, such as a credit card, a product warranty, an

66

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

insurance card, or any business contract. Users contact the server by way of a
network access device, such as a browser on a personal computer, a browser on
a network computer, a browser on a cell phone, or using a voice response unit on
a telephone.

The trusted agent client is a small client program that augments the user's network
access device to perform business transactions on behalf of the user. The user
controls these transactions through the trusted agent server.

The Trusted Agent Service

The trusted agent service is the trusted agent client application which operates in
conjunction with the trusted agent server. The trusted agent service in its first
embodiment is a Internet-based mechanism that makes single-click buying
available on any commercial Web site. This mechanism brings the speed and
simplicity of credit card use in the real world to its users on the Intemet. The secure
nature, and bank and credit card company branding, provided by this mechanism
projects the trust association necessary at the point-of-sale to address consumer.
fears about security. This mechanism is a browser-based service that requires no
download or installation, and may always be made available to the consumer
free of charge.

The trusted agent also provides consumers with access to personal and credit
card information used during single-click transactions, smart receipts used for
ongoing customer support, merchant and product preference settings, and direct
response product offerings keyed to these preferences. Because this information
is all stored on the trusted agent server (similar to popular Web portal personal
preferences), it is available on any device connected to the Intemet, from
desktop to laptop, even to PDA.

The trusted agent service is implemented by accessing the trusted agent server.
Typically, trusted agent servers are operated by banks, government agencies,
credit card companies, and other contractually trustable trusted agent service
providers.

Other Commerce Servers

The trusted agent server communicates with other commerce servers. Some of
these servers are designed to work closely with the trusted agent server. In the

67

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

preferred embodiment of the invention, two such commerce servers are the
direct response server and relationship marketing servers. Merchants and banks
use these servers to communicate to customers who have accounts on a trusted
agent service. These products enable such merchants and banks to conduct
ongoing business relationships with customers by sending and making use of
information stored online in the consumer's trusted agent.

The direct response server enables the creation, delivery, and single-click
redemption of direct response offers from anywhere on the Internet. These offers
can be delivered to trusted agents according to consumer preferences, or found
in a banner-like format on Web sites. The direct response server can deliver
online any one of at least three classic forms of traditional direct response.

» First, they can handle a direct order by concluding a transaction for the product
they represent without requiring a jump to any other site.

» Second, they can generate a lead by transmitting a request to a merchant for
additional information.

 Third, they can generate store traffic, either through a link to redemption at an
online commerce site, or by being printed on paper and taken for redemption
to an actual retailer location.

The relationship marketing server uses smart receipts as the basis for after-
market consumer care. When a consumer buys a product, the merchant's
relationship marketing server generates a unique digital object in the form of a
smart receipt which contains all of the information needed for consumer care. The
relationship marketing server sends this information to the customer’s trusted
agent. The customer can open his trusted agent using a URL, click on the smart
receipt, and be presented with a number of services, such as automatically
routed requests for customer service or retum authorizations, 800 number listings
to call for help, order status tracking (for example, offered in eventual partnership
with such shipping companies as Federal Express or UPS), and pre-formatted
and routed requests for related product offers.

Other commerce servers enable point-based loyalty programs and club cards
for discounted purchases and volume purchase rewards.

68

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The trusted agent process is depicted in Figure 10. In a typical transaction, a
customer visits any merchant Web site that contains an HTML form (1). The
customer invokes a trusted agent service provider service using a specific URL
that links the customer to the trusted agent service provider’s server (2). The
customer types in his name and password, and the customer request is
submitted to the trusted agent server (3). The trusted agent appears (4). The
customer selects a card and the form is automatically filled out for the customer by
the trusted agent (5). The HTML form is then sent to the merchant from the
customer’s browser using the standard HTTP transport protocol (6).

While the invention is described herein in connection with the HTML and HTTP
protocols, it will be appreciated by those skilled in the art that other protocols
may be used to implement the invention.

Entities and their Communication Techniques

Figure 11 is a block schematic diagram that depicts the trusted agent service
provider client 1020 in communication with both the trusted agent server 1021
and various businesses 1022-1024. The trusted agent server performs cerain
actions on behalf of the client. These actions may be done using two techniques
(discussed below), referred to herein as the indirect technique and the direct
technique. This communication may be based on known Internet protocols, such
as the World-Wide-Web consortium's HTTP protocol. However, those skilled in
the art will appreciate that alternative protocols are possible.

There are three types of business that may be associated with the presently
preferred embodiment of the invention:

» Businesses of type 1 are legacy businesses that are not yet enabled with
the more modern direct techniques. Therefore, type 1 businesses use the
indirect technique exclusively.

» Businesses of type 2 only use the direct techniques.

¢ Businesses of type 3 can use both the direct and indirect techniques.

The Indirect Technique

69

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

The indirect technique communicates command operations from the trusted agent
server first to the user's browser and then to a business. Figure 12 is a block
schematic diagram that depicts the indirect technique. The process flow applied
by the indirect technique'is as follows:

* The customer (client) invokes the trusted agent service.

* Interaction between the client and the trusted agent server.

®* The client submits Web page to business.

The Direct Technique

The direct techniqgue communicates operations directly from the trusted agent
server to the business. Figure 13 is a block schematic diagram that depicts the
direct technique. In the preferred embodiment of the invention, the trusted agent
server communicates to the business server either using HTML or using the
technology of Transactor Networks Inc. of San Francisco, Califomia referred to as
the Limited Edition Digital Object (LEDO) system. Those skilled in the art will
appreciate that other protocols are possible.

Business Instruments and their Embodiments

The customer understands that what they are manipulating is a familiar business
instrument such as a credit card, a receipt, a coupon, a warranty, a contractual offer,
a medical insurance card, or other well known commercial construct. It is simple to
use a credit card number to charge goods and services to a credit card account
without using the actual plastic card provided by the bank. The following
definitions are applied to the different embodiments of these business
instruments:

¢ Business Document: the entity as it is embodied on paper or plastic.

o Business Affair: the entity embodied in legal and business terms.

¢ Business Object: the entity embodied in a computer.

70

10

15

20

25

30

WO 01/41527 PCT/US00/20944

e Business Instrument: the entity overall.

Each business instrument can be represented in several ways. In the preferred
embodiment of the invention, a business object is stored as a LEDO. Those
skilled in the art will appreciate that other implementations are possible, e.g. the
business affair may be stored as a record in a database. A LEDO is a network
digital object that has ownership that can be verified over a network. LEDOs
provide efficient techniques to implement many of the legal and business issues
of the instrument's business affairs. However, other, less efficient techniques
may be applied to manage the instrument's business affairs.

In the preferred embodiment of the invention, the business affairs are
represented as LEDOs that are stored at the trusted agent server. Figure 14 is a
block schematic diagram that depicts the trusted agent storing business objects
on behalf of the client.

Customer creation of the Trusted Agent Service

Customers sign up for the trusted agent service by visiting a trusted agent
service provider Web site. Figure 15 is a block schematic diagram that depicts
the customer sign up process. The customer first visits a trusted agent service
provider that is running the trust agent server, for example a bank, using the
customer's Web browser (1). The customer selects an account name and
password and fills in preference information, as well as one or more bank card
accounts, and other instruments (2). In the presently preferred embodiment of
the invention, LEDOs are populated into the trust agent server database (2a).
The customer is then prompted to bookmark the URL of their trust account
service provider as a browser button (3).

Customer Use of the Trusted Agent, Indirect Technique

As described earlier, a customer can use their trusted agent service on any
merchant Web site that is HTML compliant. The process requires an exchange
between the customer browser, the merchants Web server, and the trusted

71

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

agent's Web server. Figure 16 is a flow diagram that depicts the use of the
trusted agent by a customer during a commercial transaction with a merchant.

To use the trusted agent, the customer first browses the Web until he finds a
merchant Web site that provides goods and/or services of interest to him (1).
The merchant server begins a session with the customer’s client (2). Pursuant to
the session, the merchant’s server downloads a page to the customer (3). The
page presumably includes an HTML form that requests various information from
the customer as part of an on-line commercial transaction. The user invokes the
trusted agent service by accessing a URL associated with the trusted agent
service (4). The trusted agent server downloads the trusted agent program to
the customer (5). The trusted agent then inspects the merchants Web page
which is displayed in the customer’s browser (6). To use the trusted agent, the
customer types in their trusted agent user name and password (7). The
customer then submits the Web page to the trusted agent server (8). The
customer’s name and password, as well as the merchant page, is uploaded to
the trusted agent server (9). The trusted agent server then analyzes the page
(10). Thereafter, a new trusted agent program is generated by the trusted agent
server (11). The generated trusted agent program received by the client
instruments the merchant Web page (12). The customer sees a set of
operations, such as credit card selection or address book selection, occur in their
trusted agent (13). The customer selects the desired operation from the trusted
agent page (14) and the trusted agent fills out the Web page (15). The Web
page is now complete and the user can submit same to the merchant (16) who
can then process the page as usual, unaware of the assistance provided to the
customer by the trusted agent (17).

Creating a Trusted Agent

The trusted agent is a small program that is written in a portable language, such as
JavaScript, Java, C, C++, Visual Basic, Dynamic HTML program, or any other
similar language. These programs are trusted because they are digitally signed
by an authority that the end user trusts.

The following discussion explains the presently preferred method of creating a

trusted agent using JavaScript in the popular Netscape Navigator browser
application (see Fig. 17). Those skilled in the art will appreciate that substantially

72

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

similar forms can be implémented using Microsoft's Internet Explorer or any other

browser.

To create and run signed JavaScript under Netscape Navigator, the developer
must have be in possession of the private key and a certificate issued to an
authority that the consumer is willing to trust, such as Verisign (verisign.com).

Run a Navigator 4.05 or higher browser with 128-bit cryptography enabled
(1100). The browser may be downloaded from www.netscape.com by
filing in a form with the user name and address and stating that the user is a
U.S. national (U.S. government export controls apply to this level of
cryptography). The standard export-approved browser has only 40 bit bulk
encryption and 512 bit RSA, accordingly such certificate provides much less
security. The actual level of cryptography obtained is a matter of choice.

Apply for a class 2 or 3 code signing certificate by using the above-
mentioned browser to visit hitp:/digitalid.verisign.com, clickihng on
"Developers," and following the instructions for getting a Netscape object-
signing certificate (1110). Class 2 certificates are for individuals, cost $20.00,
and take a few minutes to obtain. Class 3 certificates are for companies, cost
$400.00, and take longer (it is necessary to fax the company's incorporation
papers and other documents to Verisign). It is necessary to provide
personal information similar to a credit card application (e.g. social security
number, current and previous addresses) to obtain a class 2 certificate.
Getting the class 2 certificate involves obtaining a hexadecimal access code
by email and pasting it back into Verisign's Web page. Instructions are
provided on the page provided by Verisign.

Follow the instructions for generating a key in the browser and retrieving the
certificate (1120). The browser creates a key pair and uploads the public
component to Verisign through a secure socket layer (SSL) channel. Verisign
signs the public key and retums the certificate, and Navigator stores the key
components and certificates in the \Program Files\Netscape\Users directory.
As a result, there is a secret key on the Windows 95 (or Macintosh) hard disk.
The certificate has an identifying string, such as "Theodore C Goldstein's
Verisign Trust network ID," which is used by the signing tool (and other
programs) to locate the certificate after Navigator installs the certificate in its
database (along with whatever other certificates it has). Note this string is
independent of the user name, which appears in the signed portion of the

73

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

cettificate and cannot be changed. Similarly, Navigator prompts the user for a
password to access the secret key once it is in the database.

Download Netscape's object signing tool (1130) from
http:/developer.netscape.com/software/signedobij/jarpack.htmi#signtool1.1
and install the tool. This program has a Windows 95-friendly interface, which
means it can be run from a command line in a DOS box as if it were a Unix
program.

Put the html files and JavaScript files that are to be signed in a directory
(1140), which may be called, for example, "TrustedAgentDir.” Next, run the
signing tool. The signing tool searches the TrustedAgentDir directory for
JavaScript components. It signs each piece separately and stores the
signatures in a .jar file, which is similar to a zip file

Select the name of the jar file where the signatures are stored, e.g.
"TrustedAgent.jar". Every file containing JavaScript that must be signed must
have a SCRIPT tag with the ARCHIVE attribute specifying the name of the
Jarfile, e.g.:

<SCRIPT ARCHIVE="TrustedAgent.jar" ID="a">
[JavaScript code]
</SCRIPT>

More information on this step of the process is available at:

hitp://developer.netscape.com/docs/manuals/communicator/isquide4/sec.
htm |

Every piece of JavaScript code must have a unique ID attribute (1160). The
ID is a label that the browser uses to find the signature for that particular piece
of code. For the above piece of code, the ID is "a.” Somewhere further
down in the file, there a button may be provided that runs other code when
the button is clicked. That other code must also have its own signature.
Accordingly, the other code needs its own unique ID tag:

<INPUT TYPE="button" NAME="check" VALUE="Click and Buy"
onClick="JavaScript:updateOpener()" ID="b">

74

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Here, the tag "b" is assigned to the (small) piece of code "updateOpener()"
that is run when the button is clicked. Each piece of code must be signed
because one is not allowed to run signed code from unsigned code.

¢ Find the certificate location (1170) by using Windows Explorer's "find file"
command to locate a file called "cert7.db". This file should be in a directory,
such as c:\program files\netscape\users\tedg. It is necessary to supply this
directory name to the signing tool in the next step.

e Use a command to run the signing program (1180), such as:

signtool -d "C:\program files\netscape\users\tedg”
-k "Theodore C Goldstein's Verisign Trust Network ID"
-J TrustedAgentDir

where the above command line arguments are all on one line. This command
may be saved in a .bat file, if it is necessary to run it often. The -J argument
indicates the name of a directory that contains JavaScript code. The -d
argument indicates where the private key and certificate are located. The user
is prompted for the pass phrase as part of this operation.

o The signing tool creates an TrustedAgent.jar file (1190) which must be stored
on the Web server along with the user scripts.

Alternative Embodiment of the Invention

The embodiment of the invention provides merchant initiated user trusted service

registration (see Fig. 18).

¢ The customer requests a form from merchant Web site (1200).

e The fom is downloaded from merchant Web site to the customer (1210).
The form includes a button that the customer can click to request registration

with trusted agent service.

e The merchant server sends a request for customer registration to the trusted
agent server (1220).

75

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

e The trusted agent server registers and notifies the customer (1230).

® The customer completes the form and uploads it to the merchant (1240).
Smart Receipts

A preferred embodiment of the invention provides intelligent receipts, called
Smart Receipts, that electronically document a transaction between two patrties.
Smart Receipts maintain a persistent connection between two parties following a
successful online transaction.

A Smart Receipt is delivered over a secure connection from the merchant to a
Trusted Agent Server, where it is stored and is made available to the customer.
The Smart Receipt provides the customer with detailed information about an
online purchase in a standardized format. Hyperlinks embedded in the Smart
Receipt enable the customer to access customer service and order status. The
merchant may also embed additional services within the Smart Receipt, including
special offers for future purchases.

The invention does not require a new and independent trust system. It uses
existing Secure Socket layer (SSL) certificates for secure identification.

Referring to Fig. 19, the invention provides an entity to entity communications
path. Here, the communications path is between the Merchant's site 1901 and
the Transactor site 1902. The Merchant Web Server 1903 accepts orders and
records the transaction on the Merchant’s Database 1904.

The invention enables a merchant to generate a Smart Receipt at the conclusion
of a successful transaction. A Receipt Generation package (Smart Receipt
Agent) 1905 is installed on the merchant's server. Once the merchant's server is
satisfied that the transaction is complete, the Smart Receipt Agent 1905 retrieves
from the Merchant's Database 1904 the representation of the purchase. The
Smart Receipt Agent 1905 creates an XML representation of the purchase that
is consistent with Transactor Networks Inc.'s Smart Receipt Document Type
Description (DTD).

The XML representation of the Smart Receipt is transmitted over a secure
connection to the Trusted Agent Server 1906. The invention offers multiple

76

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

options for transport, including Email and SSL. Authentication that uses SSL
should use SSL certificates. The identity of the certificates are recorded on the
Trusted Agent Database 1907. Email transport is also secure.

The Smart Receipt is stored on the secure Trusted Agent Database 1907
located on the Transactor site 1902. The Smart Receipt is transported and
stored in a LEDO in XML format. Information about the purchase is parsed out
and stored as well.

The Smart Receipts are available to the user for sorting and browsing using
Transactor Networks' Trusted Agent.

With respect to Fig. 20, a typical transaction scenario is depicted. The Trusted
Agent 2004 observes that the Buyer 2001 is attempting a transaction. The
Trusted Agent 2004 creates an order record containing:

e Shipping address

e Billing Address

o Purchase instrument — credit card#, type, expiration date
e Merchant

e Key — unique hidden field (LEDO)

The user can also add personal notes so he can easily identify the purchase. The
Trusted Agent 2004 fills in the merchant's order forms using the order record
information. The order record is sent to the Trusted Agent Server 2005 and is
stored in the Trusted Agent Database 2006. Once the transaction is completed,
the Smart Receipt Agent 2003 located on the merchant's site 2002 creates a
smart receipt and sends the XML representation to the Trusted Agent Server
2005. The Smart Receipt object that is created contains:

e Merchant verification of transaction with Key (LEDO)
¢ Detailed list of items purchased

o Description of items

e Discounts — if applicable

o Shipping address

The Trusted Agent Server 2005 receives the Smart Receipt and validates the
receipt using the merchant's SSL. It then compares the order record LEDOs in
the Database 2006 with the Smart Receipt LEDO to find the matching record

77

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

pair. The records are persistent because there must be a matching pair to
complete the transaction. The Trusted Agent Server 2005 verifies the following
information with the order record:

1. Domain name — must match the merchant’s
2. SSL ID - contained in merchant’s SSL client
3. LEDO Key — unique key provides a shared secret — always required

The Smart Receipt is made available to the Buyer through the Trusted Agent.
The Smart Receipt is a dynamic entity; it is continuously updated until the Buyer
deletes it from the Trusted Agent Server. The Buyer can, at any time, examine
the Smart Receipt, check for warranty information, product updates, merchant
specials, manufacturer discounts, or answer feedback questions.

Referring to Fig. 21, the Smart Receipt 2101 can contain: offers 2102; warranties
2103; customer service information 2104; and follow-on preference choices
2105.

A conventional receipt offers: 1) customer service; non-repudiation from the
merchant; and 3) customer record keeping. The Smart Receipt offers the
following advantages above and beyond the conventional receipt: 1) uniquely
identifies the transaction; and 2) allows valve-added services to be offered to the
customer.

With respect to Fig. 22, the Smart Receipt 2201 is comprised of a collection of
LEDO objects. Each LEDO object has a unique owner. Multiple owners exist
within a chain of LEDO objects. Here, the Smart Receipt 2201 comprises: an
order object 2202 owned by the Buyer; a simple receipt object 2203 owned by
the merchant; a Smart Receipt object 2204 owned by the merchant;, an offer
object 2205 owned by the manufacturer; and a customer service object 2206
owned by the merchant.

Smart receipts offer the merchant centralized record keeping and inventory
management. Orders are kept in a standardized format. The merchant can also
track if a user uses an offer in a Smart Receipt. The offers in a Smart Receipt can
be personalized to a users preferences which are kept secure on the Trusted
Agent server. The personalized offers can be customized to follow certain
specifications, such as:

78

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

¢ Timeliness - limited-time offers
e Matching offers to user preferences
e Merchant specified offer conditions

User preferences include information directly obtained from the user (e.g., through
a questionnaire) and may also include information gathered from observing the
user’s purchasing habits and preferences.

Smart receipts also offer the merchant the ability to receive retum receipts when
the user receives the Smart Receipt. The merchant and manufacturer can also
receive valuable feedback information from the customer. The customer can fill in
or select answers to questions contained in LEDOs. The questions can pertain to
whether the customer received the product in a timely manner, is satisfied with the
product, or merchant customer service.

The Smart Receipt can contain a warranty registration card that is automatically
filled out when the Buyer indicates that he has received the product.

The dynamic nature of the Smart Receipt allows merchants to notify Buyers of
certain events. For example, airfines, hotels, and cruise lines can update the
Smart Receipt to indicate a change of schedule, room or seating changes,
delays, and cancellations. Car rental agencies can indicate rental options or
availability by simply updating the Smart Receipt. The Buyer is automatically
notified when he checks the Smart Receipt through the Trusted Agent.

The interaction with the buyer that is gained from Smart Receipts allows the
merchant to provide good customer service; customers are more assured that
they will receive prompt, reliable service. It simplifies user record keeping and
gives the manufacturer another route to notify customers of product updates.

Post-Purchase Services

The Smart Receipt enables the merchant to provide post-purchase services to
the customer by embedding additional information within the XML representation
of the receipt. Each of these embedded components may be URLs or they
may be LEDOs that represent:

o Offers (see Offers section)
e Warranties

79

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

o Extended Warranties (an offer than sells a warranty)

o Customer Service request - web form that contains frequent problems and
assists in routing an email message to the correct department

» Merchant preferences

Merchant Server Component
The merchant server should support the top merchant servers including:

e MS Site Server Commerce Edition
e Netscape

¢ Open market

¢ Mercantec's SoftCart

o General CGl interface

Preferences and Offers
1. Offer Preferences

A web-based form for creating, viewing and editing preferences is provided for
the marketing department. The form for creating preferences has a scrollable list
for parent categories and type, and empty fields for description and notes.
Submitting a new preference will create a LEDO and commit it to the database.
The program also generates pages of preferences organized by category and
subcategory similar to the intended functionality of the PCM. However, the users
will also need to be able to delete preferences from the database and edit the
parent, description, notes, and type fields. |

OfferPreferenceTable

Uniquekey varchar2(40) unique ledo key

Ownerid number (tbd, perhaps indicator of marketing
personnel)

Objectid number unigue within table

create_date date

80

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

db_delete_date date

parent number - index into OfferPreferenceTable of
parent category, O for root

description varchar2(250) name of category, subcategory, or
merchant

notes varchar(2000) notes for marketing person

type varchar(20) constrain to "category", "subcategory"

or "merchant”

<potential columns to be added>

SIC number number standard industry code

categoryKey number index into categories table

2. Offer Registry

The end-user will have the ability to set and unset offer preferences, according to
the set of preferences in the OfferPreferenceTable. Setting or unsetting a
preference will look up any existing match between the user and the preference.
If a record is found, the create date and or delete date are modified as

appropriate. This way, it is possible to track use of the offer registry more
accurately.

OfferRegqistryTable

OwnerID number index into identity table
PreferencelD number index into OfferPreferenceTable
Create date date

Delete date date

<ownerlD/preferencelD pair must be unique>

3. Offers

81

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

Offers are stored as LEDOs in the database. A web-based system for
submission and viewing of offers is supplied for merchants and marketing.
Merchants are able to submit text and images for offers at any time for review.
Marketing has the ability to view newly entered offers and sign off on their
acceptability.

The Offer table contains the information for the individual offers, including
availability dates and separate fields for the distinct text areas and images in the
offer page. Since a single offer may match several preferences, there will be a
secondary preferencelD field in the offer record. Alternatively, it could be
organized such that multiple offer LEDOs represent the same offer, with different
preferencelD's.

Offers
Uniquekey varchar2(40) ledo unique key
OwnerlD number (tbd, perhaps merchant index or

marketing personnel index)

Preference number index into preference table

Title . varchar(50) bold text title of offer

Header varchar(50) textual description above Offer_gif
Description varchar(l 000) textual description of item

Footer varchar(50) bold footer after description
LocationURL varchar(1000) url with affiliate link of offer on merchant
site

Logo_GIF varchar(250) url (local or external) of logo gif

Offer GIF varchar(250) url (local or external) of centvral offer gif
Start date date first day offer is valid

82

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

End date date last day offer is valid
Create date date date entered into system
Signoffdate date date ok'd by marketing
Db_delete_date date date removed from system

4, Delivered Offers

For each user, there will be a set of viewed offers. These records contain
information about the progress of the user in relation to the offer.

DeliveredQffers

Uniquekey varchar2(40) ledo unique key
OwnerLD : number index into identity table
OfferlD number index into offer table — constrained to

be unique per ownerlD

Viewed date date time index of last visit to offer page
Followed date ‘date time index of last click of affiliate link
Execute date date time index of purchase of advertised
item

Trusted Intermediary

The invention acts as an trusted intermediary. This is particularly useful when
multiple parties that do not necessarily trust each other to interact are involved in a
transaction.

A further embodiment of the invention acts as an impartial fair witness in
negotiation situations. Using the Smart Receipt constructs described above, the
invention provides a detailed record of the chain of events that occur during a
negotiation.

83

10

15

20

WO 01/41527 PCT/US00/20944

Referring to Fig. 23, a Trusted Agent Server 2302 sits between a client X 2301
and a client Y 2303. The Trusted Agent Server 2302 acts as the trusted
intermediary between the two parties X 2301 and Y 2303.

With respect to Fig. 24, this scenario example has user X offering to enter
negotiations with user Y. The order object in the Smart Receipt chain 2401 is X’s
offer to enter into negotiations 2402. Y then responds with a positive
confimation 2403. Each LEDO has a unique owner, here, X owns the offer
LEDO 2402 and Y owns the acceptance LEDO 2403.

X then begins the negotiations by issuing an offer object 2404 which is a LEDO
attached to the current Smart Receipt chain. Y issues a counter-offer object
2405. X then issues another offer object 2406. Y decides that the offer is
acceptable and issues an acceptance object 2407.

As noted above, the Smart Receipt provides a detailed record of each step of
the negotiations. Each step is a LEDO object in the Smart Receipt chain.

Although the invention is described herein with reference to the preferred
embodiment, one skilled in the art will readily appreciate that other applications
may be substituted for those set forth herein without departing from the spirit and
scope of the present invention. Accordingly, the invention should only be limited
by the Claims included below.

84

5

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

CLAIMS

1. A process for creating and maintaining smart electronic receipts that
document online transactions through a Trusted Agent Server in a computer
environment, comprising the steps of:

creating a Smart Receipt on a merchant site upon successful completion of
a transaction;

sending said Smart Receipt to a Trusted Agent Server;

storing said Smart Receipt on a secure database on said server; and

wherein said Smart Receipt is comprised of a chain of Limited Edition
Digital Objects (LEDOs).

2. The process of claim 1, further comprising the step of:

providing a Smart Receipt Agent on the merchant's server; and

wherein said Smart Receipt Agent creates a representation of the
purchase transaction in a Smart Receipt format.

3. The process of claim 1, wherein the user can sort and browse his Smart
Receipts through a Trusted Agent.

4, The process of claim 1, wherein a Trusted Agent creates an order record.

5. The process of claim 4, further comprising the steps of:

storing said order record on a database on said Trusted Agent Server;
and

comparing order record LEDOs in said database with said Smart
Receipt’'s LEDO to find the matching record pair.

6. The process of claim 1, wherein said Smart Receipt is a dynamic entity
and is continuously updated until the Buyer deletes it from said Trusted Agent
Server.

7. The process of claim 1, wherein each LEDO object has a unique owner.

8. The process of claim 1, wherein offers provided in a Smart Receipt can
be personalized to a user’s preferences.

85

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

9. The process of claim 1, wherein a merchant or manufacturer can track
whether a user uses an offer provided in a Smart Receipt.

10. The process of claim 1, futher comprising the step of:
sending a merchant a return receipt when the user receives the associated
Smart Receipt.

11. The process of claim 1, wherein said Smart Receipt contains a warranty
registration card that is automatically filled out when the Buyer indicates that he has
received the product.

12. The process of claim 1, wherein a merchant or manufacturer updates said
Smart Receipt to notify a customer of new events.

13. The process of claim 1, wherein a merchant provides post-purchase
services to a customer by embedding additional information within said Smart
Receipt.

14. A process for implementing ‘an electronic trusted intermediary between
parties involved in a negotiation in a computer environment, comprising the steps
of:

providing a Trusted Agent Server to act as the impartial trusted
intermediary between said parties;

recording each step that occurs during the negotiations as a Limited Edition
Digital Object (LEDQ) in a Smart Receipt;

storing said Smart Receipt on a secure database on said server; and

wherein said Smart Receipt is comprised of a chain of LEDOs.

15. The process of claim 14, wherein a Trusted Agent submits a party’s offer,
counter-offer, or acceptance LEDO to said Server.

16. The process of claim 14, wherein a party can browse said Smart Receipt
through a Trusted Agent.

17. An apparatus for creating and maintaining smart electronic receipts that

document online transactions through a Trusted Agent Server in a computer
environment, comprising:

86

10

15

20

25

30

35

WO 01/41527 PCT/US00/20944

a module for creating a Smart Receipt on a merchant site upon successful
completion of a transaction;

a module for sending said Smart Receipt to a Trusted Agent Server,

a module for storing said Smart Receipt on a secure database on said
server; and

wherein said Smart Receipt is comprised of a chain of Limited Edition
Digital Objects (LEDOs).

18. The apparatus of claim 17, further comprising:

a Smart Receipt Agent on the merchant's server; and

wherein said Smart Receipt Agent creates a representation of the
purchase transaction in a Smart Receipt format.

19. The apparatus of claim 17, wherein the user can sort and browse his
Smart Receipts through a Trusted Agent.

20. The apparatus of claim 17, wherein a Trusted Agent creates an order
record.

21. The apparatus of claim 20, further comprising:

a module for storing said order record on a database on said Trusted
Agent Server; and

a module for comparing order record LEDOs in said database with said
Smart Receipt’'s LEDO to find the matching record pair.

22, The apparatus of claim 17, wherein said Smart Receipt is a dynamic entity

and is continuously updated until the Buyer deletes it from said Trusted Agent
Server.

23. The apparatus of claim 17, wherein each LEDO objéct has a unique
owner.

24. The apparatus of claim 17, wherein offers provided in a Smart Receipt
can be personalized to a user’s preferences.

25. The apparatus of claim 17, wherein a merchant or manufacturer can track
whether a user uses an offer provided in a Smart Receipt.

26. The apparatus of claim 17, further comprising:

87

10

15

20

25

WO 01/41527 PCT/US00/20944

a module for sending a merchant a retum receipt when the user receives
the associated Smart Receipt.

27. The apparatus of claim 17, wherein said Smart Receipt contains a
warranty registration card that is automatically filled out when the Buyer indicates
that he has received the product.

28. The apparatus of claim 17, wherein a merchant or manufacturer updates
said Smart Receipt to notify a customer of new events.

29. The apparatus of claim 17, wherein a merchant provides post-purchase
services to a customer by embedding additional information within said Smart
Receipt.

30. Anapparatus for implementing an electronic trusted intermediary between
parties involved in a negotiation in a computer environment, comprising:

a Trusted Agent Server to act as the impartial trusted intermediary
between said parties;

a module for recording each step that occurs during the negotiations as a
Limited Edition Digital Object (LEDO) in a Smart Receipt;

a module for storing said Smart Receipt on a secure database on said
server; and

wherein said Smart Receipt is comprised of a chain of LEDOs.

31. The apparatus of claim 30, wherein a Trusted Agent submits a party’s
offer, counter-offer, or acceptance LEDO to said Server.

32. The apparatus of claim 30, wherein a party can browse said Smart
Receipt through a Trusted Agent.

88

WO 01/41527

S

PCT/US00/20944

1/20

Database Transactor The
Server Internet
X 60
N
A\ 750
‘ /
Transactor
Broker Peer Trust Game Server
Session Owner Relationship Keeper of

(Trusted 3rd party)

Game Rules

The
Internet

60

End-users
30

—— —— — — O > — —— —— T —— S = — — — —— — ——

- S — -

FIG. 1

WO 01/41527 PCT/US00/20944

Transistor Servers,
& Databases

Broker
40

Transactor—enabled
Vendors (web sites)

The
Internet

Consumer’s Bank
. Account
90

Consumer
End—users

30

FIG. 2

WO 01/41527

104-\\

3/20

STEP 1. Consumer (35) logs
onto Internet

60
The

PCT/US00/20944

| —102

Inte:if;J/

STEP 2. Consumer logs onto Transactor—enabled
service provider or directly on to a Transactor Server.

106 1\

STEP 3. Consumer decides to',(”/////////,

register as Transactor user.

108
I

STEP 4. Consumer fills out
registration form including Charge
Account and Bank Account info.

/‘110

STEP 5. Registration is submitied
to Transactor Server from site.

/-172

STEP 6. Transactor Server creates
new account and issues private dota:

User key, password, etc.
to Consumer.

/-1ﬁ4

STEP 7. Consumer receives and

stores keys and data. Downloads or f—

receives client software in mail.

118
r

STEP 8. Consumer is already
a Transactor user.

/—128

STEP 14. Consumer leaves site.

116
Vs

STEP 9. Consumer logs into the
client-side Transactor Object

Manager (TOM) as a valid user.

/-LZO

STEP 10. Consumer decides to

make a purchase. See FIG. 4

122

STEP 11. Consumer decides to check

124~

his Transactor account. See FIG. 5

STEP 12. Consumer decides to

post an object that he created
for sale. See FIG. 6

126 ~JSTEP 15. Consumer decides to post

FIG. 3

a previously acquired object
for resale. See FIG. 7

WO 01/41527

7202

STEP 1. Consumer (35) decides
to make a purchase.

204

STEP 2. Consumer’s TOM sends
intent to purchase (and appropriate
IDs) to vendor’'s web site.

206

STEP 3. Vendor's Transactor Broker
Moduele creates Transaction Record
that incorporates necessary vendor
IDs, product info and vendor
signature with Consumer’s info.

208

STEP 4. Vendor sends Transaction
Record to Consumer’s TOM
for signature.

210

STEP 5. Consumer’s TOM confirms
vendor’s signature and

Transaction Record contents.

/R12

STEP 6. Consumer’'s TOM signs
the record and forwards it
to the Transactor Server

/R4

STEP 7. Consumer’s TOM also
notifies vendor’s server that
transaction has been signed
and recorded has been forwarded

to the Transactor Server

216

STEP 8. Transactor Server
validates Transaction Record
and contents, then issues

OK or rejection.

4/20

PCT/US00/20944

/‘220

If

STEP 9b. Transactor Server changes
object’s ownership in database.

It also determines all splits and fees
for all accounts involived-buyer,
reseller, maker, service, efc.

Transactions for each account
are logged and new account
balances are computed.

222

STEP 10. Transactor Server sends
purchase OK to vendor’s server.

224

STEP 1. Vendor's server receives
purchase OK, and repackages the

existing unit with Consumer’s ID.

226

STEP 12. Vendor’s server sends
object to Consumer or sends

notification of where to download
the object via FTP. Sale is

logged as complete.

STEP 13. Consumer’s TOM server
receives notice of the sale and

downloads the object. A Transactor
Server will verify the ownership of the
object whenever it is used online.

o928

validation is OK

r218

If validation

FIG. 4

STEP 9a. The operation is
not performed and the user

is notified of the failure.

is not OK

WO 01/41527

/'302

5/20

STEP 1. Consumer (35) decides
to check his Transactor account.

/304

STEP 2. Consumer’s TOM sends
intent to "purchase" account info
(and appropriate IDs) to Transactor
Server directly or via server. The
TOM may operate independently or
through other Transactor-enabled client software.

306

STEP 3. Transactor Server sends
validation challenge to
Consumer’s TOM.

308

STEP 4. Consumer’s TOM responds
to validation challenge.

310

Lf

PCT/US00/20944

vaildation is not OK

STEP 5. Transactor Server
receives response.

314~ If validation is OK

STEP 6a. The operation is not
performed and the user is

notified of the failure.

STEP 6b. Transactor Server allows
Java applets (or other client software)

to "download" Consumer’s
account info (not persistent)

316

STEP 7. Consumer’s TOM downloads,
decrypts, and displays account

info using applets (or other
client software) imbedded in web
page (part of Broker Module).

318

STEP 8. Consumer reviews account
info (and perhaps other client
communications from Transactor
Server). Consumer logs off or

proceeds to other Transactor activity.

312

FIG. 5

WO 01/41527

PCT/US00/20944

STEP 1. Registered Transactor
User (35) decides to post an
object that he created for sale

202~ 404

STEP 9b. The Transactor Server creates a
new unique unit ID and assigns ownership
of that unit to the buyer in its
internal ownership database.

STEP 2. User logs into the client-
side Transactor Object Manager

(TOM) to "package" his object.

420 7 422

406

STEP 3. The TOM enters user ID (A1A1A1)
into the object package fields.
The User inputs data regarding price,
revenue model, number available, etc.

STEP 10. The Transactor Server then
packages the unit ID with ownership
information and the digital product itself,
encrypts protions of the resulting data,
them sends the result to the user or
informs the user where the packaged

/408

object may be downloaded.

STEP 4. The User logs into a Transactor
Server directly or a Transactor—enables

service provider, and is validated
by a Transactor Server.

STEP 11. The Transactor Server will
also update all relevant accounts,

compute and distribute splits, etc.

410

STEP 5. The User uploads the packaged
object and fields with instructions for the

Transactor Server to create a new product.

412

STEP 6. The Trasactor Server verifies
that it received the data correctle, then
proceeds to create a product, giving

it a unique produce ID (BIB1B1).

414

STEP 7. The Transactor Server sends

the unique product 1D, and other product-
related information, back to the user.

416

STEP 8. When copies of the product are
sold, the Transactor Server will verify
buyer's (37) Transactor User status and
the existence of available unsold units
for the buyer—designated product ID.

\ 424

If validation of User ID or product ID is OK

418~ If validation of User ID or product ID is not OK

STEP 9a. The operation is not performed
and the user is notified of the
failure. There is no sale.

FIG. 6

WO 01/41527

/—502

7/20

PCT/US00/20944

/r5¢4

STEP 1. Consumer decides to post a
previously acquired object for resale.

504~

STEP 2. Using the TOM, Consumer
indicates asking price for object
and sends posting (and appropriate
IDs including TOM signature) to
Transactor Server.

STEP 6b. Transactor Server includes
object posting in log of objects
currently for sale "classifieds."

The object, or pointer to the
original object, is stored at a

Broker Server. for resale.

516

506

STEP 3. Tansactor Server sends
validation challenge to Consumer's TOM.

508

STEP 7. Another valid Transactor user,
Consumer (36), logs onto a Transactor
enabled web site and activates her
TOM to search for an object to purchase.

STEP 4. Consumer’s TOM responds
to validation challenge.

STEP 5. Transactor Server
receives response.

STEP 8. Consumer (36) searches the
Transactor "classifieds" by object
name, universe, price, etc. to
find the desired object.

If validation \5m

is not OK

If validation
is OK

\L5ﬂ?
/F520

STEP 6a. The operation is not

STEP 9. Consumer (36) locates the

object posted by Consumer (35)
and decides to make a purchase.

performed and the user s
notified of the failure.
k51,2
522—1

STEP 10. Consumer’s (36) TOM
sends intent to purchase (and
appropriate IDs) to Broker Server
via Transactor—enabled web site.

STEP 11. Purchase process continues
as in FIG. 4, with Broker Server
acting as vendor.

\-524

FIG.7

WO 01/41527

PCT/US00/20944

8/20
602 604
P _'\' """""""""" 1 [- —_-L——---—___---__i
! Unit ID Lol Owner ID I
leAssigned to unit during Object | leAssigned to user during User |
| creation. I 1 Registration. I
i-lncorporcted in LEDO during | ieIncorporated in LEDO during i
I initial Object Purchase. | | Object Purchase. |
e —————— - 1 L e ——————————— e -
\ !
\ 1
\ I
\l ‘I
602~ 604
Unit ID | Owner ID
Payload
600 A
\
A
LEDO \\
("Limited Edition” Digital Object)| _________ e i
Payload

Data which defines object
(textures, data pointers,

Al, object attributes, etc.)

[e e e e e e

WO 01/41527

9/20

PCT/US00/20944

/‘35 /‘770
A Digital Object Transactor
(a file containing Package
., binary data) —,
User ID: (A1A1A1) Q3
700/ 720\ TR
PRODUCT ID[__BBBI |
Transactor SELLER ID[A1A1A1 +/724
740~ Server OWNER D[ATAAT A 74
PRICE[__$5.00 J1 %
MAKER ID[__ ATAT1AT ,,/7%(;
REVENUE MODEL |STRAIGHT SALE; /_734
TOTAL AVAILABLE 1000 4T
FTP [WwW . TRANSACTOR .COM|
750—\ N\
. . \—736
Packaged Digital
Object
BOY]
Product ID (B1B1B1)
User (37) sends
intent to buy
760
\ /-762 /_37
[

PRODUCT ID| B1B1B1
SELLER ID[__ ATATAT ~H—pgy
OWNER ID] cicict]

UNIT ID| DIDID1 |

770 \

New Unit of
Digital
Object

User ID: (CICIC1)

User (37) receives

packaged object with
his Owner ID (CICIC1)

FIG. 9

WO 01/41527

PCT/US00/20944
10/20

1. Customer visits any

Merchant website that

contains an HTML form
2. Customer invokes the 3. Customer types name
Trusted Agent service & password and submits

using a URL request to Trusted
9 Agent server

4. Trusted Agent Appears

6. HTML form is sent 5. Customer selects a
up from browsing - card and the form
using Normal HTTP is filled out

FIG. 10

WO 01/41527 PCT/US00/20944

11/20

7022\ 1023\ [1024

Business 1 Business 2 Business 3

1021—\

Trust Agent Server
at bank server

Client at client browser

\-1020
FIG. 11

1022—\

Business 1

1021 \

Trust Agent Server

5\ " at bank server
'Step 3 Step 1*

—Step 2

Client at client browser

\1020
FIG. 12

WO 01/41527

Step 2\1

1023 -\

12/20

Business 2

1021
I

Trust Agent Server
at bank server

Step 1\t

PCT/US00/20944

Client at client browser

\-1020
FIG. 13
1021
" Trust Agent Server at bank server

Credit Credit Credit

Card Card 2 Card 3
J U J \ _
r N\ [N)

Warranty Receipt Contract
. J \ J

/—1020

Client at client browser

FIG. 14

WO 01/41527 PCT/US00/20944

13/20

1. Customer visits a Trusted
Agent Service Provider
running the Trust Agent Server,
such as bank.com using a
web browser

2. Customer selects an account
name & password and fills in
preference info & one or more

bank card accounts and other
instruments

2a. LEDOs are populated

into the Trust Agent
Server database

3. Customer is prompted to
bookmark the URL of their Trust
Agent Service Provider as
a button

FIG. 15

PCT/US00/20944

WO 01/41527

14/20

ORI

|onsn so abod qam
Jubyosaw s59904d JuDYDIAN “ /)

abod qam
JuDyoJBW 3y} S}uUGNs J1asp g

abod qom
Jno s||1} juaby paysni] gl

abod juaby pajsni] ay} wouy
uorypiado 8y} $}93|as Jas() 4|

Janiag juaby paysni) Aq-pajpiauab s
woiboiy juaby paysni] mau y °||

abod qam jubydsaw Ay} sjuawniisul
jualjo sy} Aq paalasass woiboud
juabp paysniy psjpiauab ayj °g|

juaby paysni| Jiayy

Ul UO1}23|3S }00q SSa.ppD 10O
Uu01}99|8S P4DI }1paJd SD yans
suoj}pJado Jo }as D $33s Jas() ‘g|

abod ay} sazfjpup
19A19S 1uaby paysni] "q|

1aAJas juaby pajsni]

ay} o} papoojdn si abod
qoMm Jupbydlaw ay) ‘pJomssod
pub awou 3y} Yy buojy '

JanJas juaby paysni| o)
abod qam ayy sjlugns Jasp ‘g

195M0.q S, Jawnsuod ay} ul abod
oM S,}uDydlap Yy} s}oadsul
woiboid jusby paysni] g

pJomssod pup awou juaby
pajsni)| Jiay} ul sadA} Jasn 7

woibouyq juaby paysni| ay)
sppojumop 1aA1ag juaby pajsni] ‘g

740 buisn aaiAlas juaby
Pa}Sni| 8y} Sa¥OAul Jasp ‘¥

A 1asn pua 0}
abod o spoojumop jupyosap °¢

138N 8y} Y}iA
UOISS3S D S}ONPUOD JUDYIIBN *Z

9)IS 3M JUDYdJoW D
0} oM 8y} SasMo.q Jas(‘|

JaAlag jusby
paisni]| X JUDYdUsp

yusby pajsna}

Jasmoug s, 98

WO 01/41527 PCT/US00/20944

15/20
100\
RUN BROWSER
WITH CRYPTOGRAPHY |- 170
ENABLED /
0 IDENTIFY THE
— FOR//; CERTIFICATE LOCATION
CERTIFICATE /1180
/1120 RUN THE
CENERATE A KEY SIGNING PROGRAM
AND RETRIEVE
THE CERTIFICATE 1190
/1130 THE SIGNING TOOL
DOWNLOAD OBJECT CREATES THE TRUSTED
SIGNING TOOL AGENT FILE TO BE STORED
40 ON WEB SERVER
-

PLACE DOCUMENT TO
BE SIGNED IN "TRUSTED-

AGENTDIR'"; SIGN

THE DOCUMENTS

1150
y

NAME THE FILE WHERE
SIGNATURES ARE STORED

/—116‘0

ASSIGN ID TO
JAVASCRIPT CODE

FIG. 17

WO 01/41527 PCT/US00/20944
16/20

120
/‘ 0

CUSTOMER REQUESTS
FORM FROM MERCHANT

1210
/,

FORM IS DOWNLOADED
TO CUSTOMER

/-1220

MERCHANT SERVER SENDS
REQUESTS FOR CUSTOMER
REGISTRATION TO
TRUSTED AGENT SERVER

/—1230

TRUSTED AGENT SERVER
REGISTERS/NOTIFIES
CUSTOMER

2.
/‘1 40

CUSTOMER COMPLETES
AND UPLOADS FORM
TO MERCHANT

FIG. 18

PCT/US00/20944

WO 01/41527

17/20

6} "9Id

v06}
\‘

asbqp}b(

40}0DsuD. |

aspgpip(Q
S, JUDYOJaN

™~ £06!

IEISER | IDWS 84nass yusby FEYSER
1911O0M Jo ysod sdyy [1disosy aoMm
L 14DWS JUDYDIB
906 %
]IS 10}oDSUDJ | 5061~ 8115 JUDYOIBN
/INQQN /LQ@

WO 01/41527 PCT/US00/20944

18/20
2002
/_
Merchant
Server
2007—\ Smart Receipt
Agent
Buyer
Site N\-2003
Trusted Agent 2005
2004 / : Trusted Agent
Server
2006
B DB
FIG. 20
2107\
ipt
Receip /2104
TN Offers Custo[ner
Service
‘Warranties Follow-on
/ Preferences
2103 _2105

FIG. 21

WO 01/41527 PCT/US00/20944

19/.20

Smart Receipt 2201

Order

Simple |—2<03
Receipt

Smart {4204

Receipt

2206

Offers

Customer |—<206
Service

FIG. 22

/12302

2301 2303

Trusted
Agent Party Y

Server

Party X

FIG. 23

WO 01/41527

20/20

PCT/US00/20944

Smart Receipt

2402

Negotiate?

Agree

$300

|_—2404

$700

2405

$500

| —2406

Accept

| — 2404

| 2401

FIG. 24

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

