wo 2015/0042776 A2 I} 0000 RO O O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/004276 A2

15 January 2015 (15.01.2015) WIPO|PCT
(51) International Patent Classification: Coutouse, F-35330 Maure de Bretagne (FR). DENOUAL,
HO04N 21/472 (2011.01) Franck; La Ville-Es-Ray, F-35190 Saint Domineuc (FR).
(21) International Application Number: EIIJ{I)ELLAN’ Hervé; 49 rue Duhamel, F-35000 Rennes
PCT/EP2014/064949 ’
(22) International Filing Date: (74) Agent: SANTARELLI; 49, avenue des Champs-FElysées,
11 July 2014 (11.07.2014) F-75008 Paris (FR).

- . . (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(30) Priority Dat BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
riority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(71) Applicant: CANON KABUSHIKI KAISHA [JP/IP]; 3- OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
30-2, Shimomaruko, 3-chome, Ohta-ku, Tokyo (JP). %ﬁ’ %F]?{» ST]?l: S% SIIJ%\ S%GSI\{[J,SS% ZSV{/ gY,VFIF\I H,ZTA;L Eﬁ»
(71) Applicant (for AE only): CANON EUROPE LIMITED w.

[GB/GB]; 3 The Square, Stockley Park, UXBRIDGE, . o
Middlesex UB11 1ET (GB). (84) Designated States (uniess otherwise indicated, for every
) kind of regional protection available). ARIPO (BW, GH,
(72) Inventors: FABLET, Youenn; La Roulais, F-35390 La GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

Dominelais (FR). BELLESSORT, Romain; 3 rue de
Robien, F-35000 Rennes (FR). MAZE, Frédéric; 6, rue
des Tilleuls, F-35850 Langan (FR). OUEDRAOGO, Naél;

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: ADAPTIVE DATA STREAMING METHOD WITH PUSH MESSAGES CONTROL

108
Data in cache?
Yes
No

/107

Retrieve cached
data

108

Send a request

‘L 1400
100
Determine PUSH
policy Get a request R to
process
109 1401 \l/ 1402
Push Promisé Process push /
promise Determine PUSH
policy
No
1
112 1 1403
Pushed data ? Process pushed Identify resources f
data 10 push
No 113 J
114 102
9) Start sending f
Response? Process respons response
116
Send push / 103
End promises
_ﬁw 104
i resources and /
At client finish sending
s|de At server response
H 105
Fig. 14a side Is
End
Fig. 14b

6 (57) Abstract: There is provided methods for managing streaming over
communication networks. Server and client devices share a push policy so
that the client device may anticipate data pushes by the server. Anticipation
makes it possible to cancel early the sending of some pushed data, therefore
reducing bandwidth consumption. The shared push policy may be implicit to
both server and client. In embodiments, it is explicitly specified by the serv-
er to the client, for example embedded in the Media Presentation Descrip-
tion file or included in a specific HTTP header. The client may also request
an update of the shared push policy to meet its own requirements.

WO 2015/004276 A2 |00V VT 0N ERE AR A

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

ADAPTIVE DATA STREAMING METHOD WITH PUSH MESSAGES CONTROL

This application claims priority from the following GB patent applications: No.
1312547.1 and No. 1312561.2, both of July 12, 2013, and No. 1410540.7 of June 12, 2014,
which are all incorporated herein by reference.

FIELD OF THE INVENTION
The present invention relates to data streaming over HTTP communication

networks.

More particularly, the present invention relates to adaptive data streaming for
satisfying network constraints. The invention may have applications in DASH networks.

DASH (acronym for Dynamic Adaptive Streaming over HTTP) is a
communication standard allowing media content streaming (typically audio/video content)
over HTTP. According to DASH, media presentations are described as XML files, called
“media presentation description” files (MPD in what follows). MPD files provide client
devices with information allowing them to request and control the delivery of media
contents.

BACKGROUND OF THE INVENTION
The general principle of Media streaming over HTTP is illustrated in Figure 3.

Most of the new protocols and standards for adaptive media streaming over HTTP are
based on this principle.

A media server 300 streams data to a client 310. The media server stores
media presentations. For example, media presentation 301 contains audio and video data.
Audio and video may be interleaved in a same file. The way the media presentation is built
is described in what follows with reference to Figure 4a. The media presentation is
temporally split into small independent and consecutive temporal segments 302a, 302b and
302c¢, such as MP4 segments, that can be addressed and downloaded independently. The
downloading addresses (HTTP URLs) of the media content for each of these temporal
segments are set by the server to the client. Each temporal segment of the audio/video
media content is associated with one HTTP address.

The media server also stores a manifest file document 304 (described in what
follows with reference to Figure 5) that describes the content of the media presentation
including the media content characteristics (e.g. the type of media: audio, video, audio-
video, text etc.), the encoding format (e.g. the bitrate, the timing information etc.), the list of

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

temporal media segments and associated URLs. Alternatively, the document contains
template information that makes it possible to rebuild the explicit list of the temporal media
segments and associated URLs. This document may be written using the eXtensible
Markup Language (XML).

The manifest file is sent to the client. Upon receipt of the manifest file during a
step 305, the client is informed of the association between temporal segments of the media
contents and HTTP addresses. Also, the manifest file provides the client with the
information concerning the content of the media presentation (interleaved audio/video in
the present example). The information may include the resolution, the bit-rate etc.

Based on the information received, the HTTP client module 311 of client can
emit HTTP requests 306 for downloading temporal segments of the media content
described in the manifest file. The server's HTTP responses 307 convey the requested
temporal segments. The HTTP client module 311 extracts from the responses the temporal
media segments and provides them to the input buffer 307 of the media engine 312.
Finally, the media segments can be decoded and displayed during respective steps 308
and 309.

The media engine 312 interacts with the DASH control engine 313 in order to
have the requests for next temporal segments to be issued at the appropriate time. The
next segment is identified from the manifest file. The time at which the request is issued
depends on whether or not the reception buffer 307 is full. The DASH control engine 313
controls the buffer in order to prevent it from being overloaded or completely empty.

The generation of the media presentation and the manifest file is described
with reference to Figure 4a. During steps 400 and 401, audio and video data are acquired.
Next, the audio data are compressed during 402. For example, the MP3 standard can be
used. Also, the video data are compressed in parallel during step 403. Video compression
algorithms such as MPEG4, MPEG/AVC, SVC, HEVC or scalable HEVC can be used.
Once compression of audio and video data has been performed, audio and video
elementary streams 404, 405 are available. The elementary streams are encapsulated
during a step 406 into a global media presentation. For example, the 1ISO BMFF standard
(or the extension of the ISO BMFF standard to AVC, SVC, HEVC, scalable extension of
HEVC etc.) can be used for describing the content of the encoded audio and video
elementary streams as a global media presentation. The encapsulated media presentation
407 thereby obtained is used for generating, during step 408, an XML manifest file 409.
Several representations of video data 401 and audio data 400 can be acquired,
compressed, encapsulated and described in the media presentation 407.

For the specific case of MPEG/DASH streaming protocol illustrated in Figure
4b, the manifest file is called “Media Presentation Description” (or “MPD” file). The root

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

element of the file is the MPD element that contains attributes applying to all the
presentation plus DASH information like profile or schema. The media presentation is split
into temporal periods represented by a Period element. The MPD file 410 contains all the
data related to each temporal period. By receiving this information, the client is aware of the
content for each period of time. For each Period 411, AdaptationSet elements are defined.

A possible organization is to have one or more AdaptationSet per media type
contained in the presentation. An AdaptationSet 412 related to video contains information
about the different possible representations of the encoded videos available at the server.
Each representation is described in a Representation element. For example, a first
representation can be a video encoded with a spatial resolution of 640x480 and
compressed with a bit rate of 500 kbits/s. A second representation can be the same video
but compressed with a bit rate of 250 kbits/s.

Each video can then be downloaded by HTTP requests if the client knows the
HTTP addresses related to the video. The association between the content of each
representation and the HTTP addresses is done by using an additional level of description:
the temporal segments. Each video representation is split into temporal segments 413
(typically few seconds). Each temporal segment comprises content stored at the server that
is accessible via an HTTP address (URL or URL with one byte range). Several elements
can be used for describing the temporal segments in the MPD file: SegmeniList,
SegmentBase or SegmentTemplate.

In addition, a specific segment is available: the initialization segment. The
initialization segment contains MP4 initialization information (if the video has been
encapsulated using the ISO BMFF or extensions thereof) that describes the encapsulated
video stream. For example, it helps the client to instantiate the decoding algorithms related
to the video.

The HTTP addresses of the initialization segment and the media segments are
indicated in the MPD file.

In Figure 5, there is shown an exemplary MPD file. Two media are described
in the MPD file shown. The first one is an English audio stream and the second one is a
video stream. The English audio stream is introduced using the AdaptationSet tag 500.
Two alternative representations are available for this audio stream:

- the first representation 501 is an MP4 encapsulated elementary audio
stream with a bit-rate of 64000 bits/sec. The codec to be used for handling this elementary
stream (after MP4 parsing) is defined in the standard by the attribute codecs having the
value: ‘mp4a.0x40’. It is accessible via a request at the address formed by the
concatenation of the BaseURL elements in the segment hierarchy:
<BaseURL>7657412348.mp4</BaseURL>, which is a relative URI. The <BaseURL> being

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

defined at the top level in the MPD element by ‘http:/cdni.example.com/ or by
‘hitp://cdn2.example.com/ (two servers are available for streaming the same content) is the
absolute URI. The client can then request the English audio stream from the request to the
address ‘hitp.//cdn1.example.com/7657412348. mp4’ or to the address
‘hito://cdn2.example.com/7657412348.mp4 .

- the second representation 502 is an MP4 encapsulated elementary audio
stream with a bit-rate of 32000 bits/sec. The same explanations as for the first
representation 501 can be made and the client device can thus request this second
representation 502 by a request at either one of the following addresses:

‘http://cdn1.example.com/3463646346.mp4’ or

‘http://cdn2.example.com/3463646346.mp4’.

The adaptation set 503 related to the video contains six representations. These
representations contain videos with different spatial resolutions (320x240, 640x480,
1280x720) and with different bit rates (from 256000 to 2048000 bits per second). For each
of these representations, a respective URL is associated through a BaseURL element. The
client can therefore choose between these alternative representations of the same video
according to different criteria like estimated bandwidth, screen resolution etc. (Note that, in
Figure 5, the decomposition of the Representation into temporal segments is not
illustrated, for the sake of clarity.)

Figure 5a shows the standard behavior of a DASH client. Figure 5b shows a
tree representation of an exemplary manifest file (description file or MPD) used in the
method shown in Figure 4a.

When starting a streaming session, a DASH client starts by requesting the
manifest file (step 550). After waiting for the server’s response and receiving the manifest
file (step 551), the client analyzes the manifest file (step 552), selects a set AS; of
AdaptationSets suitable for its environment (step 553), then selects, within each
AdaptationSet AS;, a Representation in the MPD suitable for example for its bandwidth,
decoding and rendering capabilities (step 554).

The DASH client can then build in advance the list of segments to request,
starting with initialization information for the media decoders. This initialization segment has
to be identified in the MPD (step 555) since it can be common to multiple representations,
adaptation sets and periods or specific to each Representation or even contained in the
first media segment.

The client then requests the initialization segment (step 556). Once the
initialization segment is received (step 557), the decoders get initiated (step 558).

The client then requests first media data on a segment basis (step 560) and
buffers a minimum data amount (thanks to the condition at step 559) before actually

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

starting decoding and displaying (step 563). These multiple requests/responses between
the MPD download and the first displayed frames introduce a startup delay in the streaming
session. After these initial steps, the DASH streaming session continues in a standard way,
i.e. the DASH client adapts and requests the media segments one after the other.

The current DASH version does not provide description of Region-Of-Interest
within the manifest files. Several approaches have been proposed for such description.

In particular, components of media contents can be described using
SubRepresentation elements. These elements describe the properties of one or several
components that are embedded in a Representation. In Figure 6, there is shown an
example of a DASH manifest file describing tile tracks as components of a video. For the
sake of conciseness and clarity, only one Period 600 is represented. However, subsequent
period elements would be organized in a same fashion. In part 601, a first adaptation set
element is used for describing a base layer of the scalable video. For example, the video is
encoded according to SVC or HEVC scalable. In part 602, a second adaptation set is used
for describing the highest resolution layer of the scalable video. For non-scalable video,
only the second adaptation set 602 would be present, without dependency to the base
layer, i.e. the dependencyld attribute. In this second adaptation set 602, a single
representation 603 is described, namely the one that corresponds to the displayable video.
The representation is described as a list of segments 610 with respective URLs for client
requests.

Thus, the representation depends on another representation identified by ‘R1’
(dependencyld attribute), actually the base layer representation from the first adaptation set
601. The dependency forces the streaming client to first request the current segment for
base layer before getting the current segment for the enhancement layer. This cannot be
used to express dependencies with respect to tile tracks because the tracks that would be
referenced this way would be automatically loaded by the client. This is something to be
avoided, since it is up to the user to select the tiles of interest for him anytime during the
media presentation. Therefore, in order to indicate the dependencies between the
composite track and the tile tracks the SubRepresentation element is used. The displayable
video is described as a list of sub-representations 604 to 608. Each sub representation
actually represents a track in the encapsulated MP4 file. Thus, there is one sub-
representation per tile (four tiles in the present example) plus one sub-representation for
the composite track 608. Each sub-representation is described by a content component
element 614 to 618 in order to indicate whether it corresponds to a tile track 614, 615, 616
and 617 or to the composite track 618. The Role descriptor type available in DASH/MPD is
used with a specific scheme for tiling. The Role descriptor also indicates the position of the
tile in the full-frame video. For example the component 614 describes the tile located at the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

top left of the video (1:1 for first in row and first in column). The dimensions of the tiles,
width and height, are specified as attributes of the sub representation as made possible by
MPD. Bandwidth information can also be put here for helping the DASH client in the
determination of the number of tiles and the selection of the tiles, according to its
bandwidth. Goncerning the composite track, it has to be signalled in a different way than
the tile tracks since it is mandatory to be able, at the end of the download, to build a video
stream that can be decoded. To that purpose, two elements are added into the description.
Firstly, the descriptor in the related content component 618 indicates that it is the main
component among all the components. Secondly, in the sub representation, a new attribute
‘required’ is added in order to indicate to the client that the corresponding data have to be
requested. All requests for the composite track or for one or more of the tile tracks are
computed from the URL provided in the segment list 610 (one per time interval). In the
example, “URL_X’ combined with “BaseURL” at the beginning of the MPD provides a
complete URL which the client can use for performing an HTTP GET request. With this
request, the client would get the data for the composite track and all the data for all the tile
tracks. In order to optimize the transmission, instead of the request, the client can first
request the segment index information (typically the “ssix” and/or “sidx” information in 1ISO
BMFF well known by the man skilled in the art), using the data available from the
index_range attribute 620. This index information makes it possible to determine the byte
ranges for each of the component. The DASH client can then send as many HTTP GET
requests with appropriate byte range as selected tracks (including the required composite
track).

When starting a streaming session, a DASH client requests the manifest file.
Once received, the client analyzes the manifest file, selects a set of AdaptationSets
suitable for its environment. Next, the client selects in the MPD, within each AdaptationSet,
a Representation compatible with its bandwidth, decoding and rendering capabilities. Next,
it builds in advance the list of segments to be requested, starting with initialization
information for the media decoders. When initialization information is received by the
decoders, they are initialized and the client requests first media data and buffers a
minimum data amount before actually starting the display.

These multiple requests/responses may introduce delay in the startup of the
streaming session. The risk is for service providers to see their clients leaving the service
without starting to watch the video. It is common to name this time between the initial HTTP
request for the first media data chunk, performed by the client, and the time when the
media data chunk actually starts playing as the start-up delay. It depends on the network
round-trip time but also on the size of the media segments.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

Server Push is a useful feature for decreasing web resource loading time. Such
servers are discussed with reference to Figures 1a to 1e.

In Figure 1b, there is shown that in HTTP/2 exchanges, a request must be
sent for every resource needed: resources R1 to R4 and sub-resources A to | (as shown in
Figure 1a). However, when using the push feature by servers, as illustrated in Figure 1c,
the number of requests is limited to elements R1 to R4. Elements A to | are “pushed” by the
server to the client based on the dependencies shown in Figure 1a, thereby making the
associated requests unnecessary.

Thus, as illustrated in Figures 1b and 1c¢, when servers use the push feature,
the number of HTTP round-trips (request + response) necessary for loading a resource with
its sub-resources is reduced. This is particularly interesting for high-latency networks such
as mobile networks.

HTTP is the protocol used for sending web resources, typically web pages.
HTTP implies a client and a server:

e The client sends a request to the server;

o The server replies to the client’s request with a response that contains a
representation of the web resource.

Requests and responses are messages comprising various parts, notably the
HTTP headers. An HTTP header comprises a name along with a value. For instance,
“Host: en.wikipedia.org” is the “Host” header, and its value is “en.wikipedia.org”. It is used
for indicating the host of the resource queried (for instance, the Wikipedia page describing
HTTP is available at http://en.wikipedia.org/wiki/HTTP). HTTP headers appear on client
requests and server responses.

HTTP/2 makes it possible to exchange requests/responses through streams. A
stream is created inside an HTTP/2 connection for every HTTP request and response.
Frames are exchanged within a stream in order to convey the content and headers of the
requests and responses.

HTTP/2 defines a limited set of frames with different meanings, such as:

- HEADERS: which is provided for transmission of HTTP headers

- DATA: which is provided for transmission of HTTP message content

- PUSH_PROMISE: which is provided for announcing pushed content

- PRIORITY: which is provided for setting the priority of a stream

- WINDOW_UPDATE: which is provided for updating the value of the control
flow window

- SETTINGS: which is provided for conveying configuration parameters

- CONTINUATION: which is provided for continuing a sequence of header
block fragments

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

- RST_STREAM: which is provided for terminating or cancelling a stream.

Push by servers has been introduced in HTTP/2 for allowing servers to send
unsolicited web resource representations to clients. Web resources such as web pages
generally contain links to other resources, which themselves may contain links to other
resources. To fully display a web page, all the linked and sub-linked resources generally
need to be retrieved by a client. This incremental discovery may lead to a slow display of a
web page, especially on high latency networks such as mobile networks.

When receiving a request for a given web page, the server may know which
other resources are needed for the full processing of the requested resource. By sending
the requested resource and the linked resources at the same time, the server allows
reducing the load time of the web page. Thus, using the push feature, a server may send
additional resource representations at the time it is requested a given resource.

With reference to the flowchart of Figure 1e, an exemplary mode of operation
of a server implementing the push feature is described.

During step 100, the server receives an initial request. Next, the server
identifies during step 101 the resources to push as part of the response and starts sending
the content response during step 102. In parallel, the server sends push promise messages
to the client during step 103. These messages identify the other resources that the server is
planning to push, for instance based on the dependencies shown in Figure 1a. These
messages are sent in order to let the client know in advance which pushed resources will
be sent. In particular, this reduces the risk that a client sends a request for a resource that
is being pushed at the same time or about to be pushed. In order to further reduce this risk,
a server should send a push promise message before sending any part of the response
referring to the resource described in the push promise. This also allows clients to request
cancellation of the push of the promised resources if clients do not want those resources.
Next, the server sends the response and all promised resources during step 104. The
process ends during a step 105.

The flowchart of Figure 1d illustrates the process on the client side.

When the client has identified a resource to retrieve from the server, it first
checks during a step 106 whether or not the corresponding data is already in its cache
memory. In case the resource is already in the cache memory (Yes), it is retrieved from it
during a step 107. Cached data may be either data retrieved from previous requests or
data that were pushed by the server previously. In case it is not in the cache memory (No),
the client sends a request during step 108 and waits for the server's response. Upon
receipt of a frame from the server, the client checks during step 109 whether or not the
frame corresponds to a PUSH promise. If the data frame corresponds to the PUSH promise
(Yes), during step 110, the client processes the push promise. The client identifies the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

resource to be pushed. If the client does not wish to receive the resource, the client may
send an error message to the server so the server does not push that resource. Otherwise,
the client stores the push promise until receiving the corresponding push content. The push
promise is used so that the client does not request the promised resource while the server
is pushing it. In case the data frame does not correspond to the PUSH promise (No), it is
checked, during step 111, whether or not, the frame is a data frame related to push data. In
case it is related to push data (Yes), the client processes the pushed data during step 112.
The pushed data is stored within the client cache. In case the frame is not a data frame
related to push data (No), it is checked, during step 113, whether it corresponds to a
response received from the server. In case the frame corresponds to a response from the
server (Yes), the response is processed during step 114 (e.g. sent to the application).
Otherwise (No), it is checked during step 115 whether or not the frame identifies the end of
a response (Yes). In this case, the process is terminated during step 116. Otherwise, the
process goes back to step 109.

Thus, it appears that the client receives the response and the promised
resources. The promised resources are therefore generally stored in the client cache while
the response is used by the application such as a browser displaying a retrieved web page.
When a client application requests one of the resources that were pushed, the resource is
immediately retrieved from the client cache, without incurring any network delay.

The storage of pushed resources in the cache is controlled using the cache
control directives. The cache control directives are also used for controlling of the
responses. These directives are in particular applicable to proxies: any resource pushed or
not, may be stored by proxies or by the client only.

Figure 1a is a graph of a set of resources owned by a server with their
relationships. The set of resources is intertwined: Ry, Ry, Rs, and R, are resources that
need to be downloaded together to be properly processed by a client. In addition, sub-
resources A to H are defined. These sub-resources are related to 1, 2 or 3 resources. For
instance, A is linked to Ry and C is linked to R4, R, and R..

Figure 1b, already discussed hereinabove, shows an HTTP exchange without
using the server PUSH feature: the client requests Ry, next it discovers R,, A, B, C and D
and request them. After receiving them, the client requests Rs, R4, F and G. Finally the
client requests H and | sub-resources. This requires four round-trips to retrieve the whole
set of resources.

Figure 1c, already discussed hereinabove, illustrates the HTTP exchange
using the feature of pushing directly connected sub-resources by the server. After
requesting Ry, the server sends Ry and pushes A, B, C and D. The client identifies R, and
requests it. The server sends R, and pushes F and G. Finally the client identifies Rs, Ry

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

10

and requests these resources. The server sends Rj, R, and pushes H and I. This process
requires three round-trips to retrieve the whole set of resources.

In order to decrease the loading time of a set of resources, typically a web
page and its sub-resources, HTTP/2 allows exchanging multiple request and response
priorities in parallel. As illustrated in Figure 2, a web page may require the download of
several resources, like JavaScript, images etc. During an initial HTTP exchange 200, the
client retrieves an HTML file. This HTML file contains links to two JavaScript files (JS1,
JS2), two images (IMG1, IMG2), one CSS file and one HTML file. During an exchange 201,
the client sends a request for each file. The order given in the exchange 201 of Figure 2 is
based on the web page order: the client sends a request as soon as a link is found. The
server then receives requests for JS1, CSS, IMG1, HTML, IMG2 and JS2 and processes
these requests according that order. The client then retrieves these resources in that order.

HTTP priorities make it possible for the client to state which requests are more
important and should be treated sooner than other requests. A particular use of priorities is
illustrated in exchange 202. JavaScript files are assigned the highest priority. CSS and
HTML files are assigned medium priority and images are assigned low priority. This
approach allows receiving blocking files or files that may contain references to other
resources sooner than other files. In response, the server is expected to try sending sooner
the JavaScript files, the CSS and HTML files afterwards and the images at the end, as
described in exchange 202. Servers are not mandated to follow client priorities.

In addition to priorities, HTTP/2 provides that the amount of data being
exchanged simultaneously can be controlled. Client and server can specify which amount
of data they can buffer on a per connection basis and a per stream basis. This is similar to
TCP congestion control: a window size, which specifies an available buffer size, is
initialized to a given value; each time the emitter sends data, the window size is
decremented; the emitter must stop sending data so that the window size never goes below
zero. The receiver receives the data and sends messages to acknowledge that the data
was received and removed from the buffer; the message contains the amount of data that
was removed from the buffer; the window size is then increased from the given value and
the emitter can restart sending data.

In view of the above, it appears that DASH is based on the assumption that the
client leads the streaming since the client can generally select the best representation of
the content for the purpose of the application it is performing. For instance, a client may
know whether to request High-Definition or Small-Definition content based on its form-
factor and screen resolution.

Server-based streaming is typically done using RTP. Contrary to DASH, RTP
does not use HTTP and cannot directly benefit from the web infrastructures, in particular

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

11

proxies and caches. Web socket based media streaming has the same drawbacks. With
HTTP/1.1, server-based streaming cannot be easily implemented since the server can
generally only answer to client requests. With HTTP/2, in particular with the introduction of
the push feature, DASH-based servers can lead the streaming. Thus, servers can use their
knowledge of the characteristics of the content they are streaming for optimizing the user
experience. For instance, a server may push a film as SD (due to limited bandwidth) but
advertisements as HD since advertisements take an additional limited amount of
bandwidth. Another example is the case of a server that starts to do fast start with a low-
resolution video and switches to the best possible representation once bandwidth is well
estimated.

In order to enable a server to lead the streaming, one approach is to let the
server push data (in particular DASH data) as preferred. The client then uses whatever
data is available to display the video. The server typically announces the push of several
segments at once. The server then sends the segments in parallel or successively.

A problem that occurs is that client and server may not know if the promised
data will be transmitted and received at the desired time: the client may not know when and
in which order the video segments will be sent.

Also, the promised data pushed or announced by the server may mismatch the
client needs, thus leading to resource wasting in particular at the server end.

Thus, there is a need for enhancing data streaming especially in the context of
DASH-based communications.

SUMMARY OF THE INVENTION
The present invention lies within this context.

According to a first aspect of the invention corresponding to the server’s
perspective, a method of streaming media data by a server device to a client device,
comprises the following steps:

- receiving, from the client device, a request relating to first media data,

- identifying second media data to be sent to the client device without having
been requested, and

- in response to said request, transmitting to said client device, data relating
to said first media data, and preparing at least one announcement message respectively
identifying said second media data with a view to transmit the announcement message or
messages to the client device, and

wherein the method further comprises the step of using a push policy shared
with the client device for the server device to drive the identification or the transmission of
the second non-requested media data to the client device.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

12

According to a second aspect of the invention corresponding to the client’s
perspective, a method of accessing by a client device, media data streamed by a server
device, the method comprises the following steps:

- transmitting, to the server device, a request relating to first media data,

- receiving from said server device, in response to said request, data relating
to said first media data,

wherein the method further comprises the step of using a push policy shared
with the server device for the client device to determine second media data to be sent by
the server device without having been requested by the client device or to determine an
order of transmission thereof by the server device.

In particular, the shared push policy may define how to determine second
media data, for the devices to determine the second non-requested media data to be sent
by the server device to the client device.

Thanks to this approach, the mismatch between the server’'s decision
regarding the media data to be pushed and the client’s needs can be decreased and thus
resources can be saved.

This is achieved by using a shared push policy that makes it possible for the
client to anticipate the server’'s behaviour, and thus the second media data that are about to
be pushed. Thanks to the shared push policy than may be used for several client’'s
subsequent requests, the client can anticipate the server’s behaviour even before the
requests are sent to the server.

As a consequence of the anticipation, the client can prepare and request the
cancellation of such second media data that are not needed, in an anticipated fashion with
respect to the announcement by the server.

The request relating to first media data may concern first media data and/or
other data related to this first media data.

The second media data may be associated with said first media data, for
example by the server device.

Embodiments of the invention provide a lightweight mechanism for server-
guided streaming. Embodiments may be implemented in the context of DASH networks.

Server devices can make content recommendations to the client devices. Also,
they can optimize the network usage.

Embodiments of the invention are compatible with existing HTTP/2 features.
These features can advantageously be used for implementing embodiments of the
invention.

Network performances are generally increased.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

13

Correspondingly, the invention also regards a server device for streaming
media data to a client device, the device comprising:

- areceiver configured for receiving, from the client device, a request relating
to first media data,

- a control unit configured for identifying second media data to be sent to the
client device without having been requested, and

- a transmitter configured for, in response to said request, transmitting to said
client device, data relating to said first media data, and preparing at least one
announcement message respectively identifying said second media data with a view to
transmit the announcement message or messages to the client device, and

wherein the control unit is further configured for using a push policy shared with
the client device in order to drive the identification or the transmission of the second non-
requested media data to the client device.

The invention also regards a client device for accessing media data streamed
by a server device, the device comprising:

- a transmitter configured for transmitting, to the server device, a request
relating to first media data, and

- a receiver configured for receiving from said server device, in response to
said request, data relating to said first media data,

wherein the client device is configured for using a push policy shared with the
server device in order to determine second media data to be sent by the server device
without having been requested by the client device or to determine an order of transmission
thereof by the server device.

The server and client devices have the same advantages as the corresponding
methods as described above.

Optional features of the methods and devices are defined in the dependent
claims. Some of them are explained below with respect to the methods. However they can
also apply to the corresponding device.

In some embodiments referred below as to an explicit approach, the method
from the server’s perspective further comprises:

determining by the server device a push policy, and

transmitting, from the server device to the client device, push policy information
describing the determined push policy to share the push policy with the client device.

Correspondingly at the client side, the method may further comprise receiving,
from the server device, push policy information describing the shared push policy.

As described in some examples below, the push policy information describing
the shared push policy is inserted in a description file that is transmitted from the server

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

14

device to the client device, the description file containing description information that
concerns media data including the first media data, the method further comprising
determining the second non-requested media data based on said description file using the
shared push policy.

In a specific embodiment, the description file describes the media data using a
plurality of media data attribute levels, and various shared push policies are defined at
various respective levels of the description file.

In other examples, the push policy information describing the shared push
policy is embedded in a header of an HTTP frame transmitted from the server device to the
client device.

According to specific features, the method may further comprise, at the server
device, receiving push policy update information embedded in a header of an HTTP frame
from the client device, and updating accordingly the shared push policy before determining
non-requested media data from other media data requested by the client device.

Correspondingly, the method may further comprise, at the client device,
sending push policy update information embedded in a header of an HTTP frame to the
server device.

According to a hybrid approach, the push policy information describing the
shared push policy is defined by a first push policy part and a second push policy part,

the first push policy part being inserted in a description file that is transmitted
from the server device to the client device, the description file containing description
information that concerns media data including the first media data, the method further
comprising determining the second non-requested media data based on said description
file using the shared push policy,

and the second push policy part being embedded in a header of an HTTP
frame transmitted from the server device to the client device.

For example, the second push policy part may comprise one or more values for
one or more associated variables defined in the first push policy part.

Also, the description file may include the description of a plurality of candidate
push policies, and the second push policy part may thus comprise an identifier of a
candidate push policy from said plurality, which identified candidate push policy thereby
forming the first push policy part.

In other embodiments, the push policy information includes a JavaScript
program embedded in a web page transmitted from the server device to the client device.

In yet other embodiments, the method further comprises determining the
second non-requested media data based on a structured document (such as a description
file described above or an HTML page introduced in examples below), the structured

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

15

document containing description information that concerns media data including the first
media data, and

the push policy information includes an XPath expression to be evaluated on a
tree representation of the structured document to identify the second non-requested media
data.

Regarding the syntax of the push policy information, embodiments provide that
the push policy information includes a first push attribute defining an amount of second
non-requested media data to be identified in a description file,

the description file containing description information that concerns media data
including the first media data, and the method further comprising determining the second
non-requested media data based on said description file using the shared push policy.

According to specific features, the first push attribute identifies the second non-
requested media data relatively to the first media data requested within the description file.
This may be done using operators as described below.

In a variant, the first push attribute is an identifier of specific media data within
the description file.

According to specific features, the description information in the description file
describes media data according to at least one media data attribute from amongst a period
attribute defining a time period to which the media data belong, an adaptation attribute
defining a media type of the media data, a representation attribute defining an encoding
version (e.g. bitrate, frame rate, frame resolution, timing information, etc.) of the media data
and a segment attribute defining, and

the push policy information includes at least a second push attribute defining a
constraint on the media data attribute or attributes, for identifying the second non-requested
media data.

This makes it possible to have very selective push policies throughout the
description file.

In particular, the push attribute or attributes may define a media data attribute
or attributes of the second non-requested media data relatively to the corresponding media
data attribute or attributes of the first media data within the description file.

Alternatively, the push attribute or attributes may identify a node in the
description file in which the second non-requested media data have to be retrieved.

In some embodiments, the description information in the description file
includes priority attributes associated with the media data, one priority attribute for each
media data, and an order of transmission of the second media data is based on the
associated priority attributes. This is to define an order of transmission of the push data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

16

In embodiments, the shared push policy identifies the second media data from
the first media data requested.

In embodiments referred below as to an implicit approach, the shared push
policy is implemented using the same second media data determining algorithm at both the
server device and the client device, the algorithm enabling the server device and the client
device to determine the same second media data from the first media data requested.

In some embodiments adapted to both the implicit and explicit approaches, if
the identified second media data comprise a plurality of media segments, each requiring an
announcement message, the method may further comprise merging the corresponding
plurality of announcement messages into a single announcement message to be
transmitted to the client device. This is to reduce bandwidth consumption since less
announcement messages will be sent.

To take actual advantage of the shared push policy and consequent
anticipation of pushes by the client device, the method may further comprise receiving,
from the client device, a cancellation request requesting to cancel transmission of a part of
the second non-requested media data so that the server device does not transmit the
corresponding prepared announcement message.

Correspondingly at the client, the method may further comprise sending, to the
server device, a cancellation request requesting to cancel transmission of a part of the
second non-requested media data, in order to drive the server device not to transmit an
announcement message identifying the part of the second non-requested media data.

In embodiments of the invention, the second non-requested media data are
determined by the client device independently of at least one announcement message
prepared by (and possibly received from) the server device and identifying the second non-
requested media data the server device intends to send to the client device without having
been requested. Here, “independently” means that the client device is able to make the
determination of the second non-requested data without being aware of such
announcement message (i.e. PUSH_PROMISE) which is dedicated to inform the client
device of the future transmission of such non-requested data.

In other embodiments of the invention, the same shared push policy is used for
determining respective non-requested media data from a plurality of requests relating to
respective first media data. By using the same push policy over time and successive
requests, the client is even more in good position to efficiently anticipate the transmission of
useless data by the server, and thus in position to efficiently cancel their transmission and

the transmission of corresponding announcement messages.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

17

Regarding the notification of an order of transmission of the push data from the
server to the client, a method of streaming media data by a server device to a client device,
may comprise the following steps:

- receiving, from the client device, a request relating to first media data,

- identifying second media data to be sent to the client device without having
been requested,

- transmitting to said client device, in response to said request, data relating
to said first media data, and at least one announcement message respectively identifying
said second media data, and

wherein the method further comprises the following steps:

- defining by the server device an order of transmission of the second media
data (this form all or part of the shared push policy),

- transmitting information related to the order of transmission with said
announcement messages, said information enabling the client device to determine the
order of transmission defined by the server.

For example, the order of transmission of said second media is defined
according to priority values according to the client device, the media data having the
highest priority value being transmitted first.

Said priority values may be defined according to the HTTP/2 protocol.

According to embodiments, at least one priority value is associated with a
network bandwidth estimation mechanism, and the method further comprises the following
steps:

- transmitting to the client device second media data with a priority value
associated with said mechanism,

- receiving from the client device, in response to said second media data, at
least one control flow message, and

- estimating an available bandwidth based on said at least one control flow
message received.

For example, the server device transmits said second media data according to
a plurality of data frames having respective and different sizes.

The method may further comprise defining by the server device, based on said
bandwidth estimation, an updated order of transmission of the second media data.

According to embodiments said request from the client device comprises a
request for receiving a description file related to media data comprising said first media
data, the description file containing description information concerning said first media data,
the method further comprising determining the second non-requested media data based on
said description file.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

18

For example, requested first media data are video segments.

The streaming may be performed according to the DASH standard.

For example, the method further comprises the following steps:

- receiving, from the client device, an ordering update request,

- defining, based on said ordering update request, a new order of
transmission of the second media data and updating the information related to said new
order of transmission of the second media data, and

- transmitting said second media data to the client according to said updated
information related to the order of transmission.

The method may further comprise transmitting to the client device, an ordering
update confirmation message.

For example, said updated order is defined for the second media data for
which transmission to the client device has not been initiated at the time of receipt of said
ordering update request.

For example, said ordering update request comprises an ordering value for at
least part of second media data.

According to embodiments, the order of transmission of said second media is
defined according to priority values, and when a priority value is updated for at least part of
a first media data, the priority values for at least part of second media data to be sent to the
client device without having been requested and associated with said at least part of first
media data, are updated accordingly.

For example, said first and second media are associated according to at least
one of a temporal relationship, a spatial relationship and a quality relationship.

According to embodiments:

- said second media data comprises enhancement data for enhancing quality
of the first media data, and

- when a priority value is updated for a media data of an enhancement layer,
priority values are updated for all the media data of said enhancement layer.

For example, the first and second media data comprise video temporal
segments, and the starting time of the enhancement media data is based on information
related to a video content of the first media data.

For example, said information related to a video content of the first media data
is stored in said description file.

For example, said order of transmission is based at least on decoding
relationships between first a second media data.

For example, said order of transmission is based at least on statistical
popularities of the media data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

19

For example, said order of transmission is based at least on a playing time of
the media data on the client device’s end.

For example, said order of transmission is based at least on an estimated
transmission time of the media data.

For example, said order of transmission is based at least on user-defined
interests for the media data.

The method may further comprise the following steps:

- receiving, from the client device, control messages, said control messages
enabling the server device to identify media data currently being played,

- defining by the server, based on said control messages, an updated order
of transmission of the second media data, and

- transmitting said second media data to the client according to said updated
order of transmission.

The method may further comprise a step of transmitting to the client device, an
ordering update confirmation message.

For example, said control messages relate to a use of a buffer memory of the
client device, said buffer memory storing media data for them to be played by the client.

For example, the server device keeps record of first requested media data
sent, and identification of the second media data is performed based on said use of the
buffer memory and said record.

For example, said order of transmission information is transmitted within said
announcement messages.

For example, said order of transmission information is transmitted within
dedicated messages after said announcement messages.

From the client’s perspective, a method of accessing by a client device, media
data streamed by a server device, may comprise the following steps:

- transmitting, to the server device, a request relating to first media data,

- receiving from said server device, in response to said request, data relating
to said first media data, and at least one announcement message respectively identifying
second media to be sent to the client device without having been requested,
wherein the method further comprises the following step:

- receiving information related to an order of transmission of the second
media data with said announcement messages, said information (i.e. the shared push
policy) enabling the client device to determine an order of transmission of the second
media data defined by the server.

The method may further comprise determining by the client device whether the
order of transmission of the second media data defined by the server device satisfies

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

20

streaming constraints at the client device’s end, and if said constraints are not satisfied,
transmitting, to the server device, an ordering update request.

For example, the order of transmission of said second media data is defined
according to priority values according to the client device, the media data having the
highest priority value being transmitted first.

For example, said priority values are defined according to the HTTP/2 protocol.

According to embodiments, at least one priority value is associated with a
network bandwidth estimation mechanism, the method further comprises the following
steps:

- receiving from the server device second media data with a priority value
associated with said mechanism,

- transmitting to said server device, in response to said second media data,
at least one control flow message, thereby enabling the server device to estimate an
available bandwidth based on said at least one control flow message transmitted.

For example, the client device receives said second media data according to a
plurality of data frames having respective and different sizes.

For example, an updated order of transmission of the second media data is
defined, by the server device, based on said bandwidth estimation.

For example, said request from the client device comprises a request for
receiving a description file related to media data comprising said first media data, the
description file containing description information concerning said first media data, the
method further comprising determining the second non-requested media data based on
said description file.

For example, requested first media data are video segments.

For example, said streaming is performed according to the DASH standard.

The method may further comprise receiving said second media data from the
server device according to updated information related to a new order of transmission of
the second media data defined by the server device.

The method may further comprise a step of receiving from the server device,
an ordering update confirmation message.

According to embodiments, said updated order is defined for the second media
data for which transmission from the server device has not been initiated at the time of
receipt of said ordering update request by the server device.

According to embodiments, said ordering update request comprises an
ordering value for at least part of the second media data.

According to embodiments, the order of transmission of said second media is
defined according to priority values, and when a priority value is updated for at least part of

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

21

a first media data, the priority values for at least part of second media data to be sent to the
client device without having been requested and associated with said at least part of first
media data, are updated accordingly.

For example, said first and second media data are related according to at least
one of a temporal relationship, a spatial relationship and a quality relationship.

According to embodiments:

- said second media data comprise enhancement data for enhancing quality
of the first media data, and

- when a priority value is updated for at least part of first media data of an
enhancement layer, priority values are updated for all the media data of said enhancement
layer.

For example, the first and second media data comprise video temporal
segments, and the starting time of the enhancement media data is based on information
related to a video content of the first media data.

According to embodiments, said information related to a video content of the
first media data is stored in said description file.

According to embodiments, said order of transmission is based at least on
decoding relationships between first and second media data.

According to embodiments, said order of transmission is based at least on
statistical popularities of the media data.

According to embodiments, said order of transmission is based at least on a
playing time of the media data on the client device’s end.

According to embodiments, said order of transmission is based at least on an
estimated transmission time of the media data.

According to embodiments, said order of transmission is based at least on
user-defined interests for the media data.

The method may comprise the following steps:

- transmitting, to the server device, control messages, said control message
enabling the server device to identify a media data currently being played, and

- receiving said second media data from the server device according to an
updated order of transmission defined, by the server device, based on said control

messages.

The method may comprise a step of receiving from the server device, an
ordering update confirmation message.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

22

For example, said control messages relate to a use of a buffer memory of the
client device, said buffer memory storing media data for them to be played by the client
device.

According to embodiments, the server device keeps record of first media data
sent, and identification of the media being currently played is performed based on said use
of the buffer memory and said record.

For example, said order of transmission information is received within said
announcement messages.

For example, said order of transmission information is received within
dedicated messages after said announcement messages.

Still referring to the order of transmission, a method of managing, by a proxy
server, data exchanges between client devices and server devices, may comprise the
following steps:

- receiving, from a server implementing a method as defined above regarding
the notification of an order of transmission, media data to be retransmitted to a client
device,

- determining, based on the order of transmission of the media data, a
retransmission priority for the media data, and

- performing retransmission of the media data received to the client device,
based on said transmission priority determined.

The method may further comprise storing said media data received, based on
said retransmission priority determined.

The method may further comprise the following steps:

- receiving, from a client device implementing a method according to the
second aspect, an ordering update request,

- updating said retransmission priority according to said ordering update
request, if said request is related to a media data to be retransmitted, and

- performing retransmission of the media data according to the updated
retransmission priority.

The method may further comprise the following steps:

- receiving from a first client device, a request to a first server device, for
media data, wherein said media data is stored by the proxy server for retransmission to a
second client device from a second server device,

- determining priority values respectively associated with said media data by
said first and second server devices,

- updating said priority values according to respective streaming constraints
for the first and second client devices, and

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

23

- retransmitting said media data to said first and second client devices
according to said updated priority values,
wherein said first and second server devices implement a method according to the first
aspect and said first and second client devices implement a method according to the
second aspect.

The method may further comprise sending to the first and second server
devices update notifications relating to the updated priority values.

According to another aspect of the invention there is provided a method of
streaming data between a server device and a client device comprising:

- performing a method according to the first aspect by a server device, and

- performing a method according to the second aspect by a client device.

According to yet another aspect of the invention there are provided computer
programs and computer program products comprising instructions for implementing
methods as defined above, when loaded and executed on computer means of a
programmable apparatus.

According to yet another aspect of the invention, there is provided a server
device configured for implementing methods according to the first aspect.

According to yet another aspect of the invention, there is provided a client
device configured for implementing methods according to the second aspect.

Solutions for adaptive streaming of media data from a server to a client device
have been proposed, in order to adapt in particular the type and quantity of data that are
sent to the client device to the features of the concerned client device and to the
characteristics of the networks providing the connection between the server and the client
device.

In this context, some solutions, such as the DASH (Dynamic Adaptive
Streaming over HTTP) standard, propose to store a plurality of versions of the resource (or
content) to be distributed and to send to a client device requesting the resource a
description file including a description of the various versions representing the resource and
respective pointers (e.g. URLSs) to these versions.

Based on the description file, the client device can then select a version of the
resource that best matches its needs and request this version using the corresponding
pointer.

This solution is advantageous in that the description file is light as it contains
no media data (but only pointers to media data). It avoids the exchange of media data that
would be unsuitable for the client device by letting the client select relevant versions for its

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

24

usage. Moreover it fits in the current Web architecture based on HTTP and can exploit
caching mechanisms already deployed.

In return, this solution however needs several exchanges (or roundtrips)
between the client device and the server before media data is received at the client device
and may then be decoded and displayed, which results in a start-up delay

In embodiments, the invention provides a method for providing media data
representing a media item (e.g. a video) from a server storing data representing the media
item, at least a temporal segment of which is represented by a plurality of versions, the
method comprising the following steps implemented by the server:

- receiving a request from a client device for a description file including a
description of the versions representing the temporal segment and respective pointers to
the versions representing the temporal segment;

- selecting data among sets of data pointed to in the description file;

- sending the description file to the client device;

- pushing the selected data to the client device.

By pushing data selected in an appropriate manner (i.e. sending data that is
not solicited by the client device, but has been selected by the server as further explained
below), one or several roundtrip(s) can be avoided and the decoding and display of the
media data can thus start faster.

The media item may for instance be a video, or an audio item, such as an
audio track, for instance.

It may be noted that the sets of data mentioned above include the versions
representing the temporal segments, but may as well include other data such as
initialization data, as explained below.

As just noted, the selected data may include initialization data for a decoder of
the client device. The decoder can thus be initialized without the client device having to
specifically request for the initialization data, and thus faster.

As noted above, the selected data may also include at least part of one of said
versions representing the temporal segment.

The step of selecting data may include estimating a quantity of data (e.g. video
data) to be pushed, which may then be used when deciding which data are to be selected.
The quantity may be estimated based on a buffer time defined in the description file and/or
based on a bandwidth estimation determined by the server.

The step of selecting data may be performed based on at least one preference
included in the request and/or based on usage data derived from prior exchanges between
the server and the client device and/or based on an analysis of the description file by the
server and/or based on a table stored in the server and associated with the description file.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

25

According to a possible embodiment, it may be provided a step of sending a
push promise related to and prior to the step of pushing the selected data. The client device
may thus be informed of the data to be pushed, before actually receiving these data.

The step of sending the push promise may be performed prior to the step of
sending the description file, which makes it possible to inform the client device at an early
stage.

The push promise includes for instance an identification of the selected data.

According to a proposed embodiment, the server determines a confidence
level associated to the selected data and the push promise includes the determined
confidence level.

According to a possible implantation explained in the detail description given
below, the server may store a hierarchical representation of blocks of data forming the
selected data. In such a case, the following steps may be provided:

- receiving from the client device an instruction for not pushing a block of
data;

- cancelling the pushing of said block of data and of blocks of data connected
to said block of data in the hierarchical representation.

The proposed method may include a step of determining a level of confidence
associated with the selected data; then:

- if the determined level of confidence is below a predetermined threshold,
pushing the selected data includes pushing only initialization data for a decoder of the client
device;

- if the determined level of confidence is above the predetermined threshold,
pushing the selected data includes pushing initialization data for a decoder of the client
device and at least part of one of said versions representing the temporal segment.

Embodiments of the invention also provide a method for receiving media data
representing a media item (e.g. a video) from a server storing data representing the media
item, at least a temporal segment of which is represented by a plurality of versions, the
method comprising the following steps implemented by a client device:

- sending a request to the server for a description file including a description
of the versions representing the temporal segment and respective pointers to the versions
representing the temporal segment;

- receiving the description file from the server, the description file containing
pointers to sets of data;

- receiving unsolicited data from the server, wherein said unsolicited data
belong to said sets of data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

26

As noted above, the unsolicited data may include initialization data for a
decoder of the client device (in which case a step of initializing the decoder with said
unsolicited data may be provided) and/or at least part of one of said versions representing
the temporal segment (in which case a step of decoding at least part of the unsolicited data
may be provided).

The request may include at least one preference defining decoding at the client
device, which may help the server in determining the media data to be pushed.

The request may also include an indicator that the client device accepts
pushed data, based on which the server may effectively decide to push data.

As explained above, it may be provided a step of receiving a push promise
related to and prior to the step of receiving the unsolicited data. This step of receiving the
push promise may occur prior to the step of receiving the description file.

The push promise may include an identification of the unsolicited data and/or a
level of confidence associated with the unsolicited data.

The following steps may be provided at the client device:

- determining acceptance or refusal of a push promise based on data
included in the push promise;

- sending an instruction for not pushing said unsolicited data in case of
refusal.

The following steps may also be used:

- determining acceptance or refusal of a push promise based on a level of
confidence associated with the unsolicited data and included in the push promise;

- sending an instruction for not pushing said unsolicited data in case of
refusal.

A step of buffering said unsolicited data upon receipt, before decoding these
data, may be used.

As pushed data are meant to correspond only to initialization data and/or initial
media data, the following steps may be implemented:

- determining data (e.g. video data) to be requested (i.e. not planned to be
pushed) based on the description file and on data included in the push promise;

- sending a request for the determined data to the server.

Embodiments of the invention also propose a method for streaming media data
representing a media item (e.g. a video) from a server storing data representing the media
item to a client device, at least a temporal segment of the media item being represented by
a plurality of versions, the method comprising the following steps:

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

27

- the client device sending a request to the server for a description file
including a description of the versions representing the temporal segment and respective
pointers to the versions representing the temporal segment;

- the server receiving the request from the client device;

- the server selecting data among sets of data pointed to in the description
file;

- the server sending the description file to the client device;

- the server pushing the selected data to the client device;

- the client device receiving the description file from the server;

- the client device receiving the selected data from the server.

Embodiments of the invention also provide a device for providing media data
representing a media item (e.g. a video) from a server, the server storing data representing
the media item, at least a temporal segment of which is represented by a plurality of
versions, and comprising:

- a receiver configured to receive a request from a client device for a
description file including a description of the versions representing the temporal segment
and respective pointers to the versions representing the temporal segment;

- a selection module configured to select data among sets of data pointed to
in the description file;

- a module configured to send the description file to the client device;

- a module configured to push the selected data to the client device.

Embodiments of the invention also provide a device for receiving media data
representing a media item (e.g. a video) from a server storing data representing the media
item, at least a temporal segment of which is represented by a plurality of versions, the
device comprising:

- a module configured to send a request to the server for a description file
including a description of the versions representing the temporal segment and respective
pointers to the versions representing the temporal segment;

- a module configured to receive the description file from the server, the
description file containing pointers to sets of data;

- a module configured to receive unsolicited data from the server, wherein said
unsolicited data belong to said sets of data.

Lastly, embodiments of the invention provide a system comprising a server and
a client device for streaming media data representing media item (e.g. a video) from the
server storing data representing the media item to the client device, at least a temporal
segment of the media item being represented by a plurality of versions,

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

28

- the client device comprising a module configured to send a request to the
server for a description file including a description of the versions representing the temporal
segment and respective pointers to the versions representing the temporal segment;

- the server comprising a module configured to receive the request from the
client device, a selection module configured to select data among sets of data pointed to in
the description file, a module configured to send the description file to the client device and
a module configured to push the selected data to the client device;

- the client device comprising a module configured to receive the description
file from the server and a module configured to receive the selected data from the server.

Optional features proposed above for the method for providing media data and
the method for receiving media data also apply to the method for streaming media data and

to the various devices and system just mentioned.

BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the invention will become apparent from the

following description of non-limiting exemplary embodiments, with reference to the
appended drawings, in which, in addition to Figures 1a to 6:

- Figures 7a and 7b illustrate media segment reordering according to
embodiments;

- Figure 8 is a flowchart of exemplary steps performed by servers according
to embodiments;

- Figure 9 is a flowchart of exemplary steps performed by clients according to
embodiments;

- Figure 10 is a flowchart of exemplary steps performed by proxies according
to embodiments;

- Figure 11 illustrates bandwidth measurement according to embodiments;

- Figure 12 illustrates video playing initialization according to embodiments;

- Figure 13 is a schematic illustration of devices according to embodiments;

- Figure 14a illustrates, using a flowchart, general steps of the invention at
the client side;

- Figure 14b illustrates, using a flowchart, general steps of the invention at
the server side;

- Figure 15a illustrates, using a flowchart, steps of determining the shared
push policy at the client side based on the explicit approach;

- Figure 15b illustrates, using a flowchart, steps of determining the push
policy at the server side when the explicit approach is used;

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

29

- Figure 16 shows an MPD document in which a PushPolicy node is used to
specify a push policy applied by the server;

- Figure 17 illustrates, using a flowchart, steps for identifying and marking
some segments as ready to be pushed according to the shared push policy “PushPolicy”;

- Figure 18a illustrates an example of communication between a server and
client with a push policy transmitted in a HT TP “push-policy” header;

- Figure 18b illustrates the same example with a client’s request to change
the push policy;

- Figure 20 illustrates, using a flowchart, steps of the process at the server
side according to embodiments merging announcement messages;

- Figure 21 illustrates, using a flowchart, steps of the process at the server
side when using HTTP headers to declare the push policy;

- Figure 22 illustrates, using a flowchart, steps of the process at the client
side when using HTTP request to declare and share the push policy;

- Figure 23 shows an MPD document in which a SupplementalProperty
element is used to specify a push policy applied by the server at a hierarchical level of the
document;

- Figure 24 shows an MPD document used as example for an XPath based
push policy;

- Figure 25 illustrates the reordering of elements in a priority tree, for
example in a webpage, before applying a push policy;

- Figure 26 shows exemplary methods respectively implemented by a server
and by a client device to obtain a DASH fast start in accordance with embodiments of the
invention;

- Figure 27 describes an exemplary method implemented by a server for a
DASH fast start; and

- Figure 28 describes a possible method implemented by a client device for a
DASH fast start.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
In what follows, embodiments of the invention are described in the context of

DASH-based networks implementing the HTTP 2.0 protocol. The data streamed is, for
example, video data. Embodiments of the invention are not limited to DASH networks.

A server device of a communication network that streams data to a client
device implements a push feature according to which it can transmit data elements to the
client without explicit requests from the client for the data elements transmitted.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

30

The server and the client may share push policies that drive the server to
determine the push promises and to actually transmit the corresponding data. Thanks to
this sharing, the client may anticipate the push of some useless data, to cancel such push.
This results in reducing the server's processing, as well as the network use since
PUSH_PROMISE frames may be cancelled before being sent.

In specific embodiments, the server can indicate in its push promises, by which
it announces transmission of the not explicitly requested data elements, ordering
information concerning the order in which the server intend to transmit the data elements.
The order of the data elements may be defined using priority values, for example the
priority values according to HTTP/2.

Upon receipt of the push promises, the client device can determine in advance
the order of transmission intended by the server, thereby enabling the client to react to the
proposed order in case it does not match its own desired order. For example, the client
device can update the priority values and send the updated priority values to the server.
The server can thus change the transmission ordering based on the new priority values in
order to better match the client's needs. The server can use the updated priorities into
account for future data transmissions.

According to embodiments, the client may request a full reordering or a partial
reordering of the transmission of the data elements to the server.

Full reordering is described with reference to Figure 7a. A client requests,
during a step 700, a Media Presentation Description (MPD hereinafter) to a server. The
server retrieves the MPD to send back to the client and identifies corresponding data
elements to push during a step 701. In the example of Figure 7a, the server identifies
“Data 1.1”, “Data 1.2” and “Data 1.3” as data elements to push. These elements are for
example data segments. Element “Data X.1” represents the base layer for data X, element
“Data X.2” represents the enhancement layer for data X and “Data X.3” represents the
additional enhancement layer for data X. The server defines a specific order of
transmission for the data elements. The server associates respective priority values with
the PUSH_PROMISE frames to be sent to the client for announcing the upcoming push
data elements. The server then sends the PUSH_PROMISE frames “P1.1", “P1.2” and
“P1.3” with the associated priorities and the MPD during a step 702. Next, shortly after
sending the MPD and the push promise, during a step 703, the server sends to the client a
data frame corresponding to the “Data 1.1” element and a PUSH_PROMISE messages
“P2.17, “P2.2” and “P2.3” respectively corresponding to the elements “Data 2.1, “Data 2.2”
and “Data 2.3”, which are segments following “Data 1.1”, “Data 1.2” and “Data 1.3” in the
transmission order defined. In parallel to the receipt of the data frame and the push promise
of step 703, the client decides, after receipt of the MPD and the “P1.1”, “P1.2” and “P1.3”

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

31

PUSH_PROMISE frames, that the enhancement layer “Data 1.2” is of lower priority
compared to the additional enhancement layer “Data 1.3”. Thus, the client sends a priority
update frame to lower “Data 1.2” priority during a step 704. Upon receipt of the priority
update request, the server changes the schedule of the transmission during a step 705.
Hence, transmission of “Data 1.2” is postponed after “Data 1.3” is transmitted. In addition,
the server uses the MPD to link the segments associated with “Data 1.2”. It identifies “Data
2.2” and lowers its priority as well.

Partial reordering is described with reference to Figure 7b. Steps 710 to 714 of
Figure 7b are substantially the same as steps 700 to 704 of Figure 7a. After receipt of the
priority update frame, the server behaviour differs as compared to step 705 previously
described. During step 715, the server already started transmission of “Data 1.2” and
proceeds further with the transmission. For that segment, there is no change in the priority.
The server nevertheless updates the priority of the connected segments, namely “Data 2.2”
in the present example. In order to announce the fact that the priority change has been
taken into account, the server may send a priority update massage for “Data 2.2”. The
client can thus be informed of the change.

Embodiments of the invention may be implemented in use cases wherein
servers can push high quality video parts well enough in advance so that the whole part of
the video can be played as high quality. For instance, the video can be split into a part 1,
played as low quality, a part 2, played as high quality and a part 3 played as low quality.
The bandwidth between the client and server allows real-time streaming of low quality but
not high quality. In that case, the server may interleave part 1 with the enhancement of part
2. Once part 1 has been played, the enhanced part 2 is also available and the server sends
the base layer of part 2 to be played as high quality jointly with the enhancement of the
same part 2. Thus, the server makes sure that the whole part 2 is played as high quality.
Part 3 is sent thereafter. Quality flickering, which disturbs the user experience, can be
alleviated and quality switching only occurs at a limited number of moments. The server is
in the best position to know when to switch to a different quality level since it knows the
video content.

Figure 8 is a flowchart of steps performed by a server implementing a push-
based DASH media streaming according to embodiments. Steps 800 to 812 describe the
general principles. Steps 820 to 827 more specifically deal with the management of the
priority feedback from the client.

During a step 800, the server receives a request R from the client. This request
identifies a specific media, typically by referring to an MPD file. Next, the server performs
an iterative process comprising steps 801 to 810. The process comprises sending data
according to a defined order. The order of transmission is updated according to the client’s

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

32

feedback. Once the data are sent, they are received and played by the client. Next the
server identifies new data to send and the process continues so on.

The first iteration starts with step 801, during which the data to be sent are
identified. In case of the first performance of the iterative process, a fast start approach
may be used in order to enable the client to start video playing as quickly as possible. In
addition, the server may also identify subdivision of the media into chapters. In case the
server knows that the client generally navigates using chapters, the server may actually
select not only the segments that correspond to the beginning of the media but also the
segments corresponding to the start of the first chapters in the media. After the first
performance of the iteration, the server may also detect that the connection may support
the transmission of a higher quality representation of the media. Thus, the server may
identify when the resolution or quality switch should be done.

Once the server identified a list of segments to push, the server defines a
transmission order for these segments. The transmission order is used for computing initial
priority values for each pushed segment during a step 802. The ordering may be based on
several parameters.

A first parameter may be the relationships between the different segments: for
example some segments must be available for correctly decoding other segments. The
segments that must be available are thus assigned higher priorities than said other
segments.

A second parameter may be the popularity of video segments, which may be
gathered from past statistics. As an example, with YouTube URLs specific times in a video
may be addressed. When clicking on the links associated with these URLS, only the video
needed to start the video playing at the specified time is retrieved. In addition, if a video is
being chaptered, the beginning of each chapter is generally more often retrieved from users
than segments in between chapter starts. Segments of the chapter beginning are thus
assigned higher priorities than the in-between chapter segments.

A third parameter may be the timeline: the priority of a video segment that is
closer to being played is higher than the priority of a video segment that is to be played
later.

A fourth parameter may be the estimated time spent to actually transmit the
segment. When the video segment is large, it takes a long time to be transmitted and
therefore, transmission should start as soon as possible, i.e. with a high priority.

In case two segments have identical priorities, the corresponding data frames

can be interleaved during transmission.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

33

In case regions of interests are identified in the media content, if the bandwidth
is not large enough for a high quality representation but is large enough for a low quality
representation, the server may select an enhancement layer only for the region of interest.

Once the priorities are computed, the server sends PUSH_PROMISE frames
containing the priority values during step 803. Identification of all segments is not needed
for starting transmission of the PUSH_PROMISE frames. In case an MPD is to be sent for
the segments to be pushed (step 804), the MPD is sent (step 805). The segment
transmission starts in parallel during step 806.

Once the PUSH_PROMISE frames are received by the client, the server may
receive priority update changes and then change its transmission schedule accordingly
(steps 807 to 808 and steps 820 to 828). While sending segments, the server awaits
receipt of priority change messages. In case a priority change message is received (step
807), the server reorders the segments accordingly and continue the segment transmission
(step 808). Once all segments are sent (step 809-1), the server restarts an iteration
process in order to continue streaming the media until the end of the media. When the end
of a media is reached (step 809-2), the server checks whether or not it should automatically
start streaming another media (step 810). In case another media should be streamed
(Yes), the server identifies the new media to stream (step 811) and restarts the process
from step 801. In case no new data should be streamed, the process is stopped (step 812).

The management of the priority feedback from the client, i.e. of step 808, starts
with the receipt of a priority update change message during step 820. The following steps
may also be performed in case the client cancels a segment push: this case may be seen
in practice as equivalent to assigning the lowest priority to that segment.

Upon receipt of the priority update change message, the server identifies the
related segment during step 821. The server then proceeds with the reordering of the
segment transmission (steps 822, 823). If the segment is already transmitted, the process
ends. If the segment is being transmitted, depending on the server implementation, it may
refuse to change the transmission (for example because it is too complex) or it may actually
reschedule the remaining data to be sent.

The rescheduling of the data may be performed as follows. The server stores a
list of video segments to push (and/or video segments that are being pushed). This list is
ordered according to the priorities set by the server. The server then sets the new priority
value for the segment. The list is then reordered and the corresponding video segment
transmission is made earlier or later accordingly.

Once the video segment is reordered, the server may actually decide to apply
this priority change to other related video segments. If a client raised the priority of a video
segment which is part of an enhancement layer, the server may raise the priority of all the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

34

segments of this enhancement layer. Conversely, if the client lowers the priority of a base
video segment layer, the priority of all segments temporally related to this segment may be
lowered. This process is described in steps 824 to 827. Based on the MPD and the
rescheduled video segment, the server identifies a list of related segments (step 824). The
relationship may be temporal, spatial, quality-based etc. The MPD may be enhanced in
order to better show the potential relationships. In particular, when the priority of an
initialization segment (which is necessary to play more than one video segment) is lowered
or raised, all related segments may be rescheduled. This can be the case as well for base
layer segments and enhancement segments. For each identified related segment, the
server tests whether or not the transmission of the related segment should be changed
(step 825). In case it should be changed, the server computes the new priority value for
each segment (step 826) and reschedules the segment transmission accordingly (step
827). The new priority value may be computed by adding to the old value the difference
between the new priority value received during step 820 and the initial priority value of the
segment identified during step 821. The process stops when each related segment has
been tested (step 828).

The server may also receive control flow messages, such as WINDOW_SIZE
frames. These messages may enable the server to identify what the client is currently
playing. When some additional buffer space is available on the client’'s end, it may be
inferred that some data have been removed from the buffer, typically the oldest data. If the
server keeps a history of the data sent, the server is able to identify which data have been
removed. Thus, provided the server knows the client’s cache ordering, the server can have
knowledge of which video segments the client is currently playing. This ordering may be
based on the MPD that makes it possible to order the cached data according to the
timeline. A server may then detect client time skipping for instance. The server may react
by quickly sending the start of the next chapter in advance so that the client can continue
skipping video chapters.

It should be noted that the sending of a PUSH_PROMISE frame with priorities
may be done in various ways. A PUSH_PROMISE frame must relate to an opened stream
which is initiated by the client. According to embodiments, the initial stream made by the
client during step 800 may be always left open. According to other embodiments, a
PUSH_PROMISE frame is sent within a stream opened by the server. In this case, the
client considers the PUSH_PROMISE frame as it is sent by the parent client-initiated
stream. Thus, it can compute the right headers of the virtual request corresponding to the
particular PUSH_PROMISE frame.

According to other embodiments, a priority message is sent jointly with a
PUSH_PROMISE. A first possibility is to send it as a header within the PUSH_PROMISE

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

35

frame. Another possibility is to send a PRIORITY frame with the stream ID reserved by the
corresponding PUSH_PROMISE frame. A third possibility is to send the PUSH_PROMISE
frame, then the corresponding HEADERS frame (to open the stream) and then the
PRIORITY frame on this newly opened stream.

In order to further control the client’s buffer, the server may send a new
representation of a segment cached by the client. Within the headers sent as part of this
new representation, HTTP cache directives may be used to request the client to actually
remove the segment, for instance by marking it as not cacheable. This may make it
possible to recover buffer space on the client’'s end. HTTP/2 control flow may be used. The
server can then push additional data.

A server may send priority values for each video segment. The server may also
send priority values for specific segments. In case the server did not send a priority value
for a current PUSH_PROMISE frame, the client can compute a priority value from the last
priority value sent from the server. For instance, the client may increment the priority value
each time a new PUSH_PROMISE frame with no priority value associated with is received.
Hence, the PUSH_PROMISE frames can be grouped so that updating the priority of the
specific segment will also update the priorities of all segments of the group.

The process on the client’s side is described with reference to Figure 9.

The client should be able to play the content available at a given time.
However, the client has to cope with potential buffer limitations and processing time. The
client has to check whether or not the transmission ordering proposed by the server
matches the memory space available in the client’s buffer and matches the content
currently played by the client.

During a first step 900, the client connects to the server and requests an MPD
file. The client then retrieves the MPD file during a step 901 and waits (step 902) for the
receipt of data. When data are received, the client checks (step 903) whether the data are
a push promise. In case a push promise has been received, this means that a new video
segment is being sent by the server. The client processes the push promise. In particular,
the client may validate the priority values proposed by the server during step 904. In case
the client wishes to change the priority values (step 905) for the current segment or another
promised segment, the client compute a new priority value and sends it to the server (step
906).

In case the client receives video data (step 907), the client links the video
segment to the MPD file (step 908) and stores the video data (step 909). Linking the video
data to the MPD file makes it possible for the client to retrieve the video segment when it
will be further used for decoding the video (step 911). This may also provide efficient

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

36

storage of the video data (step 909), for example if contiguous video segments are
grouped.

The buffer storage constraints may further change the priority. Thus, the client
may check again whether a priority value has to be changed and may communicate with
the server if needed (steps 905, 906).

Once the client is ready to start or continue playing video (step 910), the client
retrieves from its cache the next time slot video segments (step 911) and decodes and
plays the video (step 912). As part of step 911, the client may query its cache in order to
know which video segments are available. By default, the client may use all video
segments available, in particular all enhancement segments if any. The client may let the
server select the content: generally speaking, all segments should be used by the client. If
some segments cannot be used jointly (like audio English tracks and French tracks), the
client should dismiss the unused segments in the first place. It should be noted that not all
clients may get access to the cache state: web applications in particular do not usually
have access to the web browser cache. In such a case, the server may directly send the list
of pushed segments to the web application client. For instance, this information may be
exchanged from the server to the client using a web socket connection.

As the video is played and decoded, the corresponding video segments may
be removed from the buffer. Hence, the client updates its available buffer size using a
WINDOW_SIZE frame. The client may keep video segments that have been recently
played in order to enable the user to rewind the video during a limited period of time. The
flow control update mechanism may also be used when the user does a fast forward/time
skip. The client may remove old stored video content to make room for new content and
announces this change to the server using a WINDOW_SIZE frame. When the server
receives the WINDOW_SIZE frame, the server may be able to compute which video
segments were removed and then identify what the client is actually playing, as discussed
above.

In what follows, step 904 is described in more details.

The client holds a list of all push promised video segments. This list is ordered
according to the priority information found in the push promise frames. First, it is checked
for potential frozen video issues. Based on an estimation of the available bandwidth and
the ordered video segment list, transmission beginning and end times of each segment can
be estimated. Based on these times, it may be tested whether each video segment will be
available at the time it should be used for video playing. If a promised video segment is
expected to be delivered after its corresponding video playing use, its priority should be
increased. Thus, the video segment is moved up in the push promised video segment list
order. In order to compute the exact priority value, it is searched for the position in the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

37

video segment list that makes it possible to have the video segment delivered on time and
that is the closest to the current video segment position. The priority is then set to a value
between the priorities of the video segments in the list that are before and after the video
segment new position.

Other factors may also be used by the client for changing the video segment
priorities. For instance, if the client is expecting to do some chapter-switching, the client
may actually increase the priority of all video segments that start the chapters, in particular
the corresponding initialization segments.

According to embodiments, the client-side flow control comprises disabling the
per-stream flow control and keeping only a per-connection flow control. The per-connection
window size defines the maximum amount of video that a client may actually store at any
given time. The client and the server may negotiate at initialization time and during the
connection in order to decrease or increase this window size. If the server wants to push
some HD content, the server may request the client to increase the window size. If the
connection bandwidth is low, the server may need to anticipate well in advance the sending
of HD content for a specific part of the video, in which case the buffer size should be made
larger.

The order of transmission may be an important issue when the buffer has a
single size. In particular, as the buffer is filled with data, the priority ordering becomes more
and more important. An important constraint is that the video never freezes. As long as the
buffer is largely empty, the server may push various video segments, like segments largely
in advance in order to provide an efficient fast forward or chapter skipping. Once the buffer
is almost fully filled, the video segments to push should be as close as possible to the video
segments being played. This push behaviour may be done by the server if the server has
accurate information concerning the client buffer. It may also be implemented by the client
using the priority update mechanism.

In case of automated video switching, the flowchart of Figure 9 may be
extended by detecting the push of a new MPD as part of the push promise check (step
903). When an MPD push is detected, the client may start receiving segments of a new
video as part of step 908. The client must therefore identify the MPD related to the video
data. Once the video playing is finished for a given MPD (step 902), the new MPD may be
used for continuing video playing. The client may actually flush all video segments linked to
the previous MPD.

With reference to Figure 10, the behaviour of a DASH-aware proxy is
described. When receiving a segment pushed from a server, a proxy is not mandated to
push it to the end-client. In case of DASH streaming though, it can be considered good
practice (or default behaviour) to do so.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

38

The proxy may be able to adjust the server and client behaviours, both in terms
of priority processing as well as pushed data to be sent. A proxy may in fact handle
independently the priorities with the client from the priorities with the server. In addition, the
server may push more data than needed for a given client and the proxy may retrieve the
additional pushed data to fulfil requests from other clients.

A server may push a video segment for several reasons. For example, a video
segment may be pushed in case it is believed to be useful for the end-client. A video
segment may also be pushed in case it is believed that the video segment can be used
several times and that it is worth pushing it to proxies.

In the first case, proxies generally send the video segment to the client. Proxies
may postpone its transmission in order to optimize the client or proxy network state, for
instance the client radio state. An exemplary case may be the segment push for fast start
video playing and bandwidth estimation, in which case data should be sent as fast as
possible to the client. In case the server is interested in pushing data to proxies, proxies
may not automatically send the video segment to the client, except if they have means to
know that the video segment will be useful to the client. In order to make possible the
identification of video segments that may not be sent to clients, a specific priority value may
be used. Using a priority value makes it possible to have the proxy always check the
priority value for optimizing the processing of the various frames that arrive.

Figure 10 comprises three flowcharts. One flowchart relates to the process of
filtering pushed segments (steps 1000 to 1008). Another flowchart relates to the process
performed when a segment is requested by a client while it is already promised to another
client (steps 1010 to 1015). Another flowchart relates to the management of priority
changes (steps 1020 to 1026).

The process of filtering pushed segments starts with the receipt (step 1000) of
a pushed data event, typically when receiving a PUSH_PROMISE frame or a related DATA
frame. The proxy checks whether the data are of high priority or not (step 1001). Data may
be considered as of high priority if their priority value is much larger than priority values of
other segments being transmitted. Data may also be considered as of high priority if its
priority value has a special meaning, such as fast start or bandwidth estimation. If the data
are of high priority, they are sent as quickly as possible to the client (step 1002). The proxy
then decides whether or not to store the data (steps 1003, 1004). This decision may be
made once when receiving the corresponding PUSH_PROMISE frame or the
corresponding HEADERS frame that opens the pushed data stream. This decision may
also be based on the proxy cache state, the envisioned use of the video, the popularity of
the video source or other criteria. The proxy stores the video segment if the segment is

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

39

pushed while being requested by one or more clients at the same time. The video
segments may also be stored if segments are identified as fast start.

If the data are not of high priority, the proxy checks whether it is of low priority
(step 1005). Data of low priority may be data for which transmission to the client may be
skipped but that are considered by the server as interesting for network intermediaries like
proxies. The proxy first decides whether or not to send the data to the client (step 1006).
This decision may be made once when receiving the corresponding PUSH_PROMISE
frame or the corresponding HEADERS frame that opens the pushed data stream. If it is
decided so, the proxy sends the corresponding frame to the client (step 1002). The process
then stops after deciding whether or not to store the data.

The priority value negotiated between the server and proxy may be different
from the priority value negotiated between the client and proxy. Therefore, in case the data
is of usual priority (i.e. not of low priority and not of high priority), the proxy checks whether
the segment priority value is managed by the proxy. As illustrated in Figure 10 (steps 1020
to 1026), the proxy uses the client-to-proxy value for scheduling the time when the data
should be transmitted: the proxy holds a list of all to-be-transmitted video-related frames.
These frames are ordered according to the priority values before being sent following that
order.

In the case the proxy is receiving a priority update frame (step 1010), the proxy
identifies the related video segment (step 1011). If its priority value is not being managed
by the proxy (step 1012) the proxy forwards the priority update frame to the server (step
1013). Otherwise, the proxy stores this new priority value and reorders the video segment
transmission (step 1014) accordingly. In case a potential conflict appears, in particular in
case the video segment delivery from the server is expected to be too late for the client
needs, the proxy can then forward the priority value to the server.

Steps 1020 to 1026 relate to the case of a proxy that receives a request from a
client to a video segment (step 1020) that is already promised by the server to another
client (step 1021). Depending on the priority given to that request, the proxy computes the
minimum proxy-to-server priority that would fulfil the client's request (step 1022). This
computation is done by computing the proxy-to-server priority value that will ensure that the
server-to-proxy delivery time is earlier than the proxy-to-client expected delivery time. The
priority is changed if the computed priority is below the currently set priority (step 1023), in
which case the proxy will send a priority update message to the server (step 1024) and the
proxy will mark this video segment priority as managed by the proxy so that the proxy
sends the video segment to its two clients at the best time for their needs. Similarly to this
process, a proxy may receive several priority updates to the same segment from several

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

40

clients, in which case the proxy may actually send the lowest priority value that satisfies all
clients.

With reference to Figure 11 there is described an embodiment according to
which a client receives a pushed data event whose priority value indicates that the server
wants to use it for measuring bandwidth. Measuring bandwidth may be done using TCP/IP
packets through active or passive measurements for computing round trip times. Based on
round trip times, the available bandwidth may be computed as found in document
Saubhasik et al. “Bandwidth Estimation and Rate Control in BitVampire”. This computation
may potentially take into account effects of HTTP/2 control flow. By making notification that
some data frames are used for bandwidth estimation possible, the bandwidth available
without HTTP/2 control flow can be estimated.

The process starts with step 1100 during which a pushed data frame is
received from the server. Next, it is checked whether the associated priority of the stream
indicates that the server is measuring bandwidth (step 1101). In that case, the dedicated
buffer is maximized (step 1102). Alternatively the stream flow control can be disabled. If the
receiving node is a proxy (step 1103), it may forward the segment data. Otherwise, the
client decides whether to store the segment (step 1104). The client stores the pushed
segment (step 1105). In any case, the client sends an acknowledgement to the server in
the form of a WINDOWS_UPDATE (step 1106) for the per-connection window. This
acknowledgment will then be used by the server for estimating the connection bandwidth.
In the case the client is a proxy, it forwards the pushed data (step 1108) as quickly as
possible. When receiving an acknowledgment from the end-client, the proxy forwards it
back to the server as well (steps 1109, 1110).

In order to estimate the available bandwidth, the server may use the round trip
time of the sent data frame that is computed as the difference between the sending time of
the data frame and the reception time of the acknowledgment message, the pairing
between the two being based for instance on the data frame size which should be equal to
the window size update. Round trip times can be computed from various data frames of
one or more video segment. In order to increase accuracy, the data frames may have
various sizes. Splitting a video segment into several DATA frames of different sizes can be
performed by the server. The server only needs to ensure that the network layer will not
split DATA frames into several TCP/IP packets (hence smaller DATA frames) or not buffer
content to be sent and merge several DATA frames into a TCP/IP packet. Based on those
measurements, standard techniques can be used for computing the available bandwidth
(an example can be found in the above-mentioned document) that the server may use to
actually decide which video representation to use.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

41

With reference to Figure 12, there is described the case of an initial video
playing. The server pushes data using the fast start priority. It is considered that the data
probably have a low-bit rate and that the client will receive those data and send
acknowledgments to the server so that the server can estimate the bandwidth and switch to
the optimal representation. The client-side process is described in steps 1200 to 1207. The
server-side process is described in steps 1210 to 1215.

The client process starts with a step 1200 of receipt of pushed data. The client
then checks whether the priority has the fast start value (step 1201). In that case, the client
typically maximizes the dedicated buffer (step 1202). This maximization is performed when
receiving the PUSH_PROMISE of the pushed data. The data are then stored (step 1203)
and the client sends an acknowledgement to the server using the WINDOW_UPDATE
frame (step 1204). The client then checks whether enough data are available to start
playing the video (step 1205). If they are, the video playing starts (step 1206). Otherwise
the client waits for more data (step 1207), until enough data are available for starting
playing the data.

The server process starts with a step 1211 of sending segment data frames
with the fast start priority (step 1210). The server then receives acknowledgments (step
1211) that will allow computing the available bandwidth (step 1212). Once enough
measurements are obtained, the server selects the optimal representation (step 1213) and
starts pushing optimal representation segments (step 1214). The server decides when to
switch representation. This has at least two benefits. First the server may know when the
measurements are accurate enough and may switch from one resolution to another as
soon as this is the case, while the client will need to handle some delay. Second, the server
may decide to switch from one resolution to another at the time that is less disturbing for
the user experience. Indeed, the server has the knowledge of the video content. In
particular, the MPD may be augmented with information on the times at which resolution
switch can be best envisioned.

The present invention relates to an enhanced streaming method where, at the
server side, a request relating to first media data is received, from the client device; second
media data to be sent to the client device without having been requested are identified; and
then data relating to said first media data are transmitted to said client device, in response
to said request, and at least one announcement message respectively identifying said
second media data is prepared with a view to transmit the announcement message or

messages to the client device.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

42

At the client side, a request relating to first media data is transmitted to the
server device; and data relating to said first media data are received from said server
device, in response to said request,

The enhanced streaming method reduces the mismatches between the
server’s decisions to push some media data and the client’s needs for such data. As will be
apparent from below, the server and the client share a push policy so that they both
determine the same media data to be pushed from any media data requested by the client.
A push policy defines how to determine the data to push, and may be seen as a rule for
determining which resources linked to requested data are about to be pushed after the
requested data are processed (after a GET request), and possibly how they are pushed
(e.g. in which order). Usually, the linked resources are determined using one document, for
instance a manifest file, such as an MPD file (in the DASH context for multimedia data), or
an HTML document.

As a consequence, based on the shared push policy, the client is able to
anticipate the server’s behaviour to avoid, and more precisely to cancel, the transmission of
useless media data from the server. Use of bandwidth in the communication network
between the client and the server is thus reduced. Furthermore, the number of HTTP
requests and PUSH_PROMISE cancellation is reduced, which lowers the latency of the
application in particular for low latency live video streaming.

According to the invention, the server may use a push policy shared with the
client device for the server device to drive the identification and the transmission of the
second non-requested media data to the client device. In particular, it may use a push
policy shared with the client device and defining how to determine second media data, for
the server device to determine the second non-requested media data to be sent to the
client device. Correspondingly, the client may use a push policy shared with the server
device and defining how to determine second media data, for the client device to determine
second media data to be sent by the server device without having been requested by the
client device.

Figure 14a illustrates, using a flowchart, general steps of the invention at the
client side, while Figure 14b illustrates, using a flowchart, general steps of the invention at
the server side.

In comparison to the process described with reference to Figures 1d and 1e,
additional stages 1400 and 1402 make it possible for respectively the server and the client
to determine the push strategy that is shared with the other, and thus to be used.

According to first embodiments, the shared push policy is an implicit push
policy, meaning that the client and server do not exchange (explicit) policy data to tell the
other what is the push policy to be shared. An implementation of the implicit approach for

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

43

the shared push policy includes using the same algorithm, referred to as “second media
data determining algorithm”, at both the server device and the client device, the algorithm
enabling the server device and the client device to determine the same second media data
from the first media data requested.

For instance, the algorithm is predetermined either during the set-up of the
client and server or relatively to a specific standard. A typical example of algorithm may
consist in pushing the N resources following the requested resource in a parsing order of
the manifest file, where N is a predetermined number, for instance 4.

Referring to the Figures, the steps 1400 and 1402 consist, in case of implicit
push policy, in loading in memory the predetermined algorithm for identifying the resources
to be pushed (step 1403 at the server side).

The client may efficiently use the so determined push policy for estimating the
number of PUSH_PROMISE that are expected and for preparing cancellation messages for
unwanted push data, for instance in step 1401.

For instance, this would result for the server in receiving, from the client device,
a cancellation request requesting to cancel transmission of a part of the second non-
requested media data so that the server device does not transmit the corresponding
prepared announcement message. For its part, the client would thus send, to the server
device, a cancellation request requesting to cancel transmission of a part of the second
non-requested media data, in order to drive the server device not to transmit an
announcement message identifying the part of the second non-requested media data. One
may understand that such cancellation can occur before the announcement message is
transmitted from the server device or received by the client device. This approach may be
useful for example, when the client decides to switch to another version of a medium. In
such situation, it can decide to cancel the segments pushed for the previous version.

It may also be noted that, thanks to the knowledge of the resources to be
pushed using the algorithm, the client can make a second request to the server in parallel,
in order to retrieve subsequent resources without having to wait for the corresponding
PUSH_PROMISE from the server. In case of DASH, this possibility for the client makes it
possible to reduce the latency of the client while ensuring that the second request will not
interfere with a PUSH_PROMISE that will be received later.

The client may also request other resources that it needs, if it determines from
the results of the algorithm that these other needed resources are not about to be pushed.

According to second embodiments, the shared push policy is defined in
exchanges between the client and server, either explicitly by defining the whole rule (i.e.
algorithm or parameters of the algorithm), or using references to push policies predefined

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

44

at both sides. This requires for the server to first determine a push policy information
describing the push policy of the server. Then the push policy information is transmitted to
the client to share the push policy with the client. Correspondingly, the client thus receives,
from the server device, push policy information describing the shared push policy.

One advantage of the explicit approach relies on the fact that a different push
policy could be used by the server for each client or for each multimedia presentation (e.g.
each MPD), in order to better meet their processing characteristics. Figure 15a illustrates,
using a flowchart, step 1400 of determining the shared push policy at the client side based
on the explicit approach, while Figure 15b illustrates, using a flowchart, step 1402 of
determining the push policy at the server side when the explicit approach is used.

As shown in Figure 15b, the server generates at step 1504 a message to
declare the push policy and then sends it to the client at step 1505, in order to share it. The
information describing the push policy in the declaration message is referred to as push
policy information.

Figures 16 to 18 described below give exemplary details on how the push
policy is declared and transmitted to the client.

The resources to be pushed using the push policy as determined at step 1402
are then identified at step 1403 with the selection algorithm (or second media data
determining algorithm) defined in the push policy declaration message generated in step
1504.

On the client side as shown in Figure 15a, the client is able to pre-identify the
resources to be pushed for a given resource request by applying the same selection
algorithm. This makes it possible for the client to predetermine the data that will be pushed
by the server and thus ensure an efficient management of push data and a reduction in the
number of GET requests if appropriate.

To apply the same selection algorithm, the client receives the push policy
information describing the push policy applied by the server.

Various push policy declaration methods may be used.

In one embodiment, the push policy declaration is shared thanks to a
JavaScript program that takes, as input parameters, a request R and a DOM tree
corresponding to the document containing the resources to be pushed (typically the
manifest file for DASH) and that outputs an ordered list of resources to be pushed. In this
embodiment, the push policy information includes a JavaScript program embedded in a
web page transmitted from the server device to the client device.

In other embodiments, the push policy is described within the manifest file.
That is the push policy information describing the shared push policy is inserted in a
description file that is transmitted from the server device to the client device using the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

45

shared push policy. The description file contains description information that concerns
media data including the first media data, and is used by both sides to determine the
second non-requested media data to be pushed.

In DASH, the description file is for instance the MPD file. The description below
is mainly based on DASH and MPD files. However, the same approach applies to other
manifest-based streaming methods like Smooth Streaming or HTTP Live Streaming.

According to specific embodiments, the push policy information includes a first
push attribute defining an amount of second non-requested media data to be identified in a
description file. This makes it possible to specify the number of segments to be pushed
after one request R is received from the client.

This is illustrated by Figure 16 which shows an MPD document in which a
PushPolicy node 1600 is used to specify the push policy applied by the server.

In this example, the PushPolicy node 1600 includes a push attribute, namely
“Segmentldx”, to declare the number of segments to be pushed after a GET request is
received. For instance, if the client requests segment 1601 in its GET request, it will
receive, as a response, a PUSH_PROMISE frame for the next two segments in parsing
order of the MPD document. In this example, the first push attribute identifies the second
non-requested media data relatively to the first media data requested within the description
file. More generally, a predetermined number of K segments to be pushed is used to define
the push policy value. Consequently, for each segment requested by the client, the server
will push the K next segments.

Whereas the example 1600 of Figure 16 shows a single push attribute, there
may be several push attributes. Each push attribute may represent a constraint on nodes of
the DOM (Document Object Model) tree representing the manifest for selecting the
segments to be pushed. Referring to the previous example of Figure 4b, the push policy
node 1600 can refer to media data described in the description file (MPD file) using media
data attributes (the MPD elements and/or attributes) including a period attribute “Periodldx”
that refers to a Period element to which the media data belong, an adaptation attribute
“AdaptationSetldx” that refers to an AdaptationSet element of the media data, a
representation attribute “Representationldx” that refers to a Representation element, i.e. an
encoding version (specific codec, resolution or bitrate...) of the media data and a segment
attribute “Segmentldx” that refers to a segment in a given Representation.

Based on these existing media data attributes, the push policy information may
include at least a second push attribute defining a constraint on the media data attribute or
attributes, for identifying the second non-requested media data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

46

For instance, a push attribute may be related to the Periodldx attribute to
specify a constraint on the period for selecting the segment to push; another one may be
related to the AdaptationSetldx attribute to specify a constraint on the adaptation; another
one may be related to the Representationldx attribute to specify a constraint on the
representation; in addition to the above first push attribute related to the Segmentldx
attribute.

When a push attribute is not present or void, the related media data attribute
must be considered as unconstrained.

The value of the push attributes may use the following syntax:

push attribute= [operator] operand

where “operator” is optional and takes the value ‘+’ or -’ to define the segments
to be pushed relatively (“+” means after and “-" means prior to) to the requested segment,
and where “operand” is either an integer value superior or equal to 0 or ™ as wildcard
parameter.

Figure 17 illustrates, using a flowchart, steps for identifying and marking some
segments as ready to be pushed according to the shared push policy “PushPolicy”. This
flowchart illustrates step 1403.

First, the server identifies at step 1700 the segment requested in the manifest
file. The request includes an identified “reqSegldx” of this segment.

For each node type in the manifest file MPD, an index value is attributed to
each node. The value is incremented for each Node in the order of appearance in the
manifest file.

Next, the indexes of the Period, AdaptationSet, Representation and
SegmentURL that correspond to the requested segment (i.e. the segment specified in the
GET request) are retrieved by parsing the whole MPD until the requested segment is
reached.

The operator and operand values of the push attributes defined in the push
policy are used to identify in which nodes the segments to be pushed are defined (except
for the Segmentldx attribute that defines the amount of segments to be pushed, when
associated with “+” or “-“ operator).

When no operator is specified, the operand value identifies the index of the
Node within which the data to be pushed have to be retrieved. For example, where the first
push attribute “Segmentldx” has no operator, it is an identifier, within the description file, of
a specific segment to be pushed. In one alternative, when the operator is not specified the
operand value may identify range values, for example “Segmentldx=2-5" would return
segments with index equal to 2, 3, 4 and 5.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

47

Otherwise (an operator is specified), the operand value represents an offset
value (named “idxOffset”) to apply to the index of the requested segment (“reqSegldx”
obtained in step 1700). In such case, the segments to be pushed should be in the Nodes
with indexes comprised in the [reqSegldx, reqSegldx+idxOffset] range if the operator is “+”
and in [regSegldx-idxOffset, regSegldx] if the operator is “-“. The use of an operator makes
it possible to define a media data attribute or attributes of the second non-requested media
data relatively to the corresponding media data attribute or attributes of the first media data
within the description file.

For instance, let’'s consider the following push policies:

1. <PushPolicy Representationldx="-1" Segmentldx="2"/>
2. <PushPolicy Periodldx="+1" Segmentldx="+2"/>
3. <PushPolicy Periodldx="+0" Segmentldx="+2"/>

PushPolicy #1 specifies that the server will push the segment of index 2 in the
representation node preceding the representation node of the requested segment.

With PushPolicy #2, the server will push the two segments following the
requested segment, either in current period or in the following. For example, when
requesting segment 2401 on Figure 24, segments 2405 and 2402 would be pushed.

PushPolicy #3 is very similar to the PushPolicy#2, the main difference is when
the requested segment is the penultimate of the Period. For example, when requesting
2401, only the last segment 2405 in the current Period (instead of two segments) would be
pushed. With PushPolicy #3, Periodldx restricts the segment search to the requested
segment’s Period node and thus only the last segment of the Period is pushed (because
the segment requested is the penultimate segment in the Period). On the contrary, with
PushPolicy #2 the segments can be retrieved from the next period.

In an alternative or as an optional value, the value of the operand may be also
* (wildcard meaning) which means that any segment should be pushed. When it is
associated with operator ‘+’ (respectively “-“), it means that all subsequent (resp. preceding)
segments to the requested one should be pushed.

This alternative allows the client to send only a single HTTP request to retrieve
all segments of one Period for instance with the following PushPolicy: <PushPolicy
Periodldx="+0" Segmentldx="+"">.

In these examples, the use of the Segmentldx attribute to identify the second
media data (to be pushed) relatively to the requested first media data requires that the
second media data are adjacent to the first media data. In an embodiment, the Segmentldx
attribute may include an offset (in addition to the operand) to apply to the index of the
requested segment. This shifts the index of a reference segment from which a specified

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

48

amount of segments has to be pushed. As an example, the syntax of the Segmentldx
attribute may be:

push attribute:[operatorjoperand],offset]

where “offset” is a positive or negative integer different from 0 to apply to the
requested segment index. In such case the search range is [reqSegldx+offset,
reqSegldx+idxOffset+offset] when the operator is ‘+' and [reqSegldx-idxOffset +offset,
reqSegldx +offset] when the operator is *-'.

The syntax of the push policy can also contain conditions like (non restrictive) a
maximum size of data or a time in the presentation being pushed, respectively. For
instance:

<PushPolicy Segmentldx="+*[size<500000]> defines a push policy to push no
more than 500 kilo bytes of segments data.

<PushPolicy Segmentldx="+*[time<0:01:30] > defines a push policy to push no
more than 1 minute and 30 seconds of next segments data.

While the above examples show how to declare the push policy that
determines which segments have to be pushed, there may be a need to also specify in
which preferred order the segments will be pushed. This information should also be shared
between the client and the server.

As an example, the declaration of an order of transmission of the pushed
segments as described above with reference to Figures 7 to 12 could apply.

In one alternative embodiment for an order of transmission of pushed
segments, the description information in the description file includes priority attributes
associated with the media data, one priority attribute (for example “priorityldx”) for each
media data, and an order of transmission of the second media data is based on the
associated priority attributes. Thanks to the transmission of the description file, the client is
also aware of the values taken by these priority attributes, and is thus able to determine the
intended order of transmission.

As shown in the example of Figure 16, each segment (for instance identified
by one SegmentURL Node) described in the manifest file includes a priorityldx attribute
(1604) which specifies the push order of the segment. In the example of Figure 16,
segment 1603 is pushed before segment 1602. These priorities are computed during the
media segments preparation at the server side. Different priority values can be used: a
relative priority value in a given Representation (as on Figure 16) or an absolute priority
value either as a 32 bit number with 4 most significant bits for the Period priority, 4 next
MSBs for the AdaptationSet priority value, next 8 bits for the Representation priority value
and least 16 significant bits for the segment priority. An alternative way of signalling the
absolute priority value is to use a comma separated list of priority values, one for each of

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

49

the above cited levels, for example: priorityldx="1, 1, 2, 1’ to define successively the Period

priority, the AdaptationSet priority, the Representation priority and then the segment

priority. First embodiment with 32 bit value would give (in binary):
priorityldx="00010001000000100000000000000001".

A main advantage of using priorityldx values is to make it possible to define a
priority order between segments from different Representation (typically an associate
representation such as an alternate view of the video). It is useful when the push policy
consists in sending segments of different Representation sets. A typical use case is for
streaming of layered video (a layer being a view in multi-view or a scalability layer in
scalable video) where segments from one layer would be interleaved with segments with
one or more other layers.

Back to Figure 17, based on the push policy as defined in the MPD file, the
server determines at step 1701 the number of segments to be pushed. This number is
directly inferred from the Segmentldx attribute value: if the operator is not used in the
attribute value, this number is equal to 1; otherwise (operator is “—* or “+”) the number is
equal to the operand value and is assumed infinite when the operand is “*” (but limited by
other constraints and by the number of existing segments).

Next, an iterative process composed of steps 1702 to 1705 is applied by
streaming server until the number of segments to push is reached (test 1702) to mark each
of the segments to be pushed.

For each iteration, the server retrieves at step 1703 the list of segments
defined in the MPD file that respect the PushPolicy constraints (Adaptation Set,
Representation, Period and Segment constraints and optional conditions).

If the list of segment is empty or all its segments are already marked (test
1704) the process ends and the server starts sending (step 102 above) the response to
client’s request.

Otherwise, the first segment of the list is marked in step 1705 as to be pushed
during steps 103 (PUSH_PROMISE) and 104 (promised segments).

In these MPD-based examples of declaring the push policy, one push policy is
defined using a PushPolicy element (see 1600 in Figure 16).

It is recalled here that the description file describes the media data using a
plurality of media data attribute levels, namely the Period, AdaptationSet and
Representation elements defined above.

As a slight variant to the above, various shared push policies may be defined at
various respective levels of the description file. This is to be able to define various push
policies depending on the level (Adaptation Set, Representation, Period) concerned, so as
to adapt the push strategy to the content of the media stream.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

50

This is illustrated through Figure 23 in which the push policy is defined using
for example the “SupplementalProperty” descriptor at the desired level, here at the
Representation level.

Using a push policy per <MPD=> level makes it possible to have a constant and
same push strategy across media.

Using a push policy per <Period> level makes it possible to have a push
strategy that can vary along time.

Using a push policy per <AdaptationSet> level makes it possible to have a
media-adapted push strategy.

Using a push policy per <Representation> level makes it possible to have a
push strategy that can be adapted to the media characteristics (bandwidth...).

In the example of Figure 23, the push policy specified at the Representation
level is configured to push more segments for low bit rate video segments (2300) than for
high bitrate video (2301), so to avoid using too much bandwidth with push data.

Note that the explanations above with respect to the syntax of the push
attributes may also be applied to this slight variant. In particular the push policy can be
signalled in a manifest as a new element (as in Figure 16), or using an existing descriptor
with a new schemeldUri (as in Figure 23) or as a new descriptor (not represented) or any
means compliant with MPD schema or MPD schema extension points.

The MPD could also contain a list of alternative PUSH policies each one
having a unique identifier (see below for more explanation about the list).

In other alternative embodiments, a push policy may define that segments for
complementary Representations are systematically pushed, for example using the following
syntax:

<push_policy Segments="+complementary’>

or value="complementary’ when using a DASH descriptor.

In case of layered video, this means that for a requested video segment, each
segment at the same time from all Representations declared as complementary
Representations (typically through a dependencyld attribute in the MPD signalling
dependencies between different Representations) would also be pushed.

Another push policy could also consist in pushing segments from associated
Representations, signalled either with the @associationld attribute or with a
role="supplementary’.

In case of fully server driven streaming, the push policy could provide
information on whether the server behaviour has to be ‘aggressive’ (or ‘optimistic’) or
‘conservative’, i.e. respectively trying to push segments of higher quality or trying to push at
the same quality level (preserving bandwidth).

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

51

In other embodiments, the push policy is transmitted in a dedicated HTTP
header, referred to as “push-policy” header. That is the push policy information describing
the shared push policy is embedded in a header of an HTTP frame transmitted from the
server device to the client device.

These embodiments make it possible to vary the push policy over time, since
they are no longer dependent on the transmission of the MPD file as above and the client
and the server exchange using HTTP/2 protocol.

Figure 18 is an example of communication between a server and client with a
push policy transmitted in a HTTP “push-policy” header (the header name “push-policy” is
just an example).

The push-policy header includes a list of push attributes, each defining a
constraint on the data to be pushed. In particular, the syntax of the PushPolicy described
previously may be transcribed to HTTP header syntax.

In Figure 18a, the server in response to a MPD request from the client (arrow
1800) transmits (step 1801) the push-policy in an HTTP header accompanying the MPD
sent, to share the push policy.

For instance, the push policy specifies that the segment following a requested
segment will be pushed. As consequence, when the client requests (arrow 1802) segment
Datai.1, the server sends (arrow 1803) PUSH PROMISE for segment Data2.1 and then
the data of segment Data1.1 (arrow 1804).

Any syntax could be used to define which data is about to be transmitted for
subsequent segment request: a MPD-specific one or a more abstract one based on DOM
tree node traversal.

In a specific embodiment dedicated to dynamic shared push policies, the client
may request a specific push policy, i.e. may update the shared push policy, for example if
the current shared push policy is not adapted to its needs or may be improved.

That means that the client device sends push policy update information
embedded in a header of an HTTP frame to the server device. Correspondingly, the server
device receives push policy update information embedded in a header of an HTTP frame
from the client device. The server device may thus update accordingly the shared push
policy before determining non-requested media data from other media data requested by
the client device (for instance, for the next request).

In an embodiment, the push policy request from the client is conveyed in an
HTTP header or request named “push-policy-request” (name here is just an example).

Figure 18b illustrates client-server exemplary exchanges when the client
requests a new push policy.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

52

The beginning of the exchanges is the same as in Figure 18a.

After receiving segment Data2.1, the client identifies that the current push
policy should be modified, for instance because the available bandwidth is stable enough to
let the server push more segments in response to a segment request.

As a consequence, the client sends at step 1805 a push-policy-request that
asks the server to push more segments (3 instead of 1) for each new request.

The server positively answers this push policy request with an OK 200, at step
1806. This positive answer means the server will use the new push-policy described in
push-policy-request for any new request from the same client.

If the server does not want to change its push-policy, it returns an error code
answer to notify the client that the push policy request is rejected.

Next, when the client requests at step 1807 a next segment Data3.1, the server
answers at step 1808 with PUSH PROMISE for the next three segments Data 4.1, Data5.1
and Data 6.1.

Figure 21 illustrates, using a flowchart, steps of the process at the server side
when using the HTTP request for sharing push policy, while Figure 22 illustrates, using a
flowchart, steps of the process at the client side when using the HTTP request for sharing
push policy.

In comparison to the process of the Figure 14, the server includes new
processing steps (2100 to 2105) to handle a push policy request from the client and also to
send the initial push policy and updates thereof.

If the request received by the server is a push policy request from the client
(test 2100), the server first parses the push policy request at step 2101 in order to extract
the constraints of data push proposed by the client.

During this step, the server may decide to follow the push policy requested by
the client. In such case the server updates its internal push policy (step 2102) and sends an
OK 200 response to the client at step 2103, in order to validate the proposed push policy.

Otherwise, when the server discards the push policy (for instance because the
proposed policy is too costly in terms of resources or cannot be applied), step 2102 does
not modify the internal push policy at the server and an error code is transmitted to the
client at step 2103.

According to a specific embodiment, the server may in addition update its push
policy independently of the client’s requests. In such case, the server determines a push
policy during step 1402 and may either decide to change its characteristics (for instance by
analysing the requests performed by the client and network characteristics) or see that the
determined push policy is different from the current one. In such a situation, the server has

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

53

to share the new push policy with the client if the latter is not already aware of it (test 2104),
in which case the new push policy is transmitted in an HTTP header in step 2105.

The corresponding process at the client side is explained with reference to
Figure 22. As for the server processing, new processing steps (2200 to 2204) are added in
comparison to the process of Figure 14 in order to process push policy messages and
perform push policy requests.

After having determined the current shared push policy (i.e. the push policy of
the server) in step 1400, the client may desire a new push policy, for instance to reduce the
number of HTTP requests to send for retrieving segments of a media stream. Thus, when a
new push policy is required by the client (test 2200), the client sends at step 2201 an HTTP
request with a “push-policy-request” as described previously.

The response to this request is processed in step 2204 in which the client
checks whether or not the server validates the request by returning an OK 200 response or
otherwise an error code.

If the server returns an OK 200 response, the current push policy determined in
step 1400 is replaced by the requested policy. Otherwise it is unchanged.

In addition to the process of Figure 14, when the client receives a frame with a
new push policy from the server (test 2202), the push policy is parsed and stored (step
2203) in memory in order to be retrieved in a next occurrence of step 1400.

It has to be noted that when the push-policy request is in a frame that also
includes other data (e.g. media data), the other data are processed through steps 109-111-
113-115.

Whereas the above HTTP-based examples use an HTTP request to fully
define the push policy to be applied, one specific embodiment may rely on having a set of
the same predefined push policies defined at both client and server sides, and each having
a unique identifier. In this case, the HTTP request is only used to specify an identifier of the
push policy to be used from amongst the set. This specific embodiment reduces the size of
the HTTP request.

In one embodiment, the push policy request is sent as an additional HEADER
of one of the HTTP requests used for requesting one of the server resource: typically, the
push policy request is sent in an "Accept-Push-Policy” HTTP header in the GET request for
the MPD file.

In another embodiment, the client specifies several "Accept-Push-Policy” in
one HTTP request to indicate the list of push policies supported (or required) by the client.
In response to the HTTP request the server may either choose one of the push policy in the
proposed list and then specify the push policy in the HTTP response or respond by a new
push policy if none is supported.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

54

In yet another embodiment, the push policy request is sent in a dedicated
HTTP request independent of any of the resource known by the server. For example, a
GET (or POST) request is formed with an URL corresponding to none of the resource of
the web page, for instance http:/server/push_policy and also with at least one Accept-
Push-Policy header.

In yet another specific embodiment, the set of alternative push policies may be
defined in the MPD file exchanged between the server and the client, each having a unique
identifier. One of the push policies may be marked as default push policy selected by the
server. The client may specify which push policy should be used by sending a new push
policy request which includes the identifier of the push policy to be used in replacement of
the default push policy.

In one embodiment, a specific push policy is defined to indicate which segment
will be pushed just after the request to the MPD document for fast start.

In a hybrid approach, the push policy information describing the shared push
policy is defined by a first push policy part and a second push policy part, the first push
policy part being inserted in the description file (MPD), and the second push policy part
being embedded in a header of an HTTP frame transmitted from the server device to the
client device.

For instance, the MPD may define the push policy with template arguments
that are then defined (or even overloaded) by the server thanks to push-policy HTTP
request. As an example, the push policy defined in the MPD file may be: <PushPolicy
Segmentldx="parameter’/> and the value of the variable “parameter” may be defined in a
push-policy HTTP request. In this example, the second push policy part comprises (only)
one or more values for one or more associated variables defined in the first push policy
part.

Using the push-policy-identifier-based approach described above, the
description file may include the description of a plurality of candidate push policies, and the
second push policy part may thus comprise an identifier of a candidate push policy from
said plurality, which identified candidate push policy thereby forming the first push policy
part.

In another embodiment to declare the push policy to the client, the push policy
relies on the <Role> descriptor defined in the MPD to indicate in which representation the
push data will be selected. Typically, the push policy may specify that the push strategy will
use a segment in a Representation with an “alternate” or “supplementary” role value.

In another embodiment, the document of resources, for example a streaming

manifest or an HTML page, is transformed into a priority tree that is browsed to determine

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

55

the resources to be pushed after a GET request is received. The navigation within the
priority tree may be performed thanks to an XPath request. In this approach, the push
policy information includes an XPath expression to be evaluated on a tree representation of
the document of resources to identify the second non-requested media data.

For example, in the streaming manifest a “following[name()="SegmentURL"][2]”
XPath expression could be used to select, as segments to be pushed, the next two
segments following the segment requested by the client in the GET request. Also for the
chapter-switching use case, a “((following[name()="Period”]//SegmentURL)[2])” XPath
expression makes it possible to select two first segments of the following Period for
preloading the first two segments of each chapter. For example, when the client requests
segment 2401 in the MPD file of Figure 24, segments 2402 and 2403 of the following
Period are also transmitted by the server as pushed data.

In addition, the priority tree could be first re-ordered for example using an XSLT
instruction in order to simplify the XPath expression writing for advanced push policy rules.
The XSLT instruction makes it possible to reorganise the tree before applying a push
policy. The XPath expressions is preferably transmitted to the client, for instance in one
HTTP header and the XSLT stylesheet is defined in a web page. This applies in particular
to HTML documents for example to group all pictures declared in the document, all CSS
resources as consecutive nodes at the same level of the DOM tree.

For instance, the tree 2501 of Figure 25 represents an HTML page with
different resources of different types: hashed nodes (2511-2514) correspond to image
resources and nodes in plain color (2521-2524) are scripted resources (CSS or Javascript).
The tree 2502 is an example of XSLT transformation result to group the resources by type
(images in 2530 and scripted resources in 2540). A simple XPath expression could thus be
defined to indicate that some resources for a given type will be pushed once the first
resource of this given type is requested.

In all the embodiments described above, it is very likely that for each client
request the server replies with several PUSH PROMISE if the push policy requires several
segments to be pushed.

For instance, MPD 1900 of Figure 19 has a push policy which indicates that
the three segments following a requested segment will be pushed (see <PushPolicy>
element). Consequently, if the client requests the initialization segment with a GET request
for media 1901 with a byte range equal to 0-999, the server will send the three
PUSH_PROMISE messages 1902 during step 103.

In one embodiment, if the identified second media data comprise a plurality of
media segments, each requiring an announcement message (i.e. a PUSH_PROMISE), the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

56

corresponding plurality of announcement messages may be merged into a single
announcement message to be transmitted to the client device.

To achieve this situation, as shown in Figure 20, the processing at the server
preferably includes a pre-processing step 2000 just before sending the push promises in
step 103, compared to the general process of Figure 14. The pre-processing step seeks to
perform the above-mentioned merger of announcement messages.

When the push promises include byte range requests as in 1902, the list of
push promises 1902 is browsed to generate a reduced set of push promises 1903 that
contains consecutive byte range addresses. Next, each set of push promises 1902 is
replaced by a reduced set of push promises 1903 with a contiguous byte range equal to the
concatenation of the byte ranges in the push promises set or by a single push promise with
a list of non-contiguous byte ranges for example 1905.

For instance, the three push promises 1902 are replaced by the single push
promise 1903 shown in Figure 19.

This approach of merging push promises makes it possible for the client to
cancel the send of push data in a simpler way and at lower bandwidth and processing
costs. This is because the client just has to close a single stream for the single push
promise instead of closing several streams for each of the non-merged push promises.

In an alternative, even if the push promises have disjoint byte range intervals,
all push promises may be replaced by a list of byte ranges (where consecutive byte range
intervals have been concatenated).

In addition, if the push promises do not include byte range intervals but rather
different SegmentURL values, the push promises may also be concatenated to generate a
single push promise message as follows: the method of the generated push promise
message is defined as MGET (for multiple GET) and the path field is a list of segment
URLs as represented in 1904. Similar to the previous embodiment, the client has to close
the single stream corresponding to the generated push promise to cancel the push of all
segments.

Note that the server may include END_SEGMENT flags at the end of each
segment in the data then transmitted, in order to ensure that the client is able to parse and
identify each pushed segment.

In addition, the SETTINGS frame of HTTP/2 is extended to include a new
SETTINGS_ENABLE_GROUP_PUSH_PROMISE parameter that makes it possible to
indicate if the grouping of push promises is allowed for the streaming session.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

57

Embodiments of the invention may make it possible to have a DASH fast start
because one or several roundtrip(s) can be avoided. This aspect of the invention is now
described with reference to Figures 26 to 28.

The DASH fast start feature may be used with any communication approach as
described above with reference to all or part of Figures 7 to 12 and 14 to 25.

Figure 26 shows exemplary methods respectively implemented by a server
and by a client device in accordance with the teachings of the invention, in order to obtain a
DASH fast start.

As in the standard process just described, the first step consists for the client to
request the description file, here an MPD file (step 2650). The client then waits for the
server’s response (step 2651).

In the meantime, the server analyses the MPD file (step 2652), in particular to
identify (step 2653) initialization data which will help the client to start faster, as explained
below. An exemplary embodiment for step 2653 is described below with reference to
Figure 27.

Once initialization data is identified by the server, it sends a PUSH_PROMISE
frame to the client at step 2654 to indicate its intention to push initialization data without
waiting for a client’s request.

Possibly, it signals in addition that it will also push initial media data (step 2656)
by sending another PUSH_PROMISE frame including header fields that allow the client to
identify the concerned resource, i.e. the concerned initial media data, such as :scheme,
:host, and :path.

Both in the case of a PUSH_PROMISE frame for initialization data and of a
PUSH_PROMISE frame for initial media data, other header fields are also added by the
server to indicate how much the server is confident in the data it has decided to push:in the
present embodiment, a confidence level parameter is associated to (i.e. included in a
header of) the PUSH PROMISE frame. The determination of the confidence level
parameter is described below with reference to Figure 27. The server can also insert a
specific DASH header to unambiguously indicate the segment that it intends to push.

To minimize the risk that a client will make a request for initialization data and
first media data that are to be pushed, the PUSH_PROMISE frames should be sent prior to
any content in the response, i.e. step 2654 and step 2656 should occur before a step 2655
of sending the MPD file from the server to the client device.

Thus, when PUSH PROMISE frames are sent to the client device, the server
sends the MPD file to the client device at step 2655.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

58

If the server has not received any CANCEL or ERROR message from the client
device in the meantime, it starts pushing initialization data (step 2657) and first media data
(step 2658).

PUSH_PROMISE frames and pushing of data from the server to the client
device is for instance performed in accordance with corresponding features being
developed in the frame of HTTP 2.0, as described for instance in the document “Hypertfext
Transfer Protocol version 2.0, draft-ietf-httpbis-http2-latest’, HTTPbis Working Group,
Internet-Draft, June 24, 2013 (available for instance at http://http2.github.io/http2-spec/).

Upon receipt at the client device, the initialization data can be used by the
client to set up the decoder(s) (step 2659) and the first media data are buffered (step 2660)
until a sufficient amount of data is available for decoding and rendering (e.g. displaying)
without display freeze.

When the client has fully received the MPD file, it parses it (step 2662) and
starts decoding and displaying (step 2663) provided enough data are buffered (step 2661).
If this is not the case, and the client device knows from PUSH_PROMISE frames sent by
the server (see step 2656) that more segments will be sent, it waits at step 2664 for the
completion of the push of first media data from the server. During this idle step 2664, the
client device may prepare the next requests for subsequent segments that will be issued in
a standard client controlled DASH (step 2665), as already explained above. This is possible
because the client device has received information on the initial media data to be pushed
(or being pushed) in the corresponding PUSH_PROMISE frame (see step 2656 above) and
can thus prepare requests for the temporal segment immediately following the last temporal
segment intended to be pushed by the server.

The client device, when it has fully received the MPD, may also use the
information on initial media data received at step 2656 to check whether this initial media
data fills the buffer and, if not, to send a request for the following media data (e.g. media
data corresponding to a temporal segment following the temporal segment represented by
initial media data) according to the standard client controlled DASH process prior to step
2661 (contrary to what is shown in Figure 26 which shows a case where the pushed initial
media data fills the buffer). This enables the client to correct a bad estimation from the
server on the quantity of first media data to push.

This process enables a streaming client to start displaying media earlier than in
standard manifest-based streaming. Indeed, the startup delay is reduced because the
number of HTTP roundtrips on the network is reduced to get initialization data and/or initial
media data.

This process remains however compliant with the current DASH standard,
because:

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

59

- there is no modification of the MPD file: its transmission remains light and
fast;

- the behaviour of standard DASH clients (i.e. not benefiting from the
teachings of the invention) may be unchanged: such client devices would ignore
unrecognized HTTP headers and, when not accepting the push feature, would simply have
to perform more requests/responses and thus spend more time to start the presentation.

Figure 27 describes an exemplary method implemented at the server side
following a request for the manifest (or description file) from a client device.

This method seeks to identify the most relevant initial data to push in advance
so that the client can start rapidly the display of the media presentation.

In step 2700, the request for the manifest is received. The server then checks
at step 2701 whether the client device inserted some preferences in the request. This may
be done via a dedicated HTTP header like for example to express a transmission rate for
the media presentation and a preferred language for audio stream:

GET http://myserver.com/presentation/pres1.mpd \rin

Prefered-MediaRange: bw=2000;lang=FR\r\n\r\n

If the request includes preferences (test 2701 true), the server analyses the
client’s preferences (step 2703) and sets its confidence_level parameter to the value “high”
(step 2704).

If no indication is provided in the request (test 2701 false), the server checks at
step 2702 whether it has already registered service usage information (logs) for this client
(i.e. statistics or usage data based on prior exchanges between the user or client device
and the server) or the information from the User-Agent header. Indeed, the User-Agent
header is defined as a HTTP header in RFC2616 (see e.g.
http://www.ietf.org/rfc/rfc2616.1xt) and provides a means for applications to exchange
information like for example operating system, browser type, application name, efc.). For
instance, the DASH server may have an authentication scheme for the clients before being
able to use the service; in a variation, it can be a user logging before getting access to the
service. With such means, the server can link media parameters to a connected user or
device.

When prior usage information (logs) is available for the concerned client device
or user (test 2702 true), by parsing the logs at step 2705, the server can deduce most
frequent usages for a given client or user. For example, it can deduce that the user or client
device always selects an audio stream with French language and video stream in HD (High
Definition). Moreover, the server can know whether this is a first request in the open TCP
connection or not (client connected to service and requesting a second media

presentation). In this case, the bandwidth estimation can be more accurate and reliable and

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

60

the TCP congestion window may be bigger than for a first request. This can impact the
choice made by the server in terms of suitable Representation,

By registering DASH quality metrics, the server can have in its logs the
changes among various representations the user/client usually performs. From this, the
server determines the usual behaviour between “aggressive” or constant depending on the
frequency of changes (by changes we mean switches to other Representation, whatever
the criterion: bandwidth, resolution, frame rate, etc.). An aggressive client is a DASH client
that will automatically switch to a different representation when its context changes. As an
example, when monitoring bandwidth or buffer occupancy, an aggressive client will request
a Representation with a different bandwidth as soon as a new Representation has
characteristics closer to the client’s context compared to the current Representation. In
opposition, a constant client will try to avoid frequent Representation switches in order to
maintain stable quality and display rate. When the user/client device behaviour is rather
aggressive in terms of adaptation, the server then knows that whatever it selects as initial
representation to start the streaming, the client will try to adapt in the following first seconds
or minutes of streaming.

When preferences are deduced from logs, the server sets its confidence_level
parameter to the value “mid” at step 2706. Indeed, this information may be a bit less
relevant than explicit preferences signaling by the client itself (test 2701 true).

When no log information is available (test 2702 false), then the server puts its
confidence_level parameter to the lowest value: “low’ at step 2707. This indicates that the
server is performing a best guess on the information it pushes because it has no a priori
information to decide. Further process in this case is described below (see step 2711).

In parallel of this confidence level parameter computation, the server may
parse the manifest at step 2708. In cases where the manifest is not liable to change very
often (especially for on-demand service, in opposite to live service), the parsing of the
manifest can be performed offline, once for all, by registering the description of the various
Representations in a lookup table. This lookup table may also be used by the server to link
clients’ logs to some parts of the media presentation. This enables a faster log processing
(see step 2705 described above) to deduce some client’s preferences.

The parsing of the manifest (step 2708) provides information to the server at
the time of selecting (at step 2709) a suitable Representation as initial Representation (i.e.
initial media data) to start the streaming.

Both steps 2703 and 2705 (obtaining preferences respectively in the request or
based on usage data from prior exchanges) consist in translating preferences or usages
from client device/user into concrete parameters that would match MPD attributes. For
example, it can be bandwidth, width and height of the video, the kind of codec in use, the

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

61

language for subtitles or audio streams. Then, from the obtained values for these
parameters, the server compares with values in the manifest to identify at step 2709 the
most convenient Representation to push to the client.

It may be noted that this step 2709 is typically what the client device performs
continuously in a dynamic and adaptive streaming protocol like DASH. Here, the same step
is performed by the server at the beginning of the streaming session by MPD parsing
means.

In case no suitable Representation can be deduced in 2709, test 2710 is false
and the server puts its confidence_level parameter to the “low” value (in step 2707
previously mentioned).

When the confidence value parameter has the “low” value (either because no
preferences could be determined or because no suitable Representation can be found
based on preferences), the server decides at step 2711 to select the simplest
Representation. For video, for instance, the simplest Representation may be the
Representation with lowest spatial resolution and designed for lowest bandwidth.

According to a possible complementary feature (not represented in Figure 27),
when there is no ambiguity on the codec (i.e. all video Representations have the same
value for the codec attribute, i.e. the same codec, for example HEVC, has been used to
encode all the video Representations), the confidence_level parameter may be raised to
the value “mid".

The next step after step 2711, or when a suitable Representation has been
found (test 2710 true), consists in identifying the initialization data (step 2712). Indeed, in
the DASH manifest (or description file), initialization information can be signaled in different
ways: it can be explicitly put in an Initialization element of a SegmentBase, SegmeniList or
SegmentTemplate element that provides a direct URL to the initialization data.

In this case, this URL is put in a header field of the PUSH_PROMISE frame
(see step 2654 described above with reference to Figure 26) that will allow the client to
identify the resource promised to be pushed (by specifying the variables :scheme, :host,
and :path and eventually :Range).

When initialization data is not explicitly described, this means that media
segments are self-initialized. In such case, the server has to parse the beginning of the
segment (e.g. segment index information boxes for segments in mp4 format). Based on this
analysis, it can build the corresponding URL with the appropriate byte range that will be put
as header in the PUSH_PROMISE frame.

Once identified, a PUSH_PROMISE frame for initialization data is immediately
sent to the client (step 2713, corresponding to step 2654 in Figure 26), immediately
followed here by the push of the initialization data (step 2717a, corresponding to step 2657

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

62

in Figure 26). When initialization data are received, the client can then initialize its media
decoders (step 2717b).

Optionally, to improve the segment signaling and later identification by the
client device when processing the PUSH_PROMISE frame (see step 2806 described
below), the server can indicate in step 2713: the nature of the pushed data: initialization or
media or both (in case of self-initializing segments); the parameters of the URL template or
an indication of the segment as a path in the MPD representation tree of Figure 5b (for
example: P2AS21R21181; i.e a concatenation of element type followed by an identifier). It
may be noted that this requires the client device to have received the MPD. Then, the
server can decide to add this specific information only in the PUSH_PROMISE messages
that it thinks will be processed after MPD reception by the client device. To help the
decision at the client device on accepting or not a PUSH_PROMISE before the MPD
reception and parsing, the server can indicate, instead of the segment path in the MPD,
qualitative information on the pushed segment, such as whether it is a segment from a
base layer or an enhancement layer; according to another example, the server can place in
a header the attributes of the selected Representation with their values.

According to a possible embodiment (not represented on Figure 27), when
parsing the manifest at step 2708 determines that initialization data is present in top level
elements of the manifest (i.e. whatever the Representations, the initialization data is
common to all representations; for example in case of dependent Representation), the
server can immediately (i.e. concurrently with step 2708) send the PUSH_PROMISE frame
designating initialization data with a confidence level parameter set to the value “high”
since there is no risk of mismatch between pushed data and what the client would have
chosen. The benefit of sending the confidence level parameter with the PUSH_PROMISE
frame, for example as a HTTP header, is that it can help the client device in accepting or
cancelling the push promise (see the description of Figure 28 below).

Thanks to this feature, the client will receive even earlier the initialization data
required to setup its decoders (as the PUSH_PROMISE frame is sent early). This also
works when initialization data is unique for a given media type (e.g. one single
InitializationSegment per AdaptationSet whatever the number of Representations in this
AdaptationSet). This even faster push would come just after the parsing of the manifest
(step 2708 described above), thus before processing logs or preferences (steps 2701, 2703
and 2705 described above).

Then, if the confidence_level parameter previously determined by the server is
greater than or equal to the “mid” value (test 2714), the server takes the initiative of pushing
the first media data it considers as suitable for the client.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

63

This is done iteratively in two steps: first a PUSH_PROMISE frame is sent
(step 2715, corresponding to step 2656 in Figure 26) and then the push of first media data
starts in step 2719. This is repeated for each first media data segment that has been
selected to be pushed in step 2709.

According to a possible embodiment, when consecutive media segments are
promised to be pushed (i.e. a plurality of PUSH_PROMISE are sent for respective media
segments), the PUSH_PROMISE associated to the current media segment is marked as a
child or a follower of a previous PUSH_PROMISE (step 2716). This can be put as a new
HTTP header in the PUSH_PROMISE frame if the server is stateless or kept in a table if
the server is stateful. Keeping this relationship can be useful to perform hierarchical cancel
on push promises (as described below with reference to Figure 28).

A possible schedule of the various transmissions of data is as follows: before
actually pushing first media data, the server starts pushing the initialization data in step
2717a mentioned above; in parallel to sending the PUSH_PROMISE frame relating to first
media data and initialization data, the server also sends the MPD file (manifest) at step
2718 and keeps the stream open until the pushed data are completely sent.

In another embodiment, test 2714 can be avoided to push first media data
whatever the level of confidence. But in case the confidence_level parameter is set to “low”,
the server may wait for a potential CANCEL from the client before actually pushing the first
(or initial) media data.

When pushing the first media data, the server determines the overall quantity
of data to push and the speed to use (flow control).

Regarding the first aspect, the server can exploit information from the manifest
such as for example the minBufferTime attribute mentioned at the beginning of the
manifest. Using this attribute, and considering the Representation selected in step 2709 or
2711, and given the segment duration attribute also provided in the manifest, the server
easily determines the number of segments to push to fulfill the minBufferTime constraint
(i.e. the quantity of segments, hence the quantity of data, forming the initial media data to
be pushed). Advantageously, when parsing of the manifest (step 2708) is performed offline,
this number of first media segments can be recorded in a table in a memory of the server.

Regarding the second aspect, given the duration of the segment and the
bandwidth of the chosen Representation, an estimate of the required bitrate may be
obtained by the server. This provides, mainly for video segments, the transmission rate to
use. For example for a compressed video representation with bandwidth equal to 1.6
Mbits/s having segments of 5 seconds duration, each segment would represent 1 mega-
byte of data to send. By default, the flow control in HTTP v2.0 provides a stream window
size at most equal to 65535 bytes. Thus, in our example, this means that the client would

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

64

have to send back to the server an acknowledgement for each packet of 65536 pushed
bytes, so in our example more than 15 times per segment! Since we aim at reducing
network roundtrips and traffic when using the push feature under development HTTP 2.0,
we see clearly that there is a need here to modify the default behaviour (actually the default
congestion window size) to enable DASH fast start (by reducing network traffic).

In case the client device sends preferences included in its request for the
manifest, it can also indicate that a SETTINGS frame is to be sent immediately after the
request; this SETTINGS frame specifies for instance an initial window size
(SETTINGS_INITIAL_WINDOW_SIZE) in line with its buffering capacities. According to a
possible variation, this SETTINGS frame can be sent at connection setup time. Another
possibility is for the client device, when acknowledging the first pushed data, to send a
WINDOW_UPDATE with appropriate size.

Figure 28 describes a possible method implemented by the client device,
when exchanging data with the server executing a method for instance as described in
Figure 27, in accordance with the teachings of the invention.

According to a possible application of this method, the client device connects to
the server in order to benefit from a video on demand service. The connection
establishment between the client and the server is conventional. In the present example,
both the client device and the server are able to exchange messages using HTTP/2.0
protocol described for instance in the already mentioned document “Hypertext Transfer
Protocol version 2.0, draft-ietf-httpbis-http2-latest’.

At a time (for instance when the user at the client device selects a given video),
the client device gets information from the server on the address (e.g. the URL) of a
manifest describing a media presentation (here the video the user would like to see).

The client device then prepares a request to download the manifest (step
2800). In a preferred embodiment, the client adds through HTTP headers some
preferences on the video resolution, codecs, bandwidth it supports (step 2801). The client
device then sends its request to the server (step 2802).

In the present embodiment, the client device then sends at step 2803 an
HTTP/2.0 SETTINGS frame to indicate an initial window size
(SETTINGS_INITIAL_WINDOW_SIZE) in line with its buffering capacities (see the
document “Hypertext Transfer Protocol version 2.0, draft-ietf-httpbis-http2-latest’ mentioned
above, section 3.8.5).

In step 2804, the client device starts processing the various server responses:
receiving data forming the manifest and parsing it (step 2805) but also the
PUSH_PROMISE frame(s) sent by the server (step 2806).

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

65

Before deciding to accept or to cancel the push(es) designated in the
PUSH_PROMISE frame(s), the client builds the URL of the resource the server intends to
push (step 2806) and checks (step 2807) the confidence level parameter that has been
included in the PUSH_PROMISE frame by the server.

In parallel and when the manifest (or description file) is fully received, the client
device builds (step 2808) the list of desired media segments it would like to get (i.e. the list
of versions of each segment that best suit its needs) and initializes a current
segment_index variable to 0 (step 2809). The first step in processing the PUSH_PROMISE
consists (step 2810a) in checking the confidence level parameter. Then, depending on
(predefined) client settings or user preferences the client may decide to reject the
PUSH_PROMISE under a certain level of confidence, for example the PUSH_PROMISEs
for which the PUSH_PROMISE frames include a confidence level parameter with a “low’
value.

If the client can match (step 2810b) the URL mentioned in the
PUSH_PROMISE frame with the URL of a desired segment (as derived from the manifest
in step 2808 as just mentioned), it initializes a table for a list of pending segments being
transmitted with their transmission status (step 2811). If the client cannot identify the
segment intended to be pushed by the server in step 2810b in the list of desired media
segments, it then cancels the push (step 2812) by sending an appropriate CANCEL
instruction to the server.

To facilitate the segment identification at step 2810b, the client can exploit
additional header information like for example the index of the pushed segment, as the path
in the MPD tree representation (see Figure 5b), or the URL template parameters when the
description file (i.e. the MPD file or manifest) relies on SegmentTemplate.

This is a specific CANCEL message here (step 2812) since using the
hierarchical relationship inserted by the server when building the PUSH_PROMISE (see
the description of Figure 27 above), the client can send a recursive CANCEL that will result
in the cancellation of the current PUSH_PROMISE plus the following ones.

According to a possible embodiment, when the client device cannot interpret
the push promise, it stops by default all pushes of media data corresponding to the next
temporal segments of a media resource.

This new usage of the CANCEL instructions will avoid the client to repeat
CANCEL messages once it is desynchronized with the server in terms of media segment
identification. In such case, the client will fall back to a pull mode.

When the segment to be received by the push from the server corresponds to
a desired segment (test 2810b true), the client then continues the processing of the
PUSH_PROMISE frames (test 2813 and loop on step 2806).

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

66

When all PUSH_PROMISE frames have been processed, the client device
expects and begins receiving and buffering (step 2814) data corresponding to the accepted
PUSH_PROMISE.

When enough media segments are received in the reception buffer of the
client (test 2815), they are processed by the client (2816). The current segment_index
variable is then updated with the ordering number of the first segment in the list (step
2817). It should be noted that not all clients may get access to the client’s buffer. For
example, web applications in particular do not usually have access to the web browser
cache. In such a case, the server may send the list of pushed segments to the web
application client directly. This information may be exchanged from the server to the client
using a web socket connection, for instance.

When all pushed media segments have been processed, the client can then go
back to standard pull-based DASH (step 2818), starting requesting data corresponding to
the next segment, designated by the variable segment index + 1. In parallel, the pushed
segment data are used to start the decoding and the display of the selected video.

Figure 13 is a schematic illustration of a device according to embodiments.
The device may be a server, a client or a proxy. The device comprises a RAM memory
1302 which may be used as a working memory for a control unit 1301 configured for
implementing a method according to embodiments. For example, the control unit may be
configured to execute instructions of a computer program loaded from a ROM memory
1303. The program may also be loaded from a hard drive 1306. For example, the computer
program is designed based on the flowcharts of Figures 8-12, 14, 15, 17, 20-22 and 26-28,
and the above description.

The device also comprises a network interface 1304 which may be a single
network interface, or comprise a set of network interfaces (for instance several wireless
interfaces, or several types of wired or wireless interfaces). The device may comprise a
user interface 1305 for displaying information to a user and for receiving inputs from the
user.

The device may also comprise an input/output module 1307 for receiving
and/or sending data from/to external devices.

While the invention has been illustrated and described in detail in the drawings
and foregoing description, such illustration and description are to be considered illustrative
or exemplary and not restrictive, the invention being not restricted to the disclosed
embodiment. Other variations to the disclosed embodiment can be understood and effected
by those skilled in the art in practicing the claimed invention, from a study of the drawings,
the disclosure and the appended claims.

WO 2015/004276 PCT/EP2014/064949
67

In the claims, the word “comprising” does not exclude other elements or steps,
and the indefinite article “a” or “an” does not exclude a plurality. A single processor or other
unit may fulfill the functions of several items recited in the claims. The mere fact that
different features are recited in mutually different dependent claims does not indicate that a
combination of these features cannot be advantageously used. Any reference signs in the
claims should not be construed as limiting the scope of the invention.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

68

CLAIMS

1. A method of streaming media data by a server device to a client device, the
method comprising the following steps:

- receiving, from the client device, a request relating to first media data,

- identifying second media data to be sent to the client device without having
been requested, and

- in response to said request, transmitting to said client device, data relating
to said first media data, and preparing at least one announcement message respectively
identifying said second media data with a view to transmit the announcement message or
messages to the client device, and

wherein the method further comprises the step of using a push policy shared
with the client device for the server device to drive the identification or the transmission of
the second non-requested media data to the client device.

2. A method of accessing by a client device, media data streamed by a server
device, the method comprising the following steps:

- transmitting, to the server device, a request relating to first media data,

- receiving from said server device, in response to said request, data relating
to said first media data,

wherein the method further comprises the step of using a push policy shared
with the server device for the client device to determine second media data to be sent by
the server device without having been requested by the client device or to determine an
order of transmission thereof by the server device.

3. The method of Claim 1 or 2, wherein the shared push policy defines how to
determine second media data, for the devices to determine the second non-requested
media data to be sent by the server device to the client device.

4. The method of Claim 3, further comprising:

determining by the server device a push policy, and

transmitting, from the server device to the client device, push policy information
describing the determined push policy to share the push policy with the client device.

5. The method of Claim 3, further comprising receiving, from the server device,
push policy information describing the shared push policy.

6. The method of Claim 4 or 5, wherein the push policy information describing
the shared push policy is inserted in a description file that is transmitted from the server
device to the client device, the description file containing description information that

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

69

concerns media data including the first media data, the method further comprising
determining the second non-requested media data based on said description file using the
shared push policy.

7. The method of Claim 6, wherein the description file describes the media
data using a plurality of media data attribute levels, and various shared push policies are
defined at various respective levels of the description file.

8. The method of Claim 4 or 5, wherein the push policy information describing
the shared push policy is embedded in a header of an HTTP frame transmitted from the
server device to the client device.

9. The method of Claim 8, further comprising, at the server device, receiving
push policy update information embedded in a header of an HTTP frame from the client
device, and updating accordingly the shared push policy before determining non-requested
media data from other media data requested by the client device.

10. The method of Claim 8, further comprising, at the client device, sending
push policy update information embedded in a header of an HTTP frame to the server
device.

11. The method of Claim 4 or 5, wherein the push policy information
describing the shared push policy is defined by a first push policy part and a second push
policy part,

the first push policy part being inserted in a description file that is transmitted
from the server device to the client device, the description file containing description
information that concerns media data including the first media data, the method further
comprising determining the second non-requested media data based on said description
file using the shared push policy,

and the second push policy part being embedded in a header of an HTTP
frame transmitted from the server device to the client device.

12. The method of Claim 11, wherein the second push policy part comprises
one or more values for one or more associated variables defined in the first push policy
part.

13. The method of Claim 11, wherein the description file includes the
description of a plurality of candidate push policies, and the second push policy part
comprises an identifier of a candidate push policy from said plurality, which identified
candidate push policy thereby forming the first push policy part.

14. The method of Claim 4 or 5, wherein the push policy information includes
a JavaScript program embedded in a web page transmitted from the server device to the
client device.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

70

15. The method of Claim 4 or 5, wherein the method further comprises
determining the second non-requested media data based on a structured document using
the shared push policy, the structured document containing description information that
concerns media data including the first media data, and

the push policy information includes an XPath expression to be evaluated on a
tree representation of the structured document to identify the second non-requested media
data.

16. The method of any of Claims 6 to 14, wherein the push policy information
includes a first push attribute defining an amount of second non-requested media data to
be identified in a description file,

the description file containing description information that concerns media data
including the first media data, and the method further comprising determining the second
non-requested media data based on said description file using the shared push policy.

17. The method of Claim 16, wherein the first push attribute identifies the
second non-requested media data relatively to the first media data requested within the
description file.

18. The method of Claim 16, wherein the first push attribute is an identifier of
specific media data within the description file.

19. The method of Claim 16, wherein the description information in the
description file describes media data according to at least one media data attribute from
amongst a period attribute defining a time period to which the media data belong, an
adaptation attribute defining a media type of the media data, a representation attribute
defining an encoding version of the media data and a segment attribute defining, and

the push policy information includes at least a second push attribute defining a
constraint on the media data attribute or attributes, for identifying the second non-requested
media data.

20. The method of Claim 19, wherein the push attribute or attributes define a
media data attribute or attributes of the second non-requested media data relatively to the
corresponding media data attribute or attributes of the first media data within the
description file.

21. The method of Claim 19, wherein the push attribute or attributes identify a
node in the description file in which the second non-requested media data have to be
retrieved.

22. The method of Claim 16, wherein the description information in the
description file includes priority attributes associated with the media data, one priority
attribute for each media data, and an order of transmission of the second media data is
based on the associated priority attributes.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

71

23. The method of Claim 3, wherein the shared push policy identifies the
second media data from the first media data requested.

24. The method of Claim 3, wherein the shared push policy is implemented
using the same second media data determining algorithm at both the server device and the
client device, the algorithm enabling the server device and the client device to determine
the same second media data from the first media data requested.

25. The method of Claim 1, wherein if the identified second media data
comprise a plurality of media segments, each requiring an announcement message, the
method further comprises merging the corresponding plurality of announcement messages
into a single announcement message to be transmitted to the client device.

26. The method of Claim 1, further comprising receiving, from the client
device, a cancellation request requesting to cancel transmission of a part of the second
non-requested media data so that the server device does not transmit the corresponding
prepared announcement message.

27. The method of Claim 2, further comprising sending, to the server device, a
cancellation request requesting to cancel transmission of a part of the second non-
requested media data, in order to drive the server device not to transmit an announcement
message identifying the part of the second non-requested media data.

28. The method of Claim 2, wherein the second non-requested media data are
determined by the client device independently of at least one announcement message
prepared by the server device and identifying the second non-requested media data the
server device intends to send to the client device without having been requested.

29. The method of Claim 3, wherein the same shared push policy is used for
determining respective non-requested media data from a plurality of requests relating to
respective first media data.

30. The method of Claim 1, wherein the push policy shared with the client
device defines an order of transmission of the second media data by the server device,

and the method further comprises the step of transmitting information related to
the order of transmission with said announcement messages, said information enabling the
client device to determine the order of transmission defined by the server.

31. The method according to Claim 30, wherein the order of transmission of
said second media is defined according to priority values according to the client device, the
media data having the highest priority value being transmitted first.

32. The method according to Claim 31, wherein said priority values are
defined according to the HTTP/2 protocol.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

72

33. The method according to any one of claims 31 and 32, wherein at least
one priority value is associated with a network bandwidth estimation mechanism, the
method further comprising the following steps:

- transmitting to the client device second media data with a priority value
associated with said mechanism,

- receiving from the client device, in response to said second media data, at
least one control flow message, and

- estimating an available bandwidth based on said at least one control flow
message received.

34. The method according to claim 33, wherein the server device transmits
said second media data according to a plurality of data frames having respective and
different sizes.

35. The method according to any one of claims 33 and 34, further comprising
defining by the server device, based on said bandwidth estimation, an updated order of
transmission of the second media data.

36. The method according to any one of claims 30 to 35, wherein said request
from the client device comprises a request for receiving a description file related to media
data comprising said first media data, the description file containing description information
concerning said first media data, the method further comprising determining the second
non-requested media data based on said description file.

37. The method according to claims 30 to 36, wherein requested first media
data are video segments.

38. The method according to any one of claims 30 to 37, wherein said
streaming is performed according to the DASH standard.

39. The method according to any one of claims 30 to 38, further comprising
the following steps:

- receiving, from the client device, an ordering update request,

- defining, based on said ordering update request, a new order of
transmission of the second media data and updating the information related to said new
order of transmission of the second media data, and

- transmitting said second media data to the client according to said updated
information related to the order of transmission.

40. The method according to claim 39, further comprising a step of
transmitting to the client device, an ordering update confirmation message.

41. The method according to any one of claims 39 and 40, wherein said
updated order is defined for the second media data for which transmission to the client
device has not been initiated at the time of receipt of said ordering update request.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

73

42. The method according to any one of claims 39 to 41, wherein said
ordering update request comprises an ordering value for at least part of second media
data.

43. The method according to any one of claims 39 to 42, wherein the order of
transmission of said second media is defined according to priority values, and wherein
when a priority value is updated for at least part of a first media data, the priority values for
at least part of second media data to be sent to the client device without having been
requested and associated with said at least part of first media data, are updated
accordingly.

44. The method according to claim 43, wherein said first and second media
are associated according to at least one of a temporal relationship, a spatial relationship
and a quality relationship.

45. The method according to claims 39 and 43, wherein :

- said second media data comprises enhancement data for enhancing quality
of the first media data, and wherein,

- when a priority value is updated for a media data of an enhancement layer,
priority values are updated for all the media data of said enhancement layer.

46. The method according to claim 45, wherein the first and second media
data comprise video temporal segments, and wherein the starting time of the enhancement
media data is based on information related to a video content of the first media data.

47. The method according to claim 46 in combination with claim 36, wherein
said information related to a video content of the first media data is stored in said
description file.

48. The method according to any one of claims 30 to 47, wherein said order of
transmission is based at least on decoding relationships between first a second media
data.

49. The method according to any one of claims 30 to 48, wherein said order of
transmission is based at least on statistical popularities of the media data.

50. The method according to any one of claims 30 to 49, wherein said order of
transmission is based at least on a playing time of the media data on the client device’s
end.

51. The method according to any one of claims 30 to 50, wherein said order of
transmission is based at least on an estimated transmission time of the media data.

52. The method according to any one of claims 30 to 51, wherein said order of
transmission is based at least on user-defined interests for the media data.

53. The method according to any one of claims 30 to 52, further comprising
the following steps:

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

74

- receiving, from the client device, control messages, said control messages
enabling the server device to identify media data currently being played,

- defining by the server, based on said control messages, an updated order
of transmission of the second media data, and

- transmitting said second media data to the client according to said updated
order of transmission.

54. The method according to claim 53, further comprising a step of
transmitting to the client device, an ordering update confirmation message.

55. The method according to any one of claims 53 and 54, wherein said
control messages relate to a use of a buffer memory of the client device, said buffer
memory storing media data for them to be played by the client.

56. The method according to claim 55, wherein the server device keeps
record of first requested media data sent, and wherein identification of the second media
data is performed based on said use of the buffer memory and said record.

57. The method according to any one of claims 30 to 56, wherein said order of
transmission information is transmitted within said announcement messages.

58. The method according to any one of claims 30 to 57, wherein said order of
transmission information is transmitted within dedicated messages after said
announcement messages.

59. The method of Claim 2, wherein the push policy shared with the server
device defines an order of transmission of the second media data by the server device;

and the method further comprises the following steps:

- receiving from said server device, in response to said request, at least one
announcement message respectively identifying the second media data to be sent to the
client device without having been requested, and

- receiving information related to an order of transmission of the second
media data with said announcement messages, said information enabling the client device
to determine an order of transmission of the second media data defined by the server.

60. The method according to claim 59, further comprising determining by the
client device whether the order of transmission of the second media data defined by the
server device satisfies streaming constraints at the client device’s end, and if said
constraints are not satisfied, transmitting, to the server device, an ordering update request.

61. The method according to claim 60, wherein the order of transmission of
said second media data is defined according to priority values according to the client
device, the media data having the highest priority value being transmitted first.

62. The method according to anyone of claims 59 to 61, wherein said priority
values are defined according to the HTTP/2 protocol.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

75

63. The method according to any one of claims 61 and 62, wherein at least
one priority value is associated with a network bandwidth estimation mechanism, the
method further comprising the following steps:

- receiving from the server device second media data with a priority value
associated with said mechanism,

- transmitting to said server device, in response to said second media data,
at least one control flow message, thereby enabling the server device to estimate an
available bandwidth based on said at least one control flow message transmitted.

64. The method according to claim 63, wherein the client device receives said
second media data according to a plurality of data frames having respective and different
sizes.

65. The method according to any one of claims 63 and 64, wherein an
updated order of transmission of the second media data is defined, by the server device,
based on said bandwidth estimation.

66. The method according to any one of claims 59 to 65, wherein said request
from the client device comprises a request for receiving a description file related to media
data comprising said first media data, the description file containing description information
concerning said first media data, the method further comprising determining the second
non-requested media data based on said description file.

67. The method according to any one of claims 59 to 66, wherein requested
first media data are video segments.

68. The method according to any one of claims 59 to 67, wherein said
streaming is performed according to the DASH standard.

69. The method according to any one of claims 59 to 68, further comprising
receiving said second media data from the server device according to updated information
related to a new order of transmission of the second media data defined by the server
device.

70. The method according to claim 69, further comprising a step of receiving
from the server device, an ordering update confirmation message.

71. The method according to any one of claims 69 and 70, wherein said
updated order is defined for the second media data for which transmission from the server
device has not been initiated at the time of receipt of said ordering update request by the
server device.

72. The method according to any one of claims 59 to 71, wherein said
ordering update request comprises an ordering value for at least part of the second media
data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

76

73. The method according to any one of claims 59 to 72, wherein the order of
transmission of said second media is defined according to priority values, and wherein
when a priority value is updated for at least part of a first media data, the priority values for
at least part of second media data to be sent to the client device without having been
requested and associated with said at least part of first media data, are updated
accordingly.

74. The method according to claim 73, wherein said first and second media
data are related according to at least one of a temporal relationship, a spatial relationship
and a quality relationship.

75. The method according to claim 74, wherein :

- said second media data comprises enhancement data for enhancing quality
of the first media data, and wherein,

- when a priority value is updated for at least part of first media data of an
enhancement layer, priority values are updated for all the media data of said enhancement
layer.

76. The method according to claim 75, wherein the first and second media
data comprise video temporal segments, and wherein the starting time of the enhancement
media data is based on information related to a video content of the first media data.

77. The method according to claim 76 in combination with claim 65, wherein
said information related to a video content of the first media data is stored in said
description file.

78. The method according to any one of claims 59 to 77, wherein said order of
transmission is based at least on decoding relationships between first and second media
data.

79. The method according to any one of claims 59 to 78, wherein said order of
transmission is based at least on statistical popularities of the media data.

80. The method according to any one of claims 59 to 79, wherein said order of
transmission is based at least on a playing time of the media data on the client device’s
end.

81. The method according to any one of claims 59 to 80, wherein said order of
transmission is based at least on an estimated transmission time of the media data.

82. The method according to any one of claims 59 to 81, wherein said order of
transmission is based at least on user-defined interests for the media data.

83. The method according to any one of claims 59 to 82, further comprising
the following steps:

- transmitting, to the server device, control messages, said control message

enabling the server device to identify a media data currently being played, and

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

77

- receiving said second media data from the server device according to an
updated order of transmission defined, by the server device, based on said control
messages.

84. The method according to claim 83, further comprising a step of receiving
from the server device, an ordering update confirmation message.

85. The method according to any one of claims 83 and 84, wherein said
control messages relate to a use of a buffer memory of the client device, said buffer
memory storing media data for them to be played by the client device.

86. The method according to claim 85, wherein the server device keeps
record of first media data sent, and wherein identification of the media being currently
played is performed based on said use of the buffer memory and said record.

87. The method according to any one of claims 59 to 86, wherein said order of
transmission information is received within said announcement messages.

88. The method according to any one of claims 59 to 87, wherein said order of
transmission information is received within dedicated messages after said announcement
messages.

89. A method of streaming data between a server device and a client device
comprising:

- performing a method according to Claim 1 by a server device, and

- performing a method according to Claim 2 by a client device.

90. A method of managing, by a proxy server, data exchanges between client
devices and server devices, the method comprising the following steps:

- receiving, from a server implementing the method according to any one of
claims 30 to 58, media data to be retransmitted to a client device,

- determining, based on the order of transmission of the media data, a
retransmission priority for the media data, and

- performing retransmission of the media data received to the client device,
based on said transmission priority determined.

91. The method according to claim 90, further comprising storing said media
data received, based on said retransmission priority determined.

92. The method according to any one of claims 90 to 91, further comprising
the following steps:

- receiving, from a client device implementing the method according any one
of claims 59 to 87, an ordering update request,

- updating said retransmission priority according to said ordering update
request, if said request is related to a media data to be retransmitted, and

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

78

- performing retransmission of the media data according to the updated
retransmission priority.

93. The method according to any one of claims 90 to 92, further comprising
the following steps:

- receiving from a first client device, a request to a first server device, for
media data, wherein said media data is stored by the proxy server for retransmission to a
second client device from a second server device,

- determining priority values respectively associated with said media data by
said first and second server devices,

- updating said priority values according to respective streaming constraints
for the first and second client devices, and

- retransmitting said media data to said first and second client devices
according to said updated priority values,
wherein said first and second server devices implement the method according to claim 31
and said first and second client devices implement the method according to claim 61.

94. The method according to claim 63, further comprising sending to the first
and second server devices update notifications relating to the updated priority values.

95. A method of streaming data between a server device and a client device

comprising:

- performing the method according to any one claims 30 to 58 by a server
device, and

- performing the method according to any one of claims 59 to 88 by a client
device.

96. The method according to claim 95, further comprising performing, by a
proxy server, the method according to any one of claims 90 to 94.

97. A method for providing media data representing a media item from a
server storing data representing the media item, at least a temporal segment of which is
represented by a plurality of versions, the method comprising the following steps
implemented by the server:

- receiving a request from a client device for a description file including a
description of the versions representing the temporal segment and respective pointers to
the versions representing the temporal segment;

- selecting data among sets of data pointed to in the description file;

- sending the description file to the client device;

- pushing the selected data to the client device.

98. The method for providing media data according to claim 97, wherein the
selected data includes initialization data for a decoder of the client device.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

79

99. The method for providing media data according to claim 97 or 98, wherein
the selected data includes at least part of one of said versions representing the temporal
segment.

100. The method for providing media data according to claim 99, wherein the
step of selecting data includes estimating a quantity of data to be pushed.

101. The method for providing media data according to claim 100, wherein the
quantity is estimated based on a buffer time defined in the description file.

102. The method for providing media data according to claim 100 or 101,
wherein the quantity is estimated based on a bandwidth estimation determined by the
server.

103. The method for providing media data according to any of claims 97-102,
wherein the step of selecting data is performed based on at least one preference included
in the request.

104. The method for providing media data according to any of claims 97-103,
wherein the step of selecting data is performed based on usage data derived from prior
exchanges between the server and the client device.

105. The method for providing media data according to any of claims 97-104,
wherein the step of selecting data is performed based on an analysis of the description file
by the server.

106. The method for providing media data according to any of claims 97-105,
wherein the step of selecting data is performed based on a table stored in the server and
associated with the description file.

107. The method for providing media data according to any of claims 97-106,
comprising a step of sending a push promise related to and prior to the step of pushing the
selected data.

108. The method for providing media data according to claim 107, wherein the
step of sending the push promise is performed prior to the step of sending the description
file.

109.The method for providing media data according to claim 107 or 108,
wherein the push promise includes an identification of the selected data.

110. The method for providing media data according to any of claims 107-109,
wherein the server determines a confidence level associated to the selected data and
wherein the push promise includes the determined confidence level.

111. The method for providing media data according to any of claims 107-110,
wherein the server stores a hierarchical representation of blocks of data forming the
selected data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

80

112. The method for providing media data according to claim 111, comprising
the following steps:

- receiving from the client device an instruction for not pushing a block of
data;

- cancelling the pushing of said block of data and of blocks of data connected
to said block of data in the hierarchical representation.

113. The method for providing media data according to claim 97, comprising a
step of determining a level of confidence associated with the selected data and wherein:

- if the determined level of confidence is below a predetermined threshold,
pushing the selected data includes pushing only initialization data for a decoder of the client
device;

- if the determined level of confidence is above the predetermined threshold,
pushing the selected data includes pushing initialization data for a decoder of the client
device and at least part of one of said versions representing the temporal segment.

114.A method for receiving media data representing a media item from a
server storing data representing the media item, at least a temporal segment of which is
represented by a plurality of versions, the method comprising the following steps
implemented by a client device:

- sending a request to the server for a description file including a description
of the versions representing the temporal segment and respective pointers to the versions
representing the temporal segment;

- receiving the description file from the server, the description file containing
pointers to sets of data;

- receiving unsolicited data from the server, wherein said unsolicited data
belong to said sets of data.

115. The receiving method according to claim 114, wherein the unsolicited data
includes initialization data for a decoder of the client device.

116.The receiving method according to claim 115, comprising a step of
initializing the decoder with said unsolicited data.

117.The receiving method according to any of claims 114 to 116, wherein the
unsolicited data includes at least part of one of said versions representing the temporal
segment.

118. The receiving method according to any claim 117, comprising a step of
decoding at least part of the unsolicited data.

119. The receiving method according to any of claims 114 to 118, wherein the
request includes at least one preference defining decoding at the client device.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

81

120. The receiving method according to any of claims 114 to 119, wherein the
request includes an indicator that the client device accepts pushed data.

121.The receiving method according to any of claims 114-120, comprising a
step of receiving a push promise related to and prior to the step of receiving the unsolicited
data.

122.The receiving method according to claim 121, wherein the step of
receiving the push promise is performed prior to the step of receiving the description file.

123. The receiving method according to claim 121 or 122, wherein the push
promise includes an identification of the unsolicited data.

124.The receiving method according to any of claims 121-123, wherein the
push promise includes a level of confidence associated with the unsolicited data.

125. The receiving method according to any of claims 121-124, comprising the
following steps:

- determining acceptance or refusal of a push promise based on data
included in the push promise;

- sending an instruction for not pushing said unsolicited data in case of
refusal.

126. The receiving method according to any of claims 121-123, comprising the
following steps:

- determining acceptance or refusal of a push promise based on a level of
confidence associated with the unsolicited data and included in the push promise;

- sending an instruction for not pushing said unsolicited data in case of
refusal.

127.The receiving method according to any of claims 114-126, comprising a
step of buffering said unsolicited data upon receipt.

128. The receiving method according to any of claims 121-126, comprising the
following steps:

- determining data to be requested based on the description file and on data
included in the push promise;

- sending a request for the determined data to the server.

129.A method for streaming media data representing a media item from a
server storing data representing the media item to a client device, at least a temporal
segment of the media item being represented by a plurality of versions, the method
comprising the following steps:

- the client device sending a request to the server for a description file
including a description of the versions representing the temporal segment and respective
pointers to the versions representing the temporal segment;

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

82

- the server receiving the request from the client device;

- the server selecting data among sets of data pointed to in the description
file;

- the server sending the description file to the client device;

- the server pushing the selected data to the client device;

- the client device receiving the description file from the server;

- the client device receiving the selected data from the server.

130. The streaming method according to claim 129, wherein the selected data
includes initialization data for a decoder of the client device.

131.The streaming method according to claim 130, comprising a step of
initializing the decoder with said initialization data.

132. The streaming method according to any of claims 129 to 131, wherein the
selected data includes at least part of one of said versions representing the temporal
segment.

133.The streaming method according to claim 132, comprising a step of
decoding at least part of the selected data.

134. The streaming method according to claim 132 or 133, wherein the step of
selecting data includes estimating a quantity of data to be pushed.

135.The streaming method according to claim 134, wherein the quantity is
estimated based on a buffer time defined in the description file.

136. The streaming method according to claim 134 or 135, wherein the quantity
is estimated based on a bandwidth estimation determined by the server.

137.The streaming method according to any of claims 129-136, wherein the
step of selecting data is performed based on at least one preference included in the
request.

138. The streaming method according to any of claims 129-137, wherein the
step of selecting data is performed based on usage data derived from prior exchanges
between the server and the client device.

139.The streaming method according to any of claims 129-138, wherein the
step of selecting data is performed based on an analysis of the description file.

140.The streaming method according to any of claims 129-139, wherein the
step of selecting data is performed based on a table stored in the server and associated
with the description file.

141.The streaming method according to any of claims 129-140, wherein the
request includes an indicator that the client device accepts pushed data.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

83

142.The streaming method according to any of claims 129-141, comprising a
step of the server sending a push promise related to and prior to the step of pushing the
selected data.

143.The streaming method according to claim 142, wherein the step of
sending the push promise is performed prior to the step of sending the description file.

144.The streaming method according to claim 142 or 143, wherein the push
promise includes an identification of the selected data.

145.The streaming method according to any of claims 142-144, wherein the
push promise includes a level of confidence associated with the selected data.

146. The streaming method according to any of claims 142-145, comprising the
following steps:

- the client device determining acceptance or refusal of a push based on data
included in the push promise;

- the client device sending an instruction for not pushing said unsolicited data
in case of refusal.

147.The streaming method according to any of claims 142-144, comprising the
following steps:

- the client device determining acceptance or refusal of a push promise based
on a level of confidence associated with the selected data and included in the push
promise;

- the client device sending an instruction to the server for not pushing said
selected data in case of refusal.

148. The streaming method according to any of claims 142-145, wherein the
server stores a hierarchical representation of blocks of data forming the selected data.

149.The streaming method according to claim 148, comprising the following
steps:

- the server receiving from the client device an instruction for not pushing a
block of data;

- the server cancelling the pushing of said block of data and of blocks of data
connected to said block of data in the hierarchical representation.

150. The streaming method according to any of claims 142-149, comprising the
following steps:

- the client device determining data to be requested based on the description
file and on data included in the push promise;

- the client device sending a request for the determined data to the server.

151.The streaming method according to any of claims 129-150, comprising a
step of the client device buffering said selected data upon receipt.

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

84

152.The streaming method according to claim 129, comprising a step of
determining a level of confidence associated with the selected data and wherein:

- if the determined level of confidence is below a predetermined threshold,
pushing the selected data includes pushing only initialization data for a decoder of the client
device;

- if the determined level of confidence is above the predetermined threshold,
pushing the selected data includes pushing initialization data for a decoder of the client
device and at least part of one of said versions representing the temporal segment.

153. A server device for streaming media data to a client device, the device
comprising:

- areceiver configured for receiving, from the client device, a request relating
to first media data,

- a control unit configured for identifying second media data to be sent to the
client device without having been requested, and

- a transmitter configured for, in response to said request, transmitting to said
client device, data relating to said first media data, and preparing at least one
announcement message respectively identifying said second media data with a view to
transmit the announcement message or messages to the client device, and

wherein the control unit is further configured for using a push policy shared with
the client device in order to drive the identification or the transmission of the second non-
requested media data to the client device.

154. A client device for accessing media data streamed by a server device, the
device comprising:

- a transmitter configured for transmitting, to the server device, a request
relating to first media data, and

- a receiver configured for receiving from said server device, in response to
said request, data relating to said first media data,

wherein the client device is configured for using a push policy shared with the
server device in order to determine second media data to be sent by the server device
without having been requested by the client device or to determine an order of transmission
thereof by the server device.

155. A proxy device for managing data exchanges between client devices and
server devices, the method device comprising:

- a receiver configured for receiving, from the server device according to
claim 153, media data to be retransmitted to a client device, wherein the shared push policy
defines an order of transmission of the second media data by the server device and the

transmitter of the server device is further configured for transmitting information related to

10

15

20

25

30

35

WO 2015/004276 PCT/EP2014/064949

85

the order of transmission with said announcement messages, said information enabling the
client device to determine the order of transmission defined by the server.

- a control unit configured for determining, based on the order of transmission
of the media data, a retransmission priority for the media data, and

- a transmitter configured for performing retransmission of the media data
received to the client device, based on said transmission priority determined.

156. A system comprising:

- at least one server device according to Claim 153, and

- at least one client device according to Claim 153.

157.A system according to claim 156, further comprising a proxy device
according to claim 155.

158.A device for providing media data representing a media item from a
server, the server storing data representing the media item, at least a temporal segment of
which is represented by a plurality of versions, and comprising:

- a receiver configured to receive a request from a client device for a
description file including a description of the versions representing the temporal segment
and respective pointers to the versions representing the temporal segment;

- a selection module configured to select data among sets of data pointed to
in the description file;

- a module configured to send the description file to the client device;

- a module configured to push the selected data to the client device.

159. A device for receiving media data representing a media item from a
server storing data representing the media item, at least a temporal segment of which is
represented by a plurality of versions, the device comprising:

- a module configured to send a request to the server for a description file
including a description of the versions representing the temporal segment and respective
pointers to the versions representing the temporal segment;

- a module configured to receive the description file from the server, the
description file containing pointers to sets of data;

- a module configured to receive unsolicited data from the server, wherein
said unsolicited data belong to said sets of data.

160. A system comprising a server and a client device for streaming media data
representing a media item from the server storing data representing the media item to the
client device, at least a temporal segment of the media item being represented by a
plurality of versions,

10

15

WO 2015/004276 PCT/EP2014/064949

86

- the client device comprising a module configured to send a request to the
server for a description file including a description of the versions representing the temporal
segment and respective pointers to the versions representing the temporal segment;

- the server comprising a module configured to receive the request from the
client device, a selection module configured to select data among sets of data pointed to in
the description file, a module configured to send the description file to the client device and
a module configured to push the selected data to the client device;

- the client device comprising a module configured to receive the description
file from the server and a module configured to receive the selected data from the server.

161.A computer program product comprising instructions for implementing a
method according to any one of Claims 1 to 152 when the program is loaded and executed
by a programmable apparatus.

162. A non-transitory information storage means readable by a computer or a
microprocessor storing instructions of a computer program, for implementing a method
according to any one of Claims 1 to 152, when the program is loaded and executed by the

computer or microprocessor.

WO 2015/004276 PCT/EP2014/064949

1/29

Request for R,

Sent

Requests for A, B
C,D&R

Sent
H&l

2 Requests for E, F,
G, R; &R

4 Requests for H & |

.
- Fig. 1b
.
Fig. 1a
Sent Ry
4@1 o Pushed A, B, C &D Sent R
EEX 2 2
: e Request for R, Pushed F & G
SentR; & R,
@ Requests for R, Pushed E, H & |
@ 40 ﬁ@ Requests R; & R,
5 -'>

@
3& L L}
o* » :
e »@i N o
L TP 2" @ *
LT T P s R N
e o

106
107
Data in cache? Retrieve cached / / 100
-~ Yes data 1 Get arequest R to)
process
108 \ o
Send a request /
; Identify resources [
to TUSh
109 v

110
Process push /

102
oromise Start sending [0

response ~

!

112
Process pushed /

)
Pushed data - data J

Send push 103
promises [

/
114 Send promised 104
f resources and /

2
Response finish sending

Process response P

\

response
y
116 105
Finish / End /
o End y “
eceiving datg~

Fig. 1d Fig. 1e

PCT/EP2014/064949

Server

200
NY

> / 201

WO 2015/004276
Client
HTML Beguest
HTML Response
< p
JS2 IMG2 HTML IMG1 CSS JS1
< JS1 CSS IMGH1 HTML MG2 JS2
JS2 IMG2 HTML [MG1 CSS JSi
JS1
< JS2 CSS HTML IMG1 IMG2

> / 202

Fig. 2

PCT/EP2014/064949

WO 2015/004276

3/29

OLe 0[0]
9JIASP USI[D 020¢€
y - JEYNEIS
>m_Qm_b < MC_GOUQG /08 ¢ uawbes
R — [esodwsa |
608 80€ //gmom)
/08 wc_ uo m_bw_\/_ WOWCOQWOM_ -/ NHCGEOGW 08PIA -
) dllH esoduwe i cw__mﬁ,momQ.Q
gle <€ R
| Juswbhas
o Jual|D d11H > [esodwa
He s3sanbay \\ .
dLLH Be0e 108
QuIsu3j A
| 104300 HSYA 90€
\L 1s9jluew
€Le
508 TT— v0¢

¢ "bi-

WO 2015/004276

400

4/29

401

PCT/EP2014/064949

N Audio data

\

402 \

Audio compression

N Video data

\

403
\

Video compression

404

405

\

\ Audio elementary stream

Video elementary stream

406 \

Encapsulation

407 N\

Media
Presentation

408

/

Manifest

- Audio streams
- Video streams

generation

409

\\

Fig. 4a

Manifest

PCT/EP2014/064949

WO 2015/004276

5/29

qy "Oi-

yiimpued
10 YJUMG/199I8S

syoel] Ausuodwon

A AL

MM/ fidny
sp6=Mels
0z 3uswsas eipalAl

U

¢y

]O UOI}08|8S

08% Wybiay ‘0¥9 yipim -
S/SHOM0S2

= yipimpueg

2 uonelusesaiday

U

1Uusjuod
Aenoue
Jo Buioyds

!

Oy
U

Y

5

olpne
Z 198 uoneldepy

A AL

MM/ fidny
sg=1Je1s
T uswW3as elpaN

Mmm//idiay
juswsas uojesijelu]

oju| Juswbeg

$1oquINNG

-G -ysep/’
:oredws | -
sQ=uoneinqg "
oju| Juswbag

09pIA
| 18S uoneidepy

08% Wybiay ‘0¥9 yipim -
S/SNAM00G = Ylpimpueg'
| uoneussaiday

sp=Le1s
‘Polied

SG6g=HEls ‘poLsd

SO0 L =Hels ‘polied

SQ=11e]s ‘polied

ad

WO 2015/004276 PCT/EP2014/064949

6/29

<?xml version="1.0"?>
<MPD xmins:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmins="urn:mpeg:DASH:schema:MPD:2011"
xsi:schemal.ocation="urn:mpeg:DASH:schema:MPD:2011 DASH-MPD.xsd"
type="static"
mediaPresentationDuration="PT32565"
minBufferTime="pT1.25"
profiles="urn:mpeg:dash:profile:isoff-on-demand:2011">
<BaseURL>http://cdnl.example.com/</BaseURL>
<BaseURL>http://cdn2. example.com/</BaseURL>
<Period>
<l-- English Audio —>
<AdaptationSet mimeType="audio/mp4" codecs="mp4da.0x40" lang="en"
500 -f subsegmentAlignment="true" subsegmentStartsWithSApP="1">
<ContentProtection schemeldUri="urn:uuid:706D6953-656C-5244-4D48-
656164657221 />
<Representation id="1" bandwidth="64000">
<BaseURL>7657412348. mpd</BaseURL>
501 </Representation>
e <Representation id="2" bandwidth="32000">
o202 <BaseURL>3463646346.mpd</BaseURL>
</Representation>

<AdaptationSet mimeType="video/mp4" codecs="avcl.4d0228"
503 f subsegmentAlignment="true" subsegmentStartsWithSAP="2">
<ContentProtection schemeldUri="urn:uuid: 706 D6953-656C-5244-4D48-
656164657221"/>
<Representation id="6" bandwidth="256000" width="320" height="240">
<BaseURL>8563456473.mpd</BaseURL>
</Representation>
<Representation id="7" bandwidth="512000" width="320" height="240">
<BaseURL>56363634.mpd</BaseURL>
</Representation>
<Representation id="8" bandwidth="1024000" width="640" height="480">
<BaselURL>562465736.mpd</BaseURL>
</Representation>
<Representation id="9" bandwidth="1384000" width="640" height="480">
<BaseURL>41325645.mpd</BaseURL>
</Representation>
<Representation id="A" bandwidth="1536000" width="1280" height="720">
<BaseURL>89045625.mp4d</BaseURL>
</Representation>
<Representation id="B" bandwidth="2048000" width="1280" height="720">
<BaseURL>23536745734.mp4</BaseURL>
</Representation:>
</AdaptationSet>
</Period>
</MPD>

Fig. 5

WO 2015/004276

Request MPD

v

Wait for server’s
response

— 551

2

Parse the MPD

| ~552

v

Determine a suitable
Adaptation Set ASij

— 553

v

Determine a suitable
Representation Rijk

v

|dentify its initialization
segment

\.555

v

Request the
initialization segment

\556

Vi

Wait for server’s
response

| ~557

Process the response
and setup decoder

/ 558

PCT/EP2014/064949

Buffer segment

/

Wait for server’s
response

/561

Request next segment
Si

f 560

data in
buffer ?

Fig. 5a

/ 563

Decode
and
display

559 \L

Normal
DASH

~564

PCT/EP2014/064949

WO 2015/004276

8/29

<dd/> "¢
<pousd/> '€¢
<joguoneidepy/> ‘ge

0¢9 <uonelusssidey,/> 1€
<IsIuswbeg/> ‘0¢

. b

</« « -0 »=8bUel XopUl X 14N »=elpaw Tyniuswbes> ‘82

<jsiuswbeg>——z 019
</pasinbai .| 9,=juauodwoniualuod G =joAs| uonejuasaideyqaqng> 9z 209
</.0001,=WB18y .0002.=UIPIM .p1,=1usuodwiodIudu0 p,=|9Ad] uoneluasaldeyans> ‘Gz 109
</.000L,=yb12y ,0002,=UIpIM 91 ,=jusuodwodiuajuod g,=|9As| uoneuasaldayqns> k2 gqg
</.0001,=1B13Y .0002,=UIPIM .q1,=}uduodwodIusuod g,=|9A3] uoieuadsaldayans> "€z ¢ng
</,0001,=4B18Y ,0002,=UIpPIM .B1,=Jusuodwoniusiuod |,=|9Ad] uonejuasaldeqans> — gz 09
<.0008%02,=uipimpueq
.0002,=Wb18Y 0007, =Uipim LY, =plAouspuadap yduw/oapia,=adA | swiw gd,=p! uolelussaldey> —4g—¢qqg
<juauodwonIUAUON/></ Ulew,=aN|eA 3|04 " ,=LINPIBWaYISs 9]0y > </,19,=p! Juauodwoniuajuon> —agz— K19
<juauodwoNIuadluon/></.g:g,=enjea Bulln, =unplRwayss ajoy> </ pL,=p! Jusuodwoniuajuond> —e+— /19
<juauodwoNIudUO)/></, L:g,=anjeA Bull,=Lnplawayoss ajoy> </,.91,=p! Juduodwoiuajuon> —g— 979
<juauodwoNuauo)/></.g: I,=anjea Buln,=LnpRwayss ajoy></.ql1,=p! juauodwoniuajuon> —z— 519
<quauodwonuduon/></ |: |, =anjeA buln,=unplewayos ajoy></ .el,=p! Juauodwonjuauon> —gt— V19
<--)orl] 811S0dWO09 JO SjusLOdLIOD Se PaglIossp 8Je p pue 2 ‘q ‘B 9l —i> ‘Gl
<,0g,=e1RlolWRI ,08pIA,=8dA [1UBIU0D ,g,=pI 1oguoneldepy> —4+— <09
<--oel] 8lsodwoo ‘uonduossep JeAe| Juswaoueyug —i> g}
<jeguoneidepy/> gl

<uonelusssidey,/> 11

<isimuswbag/> </« g TdN »=elpaw Tyniuawbes> <isimuswbes> ‘0l

<,0002 }G,=Upimpueq 000 F,=1b18Y ,0002,=uipim Fdw/ospia=sdA | swiwW | H,=p! UolelUSSSIdey> 6
<-- uonduossp 1oAe| eseg —i> 5]

<,06,=81elaWely 08pia,=adA 1 3usuod | | =pi Josuoneidepy>——7— F09
<isijuswbeg/> 9

</«|S 14N »=TdN82In0s uonezienu|> ‘S
<}sIjuswbeg> b
<YHNeSeg/>BIpaW/WOoD 1sAIasAW/ diy<yneseg> '

<popied> g — 009
< QdN> L

9 "Oi4

WO 2015/004276 PCT/EP2014/064949

9/29

Client Server
N
1 Reguest MPD >~ 701
700 / Server identifies data to PVUSH
A & does some PUSH_PROMISE
(Response MPD + PUSH PROMISE
N
702 <

Server scheduling = | Pata 1.1] Data 1.2] IData 1.3]

A
(Data 1.1+ PUSH PROMISE]
N
703 -
N
| Priority Data 1.2 = low Server _changes its schedule

Server scheduling =|-Data 1.31 1 Data 1.2 | 5ata 2.1

705

Data X.1 Base layer for data X

Data X.2 Enhancement layer for data X

Data X.3 Additional enhancement layer for data X

Fig. 7a

Client Server
N
| Reguest MPD >~ [y
710 / Server identifies data to KUSH
A & does some PUSH_PROMISE
(Response MPD + PUSH PROMISE
N
712 Server scheduling = |
A
(Data 1.1+ PUSH PROMISE |
N
713 -

N

Server scheduling

| Priority Data 1.2 = low Server changes its schedule$
714
g [T 22

715

Only “data 2.2” is postponed, “datal.2” being sent

Data X.1 Base layer for data X

DataX.2 Ephancement layer for data X

Data X.3 Additional enhancement layer for data X

Fig. 7b

WO 2015/004276

10/29

/ 802

Get a request R to / 800
process]
/ 801
|dentify data to
send -

Compute priorities

/ 803

/ 804

MPD to send ?
Yes

Send push
promises
with priorities

/ 806

Vv

Send MPD >

/ 805

Start sending
segments

End sending
segments

809-2

/ 809-1

807

Priority change?

/ 808

End of media?

No

PCT/EP2014/064949

/ 820

Get a priority
update change

/ 821
/ 822

|dentify segment

No

Reschedule
segment
transmission

/ 823

Reorder segments

Continue sending

810

Segments
/ 812

Another media?
No

End

\\/ Yes

|dentify media to
stream

/811

Fig. 8

Related
segment?

825

Reschedule
related segment
[tansmission’?

Reschedule
related segment
transmission

827
v

Reschedule
related segment
transmission

/ 828

> End

WO 2015/004276

Connect to server

/ 900

v

Receive MPD

/ 901

—>

Wait to receive data

/ 902

11/29

PCT/EP2014/064949

Push Promise ?

Video data ?

No
/ 904 Ye

No

/ 908

Validate priority

Link video data

to MPD

Need to
hange priority?

Yes

Store video data

Send updated priority

/ 906

Fig. 9

910

Ready to start
playing video?

Yes /911

Get available
next time slot video
segments

/912

/ 909

J

Decode/play video

WO 2015/004276

/1 020

Get Video Segment
Request

1021

Promised
Segment?

/1 022

Recompute priority

/1 023

Change of priority?

/1 024

Send priority update

/1 025

Mark video segment as
priority managed

/1 026

> End

Fig. 10

Low priority
data?

PCT/EP2014/064949

Get Pushed Data
Event

J/

Schedule data

transmission

/1 008

End

< Cache data

Get priority update
event

/1010

N

Get associated video
segment

[1011

/1013

Forward priority

update
Reorder video
segment End
sending

\1015

WO 2015/004276 PCT/EP2014/064949

13/29

1100
Get Pushed Data /
Event

1101

Bandwidth
riority 2

1107
, / Yes

1102
Maximize dedicated /
buffer

Forward

Forward data data?

Send ACK to server Store data

1106
y

Send ACK to server [€

Fig. 11

WO 2015/004276 PCT/EP2014/064949

14/29

1200
/1 210 Get Pushed Data /

Send Fast Start Data Event

l/ \L 1201

. Fast Start
Receive /1 21 Priority?
WINDOW_UPDATE '
frames

\L 1202
! Maximize dedicated /
1212 buffer

v

Compute Bandwidth

1203
Store pushed /

1213 segment data

\

Select optimal
representation

1204
Send ACK to server /

-

!

= = = =

Push optimal 1214
representation
segments
\
1215
End
1206
Start Video playing /
/1207
Fig. 12

Wait for more data

WO 2015/004276

15/29

1300

PCT/EP2014/064949

/ 1301
CPU
/ 1302 1304
RAM ' Network I
Interfaces
/ 1303 1305
Program User
ROM Interface
1307 1306
e |
/O HD

Fig. 13

WO 2015/004276

106

Data in cache?
Yes

policy

109

ush Promise
0 process ?

Pushed data ?

Response?

Finish
aceiving datg~

At client
side

Fig. 14a

16/29

107
Retrieve cached /

data

/ 108
Send a request

/1400
Determine PUSH

Process push _/
promise

/1401

Process pushed j
data

/112

Process responsej

- 114

End j

- 116

At server

side

Fig. 14b

PCT/EP2014/064949

Get arequest R to
process

/100

Determine PUSH
policy

1402

v

|dentify resources
to push

1403

4

Start sending
response

102

= = =

4

Send push
promises

103

~—

y
Send promised
resources and
finish sending

resp

onse

/104

End

/105

WO 2015/004276 PCT/EP2014/064949

17/29

Generate push /1504
policy declaration

i 1501
Parse /

push policy

\ /1 502

Pre-identification
of pushed data

R i ____________________ . 1403
Identify resources /

108 to push

/1 505
Send push policy

Fig. 15b

WO 2015/004276 PCT/EP2014/064949

18/29

1600
<MPD ...> /
<PushPolicy Segmentldx="+2"/

<Period>
<BaseURL>http://myserver.com/media</BaseURL>
<SegmentList>
<Initialization sourceURL=« URL_SI »/>
</SegmentList>

<AdaptationSet id="AS1” mimeType="video/mp4’ codecs="hev1’ >
<Representation id="R0’ width="1920" height="1080" frameRate="30"... ... bandwidth="256000">
1601 <Role schemeldUri="urn:mpeg:DASH:role:2011” value="main’/>
1 602¥Segmentust duration="10">
1603 <SegmentURL media='seg-full-AS1R0-1.mp4' priorityldx="1"/>
SegmentURL media="seg-full-AS1R0-2.mp4' priorityldx='3"/>
<SegmentURL media='seg-full-AS1R0-3.mp4' priorityldx='2/>

</SegmentList> 1604
</Representation>

<Representation id="R1’ width="1920" height="1080" frameRate="30"... ... bandwidth="256000">
<Role schemeldUri="urn:mpeg:DASH:role:2011” value="associate"/>
<SegmentList duration="10">
<SegmentURL media='seg-full-AS1R1-1.mp4'/>
<SegmentURL media='seg-full-AS1R1-2.mp4'/>
<SegmentURL media='seg-full-AS1R1-3.mp4'/>

</SegmentList>
</Representation>
</AdaptationSet>

<AdaptationSet id='AS2’ mimeType="video/mp4’ codecs="hev1’ >

<Representation id="R1’ width="2000" height="1000" bandwidth="512000">
<SegmentList>

</SegmentList>
</Representation>
</AdaptationSet>
</Period>
<Period>

</Period>
</MPD>

Fig. 16

WO 2015/004276

19/29

1402

l

1700
|dentify requested /

Segment in MPD

v

1701
|dentify number /
of segments to be

PCT/EP2014/064949

pushed
/1 702

Is all data to
push marked ?

Start sending
response

/1703

Select segments
matching push

policy
/1 704

No

Segment

available?

/1 705

Mark the segment

Fig. 17

/102

WO 2015/004276 PCT/EP2014/064949
lien
Client Server
N 701
1 Reguest MPD D
1800 J Server identifies data to PUSHV
A & publishes PUSH_POLICY
(Response MPD + PUSH POLICY]«
N
1801 olioy _
push-policy: Segmentidx=+1
N
| Reguest Data 1.1 >
1802 4
A
(Response Data 1.1+ PUSH PROMISE]
N
. 1803
£ Send Data 2.1 |
N
1804—""
Data X.1 Base layer for data X
Data X.2 Enhancement layer for data X
Data X.3 Additional enhancement layer for data X
lien
Client Server
N 701
1 Reguest MPD p
| 4
Server identifies data to PUSH
A & publishes PUSH_POLICY
(Response MPD + PUSH PQLI(?Y | €
N push-policy: Segmentldx=+1
N
1 Reguest Data 1.1 >
| 4
A
£ Response Data 1.1+ PUSH PROMISE |
N
A
£ Send Data 2.1 |
N
- — k
| Send PUSH POLICY REQUEST)
4 1805'/ push-policy-request: Segmentldx=+3 4
£ OK_200 |
N
1806 N
Reguest Data 3.1)
| 4
1807
Response Data 3.1+ PUSH PROMISE
1808—"

Fig. 18b

WO 2015/004276 PCT/EP2014/064949

21/29

<MPD ...>
<PushPolicy segmentldx="+3"/>
<Period>
<AdaptationSet id="AS1” mimeType="video/mp4’ codecs="hev1’ >
<Representation id="R0’ width="1920" height="1080" frameRate="30’
<BaseURL>http://myserver.com/media.mp4</BaseURL> \
1901

<SegmentList>
<InitializationRange="0-999" />
<SegmentURL mediaRange="1000-4999" indexRange="1000-2000"/>
<SegmentURL mediaRange="5000-9999" indexRange="5000-7000"/>
<SegmentURL mediaRange="10000-14999" indexRange="10000-12000"/>
<SegmentURL mediaRange="15000-19999" indexRange="15000-17000"/>

bandwidth="256000">

</SegmentList>
</Representation>
</AdaptationSet>
</Period>
<Period>

</Period>
</MPD>

 PUBH ,PHOMISE
“method = GET
“host: myserver. com

. path = /mediamp4d
‘ ' if-match: "'my-etage’
. Accept: video/mpd.]

; 'Range bytes~5000 9999

PUSH PF%OMISE
nebooGEl.
‘host: myserver com .
path = /mediamp4
_iif-match: 'my- etag1"
Accept video/mp4
Range bytes—1 000—4999

PUSH PROMISE
method GET
_host: myserver.com
. 'path = /media.mp4
ftmateh: "my etag3“
Accept videompd |
Range bytesJ 0000 14999

1902

PUSH | PROMI‘VSE
‘method = GET
host: myserver com
path = /media.mp4 ,
iif-match: "my- etag4" \1 903
Accept vndeofmp4 '

 Range:bytes=1 000: 14999: :

1904
A

PUSH PRQMISE
:method = GET

:host: example org

path - /wdeo/segment3 mp4
if-match: "my- etag1" .
Accept wdeo/mpét . ,
Range bytes_123 456 789 1223 4567 6546

\1905

PUSH PRQMISE
method = MGET
:host: example s
path /video/seg2. mp4,

Ivideo/seg3.mp4, /wdeo/segli mp4i .

if-match: "'my- etag1"
accept vndea/mp4

Fig. 19

WO 2015/004276

22/29

Get arequest R to
process

\\

A

Determine PUSH
policy

v

|dentify resources
to push

Start sending
response

= = =

Process push
promises

Send push
promises

Send promised

resources and

finish sending
response

End

S = = 5

Fig. 20

100

1402

1403

102

2000

105

PCT/EP2014/064949

WO 2015/004276

Send J
PUSH policy [

/21 05

23/29

Getarequest R to
process

push-policy
-request?

No

Determine PUSH
policy

Share
push-policy 2

No

Yes

|dentify resources

At server
side

Fig. 21

to push

Start sending
response

Send push
promises

Send promised

resources and

finish sending
response

PCT/EP2014/064949

Parse push-
policy-request

/2101

\"

Update Push
Policy

/21 02

2104

!

Send response

/21 03

/1403

/102

/103
/104

105

End

WO 2015/004276 PCT/EP2014/064949

24/29

107
Retrieve cached /

data

106

Data in cache?
Yes

200 /2201

/‘I 400
Determine PUSH equest new Send push policy
policy push policy? Yes request
v
/ 108
Send a request

2202 2203

Process push /

policy

1401

Process push /

promise

112

Process pushed /

data
/2204
Process response
116
Finish / . .
aceiving datg? End At client side

Fig. 22

WO 2015/004276 PCT/EP2014/064949

25/29

<MPD ...>
<Period>
<BaseURL>http:/myserver.com/media/</BaseURL>
<SegmentList>
<Initialization sourceURL=« URL_SI »/>
</SegmentList>
<AdaptationSet id="AS1” mimeType="video/mp4’ codecs="hev1’ >
<Representation id="R0’ width="1920" height="1080" frameRate="30"... ... bandwidth="256000">
<SupplementalProperty schemeldUri='urn:mpeg:dash:push_policy’ value = 'next:3'/>
<Role schemeldUri="urn:mpeg:DASH:role:2011” value="main’/> \2300
<SegmentList duration="10">
<SegmentURL media='seg-full-AS1R0-1.mp4'/>
<SegmentURL media='seg-full-AS1R0-2.mp4'/>
<SegmentURL media='seg-full-AS1R0-3.mp4'/>

</SegmentList>
</Representation>

<Representation id="R1’ width="1920" height="1080" frameRate="30"... ... bandwidth="2256000">
<SupplementalProperty schemeldUri='urn:mpeg:dash:push_policy’ value = ‘next:1’/> \
<Role schemeldUri="urn:mpeg:DASH:role:2011” value="associate’/> 2301
<SegmentList duration="10">
<SegmentURL media='seg-full-AS1R1-1.mp4'/>
<SegmentURL media='seg-full-AS1R1-2.mp4'/>
<SegmentURL media='seg-full-AS1R1-3.mp4'/>

</SegmentList>
</Representation>
</AdaptationSet>

<AdaptationSet id='AS2’ mimeType="video/mp4’ codecs="hev1 >
<Representation id="R1’ width="2000" height="1000" bandwidth="512000">
<SegmentList>

</SegmentList>
</Representation>
</AdaptationSet>
</Period>
<Period>

</Period>
</MPD>

Fig. 23

WO 2015/004276 PCT/EP2014/064949

26/29

<MPD ...>
<Period id="1">

<BaseURL>http://myserver.com/media/</BaseURL>
<SegmentList>

<Initialization sourceURL=« URL_SI »/>
</SegmentList>

<AdaptationSet id="AS1” mimeType="video/mp4’ codecs="hev1’ >
<Representation id="R0’ width="1920" height="1080" frameRate="30"... ... bandwidth="256000">
<Role schemeldUri="urn:mpeg:DASH:role:2011” value="main’/>
2401 <SegmentList duration="10"> _/-2400
\ <SegmentURL media='seg-ful-AS1R0-1.mp4' /=
<SegmentURL media='seg-ful-AS1R0-2.mp4' />

<SegmentURL media='seg-ful-AS1R0-3.mp4' />
</SegmentList>

</Period id =2'>

<BaseURL>http://myserver.com/media/</BaseURL>
<SegmentList>

<Initialization sourceURL=« URL_SI »/>
</SegmentList>
<AdaptationSet id='AS1’ mimeType="video/mp4’ codecs="hev1’ >
<Representation id="R0’ width="1920" height="1080" frameRate="30"... ... bandwidth="256000">
<Role schemeldUri='urn:mpeg:DASH:role:2011’ value='main’/>
2403¥Segmentust duration='10'>
2404\<Segmentu RL media="seg-full-AS1R0-1.mp4' />
\<SegmentU RL media="seg-full-AS1R0-2.mp4' />

<SegmentURL media="seg-full-AS1R0-3.mp4' />
</SegmentList>

<Period>

2402

</Period>
</MPD>

Fig. 24

WO 2015/004276 PCT/EP2014/064949
217/2

2650 /29

/
Client requests the

MPD
2652
7
R Parsing of MPD by

] server

i ¥ 2653

i Identification of

v init data
Wait for server’s |~ 2651

response

i 2654 2656

Send Push Send Push

; 2655 promise on init promise on

i data media data

| Send the MPD

2657 2658

Push initialization data

\

4

Push data segment by
server

2659

setup decoder

2662

Parse the MPD

2660

N

Buffer data by client

Wait for

server

Fig. 26

2
/ 663

Decode
and
display

v

Normal /
DASH

2665

WO 2015/004276

2700
_—

Reception of MPD
request

2708

)

Parsing of the
manifest
(can be offline)

2704

PCT/EP2014/064949
28/29 2701
Contains No
preferenc
es?
2703
Yes Has No
Process client’s
client’s logs?
preferences

Confidence_level=high <

2706
_—

Deduce
preferences

Confidence_level=mid

2707

2709

Selection of
suitable
Representation

N

9

Confidence_level=low

2711

2710

Yes

Selection of simplest
Representation

No

2712
P

Identification of initialization data

2717a

2713

Push init data €

Send Push promise on init

data

2714

N

Init decoders

2717b
\

2718

Send the MPD

end <

No

Confidence
_level

Send Push

Push media |
data

promise on media
data

6 N
Mark as child of

Fig. 27

previous Push
promise

WO 2015/004276 PCT/EP2014/064949

29/29

2800
Prepare manifest request
2801 v
Add preference information
2802 Vi
“~—{ Send manifest request to streaming server
2803 v
~—— Setinitial TCP window_size
2804 v
N Receives manifest and push
promises
2805
\ 2806
Parse manifest - Parse the push
promises: segment URL 2807
Parse push confidence
|
2808 ?810a

Confidence
=low?

Build segment list Identified 2800

2812

no segment?

2809

Cancel Push

(hierarchical)

Init segment_index to -
0 Insert segment in
ordered list of pending
segments
Push P
promise h
?
2814
> Buffer pushed segments data
Enough 2815
data in i
buffer ? Flg 28
2816
2818 Pop received segments from the list |/
\ 2817

Standard DASH Update segment _index —

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings

