To all whom it may concern:

Be it known that we, Mathew B. Morgan and Edwin H. Savage, citizens of the United States, and residents, respectively, of Cleveland Heights, in the county of Cuyahoga and State of Ohio, and Cleveland, in the county of Cuyahoga and State of Ohio, have invented a certain new and useful improvement in Track-Frames for Track-Laying Tractors, of which the following is a full, clear, and exact description.

The object of this invention is to produce, for use as a part of such a track laying tractor as is disclosed in White Patent No. 1,253,319, a track frame which shall be strong and light, but not expensive, and shall be especially adapted for connection in the usual way with the main frame of the tractor, and shall be especially adapted to have connected with it the wheels and other parts which such track frames commonly support.

Said frame is made of pressed metal parts, constructed and combined substantially as shown in the drawing and hereinafter described and pointed out definitely in the appended claims.

In the drawing, Figure 1 is a plan view of a track frame which embodies this invention; Fig. 2 is a side elevation thereof; Fig. 3 is a front elevation; and Fig. 4 is a transverse vertical section in the plane of line 4—4 on Fig. 1.

The principal parts of the frame are two complementarily bent side members 15, and a top member 20. These parts are made of sheet metal cut and bent into the shapes shown.

Each side member has as integral parts a wide vertical web 12, an inwardly bent horizontal flange 13 along the upper edge of said web, an inwardly bent horizontal flange 14 along the lower edge thereof,—the inner edge of said lower flange being bent down thereby forming the vertical lower edge 15 of the side member.

The top plate 20 has its side edges turned down to form the vertical flanges 22. The middle part of this top plate, at its rear end is cut out to leave a space to accommodate a driving sprocket, such for example, as is shown in the prior patent mentioned.

At the front end of the plate a slot is cut out, and the edges of the slot are bent down to form strengthening flanges 23. The top member is placed upon the flanges 13 of the two side members, and the side flanges 22 of the top members go down outside of the side members, and are secured by rivets or the like to the web parts 12 of the two side members. Rivets or the like are also employed to connect the top member 20 with the flanges 13 on which it is supported.

At the front end of the structure so produced is a U-shaped yoke 30. The two arms of this yoke extend rearward and are riveted or otherwise secured to the webs 12 of the two side members.

The structure is still further strengthened and the described parts thereof are held in the stated relations to one another by brace plates 35. There are two of these plates employed, but any number might be. Each of these plates is located between the two side members and stands in a vertical position.

At its upper edge it has a bent over flange 36, which engages the lower surface of the top member and is riveted thereto. At each side it has a flange 37, said flanges being in engagement with the inner faces of the two webs 12, and being riveted to said webs. Near its lower edge each brace plate is formed with horizontal flanges 38 which engage and are riveted to the lower flanges 14 of the side members. The narrow lower end of each of these brace plates fits between the lower edge portions 15 of the side members; and this lower end has bent over flanges 39 on its side edges, and these are riveted to the lower edge portions 15.

At the rear end of each of the side members 10, the bearing box brackets 45 are secured. Said brackets have flanges which fit between and are riveted to the flanges 13 and 14 of said side members.

A bearing box plate 50 is secured to each of the side frame members at the front end thereof. Each of these rests upon the top member over the flange 13; and the same rivets which connect those top flanges with the top member may also be utilized to connect each bearing box plate to the side members.

The upper surface of this plate is slightly
inclined upward toward its rear end; and each plate has an upturned flange 51 at its rear end. Longitudinal slots 53 are formed through the plate 50, the top member 20, and the underlying flange 13. The bearing boxes 55 for the shaft of the front idler wheel, over which the track belt runs, rest upon these bearing box plates; and bolts 56 which go through these boxes go also through these slots. Of course, these are bolted down as tightly as practical, after their positions have been determined by the set screws 57 which go through the flanges 51. But nevertheless, the strain of the track belt on these boxes tends to pull them rearward. This movement is minimized and practically prevented by the inclination of the top surfaces of said plates, because to the extent that they do slide backward the bolts will be tightened.

Various changes may be made in the specific embodiment of the invention shown and described herein, provided the means stated in any of the following claims or the equivalents of such stated means be employed.

Having described our invention, we claim:

1. A track frame for track laying tractors comprising two complementarily bent sheet metal side members, each of which has a broad vertical web, an inwardly turned horizontal flange along its upper edge and an inwardly turned horizontal flange along the lower edge of said web, and a sheet metal top plate having integral downturned flanges along its side edges—said top plate being superimposed upon and secured to the two top flanges of the two side members and the two side flanges of the top plate being disposed outside of the web of the side members and being secured thereto.

2. A track frame for track laying tractors comprising two complementarily bent sheet metal side members, each of which has a broad vertical web, an inwardly turned horizontal flange along its upper edge and an inwardly turned horizontal flange along the lower edge of said web, and a vertical web which extends down from said lower flange, and a sheet metal top plate having integral downturned flanges along its side edges—said top plate being superimposed upon and secured to the two top flanges of the two side members and the two side flanges of the top plate being disposed outside of the web of the side members and being secured thereto, spacing plates arranged between said side members, and a horizontal top flange which is fixed to the under side of the web of the side members.

3. A track frame for track laying tractors comprising two complementarily bent sheet metal side members, each of which has a broad vertical web, an inwardly turned horizontal flange along its upper edge and an inwardly turned horizontal flange along the lower edge of said web, and a sheet metal top plate having integral downturned flanges along its side edges—said top plate being superimposed upon and secured to the two top flanges of the two side members and the two side flanges of the top plate being disposed outside of the web of the side members and being secured thereto, spacing plates arranged between said side members, and a horizontal top flange which is fixed to the under side of the top plate, and horizontal flanges near its lower edge which respectively rest upon and are secured to horizontal flanges of the side members.

4. A track frame for track laying tractors comprising two complementarily bent sheet metal side members, each of which has a broad vertical web, an inwardly turned horizontal flange along its upper edge and an inwardly turned horizontal flange along the lower edge of said web, and a sheet metal top plate having integral downturned flanges along its side edges—said top plate being superimposed upon and secured to the two top flanges of the two side members and the two side flanges of the top plate being disposed outside of the web of the side members and being secured thereto, and a U-shaped front yoke having its arms extended rearwardly which arms are respectively connected to the two web portions of the two side members.

5. A track frame for track laying tractors comprising two complementarily bent sheet metal side members, each of which has a broad vertical web, an inwardly turned horizontal flange along its upper edge and an inwardly turned horizontal flange along the lower edge of said web, and a vertical web which extends down from said lower flange, and a sheet metal top plate having integral downturned flanges along its side edges—said top plate being superimposed upon and secured to the two top flanges of the two side members and the two side flanges of the top plate being disposed outside of the web of the side members and being secured thereto, spacing plates arranged between said side members, and a horizontal top flange which is fixed to the under side of the web of the side members and having, along the side edges of that part of said spacing plates which lie between the
lower vertical webs of the side members, side flanges which are fixed to said lower vertical webs.

6. A track frame for track laying tractors comprising two complementarily bent sheet metal side members, each of which has a broad vertical web, an inwardly turned horizontal flange along its upper edge and an inwardly turned horizontal flange along the lower edge of said web, a sheet metal top plate having integral downturned flanges along its side edges said top plate being superimposed upon and secured to the two top flanges of the two side members and the two side flanges of the top plate being disposed outside of the web of the side members and being secured thereto, two bearing block plates which are secured to the top of the frame structure near the front end thereof and are respectively located over the top flanges of the two side members,—said bearing block plates having inclined top surfaces and upturned flanges at their rear ends, and said bearing block plates, the top plate of the frame and the top flanges of the side members being formed with longitudinal slots, bearing boxes which rest upon said bearing box plates, bolts which go through the bearing boxes and through said longitudinal slots and adjustment screws supported in the upturned rear ends of said bearing box plates.

In testimony whereof we hereunto affix our signatures.

MATHEW B. MORGAN.
EDWIN H. SAVAGE.