특허협력조약에 의하여 공개된 국제출원

(12) 특허협력조약에 의하여 공개된 국제출원

(19) 국제특허분류:
H04W 48/18 (2009.01)
H04W 36/14 (2009.01)

(21) 국제출원번호:
PCT/KR2012/008547

(22) 국제출원일:
2012 년 10 월 18 일 (18.10.2012)

(25) 출원인:
한국어

(26) 공개일:
한국어

(34) 출원국:
한국

(35) 출원일:
2012 년 10 월 18 일 (18.10.2012)

(38) 출원인:
주식회사에어플러그 인코어 (AIRPLUG INC.)
KR

(41) 발명자:
김순욱 (KIM, Soon Uk): 431-793 경기도 안양시 동안구 평안동 황혼못에비아파트 308 동 905 호.

(42) 발명인:

(43) 국제공개일:
2013 년 5 월 2 일 (02.05.2013)

(48)공개:
국제조사보고서 없이 공개하며 보고서 접수 후 이를 별도 공개함 (규칙 48.2(g))

(51) 국제특허분류:
H04W 48/18 (2009.01)
H04W 36/14 (2009.01)

(54) Title: METHOD FOR CONTROLLING CONNECTION SWITCHING ACCORDING TO QUANTITY OF DATA IN WHICH TRANSMISSION IS NOT COMPLETED, AND APPARATUS THEREFOR

(57) 요약: 본 발명에 따른 이동통신 단말장치, 컨텐츠, 또는 프로그램과 같은 데이터 오브젝트에 대해 의도된 동작을 수행하기 위한 처리부, 이를 들어 플레이어 또는 브라우저에서 데이터 오브젝트를 제공하기 위한 데이터 채널을 구성하기 위한 재인 구성부와, 어느 하나의 동신망에 접속된 상태에서 그 동신망을 통한 외부 서버로부터 미디어 파일을 수신하고, 그 수신된 파일의 데이터를 상기 데이터 채널을 통해 상기 처리부에 제공하면서 상기 미디어 파일에서 아직 수신되지 않은 잔여 데이터량을 확인하고, 그 확인되는 잔여 데이터량이, 정해진 기준치보다 작으면 현재의 접속망 또는 접속별을 전환시키지 않고, 큰 경우에 현재의 접속을 전환시기로 구성된 데이터 송수신부를 포함한다.
명세서
발명의 명칭: 전송 완료되지 않은 데이터 송에 따라 접속 전환을 제어하는 방법과 그 방법을 위한 장치

기술분야
[1] 본 발명은, 이동해(heterogeneous network), 특히 서비스 구역의 특성, 또는 서비스 플랫폼 등이 상이한 복수의 이동망들 또는 서로 다른 접속진을 선택적으로 사용하기 위해 접속전환하는 방법과 그 방법을 위한 장치에 관한 것이다.

배경기술

장소에 구애받지 않는 데이터 이용 서비스를 제공받을 수 있도록 하는 이동통신 단말기는, 자신의 무선 통신 자원(resource)을 통해 접근할 수 있는, 서로 다른 인프라를 갖는 복수의 이동망들에서 하나의 통신망에 항상 연결된 상태, 즉 접속 IP주소를 할당받아 데이터 통신이 가능한 상태를 유지한다.

[4] 하지만, Wi-Fi 무선랜망은 산포된 국소적인 서비스 구역을 가지므로 데이터 서비스의 항상성 또는 연속성이 보장되지 않는 상태에서 이용할 수 밖에 없다. 따라서, 이동통신 단말기의 이용자들은, 장애의 서비스 구역을 갖는 이동전화 통신망을 이용해서 데이터 서비스를 주로 이용하지만, 이동 통신망 통한 데이터 서비스 이용은 그 사용량에 대하여 과금되기 때문에, 현재 무료로 제공되고 있는 Wi-Fi 무선랜망을 이용할 수 있는 상태에서는 가급적 Wi-Fi 무선랜망을 이용하고자 한다.

[5] 이런 통신비용 절감하에서, 이용자가 이동전화 통신망에 접속된 상태에서 이동통신 단말기를 이용해 임의의 서버로부터 스트리밍(streaming)되는 컨텐츠를 시청하는 도중 Wi-Fi 무선랜망이 접속가능상태가 되면, 현재 스트리밍되는 데이터량에 의한 발생비용의 부담 또는 유리로 인해 Wi-Fi 무선랜망으로 접속전환할 수도 있다. 하지만, 이러한 접속전환이 있게 되면
이동통신 단말기에 할당된 접속 IP가 변경되므로, 이용자는 이전 스크림링된 텐트즈를 새로이 요청하여 이전에 시청하는 부분을 지정하여 플레이시키는 번거로운 과정을 수행해야 한다.

또한, 이러한 번거로운 과정을 생략하여 Wi-Fi 무선랜망을 통해 동일 텐트즈를 이전 시청지점부터 스크림링되게 하였을 때, 그 때부터 수신되어야 하는 테이터량이 얼마밖에 없는 경우에서는, 통신량간을 하지 않고 이전 접속망을 유지하는 게 자원의 사용측면에서 더 유리하였을 수도 있다.

발명의 상세한 설명

기술적 과제

본 발명은, 복수의 이종망들에서 일부의 한 통신망을 통해 데이터가 수신되는 동안 접속이 전환되는 경우에도 끊김없는 연속적인 플레이가 이루어지도록 하는 방법과 장치를 제공하는 태일 목적가 있다.

본 발명의 다른 목적은, 이용자의 통신망 사용에 따른 비용적 부담 또는 유효한 데이터 서비스의 보장을 고려하여 데이터 수신을 위한 통신망의 전환이 이루어지도록 하는 방법과 장치를 제공하는 것이다.

본 발명의 또 다른 목적은, 불필요한 통신량 전환이 최소화되면서 복수의 이종망들 또는 단일 통신망에서의 접속점을 선택적으로 전환하면서 데이터 수신 또는 송신을 위해 이용할 수 있도록 하는 방법과 장치를 제공하는 것이다.

본 발명의 목적은, 상기 명시적으로 서술된 목적에 국한되는 것은 아니며, 본 발명에 대한 구체적이고 예시적인하기의 설명에서 도출될 수 있는 효과를 달성하는 것을 그 목적에 당연히 포함한다.

과제 해결 수단

본 발명의 일측면에 따른, 무선 통신망을 액세스할 수 있는 이동통신 단말기는, 데이터 오브젝트에 대해 의도된 동작을 수행하기 위한 처리부에 데이터 오브젝트의 데이터를 제공하기 위한 데이터 채널을 구성하기 위한 채널 구성부와, 제1통신망과 제2통신망을 포함하는 복수의 이종망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 수신하고, 그 수신되는 데이터를 상기 데이터 채널을 통해 상기 처리부에 제공하면서 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 요건의 하나에 해당되는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값이, 성질이 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키도록 구성된 데이터 송수신부를 포함하여 구성한다.

본 발명에 따른 일 실시예에서는, 상기 제2통신망은 데이터 서비스의 이용시, 비용이 없거나 확인비용을 배제한 비용이 상기 제1통신망보다 적게 드는 통신망이거나 또는 그 서비스 권역이 상기 제1통신망에 비해 상대적으로 국지적이고 산포된 특성을 갖는 통신망이다.
본 발명에 따른 일 실시예에서는, 상기 접속전환 요건은, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망 또는 접속점의 통신상태 불량이거나, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망보다 서비스 특성이 우수한 통신망이 이용가능해진 것이거나, 상기 데이터 오브젝트의 데이터가 수신되고 있는 접속점보다 통신특성이 양호한 접속점이 이용가능해진 것이거나, 또는 데이터 서비스의 이용이 불가능하거나 확정비용을 배제한 비용이, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망보다 적게 드는 통신망이 이용가능해진 것을 수가 있다. 본 실시예에서는, 상기 데이터 송수신부는, 상기 데이터 채널에서 상기 처리부에 제공되지 않고 남아 있는 데이터량이 감소하고 있으며, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망 또는 접속점의 통신상태 불량에 대한 조건에 해당하는 것으로 간주할 수도 있다.

본 발명에 따른 다른 일 실시예에서는, 상기 데이터 송수신부는, 상기 데이터 채널에서 상기 처리부에 제공되지 않은 현재의 미처리량을 확인하고, 그 확인된 미처리량이 소진되는 시간을 구한 뒤 그 구매한 시간에 근거하여 상기 기준을 정하도록 구성된다. 본 실시예에서는, 상기 데이터 송수신부는, 상기 확인된 미처리량을, 상기 데이터 채널을 통해 상기 처리부에 데이터 오브젝트의 데이터를 제공하는 속도로써 나누어 이어지는 값으로부터 상기 소진되는 시간을 구하도록 구성될 수도 있다. 본 발명에 따른 다른 일 실시예에서는, 상기 데이터 송수신부는, 접속전환에 소요되는 전환시간에 근거하여 상기 기준을 정하도록 구성된다. 본 실시예에서는, 상기 전환시간이, 상기 제1통신망에서 상기 제2통신망으로의 전환, 상기 제2통신망에서의 상기 제1통신망으로의 전환, 상기 제2통신망에 속하는 접속점간의 전환에 대해 각기 달리 설정된 시간들에서 상기 접속 전환에 해당하는 시간으로 정해진다. 다르게는, 상기 전환시간이, 상기 제1통신망과 상기 제2통신망에 속하는 임의 접속점간 또는 상기 제2통신망에 속하는 임의 접속점간에 대해 수신된 접속 소요시간들에서 상기 접속 전환에 해당하는 소요시간들의 평균값으로부터 정해질 수도 있다.

본 발명에 따른 또 다른 일 실시예에서는, 상기 데이터 송수신부는, 상기 데이터 오브젝트의 수신완료에 대해 지정한 시간에서 상기 데이터 수신에 의해 경과된 시간을 차감한 날의 시간, 또는 상기 데이터 오브젝트의 수신완료에 대해 지정한 시간까지 현재 날은 시간을 상기 기준으로 정하도록 구성된다.

본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 상기 확인되는 잔여 데이터량에 대한 상기 값을, 정해진 복수의 기준들에 의한 각 값과 비교하고, 그
각 값보다 모두 작은 경우에 접속을 전환시키지 않도록 더 구성된다.

[19] 본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 상기 데이터 오브젝트의 데이터가 수신되는 속도가 감소하면 상기 잔여 데이터량에 대한 값을 대비한 상기 기준에 의한 값의 상대적 크기를 감소시키도록 구성된다. 본 실시예에서는, 상기 잔여 데이터량에 대한 상기 값과 상기 기준에 의한 상기 값은 시간간격과 상기 잔여 데이터량에 대한 상기 값, 상기 잔여 데이터량을 상기 데이터 오브젝트의 데이터가 수신되는 속도로써 나누어 얻어지는 값이다. 다르게는, 상기 잔여 데이터량에 대한 상기 값과 상기 기준에 의한 상기 값은 데이터 크기값이고, 상기 기준에 의한 상기 값은, 시간으로 표현된 상기 기준에 상기 데이터 오브젝트의 데이터가 수신되는 속도를 곱하여 얻어지는 값이다.

[20] 본 발명에 따른 일 실시예에서는, 상기 접속 전환은, 상기 제 1통신망과 제 2통신망간에 이루어지는 것이거나 상기 제 2통신망에 속하는 접속점간에 이루어지는 것이다.

[22] 본 발명에 따른 다른 일 실시예에서는, 상기 이동통신 단말기는, 상기 제 2통신망 하나를 제어할 수 있도록 구성된다.

[23] 본 발명에 따른 실시예에서는, 상기 데이터 송수신부는, 상기 접속전환이 상기 제 1통신망에서 상기 제 2통신망으로 행해질 경우에 대한 상기 기준을, 상기 제 2통신망에서 상기 제 1통신망으로 행해질 경우에 대한 상기 기준보다는 더 낮게 설정하도록 더 구성된다.

[24] 본 발명에 따른 일 실시예에서는, 상기 접속 전환은 상기 제 1통신망과 제 2통신망간에 이루어지며, 상기 데이터 송수신부는, 현재 설정된 모드가 비용발생을 저감하기 위해 설정된 모드이고, 현재 접속된 통신망이 상기 제 1통신망이면 상기 정해진 기준을 더 작게 조정하도록 더 구성된다. 또한, 상기 데이터 송수신부는, 현재 설정된 모드가 데이터 서비스의 이용권의를 우선하는 모드이고, 현재 접속된 통신망이 상기 제 1통신망이면 상기 정해진 기준을 더 크게 조정하도록 더 구성된다.

[26] 본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 현재 접속된 통신망 또는 접속점의 통신특성의 변동폭이 기 지정된 제한치이상이며 상기 정해진 기준을 더 작게 조정하도록 더 구성된다. 상기 통신특성에는 수신신호의 세기
또는 데이터 수신속도가 포함될 수도 있다.

[27] 본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 접속전환 대상의 통신망 또는 접속점의 상기 통신특성의 변동폭이 기 지정된 제한치이상이면 상기 정해진 기준을 더 크게 조정하도록 더 구성될 수도 있다.

[28] 본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 접속전환 대상의 통신망 또는 접속점의 상기 통신특성이 일정 기준이상 양호하면 상기 정해진 기준을 더 작게 조정하도록 더 구성될 수도 있다.

[29] 본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 상기 데이터 오브젝트의 수신완료에 대해 지정한 시간에서 상기 데이터 송신에 의해 경과된 시간을 차감한 낮은 시간의 크기, 또는 상기 데이터 오브젝트의 수신완료에 대해 지정한 시간까지 현재 낮은 시간의 크기에 근거하여 상기 정해진 기준을 조정하도록 더 구성된다. 본 실시예에서는, 상기 데이터 송수신부는, 현재 접속된 통신망이 상기 제 2통신망인 경우에는 상기 낮은 시간의 크기가 기준시간에 비해 크면 상기 정해진 기준을 더 크게 조정하도록 더 구성된다. 상기 기준시간은 상기 미수신된 잔여량을 현재 접속된 통신망에 대해 파악된 또는 예측된 전송속도를 나누어서 얻은 값으로부터 정해질 수 있다. 상기 데이터 송수신부는, 상기 낮은 시간의 크기가 상기 기준시간에 비해 작으면 상기 정해진 기준을 더 작게 조정할 수도 있다.

[31] 본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부는, 접속 전환이 이루어지면, 이전 접속되었던 통신망 또는 접속점으로부터 수신하였던 데이터 오브젝트의 데이터에 연이어지는 침의 데이터분 부터 요청하는 통신규약에 의한 요구를 전환된 통신망 또는 접속점을 통해 상기 외부 서버로 전송함으로써 상기 데이터 오브젝트를 이어받아 상기 데이터 채널을 통해 상기 처리부에 제공하도록 더 구성된다.

[32] 본 발명에 따른 일 실시예에서는, 상기 처리부는, 상기 데이터 채널로부터 데이터 오브젝트의 데이터를 인출 또는 수신하여 그 데이터를 디코딩하거나 또는 디코딩되게 하도록 구성된 미디어 처리부를 포함하여 구성된다.

[33] 본 발명의 다른 일 측면에 따라, 무선 통신판을 액세스할 수 있는 이동통신 단말기, 복수의 이종 편 통합하여 하나의 통신망에 접속된 상태에서 그 통신판을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 수신하면서 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값이, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키도록 구성된 데이터 송수신부와, 상기 수신되는 데이터 오브젝트의 데이터를 저장수단에 기록하도록 구성된
기록부를 포함하여 구성된다.

본 발명의 또 다른 일측면에 따르면, 무선 통신망을 액세스할 수 있는 이동통신 단말기는, 지정된 데이터 오브젝트의 기기들 허용하려 하도록 구성된 데이터 허용부와, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해, 상기 데이터 허용부로부터 수신되는 상기 데이터 오브젝트의 데이터를 외부 서버에 송신하면서 상기 데이터 오브젝트에서 미송신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키도록 구성된 데이터 송수신부를 포함하여 구성된다.

본 발명의 또 다른 일측면에 따르면, 선택적으로 접속을 전환하면서 데이터를 수신하는 일 방법은, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 송신하는 1단계와, 상기 수신되는 데이터를 데이터 오브젝트에 대해 의도된 동작을 수행하기 위한 처리부에 제공하면서 상기 데이터 오브젝트에서 미송신된 잔여 데이터량을 확인하는 2단계와, 현재 상태가 접속전환 조건의 하나에 해당하면, 상기 확인되는 잔여 데이터량에 대한 값과 정해진 기준에 의한 값을 비교하고, 그 비교결과에 따라 접속 전환을 선택적으로 수행하는 3단계를 포함하여 이루어진다. 그리고, 상기 3단계는, 상기 잔여 데이터량에 대한 상기 값이 상기 기준에 의한 상기 값보다 작으면 접속을 전환시키지 않는다.

본 발명의 또 다른 일측면에 따르면, 선택적으로 접속을 전환하면서 데이터를 송신하는 일 방법은, 미송신된 데이터 오브젝트의 데이터를 허용하는 1단계와, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해, 상기 허용되는 데이터 오브젝트의 데이터를 외부 서버로 송신하면서 상기 데이터 오브젝트에서 미송신된 잔여 데이터량을 확인하는 2단계와, 현재 상태가 접속전환 조건의 하나에 해당하면, 상기 확인되는 잔여 데이터량에 대한 값과 정해진 기준에 의한 값을 비교하고, 그 비교결과에 따라 접속 전환을 선택적으로 수행하는 3단계를 포함하여 이루어진다. 그리고 상기 3단계는, 상기 잔여 데이터량에 대한 상기 값이 상기 기준에 의한 상기 값보다 작으면 접속을 전환시키지 않는다.

본 발명의 또 다른 일측면에 따르면, 저장공간에 저장된 프로그램을 통신망을 통해 제공하는 프로그램 공급장치는, 통신을 통해 외부와 데이터를 송수신할 수 있는 통신수단과, 상기 통신수단을 통해 송신되는, 이동통신 단말기에서 실행되는 어플리케이션을 수록되어 있는 저장수단을 포함하여 구성된다. 그리고, 상기 어플리케이션은, 상기 이동통신 단말기에서 실행되는 경우, 데이터 채널을 구성하고, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 수신하는 동작을 수행하는 프로그램 구조와, 상기 수신되는 데이터를 상기 데이터 채널을 통해
상기 처리부에 제공하는 동작을 수행하는 프로그램 구조와, 상기 테이터 오브젝트에서 미수신된 잔여 테이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당되는 경우에는, 상기 확인되는 잔여 테이터량에 대한 제1값을, 정해진 기준에 의한 제2값과 비교하여, 상기 제1값이 상기 제2값보다 작으면 접속을 전환시키지 않고 상기 제2값보다 크면 접속 전환시키는 동작을 수행하는 프로그램 구조를 포함하여 구성된다.

본 발명에 따른 일 실시에서는, 상기 어플리케이션은, 상기 이동통신 단말기에서 실행되는 경우, 상기 테이터 체널로부터 데이터 오브젝트의 데이터를 인출 또는 수신하여 그 데이터를 디코딩하거나 또는 디코딩되지 하거나 또는 파일로서 저장하는 동작을 수행하는 프로그램 구조를 더 포함하여 구성될 수 있다.

본 발명의 또 다른 일 실시에 따른, 저장공간에 저장된 프로그램을 통신망을 통해 제공하는 프로그램 공급장치는, 통신을 통해 외부와 데이터를 송수신할 수 있는 통신수단과, 상기 통신수단을 통해 송신되는, 이동통신 단말기에서 실행되는 어플리케이션이 수록되어 있는 저장수단을 포함하여 구성된다. 그리고, 상기 어플리케이션은, 상기 이동통신 단말기에서 실행되는 경우, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 테이터 오브젝트의 데이터를 수신하는 동작을 수행하는 프로그램 구조와, 상기 테이터 오브젝트에서 미수신된 잔여 테이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 테이터량에 대한 값이, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키는 동작을 수행하는 프로그램 구조와, 상기 수신되는 데이터 오브젝트의 데이터를 저장수단에 기록하는 동작을 수행하는 프로그램 구조를 포함하여 구성된다.

본 발명의 또 다른 일 실시에 따른 프로그램 공급장치는, 이동통신 단말기에서 실행되는 경우, 저장된 데이터 오브젝트의 데이터를 획득하고, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해, 상기 획득되는 데이터 오브젝트의 데이터를 외부 서버로 송신하는 동작을 수행하는 프로그램 구조와, 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값이, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키는 동작을 수행하는 프로그램 구조를 포함하여 구성되는 어플리케이션을 저장수단에 수록하도록 구성된다.

발명의 효과

진술한 본 발명 또는, 하기에서 참부한 도면과 함께 상세히 설명되는 본 발명의 적어도 일 실시에는, 비용발생 억제를 위해 또는 데이터 서비스의 항상성 보장을
위해, 컨텐츠 데이터를 수신하여 플레이하는 도중에 타 통신망으로 전환하여도
컨텐츠 데이터의 플레이가 끝길없이 연속적으로 이루어지게 한다.

또한, 컨텐츠 데이터에 대한 플레이의 연속성을 보장하기 위해서 사용량을
선택적으로 전환하거나 또는 주어진 조건하에서 최적의 통신망을 선택적으로
사용하여 데이터 오브젝트, 예를 들어 컨텐츠 파일, 실시간(live) 스트림을
구성하는 임의의 조각(segment) 파일, 프로그램 파일, 자료 파일 등에 수신함에
있어서도 불필요한 통신망 전환이 발생하지 않도록 함으로써 통신망과
이동통신 단말기의 통신자원에 대한 과도적(transitional) 부하를 억제시킨다.

따라서, 본 발명의 장점인 애플리케이션을 통해 컨텐츠 데이터를 또는
실시간 스트림을 플레이하여 시청하는 사용자, 또는 데이터 오브젝트를
다운로드 또는 업로드 요청한 사용자는, 자신이 원하는 바의 서비스 이용요건이
충족되는 상황하에서 또한 통신자원에 대한 과도적 부하의 최소화되는
상황하에서 컨텐츠의 시청을 충분히 즐길 수 있게 되거나 원하는 데이터
오브젝트를 획득하거나 외부 서버에 저장시키게 된다.

도면의 간단한 설명

도 1은, 본 발명의 일 실시예에 따른, 미수신된 데이터 레이아웃에 따라 사용량 전환을
제어하는 방법의 실시예가 구현된 이동통신 단말기의 관련 구성요소들에 대한
프로그램적 관점의 논리적 구성을 외부 연결된 구성요소들을 예시한 것이고,

도 2는, 본 발명의 일 실시예에 따른, 미수신된 데이터 레이아웃에 따라 사용량 전환을
제어하는 방법이 구현된 이동통신 단말기의 구성을 예시한 것이고,

도 3은, 본 발명의 일 실시예에 따른, 미수신된 데이터 레이아웃에 따라 사용량 전환을
제어하면서 미디어 데이터를 수신하여 디코딩하는 미디어 플레이어의
구성을, 이동통신 단말기내의 연관된 일부 구성요소들과 함께 도시한 것이고,

도 4 및 5는, 본 발명의 일 실시예에 따른, 미수신된 데이터 레이아웃에 따라 사용량
전환을 제어하는 방법에 따른 흐름도의 예이고,

도 6 및 7은, 본 발명의 일 실시예에 따라, 사용량 전환에 의한 접속 IP주소의
변경시에 데이터를 이어받아 연속성의 플레이를 있게 하는 과정을
도식적으로 나타낸 것이다,

도 8은, 본 발명의 일 실시예에 따라, 접속 IP주소의 변경시에 데이터를
이어받기 위해 송신되는, 원 HTTP Request를 수신하여 작성되는 HTTP Request의
예이고,

도 9는, 본 발명의 일 실시예에 따라, 데이터 서비스에 따른 비용의 발생과
데이터 서비스 이용의 환상성을 고려하여 결정되는 다양한 모드들에 의해 미
수신된 데이터 레이아웃에 따른 전환여부 결정을 위한 기준치가 조정되는 것을 예시한
것이다.

도 10은, 본 발명의 일 실시예에 따라, 모드가 외부에서 결정되고 그 결정된
모드를 이용하는 미디어 플레이어를 관련된 구성요소들과 함께 예시한 것이고,
도 11은, 본 발명의 다른 일 실시예에 따라, 미수신된 테이터량에 따라 사용량 전환을 제어하는 구성요소가, 테이터 오브젝트를 처리하는 처리기와 별개로 구분된 독립 간서로서 구성되는 예를 보여주는 것이고,

도 12는, 본 발명의 또 다른 일 실시예에 따라, 테이터 오브젝트를 처리하는 처리기에, 미수신된 테이터량에 따라 접속전환을 제어하는 구성요소가 구성된 예를 보여주는 것이고,

도 13은, 본 발병의 또 다른 일 실시예에 따라, 테이터 오브젝트를 외부 서버에 송신하면서, 미송신된 테이터량에 따라 접속전환을 제어하는 테이터 오브젝트 처리기의 구성은 예시한 것이다.

발병의 실시를 위한 형태

이하, 본 발병에 따른 실시예들에 대해 첨부된 도면을 참조하여 상세히 설명한다.

도 1은, 본 발병의 일 실시예에 따른, 미수신된 테이터량에 따라 사용량 전환을 제어하는 방법의 실시예가 구현된 이동통신 단말기의 관련 구성요소들에 대한 프로그램적 관점의 논리적 구성과 외부 연결된 구성들을 예시한 것이다.

도면에 예시된 상기 이동통신 단말기(100)의 프로그램적 관점의 논리적 구성은, 상기 이동통신 단말기(100)의 하드웨어 자원(도 2에 예시된)의 구동, 해당 자원과의 적절한 신호 송출 또는 정보교환을 수행하기 위한, 통상의 운영시스템(안드로이드, IOS, Window 등) 또는 본 발병을 위해 특화된 운영시스템(100a)을 구비하고 있으며, 또한 상기 운영시스템(100a)하에서 실행되는 미디어 플레이어(110)를 포함한다. 물론, 이들 외의 다양한 이플리케이션들이 구현되어 있을 수 있으나 본 발병의 원리와 개념은 설명하는 데 있어서 필요하므로 통상의 이플리케이션(이하, “이플”로 약칭한다.)들에 대해서는 예시를 생략한다.

도면에 예시된 상기 미디어 플레이어(110) 또는 이후의 실시예에서 설명하는 데이터 오브젝트 처리기)는 상기 이동통신 단말기(100)에 구현된 프로세스(process) 또는 이플로서, 도 1에 예시된 바와 같이 상기 운영시스템(100a)을 기반으로 실행되는 코드들로 구성된 프로그램 구조를 갖는 소프트웨어의 형태로 제공될 수도 있다. 소프트웨어 형태로 제공되는 경우에는, 대용량 저장수단을 구비하고 또한 구비된 통신수단을 통해 통신망에 연결된 특정의 서버로부터 통상의 온라인(on-line) 구매과정 등을 거쳐 상기 대용량 저장수단에 수록된 상기 미디어 플레이어(110)가 상기 이동통신 단말기(100)에 다운로드되어 설치된 후에 실행될 수도 있다. 경우에 따라서는, 이하에서 상세히 설명하는 기능들의 일부가 미들웨어(middleware), 또는 단말기의 플랫폼(platform) 형태로 구현될 수도 있다. 또한 상기 미디어 플레이어(110)는 하드웨어(hardware)의 구성과 포함함으로써, 이하에서 상세히 설명하는 기능의 일부를 그 하드웨어가 수행할 수도 있다. 따라서, 본 발병에 따른 다양한
실시예들에서 그 구성과 동작방식이 상세히 설명되는 상기 미디어 플레이어(110)는 그 구현하는 자원의 형태에 의해 본 발명의 범위가 제한되는 것은 아니다.

본 발명에 따른 일 실시예에서는, 상기 미디어 플레이어(110)는, 수신되는 데이터 오브젝트, 예를 들어 미디어 속성의 컨텐츠 테이터가 디코딩되도록 처리하는 미디어 처리부(111)와, 상기 운영시스템(100a)에 제공하는 API(.Application Program Interface)를 통해 통신소켓(socket)을 생성하고 상기 미디어 처리부(111)와 교환하는 데이터를 그 생성된 통신소켓을 통해 외부와 송수신하는 데이터 송수신부(112)를 서브(sub) 프로세스로서 포함하며, 또한 상기 미디어 처리부(111)와 상기 데이터 송수신부(112)간의 데이터 전달 또는 교환을 위한 데이터 채널인 수신버퍼(113a)와 송신버퍼(113b)를 할당 또는 생성하는 채널 구성부(113)를 포함한다. 본 발명에 따른 다른 일 실시예에서는, 송신버퍼가 구현되지 않을 수도 있다. 본 실시예에서는, 상기 미디어 처리부(111)가 사용자의 요청에 따라 외부 서버에 송신해야할 데이터 또는 요청정보 등에 대해서 상기 데이터 송수신부(112)에 메개인자 등을 통해서 제공하게 되고 상기 데이터 송수신부(112)가 그에 대한 통신규약에 의한 요구, 예를 들어 HTTP Request를 작성하여 송신하게 된다. 본 발명에 따른 다른 일 실시예에서는, 사용자 요청을 처리하는 기능을 위한 UI 처리부가 상기 미디어 처리부(111)와는 별도의 프로세스로서 구현될 수도 있다. 본 실시예에서는, 상기 UI 처리부가 사용자의 요청에 따라 외부 서버에 송신해야할 데이터 또는 요청정보 등에 대해서 상기 데이터 송수신부(112)에 메개인자 등을 통해서 제공한다.

본 발명에 따른 일 실시예에서는, 상기 채널 구성부(113)가, 미디어 테이터를 순차적으로 저장하는 상기의 비퍼 메인, 상기 미디어 처리부(111)와 테이터 송수신부(112)간에 상호 콘텐츠 공유하는 메모리 공간을 할당하여 데이터 채널로서 사용할 수도 있다. 이 때는, 공유 메모리 공간의 임의 위치에 데이터를 기록하고 그 기록된 위치를 알려주는 방식으로 상호간에 미디어 테이터를 전달할 수도 있다.

또한, 상기 테이터 송수신부(112)는, 이용가능한 복수의 이중망들(11a, 11b...)에서 액세스 가능한 현재의 통신망 상기를 운영시스템(100a)을 통해 확인하고 그 통신망으로부터 할당받은 접속 IP주소를 사용하거나 다른 통신망으로부터의 접속 IP주소 할당을 요청함으로써 조건에 따라 필요한 통신망을 통하여 외부 서버(예를 들어, 도면상의 컨텐츠 서버(12)와 데이터를 송수신한다. 또한, 통신망의 전환 등의 경우에는 현재 플레이되는 컨텐츠의 연속성 또는 송신되는 파일의 무손실을 보장하기 위해 상기 수신버퍼(113a)에 빈틈없이 데이터가 이어지도록 하기 위해 필요한 통신규약에 의한 요구, 예를 들어 HTTP Request를 생성하여 전송하는 동작도 수행한다. 상기 테이터 송수신부(112)의 이러한 동작에 대해서는 이후에 상세히
설명한다. 그리고, 상기 미디어 처리부(111)도 사용자로부터의 요청에 따라 필요한 통신규약에 의한 요구를 생성하여 상기 송신부(113b)를 통해 상기 데이터 송수신부(112)에 전달함으로써 외부 서버에 송신할 수 있다.

본 발명에 따른 일 실시예에서는, 상기 데이터 송수신부(112)와 상기 미디어 처리부(111), 그리고 상기 채널 구성부(113)가 함께, 상기 운영시스템(100a)의 기반과 하에 수행되는 단일의 프로세스로서 구현될 수도 있다. 이 경우에는 서로간의 정보 또는 데이터 교환은 광역전이, 내부전이 또는 로컬함수의 인자 및/또는 리턴값 등을 통해서 이루어질 수 있다. 따라서, 본 발명의 개념과 주제, 그리고 목적하는 효과 등을, 상기 테이터 송수신부(112), 상기 미디어 처리부(111) 그리고 상기 채널 구성부(113)가 반드시 분리되어 각기 실행되는 프로세스를 전제하거나 필요로 하는 것은 아니며, 이하에서 설명하는 각각의 기능들이 단일의 프로세스 형태로 구현되어도 동일하게 달성될 수 있다.

한편, 도 1에 예시된 논리적 구성을 갖는 상기 이동통신 단말기(100)는, 전체적으로도 도 2에 예시된 바와 같은 하드웨어적 구성요소를 포함하여 구성되며, 공동의 이동전화 통신망 또는 고속의 무선 데이터망 등의 무선 통신망을 허용할 수 있는 스마트폰, 태블릿 컴퓨터, 이동전화 기능을 갖춘 노트북 등 중 어느 하나일 수 있다. 도면에 예시된 구성을 구체적으로 살펴 보면, 공동의 이동전화 통신망, 예를 들어 2G, 3G 또는 4G의 셀룰러(cellular) 방식의 이동전화 통신망(이하, "셀룰러 링크"이라 정한다.)의 지정된 방식에 따라 신호를 변조 또는 복호하여 해당 통신망과 송수신하는 셀룰러 모델(1a) (RF신호의 처리모듈을 포함하는 구성요소이다.)과, 상기 셀룰러 링크에서 채택된 통신규약에 따라 데이터를 부호화(encoding)하거나 부호화된 데이터를 복호(decoding)하는 셀룰러 코덱(1b)과, 고속의 무선 데이터망, 예를 들어 Wi-Fi 방식의 무선랜 링크(이하, "Wi-Fi 링크"라 정한다.)의 지정된 방식에 따라 신호를 변조 또는 복호하여 해당 통신망과 송수신하는 Wi-Fi 모델(2a) (RF신호의 처리모듈을 포함하는 구성요소이다.)과, 상기 Wi-Fi 링크에서 채택된 통신규약에 따라 데이터를 부호화하거나 부호화된 데이터를 복호하는 Wi-Fi 코덱(2b)과, 영상, 문자 등의 표시를 위한 디스플레이 패널(5)과, 임의 데이터가 상기 디스플레이 패널(5)상에서 시각적으로 표시되도록 상기 디스플레이 패널(5)을 구동하는 디스플레이 구동부(4)와, 입력되는 인코딩된 영상 및 오디오 데이터를 디코딩하여 영상 및 오디오신호로 출력하는 디코더(110a)와, 상기 디스플레이 패널(5)의 전면에 부착된 터치 센서(6a)와, 키(key) 및/또는 버튼(button)이 구비되어 있는 키패드(6b)와, 상기 터치 센서(6a)와 키패드(6b)상의 사용자 입력 및/또는 선택을 감지하여 그에 상응하는 입력 정보를 출력하는 입력 제어부(6)와, 상기 입력 제어부(6)로부터의 입력 정보에 따른 동작이 수행되도록, 상기 구성요소들은 그에 맞는 구성요소에 적절히 데이터를 전송 또는 그로부터 수신하거나 제어하며 그에 따른 결과나 사용자의 원하는 동작의 선택을 위한 UI 화면의 표시를 위해 상기 디스플레이 구동부(4)를 제어하는 주 제어부(10)와,
상기 주 제어부(10)의 동작을 위해 필요한 데이터 저장공간을 제공하는 메모리부(7)를 포함한다.

[64] 그리고, 상기 주 제어부(10)는, 주어지는 명령코드들을 실행함으로써 상기 운영시스템(100a)에 의도된 기능을 수행하도록 하며, 또한 상기 미디어 플레이어(110)의 명령코드들을 실행함으로써 이하에서 상세히 설명하는 상기 미디어 플레이어(110)의 동작들이 수행되도록 한다. 특히, 상기 미디어 플레이어(110)의 미디어 처리부(111)는, 필요한 경우, 인코딩된 영상 또는 오디오의 데이터 불록들에 대해서, 상기 운영시스템(100a)이 제공하는 적절한 API(Application Program Interface)를 통해, 상기 디코더(110a)가 하드웨어적으로 처리하는 디코딩 동작을 이용할 수도 있다.

[65] 도 2에 에시한 이동통신 단말기(100)의 구성은, 본 발명의 개념과 주제에 대한 이해를 돕기 위한 실시예를 구체적이고 예시적으로 설명하기 위한 단지 하나의 예일 뿐, 본 발명에 따른 개념과 주제를 구현하는 단말기들은 도 2에 도시되지 않은 다양한 기능의 구성요소들을 더 포함하거나 또는 에시된 구성요소들을 배제할 수도 있으며, 하드웨어로 구성된 요소가 소프트웨어적으로 구현될 수도 있다.

[66] 도 1에 상기 미디어 플레이어(110)는, 본 발명의 개념과 주제에 대한 이해를 돕기 위한 실시예를 구체적이고 예시적으로 설명하기 위한 단지 하나의 예일 뿐, 본 발명에 따른 개념과 주제를 구현하는 단말기들은 도 2에 도시되지 않은 다양한 기능의 구성요소들을 더 포함하거나 또는 에시된 구성요소들을 배제할 수도 있으며, 하드웨어로 구성된 요소가 소프트웨어적으로 구현될 수도 있다.

[67] 먼저, 사용자는 상기 이동통신 단말기(100)에 구비된 업로드부(상기 디스플레이 패널(5), 터치 센서(6a), 키페드(6b) 등)를 통해 상기 주 제어부(10)가 제공하는 적절한 사용자 UI(User Interface)를 통해 브라우저를 기동시키고, 그 브라우저를 통해 특정의 서비, 예를 들어, 도시된 컨텐츠 서비(12)가 제공하는 하나의 테이터 오프젝트, 예를 들어 영상 컨텐츠를 선택하여 요청하면 그 요청에 따른 통신규약에 의한 요구, 예를 들어 “http://vod.airplug.com/video/movieABC.mp4”와 같은 URL에 대한 HTTP Request가, 상기 운영시스템(100a)에 전달되고, 상기 운영시스템(100a)은 현재 데이터 서비스를 위해 연결된(즉, 접속 IP주소가 할당되어 있는) 통신망을 위한 하드웨어 자원(셀룰러 망(11a)이 연결되어 있으면 상기 셀룰러 코덱(1b)/셀룰러 모델(1a), Wi-Fi 망(11b)이 연결되어 있으면 상기 Wi-Fi 코덱(2b)/Wi-Fi 모델(2a))을 통해, 전달받은 상기 통신규약에 의한 요구를 전송한다. 그에 따라 상기 컨텐츠 서비(12)로부터의 응답, 예를 들어 선택된 데이터 오프젝트에 연관된 미디어 데이터가 요청된 통신망을 통해 수신되면 이를 상기 브라우저에 제공한다.

[68] 상기 브라우저가 수신하는 응답에는 상기 컨텐츠 서비(12)가 전송하는 컨텐츠 데이터를 외에, 응답으로 제공되는 데이터 오프젝트에 대한 파일 설명정보, 예를 들어 MIME (Multipurpose Internet Mail Extensions) Type, 데이터 오프젝트의 전체
크기 등에 대한 정보가 포함되어 있다. 따라서, 상기 브라우저는 수신된 응답의 MIME Type에 연결되어 있는 어플리 상기 미디어 플레이어(110)를 기동시킨다. 상기 미디어 플레이어(110)의 연결은 MIME Type이 아닌 파일의 확장자명에 의해서도 이루어질 수도 있다. 물론, MIME Type에 따라서는 또는 연결된 확장자가 없는 경우에는 해당 테이터 오프셋에서 해당 수신된 파일로서 저장되는 다운로드가 진행될 수도 있다. 상기 브라우저는 상기 미디어 플레이어(110)를 기동시키는 경우에는 그 응답을 처리하였던 URL 또는 그에 따라 작성된 통신규약에 의한 요구, 예를 들어 HTTP Request 또는 RTSP/RTP Request를 상기 기동되는 미디어 플레이어(110)에 호출 메개인자(argument)로서 전달한다.

지급까지, 상기 미디어 플레이어(110)가 기동되는 과정을, 보편적으로 사용하는 브라우저를 통해 이용하는 것을 전제로 하여 설명하였다. 하지만, 상기 미디어 플레이어(110)는 에시된 브라우저에 이와 같은 어플러에 의해 기동될 수 있음을 확인한다. 즉, 임의의 어플러에서 특정 컨텐츠에 대한 액세스 정보, 예를 들어 URL이 선택되었을 때 그 어플러, 전술한 브라우저와 마찬가지의 과정을 수행하여 상기 미디어 플레이어(110)를 기동시킬 수 있다.

다르게는, 상기 미디어 플레이어(110)가 메개된 URL 또는 통신규약에 의한 요구 없이 기동된 후, 사용자 UI를 통해 직접적으로 URL을 수신 또는 선택받을 수도 있다. 이렇게 직접 수신 또는 선택받은 URL을, 또는 그에 따른 통신규약에 의한 요구를 상기 테이터 송신부(112)에 동기화하게 된다.

상기 미디어 플레이어(110)가 기동되면, 상기 채널 구성부(113)로 하여금 상기 메모리(7)상에 상기 수신버퍼(113a)와 송신버퍼(113b)를 할당시키고 그 할당된 각 버퍼(113a,113b)를 상기 미디어 처리부(111)와 상기 테이터 송신부(112)에 공유시킨다. 그리고, 상기 테이터 송신부(112)에 전달받은 호출 메개인자를 동지하고, 상기 테이터 송신부(112)는, 도 3에 에시된 바와 같이, 송신된 호출 메개인자, 즉 통신규약에 의한 요구를 제공하면서, 상기 운영시스템(100a)에 새로운 통신소켓(22)의 생성을 요청한다. 이 때의 요청은 상기 운영시스템(100a)이 테이터 서비스를 위해 현재 연결된 통신방에 대한 것일 수도 있으며, 특정 통신망을 지정한 것일 수도 있다. 통신망을 지정하기 위해서는, 상기 테이터 송신부(112)는 상기 운영시스템(100a)에 문의하여 리턴되는 망접속 정보를 참조한다. 상기 망접속 정보에는, 통신망에 접속된 경우에 접속 IP주소와 그 커넥션 유형(예를 들어, 3G 이동전화 통신망, Wi-Fi 무선랜망 등) 등이 포함되며, 현재 사용하고자 하는 통신망에 대한 커넥션 유형을 지정하거나 또는 그와 연계된 접속 IP주소를 지정하여 통신소켓의 생성을 요청할 수 있다.

상기 운영시스템(100a)은, 수신한 통신규약에 의한 요구에 실현 정보(예를 들어, 그 요구에 기재된 프로토콜 정보, 호스트 헤드의 이름 또는 IP 주소 등)를 통해 해당 요구의 목적지 IP 주소를 확인하고, 또한 그 요구의 프로토콜에 따른
포트번호를 할당하여 목적지의 IP:Port 주소(이하에서는 “IP 주소”의 용어를 포트번호를 포함하는 의미로도 사용한다.)를 특정한다. 그리고, 현재 연결된 통신망으로부터 할당되어 있는 접속 IP주소(통신망이 지정되고 그 지정된 통신망이 연결되어 있지 않은 경우에는 해당 통신망에 대해 접속 IP주소의 할당을 요청하여 할당받은 접속 IP주소)에, 통신소켓의 생성을 요청한 상기 데이터 송수신부(112)의 경우에 따라서는 상기 데이터 클라이언트(110)의 수도 있다. 해당할 포트번호를 부가한 로컬 IP주소(IP:Port)를 확정한 후, 상기 목적지 IP주소와 상기 로컬 IP주소를 봉으로 하여 상기 컨텐츠 서버(12)와 TCP 커넥션을 개설한다. TCP 커넥션이 성공적으로 개설되면 상기 응용시스템(100a)은 통신소켓 생성 요구사항에 대한 응답으로, 생성된 통신소켓(22)의 식별자를 상기 데이터 송수신부(112)로 리턴한다.

생성된 통신소켓(22)의 식별자가 리턴되면 상기 데이터 소송수신부(112)는 그 식별자에 의해 특정되는 상기 통신소켓(22)을 통해, 앞서 보호되었던 상기 통신규약에 의한 요구지 상기 컨텐츠 서버(12)에 다시 전송하여 앞서 상기 브라우저가 수신하였던 응답을 상기 새로운 생성된 통신소켓(22)을 통해 수신한다. 이 때, 전송하는 통신규약에 의한 요구를, 예를 들어 “http://vod.airplug.com/video/movieABC.mp4”와 같은 URL에 대하여 HTTP 문법에 따라 작성된 요청문서를 이 후에 이용하기 위해 그 요구를 통신소켓(22)과 연계하여 별도로 저장한다. 한편, 상기 브라우저는 상기 미디어 블레이어(110)의 기동과 동시에 응답 데이터가 수신되고 있는 통신소켓(21)을 통해 해당 응답 데이터의 전송이 중단되도록 하는 통신규약에 의한 요구를 전송하거나 그 통신소켓(21)을 폐쇄할 수도 있다.

상기 데이터 전송수신부(112)는 상기 통신소켓(22)을 통해 수신되는 응답 데이터를 읽어서 통신규약, 예를 들어 HTTP 또는 RTSP/RTP에 의거해 해석한 후 그 응답에 의해 스트리밍(streaming)되는 미디어 파일의 데이터를 순서대로 상기 수신비버(113a)로 이동시킨다. 그리고, 그 응답으로부터 컨텐츠 데이터에 대한 메타 데이터를 추출하여 이 후에 이용하기 위해 별도로 저장한다. 상기 메타 데이터는, 미디어 파일 전송을 위한 프로토콜 포맷에 따라 제공되는 파일 설정정보외에, 상기 미디어 파일 데이터의 선두부분에서 추출한 미디어 정보도 포함된다. 이 미디어 정보에는 컨텐츠의 생성시간 정보 등이 포함된다.

상기 미디어 처리부(111)는 상기와 같은 방식으로 상기 수신비버(113a)에 쌓이는 미디어 데이터를 순서대로 인출하고, 그 데이터의 해체에 기록되어 있는 데이터의 인코딩 정보에 의해 디코딩 방식을 결정한 뒤, 그 결정된 디코딩 방식에 따라 미디어 데이터를 부분적으로 또는 완전하게 디코딩한다. 그리고, 부분적으로 디코딩하는 경우에는 그 결정된 디코딩 방식을 상기 디코딩(110a)에도 설정한다. 상기의 부분적 디코딩은, 예를 들어 블록단위, 직선단위 또는 GoP (Group of Pictures) 단위의 미디어 패킷들의 추출일 수 있다. 이와 같이 부분적으로 디코딩하는 경우에는 그 디코딩된 미디어 패킷들을 상기
디코더(110a)에 인가하면서 디코딩을 요청함으로써 이들은에 의해 영상과 오디오 신호가 출력되도록 한다. 상기 미디어 처리부(111)에 의해 완전하게 디코딩된 영상 테이터는 상기 운영시스템(100a)을 통해 상기 디스플레이 구동부(4)에 인가되므로써 영상신호로 출력된다.

[76] 한편, 상기iga 같이, 스트리밍되는 미디어 테이터를 수신하여 디코딩출력을 하고 있는 중에, 상기 테이터 송수신부(112)는 상기 통신소켓(22)을 통해 수신되어 상기 수신버퍼(113a)로 이동시키는 미디어 테이터의 중량과 상기 미디어 처리부(111)에 제공되지 않고 상기 수신버퍼(113a)에 들어 있는 미디어 테이터량, 즉 버퍼링량과 그 변화를 계속하여 모니터링하며, 기 설정된 조건이 만족되는 시점이 되면, 도 4 및 5에 에시된, 컨텐츠 테이터 수신 중에 사용량 전환을 제어하는 방법을 수행한다. 상기 기 설정된 조건은 설정된 때 주기일 수 있다.

[77] 상기 테이터 송수신부(112)는, 스트리밍되는 테이터의 수신 중에 방전환이 필요한 지를 확인하기 위해, 접속전환 조건이 하나인 현재 통신량 상태의 양호여부를 확인한다. 본 발명에 따른 일 실시에서는, 통신상태의 양호여부는, 상기 수신버퍼(113a)의 버퍼링 상태에 근거하여 확인할 수 있다(S310). 즉, 버퍼링량이 감소중이면 통신량 상태가 불량한 것으로, 그렇지 않으면 양호한 것으로 판단할 수 있다. 만약, 현재상태가 접속전환 조건에 해당되면, 즉, 본 예에서 상기 버퍼링 상태가 감소(예를 들어, 현재 확인된 버퍼링량이 이전 확인된 버퍼링량에 비해서 일정히 용량이상 작은 경우)이면, 상기 테이터 송수신부(112)는, 현재의 접속방을 확인한다(S311). 접속방 확인은 전술한 바와 같이 상기 운영시스템(100a)에 문의를 통해 얻어지는 망접속 정보를 통해 이루어진다. 확인되는 현재 접속방이 셀룰러 망(11a)이면, 상기 테이터 송수신부(112)는 타 통신망인 Wi-Fi 망(11b)가 접속가능한 지를 확인하고(S312) 접속가능한 경우에 미수신된 거여 데이터량에 따른 사용량 전환여부를 결정하고(S313), 현재 접속방이 Wi-Fi 망(11b)이면 타 통신망인 셀룰러 망(11a)의 접속가능 여부를 확인하지 않고 바로 미수신 테이터량에 따른 사용량 전환여부를 결정한다(S313). 이는, 셀룰러 망이 통상 광역의 서비스권역을 제공하고 있어서 장소에 구애받지 않고 연결될 수 있는 서비스 특성과 갖고 있기 때문이다.

[78] 상기 Wi-Fi 망(11b)이 접속가능한 지를 확인하기 위해서, 상기 테이터 송수신부(112)는, 상기 운영시스템(100a)에 Wi-Fi 망 상태에 대한 정보를 요구하여 수신한다. 상기 운영시스템(100a)은, 이 요구에 대해, Wi-Fi 신호대역을 물리적으로 검색하도록 상기 Wi-Fi 모뎀(2a)을 제어하고, 이 후, 상기 Wi-Fi 모뎀(2a)이 해당 신호대역에서 유 효 신호의 검출 시에 제공하는 각 접속점(AP: Access Point)의 식별정보와 RSSI (Received Signal Strength Indicator)의 값을 읽어서(도 2의 r11) 이를 상기 테이터 송수신부(112)에 리턴한다. 이 리턴되는 정보에 접속점이 없으면 상기 테이터 송수신부(112)는 현재 Wi-Fi 망이
접속가능하지 않은 것으로 판단한다. 또한, 접속접이 있더라도 기 지정된
일정식이 이상의 신호가 수신되는 접속접이 없는 경우에도 접속가능하지 않은 것으로 판단할 수도 있다.

[79] 현재의 접속망이 상기 Wi-Fi 망(11b)인 경우에는 바로, 상기 셀룰러 망(11a)인
경우에는 상기 Wi-Fi 망(11b)이 접속가능한 경우에 한하여 진출한 마와 같이,
스트리밍되는 컨텐츠의 미수신된 잔여 데이터량에 따른 사용방 전환여부를
결정하는 데, 이에 대해서는 도 5에 예시된 흐름도를 참조하여 상세히 설명한다.

상기 데이터 송수신부(112)는, 상기 수신버퍼(113a)에 현재 남아있는 아직 상기
미디어 처리부(111)에 제공되지 않은 비피행량(buf_Data)(301)과 상기 미디어
처리부(111)에 의한 그 수신버퍼(113a)로부터의 데이터 인출속도(또는 상기
미디어 처리부(111)에의 제공속도)(CB_rate)(302), 그리고 상기
운영시스템(100a)으로부터 통신소켓을 통해 수신되는 데이터의
수신속도(Receive_rate)(303)를 파악한다. 상기 데이터 인출속도(302)는 해당
컨텐츠의 플레이를 위한 요구 비트레이트(bit rate)에 해당되므로, 앞서 저장한
메타데이터에 포함되어 있는 컨텐츠 데이터의 전체크기(TD_Size)를 컨텐츠의
제생시간(P_Time)으로 나눈 값(C_BR=TD_Size/P_Time)으로부터 구할 수도
있다. 그리고, 상기 데이터 수신속도(303)는 일정시간당 통신소켓으로부터 상기
수신버퍼(113a)로 이동시키는 데이터량으로부터 파악할 수 있다.

[80] 상기의 요소들(301,302,303)이 파악되면, 상기 데이터 송수신부(112)는, 상기
수신버퍼(113a)의 추정 언더런(underrun)(데이터 소전) 시간(PT_underrun)을
구한다(SS31). 상기 비피행량이 감소하고 있는 상태에서는, 인출속도(CB_rate)가
수신속도(Receive_rate)보다 더 빠르므로, 도면에 예시된 마와 같이 현재의
비피행량(buf_Data)(301)을 감소속도(CB_rate - Receive_rate)로 나누게 되면
현재의 비피행량이 소진되는 언더런 시간까지의 소요시간(T_underrun)이
계산되며, 이 시간에 적절한 보정계수(β, 예를 들어 1.0이상인 실수)를 곱하여
상기 추정 언더런 시간(PT_underrun)을 구한다. 상기 추정 언더런 시간이
구해지면, 상기 데이터 송수신부(112)는, 그 추정 언더런 시간동안 현재의
수신속도(Receive_rate)하에서 받을 수 있는 수신예상 기준량(p_Recv_Th)을
계산한다(SS32). 도면에 예시된 마와 같이, 현재의 수신속도(Receive_rate)에 상기
구해진 추정 언더런 시간(PT_underrun)을 곱함으로써 상기 수신예상
기준량(p_Recv_Th)을 구한다. 상기와 같은 방식으로 구하는 상기 수신예상
기준량(p_Recv_Th)은 상기 수신속도(Receive_rate)와 상기 비피행량(buf_Data)에
각각 비례하며, 상기 인출속도(CB_rate)에 반비례하는 값을 갖게 된다. 이와 같이
구해진 상기 수신예상 기준량(p_Recv_Th)을 마지막으로, 앞서 선택된 컨텐츠
데이터의 미수신된 잔여량(remDataToReceive)과 비교한다(SS33). 미수신된
잔여량(remDataToReceive)은 앞서 저장해 두 메타 데이터에 기재된 컨텐츠
데이터의 전체크기에서, 상기 수신버퍼(113a)를 통해 현재까지 수신된 컨텐츠
데이터의 총량을 감산하여 구하고, 그 미수신 잔여량이, 사용량 전환여부 결정을
위한 잔여량 기준치인 상기 수신예상 기준량(p_Recv_Th)이상인 상기 데이터 송신을 완료할 것으로 결정하고(SS34), 상기 수신예상 기준량(p_Recv_Th)보다 작으면 현재 비퍼팅량이 감소하고 있다므로 사용량 전환없이 현재 접속량을 그대로 사용할 것으로 결정한다.

본 발명에 따른 일 실시에서는, 현재 상태가 접속전환 조건에 해당되었을 때 추가적인 요건에 따라 잔여량 기준치가 변동되어 설정될 수 있다. 예를 들어, 미수신된 잔여량의 크기에 따라 상기 설정된 잔여량 기준치보다 더 크게(예를 들어, 잔여량이 매우 큰 경우) 또는 더 작게(예를 들어, 잔여량이 얼마 남지 않은 경우) 조정된 잔여량 기준치로 정해질 수 있다. 상기 추가적인 요건에는 접속을 위한 요건, 예를 들어 통신량의 특성 등도 포함되며, 그러한 요건에 따라, 앞서 설정된 잔여량 기준치로부터 조정된 기준치가 사용량 전환여부 결정을 위한 잔여량 기준치로서 사용될 수 있다. 이에 대해서는 이 후에 상세히 설명한다.

통신상태는 변동성이 있으므로 사용량 비전환 결정 후에도 수신속도가 변하여 결정시점보다 더 빨리질 수도 있다. 따라서, 사용량 비전환 결정에 의해 현재의 통신량을 그대로 사용하는 경우에 상기 수신처리(113a)의 능력이 발생할 수도 있으므로, 상기 수신예상 기준량(p_Recv_Th)과의 비교과정(SS33)에 여유폭을 들 수도 있다. 예를 들어, 상기 수신예상 기준량(p_Recv_Th)에서 일정크기의 여유폭을 차감한 크기보다 상기 잔여량(RemDataToReceive)이 적은 경우에 사용량을 전환하지 않을 것으로 결정할 수 있다.

본 발명에 따른 다른 일 실시에서는, 상기 추정 언더런 시각(PT_underrun)을, 현재의 비퍼팅량(buf_Data)을 상기 인출속도(CB_rate)로써만 나누어서 얻은 값을 사용할 수도 있다. 본 실시에서는, 수신속도(Receive_rate)가 상기 인출속도(CB_rate)보다 더 빨라서 상기 비퍼팅량이 증가하고 있는 경우에도 적용할 수 있다. 즉, 도 4에 예시된 환경에서 단계 S310이 배치된 실시에서는도 적용될 수 있으며, 또한, 현재의 통신량이 불량인 전순환 조건의, 현재 상태가 이하에서 설명하는 다른 지정된 접속전환 조건에 해당되었을 때 통신량 전환결정을 위한 잔여량 기준치를 정할 때도 적용될 수도 있다.

전환한 실시에서는, 상기 수신예상 기준량(p_Recv_Th)과 상기 잔여량(RemDataToReceive)을 비교하였지만(SS33), 본 발명에 따른 다른 실시에서는, 전환한 방식으로 구현하는 상기 추정 언더런 시간(PT_underrun)을 사용량 전환여부 결정을 위한 잔여량 기준치로 사용할 수 있다. 즉, 상기 잔여량(RemDataToReceive)의 수신완료 예상시간(T_Recv_Complete)을 구하여 이를 상기 추정 언더런 시간(PT_underrun)과 비교할 수도 있다. 본 실시에서는, 상기 잔여량(RemDataToReceive)을 상기현재의 수신속도(Receive_rate)로써 나눔으로써 상기 수신완료 예상시간(T_Recv_Complete)을 구할 수 있으며, 상기 수신완료 예상시간(T_Recv_Complete)이 상기 추정 언더런 시간(PT_underrun)과 같거나 그보다 크면 사용량을 전환할 것으로 결정하고 그렇지 않으면 현재 사용량을 계속적으로 사용한다.
이와 같이, 비퍼팅량이 감소함으로써 비퍼 언더런에 의해 플레이의 끝김현상이 발생할 우려가 있는 상황에서도 그 잔여량이 현재의 상태로 볼 때 언더런없이 모두 수신될 가능성이 충분한 경우에는 현재 접속망을 그대로 유지함으로써 불필요한 통신량 전환동작과 이로 인한 통신자원의 절유를 발생시키지 않는다.

만약, 도 5에 예시된 사용량 전환결정작업(S313)에서 사용량을 전환하는 것으로 결정되면(S313), 상기 데이터 송수신부(112)는, 다 통신량에의 접속전환을 수행한다(S315). 예를 들어, 현재 셀룰러 망이면 Wi-Fi 망으로, 현재 Wi-Fi 망이면 셀룰러 망으로 접속전환을 시도한다. 상기 Wi-Fi 망(11b)으로의 접속전환일 때, 앞서 접속가능 여부 확인단계(S313)에서 확인된 이용가능한 접속점이 복수개 있으면 신호세기가 높은 접속점을 선택하여 해당 접속점에 접속하도록 상기 운영시스템(100a)에 요청한다. 상기의 접속전환 시도는 통신량을 지정하여 접속을 요청하는 방식에 의해 또는 Wi-Fi 망의 활성/비활성의 요청에 의해 이루어질 수 있다. 후자의 경우는, Wi-Fi 망의 활성요청시에, 상기 운영시스템(100a)에 의해 상기 셀룰러 망(11a)으로부터 할당된 접속 IP주소가 해지되고 접속 IP주소를 상기 Wi-Fi 망(11b)으로부터 새로운 할당받게 되고, Wi-Fi 망의 비활성요청시에 상기 Wi-Fi 망(11b)으로부터 할당된 접속 IP주소가 해지되고, 상기 셀룰러 망(11a)으로부터 접속 IP주소를 새로운 할당받게 된다.

상기의 다 통신량으로의 접속전환 요청에 따라, 접속망이 상기 셀룰러 망(11a)과 상기 Wi-Fi 망(11b)간에 전환성공되면(S316), 즉, 접속의도한 통신량으로부터 접속 IP주소가 할당됨으로써 접속 IP주소의 변경이 일어나면, 상기 데이터 송수신부(112)는 다음과 같은 과정의 미디어 데이터 이어받기를 수행하게 된다(S317).

상기 데이터 송수신부(112)는 먼저, 전환에 의해 폐쇄될 통신소켓(22)에 연계하여 앞서 저장해 두 통신규약에 의한 요구, 예를 들어 “http://vod.airplug.com/video/movieABC.mp4”와 같은 URL에 대해 문법에 따라 작성된 요청문서에 기재된 정보에 근거해, 상기 접속전환에 의해 현재 접속된 상기 셀룰러 망(11a) 또는 상기 Wi-Fi 망(11b) (이후 “전환후 통신량”으로 통칭한다.)을 통해 상기 컨텐츠 서버(12)와 통신할 수 있는 TCP 커넥션에 대한 통신소켓(도 3의 23)을 새로이 생성한다. 그리고 이 생성된 통신소켓(23)을 통해, 상기 저장된 통신규약에 의한 요구를, 지금까지 상기 수신버퍼(113a)로 이동시킨 미디어 데이터의 총량을 반영하여 수신한 요구를 수신한다. 예를 들어, 도 6에 예시된 바와 같이, 상기 수신버퍼(113a)로 이동시킨 미디어 데이터의 총량이 ‘N-I’ 바이트(41)인 경우, 새로이 생성된 상기 통신소켓(23)을 통해서, 해당 컨텐츠의 데이터를 N바이트부터 요청하는 통신규약에 의한 요구, 예를 들어 도 8에 예시된 바와 같이 이전 송신하였던 HTTP Request에 범위필드(51)를 추가하여 수신한 HTTP Request(50)를 송신한다(141).

이에 따라 상기 컨텐츠 서버(12)는 이전에 상기 이동통신 단말기(100)로 송신하였던 동일 컨텐츠에 대해서 상기 전환후 통신량을 통해 N 바이트(42)부터
전송하게 되고, 이 미디어 데이터는 상기 셀룰러 모뎀(1a)과 셀룰러 코덱(1b) 상기 전환후 통신망이 상기 셀룰러 망(11a)인 경우) 또는 상기 Wi-Fi 모뎀(2a)과 Wi-Fi 코덱(2b) 상기 전환후 통신망이 상기 Wi-Fi 망(11b)인 경우)에 의해 수신된 후 상기 운영시스템(100a)에 의해 상기 새로이 생성된 통신소켓(23)을 통해 상기 데이터 송수신부(112)에 전달된다. 이에 따라 수신되는 연이어지는 미디어 데이터(42)는 상기 데이터 송수신부(112)에 의해, 도 7에 에시된 바와 같이 상기 수신버퍼(113a)에 이전에 수신되었던 미디어 데이터(41)에 이어서 저장됨으로써(400) 미디어 데이터의 연속성을 보장하여 상기 미디어 처리부(111)에 제공하게 된다. 따라서, 상기 미디어 처리부(111)는, 사용하고 있는 통신망의 전환의 경우에도 미디어 데이터가 중단되거나 불연속 지점이 발생하지 않고서 상기 수신버퍼(113a)에 저장되는 미디어 데이터를 순서대로 디코딩 처리함으로써 끊김없는 연속적인 영상 및 오디오를 사용자에게 제공할 수 있게 된다.

[91] 한편, 현재 통신망의 상태가 악화되거나, 예를 들어, 상기 수신버퍼(113a)의 버퍼링량이 감소중이지 않거나, 현재 Wi-Fi 망(11b)이 접속가능하지 않거나, 사용망 전환으로 결정되지 않거나, 또는 타 통신망에의 접속시간에도 불구하고 접속 IP주소의 할당이 실패하면, 상기 데이터 송수신부(112)는 현재 접속된 통신망을 통한 미디어 데이터 수신을 계속적으로 유지한다.

[92] 전술한 실시예에서는, 기 설정된 요건이 충족될 때, 예를 들어 매주기마다 접속전환 조건의 하나인 통신망 상태의 악화여부, 예를 들어 상기 수신버퍼(113a)의 버퍼링량의 감소여부를 확인하고 그에 따라 장애량에 근거한 통신망 전환여부를 결정하였다.

[93] 본 발명에 따른 다른 실시예들에서는, 전술한 사용망의 불량상태의 조건의에 현재 상태가 다른 지정된 접속전환 조건에 해당되었을 때 전술한 장애량에 따른 통신망 전환여부를 결정할 수도 있는데, 이하에서는 이에 대한 실시예들을 설명한다.

[94] 본 발명에 따른 일 실시예에서는, 현재 접속된 통신망의 상기 셀룰러 망(11a)인 상태에서, 상기 이동통신 단말기(100)의 이동 등의 상황에 의해, 데이터 서비스의 이용에 있어서 유용이 들지 않거나 상기 셀룰러 망(11a)에 비해 비용적 부담이 적은 상기 Wi-Fi 망(11b)이 접속가능하게 될 때 전술한 통신망 전환여부를 결정할 수 있다. 현재 접속망이 상기 셀룰러 망(11a)의 상태에서, Wi-Fi 망에 대한 접속을 활성화로 설정하기 위해, 현재 운영시스템(100a)이 Wi-Fi 망이 접속가능해질 때 이를 상기 데이터 송수신부(112)에 통지하게 되므로, 이 통지에 따라 상기 데이터 송수신부(112)는 사용망 전환여부를 결정하게 된다. 즉, 전술한 실시예들에서와 같이 현재 장애량이 상기 수신버퍼(113a)의 추정 어니언 시간(PT_underrun)동안에 모두 수신될 것으로 추정되면, 즉 미수신 장애량(또는 미수신 장애량의 수신예상 시간)이, 장애량 기준치(시간 또는 데이터 크기)보다 작은 경우에는 또는 이하에서 설명하는 다른 변수에 따라 정해지는
잔여량 기준치보다 작은 경우에는 접속 가능해진 Wi-Fi 맵으로 전환하지 않고, 그럴지 않고 큰 경우에는 Wi-Fi 맵으로 전환하게 된다.

일반적으로, 광역의 서비스 권역을 갖는 상기 셀룰러 맵(11a)의 접속상태에서 편소된 제한 서비스권역을 갖는 상기 Wi-Fi 맵(11b)이 추가적으로 접속가능해 지는 상황이 발생하게 되는데, 이 상태에서 만약, 현재 수신하는 데이터 오브젝트, 예를 들어 컨텐츠의 잔여량 확인없이 상기 Wi-Fi 맵(11b)으로 전환하게 되면, 잔여량이 얼마남지 않은 경우에는 상기 전환에 의한 이익(예를 들어, 비용 절감, 속도 개선 등)은 미미한 반면 접속전환에 따른 시간에 의해 컨텐츠 클라이언트에서 끝감상태가 발생하거나 수신시간이 더 늦어지는 등의 불이익은 더 클 수가 있다. 이러한 현상은 상기 Wi-Fi 맵(11b)의 실제의 통신상태가 해당 맵의 접속점에 접속한 후에야 비로소 알 수 있는 불확실성으로 인해 그 정도가 더욱 커질 수도 있다. 따라서 그 잔여량이 현재의 상태로 볼 때 언어없이 모든 수신된 가능성이 충분한 경우 또는 이하에서 설명하는 다른 변수에 따라 정해지는 잔여량 기준치보다 작은 경우에는 상기 셀룰러 맵(11a)에의 현재 접속상태를 그대로 유지함으로써 불필요한 통신량 전환동작과 이로 인한 통신자원의 절수를 발생시키지 않음과 동시에 전환한 불이익의 발생 가능성을 차단하게 된다.

본 발명에 따른 또 다른 실험에서도는, 상기 이동통신 단말기(100)가 포함하고 있는 하드웨어/소프트웨어 자원에 의해 통신할 수 있는 통신망들 중에서 현재 사용하고 있는 통신망보다 서비스 특성이나 품질이 더 우수한 통신망이 이용가능해졌을 때, 상기 운영시스템(100a)이 통지하는 경우라도, 전술한 바와 같이 정해진 기준치와 잔여량을 비교함으로써 상용망 전환여부를 결정하고, 그에 따라 선택적으로 상용망 전환을 수행할 수도 있다. 예를 들어, 현재 접속된 통신망이 Wi-Fi 맵이고, 현재의 수신 속도보다 평균적으로 서비스 품질이 더 좋은 통신망, 예를 들어 4G 통신망이 이용가능함을 통지받았을 때, 상기 테이터 송수신부(112)는, 전술한 실험에서도와 같이, 현재 잔여량이 상기 추정 언더턴 시간(PT_underrun)동안에 모두 수신될 것인 지, 또는 이하에서 설명하는 다른 변수에 따라 정해지는 잔여량 기준치보다 작은 지에 대한 판단에 따라 4G 통신망으로 전환하거나 전환하지 않을 수도 있다.

전술한 실험들에서는, 추정 언더턴 시간(PT_underrun) 또는 추정 언더턴 시간동안의 수신예상 기준량(p_Recv_Th)을 잔여량 기준치로 사용하였으나, 본 발명에 따른 다른 실험들에서는 다른 변수를 상기 잔여량 기준치로 사용할 수도 있다. 상기 이동통신 단말기(100)가 통신망을 전환하는 데 소요되는 시간이 상기 잔여량 기준치의 예가 될 수 있다. 본 발명에 따른 실험들에게서는, 상기 잔여량 기준치로서 맵간 전환에 소요되는 전환시간(T_trans)에 가변계수(α)(이 값을 예를 들어 1.0~2.0의 범위 내의 값을 가질 수 있다.)를 곱한 값(=αx T_trans)으로써 정하거나 또는 상기 전환시간이 속한 시구간에 할당된 시간으로 정한다. 예를 들어, 전자의 경우, 맵간 전환 소요시간이 5, 7 또는 10초로 설정되며, 상기
가변계수가 1.5일 때, 상기 잔여량 기준치는 7.5, 10.5 또는 15초로 정해지고, 후자의 경우, 4초이하이면 4초, 4-8초의 시구간이면 8초, 8-16초의 시구간이면 16초로 정해진다. 물론, 이 외의 다양한 방식으로 망간 전환시간\(T_{\text{anna}} \)에 근거하여 상기 잔여량 기준치를 정할 수도 있다. 그리고 상기 전환시간\(T_{\text{anna}} \)에 대해서는, 상기 데이터 송수신부(112)가 통신망 전환을 수행할 때 그 전환되는 데 소요되는 시간을 예를 들어, 셀룰러 망에서 Wi-Fi 망의 각 접속점으로의 전환 또는 그 역으로의 전환, Wi-Fi 망의 접속점간 전환)마다 측정하여 수집가중해 두 시간차자문서에서 현재 전환 대상간에 대한 일정기간동안의 시간차자료의 평균값으로부터 구하거나 또는 특정의 외부 서비스로부터 수신되는 주변 통신망에 대한 접속정보로부터 확인하여 현재 전환 대상간에 대해 정할 수도 있다. 또한, 접속전환 유형(셀룰러 망에서 Wi-Fi 망으로의 전환, Wi-Fi 망에서 셀룰러 망으로의 전환, 또는 Wi-Fi 망의 AP간 전환)에 따라 달리 설정된 각 전환시간으로부터 현재의 전환 유형에 대해 상기 전환시간을 정할 수도 있다. 이와 같이 접속전환 시간에 근거하여 상기 잔여량 기준치를 정한 후에는, 상기 데이터 송수신부(112)는, 전송한 바와 같은 지정된 전환조건에 해당되므로써 망 전환여부를 결정해야 할 때 그 정해진 잔여량 기준치를 현재 미수신된 잔여량과 비교하게 된다. 비교과정에서는 당연히 동일 물리적으로 환산하여 비교하는 데, 전송한 바와 같이, 상기 정해진 기준치에 현재의 또는 일정시간 동안의 평균 수신속도\(\text{Receive_rate} \)를 바탕한 기준량과 미수신된 잔여량\(\text{RemDataToReceive} \)을 비교하거나, 또는 상기 미수신된 잔여량\(\text{RemDataToReceive} \)은 현재의 또는 일정시간 동안의 평균 수신속도로 나누어서 얻은 값과 상기 정해진 기준치와 비교하게 된다. 상기 미수신된 잔여량에 대한 값이 상기 잔여량 기준치보다 작으면 상기 데이터 송수신부(112)는 앞서 얻은 바와 같이 사용량 전환을 수행하지 않는다.

상기 잔여량 기준치의 또 다른 예로서는, 앞서 선택된 컨텐츠에 대한 수신 한정시간을 들 수 있다. 이 수신 한정시간은, 사용자에 의해 설정된 제한시간에서 소요되지 않은 남은 시간이거나 또는 설정된 제한시간에 의해 계산되는 잔여시간이 될 수도 있다. 예를 들어, 상기 선택된 컨텐츠에 대해 사용자가 설정하는 수신완료를 희망하는 제한시간\(\text{예를 들면, 1, 2, 또는 5시간 등} \)에서 상기 선택된 컨텐츠 데이터의 수신을 위해 소요된 시간을 차감한 시간이 상기 수신 한정시간이 되거나, 또는 수신완료를 희망하는 제한시간\(\text{예를 들면, AM 9:00, PM: 6:00 등} \)까지 쌓아서 나머지 시간이 상기 수신 한정시간이 된다. 상기 희망하는 제한시간 또는 제한시간은, 상기 미디어 플레이어(110)의 기동시 또는 새로운 컨텐츠의 선택시 적절한 형태로 상기 디스플레이 패널(5)에 제공한 선택장을 통해 입력 또는 선택되어 상기 입력 제어부(6)를 통해 상기 미디어 플레이어(110)에 수신되어 상기 태이터 송수신부(112)에 공유된다. 상기 데이터 송수신부(112)는, 송신한 통신규약에 의한 요구에 따라 최초 응답 데이터가 수신되는 시점부터 소요시간을 측정하여
설정된 제한시간으로부터 차감하여 상기 수신 한정시간을 계산하거나, 현재 시점에 상기 운영시스템(100a)으로부터 확인하여 그 시점부터 상기 제한시간까지 남은 시간을 계산하여 상기 수신 한정시간을 계산하게 된다. 이와 같이 수신 한정시간이 계산되면, 상기 데이터 송수신부(112)를 상기 잔여량 기준치로서 사용하여, 전술한 바와 같이 서로 동일한 물리적으로 전달하여 현재 미수신된 잔여량과 비교하게 된다. 상기 미수신된 잔여량에 대한 값이 상기 기준치보다 작으면, 즉, 사용자가 설정한 제한시간내에 또는 제한시점이전에 미수신된 잔여량이 모두 수신이상되면 상기 데이터 송수신부(112)는 앞서 언급한 바와 같이 사용량 전환을 수행하지 않게 된다.

[99] 전술한 실시예들에서, 정해진 잔여량 기준치와 미수신된 잔여량과의 비교를 위해 동일한 물리적으로 전달하는 과정에서 현재의 수신속도가 잔여량 기준치와 미수신된 잔여량 중 어느 한쪽에 반영되어 서로간의 상대적 크기를 결정하게 된다. 즉, 수신속도가 빠르면 잔여량 기준치가 비교과정에서 상대적으로 커지게(또는 미수신된 잔여량이 상대적으로 작아지게) 되고 수신속도가 느리면 상대적으로 작아지게(또는 미수신된 잔여량이 상대적으로 커지게) 된다. 수신속도가 0에 근접하면 비교과정에서 잔여량 기준치도 0에 가까운 값(미수신된 잔여량에 대한 상대적 크기도 0에 가까운 값)이 되거나 아니면 미수신된 잔여량이 무한대에 가까운전(잔여량 기준치의 미수신된 잔여량에 대한 상대적 크기는 0에 가까운 값이 된다.) 따라서, 전술한 실시예들에서, 현재 접속상태의 수신상태에 따라 접속 전환을 위한 기준치가 상대적으로 변동되어 작용한다. 예를 들어, 수신속도가 0에 가까우면, 잔여량 기준치의 미수신된 잔여량에 대한 상대적 크기가 이전에 비해서 더 감소되어 상기 비교과정에 적용된다.

[100] 현행, 전술한 방식으로 결정되는 상기 잔여량 기준치(상기 수신예상 기준량(P_Recv_Th), 상기 추정 연속시간(PT_underrun), 통신망 전환에서의 소요시간, 상기 수신 한정시간)는 어떠가지 다양한 조건 또는 상태에 따라 조정될 수도 있는데, 이하에서는 이에 대해 상세히 설명한다.

[101] 상기 데이터 송수신부(112)는, 전술한 다양한 실시예들 중 하나에 따라 정해진 잔여량 기준치를 통신량 사용정책에 대한 모드에 따라 조정한 후, 미수신된 잔여량(RemDataToReceive) 또는 그에 대한 수신 예상시간과 비교하는 데, 이의 설정을 위해 상기 이동통신 단말기(100)에 설정되는 통신량 사용정책에 대한 모드에 대해서 먼저 설명한다.

[102] 인프라가 상이한 다양한 유형의 이동통신망들은 이동통신 서비스를 제공하는 사업자의 서비스 제공정책에 따라 각기 다른 서비스 이용요금을 이용자에게 부과하고 있다. 예를 들어, 상기 셀룰러 링(M11a)에 대한 데이터 서비스는, 통상 기본요금에 대해 기본 데이터량을 설정하고 그 초과사에 추가비용이 발생하는 요금제 방식을 취하고 있으며, 상기 Wi-Fi 링(M11b)에 대해서는 무료로 제공되고 있다. 따라서, 이용자는 가입한 요금제에 따라서는, 데이터 서비스 이용의
향상성이 상대적으로 충분히 보장되는 상기 셀룰러 망(11a)을 지속적으로 사용하는 경우 기본요금외에 추가적 요금이 발생할 수 있다.

[103] 이러한 이유로, 본 발명에 따른 실제로에서는, 사용자의 데이터 서비스에 의한 비용의 발생과 데이터 서비스 이용의 향상성 중 어떤 측면을 더 중요한 요소로 하여 데이터 서비스를 위한 통신망을 선택할 것인지를 지정하는 모드들을 제공한다. 이 모드들에는, 비용 발생을 억제하기 위한 "절약모드", 사용자의 이용권의 예를 들어 데이터 서비스의 향상성을 우선하는 "편의모드", 그리고 비용 발생 억제와 이용자의 편의를 장축한 "표준모드"가 포함되며, 상기 미디어 플레이어(110)는 기통시에 또는 새 컨텐츠를 선택할 때에 상기 이동통신 단말기(100)의 사용자 UI를 통해 상기 에시된 모드들을 제시하여 하나의 모드를 사용자로부터 선택받아 이를 상기 데이터 송수신부(112)에 통지하게 된다.

[104] 상기 데이터 송수신부(112)는 통지된 모드와 현재의 접속망에 근거하여, 상기 결정된 잔여량 기준치를 선택하게 되는데, 도 9는 이에 대한 절차를 에시한 것이다. 현재의 통신망이 상기 셀룰러 망(11a)이고(S600) 상기 통지된 모드가 "절약모드"이면(S601), 앞서 정해진 잔여량 기준치에 대해 가 지정된 보장치(delta_11)를 감산한다(S602). 현재의 모드가 "절약모드"이면, 이는 사용자가 데이터 서비스의 향상성보다는 비용 발생의 억제를 더 중요하다고 생각하는 것이므로, 전환을 위한 잔여량 기준치를 좀 더 낮추어서, 컨텐츠 잔여량이 조정 전의 기준치보다는 적게 남았더라도 상기 Wi-Fi 망(11b)으로 전환되도록 하기 위함이다. 물론, 조정 후의 기준치보다 잔여량이 더 작은 경우에는 사용량이 전환되지 않고 상기 셀룰러 망(11a)을 통해 잔여량까지 수신될 것이다. 만약, 현재의 모드가 "편의모드"이면(S601), 이는 사용자가 비용 발생 가능성보다는 데이터 서비스의 향상성이 더 중요하다고 생각하는 것이므로, 앞서 정해진 잔여량 기준치를 좀 더 높게 조정하기 위해 가 지정된 보장치(delta_12)를 가산하여(S603), 잔여량이 조정 전의 기준치보다는 더 많이 남았더라도 현재의 셀룰러 망(11a)이 계속 사용되도록 한다. 만약, 현재의 모드가 "표준모드"이면(S601), 앞서 정해진 잔여량 기준치에 대한 보장을 하지 않는다.

[105] 현재의 통신망이 상기 Wi-Fi 망(11b)이고(S600) 상기 통지된 모드가 "편의모드"이면(S611), 상기 데이터 송수신부(112)는, 앞서 결정된 잔여량 기준치에 대해 가 지정된 보장치(delta_2)를 감산한다(S612). 현재의 모드가 "편의모드"이면, 전환의 기준이 되는 잔여량 기준치를 좀 더 낮추어서, 컨텐츠 잔여량이 조정 전의 기준치보다는 적게 남았더라도 서비스의 특성이 상대적으로 안정된 상기 셀룰러 망(11a)으로 전환되도록 하기 위함이다. 만약, 현재의 모드가 "절약모드"이면(S611), 앞서 정해진 잔여량 기준치를 좀 더 높게 조정하기 위해 가 지정된 보장치(delta_22)를 가산하여(S613), 잔여량이 조정 전의 기준치보다는 더 많이 남은 경우에라도 현재의 Wi-Fi 망(11b)을 계속 사용하도록 한다. 만약 현재의 모드가 "표준모드"이면(S611), 앞서 정해진 잔여량 기준치에 대한 보장을 하지 않는다.
본 발명에 따른 다른 일 실시예에서는, 상기 미디어 플레이어(110)가 사용자로부터 모드의 설정을 수신하는 대신, 다른 어플 또는 프로세스 등에 의해 설정된 모드를 읽어올 수도 있다. 도 10은 본 실시예에 따른 관련 구성을 예시한 것으로서, 예시된 모드 결정부(120)가 전달한 메뉴와 같이 사용자에게 모드 결정을 위한 메뉴를 특정 시점, 예를 들어 상기 이동통신 단말기(100)의 화면장면이 해제되었을 때 또는 사용자의 실행 요청이 있을 때에 제공하고 이를 통해 설정되는 모드를 저장하게 된다. 상기 모드 결정부(120)는 상기 메뉴를 제공할 때, 작동도 상기 셀룰러 링(11a)에 대한 데이터 사용현황, 및 요금계 기간에 따른 잔여일수(또는 경과일수) 등을 함께 제시하여 사용자가 현재 시점에 어떤 모드가 적절한 지를 쉽게 판단할 수 있도록 할 수도 있다. 상기 저장된 모드 값은, 상기 미디어 플레이어(110)가 기동 시에 상기 모드 결정부(120)에 요청하여 수신함으로써 상기 모드 송수신부(112)에 의해 공유된다. 상기 모드 결정부(120)로부터의 모드 값의 획득(c71)은, 상기 미디어 플레이어(110)가 상기 운영시스템(100a)에 기 저장된 식별명의 어플 또는 프로세스에 의해 요청하여 개설한 채널 등을 통해 이루어질 수 있다.

상기 모드 결정부(120)는, 또한, 통신망별 데이터 사용현황에 따라 모드를 자동적으로 결정할 수도 있다. 이를 위해, 상기 운영시스템(100a)에서 모니터링되고 있는 사용 데이터량을 주기적으로 확인하여 이를 통해 사용자의 요금계에 따른 기간별 그리고 통신망별 송수신 데이터량, 예를 들어 적어도 상기 셀룰러 링(11a)을 사용한 송수신 데이터량을 파악하고, 또한 사용자가 그 통신망에 대해 설정한 요금계 정보에 근거하여 사용량 초과시에 비용이 발생하게 되는 기본 데이트 랭정확정하고, 그 기본 데이트 랭정확정사용 데이트 랭정확정작성(송수신 수신 데이트 랭정확정작성합성)을 차감하여 잔여 데이트 랭정확정작성한다. 그리고, 기본 데이트 랭정확정작성 잔여 데이트 랭정확정작성의 양(Quantity)의 비율(rd_r)과 잔여시간의 비율, 예를 들어 요금계 기간의 일수대비 현재 잔여 일수의 시간비율(rt_r)을 각각 구하여 이 비율로부터 잔여비율(=rd_r/rt_r)을 구한 후, 그 잔여비율(rt_r)의 값에 따라 모드를 자동으로 결정한다. 예를 들어 상기 잔여비율(rt_r)이 0.5미만일 때 “절약모드”, 1.5이상일 때 “편의모드” 그리고 0.5이상 1.5미만일 때 “표준모드”로 결정할 수 있다. 본 발명에 따른 일 실시예에서는, 상기 모드 결정부(120)는 상기 미디어 플레이어(110)의 서브 프로세스로서 일체로 구현되거나 별도의 어플로서 구현될 수도 있으며, 후자의 경우에는 특정의 조건, 예를 들어 상기 이동통신 단말기(100)의 화면장면 상태가 해제되는 시점에 또는 타 어플 등으로부터 모드정보 요청이 있는 경우에 자동적으로 기동되어 상기 모드를 둘 하나를 결정하게 된다. 이렇게 결정된 모드는 앞서 언급한 바와 같이 상기 운영시스템(100a)을 통한 프로세스간 형성된 채널 등을 통해 통지될 수 있다.

본 발명에 따른 일 실시예에서는, 접속전환의 유형에 따라 상기 잔여량 기준치를 조정하여 설정할 수 있다. 예를 들어, 전출한 잔여량 기준치 결정은,
특정 전환 유형 예를 들어, 이하에서 설명하는 Wi-Fi 망의 접속점간의 접속전환을 기본으로 한 것으로 가정할 때, 앞으로 수행할 전환 유형이 셀룰러 망에서 Wi-Fi 망일 때는 상기 기본유형에 대한 잔여량 기준치보다 더 작게 조정하고 전환 유형이 Wi-Fi 망에서 셀룰러 망일 때는 상기 기본유형에 대한 잔여량 기준치보다 더 크게 조정할 수도 있다. 즉, 평균적으로 데이터 서버의 이용자의 비용적 부담이 큰 상기 셀룰러 망(11a)에서 상기 Wi-Fi 망(11b)으로의 접속전환은 그 역의 접속전환에 비해 더 많은 잔여량이 낭설을 때도 이루어질 수 있도록 상기 잔여량 기준치가 설정된다. 한편, 다른 전환 유형을 기본으로 할 때는, 앞선 예에서와 같은 상호간의 상대적 크기가 되도록 다른 유형의 전환에 대해 잔여량 기준치를 조정할 수 있다. 만약, 상기 셀룰러 망(11a)을 이용할 때와 상기 Wi-Fi 망(11b)을 이용할 때의 이용자가 대한 평균적인 비용이 동일하다면, 본 실시예와, 전환 소요시간에 의한 잔여량 기준치를 접속전환 유형에 따라 달리 설정하는 전술한 실시예에는 함께 실시되지 않을 수도 있다. 하지만, 양 통신망(11a,11b)에 대한 이용에 있어 이용자에게 비용적 차이가 발생한다면 본 실시예와, 전환 소요시간에 의한 잔여량 기준치를 접속전환 유형에 따라 달리 설정하는 전술한 실시예에는, 함께 실시될 수도 있다.

[109] 접속전환의 유형에 따라 잔여량 기준치를 조정하여 설정하는 상기 실시예에는, 앞서 설명한, 모드에 따라 잔여량 기준치를 조정하는 실시예와 직렬적으로 접합되어 실시될 수도 있다. 예를 들어, 접속전환 유형에 따라 상기 잔여량 기준치를 1차적으로 조정 설정한 후, 도 9를 참조로 설명한 바와 같이 현재 확인되는 모드에 따라 그 1차 조정 설정된 상기 잔여량 기준치에 보정치를 가산 또는 감산함으로써 2차적으로 세부 조정할 수도 있다.

[110] 본 발명에 따른 일부 실시예에서는, 사용량의 상태 또는 통신특성에 따라 상기 결정된 잔여량 기준치를 조정할 수도 있다. 예를 들어, 현재 사용량이 상기 Wi-Fi 망(11b)이면, 상기 테이터 송수신부(112)는, 상기 운영시스템(100a)을 통해 접속되어 있는 접속점에 대한 현재 신호세기 값(RSSI)을 확인하고 이를 이전에 확인한 값과 비교하여 그 변동폭을 구한 후, 그 변동폭이 기 지정된 제한폭보다 더 크면 상기 결정된 잔여량 기준치를 기 지정된 보정치만큼 또는 상기 변동폭과 제한폭간의 차에 비례하는 값만큼 감소시킨다. 이와 같이 전환을 위한 잔여량 기준치를 감소시키는 것은, 변동폭이 커진 이유가 현재 사용하고 있는 상기 Wi-Fi 망(11b)에 대한 상대적 불안정성, 예를 들어 상기 이동통신 단말기(100) 또는 현재 접속된 접속점의 음직임에 따른 것일 수도 있고 이 경우에는 통신특성을 급격히 저하시키게 되므로 잔여량이 최소한(감소된 잔여량 기준치)이 아닌 이상 가능한한 상기 셀룰러 망(11a)으로의 전환이 이루어지도록 하기 위함이다.

[111] 본 발명에 따른 다른 일부 실시예에서는, 신호세기 값의 변동폭대신, 상기 모니터링되는 수신속도의 변화폭을 이용할 수도 있다. 즉, 현재의 수신속도와 이전에 확인된 수신속도의 변화폭이 기 지정된 제한폭보다 더 크면 기 지정된
보정치면 또는 상기 변화폭과 제한폭간의 차에 따른 값만큼 상기 결정된 잔여량 기준치를 감소시키게 된다. 본 심시에는, 현재 사용량이 상기 셀러러 링(11a)인 지 상기 Wi-Fi 링(11b)인 지의 여부에 관계없이 적용될 수 있다. 다만, 현재 사용량이 상기 셀러러 링(11a)인 경우에는, 상기 Wi-Fi 링(11b)이 접속가능한 지를 먼저 확인하고 접속가능한 경우에 있어서 상기 결정된 잔여량 기준치를 조정한 수도 있다.

[112] 본 발명에 따른 일시시에서는, 접속 전환의 대상(target) 통신망의 통신특성에 따라서 잔여량 기준치를 조정할 수도 있다. 예를 들어, 현재 셀러러 링(11a)에서, 접속전환할 수도 있는 대상 통신망인 Wi-Fi 링(11b)이 접속가능해지면, 상기 테이터 송수신부(112)는 상기 Wi-Fi 링(11b)의 접속점에 대한 통신특성을 확인한다. 상기 통신특성은 해당 접속점의 신호세기 값(RSSI), 또는 외부 서버 등에 요청하여 제공받은 해당 접속점에 대한 예상 전송속도 등으로부터 확인한다. 전자의 경우에는, 신호세기 값에 비해 수적으로 얻은 이전의 통신상태 정보에 근거하여 추정한 예상 전송속도로부터 상기 통신특성을 확인할 수도 있다. 상기 테이터 송수신부(112)는 이와 같은 방식에 따라 확인된 통신특성을, 예를 들어 신호세기 또는 전송속도가 적정기준 이상이면 그에 따라 잔여량 기준치를 낮추는 조정을 할적으로써, 조정전 기준치보다 적은 잔여량이 남은(조정후 기준치보다는 많이 남은) 경우에도 현재의 접속망에서의 통신량으로의 접속 전환이 이루어질 수도 있도록 설정한다.

[113] 본 발명에 따른 일시시에서는, 접속 전환의 대상 통신망의 통신특성의 변동성에 따라서 잔여량 기준치를 조정할 수도 있다. 직전에 설명한 실시예에서 확인되는 통신특성이 적당치이전에 확인된 통신특성이 적당한 값에 비해 그 변동성이 일정치 이상 크면 그에 따라 잔여량 기준치를 증가시키는 조정을 한다. 통신특성의 변동성이 높다는 것은, 전환 접속후 해당 통신망에서의 안정적인 데이터 서비스가 불확실하다는 것을 의미하며, 기준치를 증가시킴으로써, 조정전 기준치보다 많은 잔여량이 남은(조정후 기준치보다는 적게 남은) 경우에도 불확실성이 높아지는 전환을 하지 않고 현재의 접속망에서의 데이터 수신이 지속될 수 있도록 한다.

[114] 본 발명에 따른 일시시에서는, 접속한 상태에 있는 우선한 시간에 따라 잔여량 기준치를 조정할 수도 있다. 예를 들어, 현재 접속망이 상기 Wi-Fi 링(11b)이고 현재 수신한 시간간이 동적으로 변해지는 기준시간보다 일정 비율(예를 들어, 30, 또는 40 등)이상 크다면 상기 테이터 송수신부(112)는 그 비율 또는 그 차에 따라 잔여량 기준치를 증가시키는 조정을 한다. Wi-Fi 링의 높은 변동성으로 인해 수신속도의 변화가 크고 이로 인해 잔여량과의 비교과정(예를 들어, 도 5의 SS33)에서 작용되는 잔여량 기준치에 의한 값(미수신된 잔여량과의 동일 물리량으로의 변환에 의한 값), 또는 미수신된 잔여량에 따른 값도 변화가 커지게 되므로, 어느 양은 순간 경계점 잔여량 기준치에 의한 값이 상대적으로 미수신된 잔여량에 따른 값보다 작아져 상기 테이터 송수신부(112)가 상기...
셀룰러 망(11a)으로의 전환을 결정할 수도 있다. 따라서, 현재 수신 한정시간이 동적 기준시간보다 큰 경우에는, 이러한 순간적 상황에 의해, 이용에 있어서 비용적 부담이 있는 상기 셀룰러 망(11a)으로 전환되는 것을 방지하기 위해 잔여량 기준치를 더 크게 설정하게 된다. 물론, 현재의 수신 한정시간이 동적 기준시간보다 일정 비율(예를 들어, 1.5, 또는 2.0 등)이하로 작다면 그 비율 또는 그 차에 따라 잔여량 기준치를 감소시키는 조정을 한다. 이는 제한된 시간까지의 여유가 없으므로 순간적인 상황변화에도 신속하게 상대적으로 통신품질이 안정된 상기 셀룰러 망(11a)으로의 전환결정이 될 수 있도록 하기 위함이다. 본 실험에서, 상기 동적 기준시간은, 미수신된 잔여량을 현재 접속망의 전송속도로써 나눈 값에 적절한 보정상수를 곱함으로써 구해진다. 현재 접속망의 전송속도에 대해서는, 해당 통신망에서 제공되는 것으로 알려진 통상의 전송속도를 사용하거나, 소정의 시간이상 데이터 수신이 이루어진 경우라면 그 시간동안의 평균 수신속도를 사용하거나, 또는 특정의 외부 서버 등에 요청하여 획득되는 해당 통신망(또는 해당 접속점)에 대한 현재의 전송속도 또는 통계적으로 예측된 전송속도를 사용할 수도 있다.

만약, 현재의 접속망이 상기 셀룰러 망(11a)이면 잔여량 기준치의 조정을 앞선 설명과는 반대로 수행할 수도 있다. 즉, 현재의 수신 한정시간이 상기 동적 기준시간보다 큰 경우에는 그 큰 비율 또는 그 차에 따라 잔여량 기준치를 감소시키고 작은 경우에는 잔여량 기준치를 증가시킬 수도 있다. 이는 제한된 시간까지의 여유 정도를 반영하여 비용적으로 임기에 있는 상기 Wi-Fi 망(11b)의 사용 가능성을 높이거나 또는 낮추기 위함이다.

전술한 실험에서 설명된 잔여량 기준치를 조정하는 다양한 방식들은 상호 양립할 수 없는 경우가 아니라고 적절히 선택되어 함께 실시될 수 있다.

또한, 앞서 설명한 실험에서, 상기 테이터 송수신부(112)와 채널 구성부(113)가 컨텐트의 플레이를 위한 예, 애들 들어 플레이어 등의 구현된 것이었으나, 본 발명에 따른 다른 실험에서는, 노 1에 에시된 바와 같이, 상기 테이터 송수신부(822)와 채널 구성부(823)가, 데이터 오브젝트(object) 처리기(810), 예를 들어 미디어 플레이어, 브라우저, 게임 어플, 또는 어플리케이션 애플랫(applet)과 같은 별개로 구분된 실행 객체로서 구현되는 미디어 중계부(820)에 포함될 수도 있다. 상기 테이터 오브젝트 처리기(810)는, 처리의도된 테이터 오브젝트가 영상 또는 오디오의 미디어인 경우에는 입력되는 테이터를 앞서 설명하였던 상기 미디어 처리부(111)와 마찬가지로 컨텐트 테이터의 디코딩을 위해 상기 이동통신 단말기(100)의 하드웨어 자원인 상기 디코더(110a)를 이용할 수도 있고 디코딩과정없이 별도의 파일로 저장할 수도 있다. 또한, 처리의도된 테이터 오브젝트가 프로그램 또는 자료 등인 경우에는 입력되는 테이터를 파일로 저장하거나 또는 실행시킬 수도 있다.
일부가 미들웨어 또는 플랫폼 형태로 구현될 수도 있다. 물론, 전술하였던 바와 같이, 상기 미디어 중개부(820)는 하드웨어의 일부 구성으로서 포함할 수도 있다. 본 실시예에서는, 상기 채널 구성부(823)가 상기 데이터 오브젝트 처리기(810)에 데이터 오브젝트의 데이터를 송신하기 위한 데이터 채널로서 국부 메모리(823a)와 내부 소켓(802)을 구성한다(831). 즉, 상기 메모리(7)에 상기 데이터 송수신부(822)가 액세스할 수 있는 저장공간을 할당하고, 또한, 상기 운영시스템(100a)에 요청하여 상기 내부 소켓(802)을 생성하여 이를 상기 데이터 송수신부(822)로 통지한다. 상기 데이터 송수신부(822)는, 전술한 실시예들에서와 같이, 외부 서버와 통신하기 위한 통신소켓을 통해 송신되는 데이터 오브젝트, 예를 들어 컨텐츠 또는 프로그램 등의 데이터를 상기 국부 메모리(823a)에 일시 저장한 후, 그 데이터 오브젝트의 데이터를 읽어서 상기 생성된 내부 소켓(802)과 그 내부 소켓(802)에 대응하여 상기 데이터 오브젝트 처리기(810) 송신된 내부 소켓(801)을 통해, 상기 데이터 오브젝트 처리기(810)에 제공한다. 한편, 상기 채널 구성부(823)는 상기 내부 소켓(802)에 대해서는, 상기 데이터 오브젝트 처리기(810)의 내부 소켓 요청에 따른 상기 운영시스템(100a)으로부터의 대응 내부 소켓 생성 요구가 있을 때 구성할 수도 있다.

[119] 상기 데이터 송수신부(822)는, 전술한 실시예들에서의 상기 데이터 송수신부(112)에 대해 설명한 동작과 동일한 동작을 수행하며, 다만, 상기 데이터 오브젝트 처리기(810)에, 수신한 데이터 오브젝트의 데이터를 전달함에 있어서 데이터 채널로서 상기 국부 메모리(823a)와 내부 소켓(802)을 사용한다는 점에서 상이한 뿐이다. 상기 데이터 송수신부(822)는, 상기 운영시스템(100a)의 적절한 중개를 호출함으로써, 수신되어 상기 국부 메모리(823a)에 저장되어 있는 데이터 오브젝트의 데이터를 상기 내부 소켓(802)을 통해 상기 데이터 오브젝트 처리기(810)에 전달하여 전송한 바 있는 의도된 기능(디코딩, 저장, 실행 등)에 사용되도록 한다.

[120] 상기 데이터 송수신부(822)에 수신되는 데이터 오브젝트는 그 속성이 영상 또는 오디오의 미디어가 아닌 경우에는 다운로드 방식으로 수신되며, 미디어인 경우에도 스트리밍 방식이 아닌 다운로드 방식으로 수신될 수도 있다. 이와 같이, 다운로드 방식으로 수신되는 경우에는, 상기 데이터 송수신부(822)는 전술한 다양한 실시예들에서와 같이 잔여량 기준치를 정하여, 통신망 전환여부 결정에 이용할 수 있다. 다만, 다운로드의 경우 상기 데이터 채널(823a,802)을 통해 제공되는 데이터가 잠시 끊어지는 경우에도 문제가 발생하지 않으면서, 둘 때까지의 시간(또는 그 시간동안 수신예상되는 데이터량)은 상기 잔여량 기준치로 사용하지 않을 수도 있다. 상기 데이터 송수신부(822)는, 상기 데이터 오브젝트 처리기(810)로부터 상기 내부 소켓(801,802)을 통해 수신된 통신규약에 의한 요구를 상기
운영시스템(100a)을 통해 외부로 전송한 후, 그에 따라 수신되는 응답을 상기 데이터 채널(823a,802)을 통해 상기 데이터 오브젝트 처리기(810)에 제공하면서 동시에 그 응답에 포함되어 있는 파일 정보를 분석하여 그 응답이 스트리밍 방식으로 처리되는 것인지 지 다운로드 방식으로 처리되는 것인지를 확인할 수 있다.

[121] 본 발명에 따른 실 시예에서는, 상기 데이터 송수신부(820)내에 구현된 기능들, 즉, 상기 데이터 오브젝트 처리기(810)로부터의 데이터 오브젝트를 요청하는 통신규약에 의한 요구에 대응하여, 상기 국부 메모리(823a)로부터 그 데이터 오브젝트의 테이터를 읽어서 상기 내부 소켓(802)을 통해 상기 데이터 오브젝트 처리기(810)에 제공하는 전송한 기능과, 상기 운영시스템(100a)을 통해서 외부 서버로부터 데이터 오브젝트의 데이터를 수신하여 상기 국부 메모리(823a)에 저장하면서, 필요시에는 기준치를 정해서 잔여량에 따라 사용량 전환여부를 결정하고 사용량을 전환하는 경우에는 이어받기를 수행하는 전송한 기능이 상호 구분되는 별개의 프로세스로서 각기 구현될 수도 있다.

[122] 한편, 상기 데이터 오브젝트 처리기(810)와 미디어 중개부(820)간의 내부 소켓(801,802)은, 상기 운영시스템(100a)에 내부 IP주소로 가리키도록 지정된 특정 IP주소 예를 들어 “127.0.0.1” 또는 “localhost”와, 내부 소켓을 생성하는 클래스에 있는 메소드를 이용하여 프로세스간 소켓을 생성하여 전송한다.

[123] 본 발명에 따른 다른 실 시예에서는, 데이터 채널을 위해, 내부 통신소켓을 통한 방식이 아닌 상기 운영시스템(100a)이 지원하는 프로세스간 통신 (IPC: Inter-Process Communication) 방식을 사용하여, 상기 데이터 오브젝트 처리기(810)와 미디어 데이터를 전달할 수도 있다.

[124] 본 발명에 따른 실 시예에서는, 전송한 미수신 잔여량에 따른 접속망 전환여부 결정방법이, 데이터 오브젝트에 대해 의도된 기능(디코딩, 저장, 실행 등)을 수행하는 전송한 바 있는 데이터 오브젝트 처리기내에 구현될 수 있다. 도 12는, 본 발명의 실 시예에 따른 데이터 오브젝트 처리기(920)의 구성을 표현한 것으로서, 데이터 송수신부(922)와 기록 처리부(924)를 포함하여 구성된다. 본 실 시예에서의 상기 데이터 송수신부(922)는, 도 11의 실 시예에서의 상기 데이터 송수신부(822)에 대해 설명한, 잔여량에 따른 접속전환여부 결정, 접속전환시의 이어받기 등의 동작과 동일한 동작을 수행하며, 다만, 내부 소켓(802) 등의 데이터 채널을 통해 타 프로세스에 수신한 데이터 오브젝트를 직접적으로 전달하는 과정은 수행하지 않는다. 대신, 상기 운영시스템(100a)을 통해 생성된 통신소켓(92)을 통해 수신한 데이터 오브젝트의 데이터를 상기 기록 처리부(924)에 전달하는 동작을 수행한다. 상기 기록 처리부(924)는 상기 데이터 송수신부(924)로부터 수신한 데이터 오브젝트를 저장수단, 예를 들어 상기 메모리(7)상에 하나의 단위체(ENTITY)로서 임시 기록하거나 또는 파일 시스템상의 하나의 파일로서 기록하는 동작을
수행한다. 물론, 이와 같이 기록된 단위체 또는 파일은 이후 다른 프로세스에 의해 참조되어 이용될 수 있다.

지금까지 설명한 미수신 잔여량에 따른 접속망 전환여부 결정방법은, 선택된 하나의 컨텐츠에 대해서 복수개의 조각(segment) 파일들이 요청에 따라 연속적으로 제공되는 경우에 그 각 조각 파일에 대해서도 단순히 적용될 수 있다. 본 경우에는, 각 조각 파일이 전송한 데이터 오브젝트에 대응될 수 있다.

예를 들어, 선택된 미디어 컨텐츠, 예를 들어 특정의 스포츠 중계 프로그램에 대해서 HLS (HTTP Live Streaming) 규약에 따라, 환영되는 영상이 실시간(live)으로 각각의 조각 파일로 구성되어 제공되는 경우에, 요청하여 수신하고 있는 현재의 조각 파일에 대해서, 그 미수신된 잔여량에 따라 접속망 전환여부를 결정하게 된다. HLS의 각 조각 파일의 경우에는, 각 조각 파일을 얻을 수 있도록 제공되는 조각 목록 파일을 통해 그 재생시간을 알 수 있다.

전송한 접속망 전환여부 결정방법의 원리와 개념은, 상기 이동통신 단말기(100)가 특정의 외부 서버에 데이터 오브젝트를 업로드(upload)하는 경우에도 그대로 적용될 수 있다. 이때는, 전송하였던 설명에서, 잔여량 기준�이 아직 송신하지 못한 잔여량과의 비교에 적용하고, 잔여량 기준치 또는 잔여량 크기에 대한 동일 관리방식으로의 환산에서는 수신속도 대신 송신속도를 적용한다. 더욱이, 이와 같은 본 설명의 적용에 따른 실시간에 의한 데이터 오브젝트 처리의(1020)의 구성에 예시한 것이다. 본 실사에 따른 상기 데이터 오브젝트 처리의(1020)는 예시된 바와 같이 데이터 송수신부(1022)와 파일 독출부(1024)를 포함하여 구성될 수 있다. 또한, 상기 데이터 오브젝트 처리의(1020)는, 사용자에게 적절한 입력화면을 제공하여 송신할 데이터 오브젝트와 송신지의 서비를 지정할 수 있도록 하는 UI 처리부를 포함하여 구성될 수도 있다.

상기 데이터 오브젝트 처리의(1020)에서는, 상기 UI 처리부에 의해 또는 타 이어를 등으로부터 업로드한 서비가 지정되며, 그 정보를 상기 데이터 송수신부(1022)가 수신하고 그 정보에 근거하여 해당 서비와 동신할 수 있는 통신소켓(102)을 상기 운영시스템(100a)에 요청하여 생성한다. 이후, 상기 UI 처리부에 의해 또는 타 이어를 등에 의해 지정된, 상기 메모리(7)에 저장되어 있는 데이터 오브젝트의 파일(101)에 대해 상기 파일 독출부(1024)가 그 파일의 데이터를 순차적으로 읽어서 전달하면, 상기 데이터 송수신부(1022)는, 그 전달된 데이터를 해당 서비에 저장될 수 있도록 상기 생성한 통신소켓(102)을 통해 송신한다. 이러한 송신과정 동안에 상기 데이터 송수신부(1022)는, 그 송신하는 데이터량을 일정시간당 확인하여 데이터 송신속도를 파악하며, 또한 상기 파일 독출부(1024)에 요청하여 현재 미송신된 잔여량에 대한 정보를 확인한다. 다르게는, 최초 상기 파일 독출부(1024)로부터의 데이터 오브젝트의 전송 요청시에 그 전체크기를 확인하고 상기 통신소켓(102)을 통해 송신하는 데이터의 총량을 그 전체크기에서 감산함으로써 미송신된 잔여량을 자체적으로
파악할 수도 있다. 본 실험이에서는, 상기 테이터 송수신부(1022)가, 앞선 실험이에 대해 설명된 동작들에게, 미수신된 전연량과 수신속도를 송신되지 않은 전연량과 송신속도로써 각각 대체하였을 때의 동작들, 예를 들어, 현재 상태가 전송한 접속전환 조건에 해당될 때, 미수신된 전연량과 전송한 바와 같은 방식으로 정해지는 또는 조정되는 전연량 기준치와 비교하는 동작과, 그 비교결과에 따라 접속전환할 지의 여부를 결정하는 동작 등을 수행한다.

[128] 전송한 실험이에 대한 설명에서는, 미수신된 또는 미수신된 전연량에 따른 전환여부 결정을 이종망간, 즉, 셀룰러 망과 Wi-Fi 망간을 예로 하였다. 하지만, 전송한 전송완료되지 않은 전연량에 따른 전환여부의 결정과 이를 위한 전연량 기준치의 설정 또는 조정은, 동일 접속규약을 갖는 단일 통신망에에서의 서로 다른 접속점간의 전환 필요시에도 적용할 수 있다. 예를 들어, 복수의 이종 통신망들의 환경에서, 단일 통신망 또는 상기 복수의 통신망들을 이용할 수 있는 이동통신 단말기가, 현재 상기 Wi-Fi 망(11b)에 접속하여 컨텐츠 데이터를 수신 또는 송신하고 있는 도중에, 현재 접속되어 있는 접속점이 아닌 타 접속점이 이용가능한 것으로 확인되고(이 이용가능 여부는 해당 단말기의 운영시스템에의 접속 요청에 따른 응답 정보에 의해 확인될 수 있다.), 그 타 접속점의 서비스 품질이 더 좋을 것으로 추정되며(예를 들어, 그 타 접속점의 신호강도가 더 높거나, 또는 그 타 접속점에 대해 제공되는 품질관련 접수 또는 예상 전송속도가 더 높을 때 등) 그 타 접속점으로 전환하는 것이 필요할 때, 또는 현재 접속점의 전통상태가 악화하지 않을 때(예를 들어, 상기 데이터 채널의 미처리량이 감소하고 있을 때) 타 접속점이 이용가능한 때도, 현재 미수신된 또는 미수신된 전연량을, 전송한 다양한 방식들 중 하나의 방식에 따라 정한 전연량 기준치와 비교하여 접속점 전환여부를 결정할 수 있다. 본 명세서에서는 사용망간 또는 접속점간의 전환을 동정하는 의미로서 “접속 전환”이라는 용어를 사용한다.

[129] 본 발명에 따른 다른 일부 실험이에는, 전송한 실험이에 대한 전연량 기준치로서 예시된 변수들은 서로 얕림될 수 있는 경우에 결합된 방식으로서 접속 전환여부 결정에 사용될 수도 있다. 예를 들어, 데이터 채널(비퍼, 등)의 추정 연속시간간에는 대 수신할 수 있더라도 수신 한정시간내에 모두 수신할 수 없다면 전환을 수행할 수도 있다. 또한, 수신 한정시간내에 모두 수신 또는 송신할 수 있더라도 전환 소요시간의 가중치에 의해 정해진 시간내에 모두 수신 또는 송신할 수 없다면 전환을 수행할 수도 있다. 이러한 결합 예는 단지 예시일 뿐이며 이 외에도 얕림할 수 있는 다양한 결합으로서 접속 전환여부 결정에 사용될 수 있다.

[130] 지금까지, 셀룰러 망으로 첨단 이동전화 통신망의, 데이터 서비스를 위해 선택적으로 사용하는 데이터 통신망으로서 고속의 무선랜망인 Wi-Fi 망을 예로 하여 본 발명의 원리와 개념을 구체적으로 예시하여 설명하였다. 하지만, 본 발명의 원리와 개념은 Wi-Fi 망외의, 데이터 서비스의 이용시 비용이 없거나
확정비용을 배제한 비용이 상기 셀룰러 망보다 적게 들지만(즉, 이용자에게 비용적 부담을 덜 지우면서) 접속점의 국지성에 따른 산포된 좁은 서비스권역 등으로 인하여 서비스의 안정성이 이동전화 통신망보다는 약한 다른 종류의 데이터 통신망이 있다면 그 통신망에 대해서 그대로 적용할 수 있으므로, 적용하는 데이터 통신망이 다르다는 이유로써는 본 첨주범위에 의한 권리범위가 배척될 수 없다. 여기서 상기 확정비용은, 데이터 서비스의 추가 이용여부와 관계없이 현시점까지의 데이터 서비스의 이용으로 이며 고정적으로 확정된 비용을 의미한다.

[131] 이 상, 전술한 본 발명의 바람직한 실시에는, 예시의 목적을 위해 개시된 것으로, 당연하다면, 이하 첨부된 특히첨주범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 또 다른 다양한 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다.
청구범위

[청구항 1] 무선 통신망을 핵심으로 하는 이동통신 단말기에 있어서, 데이터 오브젝트에 대한 유도된 동작을 수행하기 위한 처리부에 데이터 오브젝트의 데이터를 제공하기 위한 데이터 채널을 구성하기 위한 채널 구성을 정한다.

제 1항은 제 2항을 포함하는 복수의 기술 양 성에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 수신하고, 그 수신된 데이터를 상기 데이터 채널을 통해 상기 처리부에 제공하면서 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속환경 조건의 하나에 해당되는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값이, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키도록 구성된 데이터 송수신부를 포함하여 구성되는 이동통신 단말기.

[청구항 2] 제 1항에 있어서,

상기 접속환경 조건에는,

상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망 또는 접속점의 통신상태 불량과,

상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망보다 서비스 특성이 우수한 통신망의 이용가능과,

상기 데이터 오브젝트의 데이터가 수신되고 있는 접속점보다 통신특성이 양호한 접속점의 이용가능과,

데이터 서비스의 이용시 비용이 없거나 확정비용을 배제한 비용이, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망보다 적게 드는 통신망의 이용가능이 포함되는 것인 이동통신 단말기.

[청구항 3] 제 2항에 있어서,

상기 데이터 송수신부는, 상기 데이터 채널에서 상기 처리부에 제공되지 않고 남아 있는 데이터량이 감소하고 있으며, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망 또는 접속점의 통신상태 불량에 대한 조건에 해당하는 것으로 간주하도록 구성된 것인 이동통신 단말기.

[청구항 4] 제 1항에 있어서,

상기 데이터 송수신부는, 상기 데이터 채널에서 상기 처리부에 제공되지 않은 현재의 미처리량을 확인하고, 그 확인된 미처리량이 소진되는 시간을 구한 뒤 그 구해진 시간에 근거하여
상기 기준을 정하도록 구성된 것이 이동통신 단말기.

[청구항 5]
상기 데이터 송수신부는, 상기 확인된 미처리량을, 상기 데이터 채널을 통해 상기 처리부에 데이터 오브젝트의 데이터를 제공하는 속도로써 나누어 얻어지는 값으로부터 상기 소진되는 시간을 구하도록 구성된 것이 이동통신 단말기.

[청구항 6]
상기 데이터 송수신부는, 상기 확인된 미처리량을, 상기 데이터 채널을 통해 상기 처리부에 데이터 오브젝트의 데이터를 제공하는 속도에서 상기 데이터 오브젝트의 데이터가 수신되는 속도를 차감한 값으로써 나누어 얻어지는 값으로부터 상기 소진되는 시간을 구하도록 구성된 것이 이동통신 단말기.

[청구항 7]
상기 데이터 송수신부는, 접속전환에 소요되는 전환시간에 근거하여 상기 기준을 정하도록 구성된 것이 이동통신 단말기.

[청구항 8]
상기 전환시간은, 상기 제 1통신망에서 상기 제 2통신망으로의 전환, 상기 제 2통신망에서의 상기 제 1통신망으로의 전환, 상기 제 2통신망에 속하는 접속점간의 전환에 대해 각기 달리 설정된 시간들에서 상기 접속 전환에 해당하는 시간으로 정해진 것이고, 상기 제 2통신망은 그 서비스 권역이 상기 제 1통신망에 비해 상대적으로 국지적이고 산포된 특성을 갖는 통신망인 것이 이동통신 단말기.

[청구항 9]
상기 전환시간은, 상기 제 1통신망과 상기 제 2통신망에 속하는 임의 접속점간 또는 상기 제 2통신망에 속하는 임의 접속점과 같은에 대해 수립된 접속 소요시간들에서 상기 접속 전환에 해당하는 소요시간들의 평균값으로부터 정해진 것이고, 상기 제 2통신망은 그 서비스 권역이 상기 제 1통신망에 비해 상대적으로 국지적이고 산포된 특성을 갖는 통신망인 것이 이동통신 단말기.

[청구항 10]
상기 데이터 송수신부는, 상기 데이터 오브젝트의 수신완료에 대해 지정한 시간에서 상기 데이터 수신에 의해 경과된 시간을 차감한 남은 시간, 또는 상기 데이터 오브젝트의 수신완료에 대해 지정한 시점까지 현재 남은 시간을 상기 기준으로 정하도록 구성된 것이 이동통신 단말기.

[청구항 11]
상기 데이터 송수신부는, 상기 확인되는 잔여 데이터량에 대한
상기 값을, 정해진 복수의 기준들에 의한 각 값과 비교하고, 그 각 값보다 모두 작은 경우에 접속을 전환시키지 않도록 더 구성된 것인 이동통신 단말기.

[청구항 12]
제 1항에 있어서,
상기 데이터 송수신부는, 상기 데이터 오브젝트의 데이터가 수신되는 속도가 감소하면 상기 전달 데이터로부터의 데이터 값에 대비한 상기 기준에 의한 값의 상대적 크기를 감소시키도록 구성된 것인 이동통신 단말기.

[청구항 13]
제 12항에 있어서,
상기 전달 데이터로부터의 데이터 값과 상기 기준에 의한 상기 값을 시간차가 있고, 상기 전달 데이터로부터의 데이터 값, 상기 전달 데이터로부터의 데이터를 상기 데이터 오브젝트의 데이터가 수신되는 속도로써 나누어 얻어지는 값이 있는 것인 이동통신 단말기.

[청구항 14]
제 12항에 있어서,
상기 전달 데이터로부터의 데이터 값과 상기 기준에 의한 상기 값을 데이터 크기값이고, 상기 기준에 의한 상기 값을, 시간으로 표현된 상기 기준에 상기 데이터 오브젝트의 데이터가 수신되는 속도를 곱하여 얻어지는 값이 있는 것인 이동통신 단말기.

[청구항 15]
제 1항에 있어서,
상기 접속 전환은, 상기 제 1통신망과 제 2통신망간에 이루어지는 것이거나 상기 제 2통신망에 접속하는 접속점간에 이루어지는 것이고, 상기 제 2통신망은 그 서비스 권역이 상기 제 1통신망에 비해 상대적으로 국지적이고 산포된 특성을 갖는 통신망인 것인 이동통신 단말기.

[청구항 16]
제 15항에 있어서,
상기 이동통신 단말기는, 상기 복수의 이중망 모두를 액세스할 수 있도록 구성되거나 또는 상기 제 2통신망 하나를 액세스할 수 있도록 구성된 것인 이동통신 단말기.

[청구항 17]
제 1항에 있어서,
상기 데이터 송수신부는, 상기 접속전환이 상기 제 1통신망에서 상기 제 2통신망으로 행해질 경우에 대한 상기 기준을, 상기 제 2통신망에서 상기 제 1통신망으로 행해질 경우에 대한 상기 기준보다는 더 높게 설정하도록 더 구성되고, 상기 제 2통신망은 데이터 서비스의 이용시, 비용이 없거나 이용비용을 배제한 이용이 상기 제 1통신망보다 적게 드는 통신망인 것인 이동통신 단말기.

[청구항 18]
제 1항 또는 제 17항에 있어서,
상기 접속 전환은 상기 제 1통신망과 제 2통신망간에 이루어지며,
상기 제 2통신망이 데이터 서비스의 이용시, 비용이 없거나
확정비용을 배제한 비용이 상기 제 1통신망보다 적게 드는
통신망인 경우에, 상기 데이터 송수신부는, 현재 설정된 모드가
비용발생을 억제하기 위해 설정된 모드이고, 현재 접속된
통신망이 상기 제 1통신망이면 상기 정해진 기준을 더 적게
조정하도록 더 구성된 것이 이동통신 단말기.

[청구항 19]
제 1항 또는 제 17항에 있어서,
상기 접속 전환은 상기 제 1통신망과 제 2통신망간에 이루어지며,
상기 제 2통신망이 데이터 서비스의 이용시, 비용이 없거나
확정비용을 배제한 비용이 상기 제 1통신망보다 적게 드는
통신망인 경우에, 상기 데이터 송수신부는, 현재 설정된 모드가
데이터 서비스의 이용편의를 우선하는 모드이고, 현재 접속된
통신망이 상기 제 1통신망이면 상기 정해진 기준을 더 크게
조정하도록 더 구성된 것이 이동통신 단말기.

[청구항 20]
제 1항에 있어서,
상기 제 1통신망에 대한 데이터 사용현황과 사용자의 요금제 정보,
그리고 요금제 기간에 따른 잔여시간에 근거하여, 비용발생을
억제하기 위해 설정된 모드와 데이터 서비스의 이용편의를
우선하는 모드를 적어도 포함하는 모드들 중 하나를 자동으로
결정하도록 구성된 모드 설정부를 더 포함하여 구성하고, 상기
데이터 송수신부는, 상기 결정된 모드에 따라 상기 정해진
기준을 선택적으로 조정하도록 더 구성된 것이 이동통신 단말기.

[청구항 21]
제 1항에 있어서,
상기 데이터 송수신부는, 현재 접속된 통신망 또는 접속점의
통신특성의 변동폭이 기 지정된 제한치이상이면 상기 정해진
기준을 더 적게 조정하도록 더 구성되며, 상기 통신특성에는
수신신호의 세기 또는 데이터 수신속도가 포함되는 것인 이동통신
단말기.

[청구항 22]
제 1항에 있어서,
상기 데이터 송수신부는, 접속전환 대상의 통신망 또는 접속점의
통신특성의 변동폭이 기 지정된 제한치이상이면 상기 정해진
기준을 더 크게 조정하도록 더 구성되며, 상기 통신특성에는
수신신호의 세기 또는 데이터 수신속도가 포함되는 것인 이동통신
단말기.

[청구항 23]
제 1항에 있어서,
상기 데이터 송수신부는, 접속전환 대상의 통신망 또는 접속점의
통신특성이 일정 기준이상 양호하면 상기 정해진 기준을 더 적게
조정하도록 더 구성되며, 상기 통신특성에는 수신신호의 세기
또한 데이터 수신속도가 포함되는 것인 이동통신 단말기.
제 1항에 있어서,
상기 데이터 송수신부는, 상기 데이터 오브젝트의 수신완료에 대해 지정한 시간에서 상기 데이터 수신에 의해 경과된 시간을 차감한 날은 시간의 크기, 또는 상기 데이터 오브젝트의 수신완료에 대해 지정한 시점까지 현재 날은 시간의 크기에 근거하여 상기 정해진 기준을 조정하도록 구성된 것인 이동통신 단말기.
제 2항에 있어서,
상기 데이터 송수신부는, 현재 접속된 통신망이 상기 제 2항의 경우에는 상기 날은 시간의 크기와 기준시간에 비해 크면 상기 정해진 기준을 더 크게 조정하도록 구성되어야 한다. 상기 제 2항의 경우, 데이터 서비스의 이용시, 비용이 없거나 확정비용을 배제한 비용이 상기 제 1항의 경우보다 적게 드는 통신망이고, 상기 기준시간은, 상기 미수신된 전송량을 현재 접속된 통신망에 대해 파악된 또는 예측된 전송속도로 나누어 얻은 값으로부터 정해지는 것인 이동통신 단말기.
제 1항에 있어서,
상기 데이터 오브젝트의 데이터는, 수신과 함께 플레이가 되는 시트리밍 방식으로 수신되거나 또는 수신에 의해 파일로 저장되는 다운로드 방식으로 수신되는 것인 이동통신 단말기.
제 1항에 있어서,
상기 데이터 송수신부는, 접속 전환이 이루어지면, 이전 접속되었던 통신망 또는 접속점으로부터 수신하였던 데이터 오브젝트의 데이터에 연이어지는 지점의 데이터부터 요청하는 통신규약에 의한 요구를 전환된 통신망 또는 접속점을 통해 상기 외부 서버로 전송함으로써 상기 데이터 오브젝트를 이어받아 상기 데이터 채널을 통해 상기 처리부에 제공하도록 더 구성된 것인 이동통신 단말기.
제 1항에 있어서,
상기 처리부는, 상기 데이터 채널로부터 데이터 오브젝트의 데이터를 인출 또는 수신하여 그 데이터를 디코딩하거나 또는 디코딩되게 하도록 구성된 미디어 처리부를 포함하여 구성되는 것인 이동통신 단말기.
제 1항에 있어서,
무선 통신망을 이용할 수 있는 이동통신 단말기에 있어서, 복수의 이종망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를
수신하면서 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값이, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키도록 구성된 데이터 송수신부와,

상기 수신되는 데이터 오브젝트의 데이터를 저장단면에 기록하도록 구성된 기록부를 포함하여 구성되는 이동통신 단말기.
무선 통신망을 정제할 수 있는 이동통신 단말기에는, 지정된 데이터 오브젝트의 데이터를 확득하도록 구성된 데이터 획득부와,

복수의 이동망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해, 상기 데이터 획득부로부터 수신되는 상기 데이터 오브젝트의 데이터를 외부 서버에 송신하면서 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 데이터량에 대한 값이, 정해진 기준에 의한 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 전환시키도록 구성된 데이터 송수신부를 포함하여 구성되는 이동통신 단말기.

무선 통신망을 사용하여 데이터를 수신하는 방법에 있어서, 복수의 이동망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 수신하는 1단계와,

상기 수신되는 데이터를, 데이터 오브젝트에 대해 의도된 동작을 수행하기 위한 처리부에 제공하면서 상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하는 2단계와,

현재 상태가 접속전환 조건의 하나에 해당하면, 상기 확인되는 잔여 데이터량에 대한 값과 정해진 기준에 의한 값을 비교하고, 그 비교결과에 따라 접속 전환을 선택적으로 수행하는 3단계를 포함하여 이루어지며,

상기 3단계에서는, 상기 잔여 데이터량에 대한 상기 값이 상기 기준에 의한 상기 값보다 작으면 접속을 전환시키지 않는 것이고
 선택적으로 접속을 전환하면서 데이터를 수신하는 방법.

제 31항에 있어서,
상기 접속 전환 조건에는,
상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망 또는 접속점의 통신상태 불량과,
상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망보다 서비스 특성이 우수한 통신망의 이용가능과, 상기 데이터 오브젝트의 데이터가 수신되고 있는 접속점보다 통신특성이 양호한 접속점의 이용가능과, 데이터 서비스의 이용시 비용이 없거나 확정비용을 배제한 비용이, 상기 데이터 오브젝트의 데이터가 수신되고 있는 통신망보다 보다 적게 드는 통신망의 이용가능이 포함되는 것인 선택적으로 접속을 전환하면서 데이터를 수신하는 방법.

무선 통신망을 사용하여 데이터를 송신하는 방법에 있어서, 지정된 데이터 오브젝트의 데이터를 확득하는 1단계와, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해, 상기 확득되는 데이터 오브젝트의 데이터를 외부 서버로 송신하면서 상기 데이터 오브젝트에서 미신신된 잔여 데이터량을 확인하는 2단계와, 현재 상태가 접속전환 조건의 하나에 해당하면, 상기 확인되는 잔여 데이터량에 대한 값과 정해진 기준에 의한 값을 비교하고, 그 비교결과에 따라 접속 전환을 선택적으로 수행하는 3단계를 포함하여 이루어지며,

상기 3단계는, 상기 잔여 데이터량에 대한 상기 값이 상기 기준에 의한 상기 값보다 작으면 접속을 전환시키지 않는 것인 선택적으로 접속을 전환하면서 데이터를 송신하는 방법.

저장공간에 저장된 프로그램을 통신망을 통해 제공하는 프로그램 공급장치에 있어서, 통신을 통해 외부와 데이터를 송수신할 수 있는 통신수단과, 상기 통신수단을 통해 송신되는, 이동통신 단말기에서 실행되는 이플리케이션이 수록되어 있는 저장수단을 포함하여 구성되며, 상기 이플리케이션은, 상기 이동통신 단말기에서 실행되는 경우, 데이터 채널을 구성하고, 복수의 이중망 환경하에 하나의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 데이터 오브젝트의 데이터를 수신하는 동작을 수행하는 프로그램 구조와,

상기 수신되는 데이터를 상기 데이터 채널을 통해 상기 처리부에 제공하는 동작을 수행하는 프로그램 구조와,

상기 데이터 오브젝트에서 미수신된 잔여 데이터량을 확인하고, 또한 현재 상태가 접속전환 조건의 하나에 해당하는 경우에는, 상기 확인되는 잔여 데이터량에 대한 제 1값을, 정해진 가중치에 의한 제 2값과 비교하여, 상기 제 1값이 상기 제 2값보다 작으면 접속을 전환시키지 않고 상기 제 2값보다 크면 접속 전환시키는
동작을 수행하는 프로그램 구조를 포함하여 구성되는 것인 프로그램 공급장치.

[청구항 35]
상기 이플러케이션은, 상기 이동통신 단말기에서 실행되는 경우, 상기 테이터 채널로부터 테이터 오브젝트의 테이터를 인출 또는 수신하여 그 테이터를 디코딩하거나 또는 디코딩되게 하는 동작을 수행하거나 또는 파일로서 저장하는 프로그램 구조를 더 포함하여 구성되는 것인 프로그램 공급장치.

[청구항 36]
 저장공간에 저장된 프로그램을 통신망을 통해 제공하는 프로그램 공급장치에 있어서, 통신을 통해 외부와 테이터를 송수신할 수 있는 통신수단과, 상기 통신수단을 통해 송신되는, 이동통신 단말기에서 실행되는 이플러케이션의 수록되어 있는 저장수단을 포함하여 구성되어, 상기 이플러케이션은, 상기 이동통신 단말기에서 실행되는 경우, 복수의 저장장치에서 임의의 통신망에 접속된 상태에서 그 통신망을 통해 외부 서버로부터 테이터 오브젝트의 테이터를 수신하는 동작을 수행하는 프로그램 구조와, 상기 테이터 오브젝트에서 미수신된 잔여 테이터량을 확인하고, 또한 현재 상태가 접속전환 조건이 존재하는 경우에는, 상기 확인되는 잔여 테이터량에 대한 값이, 정해진 기준에 의해 값보다 작으면 접속을 전환시키지 않고, 상기 기준에 의해 상기 값보다 크면 접속 전환시키는 동작을 수행하는 프로그램 구조와, 상기 수신되는 테이터 오브젝트의 테이터를 저장수단에 기록하는 동작을 수행하는 프로그램 구조를 포함하여 구성되는 것인 프로그램 공급장치.

[청구항 37]
 저장공간에 저장된 프로그램을 통신망을 통해 제공하는 프로그램 공급장치에 있어서, 통신을 통해 외부와 테이터를 송수신할 수 있는 통신수단과, 상기 통신수단을 통해 송신되는, 이동통신 단말기에서 실행되는 이플러케이션의 수록되어 있는 저장수단을 포함하여 구성되어, 상기 이플러케이션은, 상기 이동통신 단말기에서 실행되는 경우, 저장된 테이터 오브젝트의 테이터를 확득하고, 복수의 저장장치에서 임의의 통신망에 접속된 상태에서 그 통신망을 통해, 상기 획득되는 테이터 오브젝트의 테이터를 외부 서버로 송신하는 동작을 수행하는 프로그램 구조와, 상기 테이터 오브젝트에서 미수신된 잔여 테이터량을 확인하고, 또한 현재 상태가 접속전환 조건이 존재하는 경우에는, 상기 확인되는 잔여 테이터량에 대한 값이, 정해진 기준에 의해
값보다 작으면 접속을 진환시키지 않고, 상기 기준에 의한 상기 값보다 크면 접속 진환시키는 동작을 수행하는 프로그램 구조를 포함하여 구성되는 것인 프로그램 공급장치.
Fig. 5

Content Data

CB_rate (bytes/sec) (retrieve rate)

Buf_Data (bytes)

Receive_rate (bytes/sec)

T Underrun = buf_Data / (CB_rate - Receive_rate)

PT Underrun = β x T Underrun

PT Underrun

p_Recv_Th = Receive_rate x PT Underrun

RemDataToReceive ≥ p_Recv_Th?

SS33

SS34

이 야오

사용량의 전환을 결정

전환 결정작업 종료

Fig. 6

N - 1 Byte

Original Network

Network changed

N Byte

Content Server

Changed Network

HTTP Requests:
Start data transmission from N Byte thru session on changed Network)
[Fig. 7]

before Network change

41

after Network change

N-1 Byte

42

N Byte

113a

400

[Fig. 8]

GET http://vod.airplug.com/video/movieABC.mp4 HTTP/1.1
User-Agent: maoagent/0.4.1b

Modified

GET http://vod.airplug.com/video/movieABC.mp4 HTTP/1.1
User-Agent: maoagent/0.4.1b
Range: bytes=N

50

51