发明名称
信息处理设备、信息处理方法以及程序

摘要
本发明涉及信息处理设备、信息处理方法以及程序。所提供的信息处理设备包括：显示部，其包括屏幕；触摸板，其被布置为使得触摸板叠加在屏幕上；以及控制器。控制器被配置为：检测预定的模式改变操作并且设定写入模式，模式改变操作包括其中将触摸板上的至少两个点分别指示为静止点和移动点的操作，并且输入与移动点的移动路径相对应的一系列坐标数据作为写入数据。
1. 一种信息处理设备，其包括：
显示部，其包括屏幕；
触摸板，其被布置为使得所述触摸板叠加在所述屏幕上；以及
控制器，其被配置为：
检测预定的模式改变操作并且设定写入模式，所述模式改变操作包括其中将所述触摸板上的至少两个点分别指示为静止点和移动点的操作，并且
输入与所述移动点的移动路径相对应的一系列坐标数据作为写入数据。
2. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为在设定了所述写入模式时既没有检测到静止点也没有检测到移动点的情况下，取消所述写入模式。
3. 根据权利要求2所述的信息处理设备，其中
所述控制器被配置为
在所确定的点的移动速度小于第一阈值的情况下，将该点确定为静止点，并且
在所确定的点的移动速度大于等于所述第一阈值的情况下，将该点确定为移动点。
4. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为在被确定为移动点的点的移动速度达到小于等于第二阈值的值时，将移动点重新确定为静止点，所述第二阈值小于所述第一阈值。
5. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为将如下操作检测为所述模式改变操作，在该操作中，同时指示了多个静止点和一个移动点。
6. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为将如下操作检测为所述模式改变操作，在该操作中，同时指示了一个静止点和一个移动点，并且静止点的尺寸和移动点的尺寸满足预定关系。
7. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为将如下操作检测为所述模式改变操作，在该操作中，同时指示了一个静止点和一个移动点，并且静止点被指定在所述触摸板上所限定的改变区域中。
8. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为将如下操作检测为所述模式改变操作，在该操作中，用手指指示了一个静止点并且同时用笔指示了一个移动点。
9. 根据权利要求1所述的信息处理设备，其中
所述控制器被配置为将如下操作检测为所述模式改变操作，在该操作中，同时指示了一个静止点和一个移动点，并且移动点移动了预定角度或更大角度并且移动了预定距离或者更大距离。
10. 一种信息处理方法，其包括：
由控制器检测预定的模式改变操作并且设定写入模式，所述模式改变操作包括其中将触摸板上的至少两个点分别指示为静止点和移动点的操作，所述触摸板被布置为使得所述触摸板叠加在屏幕上；以及
由所述控制器输入与所述移动点的移动路径相对应的一系列坐标数据作为写入数据。
11. 一种程序，其使得计算机用作：
控制器，其被配置为：

检测预定的模式改变操作并且设定写入模式，所述模式改变操作包括其中将触摸板上的至少两个点分别指示为静止点和移动点的操作，所述触摸板被布置为使得所述触摸板叠加在屏幕上；并且

输入与所述移动点的移动路径相对应的一系列坐标数据作为写入数据。
信息处理设备、信息处理方法以及程序

技术领域
[0001] 本公开涉及可以通过触摸板接收用户的操作输入的信息处理设备、信息处理方法以及程序。

背景技术
[0002] 在诸如例如智能手机、PDA或个人计算机的信息处理设备中，用户在其上显示有内容的屏幕上以由他来画出字符或线的方式拖动他的手指或者笔。因此，可以在屏幕上将拖动位置的信息显示为用户所浏览的内容的标记信息，并且将其与内容相关联地存储。在相当多的信息处理设备中安装了该功能。
[0003] 然而，这种功能是作为仅仅在执行了如下操作之后才能使用的应用来安装的，在该操作中浏览内容的用户对该功能进行选择和调用。因此，难以无缝地执行从浏览内容到标记内容的操作。更具体地，对功能进行选择和调用的操作通常包括多个操作过程。这多个操作过程包括：调用用户可以在其上选择目标功能的菜单，以及在菜单屏幕上选择分配给目标功能的图标或项目。可替选地，可以采用对分配给功能的快捷方式进行选择的操作。然而，在任何情况下，用户将他的眼睛从他曾经浏览的内容移开并且执行用于对功能进行调用的操作。因此，用户会感到操作麻烦。
[0004] 日本专利申请公开第2007-233649号（以下，称为专利文献1）（0019-0028段，图4）公开了一种信息处理设备，其包括用于省略上述对功能进行选择的操作的装置。就是说，在专利文献1中描述的信息处理设备包括液晶显示器件和写字板。写字板被布置在液晶显示器件的前表面，并且接收用手指或笔进行的手写输入操作。在写字板周围提供传感器。传感器检测操作写字板的用户的手掌的压力。处理器在笔或手指接触写字板时基于传感器的输出来确定操作写字板的用户的手掌是否压住了传感器。此外，当操作写字板的用户的手掌压住了传感器时，执行内容操作/编辑模式。当手掌没有压住传感器时，执行内容滚动操作。因此，在浏览Web（网络）页面的情况下，通过用笔拖曳屏幕而无需用手掌触摸计算机，可以自由地上下左右对显示进行滚动。同时，当手掌触摸计算机时，不执行滚动。在该情况下，用户可以用笔点击Web页面上的链接和按钮，在Web页面上的搜索框等中进行输入，并且执行其他操作。
[0005] 传统上，当显示内容浏览屏幕时，为了输入关于内容的手写数据，可以由用户执行对写入功能独立进行选择和调用的操作。因此，难以无缝地执行从浏览内容到对内容进行写入的操作。
[0006] 此外，根据在专利文献1中描述的已知技术，需要提供传感器来检测操作写字板的用户的手掌的压力。结果，设备的尺寸会增加。

发明内容
[0007] 由于上述情况，期望提供一种可以如通过触摸板上的操作来容易地调用对于显示内容的写入功能、开始手写输入操作并且改进可操作性的信息处理设备、信息处理方法和程
序。
[0008] 根据本公开的实施例，提供了一种信息处理设备，其包括显示器、其包含屏幕；
触摸板，其被放置为使得触摸板叠加在屏幕下；以及控制器。控制器被配置为：检测预定的
模式改变操作并且设定写入模式，模式改变操作包括其中将触摸板上的至少两个点分别指
示为静止点和移动点的操作；并且输入与移动点的移动路径相对应的一系列坐标数据作为
写入数据。
[0009] 根据本公开的实施例，控制器可以基于触摸板上的移动操作来改变手写输入模
式，并且立即开始手写数据的输入。此外，可以创建了由用户自己在触摸板上执行手写
输入的操作模式的动作检测为改变到手写输入模式的操作。因此，用户可以无缝地切换到
手写输入操作，并且可以改进可操作性。
[0010] 控制器可以在设定了所述写入模式时，既没有检测到静止点也没有检测到移动点
的情况下，取消写入模式。因此，即使指示静止点或移动点的用户的手指暂时从触摸板移
开，写入模式也会继续。因此，可以改进可操作性。
[0011] 控制器被配置为在所确定的点的移动速度小于第一阈值的情况下，将该点确定为
静止点，并且在所确定的点的移动速度大于等于第一阈值的情况下，将该点确定为移动点。
[0012] 此外，控制器可以被配置为在被确定为移动点的点的移动速度达到小于等于第二
阈值的值时，将该移动点重新确定为静止点，其中第二阈值小于第一阈值。第二阈值被设定
为足够小于第一阈值的值。因此，在确定了移动点之后，降低了该点违背用户意愿从移动
点改变为静止点的可能性。因此，可以减少由移动点和静止点的频繁改变所生成的故障操
作。
[0013] 此外，控制器可以被配置为将如下操作检测为模式改变操作，在该操作中，同时指
示了多个静止点和一个移动点。
[0014] 同时，控制器可以被配置为将如下操作检测为模式改变操作，在该操作中，同时指
示了一个静止点和一个移动点，并且静止点的尺寸和移动点的尺寸满足预定关系。
[0015] 同时，控制器可以被配置为将如下操作检测为模式改变操作，在该操作中，同时指
示了一个静止点和一个移动点，并且静止点被确定在触摸板上所限定的改变区域中。
[0016] 同时，控制器可以被配置为将如下操作检测为模式改变操作，在该操作中，用
手指指示了一个静止点并且同时用笔指示了一个移动点。
[0017] 同时，控制器可以被配置为将如下操作检测为模式改变操作，在该操作中，同时指
示了一个静止点和一个移动点，并且移动点移动了预定角度或更大角度并且移动了预
定距离或者更大距离。
[0018] 根据本公开的另一实施例，提供了一种信息处理方法，其包括：由控制器检测预
定的模式改变操作并且设定写入模式，模式改变操作包括其中将触摸板上的至少两个点分别
指示为静止点和移动点的操作，触摸板被布置为使得触摸板叠加在屏幕上；以及由控制器
输入与移动点的移动路径相对应的一系列坐标数据作为写入数据。
[0019] 根据本公开的另一实施例，提供了一种程序，其使得计算机用作：控制器，其被配
置为：检测预定的模式改变操作并且设定写入模式，模式改变操作包括其中将触摸板上的
至少两个点分别指示为静止点和移动点的操作，触摸板被布置为使得触摸板叠加在屏幕上
并且输入与移动点的移动路径相对应的一系列坐标数据作为写入数据。
如上所述，根据本公开的实施例，通过可操作板上的操作可以容易地调用对于显示内容的写入功能，可以开始手写输入操作，并且可以改进手写操作性。

本公开的这些和其他目标、特征和优点将通过如附图中所图示的、对其最佳形式
实施例的以下详细描述而变得更加明显。

附图说明

图 1 是示出了根据本公开的实施例的信息处理设备的外观图像的透视图；
图 2 是说明了图 1 的信息处理设备的结构的透视图；
图 3 是示出了图 1 的信息处理设备的硬件配置的框图；
图 4 是关于在图 1 的信息处理设备中根据触摸板上的操作进行的处理的流程图；
图 5 是示出了操作 1 的操作模式的示例的图；
图 6 是示出了内容数据和写入数据之间的关系的图；
图 7 是关于在根据第二实施例的信息处理设备中根据触摸板上的操作进行的处理的流程图；
图 8 是示出了在根据第三实施例的信息处理设备的触摸板的检测表面上提供的、用于改变到手写输入模式的改变区域的图；
图 9 是关于在根据第三实施例的信息处理设备中根据触摸板上的操作进行的处理的流程图；
图 10 是说明了第三实施例的修正示例的图；
图 11 是关于在第四实施例的信息处理设备中根据触摸板上的操作进行的处理的流程图；
图 12 是详细说明了第五实施例的信息处理设备中根据操作 5 的确定方法的图；
图 13 是详细说明了第五实施例的信息处理设备中的对捏合操作的确定的图，并且
图 14 是关于在第五实施例中的信息处理设备中根据触摸板上的操作进行的处理的流程图。

具体实施方式

根据本公开的实施例，提供了一种信息处理设备，其包括：显示部，其包括屏幕，
触摸板，其被布置为使触摸板叠加在屏幕上，以及控制器。控制器被配置为：检测预设的
模式改变操作并且设定写入模式，模式改变操作包括其中将触摸板上的至少两个点分别指
示为静止点和移动点的操作，并且输入与移动点的移动路径相对应的一系列坐标数据作为
写入数据。

根据本公开的实施例，还提供了一种信息处理方法，其包括：由控制器检测预设的
模式改变操作并且设定写入模式，模式改变操作包括其中将触摸板上的至少两个点分别指
示为静止点和移动点的操作，触摸板被布置为使触摸板叠加在屏幕上，以及由控制器输入
与移动点的移动路径相对应的一系列坐标数据作为写入数据。

以下，将参照附图描述本公开的实施例。

实施例涉及采用如下形式的信息处理设备，其中将触摸板布置在显示部的屏幕
上。在实施例的信息处理设备中，内容等的显示数据显示在屏幕上。在这种状态下，用户在触摸板上执行“预定的到手写输入模式的改变操作”，结果，设定了手写输入模式，而且可以写入手写数据。

[0040] “预定的到手写输入模式的改变操作”是其中静止地指示触摸板上的至少一个点并且动态地指示一个其他的点的操作。以下，静止地指示的点被称为“静止点”，而动态地指示的点被称为“移动点”。

[0041] 更具体地，将采用以下操作作为“预定的到手写输入模式的改变操作”。

[0042] 操作 1，其中同时指示多个静止点和一个移动点的操作。

[0043] 操作 2，其中同时指示一个静止点和一个移动点，并且静止点的尺寸和移动点的尺寸满足预定关系的操作。

[0044] 操作 3，其中同时指示了一个静止点和一个移动点，并且静止点被指定在触摸板上所限定的改变区域中的操作。

[0045] 操作 4，其中用手指指示了一个静止点并且同时用笔指示了一个移动点的操作。

[0046] 实施例的信息处理设备的具体产品形式包括智能手机、PDA（个人数字助理）、移动个人计算机、用于家用电器的遥控器等。当然，不用说的是，实施例的信息处理设备可应用于其他产品形式。

[0047] 以下，将更详细地描述实施例的信息处理设备。

[0048] （第一实施例）

[0049] 图 1 是示出了根据本公开的实施例的信息处理设备的外观图像的图。

[0050] 如图 1 所示，本实施例的信息处理设备 10 包括外壳 11。外壳 11 具有类似于如下长方体的形状，该长方体具有较之宽度和长度的尺寸而言小的厚度。外壳 11 的尺寸是用户可以用一只手握住的尺寸或者大于该尺寸。在类似于长方体的外壳 11 中，容纳有构成信息处理设备 100 的各种电器件。在外壳 11 的一个主表面上，布置有包括触摸板的显示部 12。外壳 11 的主表面和包括触摸板的显示部 12 的输入 / 输出表面近似地位于同一平面上。如图 2B 所示，包括触摸板的显示部 12 包括显示面板 13 和触摸板 14。显示面板 13 是诸如液晶显示面板、有机EL（电致发光）显示面板等。触摸板 14 被布置为使得触摸板 14 叠加在显示面板 13 的屏幕上。触摸板 14 是例如电容性触摸板等。触摸板 14 可以采用能检测由用户同时指示的多个位置的其他类型。触摸板 14 可以是例如压敏的、红外的、声学的等。

[0051] 图 3 是示出了图 1 的信息处理设备 100 的硬件配置的图。

[0052] 如图 3 中所示，信息处理设备 100 包括 CPU 21、ROM（只读存储器）22、工作存储器 23，存储部 24，网络接口部 25，数据输入 / 输出接口部 26，触摸板接口部 27，显示控制部 28，触摸板 14，显示面板 13，系统总线 29 等。

[0053] ROM 22 存储有 CPU 21 执行的程序、各种固定数据等。

[0054] 工作存储器 23 是用作 CPU 21 进行的算法处理的作业空间的存储器。

[0055] 存储部 24 是存储诸如内容（例如图像、文档、运动图像和音乐）数据的用户数据的设备。存储部 24 更具体地是指可重写的大容量存储器件，诸如存储器卡、SSD（固态驱动器）或 HDD（硬盘驱动器）。

[0056] 网络接口部 25 是执行与网络（诸如因特网或局域网）的有线 / 无线连接处理的接口。
数据输入/输出接口部 26 是用于向/从外部设备输入/输出数字数据的接口部。更具体地，数据输入/输出接口部 26 是例如 HDMI（高解多媒体接口）接口等。

触摸板接口部 27 控制触摸板 14，并且基于由触摸板 14 得到的检测信号来生成数字坐标。

显示控制器 28 生成输出到显示面板 13 的显示数据。

CPU（中央处理单元）21 控制构成信息处理设备 100 的各部，并且控制各部之间的输入/输出。此外，CPU 21 可以执行存储在 ROM 22 和工作存储器 23 中的程序，并且执行各种处理。例如，CPU 21 可以根据用于浏览内容的程序来对存储在存储部 24 中的内容数据，从因特网上下载的 Web 页面等进行解码，将解码结果供应给显示控制器 28，使得显示面板 13 显示解码结果，并且执行其他处理。

此外，CPU 21 根据用于向触摸板 14 输入操作的程序来确定由用户进行的触摸板 14 的各种操作，并且根据预定操作来执行各种处理。此时，所预定的操作主要包括：

1. 拖曳操作，
2. 挤合操作，
3. 手写输入操作等。

CPU 21 确定各种操作，并且改变输入模式。因此，CPU 21 根据各种操作来执行处理。

（本实施例中的行为）

接下来，将描述本实施例的信息处理设备 100 的行为。

首先，将描述在对触摸板 14 进行操作的情况下本实施例的信息处理设备 100 的行为。注意，假设采用操作 1 作为“预定的到手写输入模式的改变操作”。

图 4 是关于在本实施例的信息处理设备 100 中根据触摸板 14 上的操作进行的处理的流程图；

CPU 21 基于从触摸板 14 经由触摸板接口部 27 输入的一系列坐标数据，确定由用户指示的点的数量。在确定仅指示了一个点的情况下（步骤 S101 中的“是”），CPU 21 设定拖曳操作模式，并且根据所指示的点的移动来执行对应于拖曳操作的处理（步骤 S102）。对应于拖曳操作的处理的示例包括例如滚动页面、移动显示对象等。

此外，在确定指定了两个点的情况下（步骤 S103 中的“是”），CPU21 设定挤合操作模式，并且根据所指示的两个点的移动来执行对应于挤合操作的处理（步骤 S104）。挤合操作的示例包括“捏合放大（pinch-out）”和“捏合缩小（pinch-in）”。“捏合放大”是其中所指示的两个点彼此逐渐远离的操作。“捏合缩小”是其中所指示的两个点彼此逐渐靠近的操作。将例如放大显示内容的处理分配给捏合放大。将例如缩小显示内容的处理分配给捏合缩小。

此外，在确定指定了三个或更多个点的情况下（步骤 S105 中的“是”），CPU 21 确定上述操作 1 的条件是否成立。也就是说，CPU 21 确定这三个点是否是多个静止点和一个移动点（步骤 S106）。此处，例如如下确定静止点和移动点。

CPU 21 计算已由 CPU 21 确定为由用户所指示的各个点的移动速度。在移动速度小于第一阈值的情况下，CPU 21 确定该点是“静止点”。在移动速度大于等于第一阈值的情况下，CPU 21 确定该点是“移动点”。“
此外，CPU 21 也在将点确定为移动点之后监控移动速度。当移动速度达到小于等于第二阈值的值时，CPU 21 将该点从移动点改变为静止点。此处，第二阈值是小于第一阈值的值。以这种方式，在确定了移动点之后，减小了该点违背用户的意愿从移动点改变为静止点的可能性。

在确定操作 1 的条件成立的情况下（步骤 S106 中的“是”），CPU 21 设定手写输入模式（步骤 S107）。此后，CPU 21 执行基于所检测的移动点的一系列坐标数据来生成用户写入数据的处理。在操作 1 的上述条件不成立的情况下，流程返回步骤 S101。

图 5 是示出了操作 1 的操作模式的示例的图。在该示例中，用户例如用左手的两个手指指示了两个静止点 P1、P2，并且用右手的手指指示了移动点 P3。因为该操作，设定了手写输入模式。此后，用户在触摸板 14 的表面上滑动右手的指尖。因此，输入了对应于移动点 P3 的移动路径的坐标数据序列。

同时，一旦设定了手写输入模式之后，手写输入模式可以持续到既没有检测到两个静止点 P1、P2 也没有检测到一个移动点 P3 为止。结果，在改变到手写输入模式之后，在只有移动点 P3 留在触摸板 14 上的情况下，也可以通过使移动点 P3 移动来输入手写数据。

在手写输入模式下既没有检测到两个静止点 P1、P2 也没有检测到一个移动点 P3 的情况下，CPU 21 重新设定所设定的模式，并且从头开始执行对应于触摸板 14 上的操作的模式改变处理。注意，模式的类似的持续和重新设定以及模式改变处理的重新开始不仅适用于手写输入模式，也适用于拖曳操作模式和捏合操作模式。

CPU 21 对一系列所输入的坐标数据执行规范化处理（诸如移除噪音分量），从而生成写入数据。如图 6 所示，CPU 21 将写入数据存储在工作存储器 23 中所提供的写入数据区域 231 中。此外，CPU 21 在显示存储器 232 中展开该数据，从而使得显示面板 13 显示该数据。结果，用户可以实时确认所写入的内容。关于内容的写入数据是在空间上对应于内容的显示数据的数据。例如，写入数据是位图数据等。在接收到存储来自用户的写入数据的指令情况下，CPU 21 从工作存储器 23 中的写入数据区域 231 读取写入数据。此外，CPU 21 将该数据例如与用于搜索的索引数据（诸如创建的日期和时间以及内容数据识别信息）相关联地存储在存储部 24 中。

此外，基于来自用户的调用指令，存储在存储部 24 中的写入数据可以在写入数据区域 231 和显示存储器 232 中展开，并且在显示面板 13 上显示。此外，可以再次设定手写输入模式，并且可以重新开始执行操作。

如上所述，根据本实施例，可以基于触摸板 14 上的预定操作来执行改变到手写输入模式，并且手写数据的输入可以立即开始。此外，可以将用户自己进行的创建操作模式以及在触摸板 14 上执行手写输入的动作检测为改变到手写输入模式的执行。因此，用户可以无缝地切换到手写输入操作，并且可以改进可操作性。

（第二实施例）

接下来，将描述其中采用操作 2 作为“预定的到手写输入模式的改变操作”的信息处理设备。

本实施例的特征在于 CPU 21 确定由用户指示的多个点是否是静止点或移动点，并且此外确定各个点的尺寸。
例如，用拇指指示了静止点而用食指指示了移动点。此处，用拇指指示的点的尺寸大于用食指指示的点的尺寸。因此，基于所指示的点的尺寸，可以确定在指示中所使用的手指。

图 7 是关于在根据本实施例的信息处理设备中根据触摸板 14 上的操作进行的处理的流程图。

CPU 21 基于从触摸板 14 经由触摸板接口部 27 输入的一系列坐标数据，确定由用户所指示的点的数量。在确定仅指示了一个点的情况下（步骤 S201 中的“是”），CPU 21 设定拖曳操作模式，并且根据所指示的点的移动来执行对应于拖曳操作的处理（步骤 S202）。

此外，在确定指示了两个点的情况下（步骤 S203 中的“是”），CPU 21 比较这两个点的尺寸，并且确定两个点的尺寸的差异是否大于等于预定阈值（步骤 S204）。在确定两个点的尺寸的差异小于预定阈值的情况下（步骤 S204 中的“否”），CPU 21 设定组合操作模式，并且根据所指示的两个点的移动来执行对应于组合操作的处理（步骤 S205）。注意，尽管此处假设评估两个点的尺寸的差异，但是也可以评估两个点的尺寸比例。

在两个点的尺寸的差异大于等于预定阈值的情况下（步骤 S204 中的“是”），CPU 21 确定操作 2 的上述条件是否成立。也就是说，CPU 21 确定是否尺寸较大的点是静止点而尺寸较小的点是移动点（步骤 S206）。在确定操作 2 的条件成立的情况下（步骤 S206 中的“是”），CPU 21 设定手写输入模式，并且基于移动点的一系列坐标数据来生成用户写入数据（步骤 S207）。

注意，在上述操作 2 的条件不成立的情况下，不执行手写输入操作。

如上所述，根据本实施例，可以基于触摸板 14 上的预定操作来执行改变到手写输入模式，并且手写数据的输入可以立即开始。此外，可以将用户自己进行的创建操作模式以在触摸板 14 上执行手写输入的动作检测为改变到手写输入模式的操作。因此，用户可以无缝地切换到手写输入操作，并且可以改进可操作性。

接下来，将描述其中采用操作 3 作为“预定的到手写输入模式的改变操作”信息处理设备。

在本实施例中，例如图 8 中所示，在触摸板 14 的检测表面的四边的边缘部分中设定用于改变到手写输入模式的改变区域 31。在确定将改变区域 31 中的任意位置指示为静止点并指示了一个移动点的情况下，CPU 21 设定手写输入模式。

图 9 是关于在根据本实施例的信息处理设备中根据触摸板 14 上的操作进行的处理的流程图。

CPU 21 基于从触摸板 14 经由触摸板接口部 27 输入的一系列坐标数据，确定由用户所指示的点的数量。在确定仅指示了一个点的情况下（步骤 S301 中的“是”），CPU 21 设定拖曳操作模式，并且根据所指示的点的移动来执行对应于拖曳操作的处理（步骤 S302）。

此外，在确定指示了两个点的情况下（步骤 S303 中的“是”），CPU 21 确定这两个点是否是静止点和移动点（步骤 S304）。在确定两个点是静止点和移动点的情况下，CPU 21 确定静止点是否在触摸板 14 的检测表面的改变区域 31 中（步骤 S305）。如果静止点位于改变区域 31 中，则 CPU 21 确定上述操作 3 的条件成立。因此，CPU 21 设定手写输入模式，并且基于移动点的一系列坐标数据来生成用户写入数据（步骤 S306）。

10
注意，在步骤 S304 中确定两个点不是静止点和移动点的组合的情况下，以及在步骤 S305 中确定静止点不在改变区域 31 的情况下，CPU 21 设定捏合操作模式，并且根据所检测的两个点的移动来执行对应于捏合操作的处理（步骤 S307）。

如上所述，根据本实施例，可以基于触摸板 14 上的预定操作来执行改变到手写输入模式，并且手写数据的输入可以立即开始。此外，可以将用户自行进行的创建操作模式以在触摸板 14 上执行手写输入的动作检测为改变到手写输入模式的操作。因此，用户可以无缝地切换到手写输入操作，并且可以改进可操作性。

（修改的示例 1）

在上述第三实施例中，在触摸板 14 的检测表面的四边的边缘部分上提供改变区域 31。然而，本公开不限于此。

例如，如图 10 中所示，改变区域可以被布置为触摸板 14 的检测区域上的任意位置上的可见对象 32。此外，对象 32 的位置可以由用户自由改变。

（第四实施例）

接下来，将描述其中采用操作 4 作为“预定的到手写输入模式的改变操作”的信息处理设备。

在本实施例的信息处理设备中，CPU 21 区分触摸板 14 上用笔指示的点和用用户的手指指示的点。作为区分用笔指示的点和用手指指示的点的方法，可以采用基于所指示的点的尺寸或形状等来进行区分的方法。用笔指示的点在尺寸上小于用手指指示的点。此外，用笔指示的点的形状相对稳定。因此，可以区分用笔指示的点和用手指指示的点而在准确度上没有问题。

图 11 是关于在本实施例的信息处理设备中根据触摸板 14 上的操作进行的处理的流程图。

CPU 21 基于从触摸板 14 经由触摸板接口部 27 输入的一系列坐标数据，确定由用户所指示的点的数量。在确定仅指示了一个点的情况下（步骤 S401 中的“是”），CPU 21 设定拖曳操作模式，并且根据所指示的点的移动来执行对应于拖曳操作的处理（步骤 S402）。

此外，在确定指示了两个点的情况下（步骤 S403 中的“是”），CPU 21 分别确定这两个点是否是由手指指示的点（步骤 S404）。在分别确定两个点是由手指指示的点的情况下（步骤 S404 中的“是”），CPU 21 设定捏合操作模式，并且根据所检测的两个点的移动来执行对应于捏合操作的处理（步骤 S405）。

此外，CPU 21 确定上述操作 4 的条件是否成立。也就是说，CPU 21 判断是否静止点是用手指指示的而移动点是用笔指示的（步骤 S406）。在上述操作 4 的条件成立的情况下（步骤 S406 中的“是”），CPU 21 设定手写输入模式，并且基于移动点的一系列坐标数据来生成用户写入数据（步骤 S407）。

在步骤 S406 中上述条件不成立的情况下，以及在步骤 S403 中检测到三个或更多个点的情况下，不执行手写输入操作。

如上所述，根据本实施例，可以基于触摸板 14 上的预定操作来执行改变到手写输入模式，并且手写数据的输入可以立即开始。此外，可以将用户自行进行的创建操作模式以在触摸板 14 上执行手写输入的动作检测为改变到手写输入模式的操作。因此，用户可以无缝地切换到手写输入操作，并且可以改进可操作性。
[0112] （第五实施例）
[0113] 在本实施例中，采用以下操作5作为“预定的到手写输入模式的改变操作”。
[0114] 操作5，其中包括指示了一个静止点和一个移动点，并且移动点移动了预定角度或更大角度并且移动了预定距离或者更大距离的操作。
[0115] 图12是详细说明了上述操作5的确定方法的图。在图12中，用户的左手的指尖指示的点被称为静止点P1。用右手的指尖先是指示的点被称为初期的移动点P2。假设用右手的指尖指示的点的位置从初期的移动点P2移动距离Dx到达移动点P3。此外，线L1和线L2之间的角度被称为θx。此处，线L1是连接静止点P1和初期的移动点P2的线。线L2是连接移动点P2和移动之后的移动点P3的线。在该情况下，在各个条件θx ≥ θr和Dx ≥ Dr都满足的情况下，确定生成操作5。此处，θr是移动点的移动角度的预设阈值。Dr是移动点的移动距离的预设阈值。这些阈值可以由用户按照意愿任意改变。
[0116] 此外，在各个条件θx ≥ θr和Dx ≥ Dr中至少一个条件不满足的情况下，确定捏合操作。图13是捏合操作的示例。在该示例中，满足各个条件θx ≥ θr和Dx ≥ Dr中的条件Dx ≥ Dr，但是不满足条件θx ≥ θr。因此，确定捏合操作。
[0117] 图14是关于在本实施例中的信息处理设备中根据触摸板14上的操作进行的处理的流程图。
[0118] CPU21基于从触摸板14经由触摸板接口部27输入的一系列坐标数据，确定由用户所指示的点的数量。在确定仅指示了一个点的情况下（步骤S501中的“是”），CPU21设定拖曳操作模式，并且根据所指示的点的移动来执行对应于拖曳操作的处理（步骤S502）。
[0119] 此外，在确定指示了两个点的情况下（步骤S503中的“是”），CPU21确定这两个点中是否仅一个点是移动点（步骤S504）。在确定两个点都是移动点的情况下或者在确定两个点都是静止点的情况下（步骤S505中的“否”），CPU21设定捏合操作模式，并且根据所检测的两个点的移动来执行对应于捏合操作的处理（步骤S505）。
[0120] 在确定两个点中仅一个点是移动点的情况下（步骤S504中的“是”），CPU21确定移动点角度θx是否大于等于预定角度θr（步骤S506）。此处，移动点角度θx是在移动点移动了预定距离Dr或更大距离的情况下的角度。在确定移动点角度θx（在移动点移动了移动距离Dr或更大距离的情况下的角度）大于等于预定角度θr的情况下（步骤S506中的“是”），CPU21设定手写输入模式，并且基于移动点的一系列坐标数据来生成用户输入数据（步骤S507）。此外，即使移动点移动了移动距离Dr或更大距离，在移动点角度θx小于预定角度θr的情况下，或者在移动点移动的距离Dx没有达到预定距离Dr的情况下（步骤S506中的“否”），CPU21设定捏合操作模式，并且执行对应于捏合操作的处理（步骤S505）。
[0121] 如上所述，根据本实施例，可以基于触摸板14上的预定操作来执行改变到手写输入模式，并且手写数据的输入可以立即开始。此外，可以将用户自己进行的创建操作模式在触摸板14上执行手写输入的动作检测为改变到手写输入模式的操作。因此，用户可以无缝地切换到手写输入操作，并且可以改进可操作性。
[0122] 本公开不限于上述实施例，而是在本公开的技术设想的范围内进行各种修改。
[0123] 本公开所包括的主题内容涉及在2010年9月6日提交日本专利局的日本在先专
专利申请 JP 2010-198801 以及在 2010 年 10 月 10 日提交日本专利局的日本在先专利申请 JP 2010-251986 中所公开的主题内容。这些在先专利申请的全部内容通过引用合并于此。

【0124】本领域普通技术人员应该理解,可以根据设计需要和其他因素进行各种修改、组合、子组合和变更,只要它们在所附权利要求或其等同的范围内即可。
图 4
图 5
We would like to purchase a discount airplane ticket from Tokyo to Beijing. The departure date is AM10:00 April 14 and the return date is AM12:00 April 21. My credit card number is ABCD-EFGH-1234-5678, and expiration date is July 1, 2011. Please confirm this reservation by return mail or fax. *****

OK
We would like to purchase a discount airplane ticket from Tokyo to Beijing. The departure date is AM10:00 April 14 and the return date is AM12:00 April 21. My credit card number is ABCD-EFGH-1234-5678, and expiration date is July 1, 2011. Please confirm this reservation by return mail or fax.

图 8
We would like to purchase a discount airplane ticket from Tokyo to Beijing. The departure date is AM10:00 April 14 and the return date is AM12:00 April 21. My credit card number is ABCD-1234-5678, and expiration date is July 2011. Please confirm the reservation by return mail or fax. •••••.
图 11
图12
图 14