
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0112252 A1

US 2006O112252A1

Dixon (43) Pub. Date: May 25, 2006

(54) DEVICE-MANAGED HOST BUFFER Publication Classification

(75) Inventor: Robert W. Dixon, Longmont, CO (US) (51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 711/170; 711/114; 710/22

9 Le ke A method and apparatus is provided to virtually increase the
SONs PARKWAY size of the memory cache of a peripheral device without

additional cost. A portion of the memory space of a host
ST. PAUL, MN 55125 (US) computer is used as additional cache memory for the periph

eral device. The peripheral device and the host computer
73) Assi : S te Technol LLC may be interfaced with an interface that has a first-party (73) Assignee: Seagate Technology direct memory access (FPDMA) mechanism, for example,
(21) Appl. No.: 11/265,617 IEEE 1394 or Serial ATA. FPDMA allows the peripheral

device to access the memory space of the host computer
1-1. under the COntrol Of the perheral deV1ce. The hOSt COm (22) Filed: Nov. 2, 2005 der th 1 of the peripheral device. The h

puter provides the peripheral device with the location of the
Related U.S. Application Data additional cache memory. The peripheral device can transfer

data to and from the additional cache memory via FPDMA.
(63) Continuation of application No. 10/443,947, filed on The peripheral device effectively manages the additional

May 22, 2003, now Pat. No. 6,981,123.

START

QUERY WHETHER
MEMORY IS

AVAILABLE IN HOST

204

IS
MEMORY

AVAILABLEN
HOST

206

ADDITIONAL CACHE
MEMORY IN THE

HOST

208

PROVIDE
PERIPHERAL
DEVICE WITH
LOCATION OF

ADDITIONAL CACHE
MEMORY

210

MANAGE THE
ADDITIONAL CACHE
MEMORY WATHE
PERPHERAL

DEVICE

22

cache memory as part of the peripheral device's own cache.

2OO

-

NO

214

US 2006/0112252A1 Patent Application Publication May 25, 2006 Sheet 1 of 4

Patent Application Publication May 25, 2006 Sheet 2 of 4 US 2006/0112252A1

START 202

2OO

-
QUERY WHETHER

MEMORY IS
AVAILABLE IN HOST

204

IS
MEMORY

AVAILABLE IN
HOST

?

2O6 NO

ADDITIONAL CACHE
MEMORY IN THE

HOST

208

PROVIDE
PERIPHERAL
DEVICE WITH
LOCATION OF

ADDITIONAL CACHE
MEMORY

210

MANAGE THE
ADDITIONAL CACHE
MEMORY VIA THE
PERPHERAL

DEVICE

FIG.2

214

212

Patent Application Publication May 25, 2006 Sheet 3 of 4 US 2006/0112252A1

300

302

SHOULD
PERPHERAL

DEVICE SEND DATA
TO ADDITIONAL
CACHE MEMORY

304

308
SEND DATA

TO ADDITIONAL
CACHE MEMORY

306

FG.3

Patent Application Publication May 25, 2006 Sheet 4 of 4 US 2006/0112252A1

START

402 400

-
DID

HOST REQUEST
DATA2

IS
REOUESTED
DATA IN DISC
CACHE2

TRANSFER DATA
FROM DSC CACHE

TO HOST

IS
REOUESTED

DATA IN ADDITIONAL

RETRIEVE DATA
FROMADDITIONAL
CACHE MEMORY
TO DISC CACHE

PROVIDE
HOST WITH /
LOCATION OF

DATA
- - - - - -

414

t
RETRIEVE DATA
FROM DSC AND
SEND DATA TO

HOST

FIG.4

US 2006/01 12252 A1

DEVICE-MANAGED HOST BUFFER

FIELD OF THE INVENTION

0001. This application relates generally to memory cach
ing in a peripheral device and more particularly to a method
and apparatus for using a portion of a memory space of a
host computer as additional cache memory for a peripheral
device.

BACKGROUND OF THE INVENTION

0002 The performance of a peripheral device that has a
memory cache can be substantially increased when the size
of the memory cache is increased. However, increasing the
size of the memory cache of a peripheral device can be
prohibitively expensive. Consequently, peripheral devices
have limited cache capability built into them. This limited
cache memory potentially provides a Substantial burden on
the throughput that the host and the peripheral device are
able to handle, and thus achievable performance of the
peripheral device in operation is a compromise of perfor
mance and cost.

0003. Accordingly there is a need for effectively increas
ing the buffer memory of a peripheral device without addi
tional cost. The present invention provides a solution to this
and other problems, and offers other advantages over the
prior art.

SUMMARY OF THE INVENTION

0004. Against this backdrop the present invention has
been developed. In embodiments of the present invention,
the effective size of the memory cache of a peripheral device
is virtually increased by allocating unused, available
memory space in a host computer to use by the peripheral
device cache. According to one example, a method and
apparatus is provided for virtually increasing the size of the
memory cache of a peripheral device by ascertaining if there
is memory space available in a connected host. In this case,
the host allocates a portion of a memory space of the host for
use as additional cache memory for the peripheral device.
The host may provide the peripheral device with the location
of the additional memory as well. The peripheral device
itself may manage the additional cache memory, and pref
erably transfers data to and from the additional cache
memory via first-party direct memory access.
0005 These and various other features as well as advan
tages which characterize the present invention will be appar
ent from a reading of the following detailed description and
a review of the associated drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0006)
0007 FIG. 2 illustrates an exemplary process for virtu
ally increasing the size of a memory cache of a peripheral
device in accordance with an embodiment of the present
invention.

0008 FIG. 3 illustrates an exemplary process for saving
data in the additional cache memory in accordance with an
embodiment of the invention.

0009 FIG. 4 illustrates an exemplary process for retriev
ing data from a data storage device such as a disc drive in
accordance with an embodiment of the present invention.

FIG. 1 illustrates an exemplary disc drive.

May 25, 2006

DETAILED DESCRIPTION

0010. In an embodiment of the present invention, a
portion of a memory space of a host may be used as
additional cache memory for a peripheral device. One Such
peripheral device may be a data storage device Such as a disc
drive.

0011 Referring now to FIG. 1, shown therein is a
functional block diagram of a disc drive 100, generally
showing the main functional circuits which are resident on
the disc drive printed circuit board and used to control the
operation of the disc drive 100. FIG. 1 illustrates a disc drive
for exemplary purposes only; as the embodiments of the
present invention can be applied to any peripheral device
that has a memory cache, including a disc drive. The disc
drive 100 is operably connected to a host computer or other
device 140 in a conventional manner. Control communica
tion paths are provided between the host computer 140 and
a disc drive microprocessor 142, the microprocessor 142
generally providing top level communication and control for
the disc drive 100 in conjunction with programming for the
microprocessor 142 stored in a microprocessor memory
(MEM) 143. The MEM 143 can include random access
memory (RAM), read only memory (ROM) and other
Sources of resident memory for the microprocessor 142.
0012. The discs 108 are rotated at a constant high speed
by a spindle motor control circuit 148. During a seek
operation; the actuator 110 moves the heads 118 between
tracks on the discs 108. A servo control circuit 150 controls
the position of the heads 118. During a seek operation the
microprocessor 142 receives information regarding the
velocity of the head 118, and uses that information in
conjunction with a velocity profile stored in memory 143 to
communicate with the servo control circuit 150, thereby
causing the actuator assembly 110 to be pivoted.

0013 Data is transferred between the host computer 140
or other device and the disc drive 100 by way of an interface
144, which typically includes a buffer to facilitate high
speed data transfer between the host computer 140 or other
device and the disc drive 100. Data to be written to the disc
drive 100 is thus passed from the host computer 140 to the
interface 144 and then to a read/write channel 146, which
encodes and serializes the data and provides the requisite
write current signals to the heads 118. To retrieve data that
has been previously stored in the disc drive 100, read signals
are generated by the heads 118 and provided to the read/
write channel 146, which performs decoding and error
detection and correction operations and outputs the retrieved
data to the interface 144 for subsequent transfer to the host
computer 140 or other device.
0014. The interface 144 in embodiments of the present
invention preferably includes a first-party direct memory
access (FPDMA) mechanism. Serial Advanced Technology
Attachment (SATA) and Institute of Electrical and Electron
ics Engineers (IEEE) 1394 are two examples of an interface
144 that includes an FPDMA mechanism.

00.15 Direct memory access (DMA) is a method of direct
communication between a peripheral and the buffer memory
of a host computer. Typically, the communication between
the peripheral and the host computer is controlled by a DMA
controller, which is a specialized processor that transfers
data between buffer memory and peripheral while allowing

US 2006/01 12252 A1

the central processing unit (CPU) to perform other tasks.
Typically, the CPU first programs the registers associated
with each channel of the DMA controller. The registers in
the DMA controller are given a start address of a first buffer
in buffer memory where data can be read from or written to,
the length of this buffer, and the direction of the data flow.
A peripheral requesting a DMA transfer first signals the
DMA controller via a DMA request signal. The DMA
controller, in turn, responds by returning a corresponding
DMA acknowledge signal.

0016. The DMA controller then directs the transfers,
asserting address and strobing lines, with the peripheral
asserting or receiving data to or from buffer memory. When
the length field of the buffer in the DMA controller goes to
Zero and there is still data to be transferred, the DMA
controller sends the peripheral a signal that the buffer in
buffer memory is full or empty, stopping the peripherals
activity. The DMA controller or peripheral also asserts a
CPU interrupt signal. In response to the interrupt, the CPU
reprograms the DMA controller, giving the DMA controller
a start address of a subsequent buffer where data is to be read
from or written to, the length of this buffer, and the direction
of the data flow. After the DMA controller has been repro
grammed, data transfer resumes.
0017 FPDMA is an alternative method for DMA in
which the peripheral device is a bus master. The peripheral
device may have address and control lines that connect the
peripheral to the buffer memory or there may be other
methods to allow the peripheral device to program the host
DMA controller. The address and control lines or other
method allow the peripheral device to access information
regarding the location of buffers that need to be read or
written to without interrupting the CPU. FPDMA allows the
peripheral device to access the buffer memory of the host
computer under the control of the peripheral device itself.
Hardware in the host computer 140 may be configured to
allow data to be sent into the memory space of the host
computer 140 via FPDMA.
0018. The buffer in interface 144 is a memory cache.
Whenever data is accessed from the disc, the data requested,
and additional adjacent data, is stored in the memory cache.
ROM in MEM 143 may include code in a module for
performing certain acts of the peripheral device in accor
dance with the present invention, and the host computer 140
preferably includes a driver that includes code for perform
ing certain acts of the host computer 140 in accordance with
the present invention.
0019 FIG. 2 illustrates an exemplary process 200 that
may be provided, for example, in Such a code module, for
virtually increasing the size of a memory cache of a periph
eral device such as disc drive 100. Process 200 is preferably
incorporated into a software module in the ROM 143 of the
peripheral device and includes start block 202, block 204,
decision block 206, block 208, block 210, block 212, and
end block 214.

0020. After start block 202, the process proceeds to block
204. At block 204, the peripheral device 100 queries the host
computer 140 whether memory is available in the memory
space of the host 140. After block 204, the process proceeds
to decision block 206. At decision block 206, the host
computer 140 evaluates whether memory is available in the
memory space of the host 140. The process proceeds from

May 25, 2006

decision block 206 to end block 214 when memory is not
available in the memory space of the host 140. The process
proceeds from decision block 206 to block 208 when
memory is available in the memory space of host 140.
0021. At block 208, the host 140 allocates additional
cache memory from the memory space of the host computer
140. The process proceeds from block 208 to block 210. At
block 210, the host computer 140 provides the peripheral
device with the location of the additional cache memory.
According to one example, the host computer 140 responds
to the query, the peripheral device 100 receives the response,
and the response includes the location of the additional
cache memory. The process proceeds from block 210 to
block 212. At block 212, the peripheral device 100 manages
the additional cache memory. The process proceeds from
block 212 to end block 214.

0022. The additional cache memory may be continuous
address space. Alternatively, a table of addresses may be
used.

0023 Process 200 involves a two-part handshake. This
handshake may be implemented in several ways. According
to one example, the host computer 140 includes a driver that
recognizes when the peripheral device 100 is connected to
the host computer 140, and the driver automatically allo
cates a pre-determined amount of the additional cache
memory and provides the peripheral device 100 with the
location of the additional cache memory when the peripheral
device 100 is connected to the host 140.

0024. According to another example, when the peripheral
device 100 is connected to the host 140, the driver queries
the peripheral device how much memory the peripheral
device 100 needs. The peripheral device 100 then responds
to this request. Next, the host 140 allocates the requested
amount of memory space as the additional cache memory,
and provides the peripheral device 100 with the location of
the additional cache memory.
0025. According to another example, when the peripheral
device 100 is connected to the host 140, the peripheral
device 100 makes a query whether a specific amount of
memory is available, and the host 140 responds to the query.
The host 140 then allocates that amount of memory as
additional cache memory and provides the peripheral device
100 with the location of the additional cache memory, if the
specific amount of memory is available.
0026. According to another example, when the peripheral
device 100 is connected to the host 140, the module in the
peripheral device 100 makes a query whether any memory
is available, and the host 140 responds with the amount of
memory available if any. The peripheral device then
responds with the amount of memory that it requires, and the
host responds in turn with the location of the additional
cache memory.
0027 Process 200 thus effectively allows the peripheral
memory cache module to use the additional host cache
memory as if it were part of the peripheral memory cache,
therefore virtually increasing the size of the peripheral
memory cache.
0028 FIG. 3 illustrates an exemplary process (300) for
saving data in the additional cache memory. Process 300
includes start block 302, decision block 304, block 306, and
end block 308.

US 2006/01 12252 A1

0029. After start block 302, the process proceeds to
decision block 304. At decision block 304, the module in the
peripheral device 100 evaluates whether the peripheral
device 100 should send any data from the memory cache of
the peripheral device 100 to the additional cache memory.
According to one example, the peripheral device 100 evalu
ates that it should send data from the memory cache to the
additional cache memory when the memory is full, and new
data is about to be added to the memory cache. However, in
various embodiments of process 300, any criteria may be
used for evaluating whether data should be sent from the
memory cache to the additional cache memory. The process
proceeds from decision block 304 to end block 308 when the
peripheral device 100 evaluates that the peripheral device
100 should not send data from the memory cache to the
additional cache memory. The process proceeds from deci
sion block 304 to block 306 when the peripheral device 100
evaluates that the peripheral device 100 should send data
from the memory cache to the additional cache memory.
0030) At block 306, the data is transferred from the
memory cache of the peripheral device 100 to the additional
cache memory. The transfer is accomplished via FPDMA.
The transfer may be accomplished as follows. The interface
144 indicates to the host 140 an address of the host that will
be written to. Next, the interface 144 waits to receive a
signal from the host 140 indicating that the host 140 is ready
to receive data at the indicated address. Then, data is sent to
the indicated address. The interface 144 may be a SATA
interface that uses the first-party DMA protocol described in
the SATA specification to transfer data from the memory
cache to the additional cache memory. After block 306, the
process proceeds to end block 308.
0031. According to one example, the peripheral device
100 keeps a table of all entries for the additional cache
memory. The table may include information Such as the
starting address of the entry, the size of the entry, and other
information describing the data. According to another
example, the host computer 140 keeps a table of all entries
for the additional cache memory.
0032 FIG. 4 illustrates an exemplary process 400 in the
module in the peripheral device 100 for retrieving data from
the disc drive 100. Process 400 includes start block 402,
decision block 403, decision block 404, block 406, decision
block 408, block 412, and end block 414. According to a first
embodiment, process 400 further includes block 410.
According to a second embodiment, process 400 further
includes block 416. Although FIG. 4 illustrates an example
of process 400 in which the peripheral device 100 is a disc
drive, any peripheral device with a memory cache can be
used.

0033. The process begins at block 402 in which routine
400 is called. Control then passes to query operational block
403. In query block 403, the disc drive 100 module evaluates
whether data was requested from the host 140. The process
continually loops back to decision block 403 if data is not
being requested from the host 140. However, control trans
fers from decision block 403 to decision block 404 when
data is requested from the host 140.
0034). In decision block 404, the disc drive 100 evaluates
whether the requested data is in the memory cache of the
disc drive 100. If the requested data is not in the memory
cache control transfers from decision block 404 to decision

May 25, 2006

block 408. Control transfers from decision block 404 to
block 406 if the requested data is in the memory cache. At
block 406, the data is transferred from the memory cache to
the host. The transfer is accomplished via whatever protocol
host 140 is expecting. Control then transfers from block 406
to end block 414 where this routine ends.

0035) If on the other hand, control transferred to decision
block 408 because the data was not in the memory cache, it
is evaluated whether the requested data is in the additional
cache memory. The evaluation may be made by searching a
table of entries for the additional cache memory that is kept
by the disc drive 100. Alternatively, disc drive 100 may
retrieve a table of entries for the additional cache memory
that is kept by the host 140, or in another location, and then
the disc drive 100 searches the table of entries in order to
evaluate whether the requested data is stored in the addi
tional cache memory.

0036) Control transfers from decision block 408 to block
412 if the requested data is not in the additional cache
memory. If the requested data is in additional memory,
control transfers to retrieve the data. According to the first
embodiment, the process proceeds from decision block 408
to block 410 when the requested data is in the additional
cache memory. According to the second embodiment, the
process proceeds from decision block 408 to block 416
when the requested data is in the additional cache memory.
0037 According to the first embodiment, in operational
block 410, data is transferred from the additional cache
memory to the memory cache of the disc drive 100. The
transfer is accomplished preferably via FPDMA. The trans
fer may be accomplished as follows. The interface 144
indicates to the host an address of the host that will be read
from. The interface 144 of the disc drive 100 then waits to
receive a signal from the host indicating that the data at the
indicated address is ready to be read. When the signal is
received, the requested data is read from the indicated
address. The interface 144 may be a SATA interface that uses
the first-party DMA protocol described in the SATA speci
fication to transfer data from the memory cache to the
additional cache memory. The process proceeds from block
410 to block 406.

0038 According to the second embodiment, at block 416,
the host 140 is provided with the location of the requested
data in the memory space of the host. The process proceeds
from block 416 to end block 414 where control returns to the
calling routine.

0039. At block 412, data is retrieved from the disc 108
and sent to the host 140. The process proceeds from block
412 to end block 414 where control again returns to the
calling routine.

0040. In summary, an embodiment of the present inven
tion may be viewed as a method (such as 200) for virtually
increasing a size of a cache (such as 144) of a peripheral
device (such as 100) that is connectable to a host (such as
140). The method includes querying the host (Such as in acts
204 and 206) whether memory is available in a memory
space of the host (such as 140). The method also includes
allocating (such as in act 208) additional cache memory
from the memory space of the host for use by the peripheral
device if memory is available in the memory space of the
host.

US 2006/01 12252 A1

0041 Alternatively, an embodiment of the present inven
tion may be viewed as a peripheral device (such as 100) that
is connectable to a host computer (such as 140). The
peripheral device includes a memory cache (Such as 144).
The peripheral device also includes means for using a
portion of a memory space of the host computer as addi
tional cache memory for the peripheral device (such as in
acts 202 through 214). The using means may be imple
mented in the ROM (such as 143) of the peripheral device.
The using means includes means for making a query to the
host (such as in act 206) whether memory is available in the
memory space of the host. The using mean also includes
means for receiving a response (Such as in act 210) to the
query if memory is available in the memory space of the
host, wherein the response includes a location of the addi
tional cache memory.
0042. The using means also includes means for evaluat
ing whether data should be transferred from the memory
cache of the peripheral device to the additional cache
memory in the memory space of the host (such as in acts 302
through 308). The using means also includes means for
transferring data (such as in acts 402 through 414) from the
memory cache of the peripheral device to the additional
cache memory via first-party direct memory access (DMA)
when data should be transferred from the memory cache of
the peripheral device to the additional cache memory. The
using means also includes means for evaluating whether
requested data is in the additional cache memory (such as in
acts 408 and 410) if the host requests the requested data.
0043. It will be clear that the present invention is well
adapted to attain the ends and advantages mentioned as well
as those inherent therein. While a presently preferred
embodiment has been described for purposes of this disclo
Sure, various changes and modifications may be made which
are well within the scope of the present invention. For
example, Some of the examples described above used a disc
drive for purposes of illustration. However, the invention
can be applied to any peripheral device that has a memory
cache, Such as a printer or scanner, not just a disc drive.
Numerous other changes may be made which will readily
Suggest themselves to those skilled in the art and which are
encompassed in the spirit of the invention disclosed and as
defined in the appended claims.

1-30. (canceled)
31. A method for virtually increasing a size of a cache of

a peripheral device that is connectable to a second device,
comprising:

querying the second device whether memory is available
in a memory space of the second device; and

allocating additional cache memory from the memory
space of the second device for use by the peripheral
device if memory is available in the memory space of
the second device.

32. The method of claim 31, further comprising:
managing the additional cache memory via the peripheral

device.
33. The method of claim 32, further comprising:
providing the peripheral device with a location of the

additional cache memory assigned.

May 25, 2006

34. The method of claim 32, wherein managing the
additional cache memory comprises:

evaluating whether data should be transferred from the
cache of the peripheral device to the additional cache
memory; and

transferring data from the cache of the peripheral device
to the additional cache memory if the data should be
transferred.

35. The method of claim 32, wherein managing the
additional cache memory further comprises:

if the second device requests data, evaluating whether the
requested data is in the cache of the peripheral device;

transferring the requested data to the second device if the
requested data is in the cache of the peripheral device;
and

evaluating whether the requested data is in the additional
cache memory if the requested data is not in the cache
of the peripheral device.

36. The method of claim 34, wherein managing the
additional cache memory further comprises:

transferring the requested data from the additional cache
memory to the cache of the peripheral device via
first-party direct memory access if the requested data is
in the additional cache memory.

37. The method of claim 32, wherein managing the
additional cache memory further comprises:

providing the second device with a location of data
requested by the second device in the memory space of
the second device if the requested data is in the addi
tional cache memory.

38. The method of claim 34, wherein evaluating whether
data should be transferred comprises:

evaluating whether the cache of the peripheral device is
full if new data is to be stored in the cache of the
peripheral device.

39. The method of claim 34, wherein transferring data
from the cache of the peripheral device comprises:

indicating to the second device an address of the second
device that will be written to:

waiting to receive a signal from the second device indi
cating that the second device is ready to receive data at
the indicated address; and

sending the data to the indicated address upon receipt of
the signal from the second device.

40. The method of claim 34, wherein transferring data
from the cache is performed with a serial advanced tech
nology attachment (ATA) protocol, wherein the serial ATA
protocol includes a first-party direct memory access mecha
1S.

41. The method of claim 35, wherein evaluating whether
the requested data is in the additional cache memory com
prises:

searching a cache table that is stored in the memory of the
peripheral device.

42. The method of claim 35, wherein evaluating whether
the requested data is in the additional cache memory com
prises:

retrieving a cache table from the second device; and
searching the cache table for the requested data.

US 2006/01 12252 A1

43. The method of claim 36, wherein transferring data
from the additional cache memory is performed with a serial
advanced technology attachment (ATA) protocol, wherein
the serial ATA protocol includes a first-party direct memory
access mechanism.

44. The method of claim 31, wherein the peripheral device
is a hard disk drive, wherein querying the second device
comprises querying a host computer whether memory is
available in a memory space of the host computer; and
wherein allocating additional cache memory comprises allo
cating additional cache memory from the memory space of
the host computer for use by the hard disk drive if memory
is available in the memory space of the host computer.

45. A method for virtually increasing a size of a cache of
a peripheral device that is connectable to a host computer,
comprising:

querying the host computer whether memory is available
in a memory space of the host computer, and

allocating additional cache memory from the memory
space of the host computer for use by the peripheral
device if memory is available in the memory space of
the host computer.

46. The method of claim 45, wherein the data storage
device comprises a hard disc drive.

47. The method of claim 45, further comprising:
indicating to the host computer an address in the memory

space of the host computer that will be read from if
requested data is in the additional cache memory;

waiting to receive a signal from the host computer indi
cating that the data at the indicated address is ready to
be read; and

reading the data from the indicated address upon receipt
of the host signal.

48. A peripheral device connectable to a second device
having a memory space, the peripheral device comprising:

a cache memory; and

a module that allocates additional cache memory from the
memory space of the second device for use by the
peripheral device.

49. The device of claim 48 wherein the module further
manages operation of the additional cache memory.

50. The device of claim 48 wherein the module further
stores a location of the additional cache memory.

May 25, 2006

51. The device of claim 48, wherein the module further
evaluates whether data should be transferred from the cache
of the peripheral device to the additional cache memory, and
manages transfer of data from the cache of the peripheral
device to the additional cache memory if the data should be
transferred.

52. The device of claim 51, wherein the module further
evaluates whether data requested by the host is in the cache
of the peripheral device, transfers the requested data to the
second device if the requested data is in the cache of the
peripheral device, and evaluates whether the requested data
is in the additional cache memory if the requested data is not
in the cache of the peripheral device.

53. The device of claim 52, wherein the module transfers
the requested data from the additional cache memory to the
cache of the peripheral device via first-party direct memory
access if the requested data is in the additional cache
memory.

54. The device of claim 51, wherein the module evaluates
whether the cache of the peripheral device is full if new data
is to be stored in the cache of the peripheral device.

55. The device of claim 51, wherein the module indicates
to the second device an address of the second device that
will be written to, waits to receive a signal from the second
device indicating that the second device is ready to receive
data at the indicated address, and sends the data to the
indicated address upon receipt of the signal.

56. The device of claim 51, wherein the data transferred
from the cache is transferred via a serial advanced technol
ogy attachment (ATA) protocol, wherein the serial ATA
protocol includes a first-party direct memory access mecha
nism.

57. The device of claim 48, wherein the module further
provides the second device with a location of data requested
by the second device if the requested data is in the additional
cache memory.

58. The device of claim 48, wherein the module is adapted
to search a cache table that is stored in the memory of the
peripheral device.

59. The device of claim 48, wherein the peripheral device
is a data storage device.

60. The device of claim 48, wherein the peripheral device
is a hard disc drive.

61. The device of claim 48, wherein the second device is
a host computer.

