(54) 发明名称

具有排气涡轮增压器的机械增压内燃发动机
及其运转方法

(57) 摘要

本发明涉及具有排气涡轮增压器的机械增压内燃发动机及其运转方法。提供用于在压缩机的
上游引起涡流的实施例。在一个示例中，一种方法包括，在第一状况期间，经由排气再循环 (EGR) 喷
射器的切向流动管道使排气从涡轮的下游流向压缩机的上游，其中排气再循环 (EGR) 喷射器在压
缩机的上游侧被进气通道 ; 以及在第二状
cunption期间，经由 EGR 喷射器的径向流动管道使排气从涡轮的下游流向压缩机的上游。
1. 一种机械增压内燃发动机，其具有：
用于充气空气供应的进气系统，
用于排气排出的排气排出系统。

至少一个排气涡轮增压器，其包含被布置在所述排气排出系统中的涡轮和被布置所述进气系统中的压缩机，所述压缩机配备有至少一个叶轮，所述叶轮被安装在压缩机外壳中的可旋转轴上。

排气再循环装置，其包含再循环管路系统，所述再循环管路系统在所述至少一个排气涡轮增压器的所述涡轮的下游从所述排气排出系统分枝，并且所述再循环管路系统在所述至少一个压缩机叶轮的上游通向所述进气系统，以及

附加的排气再循环装置，所述附加的排气再循环装置包含管路，所述管路在所述涡轮的上游从所述排气排出系统分枝，并且所述管路在所述压缩机的下游再次通向所述进气系统。

其中所述再循环管路系统包含至少两个环形管道，所述环形管道至少在所述至少一个压缩机叶轮上游部分以螺旋的形式环绕所述进气系统，其中多个管道从每个环形管道延伸，所述管道中的每个均根据流动形式在进气侧处通过进气口被连接至所述进气系统。

所述至少两个环形管道中的第一环形管道具有多个管道，其中所述管道至少在所述进气侧处相对于所述压缩机的所述轴被大体径向地取向，并且因此在虚拟延长时与所述轴相交，并且

所述至少两个环形管道中的第二环形管道具有多个管道，其中所述管道至少在所述进气侧处以正切的方式被取向，并且因此在虚拟延长时以到所述压缩机的所述轴具有间距行进。

2. 根据权利要求1所述的机械增压内燃发动机，其中所述至少一个排气涡轮增压器的所述压缩机是径流式压缩机。

3. 根据权利要求1所述的机械增压内燃发动机，其中所述至少一个排气涡轮增压器的所述压缩机是轴流式压缩机。

4. 根据权利要求1所述的机械增压内燃发动机，其中所述至少一个排气涡轮增压器的所述压缩机具有入口区域，所述所述入口区域相对于所述压缩机的所述轴同轴地行进，并且所述入口区域被设计为使得接近所述压缩机的充气空气流大体径向地行进。

5. 根据权利要求1所述的机械增压内燃发动机，其中所述至少两个环形管道被彼此相邻地布置，并且在多区段被壁彼此分开。

6. 根据权利要求1所述的机械增压内燃发动机，其中所述再循环管路系统包含计量装置，所述所述计量装置，在所述至少一个排气涡轮增压器的所述涡轮的下游获取的排气在所述至少两个环形管道之间进行分配。

7. 根据权利要求6所述的机械增压内燃发动机，其中所述计量装置具有控制元件，通过所述控制元件，在第一工作位置中，所述第一环形管道在所述排气侧处被关闭。

8. 根据权利要求7所述的机械增压内燃发动机，其中在所述控制元件的第二工作位置中，所述第二环形管道在所述排气侧处被关闭。

9. 根据权利要求8所述的机械增压内燃发动机，其中在所述控制元件的第三工作位置中，所述第一环形管道和所述第二环形管道被连接至所述排气排出系统。
10. 根据权利要求7所述的机械增压内燃发动机，其中所述计量装置具有可枢转挡板，所述可枢转挡板充当所述控制元件。

11. 根据权利要求1所述的机械增压内燃发动机，其中所述第一环形管道被布置在所述第二环形管道的上游。

12. 根据权利要求1所述的机械增压内燃发动机，其中所述第一环形管道和/或所述第二环形管道的所述多个管道被布置，以便以规则间隔彼此分隔开。

13. 根据权利要求1所述的机械增压内燃发动机，其中所述至少两个环形管道在所述进气系统的全部圆周上环绕所述进气系统。

14. 根据权利要求1所述的机械增压内燃发动机，其中所述第二环形管道的所述多个管道至少在所述进气侧处并且在沿所述轴的方向的投影中相对于所述至少一个压缩机叶轮切向地行进。

15. 根据权利要求1所述的机械增压内燃发动机，其中所述第二环形管道的所述多个管道对齐于所述至少一个压缩机叶轮的旋转方向被取向。

16. 根据权利要求1所述的机械增压内燃发动机，其中所述第一环形管道的所述多个管道的所述进气口具有圆形形式。

17. 一种方法，其包含：

在第一状况期间，经由排气再循环喷射器，即EGR喷射器的切向流动管道使排气从涡轮的下游流向压缩机的上游，其中所述EGR喷射器在所述压缩机的上游周向地环绕进气通道；以及

在第二状况期间，经由所述EGR喷射器的径向流动管道使排气从所述涡轮的下游流向所述压缩机的上游。

18. 根据权利要求17所述的方法，其中所述第一状况包含压缩机质量流量在第一阈值之下，并且其中所述第二状况包含压缩机质量流量在第二阈值之上。

19. 根据权利要求17所述的方法，其进一步包含，调整所述EGR喷射器的控制阀的位置，以使所述排气流过所述切向流动管道或径向流动管道。

20. 一种排气再循环喷射器，即EGR喷射器，其包含：
第一周向流动管道，其具有多个径向流动端口；
第二周向流动管道，其具有多个切向流动端口；以及
控制阀，其可调整为引导EGR流通过所述第一周向流动管道、第二周向流动管道，或所述第一周向流动管道和所述第二周向流动管道两者。
具有排气涡轮增压器的机械增压内燃发动机及其运转方法

[0001] 相关申请的交叉引用
[0002] 本申请要求2014年8月14日提交的德国专利申请号102014216162.2的优先权，
为了所有目的，其整个内容被并入本文以供参考。

技术领域
[0003] 本公开涉及一种机械增压内燃发动机。

背景技术
[0004] 内燃发动机可以被用作机动车辆驱动单元。在本公开的背景下，表述“内燃发动机”包含柴油发动机和奥托循环发动机和利用混合燃烧过程的混合动力内燃发动机，以及
不仅包含内燃发动机而且包含可以以驱动内燃发动机的方式连接并从内燃发动机吸收动
力或作为可替换辅助驱动装置输出额外动力的电动机器的混合驱动装置。
[0005] 近年来，已经存在朝向小的、高度机械增压的发动机的开发的趋势，其中机械增压
主要是增加功率的方法，其中发动机中的燃烧过程所需的大气被压缩。用于汽车工程行业的
所述发动机的经济重要性日益增加。
[0006] 对于机械增压，通常利用排气涡轮增压器，其中压缩机和涡轮被布置在同一轴上。热
排排气流被供应至涡轮，并且随着能量的释放而在涡轮中膨胀，由此使轴处于旋转。由排气
流供给至涡轮并最后供应至轴的能量被用于驱动同样布置在该轴上的压缩机。压缩机输送
并压缩供应给它的充气空气，由此获得汽缸的机械增压。增压空气冷却器通常被提供在压
缩机下游的进气系统中，借助于该增压空气冷却器，被压缩的充气空气在其进入至少一个
汽缸之前被冷却。冷却器降低其温度并且由此增加充气空气的密度，使得增压空气冷却器
还有助于汽缸的充气的改善，即更大的空气质量。通过冷却的压缩发生。
[0007] 相对于机械增压器，排气涡轮增压器的优点是，在增压器与内燃发动机之间存在
或者不需要用于传递功率的机械连接。当机械增压器完全从内燃发动机获取驱动它所需的
能量并且由此降低输出功率并且因此不利地影响效率时，排气涡轮增压器利用排气的排
气能量。
[0008] 如已经提到的，机械增压用于增加功率。燃烧过程所需的空气被压缩，由此能够在
每个工作循环向每个汽缸供应更大的空气质量。以此方式，能够增加燃料质量并且因此增
加平均压力。
[0009] 机械增压是增加内燃发动机功率同时维持不变的扫气容积（swpt volume），或用于
减少扫气容积同时保持相同功率的合适手段。在任何情况下，机械增压都导致容积功率
输出的增加和改善的功率－重量比。如果扫气容积减小，那么向更高的负荷转换负荷集合
因此是可能的，在此情况下比燃料消耗较低。
[0010] 机械增压因此帮助了内燃发动机开发中致力使燃料消耗最小化，即改善内燃发动
机的效率。
[0011] 进一步基本目标是减少污染物排放。机械增压在解决该问题时同样会是有利的。
借助于机械增压的目标构造，获得关于效率和关于排气排放的优点特别是有可能的。然而为了遵循将来限制污染物排放值，除了机械增压装置外，进一步发动机内部措施是必需的。

例如，排气再循环用于减少未处理的氮氧化物排放。在这里，排气再循环率X_{EGR}被确定为$X_{\text{EGR}} = \frac{m_{\text{EGR}}}{m_{\text{EGR}} + m_{\text{新鲜空气}}}$，其中$m_{\text{EGR}}$表示被再循环的排气的质量和$m_{\text{新鲜空气}}$表示被供应的新鲜空气。

[0012] 在排气涡轮增压的构造中遇到问题，其中基本上试图在所有发动机转速范围内保持显著的性能增加。根据现有技术，然而在未达到某一发动机转速的情况下会观察到极大的扭矩下降。

[0013] 如考虑到充气压力比取决于涡轮压力比，那么所述扭矩下降是可理解的。如果发动机转速降低，这导致更小的排气质量流量，并且因此导致更高的涡轮压力比。因此，朝向较低的发动机转速，充气压力比同样降低。这相当于充气压力下降或扭矩下降。

[0014] 实际上，上述关系通常导致较小排气涡轮增压器（即如较小型涡轮横截面的排气涡轮增压器）的使用，由此能够增加涡轮压力比。然而这在高发动机转速下会削弱机械增压，并且仅仅使扭矩下降朝向更低的发动机转速改变。此外，所述方法（即如涡轮横截面的尺寸的减小）受到限制，因为期望的机械增压和性能增加在没有约束的情况下应当是不可能的，且即使在高发动机转速下施加到期望程度。

[0015] 在现有技术中，利用多种措施来试图改善机械增压内燃发动机的扭矩特性。

[0016] 一般如图所示，借助于涡轮横截面的小的设计和同时的排气放气来实现该目的，其中排气放气能够借助于排气压力或借助于排气压力来控制。这样的涡轮也称为排气涡轮。如果排气质量流量超过临界值，一部分排气流在所谓的排气放气/漏气的过程中经由旁通管路被引导经过涡轮。然而，如已经在上面讨论的所述方法具有如下缺点，即机械增压能力在相对较高的发动机转速下不足。

[0017] 此外，机械增压内燃发动机的扭矩特性可以借助于并联布置的多个涡轮增压器（即如并联布置的多个相对小的涡轮横截面的涡轮）来进一步改善，其中涡轮随着不断增加的排气流率而被连续地激活。

[0018] 扭矩特性还可以借助于串联连接的多个排气涡轮增压器来有利地影响。通过串联地连接两个排气涡轮增压器，其中一个排气涡轮增压器充当高压级并且一个排气涡轮增压器充当低压级，发动机特性映射图具体地能够沿更小的压缩机流量的方向以及沿更大的压缩机流量的方向二者都被有利地扩大（expanded）。

[0019] 具体地，借助于充当高压级的排气涡轮增压器，喘振极值沿更小的压缩机流量的方向改变是可能的，因此即使在小的压缩机流量的情况下也能够获得高充气压力比，这相当大地改善了较低的发动机转速范围内的扭矩特性。这通过设计用于小排气质量流量的高压涡轮并且通过提供借助于其随着排气质量流量增加而增加的排气量经过高压涡轮的旁通管路来实现。为此目的，旁通管路在高压涡轮的上游从排气排出系统分支出来，并在低压涡轮的上游再次通过排气排出系统。在旁通管路中布置有用于控制被引导经过高压涡轮的排气流的切断元件。

[0020] 由于其他原因，进一步地或尽可能朝向较小的压缩机流量改变排气涡轮增压装置的压缩机的喘振极限也是有利的。

[0021] 在小的压缩机流量的情况下，充气空气流相对于进气系统的速度降至接近旋转叶
轮叶片的流以过大的角度行进并且充气空气流与螺旋桨状叶片分离的程度。叶片上因而产生的压力波动导致增加的噪声排放, 并且可能导致叶片的损坏。能够出现的进一步不利影响是质量流量波动和效率的极大降低。

[0022] 这种影响能够借助于可变压缩机几何构造来消除。通过被提供在上游的导向轮叶片的调整, 接近旋转叶轮叶片的流（即接近流角度）在有限的程度上被操纵是可能的, 由此压缩机的偏振极限在压缩机特性映射图中朝向小的压缩机流量改变。

[0023] 然而, 为压缩机配备有可变压缩机几何构造是昂贵的。此外, 借助于可变压缩机几何构造的操纵能力也受到限制, 因为导向轮的调整仅在一定程度上是可能的。此外, 在相对大的压缩机流量的情况下, 导向装置构成流阻, 并且因此略微引起阻塞。

发明内容

[0024] 发明人在此已经认识到上述问题, 并且提供了一种至少部分地解决上述问题的方法。在一个示例中, 一种方法包含, 在第一状态期间, 经由排气再循环 (EGR) 喷射器的切向 (tangential) 流动管道使排气从涡轮的下方向压缩机的上游, 其中所述排气再循环 (EGR) 喷射器在所述压缩机的上游周向地环绕进气通道; 以及在第二状态期间, 经由所述 EGR 喷射器的径向流动管道使排气从所述涡轮的下方向所述压缩机的上游。

[0025] 以此方式, EGR 流可以经由周向地环绕压缩机上游的进气通道的喷射器的径向流动和/或切向流动管道被提供至压缩机的上游。流过每个相应的流动管道的那部分 EGR 可以通过控制阀进行控制。在压缩机喘振的状况期间, 例如, 更多的 EGR 可以被引导通过切向流动管道, 以便在压缩机的上游沿相当于压缩机旋转方向的方向产生涡流。这样一来, 压缩机喘振可以被减轻。

[0026] 应当理解, 提供以上概述是为了以简化的形式介绍一些概念, 这些概念在具体实施方式中被进一步描述。这并不意味着确定所要求保护的主题的关键或基本特征, 要求保护的主题的范围随附于具体实施方式的权利要求唯一地限定。此外, 要求保护的主题不限于解决在上面或在本公开的任何部分中提及的任何缺点的实施方式。

附图说明

[0027] 图 1 是包括排气再循环系统的示例发动机系统的示意图。

[0028] 图 2 以截面的方式部分地示意地示出了图 1 的发动机系统的被布置在进气系统中的压缩机。

[0029] 图 3 示出了在没有 EGR 的情况下的示例速度三角形。

[0030] 图 4 示出了在具有经由第二环形管道的 EGR 的情况下的示例速度三角形。

[0031] 图 5 示意地示出了在图 2 中图示的沿着第一环形管道相对于压缩机的轴垂直地切开的压缩机。

[0032] 图 6 示意地示出了在图 2 中图示的沿着第二环形管道相对于压缩机的轴垂直地切开的压缩机。

[0033] 图 7A 和图 7B 示意地示出了图 2 的压缩机以及在各个位置的控制元件。

[0034] 图 8 是图示用于调整压缩机上游的 EGR 涡流的方法的流程图。
具体实施方式

[0035] 在涡轮增压式发动机中的部分负荷和/或低转速的状况下，通过压缩机的质量流量相对低，导致运转非常接近或甚至在压缩机映射图的喘振区域内。由于压缩机叶片处的压力波动（叶片处的失速情况），这会引起声学和耐久性问题。在压缩机叶片处没有失速的情况下能够实现低质量流量运转的压缩机结构能够降低对喘振的敏感性。如果进入压缩机的空气示出与沿压缩机叶轮转动方向相同的反向的涡流，那么因而产生的迎角得以减小。这改善了压缩机叶片处的流动（失速效应的避免），并使喘振风险向更低的质量流量移动。取决于空气质量流量和压缩机速度，所需水平的涡流运动将会改变以避免喘振情况。

[0036] 根据本文中所公开的示例，可切换的排气再循环（EGR）喷射器刚好在压缩机的上游引起可变水平的涡流运动，以在低空气质量流量下避免喘振和压缩机失速。来自低压系统（LP-EGR）的EGR可以优选地在压缩机的上游被喷射，以当热EGR与冷环境空气混合时避免在压缩机上游凝结。本文中所描述的LP-EGR喷射器包括围绕压缩机入口的区段分体式环，其中从LP-EGR系统向压缩机入口供应EGR。区段分体式环可以包括提供具有大体径向速度分量的EGR的第一区段和提供具有大体切向速度分量的EGR的第二区段。

[0037] 压缩机入口中的切向EGR流端口被设计为在压缩机的上游将具有切向速度的EGR喷射到新鲜空气流中。这刚好在压缩机的上游沿与叶轮旋转相同的反向引起空气/EGR混合物的涡流运动。通过压缩机叶片处的速度的反向和减小，喷射线被移动至更低的质量流量状况。径向流动端口被设计为喷射不具有切向速度的EGR，以便不引起涡流。

[0038] 旋转阀可以被设置在EGR供应通道内。阀可以被配置为在两个端点处完全关闭一个区段。在中间阀位置，两个区段都完全打开。在具有切向端口的区段（例如，第二区段）完全打开并且径向端口区段（例如，第一区段）关闭的情况下，引起最高水平的涡流。在径向区段完全打开并且切向区段关闭的情况下，不引起涡流。能够通过在两个端点（最大涡流-无涡流）之间移动来调整被引起的不同水平涡流。对于给定的EGR质量流量，每一期望的涡流水平都能够被调整，因为被引起的涡流仅取决于阀位置（对于恒定的EGR质量）。

[0039] 在图1中示出了具有涡轮增压器和在压缩机的上游喷射EGR的EGR系统的发动机系统。在图2、图5、图6、图7A和图7B中以各种横截面的方式示出了图1的压缩机和EGR喷射器。图3和图4图示了当在有和没有EGR的情况下运转时可以产生的速度矢量。图8是图示用于以图1的喷射器和压缩机进行运转的方法的流程图。

[0040] 图1示出了示例发动机10的示意图，发动机10可以被包括在汽车的推进系统中。发动机10被表示为具有四个气缸或燃烧室30。然而，根据本公开可以使用其他数量的气缸。发动机10可以至少部分地被包括控制器12的控制系统以及被经由输入装置130来自车辆操作者132的输入控制。在这个示例中，输入装置130包括加速器踏板和用于产生比例的踏板位置信号PP的踏板位置传感器134。发动机10的每个燃烧室（例如，气缸）30可以包括燃烧室壁，活塞（未示出）被设置在其中。活塞可以被耦合至曲轴40，使得活塞的往复运动被转换为曲轴的旋转运动。曲轴40可以被耦合至车辆的至少一个驱动轮并使用发动机输出扭矩以推进汽车。曲轴40还可以被用来驱动交流发电机152。

[0041] 燃烧室30可以接收来自包括进气歧管44的进气系统1的进气空气，并且可以经由排气歧管46将燃烧气体排至排气通道48（在本文中也被称为排气装置）。进气歧管44和排气歧管46能够经由各自的进气门和排气门（未示出）与燃烧室30选择性地连通。在
一些实施例中，燃烧室 30 可以包括两个或更多个进气门和 / 或两个或更多个排气门。

[0042] 燃料喷射器 50 被示出直接耦接至燃烧室 30，用于以与从控制器 12 接收的信号 FPW 的脉冲宽度成比例地将燃料直接喷射进其中。以此方式，燃料喷射器 50 提供到燃烧室 30 内的所述的燃料直接喷射；然而，应认识到进气道喷射也是可能的。燃料可以通过包括燃料箱、燃料泵和燃料轨的燃料系统（未示出）被输送至燃料喷射器 50。

[0043] 在被称为点火的过程中，被喷射的燃料通过已知的点火手段（诸如火花塞 92）点燃，从而导致燃烧。火花点火正时可以被控制为使得火花在制造商规定的时间之前（提前）或之后（延迟）发生。例如，可以从最大制动扭矩（MBT）正时延迟火花正时以控制发动机爆震或在高湿度的状况下提前火花正时。具体地，由于缓慢的燃烧速率，可以提前 MBT。在一个示例中，可以在踩加速踏板期间延迟火花。

[0044] 进气系统 1 还包括进气通道 42。进气歧管 44 可以接收来自进气通道 42 的进气空气。进气通道 42 包括具有节流板 22 的节气门 21，以便调节到进气歧管 44 的流。在该特定示例中，控制器 12 可以改变节流板 22 的位置（TP），从而实现电子节气门控制（ETC）。以此方式，节气门 21 可以被转为改变提供给燃烧室 30 的进气空气。例如，控制器 12 可以调整节流板 22，以增加节气门 21 的开度。增加节气门 21 的开度可以增加供应至进气歧管 44 的空气量。在替代的示例中，节气门 21 的开度可以减小或完全关闭，以切断到进气歧管 44 的空气流。在一些实施例中，另外的节气门可以存在于进气通道 42 中，诸如压缩机 3 上游的节气门（未示出）。

[0045] 发动机 10 还可以包括诸如涡轮增压器 2 或机械增压器的压缩装置，其至少包括沿进气通道 42 布置的压缩机 3。对于涡轮增压器来说，压缩机 3 可以至少部分地由涡轮 62 通过例如轴或其他耦接设备驱动。涡轮 62 可以沿排气通道 48 布置。各种布置可以被提供，以便驱动压缩机。对于机械增压器来说，压缩机 3 可以至少部分地由发动机和 / 或电动机器驱动，并且可以不包括涡轮。因此，经由涡轮增压器或机械增压器提供给发动机的一个或多个汽油的压缩量可以被控制器 12 改变。

[0046] 在图 1 所示的实施例中，可以主要通过涡轮 62 驱动压缩机 3。可以通过通过排气通道 48 的排气驱动涡轮 62。因此，涡轮 62 的驱动运动可以驱动压缩机 3。因此，压缩机 3 的速度可以基于涡轮 62 的速度。随着压缩机 3 的速度增加，可以通过进气通道 42 为进气歧管 44 提供更多升压。

[0047] 另外，排气通道 48 可以包括排气门 26，其用于使排气转向远离涡轮 62。另外，进气通道 42 可以包括压缩机旁通阀或压缩机再循环阀（CRV）27，其被配置为使围绕压缩机 3 的进气空气转向。例如，废气门 26 和 / 或 CRV 27 可以被控制器 12 控制，以便在更低的升压压力被期望时打开。例如，响应于压缩机喘振或潜在的压缩机喘振事件，控制器 12 可以打开 CRV 27，以降低压缩机 3 出口处的压力。这可以减小或停止压缩机喘振。在一些实施例中，CRV 27 可以是可在关闭与打开位置之间调整的双位阀。在另一些实施例中，CRV 27 可以是可调整到完全打开与完全关闭之间的多个位置的多位阀。因此，可以调整 CRV 27，以改变围绕压缩机 3 的流。

[0048] 进气通道 42 还可以包括增压空气冷却器（CAC）80（例如，中间冷却器），以降低涡轮增压或机械增压的进气的温度。在一些实施例中，CAC 80 可以是空气到空气的热交换器。在另一些实施例中，CAC 80 可以是空气到液体的热交换器。CAC 80 还可以是可变体积的
CAC。来自压缩机3的热充气空气（升压的空气）进入CAC 80的入口，当其行进通过CAC时进行冷却，然后离开，从而经过节气门21，然后进入发动机进气歧管44。来自车辆外部的环境空气可以通过车辆前端并穿过CAC进入发动机10，从而辅助冷却充气空气。

另外，在所公开的实施例中，排气再循环(ERG)系统可以经由ERG通道（诸如ERG通道140）将期望的一部分排气从排气通道48传送至进气通道42。控制器12可以通过ERG阀（诸如ERG阀142）改变提供给进气通道42的ERG量。在一些状况下，ERG系统可以被用来调节燃烧室的空气与燃料混合物的温度。ERG通道140可以进一步包括ERG冷却器144，用于冷却行进通过ERG通道140的排气。ERG通道140将ERG从涡轮62的下游传送并直接传送至压缩机3或压缩机3的上游。在本文中所图示的示例中，ERG通道140经由ERG喷射器7将ERG从涡轮62的下游传送至压缩机3的上游，ERG喷射器7周地环绕压缩机3上游的进气通道42。ERG喷射器7可以包括一个或更多个管道或流动通道、流动端口等，以在ERG进入压缩机之前将ERG引入进气流。将会在下面关于图2-8讨论关于ERG喷射器7的额外细节。

在一些实施例中，除了上述的低压(LP)ERG系统外，发动机10还可以包括高压(HP)ERG系统；在高压(HP)ERG系统中经由第二ERG通道145将ERG从涡轮62的上游传送至压缩机3的下游，第二ERG通道145由第二ERG阀147控制并由第二ERG冷却器149冷却。

控制器12在图1中被示为微型计算机，其包括微处理器单元(CPU)102、输入/输出端口(I/O)104、在这个具体示例中作为只读存储器(RAM)106示出的用于可执行程序和校准值的电子存储介质、随机存取存储器(RAM)108、缓存存储器(KAM)110和数据总线。控制器12可以接收来自被接至发动机10的传感器的各种信号，以便执行各种控制功能，如发动机10运转。除了之前所讨论的那些信号外，这些信号还可以包括来自MAF传感器120的进气质量空气质量流量的测量值；来自被示地示出在发动机10内的一个位置中的温度传感器112的发动机冷却液温度(ECT)；来自耦合至曲轴40的霍尔效应传感器118(或其他类型)的有无点火感测信号(PIP)；来自如所讨论的节气门位置传感器的节气门位置信号(TPS)；以及来自如所讨论的传感器122的绝对曲轴压力传感器信号(MAP)。发动机转速信号RPM可以由控制器12根据信号PIP产生。来自歧管压力传感器的歧管压力信号MAP可以被用来提供进气歧管44中的真空或压力的指示。注意，可以使用上述传感器的各种组合，诸如具有MAF传感器而没有MAP传感器，或反之亦然。在化学计量比运转期间，MAP传感器可以给出发动机扭矩的指示。另外，这个传感器连同所检测的发动机转速能够提供被吸入汽缸内的空气（包括空气）的估计。在一个示例中，也用作发动机转速传感器的霍尔效应传感器118可以在曲轴40的每次旋转产生预定数的等间距脉冲。

可以将信号发送至控制器12的其他传感器包括在增压空气冷却器80出口处的温度和/或压力传感器124和升压压力传感器126。未被描述的其他传感器也可以存在；诸如用于确定在增压空气冷却器接口处的进气速度的传感器、用于确定进气温度的传感器以及其他传感器。

如上所述，根据本公开的排气涡轮增压的内燃发动机可以配备有高压ERG装置并且配备有低压ERG装置。

相比于从涡轮上游的排气排出系统获取的排气被引入压缩机下游的进气系统的
说明书

高压 EGR 装置，在低压 EGR 装置的情况下，已经流过涡轮的排气被再循环至入口侧。为了目的，低压 EGR 装置包含再循环管路系统，该再循环管路系统在涡轮的下游从排气排出系统分枝，并在压缩机的上游通向进气系统。

相对于高压 EGR 装置，低压 EGR 装置的主要优点是，在排气再循环期间被引入涡轮的排气流不通过再循环的排气流率来减小。全部的排气流一直在涡轮出可用于产生足够高的充气压力。

经由低压 EGR 装置被再循环至入口侧并且优选被冷却的排气在压缩机的上游与新鲜空气混合。以此方式产生的新鲜空气与再循环的排气的混合物形成充气空气，该充气空气被供应至压缩机并被压缩。

在这里，排气在低压 EGR 的过程中被引导通过压缩机这一事实不是有害的，因为优选使用的排气已经经过排气后处理，尤其是经过涡轮下游的微粒过滤器后处理的排气。因此压缩机中几乎不存在改变压缩机的几何构造（尤其是流动横截面）并且由此损害压缩机效率的沉积的风险。

根据本公开，低压 EGR 装置的再循环管路系统经由喷射器进入进气系统，其中所述喷射器包含至少两个环形管道，从一个环形管道延伸出多个管道（也被称为流动端口），该多个管道根据流被连接至进气系统。

环形管道可以具有不同的设计。第一环形管道的管道相对于压缩机的轴的虚拟延长被大体径向地取向，并且主要用于将排气引入进气系统，而第二环形管道的管道以正切（secant）或相切的方式被取向，使得从所述管道以辐射构造出现的排气围绕压缩机的轴形成涡流。

借助于第二环形管道的管道，因此尤其是在存在较小的压缩机流量的情况下相对于压缩机叶轮操纵充气空气流的速度（即接近流的速度矢量）是可能的，其中操纵的程度可以借助于从管道出现的排气流率来设定。充气空气流的速度矢量具有通过排气涡流给予其的额外分量，使得接近压缩机的旋转叶轮叶片的气流的角度能够被改变。对应的速度三角形将会在下面关于图 1b 详细地进行解释，其中根据本公开的效果将会变得清晰。

充气空气流与压缩机叶轮的螺旋桨状叶片的分离可以被消除，由此增加的噪声排放和对叶片的损坏能够被避免或减少。

压缩机特性映射图中的压缩机的喘振极限能够被进一步朝向较小的压缩机流量改变。相比于向压缩机配备有可变压缩机几何构造，根据本公开的措施是便宜的，尤其是如果考虑现代的内燃发动机一般在任何情况下都具有排气再循环装置，内燃发动机可以仅仅配备有根据本公开的再循环管路系统的特征。此外，在存在相对较大的压缩机流量的情况下，相比于导向装置，环形管道不造成流阻。

以此方式，本公开基于的第一目的得以实现，即提供了一种机械增压内燃发动机，上述缺点通过该机械增压内燃发动机得以克服，并且其机械增压行为尤其是在存在较小的压缩机流量的情况下得以显著改善。

为了实现氮氧化物排放的显著减少，需要高排气再循环率，高排气再循环率可以需要额外的排气再循环装置，为此目的，根据本公开，额外地提供高压 EGR 装置。高压 EGR 装置的优点是，存在用于排气的输送的足够高的压力梯度，并且排气不必遭受排气后处理。

在本公开的背景下，第二环形管道的管道以正切方式的取向意味着，每个管道的
虚拟延长与进气系统的弧形内壁相交，并且具体包含管道的虚拟延长相对于压缩机叶轮的外圆周切向延伸（即，在投影时相对于压缩机叶轮构成或形成切线）的极端情况。

【0066】 这样的内燃发动机的示例是有利于的，其中至少一个排气涡轮增压器的压缩机是径流式压缩机。该实施例允许排气涡轮增压器的紧凑封装，并且因此允许机械增压装置作为一个整体的紧缩封装。压缩机外壳可以呈以螺旋或蜗轮箱壳体的形式，其中排气涡轮增压器的压缩机中的充气空气流的转向能够被有利地用于在最短的路径上将被压缩的充气空气从排气涡轮增压器的涡轮的布置在其上的出口侧引导至入口侧。

【0067】 在这方面，这样的内燃发动机的示例是有利于的，其中至少一个排气涡轮增压器的涡轮是径向涡轮。该示例同样允许排气涡轮增压器的紧凑封装，并且因此允许机械增压装置作为一个整体的紧缩封装。

【0068】 相比于涡轮，压缩机根据其出离开流（exit flow）来进行定义。径流式压缩机因此为其离开转子叶片的流体直径地行进的压缩机。在本公开的背景下，”大体径向地“意味着，沿径向方向的速度分量大于轴向速度分量。

【0069】 这样的内燃发动机的示例也可以是有利于的，其中至少一个排气涡轮增压器压缩机是轴流式压缩机。离开轴流式压缩机的叶轮叶片的流体直径地行进。

【0070】 这样的内燃发动机的示例是有利于的，其中至少一个排气涡轮增压器的压缩机具有入口区域，该入口区域相对于压缩机的轴向轴向地行进，并且该入口区域被设计为使得接近压缩机的充气空气流大体轴向地行进。

【0071】 在接近压缩机的轴向流的情况下，在压缩机轴向上游的进气系统中的充气空气流转移或方向的改变通常被省掉，由此由于流量向引起的充气空气流的不必要的压力损失得以避免，并且到排气涡轮增压器的压缩机中的入口处的充气空气的压力得以增加。

【0072】 这样的内燃发动机的示例是有利于的，其中至少两个环形管道彼此相接地布置，并且被壁至少部分地彼此分开。至少两个环形管道的邻近确保了紧凑封装，并使仅通过一个控制元件调整（即计量）被引入环形管道的排气流量成为可能。

【0073】 这样的内燃发动机的示例是有利于的，其中再循环管路系统包含计量装置，在至少一个排气涡轮增压器的涡轮的下游获取的排气通过计量装置能够在至少一个环形管道之间进行分配。

【0074】 在这方面，这样的内燃发动机的示例是有利于的，其中计量装置具有控制元件，通过该控制元件，在第一工作位置中，第一环形管道在排气侧处能够被关闭。

【0075】 为了实现预定的排气再循环率的目的，第一环形管道的管道大体用于排气的引入。在这方面，如果尤其是在存在低再循环率的情况下所述管道关闭并且用于再循环的所有排气都经由第二环形管道被引入进气系统，这会是有利的。那么，即使在用于再循环的低再循环率或低排气流率的情况下，在压缩机叶轮的上游围绕压缩机的轴产生涡流仍然是可能的。

【0076】 然而，第一环形管道的管道还确保进气系统中的充气空气运动，并且因此确保再循环的排气与新鲜空气的彻底混合（即充气空气关于组分和温度的均化）。对于尤其是在多缸内燃发动机的情况下在汽缸中发生的燃烧，这是有利的。

【0077】 在这方面，这样的内燃发动机的示例也是有利于的，其中计量装置具有控制元件，通过该控制元件，在第二工作位置中，第二环形管道在排气侧处能够被关闭。
借助于第二环形管道的管道，尤其在存在小的压缩机电流的情况下操纵接近流的速度矢量是可能的。因为只要不需要这样的操纵用于优化接近流，它对于要被关闭的所述管道来说并且对于要经由第一环形管道被引入进气系统的所有再循环的排气来说都会是有利的。

在这方面，这样的内燃发动机的示例同样是有利的，其中计量装置具有控制元件，通过该控制元件，在第三工作位置中，第一环形管道和第二环形管道能够被连接至排气排出系统和/或在又一工作位置中，所述第一环形管道和第二环形管道能够与排气排出系统分开。在前者的情况下，计量装置的控制元件用于在环形管道之间分配排气，所述排气在至少一个排气涡轮增压器的涡轮的下游获取并且要被再循环。在后者的情况下，排气再循环装置借助于控制元件来停用（即关闭）。在这方面，控制元件大体也能够用作EGR阀。

在这种情况下，这样的内燃发动机的示例是有利的，其中计量装置具有可枢转挡板，该可枢转挡板充当控制元件。挡板已经被证明作为EGR阀是有利的，表现出对故障的低敏感性，并且便宜。

这样的内燃发动机的示例是有利的，其中第一环形管道和/或第二环形管道的管道被布置为以便以规则间隔被彼此分隔开。

这样的内燃发动机的示例是有利的，其中至少两个环形管道在进气系统的全部圆周上环绕进气系统。换言之，两个环形管道环绕压缩机上游的进气通道的整个圆周。

两个上述示例支持规则涡流的形成并且还支持再循环的排气与新鲜空气的彻底混合（即进气系统中的充气空气的均化）。

这样的内燃发动机的示例是有利的，其中第二环形管道的通道（至少在进气侧处并且在沿轴向的方向的投影）相对于至少一个压缩机叶轮切向地行进。管道的虚拟延长在投影时相切于压缩机叶轮的外圆周。

这样的内燃发动机的示例是有利的，其中第二环形管道的通道对应于至少一个压缩机叶轮的旋转方向的取向。

这样的内燃发动机的示例是有利的，其中至少第一环形管道的管道的进气口具有圆形形式。

本公开基于的第二子目的通过一种方法来实现，具体详述了一种用于使上述类型的内燃发动机运转的方法，其中再循环管路系统包含计量装置，在至少一个排气涡轮增压器的涡轮的下游获取的排气能够通过计量装置在至少两个环形管道之间进行分配，其中从内燃发动机的经由再循环管路系统再循环排气的运转模式开始，如果要被供应给压缩机的充气空气流量降低，经由第二环形管道被再循环到进气系统中的排气部分则被增加。

关于根据本公开的内燃发动机已经陈述的内容也应用于根据本公开的方法，由于此原因，通常在这个时候参考在上面关于机械增压内燃发动机作出的陈述。不同的内燃发动机在某种程度上需要不同的方法变体。

借助于根据本公开的方法使用，压缩机的喘振极限能够被进一步朝向较小的压缩
机流量改变。在较小的压缩机流量的情况下，接近压缩机叶轮的流（即充气空气流的速度矢量）由第二环形管道操纵。更大或更小强度的排气涡流具体通过更大量或更小量的再循环的排气来产生。充气空气流与压缩机叶轮叶片的分离被阻止。

[0091] 图示以截面的方式部分地示意地示出了图 1 的发动机系统的被布置在进气系统 1 中的压缩机 3。

[0092] 为了向气缸供应充气空气，内燃发动机具有进气系统 1，并且为了气缸的机械增加，提供了一种排气涡轮增压器，该排气涡轮增压器包含被布置在排气排出系统中的涡轮（未图示）和被布置在进气系统 1 中的压缩机 3。压缩机 3 是径流式压缩机 3b，在压缩机 3 的外壳 3c 中，叶轮 3d 被安装在可旋转轴 3e 上。

[0093] 排气涡轮增压器 2 的压缩机 3 具有入口区域 3a，该入口区域 3a 关于压缩机 3 的轴 3c 同轴地行进，并且该入口区域 3a 被设计为使得接近排气涡轮增压器 2 的压缩机 3 的充气空气流大体轴向地行进，并且压缩机 3 上游的进气系统 1 的区段（如进气通道 42）没有方向的改变。

[0094] 此外，内燃发动机配备有包含再循环管路系统的排气再循环装置，该再循环管路系统的在涡轮的下游从排气排出系统分支，并且该再循环管路系统在压缩机 3 或压缩机叶轮 3d 的上游经由喷射器 7 通向进气系统 1。

[0095] 喷射器 7 具有两个恒压管道 4.5，这两个恒压管道 4.5 在压缩机 3 中的上游以螺旋的方式并且在通道的全部圆周上环绕进气通道，其中多个管道从每个恒压管道 4.5 延伸出来，所述管道均根据流体在进气管通过进气口 4b.5b 被连接至进气系统 1。

[0096] 第二环形管道 5 用于围绕压缩机 3 的轴 3c 或围绕轴 3c 的虚拟延长具体沿轴 3c 的旋转方向产生涡流。图 3 示出了在没有 EGR 的情况下（即在没有涡流的情况下）的速度三角形，图 4 示出了在有经由第二环形管道的 EGR 的情况下（即在有涡流的情况下）的速度三角形。

[0097] 如从图 3 和图 4 能够看出的，接近压缩机叶轮的流的速度矢量 由进气系统中的充气空气的速度矢量 与旋转的压缩机叶轮的周向速度的矢量 之和组成。

[0098] 而在图 3 中存在正好轴向的充气空气流，而按照图 4 的进气系统中的充气空气的速度矢量 具有由于排气经由第二环形管道的再循环而给予其的沿压缩机叶轮的周向方向的分量。以此方式，接近压缩机叶轮的流的角度 α 得以增加。对于接近压缩机叶轮的叶轮叶片的流，这是有利的。

[0099] 图 5 示出了垂直于在图 2 中图示的实施例的压缩机叶轮 3d 的轴 3c 且沿着第一环形管道 4 的截面。第一环形管道 4 具有管道 4a，该管道 4a 关于压缩机的轴 3c 被大体径向地取向，并且因此在虚拟延长时与轴 3c 相交。

[0100] 图 6 示出了垂直于在图 2 中图示的实施例的压缩机叶轮 3d 的轴 3c 且沿着第二环形管道 5 的截面。第二环形管道 5 具有管道 5a，该管道 5a 以正切的方式被取向，并且因此在虚拟延长时以压缩机的轴 3c 的具有间距行进。每个管道 5a 的虚拟延长都与进气系统的弧形内壁相交，并且在目前的情况下在投影时相切于压缩机叶轮 3d 的外围周。

[0101] 如在上面提到的，通过一个或两个环形管道的 EGR 流可以由控制元件（也被称为阀）来控制。图 2、图 7A 和图 7B 均图示了可以被调整以控制通过喷射器 7 的流的控制阀 6。在图 7B 中，阀 6 处于第一工作位置，由此通过第一环形管道 4 的流被堵塞。当阀 6 处于
第一工作位置时，所有EGR流都被引导通过第二环形管道5，并且仅经由第二环形管道5的管道5a被分散到进气流中。在图7A中，图6处于第二工作位置，由此通过第二环形管道5的流被堵塞。当图6处于第一工作位置时，所有EGR流都被引导通过第一环形管道4，并且仅经由第一环形管道4的管道4a被分散到进气流中。在图2中，图6处于第三工作位置，由此通过第一和第二环形管道的流都被启用，并且EGR流经由两个环形管道的管道被分散到进气流中。在一些示例中，控制图6可以被操作以堵塞通过第一和第二环形管道两者的EGR流。在这些示例中，EGR通道中的EGR图（例如，图142）可以被省掉，或者EGR图可以被保留以提供例如对EGR流率的额外控制。

【0102】控制器12从图1的各种传感器接收信号，并基于所接收的信号和存储在控制器的储存器上的指令采用图1的各种致动器来调整发动机运转。例如，控制器可以接收指示EGR流量率、进气质量流量、速度、负荷等的信号，并确定控制图6的期望的位置。控制器然后可以根据控制图6的致动器发送信号，以便将控制图移动到期望的位置。因此，控制压缩机上游的流量可以包括，调整控制图6的致动器以调整流量。控制图的致动器可以是电动致动器（例如，马达）、螺线管、液压、气动或其他合适的致动器。

【0103】虽然控制图6的各个工作位置在上面被描述为完全堵塞第一或第二环形管道，或者完全打开第一和第二环形管道两者，但是在一些示例中，控制图6可操作以部分堵塞第一或第二环形管道。例如，在第一工作位置中，除了完全堵塞通过第一环形管道的流外，控制图还可以额外地或可替代地可操作以部分地堵塞通过第一环形管道的流，使得至少一些EGR仍通过第一环形管道。同样，在第二工作位置中，除了完全堵塞通过第二环形管道的流外，控制图还可以额外地或可替代地可操作为部分地堵塞通过第二环形管道的流，使得至少一些EGR仍通过第二环形管道。

【0104】因此，根据上述示例，一种发动机系统可以包括排排气从涡轮的下游引导至压缩机的上游的LP-EGR系统。LP-EGR系统可以包括喷射器以在其进入压缩机前分配/混合EGR流与进气空气。喷射器还包括两个向后环绕进气通道的移动管道。每个移动管道可以包括多个移动端口（在本文中也称为管道），EGR可以通过该移动端口进入进气通道。两个移动管道中的第一个（在本文中也称为第一环形管道）可以包括具有圆形形状的移动端口，而第二个移动管道中的第二个（在本文中也称为第二环形管道）可以包括具有大体卵形或椭圆形形状的移动端口。如本文中所使用的，圆形可以包括凭借长轴和短轴相等或在彼此的范围之外（诸如在彼此的10%之内）的形状。相比之下，卵形或椭圆形形状可以具有彼此不同（诸如大于10%差值）的长轴和短轴。在图2、图7A和图7B中图示的示例中，第二移动管道的移动端口可以被取向外使得每个移动端口的长轴垂直于压缩机的旋转轴线，并且每个移动端口的短轴平行于压缩机的旋转轴线。

【0105】此外，在一些示例中，每个移动管道可以具有相等数量的移动端口，而在另一些示例中，移动管道可以具有不同数量的移动端口。例如，第二移动管道的椭圆形移动端口可以在至少一个尺寸上大于第一移动管道的圆形移动端口，例如椭圆形移动端口可以具有垂直于压缩机的旋转轴线的更长轴。因此，在第二移动管道中可能存在比第一移动管道中的圆形移动管道更长的椭圆形移动端口。

【0106】EGR喷射器可以具有面向EGR在其中流动的喷射器的内部的内圆周表面。EGR喷射器可以具有面向压缩机上游的进气通道的外圆周表面。外圆周表面可以包含进气通道的
内表面。多个流动端口可以延伸跨过喷射器的内和外表面，以产生用于 EGR 从喷射器行进至进气通道的路径。喷射器的内与外表面之间的厚度可以是产生通过端口的期望的径向和切向流的合适厚度。例如，如在图 2 中示出的，喷射器的内与外表面之间的厚度在第二流动
管道的区域可以大于第一流动管道。另外，在一些示例中，流动端口可以从内表面到外表面成角度。

[0107] 如先前解释的，第一流动管道的流动端口可以沿大体径向方向将 EGR 引入进气通道，而第二流动管道的流动端口可以沿相对于压缩机的旋转轴线的大体切向方向将 EGR 引入进气通道。通过沿径向方向引入 EGR，很少有或没有涡流可以在 EGR 流中产生。相比之下，通过沿切向方向引入 EGR，涡流可以在 EGR 流中产生。另外，第二流动管道中的流动端口可以被配置为使得在 EGR 中引入的涡流沿与压缩机的旋转相同的方向。

[0108] 通过在压缩机上游的 EGR/ 进气空气中引入涡流，例如由于压缩机两侧的减小的压力比，可以减轻压缩机喘振。然而，可能不希望在所有操作点都引入涡流，因为它可以增加噪声或产生其他不想要的影响。因此，可以经由选择性引导 EGR 流通过两个流动管道的
控制阀来控制被引入的涡流量。如果涡流的增加是期望的，那么控制阀可以被调整使得例如比第一流动管道更多的 EGR 流通过第二流动管道。

[0109] 因此，上述的系统提供了一种排气再循环 (EGR) 喷射器，该排气再循环 (EGR) 喷射器包括，第一周向流动管道，其具有多个径向流动端口；第二周向流动管道，其具有多个切向流动端口；以及控制阀，其可调整为引导 EGR 流通过第一流动管道、第二流动管道、或第一和第二流动管道两者。在一些示例中，控制阀可以被集成在喷射器内，而在另一些示例中，控制阀可以被设置在喷射器上游的 EGR 通道中，其中该通道被分成两支，通向喷射器的两个不同的流动管道。如上所述，径向流动端口为 EGR 提供径向速度，而切向流动端口为 EGR 提供切向速度。控制阀能使期望部分的 EGR 流过流动管道中的一个或两个，以便产生期望的涡流。EGR 喷射器可以被设置在压缩机上游的进气通道周围或作为其一部分，使得经由流动管道的流动端口提供的 EGR 在冲击压缩机之前与进气空气混合。

[0110] 转向图 8，提供了一种利用 EGR 喷射器来减弱喘振的方法 800。方法 800 的至少一部分可以被实施为存储在非临时性存储器中的可执行控制指令。此外，方法 800 的一部
分可以是在物理世界中为转变致动器或装置的运转状态所采取的动作。用于执行方法 800
的指令可以由控制器（例如，控制器 12）基于存储在控制器的存储器上的指令并结合从发动
机系统的传感器（诸如在上面参照图 1 所描述的传感器）接收的信号来执行。控制器可
以根据上述方法采用发动机系统的发动机致动器来调整发动机运转。例如，方法 800 可以
调整被设置在 EGR 喷射器（例如，图 2 的喷射器 7）的上游或在其内的控制阀（例如，图 2 的阀门 6）的位置，以引导指定部分的 EGR 通过喷射器的包括切向流动端口的流动管道，以便产生涡流从而避免喘振。

[0111] 方法 800 包括，在 802 处，确定发动机运转参数。经确定的运转参数可以包括但不限于发动机转速与负荷、进气质量空气流量、EGR 流率、压缩机压力比及其他参数。在 804 处，方法 800 确定 LP-EGR 流是否被启用。LP-EGR 流可以例如基于发动机转速与负荷或基于排气 NOx 浓度来启用。控制器可以基于 EGR 阀的位置、通过 EGR 通道的流率，发动机工况、或其他机制来决定 LP-EGR 流被启用。

[0112] 如果确定 LP-EGR 流未被启用，那么方法 800 进入到 806 以将 EGR 喷射器中控制阀
（例如，阀 6）维持在默认位置，然后方法 800 进入到 810。会在下面更详细地进行描述 810。
如果确认 LP-EGR 流被启用，那么方法 800 进入到 808 以调整控制阀位置，从而针对当前状况产生指定量的涡流。例如，控制器可以包括将控制阀位置映射到 EGR 流率的查询表、发动机转速与负荷、压缩机状况（例如，通过压缩机的质量流量和压缩机两侧的压力比）和/或其他参数。控制阀可以被设定在提供指定涡流量的位置，用于例如将压缩机维持在其喘振线之下。

[0113] 在 810 处，方法 800 确定是否检测到喘振。压缩机喘振可以例如基于压缩机流率和压缩机两侧的压力比来检测。如果确定压缩机未正在喘振运转，那么方法 800 返回。如果确定压缩机正在喘振运转，或如果压缩机正靠近其喘振线运转，并且因此预测不久的将来压缩机会在喘振区域中运转，那么方法 800 进入到 812 以调整控制阀来增加涡流量。为了增加涡流量，控制阀可以被调整，使得 EGR 的一部分或全部流过 EGR 喷射器的流动管道，EGR 喷射器通过将 EGR 经由切向流动端口提供到进气通道中来产生涡流。在一些示例中，这可以包括基于状况从其指定位置移动控制阀。在另一些示例中，诸如当 LP-EGR 当前未被启用时，这可以额外地或可替代地包括启用 LP-EGR。然后方法 800 返回。

[0114] 因此，上述的方法提供了：在第一状况期间，经由排气再循环 (EGR) 喷射器的切向流动管道使排气从涡轮的下游流向压缩机的上游，其中排气再循环 (EGR) 喷射器在压缩机的上游周向地环绕进气通道，以及在第二状况期间，经由 EGR 喷射器的径向流动管道使排气从涡轮的下游流向压缩机的上游。切向流动管道可以是上述的第二环形流动管道，并且可以包括将切向速度引入到排气流的椭圆形流动端口/管道。径向流动管道可以是上述的第一环形流动管道，并且可以包括将径向速度引入到排气流的圆形流动端口/管道。

[0115] 在一个示例中，第一状况可以是在第一阈值之下的压缩机质量流量，而第二状况可以是在第二阈值之上的压缩机质量流量。如果压缩机质量流量在两个阈值之间，从涡轮的下游到压缩机的上游的排气流可以在切向流动管道与径向流动管道之间被分拆。为了控制两个流动管道之间的排气流，可以调整 EGR 的控制阀的位置。在控制阀的第一位置中，所有排气都可以流过切向流动通道，而排气被阻止流过径向位置。在控制阀的第二位置中，所有排气都可以流过径向流动通道，而排气被阻止流过切向流动通道。在控制阀的第三位置中，排气可以流过径向和切向流动通道两者。

[0116] 以此方式，引起的涡流的可变水平能够通过控制 EGR 质量流量在 EGR 喷射器的切向与径向端口之间的分配来调整。根据变化要求的基于空气质量流量和压缩机速度的可变涡流水平能够通过两个管道之间的 EGR 流分配来引起。压缩机喘振线然后可以在宽的运转范围内被朝向更高质量流量状况移动，并且压缩机喘振能够在部分负荷运转下被避免。这可以在压缩机的上游不使用专门装置来完成引起涡流，从而减少压缩机上游的不必要的流阻。

[0117] 经由切向或径向流动管道分配 EGR 的技术效果是在压缩机上游的 EGR 和进气空气中引起涡流，以便避免喘振，特别是在较低质量流量状况时。

[0118] 一个实施例涉及一种机械增压内燃发动机，该机械增压内燃发动机具有进气系统，其用于充气空气的供应；排气排出系统，其用于排气的排出；至少一个排气涡轮增压器，其包含被布置在排气排出系统中的涡轮和被布置在进气系统中的压缩机，压缩机配备有一个或多个叶轮，该叶轮安装在压缩机外壳中的可旋转轴上；排气再循环装置，其包含再循
环管路系统，再循环管路系统在至少一个排气涡轮增压器的涡轮的下游从排气排出系统分枝，并且再循环管路系统在至少一个压缩机叶轮的上游相通向进气系统；以及附加的排气再循环装置，附加的排气再循环装置包含管路，该管路在涡轮的上游从排气排出系统分枝，并且管路在压缩机的下游再次相通向进气系统。其中再循环管路系统包含至少两个环形管道，环形管道至少在至少一个压缩机叶轮上游部分以螺旋的形式环绕进气系统，多个管道从环形管道延伸出来，所述管道均根据流动形式在进气侧处通过进气口被连接至进气系统；至少两个环形管道中的第一环形管道具有这样的管道，其中管道至少在进气侧处相对于压缩机的轴被大大径向地取向，并且因此在虚拟延时中与轴相交；并且至少两个环形管道中的第二环形管道具有这样的管道，管道至少在进气侧处以正切的方式被取向，并且因此在虚拟延时以到压缩机的轴具有同轴运行。

[0119] 在机械增压内燃发动机的第一示例中，至少一个排气涡轮增压器的压缩机是径流式压缩机。机械增压内燃发动机的第二示例可选地包括第一示例，并且进一步包括，至少一个排气涡轮增压器的压缩机是轴流式压缩机。机械增压内燃发动机的第三示例可选地包括第一和第二示例之一或二者，并且进一步包括，至少一个排气涡轮增压器的压缩机，压缩机具有入口区域，该入口区域相对于压缩机的轴同轴地运行，并且该入口区域被设计为使得接近压缩机的充气空气流量轴向地运行。机械增压内燃发动机的第四示例可选地包括第一至第三示例中的一个或多个或每个示例中的一个，关键词进一步包括，至少两个环形管道被彼此相邻地布置，并且被壁至少部分地彼此分开。机械增压内燃发动机的第五示例可选地包括第一至第四示例中的一个或多个或每个示例中的一个，并且进一步包括，其中再循环管路系统包含计量装置，通过计量装置，在至少一个排气涡轮增压器的涡轮的下游获取的排气被在至少两个环形管道之间进行分配。机械增压内燃发动机的第六示例可选地包括第一至第五示例中的一个或多个或每个示例中的一个，并且进一步包括，其中控制装置具有控制元件，通过控制元件，在第一工作位置中，第一环形管道在排气侧处被关闭。机械增压内燃发动机的第七示例可选地包括第一至第六示例中的一个或多个或每个示例中的一个，并且进一步包括，其中控制元件的第二工作位置中，第二环形管道在排气侧处被关闭。机械增压内燃发动机的第八示例可选地包括第一至第七示例中的一个或多个或每个示例中的一个，并且进一步包括，其中控制元件的第三工作位置中，第一环形管道和第二环形管道被连接至排气排出系统。机械增压内燃发动机的第九示例可选地包括第一至第八示例中的一个或多个或每个示例中的一个，并且进一步包括，其中第一环形管道被布置在第二环形管道的上游。机械增压内燃发动机的第十示例可选地包括第一至第九示例中的一个或多个或每个示例中的一个，并且进一步包括，其中第一环形管道和第二环形管道被连接至排气排出系统。机械增压内燃发动机的第十一示例可选地包括第一至第十示例中的一个或多个或每个示例中的一个，并且进一步包括，其中第一环形管道和第二环形管道被连接至排气排出系统。机械增压内燃发动机的第十二示例可选地包括第一至第十一示例中的一个或多个或每个示例中的一个，并且进一步包括，其中至少两个环形管道在其全部圆周上环绕进气系统。机械增压内燃发动机的第十三示例可选地包括第一至第十二示例中的一个或多个或每个示例中的一个，并且进一步包括，其中第二环形管道的管道至少在进气侧处并且在沿轴的方向的投影中相对于至少一个压缩机叶轮切向地运行。机械增压内燃发动机的第十四示例可选地包括第一至第十三示例中的一个或多个或每个示例中的一个，并且进一步包括，其中第二环形管道的管道对应于至少一个压缩机叶轮的旋
转方向被取向。机械增压内燃发动机的第十五示例可选地包括第一至第十四示例中的一一个或多个或者每一个，并且进一步包括，其中至少第一环形通道的通道的进气口具有圆形形式。

【0120】一种方法的实施例包含，在第一状况期间，经由排气再循环（EGR）喷射器的切向流动通道使排气从涡轮的下游流向压缩机的上游，其中排气再循环（EGR）喷射器在压缩机的上游周向地环绕进气通道；以及在第二状况期间，经由EGR喷射器的径向流动通道使排气从涡轮的下游流向压缩机的上游。

【0121】在该方法的第一示例中，第一状况包含在第一阈值之下的压缩机质量流量，并且其中第二状况包含在第二阈值之上的压缩机质量流量。该方法的第二示例可选地包括第一示例，并且进一步包含调整EGR喷射器的控制阀的位置，以使排气流过切向流动通道或径向流动通道。

【0122】一种排气再循环（EGR）喷射器的实施例包含：具有多个径向流动端口的第一周向流动通道；具有多个切向流动端口的第二周向流动通道；以及控制阀，其可调整为引导EGR流通过第一流动通道、第二流动通道，或于第一和第二流动通道两者。

【0123】注意，本文中包括的示例控制和估计程序能够与各种发动机和/或车辆系统配置一起使用。在本文中所公开的控制方法和程序可以作为可执行指令存储在非临时性存储器中并且可以由包括控制器的控制器系统与各种传感器、发动器和其他发动机硬件结合执行。在本文中所描述的具体程序可以代表任意数量的处理策略中的一个或多个，诸如事件驱动、中断驱动、多任务、多线程等。因此，所描述的各种动作、操作和/或功能可以按所示顺序执行、并行地被执行，或者在一些情况下被省略。同样，实现在本文中所描述的示例实施例的特征和优点时，处理的顺序不是必须要求的，而是为了便于说明和描述。根据所使用的特定策略，所描述的动作、操作和/或功能中的一个或多个可以被重复执行。另外，所描述的动作、操作和/或功能可以图形地表示被编入发动机控制系统中的计算机可读存储介质的非临时性存储器的代码，其中通过结合电子控制器执行包括各种发动机硬件部件的系统中的指令而使所描述的动作得以实现。

【0124】应认识到，在本文中所公开的配置和程序本质上是示例性的，并且这些具体的实施例不被认为是限制性的，因为许多变体是可能的。例如，上述技术能够应用于V-6、I-4、I-6、V-12、对置4缸和其他发动机类型。本公开的主题包括在本文中所公开的各种系统和构造和其他的特征、功能和/或性质的所有新颖的和非显而易见的组合和子组合。

【0125】本申请的权利要求具体地指出某些被认为是新颖的和非显而易见的组合和子组合。这些权利要求可能涉及“一个”元件或“第一”元件或其等同物。这些权利要求应当被理解为包括一个或多个这种元件的结合，既不要求也不排除两个或更多个这种元件。所公开的特征、功能、元件和/或特性的其他组合和子组合可通过修改现有权利要求或通过在该或关联申请中提出新的权利要求而得要求保护。这些权利要求，无论在范围上比原始权利要求更宽、更窄、相同或不同，都被认为包括在本公开的主题内。
图 5
图 6
图 8