(54) 发明名称
无线通信系统中的小区重选

(57) 摘要
描述了在无线通信系统中执行小区重选的技术。用户设备 (UE) 可以初始驻扎在第一小区。当驻扎在所述第一小区时，所述 UE 可识别并被识别为优于所述第一小区的第二小区和第三小区。所述 UE 可以在从所述第一小区移动到所述第二小区，而不执行小区重选以驻扎在所述第二小区。在移动到所述第二小区之后，所述 UE 可获取所述第二小区和/或第三小区的至少一个小区重选参数并可以基于所述小区重选参数来更新所述第二小区和第三小区的排序。所述 UE 然后可以基于所更新的排序来执行从所述第一小区到所述第二小区或第三小区的小区重选，例如，执行从所述第一小区到所述第三小区的频率间小区重选，而不实际驻扎在所述第二小区。
1. 在无线通信系统中执行小区重选的方法，包括：
 驻扎在第一小区；
 基于用于第二小区和第三小区的默认的小区重选参数来识别并认为优于所述第一小区的所述第二小区和所述第三小区；
 监视所述第二小区，而不执行小区重选以驻扎在所述第二小区；
 获取来自所述第二小区和第三小区中至少一个小区的至少一个小区重选参数；
 基于所述至少一个小区重选参数来更新所述第二小区和第三小区的排序；以及
 基于所述第二小区和第三小区的更新的排序来执行从所述第一小区到所述第二小区或第三小区的小区重选。

2. 根据权利要求 1 所述的方法，其中，执行小区重选包括执行从第一频率上的所述第一小区到第二频率上的所述第二小区或第三小区的频率对小区重选，其中，所述第二频率与所述第一频率不同。

3. 根据权利要求 1 所述的方法，其中，执行小区重选包括执行从一个频率上的所述第一小区到相同频率上的所述第二小区或第三小区的频率内小区重选。

4. 根据权利要求 1 所述的方法，其中，识别被作为优于所述第一小区的所述第二小区和第三小区包括：
 获取所述第一小区、第二小区和第三小区的信号测量，
 基于所述信号测量来确定所述第一小区、第二小区和第三小区的排序，以及
 基于所述第一小区、第二小区和第三小区的排序将所述第二小区和第三小区识别为优于所述第一小区。

5. 根据权利要求 4 所述的方法，其中，所述第一小区在第一频率上，所述第二小区和第三小区在第二频率上，并且其中，确定所述第一小区、第二小区和第三小区的排序包括：
 获取所述第一小区和第三小区的默认偏移值，所述默认偏移值可适用于所述第二频率，以及
 进一步基于所述默认偏移值来确定所述第一小区、第二小区和第三小区的排序。

6. 根据权利要求 1 所述的方法，其中，获取所述至少一个小区重选参数包括：
 从所述第二小区接收系统信息，以及
 从所述系统信息获取所述至少一个小区重选参数。

7. 根据权利要求 1 所述的方法，其中，获取所述至少一个小区重选参数包括从所述第二小区接收所述第二小区的 Qoffset 值，并且其中，更新所述第二小区和第三小区的排序包括基于所接收的所述第二小区的 Qoffset 值和所述第三小区的默认 Qoffset 值来更新所述第二小区和第三小区的排序。

8. 根据权利要求 1 所述的方法，其中，获取所述至少一个小区重选参数包括获取所述第二小区和第三小区的 Qoffset 值，并且其中，更新所述第二小区和第三小区的排序包括基于所述第二小区和第三小区的 Qoffset 值来更新所述第二小区和第三小区的排序。

9. 根据权利要求 8 所述的方法，其中，获取所述第二小区和第三小区的 Qoffset 值包括：
 从所述第二小区接收所述第二小区的 Qoffset 值，以及
 从所述第三小区或者从由所述第二小区发送的邻近小区列表接收所述第三小区的
10. 根据权利要求1所述的方法，其中，执行小区重选包括：
基于所述第二小区和第三小区的更新的排序来确定所述第二小区的排序高于所述第三小区，以及
执行从所述第一小区到所述第二小区的小区重选。
11. 根据权利要求1所述的方法，其中，执行小区重选包括：
基于所述第二小区和第三小区的更新的排序来确定所述第三小区的排序高于所述第二小区，以及
执行从所述第一小区到所述第三小区的小区重选，而不执行从所述第一小区到所述第二小区的小区重选。
12. 根据权利要求1所述的方法，还包括：
避免在上行链路上进行传输，直到在基于所述至少一个小区重选参数来更新所述第二小区和第三小区的排序之后。
13. 一种用于无线通信的装置，包括：
用于驻扎在第一小区的模块；
用于基于用于第二小区和第三小区的默认的小区重选参数来识别被选为高于所述第一小区的所述第二小区和所述第三小区的模块；
用于监视所述第二小区，而不执行小区重选以驻扎在所述第二小区的模块；
用于获取来自所述第二小区和第三小区中至少一个小区的至少一个小区重选参数的模块；
用于基于所述至少一个小区重选参数来更新所述第二小区和第三小区的排序的模块；以及
用于基于所述第二小区和第三小区的更新的排序来执行从所述第一小区到所述第二小区或第三小区的小区重选的模块。
14. 根据权利要求13所述的装置，其中，所述用于执行小区重选的模块包括用于执行从第一频率上的所述第一小区到第二频率上的所述第二小区或第三小区的频率间小区重选的模块，其中，所述第二频率与所述第一频率不同。
15. 根据权利要求13所述的装置，其中，所述用于识别被选为高于所述第一小区的所述第二小区和所述第三小区的模块包括：
用于获取所述第一小区、第二小区和第三小区的信号测量的模块，
用于基于所述信号测量来确定所述第一小区、第二小区和第三小区的排序的模块，以及
用于基于所述第一小区、第二小区和第三小区的排序将所述第二小区和第三小区识别为高于所述第一小区的模块。
16. 根据权利要求13所述的装置，其中，所述用于获取所述至少一个小区重选参数的模块包括用于从所述第二小区接收所述第二小区的Qoffset值的模块，并且其中，所述用于更新所述第二小区和第三小区的排序的模块包括用于基于所接收的所述第二小区的Qoffset值和所述第三小区的默认Qoffset值来更新所述第二小区和第三小区的排序的模块。
17. 根据权利要求 13 所述的装置，其中，所述用于获取所述至少一个小区重选参数的模块包括用于获取所述第二小区和第三小区的 Qoffset 值的模块，且其中，所述用于更新所述第二小区和第三小区的排序的模块包括用于基于所述第二小区和第三小区的 Qoffset 值来更新所述第二小区和第三小区的排序的模块。

18. 根据权利要求 13 所述的装置，其中，所述用于执行小区重选的模块包括：

用于基于所述第二小区和第三小区的更新的排序来确定所述第三小区的排序高于所述第二小区的模块，以及

用于执行从所述第一小区到所述第三小区的小区重选，而不执行从所述第一小区到所述第二小区的小区重选的模块。
无线通信系统中的小区重选

本申请要求于2007年8月3日提交的、名称为“CELL RESELECTIONIN A WIRELESS COMMUNICATION SYSTEM”的美国临时申请序列号60/953,970的优先权，该临时申请已转让给本申请的受让人，并通过引用将其并入本申请。

【0002】本公开总体上涉及通信，并且更具体地，涉及用于在无线通信系统中执行小区重选的技术。

【0003】无线通信系统被广泛部署以提供诸如话音、视频、分组数据、消息传递、广播等的各种通信内容。这些无线系统可以是能够通过共享可用的系统资源来支持多个用户的多址系统。这些多址系统的实例包括码分多址（CDMA）系统、时分多址（TDMA）系统、频分多址（FDMA）系统、正交FDMA（OFDMA）系统和单载波FDMA（SC-FDMA）系统。

【0004】无线通信系统可包括多个小区，其中术语“小区”可指代节点B的最小覆盖区域和/ 或服务该覆盖区域的节点B子系统。刚加电或者刚失去覆盖的用户设备（UE）可以搜索适当的小区，从该小区UE可以接收通信服务。如果找到了适当的小区，则必要时UE可以通过该小区执行向系统的注册。然后，如果UE处于空闲模式并且不与该小区活动地通信，则UE可以“驻扎（camp）”在该小区。驻扎是UE监测小区系统信息和寻呼信息的过程。UE所驻扎的小区称为服务小区。

【0005】当驻扎在服务小区时，UE可以定期地搜索在相同的频率上或另一频率上的更好的小区。如果找到了更好的小区，则UE可以通过通常称为小区重选的过程来选择更好的小区作为新的服务小区。小区重选可以允许UE即使在信号状况变化时（例如，由于UE移动到新的位置）也能驻扎到可能的最好的小区。从而这将允许UE可靠地接收到的寻呼消息并发起或接收呼叫。

【0006】UE可以交换信令消息以便执行小区重选来选择更好的小区。期望有效地执行小区重选，以便减少所交换的信令消息的数量并尽可能地改善系统性能。

【0007】本申请描述了在无线通信系统中执行小区重选的技术。UE可初始驻扎在最小小区。当驻扎在所述第一小区时，所述UE可获取所述UE检测到的每个小区的信号测量。所述UE可基于所述信号测量以及该区的一个或多个小区重选参数来计算每个小区的小区排序判断。所述UE可基于所述的小区排序判断来对所述小区进行排序并可识别被选中用于所述第一小区的第二小区和第三小区。然而，所述UE可能不具有有关的所述第二小区和第三小区的小区重选参数并且可能不知道所述第二小区是否优于所述第三小区，或者是反过来。所述UE可基于默认的小区重选参数来作出初始的判定，认为所述第二小区优于所述第三小区，该默认的小区重选参数例如可适用于所述第二小区和第三小区的频率的默认
Qoffset 值。

[0008] 在一个方面中，所述 UE 可在从所述第一小区移动到所述第二小区，而不执行小区重选以驻扎在所述第二小区。在移动到所述第二小区之后，所述 UE 可获取所述第二小区和 /或第三小区的至少一个小区重选参数。所述 UE 可基于所述至少一个小区重选参数来更新所述第二小区和第三小区的 Qoffset。所述 UE 然后可基于所更新的排序来执行从所述第一小区到所述第二小区或第三小区的小区重选。所述 UE 可避免在所述上行链路进行传输，直到更新了所述排序之后，以避免在上行链路上产生干扰。

[0009] 在一个设计中，所述 UE 可从所述第二小区接收系统信息以及可从所述系统信息获取所述至少一个小区重选参数。所述 UE 可从所述第二小区接收所述第二小区的 Qoffset 值。所述 UE 还可以从所述第三小区或者从所述第二小区发送的邻近小区列表接收所述第三小区的 Qoffset 值。所述 UE 可根据所接收的所述第二小区的 Qoffset 值以及所接收的所述第三小区的 Qoffset 值或者所述第三小区的默认 Qoffset 值来更新所述第二小区和第三小区的排序。

[0010] 所述 UE 可以以各种方式执行小区重选。在一个设计中，所述 UE 可以执行从第一频率上的所述第一小区到第二频率上的所述第二小区或第三小区的频率内小区重选。在另一设计中，所述 UE 可以执行从所述第一小区到与所述第一小区相同频率上的所述第二小区或第三小区的频率内小区重选。对于这两种设计，所述 UE 可基于所更新的排序来确定所述第二小区的排序高于所述第三小区，并且然后可以执行从所述第一小区到所述第二小区的小区重选。或者，所述 UE 可基于所更新的排序来确定所述第三小区的排序高于所述第二小区，并且然后可以执行从所述第一小区到所述第三小区的小区重选，而不执行从所述第一小区到所述第二小区的小区重选并且不实际驻扎在所述第二小区。

[0011] 下面将进一步详细描述本公开的各个方面和特征。

附图说明

[0012] 图 1 显示了无线通信系统。

[0013] 图 2 显示了在频率间移动期间的双小区重选。

[0014] 图 3 显示了在避免双小区重选的情况下在频率间移动期间的小区重选。

[0015] 图 4 显示了用于执行小区重选的过程。

[0016] 图 5 显示了用于执行小区重选的装置。

[0017] 图 6 显示了节点 B 和 UE 的框图。

具体实施方式

[0018] 本申请描述的技术可用于各种无线通信系统，例如 CDMA、TDMA、FDMA、OFDMA、SC-FDMA 和其他系统。术语“系统”和“网络”经常互换使用。这些无线系统可支持各种无线电技术，无线电技术还可以被称为无线接入技术 (RAT)、空中接口等等。CDMA 系统可实现诸如通用陆地无线电接入 (UTRA)、cdma2000 等的无线电技术。UTRA 包括宽带 CDMA (WCDMA) 和 CDMA 的其他变型。cdma2000 涵盖 IS-2000、IS-95 和 IS-856 标准。TDMA 系统可实现诸如全球移动通信系统 (GSM) 之类的无线电技术。OFDMA 系统可实现诸如演进 UTRA (E-UTRA)、超移动宽带 (UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-
OFDM®等的无线电技术。UTRA和E-UTRA是通用移动电信系统（UMTS）的一部分。3GPP
长期演进（LTE）是使用E-UTRA的UMTS的即将到来的版本，其在下行链路上采用OFDMA，在
上行链路上采用SC-FDMA。在名为“第三代合作伙伴计划”（3GPP）的组织的文档中描述了
UTRA、E-UTRA、UMTS、LTE和GSM。在名为“第三代合作伙伴计划2”（3GPP2）的组织的文档
中描述了cdma2000和UMB。为清楚起见，下文针对LTE来描述本文技术的某些方面，并在下文
的大部分描述中使用LTE术语。

[0019]图1示出了无线通信系统100，其可以是LTE系统。系统100可包括多个节点B和
其他网络实体。为简明起见，图1中仅示出了三个节点B110a、B110b和110c以及一个网络控
制器130。节点B可以是与UE进行通信的固定站，并且还可以被称为演进节点B（eNB）、基
站、接入点等。每个节点B110为特定的地理区域102提供通信覆盖。为了提高系统容量，
节点B的整个覆盖区域可以被划分成多个较小的区域，例如，三个较小的区域104a、104b和
104c。每个较小的区域可由各自的节点B子系统来进行服务。在3GPP中，术语“小区”可
指的是基站的最小覆盖区域和/或服务该覆盖区域的节点B子系统。在3GPP2中，术语“扇
区”可指代基站的最小覆盖区域和/或服务该覆盖区域的基站子系统。为清楚起见，下文的
描述中使用了3GPP中的小区概念。

[0020]在图1示出的实例中，每个节点B110具有三个小区，其覆盖不同的地理区域。为
简明起见，图1示出了不相互重叠的小区。在实际部署中，相邻的小区通常在边缘处相互重
叠，这使得当UE在系统中移动时允许UE在任何位置接收来自一个或多个小区的通信覆盖。

[0021]UE120可以散布在整个系统中，每个UE可以是静止的或移动的。UE还可以被称为
移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理（PDA）、无线调
制解调器、无线通信设备、手持设备、膝上型计算机和无线电话等。UE可以通过下行链路和上
行链路与节点B进行通信。下行链路（或前向链路）是指从节点B到UE的通信链路，上行
链路（或反向链路）是指从UE到节点B的通信链路。在图1中，具有双箭头的实线表示
节点B和UE之间的双向通信。具有单箭头的实线表示驻扎在小区中的UE。具有单箭头的
虚线表示UE从节点B接收下行链路信号，例如，进行信号测量。

[0022]UE可以在加电或失去覆盖时执行小区选择。对于小区选择，UE可以执行系统搜
索，来寻找UE可以从中接收通信服务的合适的小区。合适的小区是UE可以从中获取正常服
务（与诸如紧急呼叫之类的受限服务相反）的小区。如果小区满足一定标准，就可以被认
为是合适的。如果找到了合适的小区，则在需要时UE可以通过该小区执行向系统的注册。
然后，如果UE处于空闲状态并且不与该合适的小区活动地通信，则UE就可驻扎在该合适的
小区。UE驻扎的小称为服务小区。

[0023]当驻扎在服务小区时，UE可以定期地检查是否有UE可驻扎的并接收服务的更好的
小区。如果存在这样的小区，则UE可以通过通常称为小区重选的过程来选择该小区作为
新的服务小区。对于小区重选，UE可以与当前服务小区和/或新的服务小区交换信令信息，
来完成UE的服务小区的改变。

[0024]当处于空闲状态时，UE的位置可以被追踪以使得可以针对到来的呼叫和/或其他
原因来寻呼UE。系统的整个覆盖区域可以被划分成多个追踪区域，每个追踪区域可以包括
一组相互邻近的一个或多个小区。只要UE移动到新的追踪区域时，UE就可以与系统交换
信令消息以便更新其追踪区域。如果之后接收到针对UE的到来的呼叫，则在UE的当前追
追踪区域中的所有小区可以向 UE 发送寻呼消息。通过在需要时更新 UE 的追踪区域，系统可以在任何需要的时候找到 UE。

【0025】系统可以支持在多个频率上的操作，以提高容量并获得其他的益处。该多个频率还可以被称为频率信道、载波、频率范围等。可以在每个频率上部署任意数量的小区。不同频率上的小区可以具有重叠的或非重叠的覆盖区域。

【0026】UE 可以执行：(i) 频率内小区重选，来选择在与服务小区频率相同的频率上的另一小区，或者 (ii) 频率间小区重选，来选择在不同频率上的另一小区。服务区的频率被称为服务频率。UE 还可以执行小区选择以选择新的频率，例如在释放无线资源控制 (RRC) 连接之后，其中系统指示 UE 到不同的频率。

【0027】对于频率内和频率间小区重选，UE 可以基于由每个小区发射的参考信号或导频来对服务小区和邻近小区的接收信号强度和 / 或接收信号质量进行测量。接收信号强度还可以被称为参考信号接收功率 (RSRP)，接收信号强度指示符 (RSSI)，接收信号编码功率 (RSCP)，接收信号电平，接收强度，接收导频功率，接收导频强度等。接收信号质量还可以被称为每码片能量与总噪声比 (Ec/No)，信噪比 (SNR) 等。为清楚起见，下文使用接收信号强度描述小区重选。

【0028】UE 可以处理服务小区和邻近小区的信号测量，以获取每个小区的测量值。然后，UE 可以基于小区的测量值和小区重选参数得出每个小区的小区排序判断。在一个设计中，服务小区和邻近小区的排序判断可以表示为：

\[Q_{\text{meas }, s} = Q_{\text{hyst }, s}, \text{以及式 (1)} \]

\[Q_{\text{meas }, n} - Q_{\text{offset }, n}, \text{式 (2)} \]

其中 \(R_s \) 是服务小区 \(s \) 的排序判断，

\[R_n \] 是邻近小区 \(n \) 的排序判断，

【0032】

【0033】

【0034】

【0035】

【0036】

【0037】

【0038】

【0039】
RAT间移动期间UE可能事先并不知晓小区特定的参数Qoffset。在这种情况下，对于具有未知的Qoffset的每个邻近小区，UE可以使用默认值。该默认值可以是频率特定的Qoffset值，也可以应用于特定频段上的所有小区。默认值还可以是预定的Qoffset值，其可以在不知道小区的Qoffset值时进行应用。默认值可以由当前的服务小区来提供，或者可由UE事先知晓，或者可由UE以某种方式确定。

0040 当小区特定的参数（例如，Qoffset）未知时，UE可以执行频率间小区重选（或执行小区选择以选择新的频率）并可能发现所选择的小区实际上不是新的频率上的最佳小区。这种情况下可以进行重新获取，因为UE能够发现新的频率上的其他小区，然后可以重新在新的频率上的最佳小区。然而，该“双次小区重选”可能导致额外的信令并在系统中产生额外的负载，例如，用于在与系统的交互中的追踪区域更新和相关负担。

0041 图2示出了频率间移动期间的双次小区重选。在该实例中，系统支持在两个频率F1和F2上的操作。图2示出了三个小区A、B1和B2，其可以是图1中的任何三个小区或者系统中的某些小区。

0042 UE初始可驻留在频段F1上的小区A。小区A的测量值可能低，频段F1的质量可能差。频段F2的质量可能良好，或者优于频段F1的质量。UE可识别出小区B1和B2优于当前的服务小区A。UE可获得小区B1的比小区B2更好的测量值。UE可能不知道小区B1和B2的两个特定的Qoffset值，并可以对这两个小区使用相同的默认（例如，频率特定的）Qoffset值。基于默认的Qoffset值，小区B1在三个小区A、B1和B2中具有最佳的排序值。

0043 UE可以执行从频段F1上的小区A到频段F2上的小区B1的频率间小区重选。UE通常可根据小区重选过程，通过小区B1与系统交换信令消息，以便驻扎在小区B1。然后UE可驻扎在小区B1，其可能具有大的Qoffset值。如图2所示，小区排序判断对于逐渐增大的Qoffset值是逐渐变差的，这是因为DGN（右）中的减号。大的Qoffset值往往使小区A较不具有吸引力，而小的Qoffset值往往使小区B1具有吸引力。一旦UE已经在小区B1，UE可能发现小区B2具有比小区B1更小的Qoffset值。UE可以确定小区B2优于小区B1，然后可以执行从小区B1到小区B2的频率内小区重选。UE因此可驻扎在小区B2。

0044 在图2示出的实例中，小区A属于追踪区域1，小区B1属于追踪区域2，小区B2属于追踪区域3。只要UE移动到新的追踪区域中，该UE可执行追踪区域更新过程。在图2示出的实例中，对于到小区B1的初始的小区重选，UE可以执行一次追踪区域更新过程。对于到小区B2的随后的小区重选，UE可以再次执行追踪区域更新过程。

0045 基于几个原因，图2中的双次小区重选可能是不期望的。首先，如果三个小区A、B1和B2处于不同的追踪区域中，则UE可能执行两次追踪区域更新过程。其次，当UE驻扎在“错误的”小区B1上时可能会在上行链路上产生干扰。该干扰在频率重用为1的系统（或重用-1系统）中可能是不期望的。

0046 在一个方面中，UE可以通过将新的小区（例如，图2所示的实例中的小区B1）用作“虚拟”服务小区来避免双次小区重选。新的小区可以作为虚拟服务小区的含义可以是：UE实际上并不驻扎在该小区但是仍然从该小区读取系统信息（例如，系统信息块（SIB）），就如同UE驻扎了该小区那样。然而，UE不从新的小区接收寻呼信息，也不执行针对新的小区的其他驻扎功能。UE能够虚拟地驻扎在新的小区，而不通知该小区并且也不与该小区交
在设计中，当移动到新的小区时，UE 就可以获得该新的小区以及可能的邻近小区的小区重选参数。UE 然后可以确定该小区重选参数如何影响在 UE 处的小区排序。UE 可以避免执行小区重选来驻扎到新的小区，直到 UE 已经应用了该小区重选参数。如果这些参数改变了 UE 对于最佳小区的确定结果，UE 就可以执行小区重选，直接从当前的服务小区选择到该最佳小区（例如，图 2 所示的实例中从小区 A 到小区 B2），而不驻扎在该新的小区（例如，小区 B1）。

图 3 示出了在频率间移动期间的小区重选的设计，其避免了双频小区重选。UE 初始可驻扎在频率 F1 上的小区 A。频率 F1 的质量可能差，而频率 F2 的质量可能好或较好。UE 可获得小区 B1 的优先级 B2 更好的测量值。UE 对于两个小区 B1 和 B2 可以应用相同的默认 Qoffset 值，并可以获得在三个小区 A、B1 和 B2 中的小区 B1 的最佳排序列据。

虽然图 3 中未示出，但如果 UE 在应用小区重选参数之后确定小区 B1 的排序高于小区 B2，则 UE 可以执行从频率 F1 上的小区 A 到频率 F2 上的小区 B1 的频率间小区重选，并且然后可以驻扎在小区 B1。UE 还可以执行追踪区域更新过程，因为其已经从追踪区域 1 移动到了追踪区域 2。

不论新的频率上的哪个小区为更好的小区，UE 可以选择新的频率实际地驻扎在 UE 所到达的第一小区（例如，图 3 所示的实例中的小区 B1），直到 UE 应用了小区重选参数。如果小区重选参数改变了 UE 对最佳小区的确定结果，则 UE 可以执行小区重选，直接选择到新的最佳小区（例如，图 3 所示的实例中的小区 B2），而不实际驻扎在新的频率上的第一小区。

如图 3 中所示，当小区重选参数初始不被 UE 所知时，使用小区 B1 作为服务小区允许 UE 仅执行一次小区重选（而不是如图 2 中所示的两次）。然而，UE 可以仅执行一次追踪区域更新过程（而不是如图 2 中所示的两次）。另外，UE 在小区 B1 中时可以避免在上行链路上进行传输，并可以避免在上行链路上引起干扰。在 UE 应用了小区重选参数并识别了新的频率上的最佳小区之后，UE 可在上行链路上进行传输。

当 UE 虚拟地驻扎在小区 B1 时，UE 可能可能能够、也可能不能确定小区 B2 的 Qoffset 值。这可能取决于各种因素，例如系统通过信号发送小区重选参数的方式、UE 能力等等。UE 能够以多种方式来确定小区 B2 的 Qoffset 值。在一个设计中，UE 可以直接从小区 B2 接收 Qoffset 值。在另一设计中，UE 可以从小区 B1 接收频率内邻近小区列表，该列表可以包含列表内小区的 Qoffset 值。不管哪种情形下，如果 UE 具有邻近小区的 Qoffset 值，则 UE
能够正确地对小区进行排序。

[0054]如果UE不知道小区B2的Qoffset值，则即使在应用了小区B1的Qoffset值之后，小区排序仍可能是不正确的。针对该原因，期望具有快速和有效地将频率内小区的Qoffset值传送给UE（例如通过邻近小区列表）的机制。然而，即使没有这样的机制，本申请描述的技术仍然能够在一些情形下避免二次小区重选。例如，小区B1的Qoffset值可能足够大以改变小区排序，使得即使在应用小区B2的Qoffset值之前就选择小区B2。

[0055]如前所述，本申请描述的技术可用于使用虚拟服务小区的频内小区重选。本技术还可以用于频率内小区重选，但应该以避免出现反复的方式来进行应用（例如在一个具有大的Qoffset值的小区之间）。在某些情形下（例如，在服务小区不知道邻近小区存在的自组织网络中），可能并不会提前知道频率内小区的正确的Qoffset值。在这些情形下，本申请描述的技术可以有效地应用于给定频率内的频率内小区重选。

[0056]UE可以处于连接状态并不与小区活动地通信。当UE转换到空闲状态时系统可以指示UE是否要采用虚拟服务小区行为。可以例如在指示释放UE连接的RRC消息中提供该指示。

[0057]使用本申请描述的技术，UE能够在避免二次小区重选的情况下执行频率间小区重选以及可能的频率内小区重选。UE能够在不具有对目标频率上各个小区的小区重选参数的事先了解的情况下实现这一点。UE可以在移动到目标频率上的虚拟服务小区后获取小区重选参数。由于二次小区重选问题可能是由于UE不知道目标小区的小区重选参数导致的，通过在驻扎之前读取这些参数，UE能够避免该问题的根源。

[0058]图4示出了用于在无线通信系统中执行小区重选的过程400的设计。过程400可由UE（如下所述）或某个其他实体来执行。UE可初始驻扎在第一小区（框412）。当驻扎在第一小区时，UE可识别出被认为是优于该第一小区的第二小区和第三小区（框414）。UE可以在不执行小区重选以驻扎在第二小区的情况下从第一小区移动到第二小区（框416）。在移动到第二小区之后，UE可以获取第二小区和第三小区中至少一个小区的至少一个小区重选参数（框418）。UE可基于该至少一个小区重选参数来更新第二小区和第三小区的排序（框420）。UE可基于第二小区和第三小区的更新的排序执行从第一小区到第二小区和第三小区的小区重选（框422）。UE可避免在上行链路上进行传输，直到在框420中更新了第二小区和第三小区的排序之后，以避免在上行链路上产生干扰。

[0059]在框414的一个设计中，UE可获取第一小区、第二小区和第三小区的信号测量。UE还可获取第二小区和第三小区的默认偏移值。该默认偏移值可以是适用于第二小区和第三小区的频率的偏移值，或者可以是预定的偏移值。UE可基于该信号测量、默认偏移值以及可能的其他参数来确定第一小区、第二小区和第三小区的排序。例如，UE可以如式（1）或（2）中所示来确定每个小区的小区排序依据，并可以基于它们的小区排序依据来对小区进行排序。UE可基于第一小区、第二小区和第三小区的排序来将第二小区和第三小区识别为优于第一小区。

[0060]在框418中，UE可以以各种方式来获取至少一个小区重选参数。在一个设计中，UE可从第二小区接收系统信息并可从该系统信息中获取至少一个小区重选参数。UE可从第二小区接收该第二小区的Qoffset值。UE可直接从第二小区或者从第二小区发送的邻近小区列表来接收第三小区的Qoffset值。UE还可以以其他方式来接收Qoffset值和/或获
取第二小区和/或第三小区的其他小区重选参数。

[0061] 在框 420 中，UE 可以以各种方式来更新第二小区和第三小区的排序。在一个设计中，UE 可基于第二小区的 Qoffset 值和第三小区的默认 Qoffset 值来更新第二小区和第三小区的排序。在另一设计中，UE 可基于第二小区和第三小区的 Qoffset 值来更新第二小区和第三小区的排序。在又一设计中，UE 可基于第二小区的 Qoffset 值和第二小区的默认 Qoffset 值来更新第二小区和第三小区的排序。对于这些设计，UE 可基于小区的 Qoffset 值重新计算每个小区的小区排序，判据，例如，如式(2)中所述。UE 然后可以基于重新计算的小区排序判断来确定小区的排序。UE 还可以基于其他小区重选参数和/或其他方式来更新第二小区和第三小区的排序。

[0062] 在框 420 中，UE 可以以各种方式来执行小区重选。在一个设计中，UE 可以执行从第一频率上的第一小区到第二频率上的第二小区或第三小区的频率间小区重选。在另一设计中，UE 可以执行从一个频率上的第一小区到相同频率上的第二小区或第三小区的频率内小区重选。对于这两种设计，UE 可基于小区的排序进行第二小区的排序高于第三小区，然后可以执行从第一小区到第二小区的小区重选。或者，UE 可以基于更新的排序确定第三小区的排序高于第二小区，然后可以执行从第一小区到第三小区的小区重选，而不执行从第一小区到第二小区的小区重选以及不实际驻扎在第二小区。

[0063] 图 5 示出了在无线通信系统中用于执行小区重选的装置 500 的设计。装置 500 包括模块 512，用于驻扎在第一小区，模块 514，用于识别被认为优先第一小区的第二小区和第三小区，模块 516，用于在不执行小区重选以驻扎在第二小区的情况下从第一小区移动到第二小区，模块 518，用于获取第二小区和第三小区中至少一个小区的至少一个小区重选参数，模块 520，用于基于至少一个小区重选参数来更新第二小区和第三小区的排序，以及模块 522，用于基于第二小区和第三小区的更新的排序来执行从第一小区到第二小区或第三小区的小区重选。图 5 中的模块可以包括处理器，电子设备，硬件设备，电子元件，逻辑电路，存储器等，或者它们的任意组合。

[0064] 图 6 示出了节点 B110 和 UE120 的设计图，其可以是图 1 中的某个节点 B 和某个 UE。在该设计中，节点 B110 配有 T 个天线 634a～634t，UE120 配有 R 个天线 652a～652r，其中，一般地，T ≥ 1 并且 R ≥ 1。

[0065] 在节点 B110，发送处理器 620 可从数据源 612 接收用于一个或多个 UE 的业务数据，基于针对该 UE 而选择的一种或多种调制和编码方案来处理每个 UE 的业务数据，并提供所有 UE 的业务数据。发送处理器 620 还可以从控制器/处理器 640 接收信令，处理该信令，并提供信令符号。发送处理器 620 还可以生成参考信号和导频，其可以被 UE 使用来测量接收信号强度和/或接收信号质量。发射 (TX) 多输入多输出 (MIMO) 处理器 630 可对数据符号，信令符号和导频符号进行复用。如果适用的话，处理器 630 可对复用的符号执行空间处理（例如，预编码），并将 T 个输出符号流提供给 T 个调制器 (MOD) 632a～632t。每个调制器 632 可以处理各自的输出符号流（例如，用于 OFDM）以获取输出采样流。每个调制器 632 可以进行一步处理（例如，转换成模拟，放大，滤波以及上变频）输出采样流以生成下行链路信号。来自调制器 632a～632t 的 T 个下行链路信号可以分别通过 T 个天线 634a～634t 进行传输。

[0066] 在 UE120，天线 652a～652r 可从节点 B110 接收下行链路信号并将接收到的信号
分别提供给解调器（DEMOD）654a～654r。每个解调器654可以对各自接收到的信号进行调节（例如，滤波、放大、下变频以及数字化）以获取采样，并可以进一步处理该采样（例如，用于OFDM）以获取接收的符号。MIMO检测器660可从所有R个解调器654a～654r获取接收的符号，如果适用的话对接收的符号执行MIMO检测，并提供检测的符号。接收处理器670可以对检测的符号进行处理（例如，解调、解释交织和译码），将UE120的译码数据提供给数据宿672，并将译码信令提供给控制器/处理器690。一般地，MIMO检测器660和接收处理器670的处理与在节点B110的TX-MIMO处理器630和发射处理器620的处理互补。

[0067] 在上行链路上，在UE 120，来自数据源678的业务数据和来自控制器/处理器690的信令（例如，用于小区重选）可由发射处理器680进行处理，如果适用的话由TX-MIMO处理器682进行预编码，由调制器654a～654r进行调节，并发送给节点B110。在节点B110，来自UE120的上行链路信号可由天线634接收，由解调器632进行调节，如果适用的话由MIMO检测器636进行处理，并进一步由接收处理器638进行处理以获取UE120发送的业务数据和信令。

[0068] 控制器/处理器640和690可分别指示节点B110和UE120处的操作。控制器/处理器690可以执行和/或指示图4中的过程400和/或本申请描述的技术的其他过程。存储器642和692可以分别存储节点B110和UE120的数据和程序代码。信号测量单元694可以测量每个感兴小区的接收信号强度和/或接收信号质量，并可将服务小区和邻近小区的信号测量提供给控制器/处理器690。控制器/处理器690可以基于信号测量和小区重选参数来计算服务小区和邻近小区的小区排序判断，例如，如式(1)和(2)中所示。控制器/处理器690可以执行小区重选来选择基于小区排序判断所确定的最佳小区。调度器644可以调度UE在下行链路和/或上行链路上进行传输，并可为调度的UE提供资源分配。

[0069] 本领域技术人员应当理解，可以使用多种不同的技术和方法中的任意一种来表示信息和信令。例如，在整个上面的描述中提及的数据、指令、命令、信息、信号、比特、符号和码片可以用电压、电流、电磁波、磁场或磁粒子、光场或光粒子或其他任意组合来表示。

[0070] 本领域技术人员还应当明白，结合本公开描述的各种示例性的逻辑框、模块、电路和算法步骤可以被实现成电子硬件、计算机软件或其组合。为了清楚地表示硬件和软件之间的可互换性，上面对各种示例性的部件、框、模块、电路和步骤均通常按照其功能进行了描述。至于这种功能是实施成硬件还是实施成软件，取决于特定的应用和对整个系统所施加的设计约束。熟练的技术人员可以针对每个特定应用以不同的方式实现所描述的功能，但是，这种实现策略不应被解释为导致背离本公开的范围。

[0071] 可以用设计用于执行本申请所述功能的通用处理器、数字信号处理器（DSP）、专用集成电路（ASIC）、现场可编程门阵列（FPGA）或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件部件或者其任意组合来实现或执行结合本公开的实施例所描述的各种示例性的逻辑框、模块和电路。通用处理器可以是微处理器，但是可替代地，该处理器也可以是任何常规的处理器、控制器、微控制器或者状态机。处理器也可以被实现为计算设备的组合，例如，DSP和微处理器的组合、多个微处理器的组合、与DSP内核结合的一个或多个微处理器的组合，或者任何其它此种结构。

[0072] 结合本申请的公开内容所描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或其组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储
器、EEPROM 存储器、寄存器、硬盘、移动盘、CD-ROM 或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器，从而使处理器能够从该存储介质读取信息和向该存储介质写入信息。或者，存储介质也可以集成到处理器。处理器和存储介质可以位于 ASIC 中。该 ASIC 可以位于用户终端中。或者，处理器和存储介质也可以作为分立部件存在于用户终端中。

[0073] 在一个或多个示例性设计中，所描述的功能可以实现为硬件、软件、固件或者其任意组合。如果实现为软件，则功能可以作为一个或多个指令或代码在计算机可读介质上存储或传输。计算机可读介质包括计算机存储介质和通信介质。该通信介质包括任何促成将计算机程序从一个位置传输到另一位置的介质。存储介质可以是任何可由通用或专用计算机存取的可用介质。通过示例性的，而非限制性的方式，该计算机可读介质可以包括 RAM，ROM，EEPROM，CD-ROM 或者其他光盘存储器、磁盘存储器或其他磁存储器件或可应用于携带或存储指令或数据结构形式的期望的程序代码的、可由通用或专用计算机或者通用或专用处理器存取的任何其他介质。另外，任何连接可被适当地称为计算机可读介质。例如，如果使用同轴电缆、光纤电缆、双绞线、数字用户线（DSL）或例如红外、无线电和微波的无线技术从网站、服务器或其他远程源来传输软件，那么同轴电缆、光纤电缆、双绞线、DSL 或例如红外、无线电和微波的无线技术包括在介质的定义中。本文所使用的磁盘和光盘包括致密型光盘（CD）、激光盘、光盘、数字通用盘（DVD）、软盘和蓝光盘，其中磁盘通常以磁的方式再现数据，而光盘采用激光以光学的方式再现数据。上述的组合也应当在计算机可读介质的范围内。

[0074] 提供本公开的上述描述以使本领域内任何技术人员能够实现或者使用本公开。对于本领域技术人员来说，本公开的各种修改方式都是显而易见的，并且本文定义的一般原理也可以在不脱离本申请的精神或范围的情况下应用于其它变型。因此，本申请并不意图限于本文描述的实例和设计，而是要与符合本申请公开的原理和新颖性特征的最广范围相一致。
频率 F2 （良好的质量）

追踪区域 2（TA2）

追踪区域 1（TA1）

频率 F1 （差的质量）

追踪区域 3（TA3）

因信号测量认为具有吸引力：执行从小区B1到小区B2的小区重选；执行从追踪区域1到追踪区域2的追踪区域更新

因Qoffset值认为具有吸引力：执行从小区B1到小区B2的小区重选；执行从追踪区域2到追踪区域3的追踪区域更新
图 3