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1. 

COMPLERAPPARATUS 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue. 

BACKGROUND OF THE INVENTION 

(1) Field of the Invention 
The present invention relates to a compiler apparatus 

which converts a source program described in a high-level 
language. Such as the C language, into a machine language 
program. In particular, the present invention relates to speed 
enhancement achieved by the compiler apparatus for a loop 
process. 

(2) Description of the Related Art 
A compiler converts a source program described in a high 

level language into a machine language program which is 
made up of machine language instructions. When doing so, 
the compiler sets the order of instructions so as to improve the 
execution efficiency of the machine language program. This 
operation is referred to as “instruction scheduling'. 

In the technical field of language processors, how to 
improve the execution efficiency of a loop process has been 
one of the research themes over a long period of time. Gen 
erally, a loop is made up of control statements, such as “for” 
statements and “while statements, and a body including 0 or 
more arithmetic expressions. This body is repeated until a 
repetition condition defined by a control Statement is satis 
fied. An executable unit for such a loop process is called 
“iteration', and the number of derived iterations is the same as 
the number of repetitions indicated in the control statement. 
For example, when the control statement describes that the 
body is to be repeated 100 times. 100 iterations would be 
derived from the body. 

It should be understood that all or some of the iterations 
may be executed in parallel so that the execution efficiency of 
the loop process can be improved. For the parallel execution 
of the iterations, it is conventionally known that an optimiza 
tion technique called “software pipelining executed on the 
body of the loop process (also referred to as the “loop body” 
hereafter) is effective (see Japanese Application Publication 
No. 10-97.423, for example). 

Software pipelining is an optimization technique whereby 
the compiler converts the loop body into machine language 
instructions in a manner that parallels a pipeline so as to 
improve performance in the instruction execution. An expla 
nation is given as to the execution of software pipelining, with 
reference to FIG. 1. 

FIG. 1 (a) is a diagram showing an example of the loop 
body, which is made up of instructions A, B, and C, and a 
branch instruction br. FIG. 1 (b) is a diagram showing an 
example of a case where the instruction sequence shown in 
FIG. 1 (a) is iterated 3 times without the parallel execution. 
Suppose, for example, that each of the instructions A, B, and 
C and a branch instruction brtakes 1 cycle to complete. In this 
case, 4 cycles are required to complete each repetitive process 
(i.e., iteration), meaning that 12 cycles are required to com 
plete 3 iterations. 

Meanwhile, FIG. 1 (c) is a diagram showing an example of 
a case where 3 iterations of the instruction sequence shown in 
FIG. 1 (a) are optimized by software pipelining so that the 
instruction sequences are executed in parallel. In this case, 
optimization is performed in Such a manner that the instruc 
tion Cand the instruction A are executed in parallel and that 
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2 
the branch instruction brand the instruction B are executed in 
parallel, respectively across 2 iterations. Accordingly, the 
same 3 iterations can be executed in a total of 8 cycles, which 
is reduced from 12 cycles having been taken without the 
parallel execution. 

It should be noted here that a combination of instructions to 
be executed in parallel is determined in accordance with a 
dependence relation between the instructions as well as hard 
ware resources available in the processor that executes the 
machine language program. 
A period of time taken from the start of an iteration to the 

start of the next iteration is termed an “initiation interval’. 
The shorter the initiation interval, the smaller the number of 
execution cycles required to complete the loop process and 
thus the faster the execution of the loop process. 

However, in the case where considerable constraints are 
imposed on the hardware resources available to the processor, 
it is difficult to shorten the initiation interval or to appropri 
ately perform instruction scheduling. This causes a problem 
that the effect of reducing the number of execution cycles 
would be small. 

FIG. 2 is a diagram illustrating this problem. This diagram 
shows a result of optimization by Software pipelining 
executed on the instruction sequence shown in FIG. 1 (a). 
Note here that each of the instructions A and Buses a hard 
ware resource D. FIG. 2 (a) shows a result of optimization in 
the case where there is only one hardware resource D. Mean 
while, FIG. 2 (b) shows a result of optimization in the case 
where there are two hardware resources D. As shown in FIG. 
2 (a), the instructions A and B cannot be executed in parallel 
because there is only one hardware resource D. On account of 
this, the initiation interval cannot be reduced below 2. On the 
other hand, as shown in FIG. 2 (b), the two hardware 
resources Dallow the instructions A and B to be executed in 
parallel, thereby shortening the initiation interval to 1. In this 
way, the length of the initiation interval depends on the com 
puter architecture. In other words, in the case where the 
initiation interval is long due to the hardware resource con 
straints, it is impossible to reduce the current initiation inter 
Val through optimization performed by the compiler. 

Meanwhile, Suppose that there is a loop-carried depen 
dence, which refers to a data dependence between the instruc 
tions across the iterations. In this case, the minimum initiation 
interval is determined depending on the maximum number of 
cycles of the path including the loop-carried dependence in a 
data dependence graph that shows data dependence relations. 
This means that the initiation interval cannot be shortened to 
less than the value representing the present maximum number 
of cycles. For this reason, when this maximum value is large, 
there would be another problem that the software pipelining 
optimization has little effect of reducing the number of execu 
tion cycles. 

FIGS. 3A and 3B are diagrams illustrating this problem. 
FIG. 3A is a diagram of a data dependence graph that shows 
data dependence relations among the instructions in the loop. 
FIG. 3B is a diagram showing a result of Software pipelining 
executed on the basis of the data dependence graph shown in 
FIG 3A 

Here, a brief explanation is given as to data dependences. 
Data dependences can be grouped under three classes, which 
are: “true dependence”, “antidependence', and “output 
dependence'. A “true dependence” refers to a dependence 
relation in which an instruction uses the variable having been 
defined by the preceding instruction. An “antidependence' 
refers to a dependence relation in which an instruction defines 
the variable having been used by the preceding instruction. 
An "output dependence” refers to a dependence relation in 
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which an instruction redefines the variable having been 
defined by the preceding instruction. In addition to these, a 
data dependence that exists between iterations is particularly 
referred to as a “loop-carried dependence'. This loop-carried 
dependence does not exist between the instructions of the 
body. To be more specific, a loop-carried dependence is a 
dependence relation that arises to allow a value obtained by an 
execution of an arithmetic expression within an iteration to be 
used in the iterations that follow. When this dependence rela 
tion exists, an arithmetic expression of the referencing side is 
prohibited from preceding an arithmetic expression of the 
defining side in execution. Moreover, in the present specifi 
cation, a dependence relation that includes both a loop-car 
ried dependence and one of the above-mentioned three 
dependences is referred to as follows. When a loop-carried 
dependence and a true dependence exist between two instruc 
tions, this relation is referred to as a “loop-carried true depen 
dence'. When a loop-carried dependence and an antidepen 
dence exist between two instructions, this relation is referred 
to as a “loop-carried antidependence'. When a loop-carried 
dependence and an output dependence exist between two 
instructions, this relation is referred to as a “loop-carried 
output dependence'. 
As shown in FIG. 3A, true dependences and an antidepen 

dence exist among the three instructions (i.e., the instructions 
ld, add, and st) within the loop. In this diagram, the true 
dependence is indicated by an arrow in a solid line whereas 
the antidependence is indicated by an arrow in a short dashed 
line. 

Here, “ld ro, (r1+) is an instruction to load data at an 
address stored in a register r1 from a main memory, to store 
the data into a register ro, and to increment the value stored in 
the register r1 by 1. Moreover. “add r2, rO, ro” is an instruction 
to add the value stored in the register rO to the value stored in 
the registerro and to store the addition result into a register r2. 
Furthermore, “st (r1), r2 is an instruction to store the value 
stored in the register r2 into the main memory at an address 
that is stored in the register r1. 

Thus, the true dependence exists between the instruction ld 
and the instruction add, with the register robeing aparameter. 
To be more specific, the register rO having been defined by the 
instruction ld is referenced by the instruction add. Note that a 
latency from the start of execution of the instruction ld until 
the time when the instruction add becomes executable is 3 
cycles. This is accordingly described as “3 (ro)” in the dia 
gram of FIG. 3A. 

Similarly, the true dependence exists between the instruc 
tion add and the instruction St, with the register r2 being a 
parameter. Note that a latency between these 2 instructions is 
1 cycle. This is accordingly described as “1 (r2) in the 
diagram of FIG. 3A. 

Moreover, the loop-carried antidependence exists between 
the instruction stand the instruction ld, with the register r1 
being a parameter. To be more specific, the value stored in the 
register r1 by the instruction ld after being referenced by the 
instruction St is incremented by 1, so that the register r1 is 
defined. It should be noted that, in the specification of the 
present invention, a latency between two instructions having 
a loop-carried antidependence relation and a latency between 
two instructions having a loop-carried output dependence 
relation are both 0 cycle. This is accordingly described as "O 
(r1) in the diagram of FIG. 3A. 

Here, in the case of this cyclic path in the data dependence 
graph including the loop-carried dependence, the number of 
cycles of the present cyclic path is 4 (3+1+0). Moreover, this 
cyclic path has only one loop-carried dependence, meaning 
that a dependence distance is 1. The “dependence distance' 
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4 
refers to the number of iterations present between two instruc 
tions which are loop-carried dependent on each other across 
two iterations. As shown in FIG. 3B, at least 4 cycles of the 
initiation interval is required from the start of execution of the 
instruction ld in an iteration to the start of execution of the 
instruction ld in the next iteration. Therefore, the initiation 
interval cannot be shortened to less than the number of cycles 
of the cyclic path in the dependence graph that includes the 
loop-carried dependence. 

SUMMARY OF THE INVENTION 

The present invention was conceived in view of the prob 
lems described above, and has an object of providing a com 
piler apparatus which can perform Software pipelining opti 
mization so that the number of execution cycles taken to 
complete a loop process can be significantly reduced. 

In order to achieve the stated object, the compiler apparatus 
according to an aspect of the present invention converts a 
Source program into a machine language program for a pro 
cessor which is capable of parallel processing, and is com 
posed of a parsing unit operable to parse the source program 
and then to convert the source program into an intermediate 
program which is described in an intermediate language; an 
optimization unit operable to optimize the intermediate pro 
gram; and a conversion unit operable to convert the optimized 
intermediate program into the machine language program, 
wherein the optimization unit is operable to execute software 
pipelining, by inserting a transfer instruction, which is used 
for transferring data between operands, into a loop process 
included in the intermediate program So that a data depen 
dence relation is changed. To be more specific, the optimiza 
tion unit has: a cyclic path detection unit operable to create a 
data dependence graph representing dependence relations 
among instructions existing in the intermediate program, and 
to detect a cyclic path which is a closed path that starts and 
ends with an instruction, the cyclic path tracing data depen 
dences of the instruction in the data dependence graph; an 
insertion unit operable to insert the transfer instruction whose 
operands include a parameter of a loop-carried dependence 
included in the detected cyclic path; and a Software pipelining 
unit operable to execute Software pipelining on the interme 
diate program into which the transfer instruction has been 
inserted. 
By the insertion of the transfer instruction into the loop, the 

closed path in the data dependence graph of the original loop 
can be divided into a plurality of closed paths. With this, there 
is a possibility of reducing the maximum number of cycles of 
the closed path in the data dependence graph of the original 
loop. This, in turn, leads to a possibility of shortening the 
initiation interval and of reducing the number of execution 
cycles taken to complete the loop process, after the Software 
pipelining optimization is executed. Accordingly, the present 
invention can provide a compiler apparatus which can per 
form Software pipelining optimization that has a considerable 
effect of reducing the number of execution cycles taken to 
complete a loop process. 

For example, the insertion unit may include: an instruction 
selection unit operable to select an instruction on which a 
different instruction is true dependent and which is loop 
carried antidependent, in the detected cyclic path; an instruc 
tion replacement unit operable to replace a first register that is 
used in the selected instruction with a second register, and a 
transfer instruction insertion unit operable to insert the trans 
fer instruction for transferring a value stored in the first reg 
ister to the second register. Moreover, the insertion unit may 
include: an instruction selection unit operable to select an 
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instruction which is true dependent and on which a different 
instruction is loop-carried antidependent, in the detected 
cyclic path; an instruction replacement unit operable to 
replace a first register that is defined by the selected instruc 
tion with a second register, and a transfer instruction insertion 
unit operable to insert the transfer instruction for transferring 
a value Stored in the second register to the first register. 

With this structure, the dependence relation existing as the 
loop-carried antidependence in the closed path of the data 
dependence graph is divided, so that a new cyclic path in 
which the placement constraints have been eased can be gen 
erated. This leads to a possibility of reducing the number of 
execution cycles taken to complete the loop process. Accord 
ingly, the present invention can provide a compiler apparatus 
which can perform software pipelining optimization that has 
a considerable effect of reducing the number of execution 
cycles taken to complete a loop process. 

Preferably, the cyclic path detection unit is operable to 
detectat least one cyclic path which has alongest total latency 
of data dependences, and the instruction selection unit is 
operable to, when there exist a plurality of cyclic paths which 
each have the longest total latency, select an instruction, from 
among instructions which are loop-carried dependent in the 
cyclic paths or on each of which a different instruction is 
loop-carried dependent in the cyclic paths, that is loop-carried 
dependent in a largest number of cyclic paths or that a differ 
ent instruction is loop-carried dependent on in a largest num 
ber of cyclic paths. 

In this way, it is preferable to select the instruction which is 
loop-carried dependent or on which a different instruction is 
loop-carried dependent in the greatest number of the cyclic 
paths. With this selection, more path lengths can be reduced. 
Accordingly, the Software pipelining optimization that has a 
considerable effect of reducing the number of execution 
cycles can be performed. In addition, the instruction place 
ment constraints during instruction scheduling can be eased. 

Moreover, the cyclic path detection unit may be operable to 
detect a cyclic path which has a longest path length, the path 
length representing a total latency of data dependences in the 
cyclic path. 
The minimum initiation interval in the loop process is 

determined depending on the longest path length of the cyclic 
path. Thus, detection of such a cyclic path that has the longest 
path length and insertion of a transfer instruction into that 
cyclic path lead to a possibility of shortening the initiation 
interval. This, in turn, leads to a possibility of reducing the 
number of execution cycles taken to complete the loop pro 
CCSS, 

Preferably, the cyclic path detection unit is operable to 
detect a resource constrained cyclic path which has a longest 
resource constrained path length. 

Detection of a cyclic path that has the longest path length 
with consideration given to constraints imposed on the hard 
ware resources or the like can lead to a possibility of short 
ening the path length of the cyclic path that is a real bottle 
neck. Accordingly, the number of execution cycles taken to 
complete the loop process can be reduced, and the instruction 
placement constrains during instruction scheduling can be 
also eased. 

Moreover, the cyclic path detection unit is operable to 
detect a cyclic path other than a cyclic path which is made up 
of two instructions and in which a same one register causes 
both a true dependence and a loop-carried antidependence. 
When a transfer instruction is inserted into a cyclic path 

which is made up of two instructions and in which the same 
register causes both a true dependence and a loop-carried 
antidependence, the path length or the initiation interval can 
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not be shortened. For Such a cyclic path, the cyclic path 
detection may not be performed, so that the optimization 
effect can be accordingly improved. 

Furthermore, the cyclic path detection unit may be oper 
able to detect a cyclic path in which a latency incurred by an 
instruction that is true dependent and that a different instruc 
tion is loop-carried antidependent on is longer than a latency 
incurred by the transfer instruction. 
A cyclic path whose path length would become longer by 

the insertion of a transfer instruction can be eliminated in 
advance. Consequently, the cyclic path selection can be 
appropriately performed with enhanced speed and efficiency. 
A program according to another aspect of the present 

invention is for a processor which is capable of parallel pro 
cessing, the program causing the processor to execute: an 
instruction for executing iterations of a loop process in par 
allel; and a transfer instruction for transferring data between 
operands used in an instruction making up a closed path 
which starts and ends with a same instruction, the closed path 
tracing data dependences of the instruction included in a data 
dependence graph created with respect to the loop process. 
As compared to a program in which a transfer instruction is 

not inserted, the initiation interval of this program is shorter 
because the transfer instruction has been inserted into the 
loop process. Accordingly, the present invention can provide 
a program which is capable of extremely high-speed execu 
tion. 

It should be noted here that the present invention may be 
realized not only as a compiler apparatus that has these char 
acteristic units, but also as: a compiling method that has steps 
corresponding to the characteristic units provided in such a 
compiler apparatus; and a compiler that causes a computer to 
execute the characteristic steps included in the compiling 
method. Also, it should be understood that such a compiler 
can be distributed via a record medium such as a CD-ROM 
(Compact Disc-Read Only Memory), or via a communication 
network such as the Internet. 
The present invention can provide a compiler apparatus 

which can perform software pipelining optimization that has 
a considerable effect of reducing the number of execution 
cycles taken to complete a loop process. 

Recent years have seen an increased introduction of pro 
cessors which are capable of parallel processing. A loop 
process may frequently occur during the course of program 
execution. Thus, as a machine language program created by 
the compiler apparatus of the present invention is capable of 
high-speed execution, its practical value is significantly high. 

FURTHER INFORMATION ABOUT TECHNICAL 
BACKGROUND TO THIS APPLICATION 

The disclosure of Japanese Patent Application No. 2005 
165999 filed on Jun. 6. 2005 including specification, draw 
ings and claims is incorporated herein by reference in its 
entirety. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other objects, advantages and features of the 
invention will become apparent from the following descrip 
tion thereof taken in conjunction with the accompanying 
drawings that illustrate a specific embodiment of the inven 
tion. In the Drawings: 

FIG. 1 is a diagram illustrating software pipelining; 
FIG. 2 to FIG. 3B are diagrams illustrating the conven 

tional problems; 
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FIG. 4 is a functional block diagram showing a structure of 
a compiler apparatus; 

FIG. 5 is a diagram showing changes in a data dependence 
graph before and after the insertion of a transfer instruction 
into a cyclic path; 

FIG. 6 is a diagram showing respective results of software 
pipelining executed before and after the insertion of a transfer 
instruction; 

FIG. 7 is a diagram showing a cyclic path obtained after an 
instruction mov has been inserted into a root node (an instruc 
tion ld) of the cyclic path shown in FIG. 5 (a): 

FIG. 8 is a flowchart showing a process performed by a 
Software pipelining unit; 

FIGS. 9A to 9C are diagrams showing changes before and 
after the insertion of a transfer instruction into a cyclic path 
that has a loop-carried antidependence; 

FIG. 10 is a diagram showing a cyclic path obtained after 
an instruction mov has been inserted into a root node A in the 
case where the same register causes both the true dependence 
and the loop-carried antidependence of the root node A shown 
in FIG.9A: 

FIG. 11 is a diagram showing changes before and after the 
insertion of a transfer instruction into a cyclic path that has a 
loop-carried output dependence; 

FIG. 12 is a diagram showing a cyclic path obtained after 
an instruction mov has been inserted into the cyclic path 
shown in FIG. 11 (a): 

FIG. 13 is a diagram showing changes before and after the 
insertion of a transfer instruction into a cyclic path that has a 
loop-carried true dependence; 

FIG. 14 is a diagram showing changes before and after the 
insertion of a transfer instruction into a cyclic path that is 
made up of two instructions; 

FIG. 15 is a diagram showing changes before and after the 
insertion of a transfer instruction in the case where two cyclic 
paths, each being made up of two instructions, are included: 
FIG.16A is a diagram illustrating alongest path in the case 

where no resource constraints are imposed; 
FIG.16B is a diagram illustrating a longest path in the case 

where the resource constraints are imposed; 
FIGS. 17A to 17C are diagrams showing changes before 

and after the insertion of a transfer instruction into a leaf node 
of a cyclic path that includes a plurality of longest paths; 

FIGS. 18A and 18B are diagrams showing changes before 
and after the insertion of a transfer instruction into a root node 
of a cyclic path that includes a plurality of longest paths; 

FIGS. 19A to 19C are diagrams showing changes before 
and after the insertion of a transfer instruction into a cyclic 
path that includes a plurality of loop-carried dependences; 
and 

FIG.20 is a diagram showing changes in a data dependence 
graph before and after the insertion of a transfer instruction 
into a cyclic path. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The following is a description of a compiler apparatus 
according to an embodiment of the present invention, with 
reference to the drawings. 

FIG. 4 is a functional block diagram showing a structure of 
the compiler apparatus. More specifically, FIG. 4 (a) is a 
functional block diagram showing an entire structure of the 
compiler apparatus whereas FIG. 4 (b) is a functional block 
diagram showing a structure of a Software pipelining unit 
which is a part of the compiler apparatus. 
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8 
As shown in FIG. 4 (a), a compiler apparatus 202 converts 

a source program 201 described in a high-level language, 
Such as the Clanguage, into a machine language program 203 
which is executable by a processor. The compiler apparatus 
202 is composed of a parsing unit 204, an optimization unit 
205, and an output unit 206. In the present embodiment, the 
target processor of the compiler apparatus 202 is a processor 
that is capable of executing a plurality of instructions in 
parallel. 
The parsing unit 204 is a processing unit which performs a 

parsing process on the inputted Source program 201 and then 
outputs a program described in an intermediate language. 
Hereafter, the program described in the intermediate lan 
guage is referred to as an “intermediate program'. The opti 
mization unit 205 is a processing unit which performs a 
predetermined optimization process on the intermediate pro 
gram. The output unit 206 is a processing unit which converts 
the intermediate program, on which the optimization process 
has been performed, into a machine language program and 
then outputs the program. 
The optimization unit 205 has a first optimization unit 207, 

a Software pipelining unit 208, and a second optimization unit 
209. Each of the first optimization unit 207 and the second 
optimization unit 209 performs a general optimization pro 
cess. The Software pipelining unit 209 is a processing unit 
which optimizes a loop process included in the intermediate 
program by executing a software pipelining process. 
As shown in FIG. 4(b), the software pipelining unit 208 has 

a cyclic path analysis unit 211, an instruction selection unit 
212, a transfer instruction insertion unit 213, and a conven 
tional software pipelining unit 214. 
The cyclic path analysis unit 211 is a processing unit which 

creates a data dependence graph representing dependence 
relations among the instructions included in the intermediate 
program and which analyzes a cyclic path in the data depen 
dence graph. A definition of the cyclic path is described later. 
The instruction selection unit 212 is a processing unit which 
selects, in accordance with the analysis result given by the 
cyclic path analysis unit 211, an instruction from the data 
dependence graph, into which a transfer instruction is to be 
inserted. Here, the “transfer instruction” refers to an instruc 
tion at which data can be transferred between the operands, 
and generally is what is termed an instruction mov that moves 
data between the registers. The transfer instruction insertion 
unit 213 is a processing unit which inserts a transfer instruc 
tion into the instruction selected by the instruction selection 
unit 212. The conventional software pipelining unit 214 is a 
processing unit which executes the conventional Software 
pipelining process on the intermediate program after the 
transfer instruction has been inserted. 

It should be noted here that each processing unit making up 
the compiler apparatus 202 is realized as a program that is 
executed on a computer. 
The following are definitions of the terms used throughout 

the present specification. 
(1) Cyclic path: A closed path of a data dependence graph, 

which is traced along the data dependences of an instruction 
and which begins and ends with the same instruction. Note 
that, in the cyclic path, the same instruction is not traced more 
than once. 

(2) Path length: A total latency of the data dependences in 
the cyclic path. 

(3) Resource constrained cyclic path: A cyclic path with 
consideration given to the resource constraints (i.e., the con 
straints imposed on the hardware resources and on the num 
ber of instructions executable in parallel). 
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(4) Resource constrained path length: A total latency of the 
data dependences in the resource constrained cyclic path. 

(5) Longest path: A longest cyclic path. 
(6) Resource constrained longest path: A longest cyclic 

path with consideration given to the resource constraints. 
(7) Leaf node: An instruction which the other instruction is 

true dependent on and which is antidependent, in the cyclic 
path. 

(8) Root node: An instruction which is true dependent and 
which the other instruction is antidependent on, in the cyclic 
path. 
A principal object of the present invention is to improve 

Software pipelining in performance by inserting a transfer 
instruction into a leaf node or a root node in a cyclic path or a 
resource constrained cyclic path. For this reason, a detailed 
explanation will be given only as to the process executed by 
the software pipelining unit 208 in the present embodiment. 
The other processing units of the compiler apparatus 202 
respectively have the same functions as those of a conven 
tional compiler apparatus, and thus detailed explanations of 
them are not repeated here. 

First, an explanation is given as to workings and effects 
achieved by the insertion of a transfer instruction into the 
cyclic path. FIG. 5 is a diagram showing changes in a data 
dependence graph before and after the insertion of the transfer 
instruction into the cyclic path. 

FIG. 5 (a) shows the same cyclic path as the one in the data 
dependence graph shown in FIG. 3A. This cyclic path 
includes three instructions within the loop, which are instruc 
tions la, add, and St. The path length of this data dependence 
graph is 4 cycles. Meanwhile, FIG. 5 (b) shows the cyclic path 
obtained after an instruction mov, which is a kind of transfer 
instruction, has been inserted into the leaf node (i.e., the 
instruction st) of the cyclic path shown in FIG. 5 (a). To be 
more specific, instead of the instruction St, an instruction “st 
(ra). r2 is used. In this instruction, a register r1 which is a 
parameter used by the instruction St for a loop-carried depen 
dence is replaced with an unused register ra. Also, a transfer 
instruction “mov rá, r1 is inserted, so that a value stored in 
the register r1 which is the original parameter is stored into 
the registerra. By this insertion of the instruction mov into the 
leaf node, the cyclic path whose path length was 4 cycles is 
divided into 2 cyclic paths. That is, one is made up of instruc 
tions la and mov and its path length is 3 cycles, and the other 
is made up of instructions may and stand its path length is 1 
cycle. As can be understood from this, by the insertion of the 
transfer instruction, the original loop-carried dependence is 
cut up. In the present specification, when a loop-carried 
dependence is cut up so that new cyclic paths are created in 
this way, this cutting process is referred to as "loop-carried 
dependence cut”. 
As mentioned above, the minimum value of the initiation 

interval by Software pipelining is determined depending on 
the longest path length. This means, in the case where the 
cyclic path shown in FIG. 5 (a) is the longest path of the 
present loop process, the initiation interval can be reduced 
from 4 to 3. 

FIG. 6 is a diagram showing respective results of software 
pipelining performed before and after the insertion of the 
transfer instruction. FIG. 6 (a) shows the result of software 
pipelining which is performed before the transfer instruction 
is inserted, and the resultant initiation interval is 4 cycles. 
Meanwhile, FIG. 6 (b) shows the result of software pipelining 
which is performed after the transfer instruction has been 
inserted, and the resultant initiation interval is 3 cycles. By the 
insertion of the transfer instruction, although there is a pos 
sibility of increasing the number of execution cycles per 
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10 
iteration, the initiation interval is shortened. Therefore, for 
the loop as a whole, the number of execution cycles is 
reduced. The greater the number of iterations, the larger this 
effect is. 

Moreover, as shown in FIG. 5, the dependence distance 
between the instructions stand lod is increased from 1 to 2. 
Accordingly, the instruction placement constraint during 
Software pipelining is eased. 

FIG. 7 is a diagram showing a cyclic path obtained after an 
instruction mov has been inserted into the root node (the 
instruction ld) of the cyclic path shown in FIG. 5 (a). To be 
more specific, instead of the instruction ld, an instruction “ld 
r0, (ra--) is used. In this instruction, the register r1 which is 
a parameter used by the instruction ld is replaced with the 
unused register ra. Also, a transfer instruction “mov rá, r1 is 
inserted, so that a value stored in the register rais stored into 
the register r1 that is the original parameter. By this insertion 
of the instruction mov into the root node, the cyclic path 
whose path length was 4 cycles is divided into 2 cyclic paths. 
That is, one is made up of instructions la and mov and its path 
length is 3 cycles, and the other is made up of instructions may 
and stand its path length is 1 cycle. As explained above with 
reference to FIGS. 5 and 6, there is a possibility of shortening 
the initiation interval to 3 cycles in this case as well. 

Next, an explanation is given as to a flow of a process 
executed by the software pipelining unit 208 shown in FIG. 4 
(b). FIG. 8 is a flowchart showing the process performed by 
the software pipelining unit 208. 
The cyclic path analysis unit 211 creates a data dependence 

graph for a loop included in the intermediate program and 
acquires cyclic paths existing in the data dependence graph 
(S400). Then, the instruction selection unit 212 sets all the 
cyclic paths of the loop acquired in the cyclic path acquisition 
process (S400) as a cyclic path set (S401). Moreover, the 
instruction selection unit 212 obtains longest paths from the 
cyclic paths included in the cyclic path set (S402). Then, the 
instruction selection unit 212 excludes the longest paths 
whose path lengths will become longer by the insertion of the 
transfer instruction, from the cyclic path set (S403). Further 
more, the instruction selection unit 212 selects one from 
among the leaf nodes and the root nodes of the longest paths 
belonging to the cyclic path set (S404). The transfer instruc 
tion insertion unit 213 inserts the transfer instruction into the 
selected leafnode or root node (S405). Then, the conventional 
Software pipelining unit 214 executes the Software pipelining 
process on the loop process into which the transfer instruction 
has been inserted (S406). 
The above examples of FIGS.5 and 6 show the cases where 

the transfer instruction is inserted into the leaf node of the 
longest path that has the loop-carried antidependence relation 
and then software pipelining is performed. Meanwhile, the 
example of FIG. 7 shows the case where the transfer instruc 
tion is inserted into the root node of the longest path that has 
the loop-carried antidependence relation and then Software 
pipelining is performed. 
As described earlier, the data dependences can be grouped 

under three classes, which are true dependence, antidepen 
dence, and output dependence. Similarly, the loop-carried 
dependence can be grouped under true dependence, antide 
pendence, and output dependence. 
The following are considerations given to changes in the 

path length in the cases where: the transfer instruction is 
inserted into the longest path that has the loop-carried anti 
dependence relation: the transfer instruction is inserted into 
the longest path that has the loop-carried output dependence 
relation; and the transfer instruction is inserted into the long 
est path that has the loop-carried true dependence relation. 
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Loop-Carried Antidependence 
FIGS. 9A to 9C are diagrams showing changes before and 

after the insertion of a transfer instruction into the cyclic path 
which has a loop-carried antidependence. 
FIG.9A shows an example of the cyclic path which has the 

loop-carried antidependence, the cyclic path being made up 
of instructions A, B, C, and D. Note that, in the present cyclic 
path, the instruction A is a root node whereas the instruction 
D is a leaf node. Also note that the loop-carried antidepen 
dence exists between the leaf node D and the root node A. In 
FIGS. 9A to 9C, the true dependence is indicated by an arrow 
in a solid line whereas the antidependence is indicated by an 
arrow in a short dashed line. For instance, a latency from the 
start of execution of the instruction A until the time when the 
instruction B becomes executable is 4 cycles. Thus, as can be 
seen in the diagram of FIG.9A, the path length of the present 
cyclic path is 12 cycles. 
FIG.9B shows a cyclic path obtained after an instruction 

mov has been inserted into an instruction other than the leaf 
node D and the root node A shown in FIG.9A. This diagram 
shows a cyclic path of a case where the instruction mov is 
inserted into the instruction B or C. As shown, the loop 
carried dependence relation between the instructions A and D 
is not changed even after the instruction mov has been 
inserted into the instruction other than the root node A and the 
leaf node D. In addition, due to the insertion of the instruction 
mov, 1 cycle of latency is required between the start of execu 
tion of the instruction mov and the start of execution of the 
instruction C, resulting in increasing the path length from 12 
to 13. Thus, the path length cannot be shortened, meaning that 
the initiation interval cannot be shortened either. 
FIG.9C shows a cyclic path obtained after the instruction 

mov has been inserted into the leaf node D shown in FIG.9A. 
In this example, due to the insertion of the instruction mov 
into the leaf node D, the loop-carried dependence cut is per 
formed between the instructions A and D. As a result of this, 
the cyclic path of 12 cycles with a dependence distance of 1 is 
changed into cyclic paths of 4 cycles and of 1 cycle. As can be 
understood from this, there is a possibility of shortening the 
initiation interval from 12 cycles to 4 cycles in the case where 
the cyclic path shown in FIG.9A is the longest path. However, 
when another cyclic path whose path length is 5 cycles or 
more is present within the loop, that path length would be the 
minimum initiation interval. Additionally, by the loop-carried 
dependence cut, the instruction placement constraint can be 
eased. 

FIG. 10 is a diagram showing a cyclic path obtained after 
an instruction mov has been inserted into the root node A in 
the case where the same register causes both the true depen 
dence and the loop-carried antidependence for the root node 
A shown in FIG.9A. As is the case with the example shown 
in FIG. 9C, the cyclic path of 12 cycles is changed into cyclic 
paths of 4 cycles and of 9 cycles by the loop-carried depen 
dence cut. Thus, there is a possibility of shortening the initia 
tion interval from 12 cycles to 9 cycles in the case where the 
cyclic path shown in FIG. 9A is the longest path. Also, the 
instruction replacement constraint can be eased. 
Loop-Carried Output Dependence 
FIG. 11 is a diagram showing changes before and after the 

insertion of a transfer instruction into the cyclic path that has 
a loop-carried output dependence. FIG. 11 (a) shows an 
example of the cyclic path that has the loop-carried output 
dependence, the cyclic path being made up of one la instruc 
tion and two add instructions. In this diagram, the true depen 
dence is indicated by an arrow in a solid line whereas the 
output dependence is indicated by an arrow in a short dashed 
line. 
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Here, “ld, ro, (r1+) is an instruction to load data at an 

address stored in a register r1 from a main memory, to store 
the data into a register ro, and to increment the value stored in 
the register r1 by 1. Moreover, “add r2, rO, ro” is an instruction 
to add the value stored in the register rO to the value stored in 
the registerro and to store the addition result into a register r2. 
Furthermore, “addrO, r2, r2 is an instruction to add the value 
stored in the register r2 to the value stored in the register r2 
and to store the addition result into the register rO. 

Thus, the true dependence exists between the instruction 
“ld ro, (r1+) and the instruction “add r2, r0, r0', with the 
registerro being a parameter. To be more specific, the register 
r0 having been defined by the instruction ld is referenced by 
the instruction add. Note that a latency from the start of 
execution of the instruction ld until the time when the instruc 
tion add becomes executable is 3 cycles. This is accordingly 
described as “3 (ro) in the diagram of FIG. 11 (a). 

Similarly, a true dependence exists between the instruction 
“add r2, rO, r0' and the instruction “add r(), r2, r2, with the 
register r2 being a parameter. Note that a latency between 
these 2 instructions is 1 cycle. This is accordingly described 
as “1 (r2) in the diagram of FIG. 11 (a). 

Moreover, a loop-carried output dependence exists 
between the instruction “addrO, r2, r2 and the instruction"ld 
r0, (r1+), with the register robeing a parameter. To be more 
specific, after being defined by the instruction add, the value 
stored in the registerro is redefined by the instruction ld. Note 
again, as described earlier, that in the embodiment of the 
present invention, a latency between the two instructions 
having a loop-carried dependence is 0 cycle. This is accord 
ingly described as “O (ro) in the diagram of FIG. 11 (a). 

In the case of this cyclic path in the data dependence graph 
including Such a loop-carried dependence, the path length is 
4 (3+1+0). Moreover, this cyclic path has only one loop 
carried dependence, meaning that a dependence distance is 1. 

Although this cyclic path has no root node or leaf node that 
fits the definition described above, consider a case where an 
instruction mov is inserted into an instruction corresponding 
to a leaf node, that is, an instruction which is loop-carried 
dependent. FIG. 11 (b) shows a cyclic path obtained after the 
instruction mov has been inserted into the instruction “addr0, 
r2, r2 that is loop-carried dependent in the cyclic path shown 
in FIG. 11 (a). To be more specific, instead of the instruction 
“addrO, r2, r2, an instruction “add r3, r2, r2 is used. In this 
instruction, the register ro which is a parameter used by the 
present instruction add for the loop-carried dependence is 
replaced with an unused register r3. Also, a transfer instruc 
tion “mov r3, ro' is inserted, so that the value stored in the 
registerro which is the original parameter is stored into the 
register r3. By this insertion of the instruction mov into the 
instruction “add ro, r2, r2 which is loop-carried dependent, 
the loop-carried dependence cut is performed between the 
instructions add and ld. As a result of this, the cyclic path with 
a dependence distance of 1 is eliminated. 

FIG. 12 is a diagram showing a cyclic path obtained after 
the instruction mov has been inserted into an instruction 
corresponding to a root node of the cyclic path shown in FIG. 
11 (a), i.e., the instruction “ld ro, (r1+) on which the other 
instruction is loop-carried dependent. To be more specific, 
instead of the instruction “ld ro, (r1+), an instruction “ld r3. 
(r1+) is used. In this instruction, the register r() which is a 
parameter used by the present instruction ld for the loop 
carried dependence is replaced with the unused register r3. 
Also, a transfer instruction"mov r0, r3” is inserted, so that the 
value stored in the register r3 is stored into the register rO that 
is the original parameter. By this insertion of the instruction 
mov into the root node, the loop-carried dependence cut is 
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performed between the instructions add and la. As a result of 
this, the cyclic path whose path length was 4 cycles is divided 
into 2 cyclic paths. That is, one is made up of instructions la 
and mov and its path length is 3 cycles and the other is made 
up of one mov instruction and two add instructions and its 
path length is 2 cycles, with a dependence distance of 1. 
Accordingly, in the case where the cyclic path shown in FIG. 
11 (a) is the longest path, there is a possibility of shortening 
the initiation interval to 3 cycles. 
Loop-Carried True Dependence 
FIG. 13 is a diagram showing changes before and after the 

insertion of a transfer instruction into a cyclic path that has a 
loop-carried true dependence. FIG. 13 (a) shows an example 
of the cyclic path that has the loop-carried true dependence, 
the cyclic path being made up of one mul instruction and two 
add instructions. In this diagram, all the dependence relations 
are true dependences, each being indicated by an arrow in a 
solid line. 

Here, “mul, r1, ro, ro” is an instruction to multiply the data 
stored in the register roby the data stored in the registerro and 
to store the multiplication result into the register r1. More 
over, "add r2, r1, r1 is an instruction to add the value stored 
in the register r1 to the value stored in the register r1 and to 
store the addition result into the register r2. Furthermore, “add 
r0, r2, r2 is an instruction to add the value stored in the 
register r2 to the value stored in the register r2 and to store the 
addition result into the register ro. 

Thus, the true dependence exists between the instruction 
“mul r1, r(), ro” and the instruction “add r2, r1, r1, with the 
register r1 being a parameter. To be more specific, the register 
r1 having been defined by the instruction mul is referenced by 
the instruction add. Note that a latency from the start of 
execution of the instruction mul until the time when the 
instruction add becomes executable is 4 cycles. This is 
accordingly described as “4 (r1) in the diagram of FIG. 13 
(a). 

Similarly, a true dependence exists between the instruction 
“add r2, r1, r1 and the instruction “add ro, r2, r2, with the 
register r2 being a parameter. Note that a latency between 
these 2 instructions is 1 cycle. This is accordingly described 
as “1 (r2) in the diagram of FIG. 13 (a). 

Moreover, a loop-carried true dependence exists between 
the instruction “addrO, r2, r2 and the instruction"mul r1, r(), 
r0, with the register robeing a parameter. A latency between 
the 2 instructions is 1 cycle. This is accordingly described as 
“1 (rO)” in the diagram of FIG. 13(a). 

In the case of this cyclic path of the data dependence graph 
that includes such a loop-carried dependence, the path length 
is 6 (=4+1+1). 

This cyclic path has no root node or leaf node that fits the 
definition described above, as all the data dependences within 
the graph are true dependences. Here, consider a case where 
the instruction mov is inserted into the instruction mul which 
is one of the instructions making up the cyclic path. FIG. 13 
(b) shows a cyclic path obtained after the instruction mov has 
been inserted into the cyclic path shown in FIG. 13 (a). To be 
more specific, instead of the instruction “mul r1, ro, rO', an 
instruction “mul r3, ro, ro' is used. In this instruction, the 
register r1 which is a parameter used by the present instruc 
tion mul is replaced with the unused register r3. Also, a 
transfer instruction “mov r1, r3” is inserted, so that the value 
stored in the register r3 is stored into the register r1 which is 
the original parameter. Note that a latency from the start of 
execution of the instruction mov until the time when the 
instruction add becomes executable is 1 cycle. As a result, the 
path length after the insertion of the transfer instruction 
becomes 7 (4+1+1+1). As can be understood from this, the 
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path length cannot be shortened by the insertion of the trans 
fer instruction. In fact, the path length becomes longer, only 
increasing the code size. It should be noted here that in the 
case of the cyclic path made up of only true dependences, the 
path length cannot be shortened no matter where the transfer 
instruction is to be inserted. This means the optimization has 
no effect in Such a case. 
Cyclic Path Made Up of Two Instructions 
Next, an explanation is given as to a case where a transfer 

instruction is inserted into a cyclic path which is made up of 
two instructions. 

FIG. 14 is a diagram showing changes before and after the 
insertion of a transfer instruction into a cyclic path which is 
made up of two instructions and in which the same register 
causes both a true dependence and a loop-carried antidepen 
dence. FIG.14 (a) shows an example of the cyclic path having 
the loop-carried antidependence, the cyclic path being made 
up of two instructions A and B and the path length being 4 
cycles. In this diagram, the true dependence is indicated by an 
arrow in a solid line whereas the loop-carried antidependence 
is indicated by an arrow in a short dashed line. 

FIG. 14 (b) shows a cyclic path obtained after the instruc 
tion mov has been inserted into the root node shown in FIG. 
14 (a). By this insertion of the instruction mov, the loop 
carried dependence cut is performed. Nevertheless, the path 
length is still 4 cycles at the maximum. It can be verified that 
in the case where the transfer instruction is inserted into a root 
node of a cyclic path made up of two instructions, the initia 
tion interval cannot be shortened, thereby rendering the opti 
mization ineffectual. In fact, the insertion of the instruction 
mov increases the code size of the machine language program 
203, which leads to degradation in performance. 

Meanwhile, FIG. 15 is a diagram showing changes before 
and after the insertion of a transfer instruction in the case 
where 2 cyclic paths are included, each cyclic path being 
made up of two instructions and the same register causing 
both a true dependence and a loop-carried antidependence in 
the cyclic path. 

FIG. 15 (a) shows an example of the cyclic paths that each 
have a loop-carried antidependence. Here, one cyclic path is 
made up of instructions A and B whereas the other cyclic path 
is made up of instructions A and C. In this diagram, the true 
dependence is indicated by an arrow in a solid line and the 
loop-carried antidependence is indicated by an arrow in a 
short dashed line. As can be seen, these 2 cyclic paths have the 
instruction A as a common root node and each path length is 
4 cycles. 

FIG. 15 (b) shows a cyclic path obtained after the instruc 
tion mov has been inserted into the root node shown in FIG. 
15 (a). By the insertion of the instruction mov, the loop 
carried dependence cut is performed. As a result, the cyclic 
path shown in FIG. 15 (a) is changed into 3 cyclic paths with 
a dependence distance of 1. More specifically, these 3 are: 1 
cyclic path with a path length of 4 cycles; and 2 cyclic paths 
each with a path length of 1 cycle. In this case, the path length 
is still 4 cycles at the maximum, meaning that the initiation 
interval cannot be shortened. However, the number of cyclic 
paths with the path length of 4 cycles is reduced from 2 to 1. 
Accordingly, the instruction placement constraint imposed 
during Software pipelining is eased, so that the probability of 
Success in Software pipelining increases. 
Resource-Constrained Cyclic Path 
Next, an explanation is given as to a case where a transfer 

instruction is inserted into a cyclic path that is formed in 
consideration of resource constraints. 

First, a comparison is made between the longest paths in 
the cases where the resource constraints are imposed and not 
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imposed, using the same dependence graph. FIGS. 16A and 
16B are diagrams illustrating the difference between the long 
est paths. FIG. 16A shows a cyclic path in the case where no 
resource constraints are imposed whereas FIG. 16B shows a 
cyclic path that is formed with consideration given to the 
resource constraints. In these diagrams, the true dependence 
is indicated by an arrow in a solid line. Here, it should be 
noted that although not illustrated in these diagram, there is 
necessarily a loop-carried dependence opposite in direction 
to the true dependence indicated by the solid line. 
As shown in FIG. 16A, when no resource constraints are 

imposed, the cyclic path made up of instructions e. f. and g is 
the longest path and its path length is 7 cycles. On the other 
hand, in the resource-constrained cyclic path as shown in 
FIG. 16B, instructions a, b, and c use one and the same 
resource d. 

Hereafter, a cyclic path made up of instructions S., a, and e 
is referred to as the “cyclic path a’: a cyclic path made up of 
instructions s, b, and e is referred to as the “cyclic pathb'; and 
a cyclic path made up of instructions S, c, and e is referred to 
as the “cyclic path c'. When no resource constraints are 
imposed, each of their path lengths is 6 cycles. As already 
mentioned above, however, the instructions a, b, and c share 
one and the same resourced in common. Suppose here that a 
latency from the execution start of one of the instructions a, b, 
and c until the time when the executed instruction releases the 
resource dis 2 cycles. Note that the instructions a, b, and c are 
executed in this order as a fixed order of priority. 

For the execution of the instructions included in the cyclic 
patha, the instruction a does not have to wait for the resource 
d to be released since the other instructions do not use the 
resourced. On account of this, the resource constrained path 
length of the cyclic path a is 6 (=4+2+0) cycles. For the 
execution of the instructions included in the cyclic path b, the 
instruction b has to wait 2 cycles, even when executable, until 
the instruction a releases the resourced. Thus, the resource 
constrained path length of the cyclic path b is 8 (-4+2+2+0) 
cycles. For the execution of the instructions included in the 
cyclic path c, the instruction c has to wait 4 (2+2) cycles, 
even when executable, until the instructions a and b release 
the resource d. On account of this, the resource constrained 
path length of the cyclic path c is 10 (=4+2+2+2+0) cycles. 
Consequently, the resource constrained longest path is the 
cyclic path c, and its resource constrained path length is 10 
cycles. 

In this way, even in the same dependence graph, the longest 
paths are different depending on whether or not the resource 
constraints are imposed, and thus the path lengths are also 
different. In consideration of this, for the case where the 
resource constraints are imposed, the resource constrained 
longest path needs to be obtained. 
Cyclic Path Including a Plurality of Longest Paths 
An explanation is next given as to a case where a transfer 

instruction is inserted into a cyclic path which includes a 
plurality of longest paths. 

FIGS. 17A to 17C are diagrams showing changes before 
and after the insertion of a transfer instruction into a leaf node 
of the cyclic path that includes a plurality of longest paths. In 
these diagrams, the true dependence is indicated by an arrow 
in a solid line. Here, it should be noted that although not 
illustrated in these diagram, there is necessarily a loop-carried 
dependence opposite in direction to the true dependence indi 
cated by the solid line. 
FIG.17A shows a cyclic path that includes 5 longest paths, 

with each path length being 6 cycles. In this diagram, these 5 
longest paths are indicated specifically by arrows in thick 
Solid lines. As shown, the loop-carried dependence between 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
the instructions banda also exists in 3 cyclic paths, which are: 
a path made up of instructions a, m, and b; a path made up of 
instructions a, n, and b; and a path made up of instructions a, 
o, and b. Moreover, the loop-carried dependence between the 
instructions c and b also exists in 2 cyclic paths, which are: a 
path made up of instructions b, p, and c; and a path made up 
of instructions b, r, and c. 

FIG. 17B shows a cyclic path obtained after the instruction 
mov has been inserted into the leaf node b so that the loop 
carried dependence cut is executed between the instructions b 
and a. In this diagram, the arrows in thick lines indicate the 
cyclic paths changed from the longest paths shown in FIG. 
17A. More specifically, the 5 longest paths whose respective 
path lengths were 6 cycles are changed into, with a depen 
dence distance of 1:2 longest paths, each path length being 6 
cycles; 1 cyclic path with a path length of 4 cycles: and 1 
cyclic path with a path length of 1 cycle. 

FIG. 17C shows a cyclic path obtained after the instruction 
mov has been inserted into the leaf nodec so that the loop 
carried dependence cut is executed between the instructions c 
and b. In this diagram, the arrows in thick lines indicate the 
cyclic paths changed from the longest paths shown in FIG. 
17A. More specifically, the 5 longest paths whose respective 
path lengths were 6 cycles are changed into, with a depen 
dence distance of 1:3 longest paths, each path length being 6 
cycles; 1 cyclic path with a path length of 4 cycles; and 1 
cyclic path with a path length of 1 cycle. 
As can be understood, the number of the longest paths is 

reduced more in the case of FIG. 17B than the case of FIG. 
17C. That is, for the case where the transfer instruction is 
inserted into a leaf node, the number of cyclic paths with 
longer path lengths can be reduced by the loop-carried depen 
dence cut performed by the insertion of the transfer instruc 
tion into the leaf node that has more, longer cyclic paths. 
Consequently, the instruction placement constraint imposed 
during software pipelining can be eased. 

FIGS. 18A and 18B are diagrams showing changes before 
and after the insertion of a transfer instruction into a root node 
of the cyclic path that includes a plurality of longest paths. 
Note here that the arrows in these diagrams represent the 
same meanings as those in FIGS. 17A to 17C. 

FIG. 18A shows a cycle path obtained after the instruction 
mov has been inserted into the root node a so that the loop 
carried dependence cut is performed between the instructions 
b and a shown in FIG. 17A. Note here, in this case, that the 
same register causes both the true dependence between the 
instruction a and the instructions m, n, and o and the loop 
carried dependence between the instruction b and a. As 
shown, the 5 longest paths whose respective path lengths 
were 6 cycles are changed into, with a dependence distance of 
1:2 longest paths, each path length being 6 cycles; 1 cyclic 
path with a path length of 4 cycles; and 3 cyclic paths, each 
path length being 3 cycles. 

Meanwhile, FIG. 18B shows a cycle path obtained after the 
instruction mov has been inserted into the root node b so that 
the loop-carried dependence cut is performed between the 
instructions c and b shown in FIG. 17A. Note here, in this 
case, that the same register causes both the true dependence 
between the instruction band the instructions p and rand the 
loop-carried dependence between the instruction c and b. As 
shown, the 5 longest paths whose respective path lengths 
were 6 cycles are changed into, with a dependence distance of 
1: 3 longest paths, each path length being 6 cycles; 1 cyclic 
path with a path length of 4 cycles; and 2 cyclic paths, each 
path length being 3 cycles. 
As can be understood, the number of the longest paths is 

reduced more in the case of FIG. 18A than the case of FIG. 
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18B. That is, for the case where the transfer instruction is 
inserted into a root node, the number of cyclic paths with 
longer path lengths can be reduced by the loop-carried depen 
dence cut performed by the insertion of the transfer instruc 
tion into the root node that has more, longer cyclic paths. 
Consequently, the instruction placement constraint imposed 
during software pipelining can be eased. 
Cyclic Path Including a Plurality of Loop-Carried Depen 
dences 

FIGS. 19A to 19C are diagrams showing changes before 
and after the insertion of a transfer instruction into a cyclic 
path that has a plurality of loop-carried dependences. In these 
diagrams, the true dependence is indicated by an arrow in a 
Solid line whereas the loop-carried antidependence is indi 
cated by an arrow in a short dashed line. 

FIG. 19A shows a cyclic path that includes 2 loop-carried 
dependences, which exist respectively between the instruc 
tions c and b and between the instructions banda. The path 
length of this cyclic path is 16 cycles as shown. 

FIG. 19B shows a cycle path obtained after the instruction 
mov has been inserted into the root nodea of the cyclic path 
shown in FIG. 19A. To be more specific. the cyclic path of 16 
cycles with a dependence distance of 2 is divided into cyclic 
paths whose respective path lengths are 13 cycles and 4 
cycles, with a dependence distance of 2. Note here, in this 
case, that the same register causes both the true dependence 
between the instructions a and d and the loop-carried depen 
dence between the instruction b and a. In this way, the path 
length is shortened, thereby casing the instruction placement 
constraint imposed during software pipelining. 

Meanwhile, FIG. 19C shows a cyclepath obtained after the 
instruction mov has been inserted into the leaf node c of the 
cyclic path shown in FIG. 19A As shown, the cyclic path 
whose path length is 16 cycles with a dependence distance of 
2 is eliminated. Accordingly, the instruction placement con 
straint imposed during software pipelining can be eased. 
As described so far, according to the present invention, 

when a cyclic path includes at least one loop-carried antide 
pendence, the path length can be shortened and the instruction 
placement constraint imposed during Software pipelining can 
be eased, by the insertion of a transfer instruction into a leaf 
node or root node of the cyclic path. This allows software 
pipelining to be performed with enhanced speed and effi 
ciency in the cases where the path length of the longest path 
or the resource constrained path length of the resource-con 
strained longest path can be shortened and the initiation inter 
val of the loop process can also be shortened. 

Although the compiler apparatus of the present invention 
has been described in the present embodiment, the present 
invention is not limited to this. For example, the above-men 
tioned loop-carried dependence cut may be performed more 
than once on the same loop, so that Software pipelining can be 
executed with even more enhanced speed and efficiency. 

Moreover, in the exclusion process performed on the cyclic 
path set in step S403 shown in FIG. 8, the instruction selection 
unit 212 may exclude a cyclic path in which the latency of the 
root node is equal to or shorter than the latency of the transfer 
instruction. By doing so, the cyclic path whose path length 
would belonger by the insertion of the transfer instruction can 
be excluded in advance. This allows an appropriate cyclic 
path to be selected with enhanced speed and efficiency. 

Furthermore, in the examples shown in FIGS. 5 to 7, the 
explanation was given as to the cases where the registers 
respectively causing the true dependence and causing the 
loop-carried antidependence for the leafnode or root node are 
different. However, these registers may be the same one reg 
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ister. FIG. 20 is a diagram showing changes in a data depen 
dence graph before and after the insertion of a transfer 
instruction into a cyclic path. 

FIG. 20 (a) shows a cyclic path that includes three instruc 
tions lam, add, and stim. As shown in this diagram, the register 
as a parameter of the true dependence and the register as a 
parameter of the loop-carried antidependence in this cyclic 
path are the same, i.e., the register r1. FIG. 20 (b) shows a 
cyclic path obtained after the instruction mov has been 
inserted into the root node, that is, the instruction ldm, of the 
cyclic path shown in FIG. 20 (a). To be more specific, instead 
of the instruction ldm, an instruction “ldm r0: ré, (r2+) is 
used. In this instruction, the register r1 which is the parameter 
used by the instruction ldmfor the loop-carried dependence is 
replaced with an unused register r(5. Also, a transfer instruc 
tion “mov r1, ro' is inserted, so that the value stored in the 
register ré is stored into the register r1 which is the original 
parameter. By this insertion of the instruction mov into the 
root node, the cyclic path whose path length was 4 cycles is 
divided into 2 cyclic paths whose respective path lengths are 
3 cycles and 2 cycles. In this case, there is a possibility of 
shortening the initiation interval to 3 cycles. 

Although only one exemplary embodiment of this inven 
tion has been described in detail above, those skilled in the art 
will readily appreciate that many modifications are possible 
in the exemplary embodiment without materially departing 
from the novel teachings and advantages of this invention. 
Accordingly, all Such modifications are intended to be 
included within the scope of this invention. 

INDUSTRIAL APPLICABILITY 

The present invention can be applied to a compiler or the 
like whose target processor is capable of parallel processing. 
What is claimed is: 
1. A compiler apparatus comprising a processor for con 

Verting a source program into a machine language program 
for a processor device which is capable of parallel processing, 
the converting being performed by a computer, said compiler 
apparatus comprising: 

a parser configured to parse the source program and then to 
convert the source program into an intermediate pro 
gram which is described in an intermediate language; 

an optimizer configured to optimize the intermediate pro 
gram; and 

a converter configured to convert the optimized intermedi 
ate program into the machine language program, 

wherein, when there is a cyclic data dependence relation 
that starts with and ends with an instruction among at 
least three instructions in a loop process, said optimizer 
executes Software pipelining, by inserting a transfer 
instruction, which is used for transferring data between 
operands, into the loop process included in the interme 
diate program so that the cyclic data dependence relation 
is changed removed. 

2. The compiler apparatus according to claim 1, 
wherein said optimizer comprises: 
a cyclic path detector configured to create a data depen 

dence graph representing dependence relations among 
instructions present in the intermediate program, and to 
detecta cyclic path which is a closed path that starts with 
and ends with an instruction, the cyclic path tracing data 
dependences of the instructions in the data dependence 
graph; 

an inserter configured to insert the transfer instruction 
whose operands include a parameter of a loop-carried 
dependence included in the detected cyclic path; and 
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a software pipeliner configured to execute software pipe 
lining on the intermediate program into which the trans 
fer instruction has been inserted. 

3. The compiler apparatus according to claim 2, 
wherein said inserter comprises: 
an instruction selector configured to select an instruction 
on which a different instruction is true dependent and 
which is loop-carried antidependent, in the detected 
cyclic path; 

an instruction replacer configured to replace a first register 
that is used in the selected instruction with a second 
register; and 

a transfer instruction inserter configured to insert the trans 
fer instruction for transferring a value stored in the first 
register to the second register. 

4. The compiler apparatus according to claim 3, 
wherein said cyclic path detector is configured to detect at 

least one cyclic path which has a longest total latency of 
data dependences, and 

said instruction selector is configured to, when a plurality 
of cyclic paths which each have the longest total latency 
are present, select an instruction, from among instruc 
tions which are loop-carried dependent in the cyclic 
paths or on each of which a different instruction is loop 
carried dependent in the cyclic paths, that is loop-carried 
dependent in a largest number of cyclic paths or that a 
different instruction is loop-carried dependent on in a 
largest number of cyclic paths. 

5. The compiler apparatus according to claim 2, 
wherein said inserter comprises: 
an instruction selector configured to select an instruction 
which is true dependent and on which a different instruc 
tion is loop-carried antidependent, in the detected cyclic 
path; 

an instruction replacer configured to replace a first register 
that is defined by the selected instruction with a second 
register; and 

a transfer instruction inserter configured to insert the trans 
fer instruction for transferring a value stored in the sec 
ond register to the first register. 

6. The compiler apparatus according to claim 2, 
wherein said cyclic path detector is configured to detect a 

cyclic path which has a longest path length, the path 
length representing a total latency of data dependences 
in the cyclic path. 

7. The compiler apparatus according to claim 6. 
wherein said cyclic path detector is configured to detect a 

resource constrained cyclic path which has a longest 
resource constrained path length. 

8. The compiler apparatus according to claim 2, 
wherein said cyclic path detector is configured to detect a 

cyclic path other than a cyclic path which is made up of 
two instructions and in which a same one register causes 
both a true dependence and a loop-carried antidepen 
dence. 

9. The compiler apparatus according to claim 2, 
wherein said cyclic path detector is configured to detect a 

cyclic path in which a latency incurred by an instruction 
that is true dependent and that a different instruction is 
loop-carried antidependent on is longer than a latency 
incurred by the transfer instruction. 

10. A compiling method for converting, by a computer, a 
Source program into a machine language program for a pro 
cessor which is capable of parallel processing, the compiling 
method comprising: 
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parsing the source program and then converting the Source 

program into an intermediate program which is 
described in an intermediate language; 

optimizing the intermediate program; and 
converting the optimized intermediate program into the 

machine language program, 
wherein, when there is a cyclic data dependence relation 

that starts with and ends with an instruction among at 
least three instructions in a loop process, in the optimiz 
ing of the intermediate program, Software pipelining is 
executed, by an insertion of a transfer instruction, which 
is used for transferring data between operands, into the 
loop process included in the intermediate program so 
that the cyclic data dependence relation is changed 
removed. 

11. The compiling method according to claim 10, 
wherein the optimizing comprises: 
creating a data dependence graph representing dependence 

relations among instructions present in the intermediate 
program, and detecting a cyclic path which is a closed 
path that starts with and ends with an instruction, the 
cyclic path tracing data dependences of the instructions 
in the data dependence graph; 

inserting the transfer instruction whose operands include a 
parameter of a loop-carried dependence included in the 
detected cyclic path; and 

executing software pipelining on the intermediate program 
into which the transfer instruction has been inserted. 

12. The compiling method according to claim 11, 
wherein the inserting comprises: 
selecting an instruction on which a different instruction is 

true dependent and which is loop-carried antidependent, 
in the detected cyclic path; 

replacing a first register that is used in the selected instruc 
tion with a second register, and 

inserting the transfer instruction for transferring a value 
stored in the first register to the second register. 

13. The compiling method according to claim 12, 
wherein the creating detects at least one cyclic path which 

has a longest total latency of data dependences, and 
the selecting is configured to, when a plurality of cyclic 

paths which each have the longest total latency are 
present, select an instruction, from among instructions 
which are loop-carried dependent in the cyclic paths or 
on each of which a different instruction is loop-carried 
dependent in the cyclic paths, that is loop-carried depen 
dent in a largest number of cyclic paths or that a different 
instruction is loop-carried dependent on in a largest 
number of cyclic paths. 

14. The compiler apparatus method according to claim 
11, 

wherein the inserting comprises: 
selecting an instruction which is true dependent and on 
which a different instruction is loop-carried antidepen 
dent, in the detected cyclic path; 

replacing a first register that is defined by the selected 
instruction with a second register, and 

inserting the transfer instruction for transferring a value 
stored in the second register to the first register. 

15. The compiler apparatus method according to claim 
11, 

wherein the creating is configured to detect a cyclic path 
which has a longest path length, the path length repre 
senting a total latency of data dependences in the cyclic 
path. 

16. The compiler apparatus method according to claim 
11, 
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wherein the creating is configured to detect a cyclic path 
other than a cyclic path which is made up of two instruc 
tions and in which a same one register causes both a true 
dependence and a loop-carried antidependence. 

17. The compiler apparatus method according to claim 
11, 

wherein the creating is configured to detect a cyclic path in 
which a latency incurred by an instruction that is true 
dependent and that a different instruction is loop-carried 
antidependent on is longer than a latency incurred by the 
transfer instruction. 

18. A compiler comprising a processor which causes a 
computer to convert a source program into a machine lan 
guage program for a processor device that is capable of par 
allel processing, said compiler comprising an execution appa 
ratus and causing said computer to execute: 

parsing the source program and then converting the source 
program into an intermediate program which is 
described in an intermediate language; 

optimizing the intermediate program; and 
converting the optimized intermediate program into the 

machine language program, 
wherein, when there is a cyclic data dependence relation 

that starts with and ends with an instruction among at 
least three instructions in a loop process, in said opti 
mizing of the intermediate program, software pipelining 
is executed, by an insertion of a transfer instruction, 
which is used for transferring data between operands, 
into the loop process included in the intermediate pro 
gram so that the cyclic data dependence relation is 
changed removed. 

19. A non-transitory computer-readable recording medium 
which records a compiler for causing a computer to converta 
Source program into a machine language program for a pro 
cessor that is capable of parallel processing, said compiler 
causing said computer to execute: 

parsing the source program and then converting the source 
program into an intermediate program which is 
described in an intermediate language; 

optimizing the intermediate program; and 
converting the optimized intermediate program into the 

machine language program, 
wherein, when there is a cyclic data dependence relation 

that starts with and ends with an instruction among at 
least three instructions in a loop process, in the optimiz 
ing of the intermediate program, software pipelining is 
executed, by an insertion of a transfer instruction, which 
is used for transferring data between operands, into the 
loop process included in the intermediate program so 
that the cyclic data dependence relation is changed 
removed. 

20. A non-transitory computer readable recording medium 
that stores a program for a processor which is capable of 
parallel processing, the program being recorded on a non 
transitory, computer readable recording medium said pro 
gram causing said processor to execute: 

an instruction for executing iterations of a loop process in 
parallel; and 

a transfer instruction for transferring data between oper 
ands used in an instruction making up a closed path 
which starts with and ends with a same instruction, the 
closed path tracing data dependences of the instruction 
included in a data dependence graph created with 
respect to the loop process, when there is a cyclic data 
dependence relation that starts with and ends with an 
instruction among at least three instructions in the loop 
process. 
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21. A system comprising: 
a target processor that is capable of parallel processing: 
and 

a compiler apparatus for the target processor; the compiler 
apparatus comprising: 

a parser configured to parse a source program and then to 
Convert the source program into an intermediate pro 
gram which is described in an intermediate language, 

an optimizer configured to optimize the intermediate pro 
gram, and 

a Converter configured to convert the optimized intermedi 
ate program into the machine language program, and to 
provide the machine language program to the target 
processor, 

wherein, when there is a cyclic data dependence relation 
that starts with and ends with an instruction among at 
least three instructions in a loop process, said optimizer 
executes software pipelining, by inserting a transfer 
instruction, which is used for transferring data between 
operands, into the loop process included in the interme 
diate program so that the cyclic data dependence rela 
tion is removed. 

22. A system comprising: 
a target processor that is capable of parallel processing: 
and 

a non-transitory computer-readable recording medium 
which records a program for causing a computer to 
Convert a source program into a machine language pro 
gram for the target processor; the program causing the 
Computer to execute. 

parsing the source program and then converting the source 
program into an intermediate program which is 
described in an intermediate language, 

Optimizing the intermediate program, and converting the 
optimized intermediate program into the machine lan 
guage program, 

wherein, when there is a cyclic data dependence relation 
that starts with and ends with an instruction among at 
least three instructions in a loop process, in the optimiz 
ing of the intermediate program, software pipelining is 
executed, by an insertion of a transfer instruction, which 
is used for transferring data between operands, into the 
loop process included in the intermediate program so 
that the cyclic data dependence relation is removed. 

23. A system comprising: 
a target processor that is capable of parallel processing: 
and 

a server computer that transmits a program to the target 
processor, the program causing a processor to convert a 
Source program into a machine language program for 
the target processor; the program causing the processor 
to execute. 

parsing the source program and then converting the source 
program into an intermediate program which is 
described in an intermediate language, 

Optimizing the intermediate program, and converting the 
Optimized intermediate program into the machine lan 
guage program, 

wherein, when there is a cyclic data dependence relation 
that starts with and ends with an instruction among at 
least three instructions in a loop process, in the optimiz 
ing of the intermediate program, software pipelining is 
executed by an insertion of a transfer instruction, which 
is used for transferring data between operands, into the 
loop process included in the intermediate program so 
that the cyclic data dependence relation is removed. 


