
USOORE451 99E

(19) United States
(12) Reissued Patent

Michimoto et al.
US RE45,199 E

Oct. 14, 2014
(10) Patent Number:
(45) Date of Reissued Patent:

(54) COMPILERAPPARATUS 2004/0194-071 A1* 9, 2004 Tanaka 717/136
2004/0268334 A1 12/2004 Muthukumar et al.

(75) Inventors: Shohei Michimoto, Osaka (JP); Taketo 2006/0107267 A1 5/2006 Miyachi et al.
Heishi, Osaka (JP); Hajime Ogawa, FOREIGN PATENT DOCUMENTS
Osaka (JP); Teruo Kawabata, Osaka
(JP) JP 5-204659 8, 1993

JP 10-097423 4f1998

(73) Assignee: Panasonic Corporation, Osaka (JP) OTHER PUBLICATIONS

(21) Appl. No.: 13/616,573 Miyajima et al., “Development environment and Development status
of Hyper scalar processor Nakasu 1.” Research Report of Information

(22) Filed: Sep. 14, 2012 processing Society of Japan, vol.95, No. 6,pp. 94-95, Jan. 1995, with
Related U.S. Patent Documents a partial English language translation threreof.

AV Japan Office Action, mail date is Jan. 18, 2011, with an English
Reissue of: language translation threreof.
(64) Patent No.: 7.856,629 Japan Office Action, mail date is Jun. 28, 2011, with an English

Issued: Dec. 21, 2010 language translation threreof.
Appl. No.: 11/420,059 English language Abstract of JP 10-097423.
Filed: May 24, 2006

* cited by examiner
(30) Foreign Application Priority Data

Primary Examiner — Isaac T Tecklu
Jun. 6, 2005 (JP) 2005-165999 (74) Attorney, Agent, or Firm — Greenblum & Bernstein,

P.L.C.
(51) Int. Cl.

G06F 9/45 (2006.01) (57) ABSTRACT
(52) U.S. Cl. A compiler apparatus, which can perform Software pipelining

USPC 717/160; 717/151; 717/156: 717/161 optimization that has a considerable effect of reducing the
(58) Field of Classification Search number of execution cycles taken to complete a loop process.

None converts a source program into a machine program for a
See application file for complete search history. processor which is capable of parallel processing. The com

piler apparatus is composed of a parsing unit operable to
(56) References Cited parse the Source program and then to convert the source

program into an intermediate program which is described in
U.S. PATENT DOCUMENTS an intermediate language; an optimization unit operable to

optimize the intermediate program; and a conversion unit
5,872,989 A 2f1999 Tsushima et al. operable to convert the optimized intermediate program into
E. A ck 9.28 Nihiyama et al. 717/161 the machinelanguage program, wherein the optimization unit

W. J. W. ang is operable to execute Software pipelining, by inserting a
6,113,650 A. 92000 Sakai 717/16O FaNS instruction, which is E. for fashi it.
6,760,906 B1* 7/2004 Odani et al. 717/149 b
6,941.541 B2 9, 2005 Snider T16,103 etween operands, into a loop process included in the inter
700,787 B2: 3/2006 Sakai. 717/159 mediate program so that a data dependence relation is
7,523,448 B2 * 4/2009 Kawahito 717/151 changed.

2002/0133813 A1 9, 2002 Ostanevich
2004/0163053 A1* 8, 2004 Snider T16/3 23 Claims, 20 Drawing Sheets

st ce. source procrat" (a) sRc ProgRAM (b) 8
- 20

J- 2O2 SCAR
coveR

pass JN
pipiss UN

APARAS

opM2A"iON UNIT
212

INSTRUConsection UNI

FRs PIMadi N.

23
'', tRANSFERNstroN INSERION UN

, 24

coMWNIONAL SOFWARE PPNFiNG UNIt
oUTJ MI ,

3. C. MacNe LANGUAGE-203
PROGRAM

SWAR NING N.

SECON OPTIMIZAON MI

US RE45,199 E Sheet 1 of 20 Oct. 14, 2014 U.S. Patent

US RE45,199 E U.S. Patent

US RE45,199 E U.S. Patent

US RE45,199 E Sheet 4 of 20 Oct. 14, 2014 U.S. Patent

| IT z ~1
ÞTZ

ETTNETTOENTETETTIEN?ELENGTI
£ † Z·

TTTTTTSTE FESTIGTERTÆ
z?z

| LINn siswiv

US RE45,199 E Sheet 5 of 20 Oct. 14, 2014 U.S. Patent

!(tzu) It

aon=qNad?g?Nv

US RE45,199 E Sheet 6 of 20 Oct. 14, 2014 U.S. Patent

| 0:0, z ppae|-

|

U.S. Patent Oct. 14, 2014 Sheet 7 of 20 US RE45,199 E

FIG 7

U.S. Patent Oct. 14, 2014 Sheet 8 of 20 US RE45,199 E

FIG, 8

START

ACQUIRE CYCLIC PATHS EXISTING S400
WITH IN LOOP

set all cyclic paths within loop
AS CYCLIC PATH SET

obtain Longest paths -50?
EXCLUDE LONGEST PATHS WHOSE PATH LENGTHS S403
BECOME LONGER AFTER INSERION OF
TRANSFER INSTRUCTION FROM CYCLIC PATH SET

SELECT ONE LEAF NODE OR ROOT NODE FROM S404
LONGEST PATHS BELONGING TO CYCLIC PATH SET

S405
INSERT TRANSFER INSTRUCTION

S4O6
EXECUTE SOFTWARE PIPELINING

US RE45,199 E Sheet 9 of 20 Oct. 14, 2014 U.S. Patent

U.S. Patent Oct. 14, 2014 Sheet 10 of 20 US RE45,199 E

FIG, ... O

US RE45,199 E Sheet 11 of 20 Oct. 14, 2014 U.S. Patent

w
A

U.S. Patent Oct. 14, 2014 Sheet 12 of 20 US RE45,199 E

FIG, 12

add r2, rO, rO

US RE45,199 E Sheet 13 of 20 Oct. 14, 2014 U.S. Patent

ppe

?

04

ppe

US RE45,199 E Sheet 14 of 20 Oct. 14, 2014 U.S. Patent

«-

US RE45,199 E Sheet 15 of 20 Oct. 14, 2014 U.S. Patent

BONE@adagunv (e)

U.S. Patent Oct. 14, 2014 Sheet 16 of 20 US RE45,199 E

FIG. 1.6A FIG. 16B

ONGES PATH 7 RESOURCE-CONSTRAINED
(e-ef->g->e) LONGEST PATH O

(S-ec-ee-s)

US RE45,199 E Sheet 17 of 20 Oct. 14, 2014 U.S. Patent

U.S. Patent

FIG. 18A

2 CYCLIC PATHS
OF LENGTH 6
CYCLIC PATH

OF ENGTH 4
3 CYCLIC PATHS
OF ENGTH 3

Oct. 14, 2014 Sheet 18 of 20

3 CYC IC PATHS
OF ENGTH 6
CYCLIC PATH

OF LENGTH 4
2 CYC IC PATHS
OF LENGTH 3

US RE45,199 E

US RE45,199 E Sheet 19 of 20 Oct. 14, 2014 U.S. Patent

US RE45,199 E U.S. Patent

US RE45,199 E
1.

COMPLERAPPARATUS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

(1) Field of the Invention
The present invention relates to a compiler apparatus

which converts a source program described in a high-level
language. Such as the C language, into a machine language
program. In particular, the present invention relates to speed
enhancement achieved by the compiler apparatus for a loop
process.

(2) Description of the Related Art
A compiler converts a source program described in a high

level language into a machine language program which is
made up of machine language instructions. When doing so,
the compiler sets the order of instructions so as to improve the
execution efficiency of the machine language program. This
operation is referred to as “instruction scheduling'.

In the technical field of language processors, how to
improve the execution efficiency of a loop process has been
one of the research themes over a long period of time. Gen
erally, a loop is made up of control statements, such as “for”
statements and “while statements, and a body including 0 or
more arithmetic expressions. This body is repeated until a
repetition condition defined by a control Statement is satis
fied. An executable unit for such a loop process is called
“iteration', and the number of derived iterations is the same as
the number of repetitions indicated in the control statement.
For example, when the control statement describes that the
body is to be repeated 100 times. 100 iterations would be
derived from the body.

It should be understood that all or some of the iterations
may be executed in parallel so that the execution efficiency of
the loop process can be improved. For the parallel execution
of the iterations, it is conventionally known that an optimiza
tion technique called “software pipelining executed on the
body of the loop process (also referred to as the “loop body”
hereafter) is effective (see Japanese Application Publication
No. 10-97.423, for example).

Software pipelining is an optimization technique whereby
the compiler converts the loop body into machine language
instructions in a manner that parallels a pipeline so as to
improve performance in the instruction execution. An expla
nation is given as to the execution of software pipelining, with
reference to FIG. 1.

FIG. 1 (a) is a diagram showing an example of the loop
body, which is made up of instructions A, B, and C, and a
branch instruction br. FIG. 1 (b) is a diagram showing an
example of a case where the instruction sequence shown in
FIG. 1 (a) is iterated 3 times without the parallel execution.
Suppose, for example, that each of the instructions A, B, and
C and a branch instruction brtakes 1 cycle to complete. In this
case, 4 cycles are required to complete each repetitive process
(i.e., iteration), meaning that 12 cycles are required to com
plete 3 iterations.

Meanwhile, FIG. 1 (c) is a diagram showing an example of
a case where 3 iterations of the instruction sequence shown in
FIG. 1 (a) are optimized by software pipelining so that the
instruction sequences are executed in parallel. In this case,
optimization is performed in Such a manner that the instruc
tion Cand the instruction A are executed in parallel and that

10

15

25

30

35

40

45

50

55

60

65

2
the branch instruction brand the instruction B are executed in
parallel, respectively across 2 iterations. Accordingly, the
same 3 iterations can be executed in a total of 8 cycles, which
is reduced from 12 cycles having been taken without the
parallel execution.

It should be noted here that a combination of instructions to
be executed in parallel is determined in accordance with a
dependence relation between the instructions as well as hard
ware resources available in the processor that executes the
machine language program.
A period of time taken from the start of an iteration to the

start of the next iteration is termed an “initiation interval’.
The shorter the initiation interval, the smaller the number of
execution cycles required to complete the loop process and
thus the faster the execution of the loop process.

However, in the case where considerable constraints are
imposed on the hardware resources available to the processor,
it is difficult to shorten the initiation interval or to appropri
ately perform instruction scheduling. This causes a problem
that the effect of reducing the number of execution cycles
would be small.

FIG. 2 is a diagram illustrating this problem. This diagram
shows a result of optimization by Software pipelining
executed on the instruction sequence shown in FIG. 1 (a).
Note here that each of the instructions A and Buses a hard
ware resource D. FIG. 2 (a) shows a result of optimization in
the case where there is only one hardware resource D. Mean
while, FIG. 2 (b) shows a result of optimization in the case
where there are two hardware resources D. As shown in FIG.
2 (a), the instructions A and B cannot be executed in parallel
because there is only one hardware resource D. On account of
this, the initiation interval cannot be reduced below 2. On the
other hand, as shown in FIG. 2 (b), the two hardware
resources Dallow the instructions A and B to be executed in
parallel, thereby shortening the initiation interval to 1. In this
way, the length of the initiation interval depends on the com
puter architecture. In other words, in the case where the
initiation interval is long due to the hardware resource con
straints, it is impossible to reduce the current initiation inter
Val through optimization performed by the compiler.

Meanwhile, Suppose that there is a loop-carried depen
dence, which refers to a data dependence between the instruc
tions across the iterations. In this case, the minimum initiation
interval is determined depending on the maximum number of
cycles of the path including the loop-carried dependence in a
data dependence graph that shows data dependence relations.
This means that the initiation interval cannot be shortened to
less than the value representing the present maximum number
of cycles. For this reason, when this maximum value is large,
there would be another problem that the software pipelining
optimization has little effect of reducing the number of execu
tion cycles.

FIGS. 3A and 3B are diagrams illustrating this problem.
FIG. 3A is a diagram of a data dependence graph that shows
data dependence relations among the instructions in the loop.
FIG. 3B is a diagram showing a result of Software pipelining
executed on the basis of the data dependence graph shown in
FIG 3A

Here, a brief explanation is given as to data dependences.
Data dependences can be grouped under three classes, which
are: “true dependence”, “antidependence', and “output
dependence'. A “true dependence” refers to a dependence
relation in which an instruction uses the variable having been
defined by the preceding instruction. An “antidependence'
refers to a dependence relation in which an instruction defines
the variable having been used by the preceding instruction.
An "output dependence” refers to a dependence relation in

US RE45,199 E
3

which an instruction redefines the variable having been
defined by the preceding instruction. In addition to these, a
data dependence that exists between iterations is particularly
referred to as a “loop-carried dependence'. This loop-carried
dependence does not exist between the instructions of the
body. To be more specific, a loop-carried dependence is a
dependence relation that arises to allow a value obtained by an
execution of an arithmetic expression within an iteration to be
used in the iterations that follow. When this dependence rela
tion exists, an arithmetic expression of the referencing side is
prohibited from preceding an arithmetic expression of the
defining side in execution. Moreover, in the present specifi
cation, a dependence relation that includes both a loop-car
ried dependence and one of the above-mentioned three
dependences is referred to as follows. When a loop-carried
dependence and a true dependence exist between two instruc
tions, this relation is referred to as a “loop-carried true depen
dence'. When a loop-carried dependence and an antidepen
dence exist between two instructions, this relation is referred
to as a “loop-carried antidependence'. When a loop-carried
dependence and an output dependence exist between two
instructions, this relation is referred to as a “loop-carried
output dependence'.
As shown in FIG. 3A, true dependences and an antidepen

dence exist among the three instructions (i.e., the instructions
ld, add, and st) within the loop. In this diagram, the true
dependence is indicated by an arrow in a solid line whereas
the antidependence is indicated by an arrow in a short dashed
line.

Here, “ld ro, (r1+) is an instruction to load data at an
address stored in a register r1 from a main memory, to store
the data into a register ro, and to increment the value stored in
the register r1 by 1. Moreover. “add r2, rO, ro” is an instruction
to add the value stored in the register rO to the value stored in
the registerro and to store the addition result into a register r2.
Furthermore, “st (r1), r2 is an instruction to store the value
stored in the register r2 into the main memory at an address
that is stored in the register r1.

Thus, the true dependence exists between the instruction ld
and the instruction add, with the register robeing aparameter.
To be more specific, the register rO having been defined by the
instruction ld is referenced by the instruction add. Note that a
latency from the start of execution of the instruction ld until
the time when the instruction add becomes executable is 3
cycles. This is accordingly described as “3 (ro)” in the dia
gram of FIG. 3A.

Similarly, the true dependence exists between the instruc
tion add and the instruction St, with the register r2 being a
parameter. Note that a latency between these 2 instructions is
1 cycle. This is accordingly described as “1 (r2) in the
diagram of FIG. 3A.

Moreover, the loop-carried antidependence exists between
the instruction stand the instruction ld, with the register r1
being a parameter. To be more specific, the value stored in the
register r1 by the instruction ld after being referenced by the
instruction St is incremented by 1, so that the register r1 is
defined. It should be noted that, in the specification of the
present invention, a latency between two instructions having
a loop-carried antidependence relation and a latency between
two instructions having a loop-carried output dependence
relation are both 0 cycle. This is accordingly described as "O
(r1) in the diagram of FIG. 3A.

Here, in the case of this cyclic path in the data dependence
graph including the loop-carried dependence, the number of
cycles of the present cyclic path is 4 (3+1+0). Moreover, this
cyclic path has only one loop-carried dependence, meaning
that a dependence distance is 1. The “dependence distance'

10

15

25

30

35

40

45

50

55

60

65

4
refers to the number of iterations present between two instruc
tions which are loop-carried dependent on each other across
two iterations. As shown in FIG. 3B, at least 4 cycles of the
initiation interval is required from the start of execution of the
instruction ld in an iteration to the start of execution of the
instruction ld in the next iteration. Therefore, the initiation
interval cannot be shortened to less than the number of cycles
of the cyclic path in the dependence graph that includes the
loop-carried dependence.

SUMMARY OF THE INVENTION

The present invention was conceived in view of the prob
lems described above, and has an object of providing a com
piler apparatus which can perform Software pipelining opti
mization so that the number of execution cycles taken to
complete a loop process can be significantly reduced.

In order to achieve the stated object, the compiler apparatus
according to an aspect of the present invention converts a
Source program into a machine language program for a pro
cessor which is capable of parallel processing, and is com
posed of a parsing unit operable to parse the source program
and then to convert the source program into an intermediate
program which is described in an intermediate language; an
optimization unit operable to optimize the intermediate pro
gram; and a conversion unit operable to convert the optimized
intermediate program into the machine language program,
wherein the optimization unit is operable to execute software
pipelining, by inserting a transfer instruction, which is used
for transferring data between operands, into a loop process
included in the intermediate program So that a data depen
dence relation is changed. To be more specific, the optimiza
tion unit has: a cyclic path detection unit operable to create a
data dependence graph representing dependence relations
among instructions existing in the intermediate program, and
to detect a cyclic path which is a closed path that starts and
ends with an instruction, the cyclic path tracing data depen
dences of the instruction in the data dependence graph; an
insertion unit operable to insert the transfer instruction whose
operands include a parameter of a loop-carried dependence
included in the detected cyclic path; and a Software pipelining
unit operable to execute Software pipelining on the interme
diate program into which the transfer instruction has been
inserted.
By the insertion of the transfer instruction into the loop, the

closed path in the data dependence graph of the original loop
can be divided into a plurality of closed paths. With this, there
is a possibility of reducing the maximum number of cycles of
the closed path in the data dependence graph of the original
loop. This, in turn, leads to a possibility of shortening the
initiation interval and of reducing the number of execution
cycles taken to complete the loop process, after the Software
pipelining optimization is executed. Accordingly, the present
invention can provide a compiler apparatus which can per
form Software pipelining optimization that has a considerable
effect of reducing the number of execution cycles taken to
complete a loop process.

For example, the insertion unit may include: an instruction
selection unit operable to select an instruction on which a
different instruction is true dependent and which is loop
carried antidependent, in the detected cyclic path; an instruc
tion replacement unit operable to replace a first register that is
used in the selected instruction with a second register, and a
transfer instruction insertion unit operable to insert the trans
fer instruction for transferring a value stored in the first reg
ister to the second register. Moreover, the insertion unit may
include: an instruction selection unit operable to select an

US RE45,199 E
5

instruction which is true dependent and on which a different
instruction is loop-carried antidependent, in the detected
cyclic path; an instruction replacement unit operable to
replace a first register that is defined by the selected instruc
tion with a second register, and a transfer instruction insertion
unit operable to insert the transfer instruction for transferring
a value Stored in the second register to the first register.

With this structure, the dependence relation existing as the
loop-carried antidependence in the closed path of the data
dependence graph is divided, so that a new cyclic path in
which the placement constraints have been eased can be gen
erated. This leads to a possibility of reducing the number of
execution cycles taken to complete the loop process. Accord
ingly, the present invention can provide a compiler apparatus
which can perform software pipelining optimization that has
a considerable effect of reducing the number of execution
cycles taken to complete a loop process.

Preferably, the cyclic path detection unit is operable to
detectat least one cyclic path which has alongest total latency
of data dependences, and the instruction selection unit is
operable to, when there exist a plurality of cyclic paths which
each have the longest total latency, select an instruction, from
among instructions which are loop-carried dependent in the
cyclic paths or on each of which a different instruction is
loop-carried dependent in the cyclic paths, that is loop-carried
dependent in a largest number of cyclic paths or that a differ
ent instruction is loop-carried dependent on in a largest num
ber of cyclic paths.

In this way, it is preferable to select the instruction which is
loop-carried dependent or on which a different instruction is
loop-carried dependent in the greatest number of the cyclic
paths. With this selection, more path lengths can be reduced.
Accordingly, the Software pipelining optimization that has a
considerable effect of reducing the number of execution
cycles can be performed. In addition, the instruction place
ment constraints during instruction scheduling can be eased.

Moreover, the cyclic path detection unit may be operable to
detect a cyclic path which has a longest path length, the path
length representing a total latency of data dependences in the
cyclic path.
The minimum initiation interval in the loop process is

determined depending on the longest path length of the cyclic
path. Thus, detection of such a cyclic path that has the longest
path length and insertion of a transfer instruction into that
cyclic path lead to a possibility of shortening the initiation
interval. This, in turn, leads to a possibility of reducing the
number of execution cycles taken to complete the loop pro
CCSS,

Preferably, the cyclic path detection unit is operable to
detect a resource constrained cyclic path which has a longest
resource constrained path length.

Detection of a cyclic path that has the longest path length
with consideration given to constraints imposed on the hard
ware resources or the like can lead to a possibility of short
ening the path length of the cyclic path that is a real bottle
neck. Accordingly, the number of execution cycles taken to
complete the loop process can be reduced, and the instruction
placement constrains during instruction scheduling can be
also eased.

Moreover, the cyclic path detection unit is operable to
detect a cyclic path other than a cyclic path which is made up
of two instructions and in which a same one register causes
both a true dependence and a loop-carried antidependence.
When a transfer instruction is inserted into a cyclic path

which is made up of two instructions and in which the same
register causes both a true dependence and a loop-carried
antidependence, the path length or the initiation interval can

10

15

25

30

35

40

45

50

55

60

65

6
not be shortened. For Such a cyclic path, the cyclic path
detection may not be performed, so that the optimization
effect can be accordingly improved.

Furthermore, the cyclic path detection unit may be oper
able to detect a cyclic path in which a latency incurred by an
instruction that is true dependent and that a different instruc
tion is loop-carried antidependent on is longer than a latency
incurred by the transfer instruction.
A cyclic path whose path length would become longer by

the insertion of a transfer instruction can be eliminated in
advance. Consequently, the cyclic path selection can be
appropriately performed with enhanced speed and efficiency.
A program according to another aspect of the present

invention is for a processor which is capable of parallel pro
cessing, the program causing the processor to execute: an
instruction for executing iterations of a loop process in par
allel; and a transfer instruction for transferring data between
operands used in an instruction making up a closed path
which starts and ends with a same instruction, the closed path
tracing data dependences of the instruction included in a data
dependence graph created with respect to the loop process.
As compared to a program in which a transfer instruction is

not inserted, the initiation interval of this program is shorter
because the transfer instruction has been inserted into the
loop process. Accordingly, the present invention can provide
a program which is capable of extremely high-speed execu
tion.

It should be noted here that the present invention may be
realized not only as a compiler apparatus that has these char
acteristic units, but also as: a compiling method that has steps
corresponding to the characteristic units provided in such a
compiler apparatus; and a compiler that causes a computer to
execute the characteristic steps included in the compiling
method. Also, it should be understood that such a compiler
can be distributed via a record medium such as a CD-ROM
(Compact Disc-Read Only Memory), or via a communication
network such as the Internet.
The present invention can provide a compiler apparatus

which can perform software pipelining optimization that has
a considerable effect of reducing the number of execution
cycles taken to complete a loop process.

Recent years have seen an increased introduction of pro
cessors which are capable of parallel processing. A loop
process may frequently occur during the course of program
execution. Thus, as a machine language program created by
the compiler apparatus of the present invention is capable of
high-speed execution, its practical value is significantly high.

FURTHER INFORMATION ABOUT TECHNICAL
BACKGROUND TO THIS APPLICATION

The disclosure of Japanese Patent Application No. 2005
165999 filed on Jun. 6. 2005 including specification, draw
ings and claims is incorporated herein by reference in its
entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip
tion thereof taken in conjunction with the accompanying
drawings that illustrate a specific embodiment of the inven
tion. In the Drawings:

FIG. 1 is a diagram illustrating software pipelining;
FIG. 2 to FIG. 3B are diagrams illustrating the conven

tional problems;

US RE45,199 E
7

FIG. 4 is a functional block diagram showing a structure of
a compiler apparatus;

FIG. 5 is a diagram showing changes in a data dependence
graph before and after the insertion of a transfer instruction
into a cyclic path;

FIG. 6 is a diagram showing respective results of software
pipelining executed before and after the insertion of a transfer
instruction;

FIG. 7 is a diagram showing a cyclic path obtained after an
instruction mov has been inserted into a root node (an instruc
tion ld) of the cyclic path shown in FIG. 5 (a):

FIG. 8 is a flowchart showing a process performed by a
Software pipelining unit;

FIGS. 9A to 9C are diagrams showing changes before and
after the insertion of a transfer instruction into a cyclic path
that has a loop-carried antidependence;

FIG. 10 is a diagram showing a cyclic path obtained after
an instruction mov has been inserted into a root node A in the
case where the same register causes both the true dependence
and the loop-carried antidependence of the root node A shown
in FIG.9A:

FIG. 11 is a diagram showing changes before and after the
insertion of a transfer instruction into a cyclic path that has a
loop-carried output dependence;

FIG. 12 is a diagram showing a cyclic path obtained after
an instruction mov has been inserted into the cyclic path
shown in FIG. 11 (a):

FIG. 13 is a diagram showing changes before and after the
insertion of a transfer instruction into a cyclic path that has a
loop-carried true dependence;

FIG. 14 is a diagram showing changes before and after the
insertion of a transfer instruction into a cyclic path that is
made up of two instructions;

FIG. 15 is a diagram showing changes before and after the
insertion of a transfer instruction in the case where two cyclic
paths, each being made up of two instructions, are included:
FIG.16A is a diagram illustrating alongest path in the case

where no resource constraints are imposed;
FIG.16B is a diagram illustrating a longest path in the case

where the resource constraints are imposed;
FIGS. 17A to 17C are diagrams showing changes before

and after the insertion of a transfer instruction into a leaf node
of a cyclic path that includes a plurality of longest paths;

FIGS. 18A and 18B are diagrams showing changes before
and after the insertion of a transfer instruction into a root node
of a cyclic path that includes a plurality of longest paths;

FIGS. 19A to 19C are diagrams showing changes before
and after the insertion of a transfer instruction into a cyclic
path that includes a plurality of loop-carried dependences;
and

FIG.20 is a diagram showing changes in a data dependence
graph before and after the insertion of a transfer instruction
into a cyclic path.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The following is a description of a compiler apparatus
according to an embodiment of the present invention, with
reference to the drawings.

FIG. 4 is a functional block diagram showing a structure of
the compiler apparatus. More specifically, FIG. 4 (a) is a
functional block diagram showing an entire structure of the
compiler apparatus whereas FIG. 4 (b) is a functional block
diagram showing a structure of a Software pipelining unit
which is a part of the compiler apparatus.

10

15

25

30

35

40

45

50

55

60

65

8
As shown in FIG. 4 (a), a compiler apparatus 202 converts

a source program 201 described in a high-level language,
Such as the Clanguage, into a machine language program 203
which is executable by a processor. The compiler apparatus
202 is composed of a parsing unit 204, an optimization unit
205, and an output unit 206. In the present embodiment, the
target processor of the compiler apparatus 202 is a processor
that is capable of executing a plurality of instructions in
parallel.
The parsing unit 204 is a processing unit which performs a

parsing process on the inputted Source program 201 and then
outputs a program described in an intermediate language.
Hereafter, the program described in the intermediate lan
guage is referred to as an “intermediate program'. The opti
mization unit 205 is a processing unit which performs a
predetermined optimization process on the intermediate pro
gram. The output unit 206 is a processing unit which converts
the intermediate program, on which the optimization process
has been performed, into a machine language program and
then outputs the program.
The optimization unit 205 has a first optimization unit 207,

a Software pipelining unit 208, and a second optimization unit
209. Each of the first optimization unit 207 and the second
optimization unit 209 performs a general optimization pro
cess. The Software pipelining unit 209 is a processing unit
which optimizes a loop process included in the intermediate
program by executing a software pipelining process.
As shown in FIG. 4(b), the software pipelining unit 208 has

a cyclic path analysis unit 211, an instruction selection unit
212, a transfer instruction insertion unit 213, and a conven
tional software pipelining unit 214.
The cyclic path analysis unit 211 is a processing unit which

creates a data dependence graph representing dependence
relations among the instructions included in the intermediate
program and which analyzes a cyclic path in the data depen
dence graph. A definition of the cyclic path is described later.
The instruction selection unit 212 is a processing unit which
selects, in accordance with the analysis result given by the
cyclic path analysis unit 211, an instruction from the data
dependence graph, into which a transfer instruction is to be
inserted. Here, the “transfer instruction” refers to an instruc
tion at which data can be transferred between the operands,
and generally is what is termed an instruction mov that moves
data between the registers. The transfer instruction insertion
unit 213 is a processing unit which inserts a transfer instruc
tion into the instruction selected by the instruction selection
unit 212. The conventional software pipelining unit 214 is a
processing unit which executes the conventional Software
pipelining process on the intermediate program after the
transfer instruction has been inserted.

It should be noted here that each processing unit making up
the compiler apparatus 202 is realized as a program that is
executed on a computer.
The following are definitions of the terms used throughout

the present specification.
(1) Cyclic path: A closed path of a data dependence graph,

which is traced along the data dependences of an instruction
and which begins and ends with the same instruction. Note
that, in the cyclic path, the same instruction is not traced more
than once.

(2) Path length: A total latency of the data dependences in
the cyclic path.

(3) Resource constrained cyclic path: A cyclic path with
consideration given to the resource constraints (i.e., the con
straints imposed on the hardware resources and on the num
ber of instructions executable in parallel).

US RE45,199 E
9

(4) Resource constrained path length: A total latency of the
data dependences in the resource constrained cyclic path.

(5) Longest path: A longest cyclic path.
(6) Resource constrained longest path: A longest cyclic

path with consideration given to the resource constraints.
(7) Leaf node: An instruction which the other instruction is

true dependent on and which is antidependent, in the cyclic
path.

(8) Root node: An instruction which is true dependent and
which the other instruction is antidependent on, in the cyclic
path.
A principal object of the present invention is to improve

Software pipelining in performance by inserting a transfer
instruction into a leaf node or a root node in a cyclic path or a
resource constrained cyclic path. For this reason, a detailed
explanation will be given only as to the process executed by
the software pipelining unit 208 in the present embodiment.
The other processing units of the compiler apparatus 202
respectively have the same functions as those of a conven
tional compiler apparatus, and thus detailed explanations of
them are not repeated here.

First, an explanation is given as to workings and effects
achieved by the insertion of a transfer instruction into the
cyclic path. FIG. 5 is a diagram showing changes in a data
dependence graph before and after the insertion of the transfer
instruction into the cyclic path.

FIG. 5 (a) shows the same cyclic path as the one in the data
dependence graph shown in FIG. 3A. This cyclic path
includes three instructions within the loop, which are instruc
tions la, add, and St. The path length of this data dependence
graph is 4 cycles. Meanwhile, FIG. 5 (b) shows the cyclic path
obtained after an instruction mov, which is a kind of transfer
instruction, has been inserted into the leaf node (i.e., the
instruction st) of the cyclic path shown in FIG. 5 (a). To be
more specific, instead of the instruction St, an instruction “st
(ra). r2 is used. In this instruction, a register r1 which is a
parameter used by the instruction St for a loop-carried depen
dence is replaced with an unused register ra. Also, a transfer
instruction “mov rá, r1 is inserted, so that a value stored in
the register r1 which is the original parameter is stored into
the registerra. By this insertion of the instruction mov into the
leaf node, the cyclic path whose path length was 4 cycles is
divided into 2 cyclic paths. That is, one is made up of instruc
tions la and mov and its path length is 3 cycles, and the other
is made up of instructions may and stand its path length is 1
cycle. As can be understood from this, by the insertion of the
transfer instruction, the original loop-carried dependence is
cut up. In the present specification, when a loop-carried
dependence is cut up so that new cyclic paths are created in
this way, this cutting process is referred to as "loop-carried
dependence cut”.
As mentioned above, the minimum value of the initiation

interval by Software pipelining is determined depending on
the longest path length. This means, in the case where the
cyclic path shown in FIG. 5 (a) is the longest path of the
present loop process, the initiation interval can be reduced
from 4 to 3.

FIG. 6 is a diagram showing respective results of software
pipelining performed before and after the insertion of the
transfer instruction. FIG. 6 (a) shows the result of software
pipelining which is performed before the transfer instruction
is inserted, and the resultant initiation interval is 4 cycles.
Meanwhile, FIG. 6 (b) shows the result of software pipelining
which is performed after the transfer instruction has been
inserted, and the resultant initiation interval is 3 cycles. By the
insertion of the transfer instruction, although there is a pos
sibility of increasing the number of execution cycles per

5

10

15

25

30

35

40

45

50

55

60

65

10
iteration, the initiation interval is shortened. Therefore, for
the loop as a whole, the number of execution cycles is
reduced. The greater the number of iterations, the larger this
effect is.

Moreover, as shown in FIG. 5, the dependence distance
between the instructions stand lod is increased from 1 to 2.
Accordingly, the instruction placement constraint during
Software pipelining is eased.

FIG. 7 is a diagram showing a cyclic path obtained after an
instruction mov has been inserted into the root node (the
instruction ld) of the cyclic path shown in FIG. 5 (a). To be
more specific, instead of the instruction ld, an instruction “ld
r0, (ra--) is used. In this instruction, the register r1 which is
a parameter used by the instruction ld is replaced with the
unused register ra. Also, a transfer instruction “mov rá, r1 is
inserted, so that a value stored in the register rais stored into
the register r1 that is the original parameter. By this insertion
of the instruction mov into the root node, the cyclic path
whose path length was 4 cycles is divided into 2 cyclic paths.
That is, one is made up of instructions la and mov and its path
length is 3 cycles, and the other is made up of instructions may
and stand its path length is 1 cycle. As explained above with
reference to FIGS. 5 and 6, there is a possibility of shortening
the initiation interval to 3 cycles in this case as well.

Next, an explanation is given as to a flow of a process
executed by the software pipelining unit 208 shown in FIG. 4
(b). FIG. 8 is a flowchart showing the process performed by
the software pipelining unit 208.
The cyclic path analysis unit 211 creates a data dependence

graph for a loop included in the intermediate program and
acquires cyclic paths existing in the data dependence graph
(S400). Then, the instruction selection unit 212 sets all the
cyclic paths of the loop acquired in the cyclic path acquisition
process (S400) as a cyclic path set (S401). Moreover, the
instruction selection unit 212 obtains longest paths from the
cyclic paths included in the cyclic path set (S402). Then, the
instruction selection unit 212 excludes the longest paths
whose path lengths will become longer by the insertion of the
transfer instruction, from the cyclic path set (S403). Further
more, the instruction selection unit 212 selects one from
among the leaf nodes and the root nodes of the longest paths
belonging to the cyclic path set (S404). The transfer instruc
tion insertion unit 213 inserts the transfer instruction into the
selected leafnode or root node (S405). Then, the conventional
Software pipelining unit 214 executes the Software pipelining
process on the loop process into which the transfer instruction
has been inserted (S406).
The above examples of FIGS.5 and 6 show the cases where

the transfer instruction is inserted into the leaf node of the
longest path that has the loop-carried antidependence relation
and then software pipelining is performed. Meanwhile, the
example of FIG. 7 shows the case where the transfer instruc
tion is inserted into the root node of the longest path that has
the loop-carried antidependence relation and then Software
pipelining is performed.
As described earlier, the data dependences can be grouped

under three classes, which are true dependence, antidepen
dence, and output dependence. Similarly, the loop-carried
dependence can be grouped under true dependence, antide
pendence, and output dependence.
The following are considerations given to changes in the

path length in the cases where: the transfer instruction is
inserted into the longest path that has the loop-carried anti
dependence relation: the transfer instruction is inserted into
the longest path that has the loop-carried output dependence
relation; and the transfer instruction is inserted into the long
est path that has the loop-carried true dependence relation.

US RE45,199 E
11

Loop-Carried Antidependence
FIGS. 9A to 9C are diagrams showing changes before and

after the insertion of a transfer instruction into the cyclic path
which has a loop-carried antidependence.
FIG.9A shows an example of the cyclic path which has the

loop-carried antidependence, the cyclic path being made up
of instructions A, B, C, and D. Note that, in the present cyclic
path, the instruction A is a root node whereas the instruction
D is a leaf node. Also note that the loop-carried antidepen
dence exists between the leaf node D and the root node A. In
FIGS. 9A to 9C, the true dependence is indicated by an arrow
in a solid line whereas the antidependence is indicated by an
arrow in a short dashed line. For instance, a latency from the
start of execution of the instruction A until the time when the
instruction B becomes executable is 4 cycles. Thus, as can be
seen in the diagram of FIG.9A, the path length of the present
cyclic path is 12 cycles.
FIG.9B shows a cyclic path obtained after an instruction

mov has been inserted into an instruction other than the leaf
node D and the root node A shown in FIG.9A. This diagram
shows a cyclic path of a case where the instruction mov is
inserted into the instruction B or C. As shown, the loop
carried dependence relation between the instructions A and D
is not changed even after the instruction mov has been
inserted into the instruction other than the root node A and the
leaf node D. In addition, due to the insertion of the instruction
mov, 1 cycle of latency is required between the start of execu
tion of the instruction mov and the start of execution of the
instruction C, resulting in increasing the path length from 12
to 13. Thus, the path length cannot be shortened, meaning that
the initiation interval cannot be shortened either.
FIG.9C shows a cyclic path obtained after the instruction

mov has been inserted into the leaf node D shown in FIG.9A.
In this example, due to the insertion of the instruction mov
into the leaf node D, the loop-carried dependence cut is per
formed between the instructions A and D. As a result of this,
the cyclic path of 12 cycles with a dependence distance of 1 is
changed into cyclic paths of 4 cycles and of 1 cycle. As can be
understood from this, there is a possibility of shortening the
initiation interval from 12 cycles to 4 cycles in the case where
the cyclic path shown in FIG.9A is the longest path. However,
when another cyclic path whose path length is 5 cycles or
more is present within the loop, that path length would be the
minimum initiation interval. Additionally, by the loop-carried
dependence cut, the instruction placement constraint can be
eased.

FIG. 10 is a diagram showing a cyclic path obtained after
an instruction mov has been inserted into the root node A in
the case where the same register causes both the true depen
dence and the loop-carried antidependence for the root node
A shown in FIG.9A. As is the case with the example shown
in FIG. 9C, the cyclic path of 12 cycles is changed into cyclic
paths of 4 cycles and of 9 cycles by the loop-carried depen
dence cut. Thus, there is a possibility of shortening the initia
tion interval from 12 cycles to 9 cycles in the case where the
cyclic path shown in FIG. 9A is the longest path. Also, the
instruction replacement constraint can be eased.
Loop-Carried Output Dependence
FIG. 11 is a diagram showing changes before and after the

insertion of a transfer instruction into the cyclic path that has
a loop-carried output dependence. FIG. 11 (a) shows an
example of the cyclic path that has the loop-carried output
dependence, the cyclic path being made up of one la instruc
tion and two add instructions. In this diagram, the true depen
dence is indicated by an arrow in a solid line whereas the
output dependence is indicated by an arrow in a short dashed
line.

10

15

25

30

35

40

45

50

55

60

65

12
Here, “ld, ro, (r1+) is an instruction to load data at an

address stored in a register r1 from a main memory, to store
the data into a register ro, and to increment the value stored in
the register r1 by 1. Moreover, “add r2, rO, ro” is an instruction
to add the value stored in the register rO to the value stored in
the registerro and to store the addition result into a register r2.
Furthermore, “addrO, r2, r2 is an instruction to add the value
stored in the register r2 to the value stored in the register r2
and to store the addition result into the register rO.

Thus, the true dependence exists between the instruction
“ld ro, (r1+) and the instruction “add r2, r0, r0', with the
registerro being a parameter. To be more specific, the register
r0 having been defined by the instruction ld is referenced by
the instruction add. Note that a latency from the start of
execution of the instruction ld until the time when the instruc
tion add becomes executable is 3 cycles. This is accordingly
described as “3 (ro) in the diagram of FIG. 11 (a).

Similarly, a true dependence exists between the instruction
“add r2, rO, r0' and the instruction “add r(), r2, r2, with the
register r2 being a parameter. Note that a latency between
these 2 instructions is 1 cycle. This is accordingly described
as “1 (r2) in the diagram of FIG. 11 (a).

Moreover, a loop-carried output dependence exists
between the instruction “addrO, r2, r2 and the instruction"ld
r0, (r1+), with the register robeing a parameter. To be more
specific, after being defined by the instruction add, the value
stored in the registerro is redefined by the instruction ld. Note
again, as described earlier, that in the embodiment of the
present invention, a latency between the two instructions
having a loop-carried dependence is 0 cycle. This is accord
ingly described as “O (ro) in the diagram of FIG. 11 (a).

In the case of this cyclic path in the data dependence graph
including Such a loop-carried dependence, the path length is
4 (3+1+0). Moreover, this cyclic path has only one loop
carried dependence, meaning that a dependence distance is 1.

Although this cyclic path has no root node or leaf node that
fits the definition described above, consider a case where an
instruction mov is inserted into an instruction corresponding
to a leaf node, that is, an instruction which is loop-carried
dependent. FIG. 11 (b) shows a cyclic path obtained after the
instruction mov has been inserted into the instruction “addr0,
r2, r2 that is loop-carried dependent in the cyclic path shown
in FIG. 11 (a). To be more specific, instead of the instruction
“addrO, r2, r2, an instruction “add r3, r2, r2 is used. In this
instruction, the register ro which is a parameter used by the
present instruction add for the loop-carried dependence is
replaced with an unused register r3. Also, a transfer instruc
tion “mov r3, ro' is inserted, so that the value stored in the
registerro which is the original parameter is stored into the
register r3. By this insertion of the instruction mov into the
instruction “add ro, r2, r2 which is loop-carried dependent,
the loop-carried dependence cut is performed between the
instructions add and ld. As a result of this, the cyclic path with
a dependence distance of 1 is eliminated.

FIG. 12 is a diagram showing a cyclic path obtained after
the instruction mov has been inserted into an instruction
corresponding to a root node of the cyclic path shown in FIG.
11 (a), i.e., the instruction “ld ro, (r1+) on which the other
instruction is loop-carried dependent. To be more specific,
instead of the instruction “ld ro, (r1+), an instruction “ld r3.
(r1+) is used. In this instruction, the register r() which is a
parameter used by the present instruction ld for the loop
carried dependence is replaced with the unused register r3.
Also, a transfer instruction"mov r0, r3” is inserted, so that the
value stored in the register r3 is stored into the register rO that
is the original parameter. By this insertion of the instruction
mov into the root node, the loop-carried dependence cut is

US RE45,199 E
13

performed between the instructions add and la. As a result of
this, the cyclic path whose path length was 4 cycles is divided
into 2 cyclic paths. That is, one is made up of instructions la
and mov and its path length is 3 cycles and the other is made
up of one mov instruction and two add instructions and its
path length is 2 cycles, with a dependence distance of 1.
Accordingly, in the case where the cyclic path shown in FIG.
11 (a) is the longest path, there is a possibility of shortening
the initiation interval to 3 cycles.
Loop-Carried True Dependence
FIG. 13 is a diagram showing changes before and after the

insertion of a transfer instruction into a cyclic path that has a
loop-carried true dependence. FIG. 13 (a) shows an example
of the cyclic path that has the loop-carried true dependence,
the cyclic path being made up of one mul instruction and two
add instructions. In this diagram, all the dependence relations
are true dependences, each being indicated by an arrow in a
solid line.

Here, “mul, r1, ro, ro” is an instruction to multiply the data
stored in the register roby the data stored in the registerro and
to store the multiplication result into the register r1. More
over, "add r2, r1, r1 is an instruction to add the value stored
in the register r1 to the value stored in the register r1 and to
store the addition result into the register r2. Furthermore, “add
r0, r2, r2 is an instruction to add the value stored in the
register r2 to the value stored in the register r2 and to store the
addition result into the register ro.

Thus, the true dependence exists between the instruction
“mul r1, r(), ro” and the instruction “add r2, r1, r1, with the
register r1 being a parameter. To be more specific, the register
r1 having been defined by the instruction mul is referenced by
the instruction add. Note that a latency from the start of
execution of the instruction mul until the time when the
instruction add becomes executable is 4 cycles. This is
accordingly described as “4 (r1) in the diagram of FIG. 13
(a).

Similarly, a true dependence exists between the instruction
“add r2, r1, r1 and the instruction “add ro, r2, r2, with the
register r2 being a parameter. Note that a latency between
these 2 instructions is 1 cycle. This is accordingly described
as “1 (r2) in the diagram of FIG. 13 (a).

Moreover, a loop-carried true dependence exists between
the instruction “addrO, r2, r2 and the instruction"mul r1, r(),
r0, with the register robeing a parameter. A latency between
the 2 instructions is 1 cycle. This is accordingly described as
“1 (rO)” in the diagram of FIG. 13(a).

In the case of this cyclic path of the data dependence graph
that includes such a loop-carried dependence, the path length
is 6 (=4+1+1).

This cyclic path has no root node or leaf node that fits the
definition described above, as all the data dependences within
the graph are true dependences. Here, consider a case where
the instruction mov is inserted into the instruction mul which
is one of the instructions making up the cyclic path. FIG. 13
(b) shows a cyclic path obtained after the instruction mov has
been inserted into the cyclic path shown in FIG. 13 (a). To be
more specific, instead of the instruction “mul r1, ro, rO', an
instruction “mul r3, ro, ro' is used. In this instruction, the
register r1 which is a parameter used by the present instruc
tion mul is replaced with the unused register r3. Also, a
transfer instruction “mov r1, r3” is inserted, so that the value
stored in the register r3 is stored into the register r1 which is
the original parameter. Note that a latency from the start of
execution of the instruction mov until the time when the
instruction add becomes executable is 1 cycle. As a result, the
path length after the insertion of the transfer instruction
becomes 7 (4+1+1+1). As can be understood from this, the

10

15

25

30

35

40

45

50

55

60

65

14
path length cannot be shortened by the insertion of the trans
fer instruction. In fact, the path length becomes longer, only
increasing the code size. It should be noted here that in the
case of the cyclic path made up of only true dependences, the
path length cannot be shortened no matter where the transfer
instruction is to be inserted. This means the optimization has
no effect in Such a case.
Cyclic Path Made Up of Two Instructions
Next, an explanation is given as to a case where a transfer

instruction is inserted into a cyclic path which is made up of
two instructions.

FIG. 14 is a diagram showing changes before and after the
insertion of a transfer instruction into a cyclic path which is
made up of two instructions and in which the same register
causes both a true dependence and a loop-carried antidepen
dence. FIG.14 (a) shows an example of the cyclic path having
the loop-carried antidependence, the cyclic path being made
up of two instructions A and B and the path length being 4
cycles. In this diagram, the true dependence is indicated by an
arrow in a solid line whereas the loop-carried antidependence
is indicated by an arrow in a short dashed line.

FIG. 14 (b) shows a cyclic path obtained after the instruc
tion mov has been inserted into the root node shown in FIG.
14 (a). By this insertion of the instruction mov, the loop
carried dependence cut is performed. Nevertheless, the path
length is still 4 cycles at the maximum. It can be verified that
in the case where the transfer instruction is inserted into a root
node of a cyclic path made up of two instructions, the initia
tion interval cannot be shortened, thereby rendering the opti
mization ineffectual. In fact, the insertion of the instruction
mov increases the code size of the machine language program
203, which leads to degradation in performance.

Meanwhile, FIG. 15 is a diagram showing changes before
and after the insertion of a transfer instruction in the case
where 2 cyclic paths are included, each cyclic path being
made up of two instructions and the same register causing
both a true dependence and a loop-carried antidependence in
the cyclic path.

FIG. 15 (a) shows an example of the cyclic paths that each
have a loop-carried antidependence. Here, one cyclic path is
made up of instructions A and B whereas the other cyclic path
is made up of instructions A and C. In this diagram, the true
dependence is indicated by an arrow in a solid line and the
loop-carried antidependence is indicated by an arrow in a
short dashed line. As can be seen, these 2 cyclic paths have the
instruction A as a common root node and each path length is
4 cycles.

FIG. 15 (b) shows a cyclic path obtained after the instruc
tion mov has been inserted into the root node shown in FIG.
15 (a). By the insertion of the instruction mov, the loop
carried dependence cut is performed. As a result, the cyclic
path shown in FIG. 15 (a) is changed into 3 cyclic paths with
a dependence distance of 1. More specifically, these 3 are: 1
cyclic path with a path length of 4 cycles; and 2 cyclic paths
each with a path length of 1 cycle. In this case, the path length
is still 4 cycles at the maximum, meaning that the initiation
interval cannot be shortened. However, the number of cyclic
paths with the path length of 4 cycles is reduced from 2 to 1.
Accordingly, the instruction placement constraint imposed
during Software pipelining is eased, so that the probability of
Success in Software pipelining increases.
Resource-Constrained Cyclic Path
Next, an explanation is given as to a case where a transfer

instruction is inserted into a cyclic path that is formed in
consideration of resource constraints.

First, a comparison is made between the longest paths in
the cases where the resource constraints are imposed and not

US RE45,199 E
15

imposed, using the same dependence graph. FIGS. 16A and
16B are diagrams illustrating the difference between the long
est paths. FIG. 16A shows a cyclic path in the case where no
resource constraints are imposed whereas FIG. 16B shows a
cyclic path that is formed with consideration given to the
resource constraints. In these diagrams, the true dependence
is indicated by an arrow in a solid line. Here, it should be
noted that although not illustrated in these diagram, there is
necessarily a loop-carried dependence opposite in direction
to the true dependence indicated by the solid line.
As shown in FIG. 16A, when no resource constraints are

imposed, the cyclic path made up of instructions e. f. and g is
the longest path and its path length is 7 cycles. On the other
hand, in the resource-constrained cyclic path as shown in
FIG. 16B, instructions a, b, and c use one and the same
resource d.

Hereafter, a cyclic path made up of instructions S., a, and e
is referred to as the “cyclic path a’: a cyclic path made up of
instructions s, b, and e is referred to as the “cyclic pathb'; and
a cyclic path made up of instructions S, c, and e is referred to
as the “cyclic path c'. When no resource constraints are
imposed, each of their path lengths is 6 cycles. As already
mentioned above, however, the instructions a, b, and c share
one and the same resourced in common. Suppose here that a
latency from the execution start of one of the instructions a, b,
and c until the time when the executed instruction releases the
resource dis 2 cycles. Note that the instructions a, b, and c are
executed in this order as a fixed order of priority.

For the execution of the instructions included in the cyclic
patha, the instruction a does not have to wait for the resource
d to be released since the other instructions do not use the
resourced. On account of this, the resource constrained path
length of the cyclic path a is 6 (=4+2+0) cycles. For the
execution of the instructions included in the cyclic path b, the
instruction b has to wait 2 cycles, even when executable, until
the instruction a releases the resourced. Thus, the resource
constrained path length of the cyclic path b is 8 (-4+2+2+0)
cycles. For the execution of the instructions included in the
cyclic path c, the instruction c has to wait 4 (2+2) cycles,
even when executable, until the instructions a and b release
the resource d. On account of this, the resource constrained
path length of the cyclic path c is 10 (=4+2+2+2+0) cycles.
Consequently, the resource constrained longest path is the
cyclic path c, and its resource constrained path length is 10
cycles.

In this way, even in the same dependence graph, the longest
paths are different depending on whether or not the resource
constraints are imposed, and thus the path lengths are also
different. In consideration of this, for the case where the
resource constraints are imposed, the resource constrained
longest path needs to be obtained.
Cyclic Path Including a Plurality of Longest Paths
An explanation is next given as to a case where a transfer

instruction is inserted into a cyclic path which includes a
plurality of longest paths.

FIGS. 17A to 17C are diagrams showing changes before
and after the insertion of a transfer instruction into a leaf node
of the cyclic path that includes a plurality of longest paths. In
these diagrams, the true dependence is indicated by an arrow
in a solid line. Here, it should be noted that although not
illustrated in these diagram, there is necessarily a loop-carried
dependence opposite in direction to the true dependence indi
cated by the solid line.
FIG.17A shows a cyclic path that includes 5 longest paths,

with each path length being 6 cycles. In this diagram, these 5
longest paths are indicated specifically by arrows in thick
Solid lines. As shown, the loop-carried dependence between

10

15

25

30

35

40

45

50

55

60

65

16
the instructions banda also exists in 3 cyclic paths, which are:
a path made up of instructions a, m, and b; a path made up of
instructions a, n, and b; and a path made up of instructions a,
o, and b. Moreover, the loop-carried dependence between the
instructions c and b also exists in 2 cyclic paths, which are: a
path made up of instructions b, p, and c; and a path made up
of instructions b, r, and c.

FIG. 17B shows a cyclic path obtained after the instruction
mov has been inserted into the leaf node b so that the loop
carried dependence cut is executed between the instructions b
and a. In this diagram, the arrows in thick lines indicate the
cyclic paths changed from the longest paths shown in FIG.
17A. More specifically, the 5 longest paths whose respective
path lengths were 6 cycles are changed into, with a depen
dence distance of 1:2 longest paths, each path length being 6
cycles; 1 cyclic path with a path length of 4 cycles: and 1
cyclic path with a path length of 1 cycle.

FIG. 17C shows a cyclic path obtained after the instruction
mov has been inserted into the leaf nodec so that the loop
carried dependence cut is executed between the instructions c
and b. In this diagram, the arrows in thick lines indicate the
cyclic paths changed from the longest paths shown in FIG.
17A. More specifically, the 5 longest paths whose respective
path lengths were 6 cycles are changed into, with a depen
dence distance of 1:3 longest paths, each path length being 6
cycles; 1 cyclic path with a path length of 4 cycles; and 1
cyclic path with a path length of 1 cycle.
As can be understood, the number of the longest paths is

reduced more in the case of FIG. 17B than the case of FIG.
17C. That is, for the case where the transfer instruction is
inserted into a leaf node, the number of cyclic paths with
longer path lengths can be reduced by the loop-carried depen
dence cut performed by the insertion of the transfer instruc
tion into the leaf node that has more, longer cyclic paths.
Consequently, the instruction placement constraint imposed
during software pipelining can be eased.

FIGS. 18A and 18B are diagrams showing changes before
and after the insertion of a transfer instruction into a root node
of the cyclic path that includes a plurality of longest paths.
Note here that the arrows in these diagrams represent the
same meanings as those in FIGS. 17A to 17C.

FIG. 18A shows a cycle path obtained after the instruction
mov has been inserted into the root node a so that the loop
carried dependence cut is performed between the instructions
b and a shown in FIG. 17A. Note here, in this case, that the
same register causes both the true dependence between the
instruction a and the instructions m, n, and o and the loop
carried dependence between the instruction b and a. As
shown, the 5 longest paths whose respective path lengths
were 6 cycles are changed into, with a dependence distance of
1:2 longest paths, each path length being 6 cycles; 1 cyclic
path with a path length of 4 cycles; and 3 cyclic paths, each
path length being 3 cycles.

Meanwhile, FIG. 18B shows a cycle path obtained after the
instruction mov has been inserted into the root node b so that
the loop-carried dependence cut is performed between the
instructions c and b shown in FIG. 17A. Note here, in this
case, that the same register causes both the true dependence
between the instruction band the instructions p and rand the
loop-carried dependence between the instruction c and b. As
shown, the 5 longest paths whose respective path lengths
were 6 cycles are changed into, with a dependence distance of
1: 3 longest paths, each path length being 6 cycles; 1 cyclic
path with a path length of 4 cycles; and 2 cyclic paths, each
path length being 3 cycles.
As can be understood, the number of the longest paths is

reduced more in the case of FIG. 18A than the case of FIG.

US RE45,199 E
17

18B. That is, for the case where the transfer instruction is
inserted into a root node, the number of cyclic paths with
longer path lengths can be reduced by the loop-carried depen
dence cut performed by the insertion of the transfer instruc
tion into the root node that has more, longer cyclic paths.
Consequently, the instruction placement constraint imposed
during software pipelining can be eased.
Cyclic Path Including a Plurality of Loop-Carried Depen
dences

FIGS. 19A to 19C are diagrams showing changes before
and after the insertion of a transfer instruction into a cyclic
path that has a plurality of loop-carried dependences. In these
diagrams, the true dependence is indicated by an arrow in a
Solid line whereas the loop-carried antidependence is indi
cated by an arrow in a short dashed line.

FIG. 19A shows a cyclic path that includes 2 loop-carried
dependences, which exist respectively between the instruc
tions c and b and between the instructions banda. The path
length of this cyclic path is 16 cycles as shown.

FIG. 19B shows a cycle path obtained after the instruction
mov has been inserted into the root nodea of the cyclic path
shown in FIG. 19A. To be more specific. the cyclic path of 16
cycles with a dependence distance of 2 is divided into cyclic
paths whose respective path lengths are 13 cycles and 4
cycles, with a dependence distance of 2. Note here, in this
case, that the same register causes both the true dependence
between the instructions a and d and the loop-carried depen
dence between the instruction b and a. In this way, the path
length is shortened, thereby casing the instruction placement
constraint imposed during software pipelining.

Meanwhile, FIG. 19C shows a cyclepath obtained after the
instruction mov has been inserted into the leaf node c of the
cyclic path shown in FIG. 19A As shown, the cyclic path
whose path length is 16 cycles with a dependence distance of
2 is eliminated. Accordingly, the instruction placement con
straint imposed during software pipelining can be eased.
As described so far, according to the present invention,

when a cyclic path includes at least one loop-carried antide
pendence, the path length can be shortened and the instruction
placement constraint imposed during Software pipelining can
be eased, by the insertion of a transfer instruction into a leaf
node or root node of the cyclic path. This allows software
pipelining to be performed with enhanced speed and effi
ciency in the cases where the path length of the longest path
or the resource constrained path length of the resource-con
strained longest path can be shortened and the initiation inter
val of the loop process can also be shortened.

Although the compiler apparatus of the present invention
has been described in the present embodiment, the present
invention is not limited to this. For example, the above-men
tioned loop-carried dependence cut may be performed more
than once on the same loop, so that Software pipelining can be
executed with even more enhanced speed and efficiency.

Moreover, in the exclusion process performed on the cyclic
path set in step S403 shown in FIG. 8, the instruction selection
unit 212 may exclude a cyclic path in which the latency of the
root node is equal to or shorter than the latency of the transfer
instruction. By doing so, the cyclic path whose path length
would belonger by the insertion of the transfer instruction can
be excluded in advance. This allows an appropriate cyclic
path to be selected with enhanced speed and efficiency.

Furthermore, in the examples shown in FIGS. 5 to 7, the
explanation was given as to the cases where the registers
respectively causing the true dependence and causing the
loop-carried antidependence for the leafnode or root node are
different. However, these registers may be the same one reg

10

15

25

30

35

40

45

50

55

60

65

18
ister. FIG. 20 is a diagram showing changes in a data depen
dence graph before and after the insertion of a transfer
instruction into a cyclic path.

FIG. 20 (a) shows a cyclic path that includes three instruc
tions lam, add, and stim. As shown in this diagram, the register
as a parameter of the true dependence and the register as a
parameter of the loop-carried antidependence in this cyclic
path are the same, i.e., the register r1. FIG. 20 (b) shows a
cyclic path obtained after the instruction mov has been
inserted into the root node, that is, the instruction ldm, of the
cyclic path shown in FIG. 20 (a). To be more specific, instead
of the instruction ldm, an instruction “ldm r0: ré, (r2+) is
used. In this instruction, the register r1 which is the parameter
used by the instruction ldmfor the loop-carried dependence is
replaced with an unused register r(5. Also, a transfer instruc
tion “mov r1, ro' is inserted, so that the value stored in the
register ré is stored into the register r1 which is the original
parameter. By this insertion of the instruction mov into the
root node, the cyclic path whose path length was 4 cycles is
divided into 2 cyclic paths whose respective path lengths are
3 cycles and 2 cycles. In this case, there is a possibility of
shortening the initiation interval to 3 cycles.

Although only one exemplary embodiment of this inven
tion has been described in detail above, those skilled in the art
will readily appreciate that many modifications are possible
in the exemplary embodiment without materially departing
from the novel teachings and advantages of this invention.
Accordingly, all Such modifications are intended to be
included within the scope of this invention.

INDUSTRIAL APPLICABILITY

The present invention can be applied to a compiler or the
like whose target processor is capable of parallel processing.
What is claimed is:
1. A compiler apparatus comprising a processor for con

Verting a source program into a machine language program
for a processor device which is capable of parallel processing,
the converting being performed by a computer, said compiler
apparatus comprising:

a parser configured to parse the source program and then to
convert the source program into an intermediate pro
gram which is described in an intermediate language;

an optimizer configured to optimize the intermediate pro
gram; and

a converter configured to convert the optimized intermedi
ate program into the machine language program,

wherein, when there is a cyclic data dependence relation
that starts with and ends with an instruction among at
least three instructions in a loop process, said optimizer
executes Software pipelining, by inserting a transfer
instruction, which is used for transferring data between
operands, into the loop process included in the interme
diate program so that the cyclic data dependence relation
is changed removed.

2. The compiler apparatus according to claim 1,
wherein said optimizer comprises:
a cyclic path detector configured to create a data depen

dence graph representing dependence relations among
instructions present in the intermediate program, and to
detecta cyclic path which is a closed path that starts with
and ends with an instruction, the cyclic path tracing data
dependences of the instructions in the data dependence
graph;

an inserter configured to insert the transfer instruction
whose operands include a parameter of a loop-carried
dependence included in the detected cyclic path; and

US RE45,199 E
19

a software pipeliner configured to execute software pipe
lining on the intermediate program into which the trans
fer instruction has been inserted.

3. The compiler apparatus according to claim 2,
wherein said inserter comprises:
an instruction selector configured to select an instruction
on which a different instruction is true dependent and
which is loop-carried antidependent, in the detected
cyclic path;

an instruction replacer configured to replace a first register
that is used in the selected instruction with a second
register; and

a transfer instruction inserter configured to insert the trans
fer instruction for transferring a value stored in the first
register to the second register.

4. The compiler apparatus according to claim 3,
wherein said cyclic path detector is configured to detect at

least one cyclic path which has a longest total latency of
data dependences, and

said instruction selector is configured to, when a plurality
of cyclic paths which each have the longest total latency
are present, select an instruction, from among instruc
tions which are loop-carried dependent in the cyclic
paths or on each of which a different instruction is loop
carried dependent in the cyclic paths, that is loop-carried
dependent in a largest number of cyclic paths or that a
different instruction is loop-carried dependent on in a
largest number of cyclic paths.

5. The compiler apparatus according to claim 2,
wherein said inserter comprises:
an instruction selector configured to select an instruction
which is true dependent and on which a different instruc
tion is loop-carried antidependent, in the detected cyclic
path;

an instruction replacer configured to replace a first register
that is defined by the selected instruction with a second
register; and

a transfer instruction inserter configured to insert the trans
fer instruction for transferring a value stored in the sec
ond register to the first register.

6. The compiler apparatus according to claim 2,
wherein said cyclic path detector is configured to detect a

cyclic path which has a longest path length, the path
length representing a total latency of data dependences
in the cyclic path.

7. The compiler apparatus according to claim 6.
wherein said cyclic path detector is configured to detect a

resource constrained cyclic path which has a longest
resource constrained path length.

8. The compiler apparatus according to claim 2,
wherein said cyclic path detector is configured to detect a

cyclic path other than a cyclic path which is made up of
two instructions and in which a same one register causes
both a true dependence and a loop-carried antidepen
dence.

9. The compiler apparatus according to claim 2,
wherein said cyclic path detector is configured to detect a

cyclic path in which a latency incurred by an instruction
that is true dependent and that a different instruction is
loop-carried antidependent on is longer than a latency
incurred by the transfer instruction.

10. A compiling method for converting, by a computer, a
Source program into a machine language program for a pro
cessor which is capable of parallel processing, the compiling
method comprising:

5

10

15

25

30

35

40

45

50

55

60

65

20
parsing the source program and then converting the Source

program into an intermediate program which is
described in an intermediate language;

optimizing the intermediate program; and
converting the optimized intermediate program into the

machine language program,
wherein, when there is a cyclic data dependence relation

that starts with and ends with an instruction among at
least three instructions in a loop process, in the optimiz
ing of the intermediate program, Software pipelining is
executed, by an insertion of a transfer instruction, which
is used for transferring data between operands, into the
loop process included in the intermediate program so
that the cyclic data dependence relation is changed
removed.

11. The compiling method according to claim 10,
wherein the optimizing comprises:
creating a data dependence graph representing dependence

relations among instructions present in the intermediate
program, and detecting a cyclic path which is a closed
path that starts with and ends with an instruction, the
cyclic path tracing data dependences of the instructions
in the data dependence graph;

inserting the transfer instruction whose operands include a
parameter of a loop-carried dependence included in the
detected cyclic path; and

executing software pipelining on the intermediate program
into which the transfer instruction has been inserted.

12. The compiling method according to claim 11,
wherein the inserting comprises:
selecting an instruction on which a different instruction is

true dependent and which is loop-carried antidependent,
in the detected cyclic path;

replacing a first register that is used in the selected instruc
tion with a second register, and

inserting the transfer instruction for transferring a value
stored in the first register to the second register.

13. The compiling method according to claim 12,
wherein the creating detects at least one cyclic path which

has a longest total latency of data dependences, and
the selecting is configured to, when a plurality of cyclic

paths which each have the longest total latency are
present, select an instruction, from among instructions
which are loop-carried dependent in the cyclic paths or
on each of which a different instruction is loop-carried
dependent in the cyclic paths, that is loop-carried depen
dent in a largest number of cyclic paths or that a different
instruction is loop-carried dependent on in a largest
number of cyclic paths.

14. The compiler apparatus method according to claim
11,

wherein the inserting comprises:
selecting an instruction which is true dependent and on
which a different instruction is loop-carried antidepen
dent, in the detected cyclic path;

replacing a first register that is defined by the selected
instruction with a second register, and

inserting the transfer instruction for transferring a value
stored in the second register to the first register.

15. The compiler apparatus method according to claim
11,

wherein the creating is configured to detect a cyclic path
which has a longest path length, the path length repre
senting a total latency of data dependences in the cyclic
path.

16. The compiler apparatus method according to claim
11,

US RE45,199 E
21

wherein the creating is configured to detect a cyclic path
other than a cyclic path which is made up of two instruc
tions and in which a same one register causes both a true
dependence and a loop-carried antidependence.

17. The compiler apparatus method according to claim
11,

wherein the creating is configured to detect a cyclic path in
which a latency incurred by an instruction that is true
dependent and that a different instruction is loop-carried
antidependent on is longer than a latency incurred by the
transfer instruction.

18. A compiler comprising a processor which causes a
computer to convert a source program into a machine lan
guage program for a processor device that is capable of par
allel processing, said compiler comprising an execution appa
ratus and causing said computer to execute:

parsing the source program and then converting the source
program into an intermediate program which is
described in an intermediate language;

optimizing the intermediate program; and
converting the optimized intermediate program into the

machine language program,
wherein, when there is a cyclic data dependence relation

that starts with and ends with an instruction among at
least three instructions in a loop process, in said opti
mizing of the intermediate program, software pipelining
is executed, by an insertion of a transfer instruction,
which is used for transferring data between operands,
into the loop process included in the intermediate pro
gram so that the cyclic data dependence relation is
changed removed.

19. A non-transitory computer-readable recording medium
which records a compiler for causing a computer to converta
Source program into a machine language program for a pro
cessor that is capable of parallel processing, said compiler
causing said computer to execute:

parsing the source program and then converting the source
program into an intermediate program which is
described in an intermediate language;

optimizing the intermediate program; and
converting the optimized intermediate program into the

machine language program,
wherein, when there is a cyclic data dependence relation

that starts with and ends with an instruction among at
least three instructions in a loop process, in the optimiz
ing of the intermediate program, software pipelining is
executed, by an insertion of a transfer instruction, which
is used for transferring data between operands, into the
loop process included in the intermediate program so
that the cyclic data dependence relation is changed
removed.

20. A non-transitory computer readable recording medium
that stores a program for a processor which is capable of
parallel processing, the program being recorded on a non
transitory, computer readable recording medium said pro
gram causing said processor to execute:

an instruction for executing iterations of a loop process in
parallel; and

a transfer instruction for transferring data between oper
ands used in an instruction making up a closed path
which starts with and ends with a same instruction, the
closed path tracing data dependences of the instruction
included in a data dependence graph created with
respect to the loop process, when there is a cyclic data
dependence relation that starts with and ends with an
instruction among at least three instructions in the loop
process.

10

15

25

30

35

40

45

50

55

60

22
21. A system comprising:
a target processor that is capable of parallel processing:
and

a compiler apparatus for the target processor; the compiler
apparatus comprising:

a parser configured to parse a source program and then to
Convert the source program into an intermediate pro
gram which is described in an intermediate language,

an optimizer configured to optimize the intermediate pro
gram, and

a Converter configured to convert the optimized intermedi
ate program into the machine language program, and to
provide the machine language program to the target
processor,

wherein, when there is a cyclic data dependence relation
that starts with and ends with an instruction among at
least three instructions in a loop process, said optimizer
executes software pipelining, by inserting a transfer
instruction, which is used for transferring data between
operands, into the loop process included in the interme
diate program so that the cyclic data dependence rela
tion is removed.

22. A system comprising:
a target processor that is capable of parallel processing:
and

a non-transitory computer-readable recording medium
which records a program for causing a computer to
Convert a source program into a machine language pro
gram for the target processor; the program causing the
Computer to execute.

parsing the source program and then converting the source
program into an intermediate program which is
described in an intermediate language,

Optimizing the intermediate program, and converting the
optimized intermediate program into the machine lan
guage program,

wherein, when there is a cyclic data dependence relation
that starts with and ends with an instruction among at
least three instructions in a loop process, in the optimiz
ing of the intermediate program, software pipelining is
executed, by an insertion of a transfer instruction, which
is used for transferring data between operands, into the
loop process included in the intermediate program so
that the cyclic data dependence relation is removed.

23. A system comprising:
a target processor that is capable of parallel processing:
and

a server computer that transmits a program to the target
processor, the program causing a processor to convert a
Source program into a machine language program for
the target processor; the program causing the processor
to execute.

parsing the source program and then converting the source
program into an intermediate program which is
described in an intermediate language,

Optimizing the intermediate program, and converting the
Optimized intermediate program into the machine lan
guage program,

wherein, when there is a cyclic data dependence relation
that starts with and ends with an instruction among at
least three instructions in a loop process, in the optimiz
ing of the intermediate program, software pipelining is
executed by an insertion of a transfer instruction, which
is used for transferring data between operands, into the
loop process included in the intermediate program so
that the cyclic data dependence relation is removed.

