发明名称

胺阳离子脂质及其用途

摘要

本发明涉及脂质化合物及其用途。具体地，所述化合物包括具有胺部分、例如氨基-胺或氨基-酰胺部分的一类阳离子脂质。所述脂质化合物用于在体内或体外递送一种或多种剂(例如，聚阳离子有效载荷或反义有效载荷，例如RNAi剂)。
1. 一种具有下式的化合物或其药学可接受的盐：

\[
\begin{align*}
R^1 & \quad \text{O} \\
R^2 & \quad \text{N} \\
R^3 & \quad \text{L}^1 \quad \text{N} \\
R^5 & \quad \text{R}^6 \\
\end{align*}
\]

其中

每个R^1和R^2独立地为取代的或未取代的C11-24烷基，或者取代的或未取代的C11-24烯基，或者取代的或未取代的C11-24炔基；

R^3是H；

L^1是取代的或未取代的C1-2亚烷基，并且

每个R^5和R^6是甲基。

2. 一种化合物或其药学可接受的盐，所述化合物选自自由以下组成的组：

3. 一种制剂，其包含权利要求2所述的化合物或其药学可接受的盐，所述制剂还包括阳离子脂质、中性脂质、甾醇衍生物和dsRNA。

4. 一种药物组合物，其包含权利要求1或2的化合物或其药学可接受的盐；和药学可接受的赋形剂。

5. 权利要求1或2的化合物在制备药物中的应用，所述药物用于治疗疾病，其中所述疾病是癌症，并且

其中所述癌症选自肝细胞癌、肺癌、前列腺癌或成神经细胞瘤。

6. 权利要求1或2的化合物在制备药物中的应用，所述药物通过以下方法用于调节受试者中靶核酸的表达，所述方法包括施用足以减少所述受试者中所述靶基因表达的量的权利要求1或2的化合物或其药学可接受的盐，

其中所述方法包括减少所述受试者中所述靶基因的表达，

其中所述靶基因选自由以下组成的组：ABL1、AR、B-连环蛋白、BCL1、BCL2、BCL6、CBFA2、CBL、CSF1R、ERBA1、ERBA2、ERBB1、ERBB2、ERBB3、ERBB4、ETS1、ETS2、ETV6、FGR、FOSS、FYN、HCR、HRAS、JUN、KRAS、LCK、LYN、MET、MDM2、MLL1、MLL2、MLL3、MYB、MYC、MYCL1、MYCN、NRAS、PML、RET、SRC、TAL1、TAL2、TCL3、TCL5、YES、BRCA1、BRCA2、MADH4、MCC、NF1、NF2、RBL1、TP53、WT1、ApoB100、CSN5、CDK6、1TGB1、TGFβ1、细胞周期蛋白D1、PLK1和KIF1a结合蛋白。

7. 一种制剂在制备药物中的应用，所述药物通过以下方法用于调节受试者中靶核酸的表达，所述方法包括施用足以减少所述受试者中所述靶基因表达的量的权利要求3的制剂，

其中所述方法包括减少所述受试者中所述靶基因的表达，
其中所述靶基因选自由以下组成的组：ABL1、AR、β-连环蛋白、BCL1、BCL2、BCL6、CBFA2、CBL、CSF1R、ERBA1、ERBA2、ERBB1、ERBB2、ERBB3、ERBB4、ETS 1、ETS2、ETV6、FGR、FOS、FYN、HCR、HRAS、JUN、KRAS、LCK、LYN、MET、MDM2、MLL1、MLL2、MLL3、MYB、MYC、MYCL1、MYCN、NRAS、P1M1、PML、RET、SRC、TAL1、TAL2、TCL3、TCL5、YES、BRCA1、BRCA2、MADH4、MCC、NF1、NF2、RB1、TP53、WT1、ApoB100、CSN5、CDK6、ITGB1、TGFβ1、细胞周期蛋白D1、PLK1和KIF1–结合蛋白。
胺阳离子脂质及其用途

[0001] 相关申请的交叉引用

[0002] 本申请要求2011年10月18日提交的美国临时申请号61/548,598的权益，其公开内容通过引用整体并入本文。

[0003] 发明背景

[0004] 本发明涉及胺阳离子脂质化合物及其制剂，以及其运送治疗剂，例如核酸分子至细胞的用途。

[0005] 核酸分子因其尺寸和亲水性而不能容易地透过细胞膜。因此，运送已经成为核酸治疗，例如反义有效载荷和RNAi技术的主要挑战中的一个。为了在系统施用之后触发RNA酶II活性或RNAi活性，含有核酸分子的制剂不仅必须(1)防止载荷的酶促和非酶促降解并(2)提供制剂的适当生物分布，而且必须(3)允许制剂的细胞摄取或内化并(4)促进核酸有效载荷运送至细胞的细胞质。在上述标准1和2方面优异的许多制剂在标准3和4方面有缺陷，因此许多核酸药物显示了优良的生物分布，但是由于缺乏系统运送和局部运送而未能敲除靶基因。

[0006] 因此，需要用于运送治疗剂，例如RNAi剂的新化合物。具体地，可以在脂质颗粒制剂中使用能够发挥胺阳离子脂质作用的化合物以运送核酸有效载荷至细胞。

[0007] 发明概述

[0008] 我们已经开发了用于运送一种或多种治疗剂的新的基于胺的脂质化合物，包括氨基-胺和氨基酰胺铵阳离子脂质，及其制剂。具体地，本发明的化合物(例如式(I)或II(α)-II(κ)的化合物)可以用于运送胺阳离子有效载荷或反义有效载荷(例如，核酸分子或RNAi剂)至细胞并沉默靶基因。

[0009] 一方面，本发明实施方案为具有下式的化合物:

![化学式](image)

其中

[0010] 或其药学可接受的盐，其中

[0011] 每个R^1和R^2独立地为任选取代的C_{11-24}烷基、任选取代的C_{11-24}烯基、任选取代的C_{11-24}炔基、任选取代的C_{11-24}杂烷基、任选取代的C_{11-24}杂烯基或任选取代的C_{11-24}杂炔基，其中R^3和R^4在相邻>CH_{2}R^4的碳上未经氧取代；

[0012] R^3是H或任选取代的C_{1-6}烷基；并且

[0013] R^4是任-NR^3R^4取代的未取代的C_{1-6}烷基、任-NR^4取代的未取代的C_{1-6}烯基、或任选取代的C_{3-7}杂环基，其中每个R^3和R^4独立地为H、C(＝NH)NH或任选取代的C_{1-6}烷基、或者其中R^3和R^4结合在一起形成任选取代的C_{3-7}杂环基；并且其中R^3和R^4可以结合在一起形成任选取代的C_{3-7}杂环基。

[0014] 其中R^3和R^4不结合在一起形成任选取代的咪唑基或任选取代的苯并咪唑基或任选取代的捕酸酰胺基；其中一个且仅一个伯胺可以存在于R^3或R^4上，或者没有伯胺存在于R^3或R^4上；并且其中R^3或R^4都不是任选取代的酰胺；并且
其中当R₁或R₂是饱和C₄₆烷基或饱和C₅₆烷基时，R₃不是H；其中当R₁或R₂是饱和C₆₆烷基或饱和C₇₆烷基时，R₃和R₄未经过烷基取代；其中当R₁或R₂是饱和C₇₆烷基时，R₅和R₆未经过烷基取代；并且其中当R₁或R₂是饱和C₈₆烷基时，R₉未经任选取代的基团取代。

在一些实施方案中，R₁是经−NR₃⁻⁻{-}

在一些实施方案中，R₁是经−NR₃⁻⁻⁻{-}

在一些实施方案中，R₁是经−NR₃⁻⁻{-}

在一些实施方案中，R₁是经−NR₃⁻⁻⁻ {-}

在一些实施方案中，R₁是经−NR₃⁻⁻{-}

在一些实施方案中，R₁是经−NR₃⁻⁻⁻ {-}

在一些实施方案中，R₁是经−NR₃⁻⁻⁻ {-}

在一些实施方案中，R₁是经−NR₃⁻⁻⁻{-}
取代的C_{11-24}杂烯基，任选取代的C_{11-24}炔烃基；每个n1和n2独立地为从0至2的整数（例如，n1和n2同时为1，或者n1为1并且n2为2）；并且R^5选自由以下组成的组：H、任选取代的C_{1-6}烷基和任选取代的杂环基（例如，未取代的C_{1-6}烷基或任选取代的吲哚基、任选取代的咔唑基、任选取代的吲哚基、任选取代的咔唑基或任选取代的喹啉基取代的C_{1-6}烷基）。在一些实施方案中，所述化合物选自由以下组成的组：L-27和L-47或其药学可接受的盐。

[0023] 在本文描述的任何一个式（例如，式（I）、（IIa）和（IIb））的一些实施方案中，R^6是经R^{3a}和R^{5b}取代的C_{1-6}烷基，其中每个R^{3a}和R^{5b}独立地为H，任选取代的C_{1-6}烷基（例如，任选取代的C_{1-6}烷基），并且其中R^{3a}和R^{5b}可以结合在一起形成任选取代的C_{3-7}杂环基。在一些实施方案中，R^6是任选取代的杂环基（例如，任选取代的吲哚烷基、任选取代的咔唑烷基、任选取代的吡啶烷基、任选取代的嘧啶基、任选取代的哒嗪基、任选取代的咔唑基、任选取代的嘧啶烷基、任选取代的哒嗪基或任选取代的喹啉基）。

[0024] 在一些实施方案中，所述化合物具有下式：

\[
\begin{align*}
R^1 & \quad N \quad \text{或其药学可接受的盐，其中每个R}^1 \text{和R}^2 \text{是任选取代的} \\
R^1 & \quad N \quad \text{C}_{11-24} \text{烷基，任选取代的C}_{11-24} \text{烯基，任选取代的C}_{11-24} \text{炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基。}
\end{align*}
\]

C_{11-24}烷基、任选取代的C_{11-24}烯基、任选取代的C_{11-24}炔基、任选取代的C_{11-24}杂烷基、任选取代的C_{11-24}杂烯基、任选取代的C_{11-24}杂炔基、任选取代的C_{11-24}杂烷基、任选取代的C_{11-24}杂烯基、任选取代的C_{11-24}杂炔基，并且每个n1和n2独立地为从0至2的整数（例如，n1和n2同时为1，或者n1为1并且n2为2）。在一些实施方案中，所述化合物为L-46或其药学可接受的盐。

[0026] 在一些实施方案中，所述化合物具有下式：

\[
\begin{align*}
R^1 & \quad N \quad \text{或其药学可接受的盐，其中每个R}^1 \text{和R}^2 \text{独立地为} \\
R^1 & \quad N \quad \text{任选取代的C}_{11-24} \text{烷基，任选取代的C}_{11-24} \text{烯基，任选取代的C}_{11-24} \text{炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基。}
\end{align*}
\]

R^3是H或任选取代的C_{1-6}烷基；R^5是H或任选取代的C_{1-6}烷基；R^1是任选取代的C_{1-6}烷基；R^5是H或任选取代的C_{1-6}烷基，并且每个R^3和R^5独立地为H或任选取代的C_{1-6}烷基，或者其中R^3和R^5结合形成任选取代的C_{3-7}杂环基。

[0028] 在一些实施方案中，所述化合物具有下式：

\[
\begin{align*}
R^1 & \quad N \quad \text{或其药学可接受的盐，其中每个R}^1 \text{和R}^2 \text{独立地为} \\
R^1 & \quad N \quad \text{任选取代的C}_{11-24} \text{烷基，任选取代的C}_{11-24} \text{烯基，任选取代的C}_{11-24} \text{炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基，任选取代的C}_{11-24} \text{杂烷基，任选取代的C}_{11-24} \text{杂烯基，任选取代的C}_{11-24} \text{杂炔基。}
\end{align*}
\]

R^3是H或任选取代的C_{1-6}烷基；R^5是H或任选取代的C_{1-6}烷基；R^1是任选取代的C_{1-6}烷基；R^5是H或任选取代的C_{1-6}烷基，并且每个R^3和R^5独立地为H或任选取代的C_{1-6}烷基，或者其中R^3和R^5结合形成任选取代的C_{3-7}杂环基。

[0030] 在式（II）或（IIa）的一些实施方案中，R^3和R^5结合形成任选取代的吡咯烷基、任选
取代的咪唑烷基、任选取代的吡唑烷基、任选取代的喹啶基、任选取代的哌嗪基或任选取代的氯化环戊烷基。

[0031] 在一些实施方案中，所述化合物选自以下组成的组：L-1、L-3、L-4、L-7、L-9、L-10、L-11、L-12、L-13、L-16、L-17、L-18、L-19、L-30、L-31、L-32、L-33、L-34、L-42、L-43和L-49或其药学可接受的盐。

[0032] 在一些实施方案中，所述化合物具有下式：

![化合物结构式](attachment:compound.png)

或其药学可接受的盐，其中每个R¹和R²独立地为任选取代的C₁₁₋₂₄烷基、任选取代的C₁₁₋₂₄烯基、任选取代的C₁₁₋₂₄炔基、任选取代的C₁₁₋₂₄杂烷基、任选取代的C₁₁₋₂₄烯基或任选取代的C₁₁₋₂₄杂炔基；R³是H或任选取代的C₁₋₆烷基；L¹是任选取代的C₁₋₆烷基；每个n₃和n₄独立地为从0至2的整数；并且R⁴是H或任选取代的C₁₋₆烷基。

[0034] 在一些实施方案中，所述化合物选自以下组成的组：L-14、L-21和L-36或其药学可接受的盐。

[0035] 在本文描述的任何一个式（例如，式（IIa）-（IIj），例如式（IId）-（IIg））的一些实施方案中，R³是经-NR³⁻⁻⁻-Nazi取代的C₁₋₆烷基。在一些实施方案中，R³是未取代的C₁₋₆烷基。

[0036] 在本文描述的任何一个式（例如，式（IIa）-（IIj），例如式（IId）-（IIg））的一些实施方案中，L¹是经甲基、乙基、丙基或-NR³⁻⁻⁻ Annex取代的C₁₋₆烷基，其中每个R⁴和R⁵独立地为H或任选取代的C₁₋₆烷基。

[0037] 在一些实施方案中，所述化合物具有下式：

![化合物结构式](attachment:compound1.png)

或其药学可接受的盐，其中每个R¹和R²独立地为任选取代的C₁₁₋₂₄烷基、任选取代的C₁₁₋₂₄烯基、任选取代的C₁₁₋₂₄炔基、任选取代的C₁₁₋₂₄杂烷基、任选取代的C₁₁₋₂₄烯基或任选取代的C₁₁₋₂₄杂炔基；R³是H或任选取代的C₁₋₆烷基；L¹是任选取代的C₁₋₆烷基；并且R⁴是H或任选取代的C₁₋₆烷基。

[0039] 在一些实施方案中，L¹在4-位置连接至咪唑烷基。

[0040] 在一些实施方案中，所述化合物选自以下组成的组：L-8、L-13、L-20、L-35和L-44或其药学可接受的盐。

[0041] 在一些实施方案中，所述化合物具有下式：

![化合物结构式](attachment:compound2.png)
或其药学可接受的盐，其中每个R₁和R₂独立地为任选取代的C₁₁-2₄烷基、任选取代的C₁₁-2₄烯基、任选取代的C₁₁-2₄炔基、任选取代的C₁₁-2₄杂烷基、任选取代的C₁₁-2₄杂烯基或任选取代的C₁₁-2₄杂炔基；R₃是H或任选取代的C₁-6烷基；L¹是任选取代的C₁-6亚烷基；并且每个R⁴和R⁵独立地为H或任选取代的C₁-6烷基。

在一些实施方案中，所述化合物具有下式：

或其药学可接受的盐，其中每个R₁和R₂独立为任选取代的C₁-6烷基、任选取代的C₁₁-2₄烯基、任选取代的C₁₁-2₄炔基、任选取代的C₁₁-2₄杂烷基、任选取代的C₁₁-2₄杂烯基或任选取代的C₁₁-2₄杂炔基；R₃是H或任选取代的C₁-6烷基；并且其中每个R⁴和R⁵独立地为H或任选取代的C₁-6烷基。

在本文描述的任何一个式（例如，式（IIg）-（IIk））的一些实施方案中，每个R₁和R₂独立地为任选取代的C₆⁻₁₅烷基或任选取代的C₆⁻₁₅烯基，其中每个R⁴和R⁵独立地为H或任选取代的C₁-6烷基。

在一些实施方案中，所述化合物选自以下组成的组：L₁⁻₃⁷、L₁⁻₃⁸、L₁⁻₃⁹、L₁⁻₄₀和L₁⁻₄₁或其药学可接受的盐。

在本文描述的任何一个式（例如，式（IIg）-（IIk））的一些实施方案中，L¹是任选取代的C₁⁻₆亚烷基。

在本文描述的任何一个式（例如，式（I）或（IIa）-（IIk））的一些实施方案中，R³是任选取代的C₁⁻₆烷基。在一些实施方案中，每个R¹和R²独立地为包括直链和支链形式的未取代的C₁₁-2₄烷基或未取代的C₁₁-2₄烯基（例如，每个R¹和R²独立地为任选取代的C₁₁-2₄烷基或未取代的C₁₁-2₄烯基）。在这些实施方案中，R³中的一一个或多个双键的未取代的C₁₁-2₄烷基或未取代的C₁₁-2₄烯基。在一些实施方案中，R¹和R²都为未取代的C₁₁-2₄烷基。在一些实施方案中，每个R¹和R²独立地任选以下组成的组：亚麻烯基（C₁₈:₃）、亚麻烯基氧基（C₁₈:₃）、亚麻酰基（C₁₈:₃）、亚油烯基（C₁₈:₂）、亚油烯基氧基（C₁₈:₂）、亚油酰基（C₁₈:₂）、油烯基（C₁₈:₁）、油烯基氧基亚甲基（C₁₈:₁）、油酰基（C₁₈:₁）、油酰基亚甲基（C₁₈:₁）、硬脂基（C₁₈:₀）、硬脂基氧基（C₁₈:₀）、硬脂酰基（C₁₈:₀）、棕榈基（C₁₆:₀）、棕榈基氧基（C₁₆:₀）、棕榈酰基（C₁₆:₀）、棕榈酰基亚甲基（C₁₆:₀）、肉豆蔻基（C₁₄:₀）、肉豆蔻基氧基（C₁₄:₀）、肉豆蔻酰基（C₁₄:₀）、月桂基（C₁₂:₀）、月桂基氧基（C₁₂:₀）和月桂酰基（C₁₂:₀）。例如，亚油烯基（C₁₈:₂）或油烯基（C₁₈:₁）。在一些实施方案中，R¹和R²相同或不同。
在本文描述的任何一个式（例如，式(I)或(IIa)～(IIk)）的一些实施方案中，R³或R⁴但不是R³和R⁴两者同时经甲基取代。在一些实施方案中，R³和R⁴不同时经甲基取代。

在本文描述的任何一个式（例如，式(I)或(IIa)～(IIk)）的一些实施方案中，R³和R⁴与它们连接的N一起包含来自表2和3的H-1至H-52中的一个的头基。在一些实施方案中，每个R³和R⁴独立地选自由以下组成的组：亚胺基、亚胺基氨基、亚胺基氨基、亚胺基氨基。

另一方面，本发明的化合物包括R²＝CH-A，其中R¹和R²是尾基（例如，本文，例如表4中描述的任何一个），并且A是头基（例如，本文，例如表2和3中描述的任何一个）。在一些实施方案中，头基是H-1至H-52中的一个，例如H-2，H-5，H-6，H-19，H-26或H-43（例如，H-5或H-43）。

另一方面，本发明化合物是表1提供的任何化合物或其药学可接受的盐。

一方面，本发明特征是包括本文描述的任何化合物（例如，表1提供的一种或多种化合物）或其药学可接受的盐的制剂。

在一些实施方案中，所述制剂包括两种或多种所述化合物，例如2，3，4，5，6，7或更多种所述化合物。

在一些实施方案中，制剂包括约10％至约80％的所述化合物，例如约10％至约15％，约10％至约20％，约10％至约25％，约10％至约30％，约10％至约35％，约15％至约20％，约15％至约25％，约15％至约30％，约15％至约35％，约20％至约30％，约20％至约35％，约20％至约40％，约20％至约45％，约20％至约50％，约20％至约55％，约20％至约60％，约20％至约65％，约20％至约70％，约20％至约75％，约20％至约80％，约20％至约85％，约20％至约90％，约20％至约95％，约20％至约100％的所述化合物的一种或多种本发明化合物。

在一些实施方案中，制剂还包括阳离子脂质（例如，DODMA，DOTMA，DEPEPC，DOPAP或DOTAP），中性脂质（例如，DSPC，POPC，DOPE或SM）和任选的甾醇衍生物（例如，胆固醇，胆甾醇，胆固醇酯）。
PEG-DPPE、PEG-DPG、PEG-DOPE或PEG-DOG）。

【0057】在一些实施方案中，制备包括约10mol％至约40mol％的一种或多种本发明化合物（例如，一种或多种本文描述、例如表1中的任意化合物）、约10mol％至约40mol％的一种或多种阳离子脂质或一种或多种本发明化合物（例如，一种或多种本文描述、例如表1中的任意化合物）。约1mol％至约20mol％的一种或多种PEG-脂质凝胶物，约5mol％至约20mol％的一种或多种中性脂质和约20mol％至约40mol％的一种或多种甾醇衍生物。

【0058】在特定实施方案中，制备包括约10mol％至约80mol％（例如，约40mol％至约55mol％，例如约48mol％）的一种或多种阳离子脂质（例如，如本文描述的本发明化合物和/或其他阳离子脂质）、约1mol％至约20mol％的一种或多种PEG-脂质凝胶物，约5mol％至约20mol％的一种或多种中性脂质和约20mol％至约40mol％的一种或多种甾醇衍生物。在一些实施方案中，制备包括约10mol％至约30mol％（例如，约22mol％）的一种或多种本发明化合物（例如，L-6，L-30和/或本文描述的任何一种）、约15mol％至约35mol％（例如，约26mol％）的一种或多种阳离子脂质（例如，DODMA或本文描述的任何一个）、约3mol％至约9mol％（例如，约6mol％）的一种或多种PEG-脂质凝胶物（例如，PEG-DPPE、PEG-DMPE和/或本文描述的任何一个），约10mol％至约20mol％（例如，约14mol％）的一种或多种中性脂质（例如，DSPC或本文描述的任何一个）和约20mol％至约40mol％（例如，约29mol％至约33mol％，例如约33mol％）的一种或多种甾醇衍生物（例如，胆固醇、衍生物或其他本文描述的任何一个）。

35mol%、约25mol%至约40mol%、约25mol%至约45mol%、约25mol%至约50mol%、约25mol%至约55mol%、约25mol%至约60mol%、约25mol%至约65mol%、约25mol%至约70mol%、约25mol%至约75mol%、约25mol%至约80mol%、约30mol%至约40mol%、约30mol%至约45mol%、约30mol%至约50mol%、约30mol%至约55mol%、约30mol%至约60mol%、约30mol%至约65mol%、约30mol%至约70mol%、约30mol%至约75mol%、约30mol%至约80mol%、约35mol%至约40mol%、约35mol%至约45mol%、约35mol%至约50mol%、约35mol%至约55mol%、约35mol%至约60mol%、约35mol%至约65mol%、约35mol%至约70mol%、约35mol%至约75mol%、约35mol%至约80mol%、约40mol%至约45mol%、约40mol%至约50mol%、约40mol%至约55mol%、约40mol%至约60mol%、约40mol%至约65mol%、约40mol%至约70mol%、约40mol%至约75mol%、约40mol%至约80mol%、约45mol%至约50mol%、约45mol%至约55mol%、约45mol%至约60mol%、约45mol%至约65mol%、约45mol%至约70mol%、约45mol%至约75mol%、约45mol%至约80mol%、约50mol%至约55mol%、约50mol%至约60mol%、约50mol%至约65mol%、约50mol%至约70mol%、约50mol%至约75mol%、约50mol%至约80mol%（例如，约21.0mol%、21.2mol%、21.4mol%、21.6mol%、21.8mol%、22mol%、25mol%、26mol%、26mol%、30mol%、35mol%、40mol%、45mol%、48mol%、49mol%、50mol%、55mol%、60mol%、65mol%、70mol%或75mol%）的一种或多种本发明化合物。

【0060】在一些实施方案中，一种或多种阳离子脂质以约10mol%至约40mol%的量存在，例如，约10mol%至约15mol%、约10mol%至约20mol%、约10mol%至约25mol%、约10mol%至约30mol%、约10mol%至约35mol%、约15mol%至约20mol%、约15mol%至约25mol%、约15mol%至约30mol%、约15mol%至约35mol%、约15mol%至约40mol%、约20mol%至约25mol%、约20mol%至约30mol%、约20mol%至约35mol%、约20mol%至约40mol%、约25mol%至约30mol%、约25mol%至约35mol%、约25mol%至约40mol%、约30mol%至约35mol%、约30mol%至约40mol%、约35mol%至约40mol%（例如，约25.1mol%、25.2mol%、25.3mol%、25.4mol%、25.5mol%、25.6mol%、25.7mol%、25.8mol%、25.9mol%、26.0mol%、26.2mol%、26.4mol%、26.6mol%、26.8mol%或27mol%）的一种或多种阳离子脂质（例如，DODMA或本文描述，例如表1中的任何一个）。

【0061】在一些实施方案中，一种或多种PEG-脂质耦合物以约1mol%至约20mol%的量存在例如，约1mol%至约5mol%、约1mol%至约10mol%、约1mol%至约15mol%、约2mol%至约5mol%、约2mol%至约10mol%、约2mol%至约15mol%、约2mol%至约20mol%、约5mol%至约10mol%、约5mol%至约15mol%、约5mol%至约20mol%、约10mol%至约15mol%、约10mol%至约20mol%、约15mol%至约20mol%、约20mol%至约30mol%（例如，约2.5mol%、2.6mol%、2.7mol%、2.8mol%、2.9mol%、3mol%、3.5mol%、4mol%、4.3mol%、4.5mol%、4.7mol%、5mol%、5.3mol%、5.5mol%、5.7mol%、6mol%、6.5mol%、6.7mol%、7mol%、7.5mol%、8mol%、8.5mol%或9mol%）的一种或多种PEG-脂质耦合物（例如，PEG-DSPE、PEG-DMPE和/或本文描述的任何一个）。

【0062】在一些实施方案中，一种或多种中性脂质以约5mol%至约20mol%的量存在例如，约5mol%至约10mol%、约5mol%至约15mol%、约5mol%至约20mol%、约7mol%至约10mol%、约7mol%至约15mol%、约7mol%至约20mol%、约10mol%至约15mol%、约10mol%至约20mol%、约15mol%至约20mol%、约15mol%至约20mol%、约20mol%至约30mol%（例如，约25mol%、25mol%、30mol%、35mol%、40mol%、45mol%、48mol%、49mol%、50mol%、55mol%、60mol%、65mol%、70mol%或75mol%）的一种或多种本发明化合物。
10mol％至约20mol％，约15mol％至约20mol％（例如，约13.0mol％、13.2mol％、13.4mol％、
13.6mol％、13.8mol％、14mol％、14.1mol％、14.3mol％、14.5mol％、14.7mol％或
14.9mol％）的一种或多种中性脂质（例如，DSPC或本文描述的任何一个）。

【0063】在一些实施方案中，一种或多种甾醇衍生物以约20mol％至约40mol％的量存在，
例如，约20mol％至约25mol％、约20mol％至约30mol％、约20mol％至约35mol％、约25mol％
至约30mol％、约25mol％至约35mol％、约25mol％至约40mol％、约30mol％至约35mol％、约
30mol％至约40mol％、或约35mol％至约40mol％（例如，约28.4mol％、28.6mol％、
28.8mol％、29.0mol％、30mol％、31mol％、32mol％、33mol％、33.2mol％、33.4mol％、
33.6mol％、33.8mol％、34mol％、34.4mol％、34.7mol％或34.9mol％）的一种或多种甾醇衍
生物（例如，胆固醇或本文描述的任何一个）。

【0064】在一些实施方案中，制剂包括一种或多种脂质颗粒，包含一种或多种RNA结合剂和
一种或多种转染脂质，其中包括一种或多种RNA结合剂包括约10mol％至约40mol％的一种
或多种阳离子脂质或一种或多种本发明化合物和约0.5mol％至约10mol％的一种或多种
PEG-脂质，并且其中所述一种或多种转染脂质包括约10mol％至约40mol％的一种或多种本
发明化合物、约5mol％至约20mol％的一种或多种中性脂质、约0.5mol％至约10mol％的一
种或多种PEG-脂质颗粒物、和约20mol％至约40mol％的一种或多种甾醇衍生物。其他制剂
和百分比如本文描述。

【0065】在一些实施方案中，制剂还包括聚阳离子有效载荷或反义有效载荷。在一些实施
方案中，聚阳离子有效载荷是RNAi剂（例如，dsRNA，siRNA，miRNA，shRNA，pGAGRNA或DsRNA，
例如DsRNA）。在一些实施方案中，在一些实施方案中，RNAi剂具有10至40个核苷酸的长度，
例如10至15个核苷酸、10至20个核苷酸、10至25个核苷酸、10至30个核苷酸、10至35个核苷
酸、15至20个核苷酸、15至25个核苷酸、15至30个核苷酸、15至35个核苷酸、15至40个核苷
酸、16至20个核苷酸、16至25个核苷酸、16至30个核苷酸、16至35个核苷酸、16至40个核苷
酸、20至25个核苷酸、18至20个核苷酸、18至25个核苷酸、18至30个核苷酸、18至35个核苷
酸、18至40个核苷酸、19至20个核苷酸、19至25个核苷酸、19至30个核苷酸、19至35个核苷
酸、19至40个核苷酸、20至30个核苷酸、20至35个核苷酸、20至40个核苷酸、25至30个核苷
酸、25至40个核苷酸、30至35个核苷酸、30至40个核苷酸、或35至40个核苷酸的长度，例如25
至35个核苷酸的长度，例如16至30个核苷酸的长度，例如19至30个核苷酸的长度。在一些实
施方案中，反义有效载荷具有8至50个核苷酸的长度（例如，8至10个核苷酸、8至15个核苷
酸、8至15个核苷酸、8至20个核苷酸、8至25个核苷酸、8至30个核苷酸、8至35个核苷酸、8至
40个核苷酸、或8至45个核苷酸的长度），例如，14至35个核苷酸的长度（例如，14至15个核苷
酸、14至20个核苷酸、14至25个核苷酸、14至30个核苷酸的长度），例如，17至24个核苷酸的
长度，例如17至20个核苷酸的长度）。

【0066】在一些实施方案中，制剂包括约1:10(w/w)至约1:100(w/w)比率的所述聚阳离子
有效载荷与所述制剂中存在的总脂质，例如约1:10(w/w)至约1:15(w/w)比率，约1:10(w/w)
至约1:20(w/w)比率，约1:10(w/w)至约1:40(w/w)比率，约1:10(w/w)至约1:50(w/w)比率
、约1:10(w/w)至约1:60(w/w)比率，约1:10(w/w)至约1:70(w/w)比率，约1:10(w/w)至约1:80
(w/w)比率，约1:10(w/w)至约1:90(w/w)比率，约1:10(w/w)至约1:95(w/w)比率，约1:20(w/
w)至约1:40(w/w)比率，约1:20(w/w)至约1:50(w/w)比率，约1:20(w/w)至约1:60(w/w)比
率, 约1:20 (w/w) 至约1:70 (w/w) 比率, 约1:20 (w/w) 至约1:80 (w/w) 比率, 约1:20 (w/w) 至约1:90 (w/w) 比率, 约1:20 (w/w) 至约1:95 (w/w) 比率, 约1:20 (w/w) 至约1:100 (w/w) 比率, 约1:40 (w/w) 至约1:50 (w/w) 比率, 约1:40 (w/w) 至约1:60 (w/w) 比率, 约1:40 (w/w) 至约1:70 (w/w) 比率, 约1:40 (w/w) 至约1:80 (w/w) 比率, 约1:40 (w/w) 至约1:90 (w/w) 比率, 约1:40 (w/w) 至约1:95 (w/w) 比率, 约1:40 (w/w) 至约1:100 (w/w) 比率, 约1:50 (w/w) 至约1:60 (w/w) 比率, 约1:50 (w/w) 至约1:70 (w/w) 比率, 约1:50 (w/w) 至约1:80 (w/w) 比率, 约1:50 (w/w) 至约1:90 (w/w) 比率, 约1:50 (w/w) 至约1:95 (w/w) 比率, 约1:50 (w/w) 至约1:100 (w/w) 比率, 约1:60 (w/w) 至约1:70 (w/w) 比率, 约1:60 (w/w) 至约1:80 (w/w) 比率, 约1:60 (w/w) 至约1:90 (w/w) 比率, 约1:60 (w/w) 至约1:95 (w/w) 比率, 约1:60 (w/w) 至约1:100 (w/w) 比率, 约1:80 (w/w) 至约1:90 (w/w) 比率, 约1:80 (w/w) 至约1:95 (w/w) 比率, 约1:80 (w/w) 至约1:100 (w/w) 比率

在一些实施方案中，制剂包括脂质体（例如，脂质纳米颗粒）、脂质体复合物（lipoplex）或胶束。

一方面，本发明特征为药物组合物，包含本文描述的任何化合物（例如，一种或多种表1提供的化合物）或其药学可接受的盐，或本文描述的任何制剂，和药学可接受的赋形剂。

另一方面，本发明特征为治疗或预防性治疗受试者疾病的方法，所述方法包括给所述受试者施用足以治疗所述疾病（例如，肝癌（例如，肝细胞癌、肝母细胞癌、胆管癌（cholangiocarcinoma）、血管肉瘤或恶性血管瘤）、肺癌（例如，小细胞肺癌、非小细胞肺癌）、前列腺癌或神经内分泌癌）的量的本文描述的任何化合物（例如，一种或多种表1提供的化合物）或其药学可接受的盐，或本文描述的任何制剂，或本文描述的任何组合物。本发明进一步特征为治疗或预防性治疗肿瘤疾病和相关并发症的方法，包括但不限于癌（例如，肺、乳腺、胰腺、结肠、肝细胞、肾、女性生殖道、前列腺、鳞状细胞或原位癌），淋巴瘤（例如，组织细胞瘤、非霍奇金淋巴瘤）、MEN2综合征、多发性神经纤维瘤（包括Schwan细胞瘤）、骨髓增生异常综合征、白血病、肿瘤血管生成、甲状腺癌、肝、骨、皮肤、脑、中枢神经系统、胰腺、肺（例如，小细胞肺癌、非小细胞肺癌）、乳腺、结肠、膀胱、前列腺、胃肠道、子宫内膜、输卵管、睾丸和卵巢、胃肠道间质肿瘤（GIST）、前列腺肿瘤、肝大细胞肿瘤（包括大肾大细胞肿瘤）、急性髓性骨髓纤维化、白血病、急性淋巴细胞白血病、慢性髓性白血病、慢性淋巴细胞白血病、多发性骨髓瘤、黑素瘤、肝大细胞增多症、神经胶质瘤、成胶质细胞瘤、星形细胞瘤、成神经细胞瘤、肉瘤（例如，神经外胚层起源的肉瘤或平滑肌肉瘤）、肿瘤向其他组织的转移和化疗引起的缺氧。

另一方面，本发明特征为调节受试者中靶核酸表达的方法，所述方法包括施用足以减少所述受试者中所述靶基因（例如，本文描述的任何一个，例如，一种或多种选自以下组成的组的靶基因：ABL1、AR、B-连环蛋白（CTNNB1）、BCL1、BCL2、BCL6、CBFA2、CBL、CSF1R、ERBB1、ERBB2、ERBB3、ERBB4、ETS1、ETS2、ETV6、FGR、FOSS、FYN、HCR、HRAS、JUN、KRAS、LCK、LYN、MET、MDM2、MLL1、MLL2、MLL3、MYB、MYC、MYCL1、MYCN、NRAS、P16、PML、RET、SRC、TAL1、TAL2、TCL1、TCL5、YES、BCR1、BCR2、MADH、MCC、NF1、NF2、RBL1、TP53、WT1、ApoB100、CSN5、CDK6、ITGB1、TGFβ1、细胞周期蛋白D1、hepcidin、PCSK9、TTR、PLK1和KIF1A结合蛋白）表达的量的本文描述的任何化合物（例如，一种或多种表1提供的化合物）或其药学
可接受的盐，本文描述的任何制剂，或本文描述的任何组合物（例如，其中所述方法包括减少受试者中靶基因的表达）。

【0071】在另一实施方案中，本发明特征为每天一次或多次（例如，每天1、2、3或4次）、每周一次或多次（例如，每周2、3、4、5.6或7次）或每月一次或多次（例如，每周2、3、4、5.6.7或10次）给受试者施用一定剂量的该发明的聚阳离子有效载荷或反义有效载荷。受试者可以任何给药方案（例如，每天一次或多次（例如，每天1、2、3或4次）、每周一次或多次（例如，每周2、3、4、5.6或7次）或每月一次或多次（例如，每周2、3、4、5.6.7或10次））接收约0.0001至约10mg/kg、约0.0001至约1mg/kg、约0.0001至约5mg/kg、约0.001至约1mg/kg、约0.01至约5mg/kg，约0.01至约10mg/kg、约0.01至约100mg/kg范围内的聚阳离子有效载荷或反义有效载荷剂量。

【0072】在一些实施方案中，本发明特征为每天一次或多次（例如，每天1、2、3或4次）、每周一次或多次（例如，每周2、3、4、5.6或7次）或每月一次或多次（例如，每周2、3、4、5.6、7或10次）给受试者施用本发明制剂。受试者可以任何给药方案（例如，每天一次或多次（例如，每天1、2、3或4次）、每周一次或多次（例如，每周2、3、4、5.6或7次）或每月一次或多次（例如，每周2、3、4、5、6.7或10次））接收约0.001至约200mg/kg、约0.001至约1mg/kg、约0.001至约10mg/kg、约0.001至约20mg/kg、约0.001至约50mg/kg、约0.01至约100mg/kg、约0.01至约1mg/kg、约0.01至约10mg/kg、约0.01至约20mg/kg、约0.01至约50mg/kg、约0.01至约100mg/kg、约0.1至约200mg/kg、约0.1至约1mg/kg、约0.1至约10mg/kg、约1至约20mg/kg、约0.1至约50mg/kg、约1至约100mg/kg、约1至约10mg/kg，约1至约20mg/kg、约1至约50mg/kg、约1至约100mg/kg、约1至约10mg/kg、约1至约200mg/kg、约10至约200mg/kg、约10至约50mg/kg、约10至约200mg/kg、约20至约50mg/kg、约20至约100mg/kg，或约20至约200mg/kg范围内的制剂剂量。

【0073】另一方面，本发明特征为将聚阳离子有效载荷或反义有效载荷递送至特定组织类型的方法。可以向其递送所述有效载荷的特定组织类型的实例包括但不限于肝、胰腺、肺、前列腺、肾、骨髓、脾、胸腺、淋巴结、脑、脊髓、心、骨骼肌、皮肤、口腔黏膜、食道、胃、回肠、小肠、结肠、膀胱、子宫颈、卵巢、睾丸、乳腺、肾上腺、脂肪组织（白色和/或棕色）、血液（例如，造血细胞，例如人类造血祖细胞、人类造血干细胞，CD34+细胞，CD4+细胞，淋巴细胞和其他血细胞谱系）。

【0074】在上述方面的任何一个，本发明化合物包括两个不饱和的脂质尾基（例如，每个R¹和R²独立地为任选取代的C₁₁₋₂₄烯基，任选取代的C₁₁₋₂₄烷基，任选取代的C₁₁₋₂₄杂烯基或任选取代的C₁₁₋₂₄烷基基）。【0075】在上述方面的任何一个，本发明化合物包括脂质尾基，其中这些基团不包括与CHR¹共用的氧（例如，每个R¹和R²独立地为任选取代的C₁₁₋₂₄烷基，任选取代的C₁₁₋₂₄烯基或任选取代的C₁₁₋₂₄烷基基）。【0076】在上述方面的任何一个，本发明化合物包括脂质尾基，其中这些基团不包括一种或多种生物可降解基团（例如，一种或多种脂基团）。

【0077】在上述方面的任何一个，本发明化合物包括两个具有超过11、12、13、14、15、16或18个碳的脂质尾基（例如，每个R¹和R²独立地为任选取代的C₁₇₋₂₄烯基，任选取代的C₁₇₋₂₄烷基基）
基、任选取代的C_{15-24}杂烯基或任选取代的C_{16-24}烷基基；每个R^1和R^2独立地为任选取代的C_{16-24}烷基基，任选取代的C_{16-24}烷基基，任选取代的C_{16-24}烷基基，或任选取代的C_{16-24}烷基基；每个R^1和R^2独立地为任选取代的C_{17-24}烷基基，任选取代的C_{17-24}烷基基，任选取代的C_{17-24}烷基基，或任选取代的C_{17-24}烷基基；或任选取代的C_{17-24}烷基基；或任选取代的C_{18-24}烷基基，任选取代的C_{18-24}烷基基，或任选取代的C_{18-24}烷基基）。

【0078】在上述方面的任何一个，本发明化合物不含有烯基（例如，R^3或R^4都不选任选取代的酰胺）。在一些实施方案中，所述化合物不含有氨甲酰基。在一些实施方案中，所述化合物不含有超过一个伯胺基团（例如，在R^1-R^6的任何一个或多个中，例如在R^2或R^3中不含有两个伯胺基团或不含有任何伯胺基团）。在特定实施方案中，所述化合物包括仅一个伯胺或没有伯胺（例如，在R^1-R^6的任何一个或多个中，例如在R^2或R^3中存在仅一个伯胺或没有伯胺）。

【0079】在上述方面的任何一个，本发明化合物不含有羟基（例如，R^1或R^2都没有选任选取代的羟基取代；或R^1或R^2都没有选任选取代的羟基取代）。在一些实施方案中，当R^1或R^2是饱和C_{11-24}烷基（例如，饱和C_{15}烷基、饱和C_{16}烷基、饱和C_{17}烷基或饱和C_{18}烷基）时，R^1和/或R^2未经1,2或3个羟基取代。在一些实施方案中，当R^1或R^2是饱和C_{11-24}烷基（例如，饱和C_{15}烷基、饱和C_{16}烷基、饱和C_{17}烷基或饱和C_{18}烷基）时，R^3和/或R^4未经1,2或3个羟基取代。

【0080】在上述方面的任何一个，本发明化合物包括不超过两个酰胺基团（例如，化合物的头基中不超过两个，或任选取代的酰胺基团）。在其他实施方案中，化合物在R^1-R^6的一个或多个中包括0,1或2个酰胺基团（例如，R^3或R^4中选任选取代的羟基取代）。而在其他实施方案中，化合物可以包括一个且仅一个酰胺基团（例如，可以在R^2或R^3中选任选取代的羟基取代）。而在其他实施方案中，化合物包括一个且仅一个酰胺基团或没有酰胺基团（例如，在R^2或R^3中包括一个且仅一个酰胺基团或没有酰胺基团）。

【0083】在上述方面的任何一个，本发明化合物除了二(Z)-壬-2-烯-1-基)-9-(3-(二甲基氨基)丙酰基)氨基)十七烷二酸酯、二(Z)-壬-2-烯-1-基)-9-(4-(二甲基氨基)丁酰基)氨基)十七烷二酸酯、二(Z)-壬-2-烯-1-基)-9-(5-(二甲基氨基)新戊酰基)氨基)十七烷二酸酯。
烷二酸酯或其盐。

【0084】在上述方面的任何一个，本发明化合物具有小于6.2和大于6.5的pKa值（例如，如下的pKa值：4.0至4.2，例如4.0至5.2，4.0至5.6，或4.0至5.8；或6.5至8.5，例如6.5至7.0，6.5至7.5，或6.5至8.0）。在特定实施方案中，pKa值是约5.0至约6.0（例如，5.0至5.5，5.0至5.6，5.0至5.7，5.0至5.8，5.0至5.9，5.0至6.0，5.0至6.5，5.0至7.0，5.0至7.5，5.0至8.0）。pKa值可以通过任何有用的方法测定，例如，测量2-（对-甲苯氨基）-6-氯磺酸（TNS）的荧光，电势测量值等。在特定实施方案中，pKa值是带电离子脂质的浓度和未带电质的浓度之比（例如，通过原位TNS荧光滴定测定的，其中pKa测定为在半数最大荧光强度处的pH）。

【0085】定义

【0086】如本文使用的，术语“约”表示引用值的平均值±10%。

【0087】除非另外指明，术语“烯基”表示含有一个或多个碳-碳双键的2至24个碳原子的单价直链或支链基团。烯基的实例有乙烯基、1-丙烯基、2-丙烯基、3-丙烯基、1-丁烯基、2-丁烯基、1-乙烯基、2-乙烯基、亚油烯基、亚麻烯基等。术语“C_{x:y}烯基”代表具有x至y个碳的烯基。x的示例性值是2、3、4和5；y的示例性值是3、4、5和6，并且x至y的示例性值是10至20或9至8、2至7、2至6、2至5、2至4、10至24、11至24、12至24、14至24、16至24、18至24、10至22、11至22、12至22、14至22、16至22、18至22、10至20、11至20、12至20、14至20、16至20，或18至20。在一些实施方案中，烯基可以经1、2或3个本文针对烷基所定义的取代基进一步取代。

【0088】除非另外指明，“烷基”表示1至24个碳原子的单价直链或支链饱和基团。烷基的实例有甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、新戊基、月桂基、肉豆蔻基、棕榈基、硬脂基等，并且可以任选地经1、2或3个更多碳的烷基情况下经4个取代基取代，所述取代基独立地选自以下组成的组：(1) 烷氧基；(2) 如本文定义的氨基；(3) 卤素，例如F、Cl、Br或I；(4) (杂环)氧基；(5) 杂环基；(6) 烷基；(7) 烷基；(8) 烷基；(9) 烷基；(10)环烷基；(11) 烷基；(12) 烷基；或(13) 氧，例如，醚或酰基。在一些实施方案中，这些基团的每一个可以如本文描述的进一步取代。术语“C_{x:y}烷基”代表具有x至y个碳的烷基。x的示例性值是1、2、3、4和5；y的示例性值是2、3、4、5和6，并且x至y的示例性值是10至20或9至8、1至7、1至6、1至5、1至4、10至24、11至24、12至24、14至24、16至24、18至24、10至22、11至22、12至22、14至22、16至22、18至22、10至20、11至20、12至20、14至20、16至20，或18至20。

【0089】如本文使用的，术语“烷基”和前缀“烷-”代表通过去除非两个氢原子而从直链或支链烃衍生的多价（例如，二价）烃基。烷基的实例有甲基、乙基、丙基等。术语“C_{x:y}烷基”代表具有x至y个碳的烷基。x的示例性值是1、2、3、4和5，并且y的示例性值是2、3、4和5。在一些实施方案中，烷基可以经1、2或3个本文针对烷基所定义的取代基进一步取代。

【0090】除非另外指明，“炔基”表示含有一个或多个碳-碳三键的2至24个碳原子的单价直链或支链基团。炔基实例乙炔基、1-丙炔基等。术语“C_{x:y}炔基”代表具有x至y个碳的炔基。x的示例性值是2、3、4、5和11；y的示例性值是3、4、5和6，并且x至y的示例性值是2至10、2至9、2至8、2至7、2至6、2至5、2至4、10至24、11至24、12至24、14至24、16至24、18至24、10至22、11至22、12至22、14至22、16至22、18至22、10至20、11至20、12至20、14至20、16至20，或18至20。
20. 在一些实施方案中，炔基可以是R、2、3或4个本法则针对炔基所定义的取代基进一步取代。

【0093】“酸胺”表示通过羰基与母分子基团连接的如本文定义的胺基。

【0094】如本文使用的，氨基表示-\(\text{NH}_2 \)或-NH\(_2\)，其中每个\(\text{NH}_2 \)独立地为H、OH、NO\(_2\)、N（RN\(_3\)>2 SO\(_2\)RN\(_2\)、SO\(_2\)RN\(_2\)、SO\(_2\)RN\(_2\)>N-保护基、烃基、烯基、炔基、烷氧基、芳基、烷基、环烷基、烷环烷基、杂环基（例如，杂芳基）、烷环杂基（例如，烷环芳基），或者两个RN\(_2\)结合形成杂环基或N-保护基，并且每个RN\(_2\)独立地为H、烃基或芳基。在一个优选的实施方案中，氨基是-\(\text{NH}_2 \)或-NH\(_2\)，其中RN\(_2\)独立地为H、OH、NO\(_2\)、N（RN\(_3\)>2 SO\(_2\)RN\(_2\)、SO\(_2\)RN\(_2\)、SO\(_2\)RN\(_2\)>N-保护基，并且每个RN\(_2\)可以是H、烃基或芳基。“伯胺”表示具有结构-NH\(_2\)的基团。

【0095】如本文使用的，术语“氨基烷基”包括经本文定义的氨基取代的如本文定义的烷基，烷基和氨基各自可以是1、2、3或4个本法则针对各个基团描述的取代基进一步取代。

【0096】如本文使用的，术语“氢甲酰基”指具有结构-NR\(_2\)C（＝O）或-NR\(_2\)N（RN\(_3\)>2氢基甲酸酯基团，其中每个RN\(_2\)的含义参见本文提供的“氨基”的定义，而且R是如本文定义的烃基、环烷基、烃环烷基、芳基、烷基、环烷基、杂环基（例如，杂芳基）或烷环杂基（例如，烷环芳基）。

【0097】如本文使用的，术语“卤素”表示选自氯、溴、碘或氟的卤素。

【0098】“杂卤基”表示如本文定义的烯基，其中一个或多个组成的碳原子已经各自被O、N或S所替代。示例性的杂卤基包括经氧基取代的或通过氧原子与母分子基团连接的如本文描述的烯基。在一些实施方案中，杂卤基可以是1、2、3或4个本法则针对烯基描述的取代基进一步取代。

【0099】“杂烷基”表示如本文定义的烯基，其中一个或多个组成碳原子已经被O、N或S所替代。示例性的杂烷基包括经氧基取代的或通过氧原子与母分子基团连接的如本文描述的烯基。在一些实施方案中，杂烷基可以是1、2、3或4个本法则针对烯基描述的取代基进一步取代。

【0100】如本文使用的，术语“杂烷基”指如本文定义的亚烷基基团，其中1或2个组成碳原子各自已经被O、N或S所替代。在一些实施方案中，杂烷基基团可以是1、2、3或4个本法则针对亚烷基基团描述的取代基进一步取代。术语“C\(_x\)-y杂烷基”代表具有x至y个碳的杂烷基基团。x的示例性值是1、2、3、4、5和11；y的示例性值是2、3、4、5、6和24；并且x至y的示例性值是1至10、1至9、1至8、1至7、1至6、1至5、1至4、10至24、11至24、12至24、14至24、16至24、18至24、10至22、11至22、12至22、14至22、16至22、18至22、20至12、10至20、12至20、14至20、16至20或18至20。

【0101】“杂炔基”表示如本文定义的炔基，其中一个或多个组成碳原子已经被O、N或S所替代。示例性的杂炔基包括经氧基取代的或通过氧原子与母分子基团连接的如本文描述的炔基。在一些实施方案中，杂炔基可以是1、2、3或4个本法则针对炔基描述的取代基进一步取代。

【0102】如本文使用的，术语“芳基”表示作为芳香族的如本文定义的杂环基子集，即，它们含有单环或多环系统内的4n+2pi电子。在一些实施方案中，芳基经1、2、3或4个本法则针对杂环基描述的取代基取代。
【0103】除非另外指明，如本文使用的术语“杂环基”表示含有1、2、3或4个杂原子的3-、4-、5-、6-、7-或8-元环，所述杂原子独立地选自氮、氧和硫组成的组。杂环基可以是饱和的或不饱和的，并且含有0至3个不饱和键。例如，5-元环具有0至2个双键，并且6-和7-元环具有0至3个双键。某些杂环基包括2至9个碳原子，例如3至7个碳原子。其他此类基团可以包括最多12个碳原子。术语“杂环基”还表示含有环接或环合的环状化合物，其中一个或多个碳和/或杂原子桥接单环、例如桥位环基的两个非相邻成员。杂环基的实例包括氮丙咪基、吲丁啶基、吡咯啉基、吡咯基、吡咯烷基、唑啉基、唑基、二氮杂环庚烷基、吲哚基、吲哚基、三氮杂环庚烷基、吲哚基、吲哚基、二氮杂环庚烷基、吲哚基、四氢呋喃基、二氢呋喃基等。

【0104】如本文使用的术语“(杂环基)氢基”表示通过氧原子与母分子基团连接的如本文定义的杂环基。在一些实施方案中，杂环基可以是1、2、3或4个如本文定义的取代基取代。

【0105】如本文使用的术语“(杂环基)酰基”表示通过羰基连接至母分子基团的如本文定义的杂环基。在一些实施方案中，杂环基可以是1、2、3或4个如本文定义的取代基取代。

【0106】如本文使用的术语“氨基”表示-NH基。

【0107】“连接体”表示含有一个或多个原子的任选取代的多价（例如，二价）基团。连接体的实例包括任选取代的如本文定义的亚烷基和杂烷基基团。

【0108】如本文使用的术语“N-保护基”表示预期保护氨基在合成过程中免受不希望的反应的那些基团。常用的N-保护基公开于Greene, “Protective Groups in Organic Synthesis,” 第3版（John Wiley & Sons, New York, 1999），其通过引用并入本文。N-保护基包括酰基、芳基酰基或氢甲酰基，例如甲酰基、乙酰基、丙酰基、新戊酰基、叔丁基乙酰基、2-氯乙酰基、2-溴乙酰基、三氟乙酰基、三氯乙酰基、邻苯二甲酰基、邻硝基苯基乙酰基、二氯乙酰基、苯甲酰基、4-氯苯甲酰基、4-溴苯甲酰基、4-硝基苯甲酰基、4-羟基苯甲酰基，和手性助剂，例如保护或未保护的D、L或D、L-氨基酸，例如丙氨酸、亮氨酸、苯丙氨酸等；含磺酰基的基团，例如苯磺酰基、对甲苯磺酰基等；氨基甲酸酯形成基团，例如苄基氨基甲酸酯、对-氰基苄氧基羰基、对-甲氧基苄氧基羰基、对-二硝基苄氧基羰基、对-溴苄氧基羰基、3,4-二甲氧基苄氧基羰基、3,5-二甲氧基苄氧基羰基、4-二甲氧基苄氧基羰基、4-甲氧基苄氧基羰基、2-硝基-4-5-二甲氧基苄氧基羰基、3,4,5-三甲氧基苄氧基羰基、1,1-对-联苯基-1-甲基乙氧基羰基、α,α-二甲基-3,5-二甲氧基苄氧基羰基、二苯甲氧基羰基、叔丁基氧基羰基、二烷基甲氧基羰基、异丙基氧基羰基、乙氧基羰基、甲氧基羰基、烯丙基氧基羰基、2,2,2,2-三氟乙氧基羰基、苯氧基羰基、4-硝基苯氧基羰基、苯氧基-9-甲氧基羰基、环戊基氧基羰基、金刚烷氧基羰基、环己基氧基羰基、苯基氧代羰基等，烷基，例如苄基、三苯基甲基、苄基氧基甲基等，和甲硅烷基，例如三甲基硅烷基等。优选的N-保护基是甲酰基、乙酰基、苯甲酰基、新戊酰基、叔丁基乙酰基、丙氧基羰基、苯磺酰基、苄基、叔丁基氧基羰基(Boc)和苄基氧基羰基(Cbz)。

【0109】如本文使用的术语“氧代”表示-O。

【0110】术语“肽”指具有结构NR₁⁻C(=O)NR₂⁻的基团，其中每个R⁻的含义参见本文提供的“氨基”的定义。

【0111】剂的“足量”表示足以实现有益或想要结果、例如临床结果的剂的量，因此，足量取决于其应用的上下文。例如，在施用降低靶基因表达水平的制剂的上下文，制剂的足量是
足以实现靶基因表达水平与不施用制剂时获得的反应相比减少的量。
[0112] "阴离子脂质"表示在生理pH下具有净负电荷的任何脂质分子。
[0114] "阳离子脂质"表示在生理pH下具有净正电荷的任何脂质分子。示例性阳离子脂质包括本文描述的，例如表1中的任何一个。
[0116] "双链分子"表示可用于通过RNA干扰沉默基因产物的双链RNA:RNA或RNA:DNA分子。
[0117] "表达"表示通过本领域已知的方法检测基因或多肽。例如，经常通过Southern印迹或聚合酶链式反应(PCR)检测DNA表达，并且经常通过Northern印迹、RT-PCR、基因芯片技术或RNA酶保护测定来检测RNA表达。测量蛋白质表达水平的方法一般包括但不限于Western印迹、免疫印迹、酶联免疫吸附测定(ELISA)、放射性免疫测定(RIA)、免疫沉淀、免疫荧光、表面等离子共振、化学发光、荧光偏振、磷光、免疫组织化学分析、质谱辅助激光解吸/电离飞行时间(MALDI-TOF)质谱、显微细胞计数术(microcytometry)、显微镜检查法、荧光激活的细胞分选(FACS)和流式细胞仪以及基于蛋白质性质的测定，包括但不限于酶活性或其他与蛋白质配体的任何作用。
[0118] "杂交"表示如本文定义的足够互补的多核苷酸或其部分在各种严格度条件下配对形成双链分子。（参见例如，Wahl等人，Methods Enzymol.152:399(1987);Kimmel，Methods Enzymol.152:507(1987)）。例如，高严格度盐浓度通常小于约750mM NaCl和75mM柠檬酸钠，小于约500mM NaCl和50mM柠檬酸钠和小于约250mM NaCl和25mM柠檬酸钠。低严格度杂交可以在有机溶剂，例如甲酰胺缺乏下获得，而高严格度杂交可以在约35%甲酰胺或至少约50%甲酰胺存在下获得。高严格度温度条件通常将包括至少约30°C、37°C或42°C的温度。各种其他参数，例如杂交时间、去污剂例如十二烷基硫酸钠(SDS)的浓度和加入或排除载体DNA本领域技术人员公知的，通过按需要组合这些各种条件来实现各种严格度水平。在一个实施方案中，杂交将在750mM NaCl，75mM柠檬酸钠和1% SDS中30°C下进行。在一个可选实施方案中，杂交在pH 6.4下、在50°C或70°C下、在400mM NaCl，40mM PIPES和1mM EDTA中进行，杂交持续12-16小时之后，进行洗涤。额外的优选杂交条件包括在7°C在1×SSC中或在50°C在1×SSC，50%甲酰胺中杂交，随后在70°C在0.3×SSC中洗涤，或者在70°C在1×SSC中或在50°C在1×SSC，50%甲酰胺中杂交，随后在67°C在1×SSC中洗涤。针对这些条件的最佳值对于本领域技术人员而言是特别明显的。一种这样的示例性变化包括评估设计以模拟生理条件下条件的条件下的杂交，其中阳离子和阴离子以如下比例配合；对于阳离子，钠：钾：钙：镁为10:160:2:26，并且对于阴离子，氯离子：碳酸氢根：磷酸根：硫酸根：葡萄糖酸根为3:10:100:20:65。
“脂质载体”表示脂质体、脂质体复合物（lipoplex）、胶体、脂质纳米颗粒、基于核心的颗粒，与染色质结合的包含RNA结合物-RNA聚合物的颗粒，或包含一种或多种本发明化合物的基于囊的颗粒。

“微RNA（miRNA）”表示可用来通过RNA干扰沉默基因产物的单链RNA分子。

“调控”表示基因表达，或编码一种或多种蛋白或蛋白质亚基的RNA分子或等同RNA分子水平，或编码一种或多种蛋白或蛋白质亚基的活性被上调或下调，使得表达水平或活性大于或小于在缺乏调节剂时观察到的，例如，术语调节可包括抑制或基因沉默，并且基因表达水平或RNA分子水平或其等同物与对照相比降低至少10%（例如，15%、20%、25%、30%、35%、40%、50%、60%、70%、80%、85%、90%、95%、97%、98%、99%或100%）。

“中性脂质”表示在生理pH下以不带电或中性两性离子形式存在的任何脂质分子。

“聚阳离子有效载荷”表示包含多个带有电荷的化学部分，其可加入制剂，聚阳离子有效载荷的实例包括核酸、RNAi剂、siRNA、dsRNA、miRNA、shRNA、DsRNA和反义有效载荷。

“RNA结合剂”表示能够结合或杂交核酸、例如治疗剂的核酸有效载荷的任何剂或剂组合。RNA结合剂包括本文描述的任何核酸，例如，一种或多种阳离子脂质，一种或多种阳离子脂质的组合、例如本文描述的那些，以及一种或多种阳离子脂质和任何其他脂质的组合，例如中性脂质或PEG-脂质复合物。RNA结合剂可以在制剂内形成任何有用的结构，例如内部聚集体。

“RNAi剂”表示通过杂交靶核酸而发挥基因沉默作用的任何剂或化合物。RNAi剂包括能够介导序列特异性RNAi（例如，在严格条件下）的任何核酸分子，例如，短干涉RNA（siRNA）、双链RNA（dsRNA）、微RNA（miRNA）、短发夹RNA（shRNA）、短干扰核酸酶、短干扰核酸、短干扰修饰的寡核酸、化学修饰的siRNA、转录后基因沉默RNA（ptgsRNA）和Dicer-底物RNA（DsiRNA）。

“短发夹RNA”或“shRNA”表示形成紧密发夹环并且能够基因沉默的RNA序列。

“有义区”表示与另一核酸的反义区具有足够互补性的本发明核酸的核苷酸序列。此外，本发明核酸的有义区可以包括与靶基因核苷酸序列具有同源性的核苷酸序列。“反义区”表示与靶基因核苷酸序列具有足够互补性的本发明核酸的核苷酸序列。

“沉默”或“基因沉默”表示基因表达或者编码一种或多种蛋白的RNA分子的水平在RNAi剂存在下减少至低于对照条件下观察到的（例如，在缺乏RNAi剂或者存在失活或减弱分子，例如具有错配序列或错配的RNAi分子下）。基基因沉默可以使基因产物表达减少1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、15%、20%、25%、30%、35%、40%、50%、60%、70%、80%、85%、90%、95%、97%、98%、99%或100%（即，完全抑制）。

“小抑制RNA”、“短干扰RNA”或“siRNA”表示能够基因沉默的一类10-40（例如，15-25，例如21）核苷酸双链分子，最值得注意的是，siRNA通常参与RNA干扰（RNAi）途径，siRNA借助该途径干扰特定位点基因产物的表达。

“基本同一性”或“基本上同一的”表示多肽或多核苷酸序列，其分别与参考序列具有相同的多肽或多核苷酸序列，或者分别具有指定百分比的在两序列最佳比对时在参考序列中的相应位置相同的氨基酸残基或核苷酸。例如，与参考序列“基本上同一的”氨基酸序列具有与参考氨基酸序列至少50%、60%、70%、75%、80%、85%、90%、95%、96%、
97%、98%、99%或100%的同一性。对于多肽，对比序列的长度一般是至少5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个连续氨基酸，更优选至少25、50、75、90、100、150、200、250、300或350个连续氨基酸，并且最优选是全长氨基酸序列。对于核酸，对比序列的长度一般是至少5个连续核苷酸，优选至少10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25个连续核苷酸，并且最优选是全长核苷酸序列。可以使用序列分析软件基于默认设置来测量序列同一性（例如，Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705）。这种软件可以用通过给各种取代、缺失和其他修饰分配同源性度来匹配相似序列。

[0131] “足够互补的”表示多核苷酸序列，其与靶核酸具有精确互补多核苷酸序列，或者具有指定百分比的在两条序列最佳比对时在靶核酸内的相应位置精确互补的核苷酸。例如，与靶核酸序列“基本上互补的”多核苷酸序列与靶核酸序列具有至少50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%或100%互补性。对于具有10至40个核苷酸长度的RNAi剂，足够互补的序列包括具有1、2、3、4或5个非互补核苷酸的那些。实际上，在包括例如DsiRNA剂的某些实施方案中，活性双链RNAi剂可以具有少达15至19个连续核苷酸的与靶核酸足够互补的指导链，而不要求指导链的其余部分具有与靶核酸任何程度的互补性（尽管在某些实施方案中，指导链的其余部分可以部分或完全地与靶向的核酸（例如，mRNA）互补。

[0132] “靶核酸”表示其表达或活性调节的任何核酸序列。靶核酸可以是DNA或RNA。在某些实施方案中，靶核酸是靶mRNA。

[0133] “转染脂质”表示能够递送核酸，例如核酸有效载荷的任何脂质或脂质组合（任选地，核酸有效载荷与RNA结合剂，例如一种或多种阳离子脂质结合）。转染脂质包括本文描述的任何脂质（例如，一种或多种阳离子脂质，一种或多种阳离子脂质的组合，例如本文描述或表1中的那些，以及一种或多种阳离子脂质和任何其他脂质或剂的组合，例如中性脂质、阴离子脂质，PEG-脂质结合物或葡糖醇衍生物）。转染脂质组合或包括这种转染脂质的组合可以在制剂内形成任何有用的结构，例如外部聚集体表面。

[0134] “药物组合物”表示含有本文描述的化合物的组合物，其用药物学接受赋形剂配制并经政府监管机构批准用于治疗哺乳动物疾病的治疗方案的部分而生产或销售。药物组合物可以被配制用于例如以单剂量单位形式（例如，片剂、胶囊、薄膜衣片（caplet）、囊形片（gelecip）或糖浆）的口服施用；用于局部施用（例如，作为乳霜、凝胶、洗剂或软膏）；用于静脉内施用（例如，作为不含栓子粒子的无菌溶液和在适合静脉内使用的溶剂系统中）；或者以本文描述的任何其他制剂。

[0135] “药物学接受的赋形剂”表示不同于本文描述的化合物并且在患者中具有非毒性和平片剂性性质的任何成分（例如，能够悬浮或溶解活性化合物的媒介物）。赋形剂可以包括例如：防粘剂、抗氧化剂、粘合剂、包衣、压缩助剂、崩解剂、染料（着色剂）、软化剂、乳化剂、填充剂（稀释剂）、成膜剂或包衣、调味剂、香料剂、助流剂（流动增强剂）、润滑剂、防腐剂、印墨、吸收剂、悬浮或分散剂、增溶剂和水合物。示例性的赋形剂包括但不限于：丁基化羟基甲苯（BHT）、碳酸钙、磷酸钙（二碱式）、硬脂酸钙、交联羧甲基纤维素、交联聚乙烯吡咯烷酮、柠檬酸、交聚维酮、半胱氨酸、乙基纤维素、明胶、羟丙基纤维素、羟丙基甲基纤维素、乳糖、硬
脂酸镁、麦芽糖醇、甘露糖醇、蛋氨酸、甲基纤维素、伯尼金甲酯、微晶纤维素、聚乙二醇、聚乙烯比咯烷酮、聚维酮、预胶化淀粉、伯尼金丙酯、棕榈酸乙酯黄酯、紫胶、二氧化硅、羧甲基纤维素钠、柠檬酸钠、羟乙酸淀粉钠、山梨糖醇、淀粉(玉米)、硬脂酸、蔗糖、滑石、二氧化钛、维生素A、维生素E、维生素C和木糖醇。

[0136] “药学可接受的盐”表示在合理医疗判断范围内适合用于与人和动物组织接触而无过度毒性、刺激、变应性反应等并且与合理益处/风险比相称的那些盐。药学可接受的盐是本领域公知的。例如，药学上可接受的盐描述于Berge等人，J.Pharm.Sci.,66(1):1,1977和Pharmaceutical Salts:Properties,Selection,and Use,P.H.Stahl和C.G.Wermuth(编辑),Wiley-VCH,2008。盐可以在本发明化合物的最后分离和纯化期间原位制备或者单独地通过使游离碱基于适合的有机酸反应来制备。代表性的酸加成盐包括醋酸盐、乙二酸盐、琥珀酸盐、抗坏血酸盐、天冬氨酸盐、苯磺酸盐、苯甲酸盐、硫酸盐、硼酸盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、柠檬酸盐、环戊烷丙酸盐、二氮烷酸盐、十二烷基硫酸盐、乙烷磺酸盐、富马酸盐、葡萄糖酸盐、甘油磷酸盐、半乳酸盐、庚糖酸盐、己酸盐、氢溴酸盐、盐酸盐、氢碘酸盐、2-羟基-乙烷磺酸盐、乳酸盐、乳酸盐、月桂酸盐、月桂基磺酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲烷磺酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、油酸盐、草酸盐、棕榈酸盐、苯甲酸盐、甲酸盐、过硫酸盐、3-苯基丙酸盐、磷酸盐、苦味酸盐、新戊酸盐、丙酸盐、硬脂酸盐、琥珀酸盐、硫酸盐、酒石酸盐、硫氰酸盐、甲苯磺酸盐、十一烷酸盐、戊酸盐等。代表性的碱金属或碱土金属盐包括钠、锂、钾、钙、镁等，以及无毒的铵、季铵和胺阳离子，包括但不限于铵、四丁基铵、四乙基铵等。

[0137] “受试者”表示人或非人动物（例如，哺乳动物）。

[0138] 如本文使用以及如本领域公知的，“治疗”是用于获得有益或想要结果，例如临床结果的方法。有益或想要的结果可以包括但不限于缓解或减轻一种或多种症状或病状；降低疾病、病症或病状的程度；疾病、病症或病状状态的稳定（即，不恶化）；防止疾病、病症或病状的传播；延迟或缓释疾病、病症或病状的发展；缓解或减轻疾病、病症或病状；和消除（部分或完全）；无论是可检测的还是不可检测的。“减轻”疾病、病症或病状表示与缺乏治疗的程度或时间进程相比，疾病、病症或病状的程度和/或不想要的临床表现被减少和/或时间进程被缓释或延长。“治疗癌症”、“预防癌症”或“抑制癌症”表示引起肿瘤大小或癌细胞数量的减少，缓释或抑制肿瘤大小或癌细胞增殖的增加，增加肿瘤或其癌细胞的消失，其再出现之间的无疾病存活时间，预防或减少肿瘤或其他癌症的初始或随后出现的可能性，或减少与肿瘤或其他癌症相关的不良症状。在一个想要的实施方案中，如使用任何标准测定测量的，治疗后幸存的肿瘤或癌细胞的百分比比肿瘤或癌细胞的初始数目低至少20、40、60、80或100%。希望地，通过施用本发明化合物而诱导的肿瘤或癌细胞数目的减少是非肿瘤或非癌细胞数目降低的至少2.5、10、20或50倍。希望地，如使用标准方法测定的，本发明方法导致肿瘤大小或癌细胞数目的20、40、60、80或100%的减少。希望地，至少20、40、60、80、90或95%的受治疗的受试者具有其中肿瘤或癌症的所有证据消失的完全消除。希望地，肿瘤或癌症没有重新出现，或者在不少于5、10、15或20年之后重新出现。预防性治疗”受试者疾病或病状（例如，癌症）表示减少疾病症状出现之前疾病或病状的发生（即，发病率）或减少其严重度。预防性治疗可以完全预防或减少疾病或其症状的出现，和/或可以在部分或完全治愈疾病和/或归因于疾病的不良作用方面是治疗性的。预防性治疗可以包括减少或
预防疾病或病变（例如，预防癌症）在可能易患该病但还没有被诊断患有该病的个体中出现。

附图简述

图1显示了氨基-酰胺（标记的“酰胺”）和氨基-胺（标记的“胺”）的示例性实施方案，对于这些化合物，R²和R^2可以是本文描述的任何尾基，例如任选取代的C₁₁₋₂₄烷基、烯基、炔基、杂烷基、杂烯基或杂炔基。

图2A-2B显示了示例性化合物L₁-L₁₄。

图3显示了具有叔胺的示例性化合物L₁₅-L₂₁。

图4显示了L₂的示例性化合物，包括化合物L₂₅,L₂₆,L₂₂和L₂₃。

图5显示了L₆的示例性化合物，包括化合物L₂₄-L₂₉。

图6显示了L₉的示例性酰胺类似物，包括化合物L₃₀至L₃₆。

图7显示了具有哌嗪基的化合物L₃₇至L₄₁，其中每个R²和R^2独立地为本文描述的任何尾基，例如任选取代的C₁₁₋₂₄烷基、烯基、炔基、杂烷基、杂烯基或杂炔基。

图8显示了其他示例性氨基阳离子脂质结构L₄₂,L₄₃和L₄₄。

图9显示了本发明L₆、L₄₅、L₄₆和L₄₇的其他示例性阳离子脂质结构。

图10是示例含有化合物L₁或L₂的脂质颗粒与未治疗的对照组相比的体外敲除的图。

图11是显示使用包含L₁,L₂,L₅,L₆,L₇,L₈,L₂₂或L₃₀和5mg/kg的DsiRNA的单剂脂质颗粒体内敲除小鼠肝中HPRT1mRNA，随后在48小时之后收集组织的图。

图12是显示使用包含L₂,L₅,L₆,L₃₀和1mg/kg或5mg/kg的DsiRNA的单剂脂质颗粒体内敲除小鼠肝中HPRT1mRNA，随后在48小时之后收集组织的图。

图13是显示使用包含L₆或L₃₀和5mg/kg的DsiRNA配制的两剂脂质颗粒体内敲除小鼠肝和原位Hep3B肿瘤中HPRT1mRNA，随后在48小时之后收集组织的图。

图14是显示使用包含L₆或L₃₀和5mg/kg的DsiRNA配制的两剂脂质颗粒体内敲除小鼠肝和原位HepG2肿瘤中HPRT1mRNA，随后在48小时之后收集组织的图。

图15是显示具有活性DsiRNA的脂质颗粒制剂L₆和L₃₀（“L₆活性”和“L₃₀活性”）在体内Hep3B模型中对血清a-甲胎蛋白（AFP）水平的影响。提供了没有DsiRNA的制剂（“L₆对照”和“L₃₀对照”）和缓冲液（“PBS”）的对照。

图16是显示具有活性DsiRNA的脂质颗粒制剂L₆和L₃₀（“L₆活性”和“L₃₀活性”）在体内Hep3B模型中对肿瘤重量的影响的图。提供了没有DsiRNA的制剂（“L₆对照”和“L₃₀对照”）和缓冲液（“PBS”）的对照。

图17显示具有二油烯基尾基的示例性化合物L₄₈和L₄₉。

图18是显示使用包含L₃₀和L₃或10mg/kg的DsiRNA的单IV剂脂质颗粒体内敲除小鼠肝和原位Hep3B肿瘤（0.5g±0.1）中HPRT1mRNA，随后在48小时之后收集组织的图。N=7/组肝和肿瘤（具有SEM的平均值），测试了两个制剂，如本文描述的L₃₀[1]和L₃₀[2]。

图19是显示使用包含L₃₀[1]制剂和DsiRNA的单剂脂质颗粒体内敲除多个原位肝癌模型中HPRT1mRNA的图。Hep3B和HepG2模型作为细胞悬液植入，并且HuH₁、HuH7和HCC97L作为套管截段（trocar fragment）植入。N=5-7/组，以5mg/kg IV，Q2D×1。所有组中的靶敲除相对于PBS而言是显著的（p<0.05）。

23
[0159] 图20是显示使用包含L-30 [1] 制剂和各种独立地DsRNA的单剂脂质颗粒体内敲除原位Hep3B HCC肿瘤模型中各种mRNA的图。N=6-7/组, 以5mg/kg IV. TIW×2; 全部以10mg/kg通过口服施用给予索拉非尼, QD×14。*** = p<0.01, ** = p<0.05。

[0160] 图21是显示使用在L-30的七种不同的制剂([A]至[G])中包含5mg/kg的DsRNA的单剂脂质颗粒体内敲除Hep3B HCC肿瘤组织中HPRT1mRNA, 随后在72小时之后收集组织的图。带有误差的条形图值代表平均值+SEM (N=7/组)。

[0164] 详细描述

[0165] 我们现在已经开发了可以配制成脂质颗粒的氨基-胺和氨基-酰胺阳离子脂质。本发明的制剂可以用于递送阳离子有效载荷（例如，核酸分子或RNAi剂）至细胞（例如，在实验者体外或体内）。阳离子有效载荷的递送可以实现细胞内序列特异性的基因沉默。

[0166] 氨基-胺和氨基-酰胺脂质

[0167] 本发明化合物包括任何式 (1) 化合物。在特定实施方案中，所述化合物选自表1。

[0168] 表1。

<table>
<thead>
<tr>
<th>L-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>L-5</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>L-6</td>
</tr>
<tr>
<td>L-7</td>
</tr>
<tr>
<td>L-8</td>
</tr>
<tr>
<td>L-9</td>
</tr>
</tbody>
</table>

L-10	![Chemical Structure](image6)
L-11	![Chemical Structure](image7)
L-12	![Chemical Structure](image8)
L-13	![Chemical Structure](image9)

[0170]
<table>
<thead>
<tr>
<th>L-1 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1 8</td>
<td></td>
</tr>
<tr>
<td>L-1 9</td>
<td></td>
</tr>
<tr>
<td>L-2 0</td>
<td></td>
</tr>
<tr>
<td>L-2 1</td>
<td></td>
</tr>
<tr>
<td>L-2 2</td>
<td></td>
</tr>
<tr>
<td>L-2 3</td>
<td></td>
</tr>
<tr>
<td>L-2 4</td>
<td></td>
</tr>
<tr>
<td>L-2 5</td>
<td></td>
</tr>
<tr>
<td>L-2 6</td>
<td></td>
</tr>
</tbody>
</table>

[0171]
<table>
<thead>
<tr>
<th>L-2 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-2 8</td>
</tr>
<tr>
<td>L-2 9</td>
</tr>
<tr>
<td>L-3 0</td>
</tr>
<tr>
<td>L-3 1</td>
</tr>
<tr>
<td>L-3 2</td>
</tr>
<tr>
<td>L-3 3</td>
</tr>
<tr>
<td>L-3 4</td>
</tr>
<tr>
<td>L35</td>
</tr>
<tr>
<td>L-3 6</td>
</tr>
</tbody>
</table>

[0172]
[0175] 本发明化合物（例如，如表1中提供的）可以通过类似于本领域已知的那些方法来制备，例如，通过方案1-4所示的反应序列。这些反应序列或其调整产生的示例性脂质提供于图1-9和图17。

方案1

[0176] 可以通过在还原胺化条件下用其中R^4如本文所述的伯胺B1处理其中R^1和R^2是如本文所述的脂质尾基的酮A1来制备式C1的仲胺。还原胺化条件包括将酮A1和伯胺B1与还原剂，例如氨基硼氢化钠或三乙酰氧基硼氢化钠在适当溶剂中混合。在特定实施方案中，C1的氨基-胺脂质被进一步氧化以形成在R^3中相邻氮的碳上具有氧基的相应的氨基-酰胺脂质。在其他实施方案中，C1的氨基-胺酯在氮或R^4的任何碳上进一步经历烷基化。可以使用该方案产生的示例性化合物提供于图1。
可以通过在还原胺化条件下用其中R³和R⁴如本文所述的仲胺D2处理其中R¹和R²是如本文所述的脂质尾基的酮A2，来制备式E2的酰胺。还原胺化条件包括将酮A2和伯胺D2与还原剂，例如氨基硼烷氢化钠或三乙酰氧基硼氢化钠在适当溶剂中混合。在D2的一些实施方案中，R³和R²结合形成含有一个或多个杂原子的环杂，并且得到的叔胺E2包括这种R³和R²基团。在特定实施方案中，E2的氨的-胺脂质被进一步氧化以形成在R³或R¹中相邻氨的碳上具有氨基的相应的氨基-酰胺脂质。在其他实施方案中，E2的氨的-胺脂质在R³和/或R¹的任何碳上进一步经历烷基化。

可以通过在适当溶剂中、任选高压下混合酮A3、氨水、二氧化碳和催化剂来制备式F3的胺。可以通过在适当溶剂中混合胺F3与活化的酰胺G3来制备式H3的氨基-酰胺脂质，其中LG是离去基团并且R¹如本文所述。示例性的LG包括卤素（例如，氯、溴或碘）、甲苯磺酸盐和三氟甲磺酸盐。可以通过混合酰胺H3与还原剂（例如，氢化铝锂、硼烷-四氢呋喃或硼烷-二甲基硫醚）来制备I3的氨基-酰胺脂质。在特定实施方案中，I3的氨基-酰胺脂质在氨或R¹的任何碳上进一步经历烷基化。在其他实施方案中，I3的氨基-酰胺脂质在氨或R¹的任何碳上进一步经历烷基化。
方案4

[0182] 可以通过在适当溶剂中混合酮A4和胺J4来制备式K4的氨基-酰胺脂质，其中LG是离去基团并且R\(^1\), R\(^2\)和R\(^4\)如本文所述。示例性的LG包括卤素（例如，氯、溴或碘）、甲苯磺酸盐和三氟甲磺酸盐。可以通过混合酰胺K4与还原剂（例如，氯化铝锂、硼烷-四氢呋喃或硼烷-二甲基硫醚）来制备L4的氨基-酰胺脂质。在其他实施方式中，K4的氨基-酰胺脂质在氮或R\(^4\)的任何碳上进一步经历烷基化。在其他实施方式中，L4的氨基-酰胺脂质在氮或R\(^4\)的任何碳上进一步经历烷基化。由该方法制备的示例性化合物提供于图7。

[0183] 在上述方案的任何一个中，R\(^4\)可以是如本文描述的任选取代的杂环基、任选取代的-L\(^1\)-NR\(^5\)R\(^6\)、任选取代的-L\(^1\)-NR\(^5\)R\(^6\)或任选取代的-L\(^1\)-杂环基。

[0184] 在上述方案的任何一个中，化合物可以被进一步烷基化以在N上引入任选取代的C\(_1\)-烷基（即，R\(^3\)是任选取代的C\(_1\)-烷基）以形成叔胺。具有叔胺的示例性化合物提供于图3。

[0185] 通过应用上文或实施例1-5中提供的合成方案并且在需要时通过做出本领域技术人员已知的调整，可以制备本文所述、例如图1-9和图17中的脂质的任何一个。

[0187] 脂质头基

[0188] 本发明化合物一般包括一个脂质头基，一个头段（headpiece）和一个或多个脂质尾基。头段例如为CH—连接头基与尾基。在特定实施方案中，头基包括两个或多个氮原子。本文描述的，例如表2或3中的头基的任何一个可以任选地经过一个或多个取代基（例如，一个或多个本文针对烷基描述的取代基）取代。

[0189] 表2提供了具有胺基的头基的非限制性清单。本文描述的头基，例如表2中的头基H-1至H-39的任何一个可以与本文描述的、例如表4中的尾基的任何一个通过头段>CH—组合形成发明化合物。

[0190] 表2：脂质头基的实例
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[H-1] [H-2] [H-3] [H-4] [H-5] [H-6]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H-7)</td>
<td>(H-8)</td>
</tr>
<tr>
<td>(H-9)</td>
<td>(H-10)</td>
</tr>
<tr>
<td>(H-11)</td>
<td>(H-12)</td>
</tr>
<tr>
<td>(H-13)</td>
<td>(H-14)</td>
</tr>
<tr>
<td>(H-15)</td>
<td>(H-16)</td>
</tr>
<tr>
<td>(H-17)</td>
<td>(H-18)</td>
</tr>
<tr>
<td>(H-19)</td>
<td>(H-20)</td>
</tr>
<tr>
<td>(H-21)</td>
<td>(H-22)</td>
</tr>
</tbody>
</table>

[0192]
表3提供了具有酰胺基团的头基的非限制性清单。本文描述的头基，例如表3中的头基H-40至H-52的任何一个可以与本文描述的、例如表4中的尾基的任何一个通过头段
CH-组合形成发明化合物。

表3：含有酰胺的脂质头基的实例

<table>
<thead>
<tr>
<th>(H-40)</th>
<th>(H-41)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H-42)</th>
<th>(H-43)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H-44)</th>
<th>(H-45)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H-46)</th>
<th>(H-47)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H-48)</th>
<th>(H-49)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H-50)</th>
<th>(H-51)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(H-52)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

[0197] 脂质尾基
【0199】如本文描述的，本发明化合物一般包括一个或多个尾基，所述尾基可以任选地包括一个或多个杂原子，对于每种化合物，尾基可以相同或不同。本文描述的，例如表4中的尾基的任何一个可以任选地经一个或多个取代基（例如，一个或多个本文针对烷基描述的取代基）取代。

【0200】示例性尾基包括具有碳或一个或多个杂原子（例如，O）的饱和和不饱和基团，例如亚麻烯基（C18：3）、亚麻烯基氧基（C18：3）、亚麻酸基（C18：3）、亚油烯基（C18：2）、亚油烯基氧基（C18：2）和亚油酸基（C18：2）；和本文描述的通过亚甲基连接至头段的任何杂原子尾基，例如选自亚麻烯氧基亚甲基（C18：3）、亚麻酸亚甲基（C18：3）和亚油烯基氧基亚甲基（C18：2）或亚油酸基亚甲基（C18：2）组成的组的尾基。表4提供了脂质尾基的其他非限制性清单。

【0201】表4：脂质尾基的实例

<table>
<thead>
<tr>
<th>脂质尾基</th>
<th>结构式</th>
</tr>
</thead>
<tbody>
<tr>
<td>亚麻烯基（C18：3）</td>
<td></td>
</tr>
<tr>
<td>亚麻烯基氧基（C18：3）</td>
<td></td>
</tr>
<tr>
<td>亚麻酸基（C18：3）</td>
<td></td>
</tr>
<tr>
<td>亚油烯基（C18：2）</td>
<td></td>
</tr>
<tr>
<td>亚油烯基氧基（C18：2）</td>
<td></td>
</tr>
<tr>
<td>亚油酸基（C18：2）</td>
<td></td>
</tr>
<tr>
<td>化合物</td>
<td>结构式</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>油烯基 (C18:1)</td>
<td></td>
</tr>
<tr>
<td>油烯基氧基 (18:1)</td>
<td></td>
</tr>
<tr>
<td>油烯基亚甲基 (C18:1)</td>
<td></td>
</tr>
<tr>
<td>油酸基 (C18:1)</td>
<td></td>
</tr>
<tr>
<td>油酸基亚甲基 (C18:1)</td>
<td></td>
</tr>
<tr>
<td>硬脂基 (18:0)</td>
<td></td>
</tr>
<tr>
<td>硬脂基氧基 (C18:0)</td>
<td></td>
</tr>
<tr>
<td>硬脂酰基 (C18:0)</td>
<td></td>
</tr>
<tr>
<td>棕榈基 (16:0)</td>
<td></td>
</tr>
<tr>
<td>棕榈基氧基 (C16:0)</td>
<td></td>
</tr>
<tr>
<td>棕榈酰基 (C16:0)</td>
<td></td>
</tr>
<tr>
<td>棕榈酰基亚甲基 (C16:0)</td>
<td></td>
</tr>
<tr>
<td>肉豆蔻基 (14:0)</td>
<td></td>
</tr>
<tr>
<td>肉豆蔻基氧基 (C14:0)</td>
<td></td>
</tr>
<tr>
<td>肉豆蔻酰基 (C14:0)</td>
<td></td>
</tr>
<tr>
<td>月桂基 (12:0)</td>
<td></td>
</tr>
</tbody>
</table>
月桂基氧基（12: 0）
月桂酰基（12: 0）

制剂

具有超过一个脂质分子的制剂
本发明制剂可以包括任何有用的脂质分子组合（例如，本发明化合物、阳离子脂质[任选包括一种或多种阴离子脂质，例如，一种或多种如本文描述的本发明阳离子脂质和/或任选包括一种或多种本领域已知的阳离子脂质]、中性脂质、阴离子脂质和PEG-脂质复合物），包括多肽-脂质复合物和辅助如本文描述的脂质载体的形成或稳定性的其他组分。本领域技术人员知道如何优化有利于特定剂的包封、脂质制剂的稳定性、放大反应条件或其他任何其他相关因素的组合。本发明制剂可以包括辅助形成或稳定性的其他组分。

可以平衡制剂中每种组分的百分比以产生能够包封RNAi剂并将该剂转染进入细胞的脂质载体。示例性制剂包括约10mol%至约20mol%的一种或多种本发明化合物、约20mol%至约30mol%的一种或多种阴离子脂质、约10mol%至约20mol%的一种或多种PEG-脂质复合物、约20mol%至约30mol%的一种或多种中性脂质和约20mol%至约30mol%的一种或多种甾醇衍生物。在特定实施方案中，制剂包括约20mol%至约30mol%（例如，约20mol%、21mol%、22mol%、24mol%、25mol%、27mol%、28mol%、29mol%、30mol%）的一种或多种本发明化合物、约25mol%至约30mol%（例如，约25mol%、26mol%、27mol%、28mol%、29mol%、30mol%）的一种或多种中性脂质（例如，DODMA）、约10mol%至约15mol%（例如，约13mol%、14mol%、15mol%、16mol%、17mol%、18mol%、19mol%或20mol%）的一种或多种阳离子脂质（例如，DSPC）、约2.5mol%至约10mol%（例如，约2.5mol%、2.6mol%、2.7mol%、2.8mol%、2.9mol%、3mol%、3.5mol%、4mol%、4.3mol%、4.5mol%、4.7mol%、5mol%、5.3mol%、5.5mol%、5.7mol%、6mol%、6.5mol%、6.7mol%、7mol%、7.5mol%、8mol%、8.5mol%或9mol%）的一种或多种PEG-脂质复合物（例如，约2.8mol%、2.9mol%、3mol%、3.5mol%、3.7mol%、3.9mol%、4mol%、4.1mol%、4.3mol%、4.5mol%、4.7mol%、4.9mol%、5mol%、5.1mol%、5.3mol%、5.5mol%、5.7mol%、5.9mol%、6mol%、6.3mol%、6.5mol%、6.7mol%或7mol%的PEG2000-DSPE和/或PEG2000-DPPE和/或3mol%、
3.5mol%、3.7mol%、3.9mol%、4.0mol%、4.1mol%、4.3mol%、4.5mol%、4.7mol%、4.9mol%、5.0mol%、5.1mol%、5.3mol%、5.5mol%、5.7mol%、5.9mol%、6.0mol%、6.3mol%、6.5mol%、6.7mol%或7mol%的PEG2000-DMG）和约25mol%至约35mol%（例如，约28.4mol%、28.6mol%、28.8mol%、29.0mol%、30mol%、31mol%、32mol%、33mol%、33.2mol%、33.4mol%、33.6mol%、33.8mol%、34mol%、34.4mol%、34.7mol%或34.9mol%）的甾醇衍生物（例如，胆固醇）。

【0210】 制剂可以包括任何有用量的一种或多种阳离子聚。在一些实施方案中，制剂中阳离子聚的含量是约10mol%至约40mol%（例如，约10mol%至15mol%、约15mol%至20mol%、约20mol%至25mol%、约25mol%至30mol%、约30mol%至35mol%、约35mol%至40mol%）。在特定实施方案中，使用了混合的阳离子聚（例如，10.8mol%的L-1和10.8mol%的L-2）。

【0211】 在一些实施方案中，制剂包括具有一种或多种RNA结合剂和一种或多种转染质的脂质颗粒，其中所述一种或多种RNA结合剂包括约10mol%至约40mol%的一种或多种脂质聚（例如，DODMA和约0.5mol%至约10mol%的一种或多种PEG-质脂结合物（例如，PEG-DSPE，例如PEG2000-DSPE，和/或PEG-DME，例如PEG2000-DME））；并且其中所述一种或多种转染质包括约10mol%至约40mol%（例如，L-6、L-30或表1中的任何一个）和约5mol%至约20mol%（例如，L-6、L-30或表1中的任何一个）的一种或多种中性聚（例如，DSPC、约0.5mol%至约10mol%的一种或多种PEG-质脂结合物（例如，PEG-DSPE，例如PEG2000-DSPE，和/或PEG-DME，例如PEG2000-DME）和约20mol%至约40mol%的一种或多种甾醇衍生物（例如，胆固醇）。

【0212】 脂质颗粒的RNA结合剂可以包括任何有用的脂质和脂质物的组合。在特定实施方案中，阳离子聚（例如，DODMA）的含量是约10mol%至约40mol%（例如，约20mol%至40mol%、20mol%至35mol%、20mol%至30mol%、15mol%至40mol%、15mol%至35mol%、15mol%至25mol%、或15mol%至20mol%）。在一些实施方案中，PEG-质脂结合物（例如，PEG-DSPE，例如PEG2000-DSPE，和/或PEG-DME，例如PEG2000-DME）是约0.5mol%至约10mol%（例如，约0.5mol%至1mol%、0.5mol%至5mol%、0.5mol%至10mol%、1mol%至5mol%、或1mol%至10mol%）。

【0213】 脂质颗粒的转染质可以包括任何有用的脂质和脂质物的组合。在特定实施方案中，一种或多种中性聚（例如，DSPC）的含量是约5mol%至约20mol%（例如，约5mol%至10mol%、5mol%至15mol%、7mol%至10mol%、7mol%至15mol%、7mol%至20mol%、10mol%至15mol%、或10mol%至20mol%）。在一些实施方案中，一种或多种PEG-质脂结合物（例如，PEG-DSPE，例如PEG2000-DSPE，和/或PEG-DME，例如PEG2000-DME）的含量是约0.5mol%至约10mol%（例如，0.5mol%至1mol%、0.5mol%至5mol%、0.5mol%至10mol%、1mol%至5mol%、或1mol%至10mol%）。在一些实施方案中，一种或多种甾醇衍生物（例如，胆固醇）的含量是约
20mol%至约40mol%（例如，约20mol%至25mol%，20mol%至30mol%，20mol%至35mol%，20mol%至40mol%，25mol%至30mol%，25mol%至35mol%，25mol%至40mol%）。
[0214] 在其他实施方案中，本发明化合物用于RNA结合剂的制备（例如，约25.9mol%的L-6，L-30，L-48或L-49）。在特定实施方案中，RNA结合剂制备中使用的本发明化合物不同于染色质制备中使用的本发明化合物（例如，25.9mol%的L-6作为RNA结合剂，并且21.6mol%的L-30作为染色质）。在制备的一些实施方案中，一种或多种RNA结合剂形成内部聚集体，并且一种或多种染色质形成内部聚集体表面。在特定实施方案中，内部聚集体表面不是膜、脂质双层和/或多层。
[0215] 制备还可以包括任何有用量的一种或多种PEG-脂质混合物。在一些实施方案中，制备PEG-脂质混合物的含量是约1mol%至约20mol%（例如，约1mol%至约2mol%，约2mol%至约4mol%，约2mol%至约7mol%，约4mol%至约8mol%，约8mol%至约12mol%，约12mol%至约16mol%，约16mol%至约20mol%）。在其他实施方案中，PEG-脂质混合物的含量是约7mol%至约16mol%，3mol%至约2.5mol%。而且，PEG-脂质含量可以通过适当调整DPPC或胆固醇或两者的含量而变化，约1mol%至约20mol%（通过使用C14：0（如表4中，例如，PEG-DSPE或PEG-DMP等）、C16（PEG-DPPE，PEG-DPG等）、C18：0（PEG－DSPE，PEG－DSG等）、或C18：1（PEG－DOPE，PEG－DOG等），可以改变PEG-脂质。而且，可以使用不同分子量的PEG部分（PEG2000，PEG3400，PEG5000等）。在特定实施方案中，如本文使用的，使用跨膜的PEG-脂质混合物。在特定实施方案中，使用PEG2000-DSPE。在特定实施方案中，使用PEG2000-DMPE。
[0216] 含有RNAi剂的制备
[0218] 制备可以包括任何有用比例的RNAi剂和脂质分子和/或一种或多种组分。示例性比率包括约1:10至约1:100（w/w）（例如，约1:20的RNAi剂/脂质比例（w/w）比率，其中总脂质比率是一种或多种脂质分子（例如，阳离子、阴离子或中性脂质）和一种或多种组分（例如，甾醇类生物，PEG-脂质混合物，氯化胺-脂质混合物，神经节苷酯，抗氧化剂，表面活性剂，两亲剂或盐）的组合的重量。
[0219] 制备可以包括范围约1mg/kg至约10mg/kg的本文描述的任何RNAi剂的剂量的RNAi剂。示例性剂量包括在制备中1mg/kg，2mg/kg，3mg/kg，4mg/kg，5mg/kg，6mg/kg，7mg/kg，8mg/kg，9mg/kg和10mg/kg的RNAi剂。
[0220] 制备制备的方法
[0221] 可以使用任何有用的方法来制备本发明制备。在一个示例性程序中，制备的组分（例如，一种或多种RNA结合剂，染色质或本文描述的任何脂质）溶解于溶剂（例如，水性溶剂，非水性溶剂或其溶剂混合物）。得到的脂质悬液可以任选地被过滤、混合（例如，批混合、在线混合和/或涡旋）、蒸发（例如，使用氮气或氩气）、重悬（例如，在水性溶剂，非水性溶剂或其溶剂混合物中）、冷冻、挤出和/或超声。而且，可以任选地通过添加任何想要的组分（例如，一种或多种RNAi剂，RNA结合剂，染色质和/或本文描述的任何脂质）来处理脂质悬液。
以产生最终悬液。可以悬液形式在相同或不同溶剂中提供一种或多种额外的组分。例如，脂质悬液可以提供第一溶剂或溶剂系统（例如，一种或多种水性或非水性溶剂，例如水-水-HCl-水-乙醇、缓冲液（例如，磷酸盐缓冲液水（PBS）、Hank平衡盐溶液（HBSS）、Dulbecco磷酸盐缓冲液（DPBS）、Earle平衡盐溶液（EBSS）、碳酸盐、乳酸盐、抗坏血酸盐和柠檬酸盐，例如5mM、10mM、50mM、75mM、100mM或150mM）、生理渗透压溶液（290mOsm/kg，例如0.9%盐水、5%右旋糖和10%蔗糖）、盐水、甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、甘油、乙二醇、丙二醇、聚乙二醇、氟仿、二氯甲烷、己烷、环己烷、丙酮、乙醚、二乙醚、二噁烷、异丙醚、四氢呋喃或其组合）、并且RNAi试剂可以提供在第二溶剂或溶剂系统，例如，一种或多种水性或非水性溶剂，例如水-水-HCl-水-乙醇、缓冲液（例如，磷酸盐缓冲液水（PBS）、Hank平衡盐溶液（HBSS）、Dulbecco磷酸盐缓冲液（DPBS）、Earle平衡盐溶液（EBSS）、碳酸盐、乳酸盐、抗坏血酸盐和柠檬酸盐，例如5mM、10mM、50mM、75mM、100mM或150mM）、生理渗透压溶液（290mOsm/kg，例如0.9%盐水、5%右旋糖和10%蔗糖）、盐水、甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、甘油、乙二醇、丙二醇、聚乙二醇、氟仿、二氯甲烷、己烷、环己烷、丙酮、乙醚、二乙醚、二噁烷、异丙醚、四氢呋喃或其组合）。水性溶剂和/或缓冲液的示例性浓度包括4%至约8%乙醇（例如，约4%至5%、5%至6%、6%至7%、或7%至8%）、约10mM至约100mM柠檬酸盐（例如，约10mM至30mM、30mM至50mM、50mM至70mM、70mM至90mM、或90mM至100mM）。任何溶剂或溶剂系统可以包括一种或多种稳定剂，例如抗氧化剂、盐（例如，氯化钠）、柠檬酸、抗坏血酸、甘氨酸、半胱氨酸、乙二胺四乙酸（EDTA）、甘露醇、乳糖、海藻糖、麦芽糖、甘油、和/或葡萄糖。在其他实验中，使用第一溶剂或溶剂系统将一种或多种RNA结合剂引入脂质悬浮液，然后在第二溶剂或溶剂系统中添加一种或多种染料脂质，其中第一和第二溶剂或溶剂系统相同或不同（例如，第一溶剂或溶剂系统是本文描述的任何一个，并且第二溶剂或溶剂系统是本文描述的任何一个）。在特定实施方案中，第二溶剂或溶剂系统包括一种或多种选自由盐水、缓冲液（例如，柠檬酸盐或PBS）、水和乙醇组成的组的水性或非水性溶剂。最终悬液可以任选地被分离（例如，通过超速离心）、混合（例如，批混合、在线混合和/或混合）、重悬、调节（例如，用一种或多种溶剂或缓冲液系统）、超声、冻融、挤出和/或纯化。

[0222] 阳离子脂质

[0223] 一种或多种阳离子脂质可以包括在制剂中。除了本发明化合物外，其他阳离子脂质包括但不限于：N,N-二油烯基-N,N-二甲基氯化铵（DODAC）、1,2-二-0-十八烷基-3-三甲基铵丙烷（DOTMA）、N,N-二硬脂基-N,N-二甲基铵（DODAB）、1,2-二油酰基-3-三甲基铵-丙烷（DOTAP），包括手性形式R-DOTAP和S-DOTAP）、N-（1-(2,3-二油烯基丙炔基）丙基）-N-2-（精胺羧酰胺基）乙基）-N,N-二甲基铵（DOSPA）、二十八烷基三甲铵甘氨酰基精胺（DOGS）、1,2-二油酰基-3-二甲基铵丙烷（DODAP）、N,N-二甲基-（2,3-二油烯基丙烯基）丙基基（DODMA）、N-（1,2-二肉豆蔻基丙基-3-基）-N,N-二甲基铵-3-羟基乙基铵（DMRIE）、1,2-二亚油烯基氧基-3-二甲基氨基丙烷（DLinDMA）、1,2-二亚油烯基氧基-3-二甲基氨基丙烷（DLinDMA）、1,2-二亚油烯基氧基-3-二甲基氨基丙烷（DLinDPA）、1,2-二亚油烯基氧基甲酰基氧基-3-二甲基氨基丙烷（DLin-C-DAP）、1,2-二亚油烯基氧基-3-二甲基氨基丙烷（DLin-S-DMA）、2,2-二亚油烯基-4-二甲基氨基甲基-1,3-二氧戊环（DLin-K-DMA）、2,2-二亚油烯基-4-（2-二甲基氨基乙基）-1,3-二氧
戊环(DLin-KC2-DMA)、1,2-二棕榈酰基-sn-甘油基-0-乙基-3-胆碱磷酸(DPEPC)、二硬脂基二甲基氯化铵(DSDMA)、1,2-二月桂酰基-sn-甘油基-3-乙基胆碱磷酸(12:0EPC，例如，其氯盐)、1,2-二棕榈酰基-sn-甘油基-3-乙基胆碱磷酸(16:0EPC，例如，其氯盐)、1,2-二硬脂酰基-sn-甘油基-3-乙基胆碱磷酸(18:0EPC，例如，其氯盐)、1,2-二油酰基-sn-甘油基-3-乙基胆碱磷酸(18:1EPC，例如，之氯盐)、二棕榈酰基磷酸酯乙醇酰氯化氨基精胺(DPPE)、二棕榈酰基磷酸酯乙醇酰氯化氨基L-赖氨酸(DPPHEL)、1[[2-二油酰基氧基]乙基]-2-油烯基-3-(2-酰基基乙基)氯化咪唑啉(DOTM)、(1-甲基-4-(顺-9-二油烯基)甲基氯化吲哚)(SAINT)和C12-200，如在Love等人，Proc Natl Acad Sci USA，107(5):1864-1869 (2010)中描述的，其通过引用并入本文。

【0224】阳离子脂质包括不同手性形式(例如，本文描述的任何阳离子脂质的R或S形式)或任何盐形式(例如，本文描述的任何阳离子脂质的氯盐、溴盐、三氟乙酸盐或甲磺酸盐)的那些。

【0225】此外，阳离子脂质的许多商业化制品包括在制剂中。这种商业化制品包括但不限于来自Invitrogen Corp.的Lipofectamine™(DOSPA和DOPE的组合)和Lipofectin®(DOTMA和DOPE的组合)；来自Promega Corp.的Transfectam®(包括DOGS的组合物)和Transfast™。

【0226】阴离子脂质

【0227】一种或多种阴离子脂质可以包括在制剂中。这种阴离子脂质包括但不限于：磷脂酰甘油(PG)、心磷脂(CL)、二酯基磷脂酰丝氨酸(PS)、二酯基磷脂酸(PA)、磷脂酰肌醇(PI)、N-酰基磷脂酰乙醇胺(NAPE)、N-琥珀酰磷脂酰乙醇胺、N-二酯基磷脂酰乙醇胺、磷脂酰磷脂酰甘油和棕榈酰基油酰基磷脂酰甘油(POPG)以及不同手性形式(例如，R或S形式)、盐形式(例如，氯盐、溴盐、三氟乙酸盐或甲磺酸盐)及其混合物。

【0228】中性脂质

【0229】一种或多种中性脂质可以包括在制剂中。这种中性脂质包括但不限于：神经酰胺、鞘磷脂(SM)、二酰基甘油(DAG)、1,2-二硬脂酰基-sn-甘油基-3-胆碱磷酸(12:0DPEPC，包括手性形式R-DSPC和S-DSPC)、1,2-二油酰基-sn-甘油基-3-胆碱磷酸(DOPC)、1,2-二棕榈酰基-sn-甘油基-3-胆碱磷酸(DPPC)、1,2-二油酰基-sn-甘油基-3-磷酰乙醇胺(DOPE)、1-棕榈酰基-2-油酰基-sn-甘油基-3-胆碱磷酸(POPC)、1-棕榈酰基-2-油酰基-sn-甘油基-3-磷酰乙醇胺(POPE)、1,2-二棕榈酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)、1,2-二油酰基-sn-甘油基-3-磷酸乙醇胺(DMPE)、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺(DSPE)、1,2-二反油酰基-sn-甘油基-3-磷酸乙醇胺(DEPE)、1-硬脂酰基-2-油酰基-sn-甘油基-3-磷酸乙醇胺(SOPE)、1,2-二亚油酰基-sn-甘油基-3-胆碱磷酸(DLPC)以及不同的手性形式(例如，R或S形式)、盐形式(例如，氯盐、溴盐、三氟乙酸盐或甲磺酸盐)及其混合物。其他的磷脂包括sn-甘油基-3-胆碱磷酸和sn-甘油基-3-磷酸乙醇胺脂质也可以用于本发明的脂质颗粒。

【0230】在一些实施方式中，制剂中存在的中性脂质组分包括一种或多种磷脂。在其他实施方式中，中性脂质组分包括一种或多种磷脂和胆固醇的混合物。在一些实施方案中，考虑药代动力学和/或药效动力学性质，例如脂质颗粒尺寸和在血流中的稳定性，来指导用于制
剂的中性脂质的选择。

[0231] 甾醇衍生物

[0232] 一种或多种甾醇衍生物可以包括在制剂中。不希望受理论束缚,甾醇衍生物可用于稳定制剂和/或增加转染。示例性的甾醇衍生物包括胆固醇、胆固醇衍生物(例如,胆固醇酰胺、胆固醇酰酯或类甾醇酯): 3β-[-(N,N’-二甲基氨基乙酰基)-氨基甲酰基]胆固醇 (DC-胆固醇,例如,其盐酸盐); 双二-三氯甲基胺-胆固醇 (BGC); (2S,3S)-2-((((3S,10R,13R,17R)-10,13-二甲基-17-((R)-6-甲基基-2-基)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[α]菲-3-基氧基) 胺基氨基)乙基2,3,4,4-四羟基丁酸酯 (DPC-1); (2S,

[0233] 3S)-(3S,10R,13R,17R)-10,13-二甲基-17-((R)-6-甲基基-2-基)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[α]菲-3-基) 2,3,4,4-四羟基丁酸酯 (DPC-2)

[0234] 双(3S,10R,13R,17R)-10,13-二甲基-17-((R)-6-甲基基-2-基)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊二烯并[α]菲-3-基) 2,3,4-三羟基戊二酸酯 (DPC-3)

[0235] 一种或多种PEG-脂质络合物可以包括在制剂中。不希望受理论束缚,PEG-脂质络合物可以减少脂质载体的聚集。PEG-脂质络合物描述于美国专利号5,885,613和美国专利公布号2003/0077829，其通过引用并入本文。

[0236] 可以包括在制剂中的PEG-脂质络合物包括但不限于：1,2-二油酰基甘油基-sn-甘油基-3-磷酸乙醇胺-N-(羧基-甲基氧基-聚乙二醇) (PEG-DMPE)、1,2-二油酰基甘油基-sn-甘油基-3-磷酸乙醇胺-N-(羧基-甲基氧基-聚乙二醇) (PEG-DMPE)、1,2-二油酰基甘油基-sn-甘油基-3-磷酸乙醇胺-N-(羧基-甲基氧基-聚乙二醇) (PEG-DMPE)。
PEG-脂质复合物（例如，mPEG2000-DMG）。具有不同分子量的PEG部分的实例包括PEG350、PEG550、PEG750、PEG1000、PEG2000、PEG3000、PEG4000、PEG4500和PEG5000。

[0237] 其他组分

[0238] 制剂可以包括任何其他组分以帮助稳定脂质载体，减少脂质载体的聚集，和/或运送治疗剂（例如，RNAi剂）。示例性组分包括基于α-氨基（寡聚乙二醇）链烷酸单体的聚醚胺-脂质复合物（ATTX-脂质），例如美国专利号6,320,017和6,586,593中描述的那些，其通过引用并入本文；神经节苷脂（例如，无氮液酸神经节苷脂G1或G2；双氮液酸神经节苷脂GD1a、GD1a、N-acGd、GD1-b、GD2或GD3；红细胞糖苷、单氮液酸神经节苷脂G1、G2或G3、四氮液酸神经节苷脂GQ1b和三氮液酸神经节苷脂GT1a或GT1b；抗氧化剂（例如，a-生育酚或β-羟基甲苯胺）；一种或多种表面活性剂（例如，失水山梨醇单棕榈酸酯或失水山梨醇单棕榈酸酯，油性聚糖酯、聚氧乙烯失水山梨醇脂肪酸酯、聚氧乙烯山梨醇脂肪酸酯、氯乙烯脂肪酸酯、聚氧乙烯烷基醚、聚氧乙烯氢醇醚、聚氧乙烯-聚丙氧基烷基醚、嵌段聚合物和脂质体以及聚氧乙烯蓖麻油或氢化蓖麻油衍生物和聚甘油脂肪酸酯，例如Pluronic®、Poloxamer®、Span®、Twee®，Twee®，Polysorbate®，Tyloxyol®和Emulphor®或Cremophor®（例如具有甘油-聚乙二醇蓖麻油酸酯与聚乙二醇脂酸酯的主要组分的Cremophor®EL）；一种或多种两亲剂（例如植物油，例如大豆油、红花油、橄榄油、麻油、玻璃籽油、蓖麻油和棉籽油；矿物油和海洋油；来自此类来源的氢化和/或分馏的甘油三酸酯；中链三酸甘油酯（MCT-油，例如，Miglyol®）和各种合成或半合成的单-，双-或三酸甘油酯，例如W092/05571中公开的定义的非极性脂质，以及乙酸化单酸甘油酯或脂肪酸的烷基酯，例如豆蔻酸异丙酯、油酸酯（参见EP0353267）或脂肪酸酯，例如油烯基酯、鲸蜡醇），和一种或多种盐，例如本文描述的任何盐。通常，被选择减少聚集的脂质组分的浓度是约1mol%至15mol%。

[0239] 脂质载体

[0240] 本发明制剂可以包括一种或多种本发明化合物（例如，式(I)或选自表1的化合物）和能够运输治疗剂（例如，RNAi剂）的任何基于脂质的组合物。示例性的基于脂质的组合物包括一种或多种脂质分子（例如，本发明化合物、阳离子脂质、阴离子脂质或中性脂质）和/或一种或多种组分（例如，甾醇衍生物和/或PEG-脂质复合物）。

[0241] 可以使用任何生物相容性脂质或能够形成脂质载体（例如，脂质体、脂质体复合物和胶团）的脂质组合形成脂质载体。将治疗剂包封入脂质载体可以保护治疗剂免受损害或降解，或者促进其进入细胞。脂质载体由于电荷相互作用（例如，阳离子脂质载体和阴离子细胞膜）而与细胞膜相互作用并融合，从而将治疗剂释放进入细胞质。脂质体是包含一种或多种本发明化合物、脂质分子和/或组分的双层囊。脂质纳米颗粒是尺寸范围从约1nm至约1,000nm的脂质体。脂质体复合物是与阳离子脂质分子形成的脂质体，以赋予脂质体总体上正的电荷。胶团是由单层脂质分子的囊。

[0242] 脂质体

[0243] 在某些实施方案中，脂质载体是脂质体。通常，使用的脂质能够形成双层并且是阳离子的。适合的脂质分子的类别包括磷脂（例如，磷脂酸胆碱）、脂肪酸、糖脂、神经酰胺、甘油酯和胆固醇或其任意组合。可选地或附加地，脂质载体可以包括中性脂质（例如，二油酸

[0245] 脂质分子的实例包括天然脂质，例如卵磷脂(lecithin)、磷脂酸(PA)、磷脂酰胆碱(PC)、溶血卵磷脂(LPC)、磷脂酰乙醇胺(PE)、磷脂酰甘油(PG)、磷脂酰肌醇(PI)和磷脂酰丝氨酸(PS)；脂质混合物，例如卵磷脂(lecithin)；精制，例如精氨酸、神经酰胺、鞘磷脂、脑苷脂、硫胺脂、神经节苷脂和植物鞘氨醇；非离子脂质，例如1,2-二油酰基-3-三甲基铵-丙烷(DOTAP)、1,2-二油酰基-3-二甲基铵-丙烷(DODAP)、二甲基双十八烷基氢化铵(DDB)、3-[N-(N',N'-二甲基氨基乙烷)氨基乙基]胆固醇(DC-Chol)、N-[1-(2,3-二十四烷基氧基)丙基]-N,N-二甲基-N-羟基乙基氢化铵(DMRIE)和1,2-二油酰基-3-三甲基铵丙烷(DOTMA)；磷脂酰胆碱，例如1,2-二月桂酰基-sn-甘油基-3-苯基磷酸、1,2-二月桂酰基-sn-甘油基-3-胆碱磷酸(DLPC)、1,2-二肉豆蔻酰基-sn-甘油基-3-胆碱磷酸(DMPC)、1,2-二棕榈酰基-sn-甘油基-3-胆碱磷酸(DPPC)、1,2-二硬脂酰基-sn-甘油基-3-胆碱磷酸(DSPC)、1,2-二油酰基-sn-甘油基-3-胆碱磷酸(DOPC)和1-棕榈酰基-2-油酰基-sn-甘油基-3-胆碱磷酸(POPC)；磷酸乙醇胺，例如1,2-二甘酰基-sn-甘油基-3-磷酸乙醇胺、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺(DSPE)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)、1,2-二油酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)、1,2-二棕榈酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)、1,2-二油酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)、1,2-二棕榈酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)、1,2-二油酰基-sn-甘油基-3-磷酸乙醇胺(DPPE)。脂质磷酯酰甘油，例如双十六烷基磷酸酯(DCP)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；脂质酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯；磷脂酰甘油，例如二棕榈酰基磷脂酰甘油(DPPG)、二油酰基磷脂酰甘油(DOPG)、1,2-二肉豆蔻酰基-sn-甘油基-3-磷酸酯、1,2-二棕榈酰基-sn-甘油基-3-磷酸酯和1,2-二油酰基-sn-甘油基-3-磷酸酯。[0246] 本发明化合物可以与任何有用的脂质组合物组合，所述脂质组合物包括商业途径可获得的脂质组合物。此类组合物的实例包括来自Invitrogen Corp.的Lipofectamine®(DOSPA和DOPE的组合)和Lipofectin®(DOTMA和DOPE的组合)；来自Promega Corp.的Transfectam®(包括DOGS的组合物)和Transfast™；来自Sigma-Aldrich Co.的
NeuroPORTER™和Escort™；来自Roche的FuGENE®6和来自Strategene的LipoTAXI®。已知的脂质组合物包括Trojan Horse脂质体技术，如描述于Boado, Pharm. Res. 24:1772-1787 (2007)。

【0247】脂质体还可以包括辅助脂质体形成或稳定性的其他组分。组分的实例包括胆固醇，抗氧化剂（例如，α-生育酚或β-胡萝卜素），表面活性剂和盐。

【0248】脂质体可以是包含脂质分子的任何有用的组合物，包括一种或多种本发明化合物和辅助脂质体形成或稳定性的其他脂质组分。本领域技术人员将知道如何优化有助于特定剂包封、脂质体稳定性、放大反应条件或任何其他相关因素的组合。示例性的组合描述于Boado, Pharm. Res. 24:1772-1787 (2007)。

【0249】制备脂质体通常通过一般的两步骤过程来进行。在第一步中，在挥发性有机溶剂或溶剂混合物中混合脂质和脂质组分以保证均匀的脂质混合物。溶剂的实例包括氯仿、甲醇、环己烷和正丁醇。然后去除溶剂以形成膜、粉末或片形式的脂质质混合物。还可以通过使用任何已知的分析技术，例如通过使用氮、旋转蒸发、喷雾干燥、冻干和真空干燥，来去除溶剂。

【0250】在第二步骤中，将脂质质混合物用水溶液水合以形成脂质体。可以将剂添加至水溶液，这导致具有包封的剂的脂质体的形成。可选地，脂质体首先用第一水溶液形成，然后暴露于含有所述剂的另一水溶液。可以通过任何已知技术，例如通过重复的冻融循环、超声或混合来促进剂的包封。该方法的其他实例描述于Boado, Pharm. Res. 24:1772-1787 (2007)。可选地，剂与疏水部分（例如，胆固醇）偶联以产生亲脂衍生物，并且所述亲脂衍生物与其他脂质分子一起使用以形成脂质体。

【0251】在第二步骤期间，干质质混合物可以或可以不含有肽-脂质轭合物。该过程可以任选地包括各种其他步骤，包括在将其加入干质质混合物之前加热水溶液超过脂质分子的相转变温度，其中特定的温度范围包括约40°C至约70°C；孵育干质质混合物和水溶液的组合，其中特定的时间范围包括约30分钟至约2小时；在孵育期间混合干质质混合物和水溶液，例如通过涡旋混合、摇动、搅拌或手工；向水溶液添加非电解质以保证生理渗透压，例如0.9％盐水、5％右旋糖和10％蔗糖的溶液；破坏大的多层囊，例如通过挤压或超声；并与多肽-脂质轭合物一起额外孵育预形成的脂质体，其中干质质混合物不含有脂质分子。本领域技术人员能够鉴定该孵育步骤中的特定温度和孵育时间，以确保衍生的脂质分子加入脂质体或获得稳定的脂质体。

【0252】可以在形成脂质体的过程中的任一点添加本发明化合物。在一个实例中，在干质质混合物形成期间向脂质和脂质组分添加所述化合物。在另一实例中，将化合物添加至用含有脂质和脂质组分的干质质混合物预形成的脂质体。而在另一实例中，用化合物形成胶团，用含有脂质和脂质组分的干质质混合物形成脂质体，然后将胶团和脂质体一起孵育。水溶液可以包括其他组分以稳定剂或脂质体，例如缓冲液、盐、螯合剂、盐水、右旋糖、蔗糖等。

【0253】在该程序的一个实例中，由脂质混合物构成的干膜用含有剂的水溶液水合。首先将该混合物加热至50°C持续30分钟，然后冷却至室温。接下来，将混合物转移至含有多肽-脂质轭合物的干燥层。然后在37°C孵育混合物2小时以将多肽-脂质轭合物加入含有剂的脂质体。参见例如，Zhang等人，J. Control. Release12: 229-239 (2006)。

【0254】具有囊结构的脂质颗粒。
在某些实施方案中，脂质颗粒包括阳离子脂质（例如，DODMA、DOTMA和/或氨基酸-胺脂质，氨基-酰胺脂质或本文发明的其他脂质）和RNAi剂，以及中性或两性离子脂质、PEG-脂质聚合物和任选的胆固醇。

具有一种或多种RNA结合剂和一种或多种转染脂质的脂质颗粒

脂质颗粒还包括具有一种或多种RNA结合剂和一种或多种转染脂质的那些。在一个实施方案中，一种或多种RNA结合剂形成内部聚集体，并且一种或多种转染脂质形成外部聚集体表面。在特定实施方案中，外部聚集体表面不是膜、脂质双层和/或多层。在某些实施方案中，一种或多种RNA结合剂（例如，脂质）代表总脂质的约10-90%。在其他实施方案中，一种或多种RNA结合剂（例如，脂质）代表总脂质的约50%。在其他实施方案中，一种或多种RNA结合剂（例如，脂质）代表总脂质的约30%。在某些实施方案中，核酸有效载荷与脂质颗粒的一种或多种RNA结合剂的复合体/聚集体包括阳离子脂质（例如，DODMA、DOTMA和/或本文发明的氨基酸-胺脂质或氨基-酰胺）和RNAi剂，并且脂质颗粒的一种或多种转染脂质包括中性或两性离子脂质、PEG-脂质聚合物和任选的胆固醇。在其他实施方案中，颗粒的一种或多种转染脂质包括阳离子脂质（例如，DODMA、DOTMA、氨基酸-胺脂质和/或氨基-酰胺脂质）、中性脂质、PEG-脂质聚合物和任选的胆固醇。

RNAi剂

RNA干扰（RNAi）是通过引起特定RNA分子降解或阻碍特定基因转录而抑制基因表达的机制。在本质上，RNAi靶通常是来自病毒和转座子的RNA分子（一种先天免疫应答的形式），尽管它也起着调节发育和基因组维护的作用。RNAi机理的关键是小干扰RNA（siRNA），其具有与靶信RNA（mRNA）分子能够互补的核苷酸序列。siRNA将RNAi途径内的蛋白导向靶mRNA并降解它们，将它们分解成不能再被翻译成蛋白的更小部分。

RNAi途径由酶Dicer引发，其将长的双链RNA（dsRNA）分子裂解成siRNA分子，通常约21至约23个核苷酸长度并且含有约19个碱基对双链体。然后将每个片段的两个链中被称为引导链的一条链并入RNA诱导的沉默复合体（RISC）并与互补序列配对。RISC介导了具有与siRNA双链体的反义链互补的序列的单链RNA的裂解。靶RNA的裂解发生在与siRNA双链体的反义链互补的区域的中间。该识别事件的结果是转录后基因沉默。这在引导链特异性配对mRNA分子并诱导通过Argonaute（RISC复合体的催化组分）的降解时发生。

本发明化合物可用于体外或体内（例如，受试者中）递送一种或多种RNAi剂至细胞。RNAi剂可以包括不同类型的双链分子，其包括RNA:RNA或RNA：DNA链。这些链可以各种结构被引入细胞，包括双链体（例如，在3’端有或没有突变部分）、发夹环或表达能够形成单独或与另一多核苷酸相同的双链多核苷酸的一种或多种多核苷酸的表达载体。示例性的RNAi剂包括本文描述的siRNA、shRNA、dsiRNA和miRNA剂。一般而言，这些剂的长度是约10至约40个核苷酸，并且下文针对特定RNAi剂描述了优选的长度。

RNAi剂的功能性基因沉默不一定包括靶基因产物的完全抑制，在一些情况下，由RNAi剂引起的基因产物表达的边际下降可以转化为宿主细胞、组织、器官或动物中显著的功能或表型变化。因此，理解基因沉默是功能性等同的，并且实现沉默的基因产物降解程度可以在基因靶或宿主细胞类型间有差别。

siRNA

小干扰RNA（siRNA）一般是长度为16至30个核苷酸（例如，18至25个核苷酸，例如21
个核苷酸）的双链RNA分子，在3’末端有一个或两个核苷酸突变或者没有任何突变。技术人员可以改变该序列长度（例如，增加或减少基因沉默的总面积）。在某些实施方案中，突变是在3’末端的U或dT。一般而言，siRNA分子与靶DNA分子的一段链完全互补，因为甚至单个碱基对错配已经显示减少沉默。在其他实施方案中，siRNA可以具有修饰的骨架组成，例如2’-脱氧-或2’-O-甲基修饰，或者本文描述的任何修饰。

[0266] shRNA

[0267] 短发夹RNA（shRNA）是其中存在发夹环结构的单链RNA分子，发夹环结构允许同一条链中的互补核苷酸形成分子间碱基对。shRNA可以表现出与siRNA相比降低的对核酸酶降解的灵敏度。在某些实施方案中，shRNA具有长度为19至29个核苷酸（例如，19至21个核苷酸或25至29个核苷酸）的茎长，在一些实施方案中，基尺寸是至少23个核苷酸长度。shRNA一般可以含有一个或多个错配，例如，shRNA茎的两条链之间的G-U错配，而不降低效价。

[0268] DsRNA

[0269] Dicer-底物RNA（DsRNA）是23至35个核苷酸的双链RNA，认为这种长度的片段被RNA干扰（RNAi）途径的Dicer酶加工，而短于25个核苷酸的片段一般模拟Dicer产物并逃避Dicer加工。在某些实施方案中，DsRNA在1至4个核苷酸（例如，1或2个核苷酸）的反义或有义链的3’末端具有单链核苷酸突变。

[0271] miRNA

48
反义化合物
示例性的反义化合物包括连续的核苷酸长度范围，其中该范围的上限是50个核苷酸，并且其中该范围的下限是8个核苷酸。在某些实施方案中，该范围的上限是35个核苷酸，并且该范围的下限是14个核苷酸。在其他实施方案中，该范围的上限是24个核苷酸，并且该范围的下限是17个核苷酸。在其他实施方案中，反义化合物是20个连续的核苷酸。本领域技术人员容易理解，如本文公开的该范围的上限包括20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50个连续的核苷酸，并且该范围的下限包括8、9、10、11、12、13、14、15、16、17、18、19或20个连续的核苷酸。
示例性的反义化合物包括一段至少8、任选至少12、任选至少15个连续核苷酸，其与靶序列足够互补以干扰靶序列的转录、翻译、促进靶序列降解（任选的核酸酶介导的降解）和/或以其他方式破坏靶序列功能（例如，干扰其他功能性靶序列的功能，例如，通过反义化合物介导的机理破坏启动子、增强子或其他功能性核酸靶序列）。
修饰可以对反义化合物进行，并且可以包括与选自核酸碱基位置、糖位置的末端中的一个或核苷酸链合中的一个连接的侧链基团。可能的修饰包括但不限于2’-氯代(2’-Cl)、2’-O甲基(2’-Ome)、2’-O-(2-甲氧基乙基)(2’-MOE)高亲和力糖修饰、脱氧核酸、脱氧核糖卤基和双环核酸碱基类似物，例如脱氧核酸(LNA)和乙烯桥接的核酸(ENA)。
制备RNAi剂的方法
RNAsi剂包括导向靶核酸（例如，靶基因）的至少一个反义核苷酸序列。反义核苷酸是与选定靶序列互补的单链DNA或RNA。在反义RNA的情况下，它们通过结合它而防止互补RNA链的翻译。反义DNA可用于靶向转录性互补的（编码或非编码）RNA。在一个特定的实施方案中，反义核苷酸含有约10至约40个核苷酸，更优选约15至约30个核苷酸。反义核苷酸可以具有与预期的靶基因达80%、85%、90%、95%、99%或甚至100%互补性。
制备反义和有义核苷酸以及相应的双链体或发夹环的方法是本领域已知的，并且可以容易地适于制备靶向任何靶核酸序列的反义寡核苷酸。可以选择反义核酸序列以优化靶特异性，例如通过分析靶序列并测定二级结构、Tm、结合能和相对稳定性；和/或减少二级结构、例如二聚体、发夹或较少或阻止对宿主细胞中靶mRNA特异性结合的其他二级结构的形成。在一些实施方案中，mRNA的高度优选的靶区域包括位于或靠近ALG翻译起始密码子的那些区域和与mRNA的5’区域基本上互补的那些序列。可以进行这些二级结构分析和靶位点选择考量，例如使用第4版OLIGO引物分析软件（Molecular Biology Insights）和/或BLASTN2.0.5算法软件（Altschul等人，Nucleic Acids Res.25(17)：3389-3402，1997）。制备RNAi剂的非限制性方法描述于美国专利号5,804,683; 5,831,071; 5,998,203; 6,117,657; 6,353,098; 6,362,323; 6,437,117; 6,469,158; 6,111,086; 6,008,400; 和6,111,086。其通过引用并入本文。
RNAl剂可以具有任何有用的形式，例如单链、双链、线性、环状（例如，质粒）、切口环状、螺旋、超螺旋、连接的（concatemerized）或带电荷的。此外，核苷酸可以含有5’和3’有义和反义链末端修饰，并且可以具有平端或粘端末端核苷酸（例如，在3’末端的UU或TT）或其组合。
修饰的核酸包括修饰的DNA或RNA分子，可以用于替代本文描述的多核苷酸（例如，RNAi剂）中天然存在的核酸。修饰的核酸可以提高本文描述的多核苷酸的半衰期、稳定性、
特异性、递送、溶解度和核酸酶抗性。例如，siRNA剂可以是部分或完全由赋予上述有益性质的核酸类似物构成。如Elmen等人（Nucleic Acids Res.33:439-447 (2005)）中描述的，可以使用合成的RNA样核酸类似物（例如，锁核酸（LNA））来构建表现出抗靶基因产物的沉默活性的siRNA分子。

[0283] 对骨架的其他修饰包括用短链烷基或环烷基核苷酸间键、混合长原子和烷基或环烷基核苷酸间键、或一个或多个短链杂原子或杂环核苷酸间键（例如，吗啉代键；硅氧烷骨架；硫化物、亚砜和硫骨架；甲酰乙酸和硫代甲酰乙酸骨架；甲酰乙酸和硫代甲酰乙酸骨架；含烯骨架；氨基磷酸酯骨架；亚甲基亚氨基和亚甲基磷基骨架；磷酸酯和磷酸胺骨架；酰胺骨架；和具有混合的N、O、S和Cl组成部分的部分的其他）替代磷原子的那些。

[0284] 某些修饰的核苷酸特别用于增加本发明寡聚体化合物的结合亲和力，例如5-取代的嘧啶、6-氨基嘧啶和N-2、N-6和O-6取代的嘌呤（例如，2-氨基丙基腺嘌呤，5-丙炔基尿嘧啶，5-丙炔基胞嘧啶和5-甲基胞嘧啶）。示例性的修饰核苷酸包括5-甲基胞嘧啶（5-me-C或m5C）；5-羟基甲基胞嘧啶，黄嘌呤和次黄嘌呤；2-氨基腺嘌呤，腺嘌呤和鸟嘌呤的6-甲基和甲基苯并衍生物；腺嘌呤和鸟嘌呤的2-丙基和其他核苷衍生物；2-硫尿嘧啶；2-硫腺嘧啶；2-甲基腺嘌呤；2-甲基胞嘧啶；2-甲基尿嘧啶和胞嘧啶；2-丙炔基尿嘧啶和胞嘧啶；2-丙炔基胞嘧啶，2-丙炔基尿嘧啶和胞嘧啶；2-丙炔基尿嘧啶和胞嘧啶。在特定实施方案中，这些修饰的核苷酸可以与其他修饰，例如本文描述的任何糖修饰组合。

[0285] 修饰的寡核苷酸还可以含有一个或多个取代的糖部分，其中修饰可以在核糖环的任何活性位点（例如，核糖环的2’-OH）或一个或多个通用碱基上进行。示例性修饰包括2’-卤代，例如F、Br或Cl；2’-0-烷基、2’-S-烷基或2’-N-烷基，例如2’-OMe；2’-0-(烷基-0)烷基，例如2’-0-甲基乙基（2’-0-MOE）；2’-0-[CH2]0CH2；2’-0-(CH2)0OCH2；2’-0-(CH2)0N(CH2)0OCH2；2’-0-(CH2)0N(CH2)0OCH2；2’-0-(CH2)0N(CH2)0OCH2；2’-0-(CH2)0N(CH2)0OCH2；2’-0-(CH2)0N(CH2)0OCH2；其中n和m是1-约10；2’-0-烷基、2’-S-烷基或2’-N-烷基；2’-0-烷基；2’-S-烷基或2’-N-烷基，其中烷基、烯基和烷基可以是取代的或未取代的C-10烷基或C-10烯基和烷基，以及核糖的2’和4’位置之间的桥接修饰以形成锁核酸（LNA）。示例性的通用碱基包括位于修饰核苷酸的核苷酸糖。
部分的1’位置或者核苷酸部分取代中的等同位置的杂环部分，例如1-β-D-核糖呋喃基-5-硝基吲哚和1-β-D-核糖呋喃基-3-硝基吡咯。

[0287] RNAi基因靶

[0288] 本发明特征为通过用化合物或制剂结合RNAi剂治疗而沉默患病组织或器官中的靶基因。本发明的治疗潜力在已知或认为参与建立或维持病态（例如癌症）的特定的靶向基因的mRNA分子被RNAi剂降解时得到实现。

[0289] 用于本发明的RNAi靶的实例包括发育蛋白，例如粘附分子、细胞周期蛋白激酶抑制剂、Wnt家族成员、Pax家族成员、Winged helix家族成员、Hox家族成员、细胞因子/淋巴因子及受体、生长/分化因子及其受体、神经递质及其受体；癌基因编码的蛋白（例如，ABL (UniProt登录号P00519, NCBI Gene ID: 25); AR (UniProt登录号P10275, NCBI Gene ID: 3647); β-连环蛋白 (CTNNB1, UniProt登录号P35222, NCBI Gene ID: 1499); BCL1 (UniProt登录号P24385, NCBI Gene ID: 595); BCL2 (UniProt登录号P10415, NCBI Gene ID: 596); BCL6 (UniProt登录号P41182); CBFA2 (UniProt登录号Q01196, NCBI Gene ID: 861); CBL (UniProt登录号P22681, NCBI Gene ID: 687); CSF1R (UniProt登录号P07333, NCBI Gene ID: 1436); ERBA1 (UniProt登录号P10827, NCBI Gene ID: 7067); ERBA2 (UniProt登录号P10828, NCBI Gene ID: 7068); ERBB (UniProt登录号P00533, NCBI Gene ID: 1956); ERBB2 (UniProt登录号P04626, NCBI Gene ID: 2064); ERBB3 (UniProt登录号P21860, NCBI Gene ID: 19015); ERBB4 (UniProt登录号Q15303, NCBI Gene ID: 600543); ETS1 (UniProt登录号P14921, NCBI Gene ID: 2113); ETS2 (UniProt登录号P15036, NCBI Gene ID: 2114); ETV6 (UniProt登录号P41212, NCBI Gene ID: 2120); FGFR (UniProt登录号P09769, NCBI Gene ID: 2268); FOS (UniProt登录号P1110, NCBI Gene ID: 2353); FYN (UniProt登录号P06241, NCBI Gene ID: 2534); HCR (UniProt登录号Q8TD31, NCBI Gene ID: 54535); HRAS (UniProt登录号P01112, NCBI Gene ID: 3265); JUN (UniProt登录号P05412, NCBI Gene ID: 3725); KRAS (UniProt登录号P01116, NCBI Gene ID: 3845); LCK (UniProt登录号P06239, NCBI Gene ID: 3932); LYN (UniProt登录号P07948, NCBI Gene ID: 4067); MDM2 (UniProt登录号P00987, NCBI Gene ID: 4193); MLL1 (UniProt登录号Q03164, NCBI Gene ID: 4297); MLL2 (UniProt登录号Q14686, NCBI Gene ID: 8085); ML3 (UniProt登录号Q8NEZ4, NCBI Gene ID: 58508); MYB (UniProt登录号P10242, NCBI Gene ID: 4602); MYC (UniProt登录号P01106, NCBI Gene ID: 4609); MYCL1 (UniProt登录号P12524, NCBI Gene ID: 4610); MYCN (UniProt登录号P04198, NCBI Gene ID: 4613); NRAS (UniProt登录号P01111, NCBI Gene ID: 4893); PIM1 (UniProt登录号P11309, NCBI Gene ID: 5292); PML (UniProt登录号P29890, NCBI Gene ID: 5371); RET

【0290】考虑其在代谢 (例如, 在高胆固醇血症中的脂蛋白代谢) 和循环蛋白 (例如, 血友病中的凝血因子) 分泌中的重要作用, 肝是核酸疗法的最重要的靶组织中的一个。此外, 获得性病症, 例如慢性肝炎和硬化是常见的, 并且也可能通过基于多核苷酸的肝疗法来治疗, 影响肝或受肝影响的许多疾病或病状可能通过肝中基因表达的敲除 (抑制) 来治疗。示例性的肝病和病状可以选自包括以下的清单: 肝癌 (包括肝细胞癌, HCC)、病毒感染 (包括肝炎)、代谢病症 (包括高脂血症和糖尿病)、纤维化和急性肝损伤。肝治疗剂 (例如, 包括特别是靶向HCC的治疗剂) 的示例性分子靶 - 和对选驱选者的靶, 疾病和/或病症 (包括其他病症) 的治疗剂的示例性分子靶 - 包括CSN5 (UniProt登录号Q92905, NCBI Gene ID: 10987)、CDK6 (UniProt登录号Q00534, NCBI Gene ID: 1021)、ITGB1 (UniProt登录号P05556, NCBI Gene ID: 3688)、MYC (UniProt登录号P01106, NCBI Gene ID: 4609)、TGFβ1 (UniProt登录号P01137, NCBI Gene ID: 7040)、细胞周期蛋白 DI (UniProt登录号Q9H014, NCBI Gene ID: 595)、铁调素 (hepcidin) (UniProt登录号P811172, NCBI Gene ID: 57817)、PCSK9 (UniProt登录号Q8NPB7, NCBI Gene ID: 255738) 和出甲状腺素蛋白 (TR, UniProt登录号P02766, NCBI Gene ID: 7276) 等。

【0291】本发明制剂任选地可以靶向正常组织 (例如, 正常肝组织) 以及各种模型 (例如, 位肝模型, 皮下肝模型等)。

【0292】本发明制剂的一个示例性靶是脂蛋白 B (ApoB), 其存在于不同类别的脂蛋白: 乳糜微粒、极低密度脂蛋白 (VLDL)、中间密度脂蛋白 (IDL) 和低密度脂蛋白 (LDL)。ApoB作用为
通过ApoB/E受体对LDL颗粒的细胞结合和内化的识别信号。含有载脂蛋白B的脂蛋白的累积或过剩可以导致脂肪相关的病症，例如动脉粥样硬化。减少ApoB的定性疗法可用于治疗脂质相关的病症。以反义疗法形式的一种基于核酸的疗法已经显示减少小鼠体内的ApoB水平，并且治疗随后减少了血清胆固醇和三酸甘油酯水平（美国公布号2003/0215943）。这些结果说明了ApoB的适度下调及其使用作为治疗脂质相关病症的靶的途径。

[0293] 本发明制剂的另一个示例性靶是蛋白C，其也可以靶向例如血友病的治疗。

[0294] 治疗剂的递送

[0295] 本发明制剂可用于递送治疗剂（例如，聚阴离子剂、核酸或RNAi剂）至细胞。通过所述制备递送的剂可用于基因沉默（例如，在体外或受试者体内）或治疗或预防性治疗受试者疾病（例如，癌症）。

[0296] 可通过使用任何有用的方法来评估治疗剂的递送。例如，可以通过以下评估使用含有本发明化合物的制备的递送：1）靶基因的敲除或2）与等同剂量对照相比的毒性或耐受性。这些评估可以使用制备中任何有用的脂质组合来确定，例如与本发明化合物（例如，式I）或表1中的任何化合物）组合的本文描述的任何脂质质（例如，DOTAP，DODMA，DLinDMA和/或DLin-KC2-DMA）。在特定实施方案中，当使用本发明化合物时观察到治疗剂递送的改善，其中所述改善与对照相比超过25%（例如，超过2倍，5倍，10倍，100倍或1000倍的递送改善）。

[0297] RNAi剂的递送

[0298] RNAi沉默可用于多种细胞，其中如HeLa、S3、COS7、293、NIH/3T3、A549、HIT-29、CHO-K1和MCF-7细胞系易受一定水平的siRNA沉默。而且，可以在对靶向基因具有特异性的RNA水平下发生哺乳动物细胞中抑制，其中已观察到RNA与蛋白抑制之间的强关联。相应地，本发明化合物及制备可用于递送RNAi剂至一种或多种细胞（例如，体外或体内）。示例性RNAi剂包括如本文描述的siRNA、shRNA、dsRNA、miRNA和DsiRNA剂。

[0299] 体外靶敲除

[0300] 可以通过任何有用的方法评估RNAi剂的递送。例如，可以在细胞培养模型（例如，HeLa细胞）中体外转染包含治疗剂的制备，其中终点测量包括但不限于以下的一种或多种：(i) 使用qPCR的mRNA定量；(ii) 使用Western印迹的蛋白定量；(iii) 测定/或本发明的氨基-胺或氨基-酰胺阴离子脂质的标记的细胞内化。可以针对上述终点的程度和持续时间评价摄取或递送。在递送之前，可以在室温下细胞培养液中稀释制备约30分钟，并且最终浓度可以在剂量-响应实验中变化0至50nM治疗剂或氨基-胺或氨基-酰胺阴离子脂质。对于时程实验，可以针对各种孵育时间（例如，30分钟至7天）来研究剂量实验的最佳浓度。

[0302] 递送至特定靶细胞类型和靶组织
说明书

0303 本发明化合物可用于递送治疗剂至各种器官和组织以治疗各种疾病。示例性的靶向组织或器官包括但不限于肝、胰腺、肺、前列腺、肾、骨髓、脾、胸腺、淋巴结、脑、脊髓、心、骨骼肌、皮肤、口腔黏膜、食道、胃、小肠、结肠、膀胱、子宫颈、卵巢、睾丸、乳腺、肾上腺、脂肪组织（白色和/或棕色）、血液（例如造血干细胞、人类造血干细胞、人类造血干细胞、CD34+细胞、CD4+细胞）、淋巴细胞和其他血液谱系细胞。

0304 癌症疗法

0305 本发明化合物可用于递送一种或多种治疗剂（例如，RNAi剂）至具有癌症或处于发展癌症风险（例如，至少10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的增加的风险）的受试者。示例性癌症包括肝癌（例如，肝细胞癌、肝母细胞癌、胆管癌、血管肉瘤或恶性血管瘤）、胃癌、结肠癌、乳腺癌、卵巢癌、前列腺癌、宫颈癌、膀胱癌、黑色素瘤、皮肤癌、胰腺癌等。

0306 施用和用量

0308 药物组合物预期用于胃肠外、鼻内、表面、口服或局部施用，例如通过透皮方式，用于预防和/或治疗性治疗。药物组合物可以胃肠外施用（例如，通过静脉内、肌肉内或皮下注射），或通过口服，或通过在受血或癌症病理影响的区域的表面施用或关节内注射。其他施用途径包括血管内、动脉内、肿瘤内、腹膜内、心室内、硬膜内以及鼻、眼、巩膜内、眼窝内、血管、表面或气溶胶吸入施用。持续释放施用也特别包括在本发明中，通过诸如长效注射剂或可侵蚀的植入物或组成的方式。因此，本发明提供了用于胃肠外施用的组合物，其包含溶液或悬浮于可接受载体、优选水性载体、例如水、缓冲水、盐水、PBS等的上述剂。组合物可以含有适合生理条件所需的药学可接受的辅助物质，例如pH调节剂和缓冲剂、渗透压调节剂、润湿剂、去污剂等。本发明还提供了用于口服递送的组合物，其可以含有惰性成分，例如片剂、胶囊等制剂的粘合剂或填充剂。而且，本发明提供了用于局部施用的组合物，其可以含有惰性成分，例如用于乳膏、软膏等制剂的溶剂或乳化剂。

0309 这些组合物可以通过常规灭菌技术来灭菌，或者可以无菌过滤。得到的水溶液可以包装原样使用或者冻干。冻干的制品在施用之前与无菌水性载体组合。制品的pH通常在3
至11，更优选5至9或6至8，并且最优选7至8，例如7至7.5。得到的固体形式的组合物可以多个单剂单位包装，每个含有固定量的上述剂或多种剂，例如在密封包装的针剂或胶囊中。固体形式的组合物还可以包装在灵活装置的容器中，例如在设计用于表面应用的乳霜或软膏的可挤压管中。

含有有效量的组合物可以被施用于预防性或治疗性治疗。在预防性应用中，可以将组合物施用给具有临床确定的易感性和增加的发展肿瘤或癌症的易感性的人。可以给病人（例如，人）施用足以延迟、减少或优选预防临床疾病发生或肿瘤发生的量的本发明化合物。在治疗应用中，给已经患癌症的病人（例如，人）施用足以治愈或至少部分停止病状及其并发症的量的组合物，足以实现该目的的量被定义为“治疗有效剂”，是足以实质改善与疾病或医学状况相关的一些症状的化合物的量。例如，癌症治疗中，减少、预防、延迟、抑制或停止疾病或病状的任何症状的剂或化合物将是治疗有效的。治疗有效量的剂或化合物不是治愈疾病或病症所必需的，但是将提供对疾病或症状的治疗以使个体中疾病或病状的发生被延迟、阻碍或预防，或者疾病或病状症状被缓解，或者疾病或病状的期限被改变，或者例如较不严重或加速恢复。

该用途的有效量可根据疾病或病状的严重度和患者的体重和一般状态，但是一般范围从每患者每剂约0.5mg至约3000mg的所述剂或多种剂。适合初次施用和加强施用的方案典型为：初次施用，随后以每小时、每日、每周或每月的间隔通过后续施用重复剂量一次或多次。本发明组合物中存在的剂的总有效量可以在相对短的时期以单剂（例如快速注射或输注）施用给哺乳动物，或者可以使用分次治疗方案施用，其中在更长的时期施用多剂（例如，每4-6、8-12、14-16或18-24小时或在每2-4天、1-2周、每月一剂）。可选地，考虑足以维持血液中治疗有效浓度的的连续静脉内输注。

本发明组合物中存在的并且在本发明方法中应用给哺乳动物（例如，人）的一种或多种剂的治疗有效量可以由本领域普通技术人员考虑哺乳动物年龄、体重和病状的个体差异来确定。本发明的剂以有效量施用给受试者（例如哺乳动物，例如人），所述有效量是在受治疗的受试者中产生希望结果（例如，减缓或消除病症或神经性病症）的量。这种治疗有效量可以由本领域技术人员用经验确定。

患者还可以接收每周一次或多次（例如，每周2、3、4、5、6或7或更多次）的每剂约0.1至3,000mg、每周0.1至2,500（例如，2,000、1,500、1,000、500、100、10、1或0.1）mg剂量范围的剂。患者还可以接收每两周或每三周一次的每剂0.1至3,000mg范围的组合物的剂。

待施用的制剂和有效载荷（例如，DsirNA）的量（剂量）可以经验确定。在某些实施方案中，使用0.0001-10mg/kg动物体重的核酸有效载荷和0.001-200mg/kg动物体重的递送制剂观察到基因表达的有效敲除。小鼠中的示例性量是0.1-5mg/kg核酸有效载荷和0.7-100mg/kg递送制剂。任选地，施用约1-50mg/kg递送制剂，因为它通常在较大剂量时是无毒性的，所以有效载荷（例如，DsirNA）的量容易增加。

在某些实施方案中，根据例如急性与慢性适应症等，可以经数日、数周或更长时间（例如，1至28天或更长）每日、或仅一次或以其他间隔施用剂。

可以使用治疗医师选择的剂量水平和模式进行包含有效量的本发明组合物的单次或多次施用。可以基于患者疾病或病状的严重度来确定并调整剂量和施用时间表，疾病
或病状的严重度可以在整个治疗过程中根据医师常用的方法或新描述的方法来检测。

本发明化合物和制剂可以与常规治疗方法或疗法组合使用，或者可以与常规治疗方法或疗法分开使用。当本发明的化合物和制剂与其它的组合疗法施用时，它们可以连续或间断施用给个体。可选地，根据本发明的药物组合物包括如本文所述的其他药物可接受的赋形剂结合的本发明化合物或制剂和共领域已知的另一治疗剂或预防剂的组合。

配制的剂可以装在一起作为药盒。非限制性实例包括含有例如两种丸剂、一种丸剂和一种粉末、一种栓剂和一种管形瓶中的液体、两种表面乳霜等。药盒可以包括辅助单位剂量施用给患者的任选组成部分，例如用于双重粉剂形式的管形瓶、用于注射的注射器和定制的IV递送系统、吸入器等。此外，单位剂量药盒可以含有用于准备和施用组合物的说明书。药盒可以被生产为供一个患者单次使用单位剂量，或供特定患者多次使用（以恒定剂量，或者其中个体化合物可以在效价上随治疗进展而变化）；或者药盒可以含有适合施用给多个患者的多个剂（“成批包装”）。药盒组成可以包括在纸盒、泡罩包装、瓶、管和类似物中。

[0319] 纳米颗粒中脂质的pKa值的测量

[0320] 当存在与不同环境中时，脂质的不同的生理化学性质极大地决定脂质的行为。一个这种重要的性质是脂质的电离常数（Ka）。当存在于组织的纳米颗粒中时，脂质的固有pKa可能不是其行为的正确表示。当存在于水性环境下时，脂质经历了具有高的电常数的环境，而存在于组织的纳米颗粒/囊中时，其被提供低电荷常数的脂质包围。此外，周围脂质、胆固醇和PEG化的脂质都影响制剂的表观pKa。阳离子脂质和核酸之间的相互作用性质是静电的，制剂的表观pKa决定纳米颗粒中核酸的包封以及其随后的细胞内释放。

[0321] TNS荧光方法可用于确定制剂中脂质的表观pKa。TNS（2-(对甲基氨基)-6-氯磺酸）是带负电荷的荧光染料，其荧光在水存在下熄灭。TNS分配进入带正电荷的膜，并且这导致归因于水去除的荧光增强。因此，荧光增强可以用于估计阳离子脂质存在于不同pH环境中的电离。使用TNS确定pKa的方法是本领域已知的，例如，如实施例中所描述的。

实施例

[0322] 实施例1：从酵和伯胺合成氨基-胺脂质L-1

[0323] 完全在N2气氛下将酮a（1当量）和胺b（1.1当量）溶解于干燥烧瓶中的二氯乙烷中，并在室温（RT）下搅拌30分钟。添加三乙酰氧基硼氢化物（1.5当量），并在室温搅拌混合物过夜。用1N NaOH淬灭反应。用DCM稀释淬灭的反应并用水萃取一次，用盐水萃取一次，并且经Na2SO4干燥有机相。过滤干燥的溶液并在旋转蒸发仪上浓缩。通过二氧化硅柱纯化残余物（步骤梯度开始于1% MeOH/DCM至5% MeOH/DCM，产率变化从60%至90%）以产生化合物L-1。
H1NMR (CDCl\textsubscript{3}): 5.41-5.30 (m, 8H), 3.12 (t, 2H), 2.91 (m, 1H), 2.77 (t, 6H), 2.48 (bs, 6H), 2.20 (m, 2H), 2.05 (q, 8H), 1.80-1.69 (m, 4H), 1.38-1.25 (m, 40H), 0.89 (t, 3H)；MS: 电喷: [M+1] 理论: 613, 实测: 613。

通过调整该实施例的合成步骤，制备了其他氨基-胺脂质，例如图2A、2B和3中提供的那些。

实施例2:从酮和仲胺合成氨基-胺脂质L-2

完全在N\textsubscript{2} 氛下将酮a (1当量) 溶解于干燥烧瓶中的干MeOH中。添加胺b (1.1当量)，随后添加三乙酰氧基磺酸钠 (1.5当量) 和AcOH (1当量)，并在室温搅拌反应过夜。用DCM稀释并用水萃取一次，用盐水萃取一次，并且经Na\textsubscript{2}SO\textsubscript{4} 干燥有机相。过滤干燥的溶液并在旋转蒸发仪上浓缩。通过二氯甲烷柱纯化残留物 (步骤梯度开始于1%MeOH/DCM 至5%MeOH/DCM，产率变化从60%至90%) 以产生化合物L-2。H1NMR: (CD\textsubscript{3}OD) 5.39-5.30 (m, 8H)，2.78 (t, 4H)，2.59-2.52 (m, 10H)，2.33 (bs, 8H)，2.07 (q, 8H)，1.25 (m, 2H)，1.40-1.26 (m, 40H)，0.914 (t, 6H)；MS: 电喷pos. [M+1] 理论668, 实测668。

通过调整该实施例的合成步骤，制备了其他氨基-胺脂质，例如图4和5中提供的L-2和L-6类似物。

实施例3:从酮和吗啉合成脂质L-46

向酮a (2.66g, 5.05mmol)、吗啉b (1.34ml, 15mmol) 和AcOH (1.77ml, 30mmol) 在DCE (12ml) 中的混合物添加NaBH\textsubscript{3} (1.6g, 7.5mmol)。在室温搅拌反应混合物72小时。TLC测试 (二氧化硅凝胶: 用己烷:EtAc=Et\textsubscript{3}N95:5洗脱) 指示大约45%转化。用5%K\textsubscript{2}CO\textsubscript{3} 水溶液稀释反应混合物并用DCM萃取。经K\textsubscript{2}CO\textsubscript{3} 干燥溶剂并在旋转蒸发仪上蒸发。通过在二氧化硅凝胶上的LC分离残余物 (用已烷:EtAc90:10洗脱)，以39%产率 (1.18g) 获得理想的产物L-46并通过NMR检测是纯的。
[0333] 实施例4：从酮和氨酸合成脂质L-47

[0334]

[0335] 向二亚油酸基酶a (3.99g; 7.58mmol)、哌啶b (2.25ml; 22mmol) 和AcOH (1.33ml; 23mmol) 于DCE (24ml) 中的混合物添加NaBH₄ (AcO)₃ (2.4g; 11.3mmol)。在室温搅拌反应混合物96小时。TLC测试（二氧化硅凝胶；用己烷：EtAc=Et₃N=5洗脱）指示大约35%转化。用5% K₂CO₃水溶液稀释反应混合物并用DCM萃取。经K₂CO₃干燥溶剂并在旋转蒸发仪上蒸发。通过在二氧化硅凝胶上的LC分离残余物（用己烷：EtAc=90:10洗脱）。以29%产率 (1.30g) 获得想要的产物L-47并用NMR检测是纯的。

[0336] 通过使用本实施例以及实施例3中提供的方法，可以制备具有各种头基的阳离子脂质，例如图9中提供的那些。

[0337] 实施例5：从伯胺和羧酸合成酰胺阳离子脂质

[0338] 使用以下一般程序制备以下二亚油酸基酰胺衍生物。向二亚油酸基胺 (338mg; 0.64mmol)、HOBt (65mg; 0.5mmol)、氨基酸 (1mmol) 和DIPEA (1当量) 在DCM (15g/ml) 中的溶液组合，随后添加EDC (1.2mmol)。在室温搅拌反应混合物过夜。TLC指示反应完全。用0.5% K₂CO₃水溶液稀释反应混合物并用DCM萃取。在旋转蒸发仪上浓缩之后，通过二氧化硅凝胶色谱纯化粗产物 (梯度从己烷：Et₃N=95:5至己烷：CHCl₃：Et₃N=46:4:5)。获得产率为80-85%。

[0339] 基于以下提供的方案还制备了二亚油酸基衍生物。
从伯胺和羧酸合成脂质L-30

从伯胺和羧酸合成脂质L-31
从苯胺和羧酸合成脂质L-32

从苯胺和羧酸合成脂质L-42

[0341]

通过调整本实施例的合成步骤，制备了其他酰胺-胺脂质，例如图6-8中提供的那些。

[0342] 实施例6：脂质质制剂的制备

[0343] 为了测试脂质L-1和L-2的效力，使用阳离子脂质(DODMA)、中性脂质(DSPC)、PEG-脂质复合物(PEG-DMPE和PEG-DMG)和胆固醇与具有以下结构的RNAi剂(对HPRT1而言是DsiRNA)制备制剂。

[0345] 5'-GCCAGACUUUGUUGGAUUGAAAtt (SEQ ID NO:1)

[0346] 3'-UUCCGUCUGAAACAAUCAAACUUAAA (SEQ ID NO:2)

[0347] 其中大写字母表示RNA核苷酸，下划线的大写字母表示2'-O-甲基-RNA核苷酸，并且小写字母表示DNA核苷酸。

[0348] DsiRNA链的制备：寡核苷酸合成和纯化

Tris pH8.5, 1M NaCl。在260nm监测样品，并且收集相应于全长寡核苷酸物类的峰，汇集，并在NAP-5柱上脱盐，并冻干。

通过在Beckman PACE 5000（Beckman Coulter, Inc., Fullerton, Calif.) 上毛细管电泳（CE）来测定每个寡聚体的纯度。CE毛细管具有100μm内径并且含有ssDNA100R Gel (Beckman-Coulter), 通常，将约0.6纳摩尔的寡核苷酸注射进毛细管, 在44V/cm的电场中运行并通过在260nm的UV吸光度检测。变性Tris-Borate-7M-尿素运行缓冲液购自Beckman-Coulter。获得如通过CE评估的至少90%纯的寡核苷酸。用于上述实验。根据生产商推荐方案，通过Voyager DE TM Biospectometry Workstation (Applied Biosystems, Foster City, Calif.) 上基质辅助的激光解吸电离飞行时间（MALDI-TOF）质谱，确认了化合物身份。获得所有寡聚体的相对分子量，通常在0.2%的预期分子量内。

DsiRNA双链体的制备

将单链RNA（ssRNA）寡聚体以例如100μM浓度重悬于由100mM醋酸钾、30mM HEPES, pH7.5组成的缓冲液。以等摩尔量混合互补的有义和反义链，以产生例如50μM双链体的最终溶液。在RNA缓冲液（IDT）中加热样品至100℃持续5分钟并允许在使用之前冷却至室温。在-20℃下储存双链RNA（dsRNA）寡聚体。将单链RNA寡聚体冻干储存或者储存在-80℃无核酸酶的水中。

基于囊的脂质制剂的制备

用表5中提供的mol%制备脂质颗粒。总脂质与DsiRNA比率约为1:7。

表5

<table>
<thead>
<tr>
<th>制剂</th>
<th>组成</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1v</td>
<td>L-1</td>
<td>PEG-DMPE</td>
<td>DPC</td>
<td>胆固醇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.2%)</td>
<td>(3%)</td>
<td>(7.1%)</td>
<td>(32.7%)</td>
<td></td>
</tr>
<tr>
<td>L-2v</td>
<td>L-2</td>
<td>PEG-DMPE</td>
<td>DPC</td>
<td>胆固醇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.2%)</td>
<td>(3%)</td>
<td>(7.1%)</td>
<td>(32.7%)</td>
<td></td>
</tr>
<tr>
<td>L-5v</td>
<td>L-5</td>
<td>PEG-DMPE</td>
<td>DPC</td>
<td>胆固醇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.2%)</td>
<td>(3%)</td>
<td>(7.1%)</td>
<td>(32.7%)</td>
<td></td>
</tr>
<tr>
<td>L-6v</td>
<td>L-6</td>
<td>PEG-DMPE</td>
<td>DPC</td>
<td>胆固醇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.2%)</td>
<td>(3%)</td>
<td>(7.1%)</td>
<td>(32.7%)</td>
<td></td>
</tr>
<tr>
<td>L-30v</td>
<td>L-30</td>
<td>PEG-DMPE</td>
<td>DPC</td>
<td>胆固醇</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.2%)</td>
<td>(3%)</td>
<td>(7.1%)</td>
<td>(32.7%)</td>
<td></td>
</tr>
</tbody>
</table>

RNA结合剂和转染脂质制剂的制备

用表6中提供的mol%制备脂质颗粒。总脂质与DsiRNA比率约为1:20。

表6
<table>
<thead>
<tr>
<th>制剂</th>
<th>RNA 结合剂</th>
<th>转染脂质</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1</td>
<td>DODMA (25.9%)</td>
<td>L-1 (21.6%)</td>
</tr>
<tr>
<td></td>
<td>PEG-DMPE (2.9%)</td>
<td>PEG-DMG (2.8%)</td>
</tr>
<tr>
<td>L-2</td>
<td>DODMA (25.9%)</td>
<td>L-2 (21.6%)</td>
</tr>
<tr>
<td></td>
<td>PEG-DMPE (2.9%)</td>
<td>PEG-DMG (2.8%)</td>
</tr>
<tr>
<td>DLinDMA</td>
<td>DODMA (25.9%)</td>
<td>DLinDMA (21.6%)</td>
</tr>
<tr>
<td></td>
<td>PEG-DMPE (2.9%)</td>
<td>PEG-DMG (2.8%)</td>
</tr>
<tr>
<td>DLin-KC2-DMA</td>
<td>DODMA (25.9%)</td>
<td>DLin-KC2-DMA (21.6%)</td>
</tr>
<tr>
<td></td>
<td>PEG-DMPE (2.9%)</td>
<td>PEG-DMG (2.8%)</td>
</tr>
</tbody>
</table>

【0361】在表5和6中，PEG-DMPE是1,2-二肉豆蔻酰基扩双-sn-甘油基-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000],并且PEG-DMG是(R)-3-[(ω-甲氧基-PEG2000-氨基甲酰基)]-1,2-二-0-十四烷基-sn-甘油酯。

【0362】实施例7:胶原质制剂的体外性能

【0363】为了评估各种脂质制剂的效力，使用靶向HPRT1的DsiRNA分子进行体外测定。如以上实施例6中所述，使用针对HPRT1的DsiRNA制备脂质制剂。

【0364】细胞培养和RNA转染

【0365】HeLa细胞购自ATCC并在37℃、5%CO₂下维持于补充有10%胎牛血清(HyClone)的Dulbecco改良的Eagle培养基(HyClone)。通过与终浓度为1nM、5nM或25nM的本发明脂质制剂孵育而将本发明的dsRNA-阳离子脂质制剂转染进入HeLa细胞。使用0.1nM或1nM的Lipofectamine™ RNAiMAX(Invitrogen)dsRNA作为阳性对照。简言之，每种dsRNA的2.5μL的0.2μM或0.02μM储液与47.5μL Opti-MEM(Invitrogen)混合。对于Lipofectamine™对照，每种dsRNA的2.5μL的0.2μM或0.02μM储液与46.5μL Opti-MEM 1(Invitrogen)和1μL Lipofectamine™ RNAiMAX混合。将得到的50μL混合物加入12孔板的单个孔，并在室温孵育20分钟以允许形成dsRNA:Lipofectamine™RNAiMAX复合体。

【0366】同时，使HeLa细胞膜蛋白酶化并以约367细胞/μL的终浓度重悬于培养基中。最后，将450μL细胞悬液加至每个孔(终体积500μL)并将板放入孵育器持续24小时。对于剂量响应研究，dsRNA的浓度变化从最初10pM至100nM。对于时程研究，研究了约4小时至约72小时的孵育时间。

【0367】抑制的评估

【0368】通过qRT-PCR测定靶基因敲除，值被标准化为HPRT表达对照治疗，包括单独Lipofectamine™ RNAiMAX(媒介物对照)或未治疗的。

【0369】RNA分离和分析

【0370】用2mL PBS洗涤细胞一次，并使用RNeasy Mini Kit™(Qiagen)萃取总RNA并以30μL总体积洗脱。使用Transcriptor 1st Strand cDNA Kit™(Roche)和随机六聚体根据生产商
说明书反转录1μg总RNA。将得到的cDNA的三十分之一（0.66μL）与5μL IQ Multiplex Powermix（Bio-Rad）、3.33μL HeO和1μL含有特异性针对人类基因HPRT-1（登录号NM_000194）靶序列的引物和探针的3μM混合物混合在一起。

[0371] 定量RT-PCR
[0372] 具有C1000热循环仪（Bio-Rad）的CFX96实时系统用于扩增反应。PCR条件是：95℃持续3分钟；然后以95℃，10秒钟循环；并以55℃，1分钟进行40个循环。每个样品三次重复测试，将相对的HPRT mRNA标准化为靶mRNA水平并与用单纯染色剂治疗或未治疗的对照样品中获得的mRNA水平对比。使用Bio-Rad CFX Manager版本1.0软件分析数据。表达数据表示为dsRNA的氨基-胺阳离子脂质制剂与没有氨基-胺阳离子脂质的dsRNA制剂治疗下的表达对比。

[0373] 结果

[0374] 图10提供了使用含有氨基-胺阳离子L-1或L-2的脂质颗粒的体外消解的结果。总体上，当施用至HeLa细胞时，L-1和L-2有效抑制了靶mRNA水平。具体地，L-1在最低浓度1nM下提供了约70%的剩余mRNA水平。相应地，当通过转染施用于HeLa细胞时，氨基-胺阳离子提供了RNAi剂的有效递送。因此，本发明化合物的任何一个，例如其任何脂质或制剂，将用于递送阴离子有效载荷，例如RNAi剂或反义有效载荷。

[0375] 实施例8：胺脂质制剂的体内性能

[0376] 为了进一步评估脂质的性能，使用具有针对HPRT1的dsRNA的制剂进行体内实验。

[0377] 使用以下适当比例制备制剂：20mol%的L-1，L-2，L-5，L-6，L-7，L-8，L-22或L-30中的一个；6mol%的DODMA；3mol%的PEG2000–DMPE；3mol%的PEG2000–DMG；13mol%的DSPC；和33mol%的胆固醇。制剂还包括比率约1:20（w/w）的dsRNA：总脂质。

[0378] 通过经由尾静脉的静脉内施用大约2周大的CD1雌性小鼠施用单剂（1mg/kg或5mg/kg）脂质颗粒制剂，经药体积为10μL/g体重。48小时（给药后），在RNAlater（Qiagen）中收集组织。在终点分析中，从小鼠肝分离总RNA来进行RT-qPCR。室温之前，在70℃加热RNA样品与Oligo（dT）引物持续5分钟。在PCR反应中，用RPL23（管家基因）在这里用做对照）标准化mHPRT表达。图11和12显示了具有误差棒的数据，n=5只动物/组的平均值±SD。

[0379] 在第一组实验中，脂质制剂的剂量为单剂5mg/kg（图11）。以该剂量，化合物L-1和L-7提供了约80%至约90%的剩余mRNA水平。如约15%的剩余mRNA水平所证明的，头基中，例如L-30中氧基团的添加提供了基因沉默的明显增加。此外，头基中具有环基的化合物（例如，L-2，L-5，L-6，L-8和L-22）提供了具有约15%至约45%的剩余mRNA水平的化合物。各种制剂的mRNA敲除示于表7。表7还显示了每种脂质的pKa值，如通过TNS荧光方法所测量的。

[0380] 为了测定本发明阳离子脂质的pKa值，在不同pH值的磷酸盐缓冲液中孵育制剂（浓度为1mM），向其中添加溶解于DMSO的TNS（得到的终浓度为6μM TNS）。在SpectraMax®M3荧光读板仪上测量得到的溶液的荧光，激发波长为325nm并且发射波长为435nm。测量的TNS荧光用量方程式1所示的三参数S型函数拟合。
函数 \(f = \frac{a}{1 + \exp \left(\frac{pH - pK_a}{b} \right)} \)
（方程式1）

[0382] 达到最大荧光一半时的pH被报告为制剂的表观pKa，其中a和b是分别反映观察到的最大荧光和S型函数斜率的无因次参数。

[0383] 表7

<table>
<thead>
<tr>
<th>脂质制剂</th>
<th>TNS pKa值</th>
<th>%mRNA敲除</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1</td>
<td>7.6</td>
<td>18.7</td>
</tr>
<tr>
<td>L-2</td>
<td>6.7</td>
<td>75.6</td>
</tr>
<tr>
<td>L-5</td>
<td>6.4</td>
<td>88.5</td>
</tr>
<tr>
<td>L-6</td>
<td>5.6</td>
<td>88.2</td>
</tr>
<tr>
<td>L-7</td>
<td>7.1</td>
<td>8.9</td>
</tr>
<tr>
<td>L-8</td>
<td>6.7</td>
<td>54.6</td>
</tr>
<tr>
<td>L-22</td>
<td>7.0</td>
<td>66.3</td>
</tr>
<tr>
<td>L-24</td>
<td>5.7</td>
<td>74.1</td>
</tr>
<tr>
<td>L-25</td>
<td>6.5</td>
<td>76.8</td>
</tr>
</tbody>
</table>

[0386] 在第二组实验中，以1mg/kg或5mg/kg的单剂剂量评估化合物L-2、L-5、L-6和L-30（图12），具体地，L-5、L-6和L-30以1mg/kg的较低剂量提供了有效的基因沉默。总体而言，这些数据提供了在体内模型中作为靶RNA水平的有效抑制剂的各种脂质化合物和剂量。

[0387] 为了评估含有本发明的氨基-胺或氨基-酰胺阳离子脂质和dsRNA的脂质制剂的耐受性，用L-6和L-30制剂注射雌性CD-1小鼠[以10mg/kg DsRNA剂量的2剂施用(qod)，各自约200mg/kg总脂质剂量]，并在第二剂之后48小时收集血清样品。测试血清样品的一组临床化学评估，包括通过测量丙氨酸转氨酶 (ALT) 和天冬氨酸转氨酶 (AST) 的肝功能测试 (LFT)。使用磷酸盐缓冲盐水 (PBS) 作为媒介物对照组。制剂L-6和L-30的ALT和AST升高是PBS组的3倍。对于L-6和L-30制剂，没有观察到体重或肝的变化。因此，L-6和L-30制剂是良好耐受的。因此，本文描述的任何脂质及其制剂可用于递送一种或多种剂，例如聚阴离子或反义有效载体。

[0388] 实施例9：使用含有dsRNA的脂质制剂来减少皮下动物肿瘤模型中靶基因的表达

[0389] 为了评估含有氨基-胺或氨基-酰胺阳离子脂质和dsRNA的脂质制剂的递送效率和后续功能，使用了具有某些调整的皮下(s.c.)肿瘤模型 (Judge等人, J.Clin.Invest. 119:64)
661, 2009)。通过s.c.注射50μL PBS中的3×10^6细胞进入左后侧而在雄性nu/nu小鼠中建立了
Hep3B肿瘤。在肿瘤接种前可触诊之后10~17天，将小鼠随机分成治疗组。通过经由外侧
尾静脉的标准静脉内 (i.v.) 注射来施用dsRNA或媒介物对照的脂质制剂，基于根据个体动
物体体重的 mg dsRNA/kg体重基础来计算。使用数字卡尺以2个尺度 (宽 × 长) 测量肿瘤以评估
肿瘤生长。使用方程式x×y×y/2计算肿瘤体积，其中x = 最大直径并且y = 最小直径，并且
表示为组平均值 ± SD。还从不同治疗组的动物取出肿瘤组织并证实基因敲除。肿瘤体积、存活
和RNA表达数据表示为dsRNA脂质制剂的治疗与没有氨基-22氨基-酰胺阳离子脂质的dsRNA
制剂的治疗之间的对比。

[0390] 实施例10: 使用含有dsRNA的脂质制剂减少Hep3B原位肝肿瘤模型中靶基因的表达

[0391] 为了评估dsRNA的氨基-胺或氨基-酰胺阳离子脂质制剂的靶向效率和后续功能，
使用了具有某些调整的肝内肿瘤模型 (Judge等人，J.Clin.Invest.119:661, 2009)。通过直接
肝内注射Hep3B肿瘤细胞而在小鼠中建立了肝肿瘤。使用雄性nu/nu小鼠作为Hep3B肿瘤
的宿主。使用2, 2-二氧乙醇 (Sigma) 使小鼠维持麻醉，于胸骨之下做出跨中线的单个1-cm
切口，并且取出左肝外叶。使用Hamilton注射器和30号针头将悬浮于40μL50% PBS/50%
Matrigel (BD) 的大约2×10^6 Hep3B细胞以浅角度缓慢注射进入所述叶。然后在缝合之前将
针子应用于刺伤以停止任何出血。允许小鼠在无菌笼中从麻醉中恢复，并在返回常规笼舍
之前严密监视2~4小时。肿瘤植入之后约三周，将小鼠随机分成治疗组。小鼠 (n = 7每组) 接
收了: (1) dsRNA的氨基-胺或氨基-酰胺阳离子脂质制剂；(2) 没有氨基-胺或氨基-酰胺阳离子脂
质的dsRNA制剂；或(3) 媒介物对照，如通过经由外侧尾静脉的标准静脉内 (i.v.) 注射来施用。
基于根据个体动物体重的 mg dsRNA/kg体重基础来计算剂量。

[0392] 对于产生了图13所示结果的实验，动物被给予含有L-6 或L-30-配制的脂质颗粒
的5mg/kg DsiRNA。表8提供了本研究中使用的包含L-6和L-30脂质的脂质制剂的具体组成。

[0393] 表8

<table>
<thead>
<tr>
<th>制剂</th>
<th>RNA结合剂</th>
<th>转染脂质</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-6</td>
<td>DODMA</td>
<td>L-6</td>
</tr>
<tr>
<td></td>
<td>(25.9%)</td>
<td>(21.6%)</td>
</tr>
<tr>
<td>L-30</td>
<td>DODMA</td>
<td>L-30</td>
</tr>
<tr>
<td></td>
<td>(25.9%)</td>
<td>(21.6%)</td>
</tr>
</tbody>
</table>

[0394] 在整个研究期间监测体重，作为发生肿瘤负荷和治疗耐受性的指标。对于效力研
究，测定定义的人性化终点作为存活的替代。根据临床体征、体重减轻和腹胀的组合进行评
估，以确定由于肿瘤负荷的安乐死日期。从不同治疗组的动物取出肿瘤组织并确认基因敲
除。

[0395] 如图13所示，测试的L-6和L-30制剂在递送配制的抗HPRT1DsiRNA有效载荷至肝和
原位Hep3B肿瘤组织方面都非常有效。具体地，与PBS对照相比，在肝和原位Hep3B肿瘤组织
中观察到了大于50%敲除 (和在某些情况下, 60~80%敲除) 的HPRT1靶mRNA。因此，任何脂质
或其制剂将用于减少靶基因的表达 (例如，与癌症相关的靶基因)。
实施例11：使用含有dsRNA的脂质制剂减少HepG2原位肝肿瘤模型中靶基因的表达

为了评估dsRNA的氨基-胺或氨基-酰胺阳离子脂质制剂的靶向效率和后续功能，使用了第二肝内肿瘤模型。通过HepG2肿瘤细胞的直接肝内注射在小鼠中建立了肝肿瘤。使用雌性nu/nu小鼠作为HepG2肿瘤的宿主。使用Avertin（Sigma）使小鼠维持麻醉，在胸骨之下做出跨中线的一个1-cm切口，并且取出左肝外叶。使用Hamilton注射器和30号针头将悬浮于60μL 50%PBS/50%Matrigel®（BD）的大约3×10^6 HepG2细胞以角度角度缓慢注射进入所述叶。然后在缝合之前将补子应用于刺伤以停止出血。允许小鼠在笼中恢复，并在返回常规笼舍之前严密监视2-4小时。肿瘤植入之后约三周，将小鼠随机分入治疗组。小鼠（n=7每组）接收了：(1) dsRNA的氨基-胺或氨基-酰胺阳离子脂质制剂；(2) 没有氨基-胺或氨基-酰胺阳离子脂质的dsRNA制剂；或(3) 媒介物对照，如通过经由外侧尾静脉的标准静脉内（i.v.）注射来施用。基于具体动物体体重的mg dsRNA/kg体重基础来计算剂量。产生了图14所示结果的实验给予L-6或L-30-配制的脂质颗粒中的5mg/kg DsiRNA。表8提供了本研究中使用的包含L-6和L-30脂质的脂质制剂的具体组成。在整个研究期间监测体重，作为发生肿瘤负荷和治疗耐受性的指标。对于效率研究，测定定义的人性化终点作为存活的替代。根据临床体征、体重减轻和腹胀的组合进行评估，以确定由于肿瘤负荷的安乐死日期。从不同治疗组的动物取出肿瘤组织并确认基因敲除。

实施例12：脂质制剂的肝细胞癌抗肿瘤效力

如图14所示，测试的L-6和L-30制剂在递送配制的抗HPRT1 DsiRNA有效载荷至肝组织方面都非常有效。同时，在原位HepG2肿瘤组织中观察到两个制剂的20-50%水平的HPRT1靶mRNA敲除。以上结果确认这里检验的L-6和L-30制剂为有效的dsRNA递送媒介物，用于递送至正常肝和至少某些肿瘤组织（例如，原位Hep3B肿瘤，和其次原位HepG2肿瘤）。因此，任何脂质或其制剂将用于减少靶基因的表达（例如，与癌症相关的靶基因）。

实施例13：脂质制剂的肝细胞癌抗肿瘤效力

通过如实施例10所述直接肝内注射Hep3B肿瘤细胞而在小鼠中建立了肝肿瘤。在肿瘤植入后约2周，将小鼠随机分入治疗组。小鼠（n=6每组）接收了：(1) 对照dsRNA的氨基-胺或氨基-酰胺阳离子脂质制剂；(2) 活性dsRNA的氨基-胺或氨基-酰胺阳离子脂质制剂；或(3) 媒介物对照，如通过经由外侧尾静脉的标准静脉内（i.v.）注射来施用。基于具体动物体体重的mg dsRNA/kg体重基础来计算剂量。在产生了图15和16所示结果的实验中，给予动物含有L-6-或L-30-配制的脂质颗粒的5mg/kg DsiRNA。表8提供了本研究中使用的包含L-6和L-30脂质的脂质制剂的具体组成。在整个研究期间监测体重，作为发生肿瘤负荷和治疗耐受性的指标。对于效率研究，测定定义的人性化终点作为存活的替代。根据临床体征、体重减轻和腹胀的组合进行评估，以确定由于肿瘤负荷的安乐死日期。从不同治疗组的动物取出肿瘤组织并测量肿瘤重
量以确定不同治疗组的效力。还测量了血清α-甲胎蛋白（AFP）水平，作为肿瘤负荷的生物标志。

【0404】与具有对照有效载荷的L-6和L-30制剂和PBS对照相比，具有活性有效载荷的L-6和L-30制剂在减少血清AFP（图15）和肿瘤重量（图16）方面非常有效。

【0405】实施例13：使用具有dsRNA的不同的L-30脂质制剂来减少多个原位肝癌模型中各种靶基因的表达。

【0406】为了评估不同的L-30制剂是否可以调节肿瘤中HPRT1相对于肝的敲除，调整了PEG-脂质含量。表9提供了本研究中使用的包含L-30脂质的脂质制剂的具体组成。产生了图18所示结果的实验给予L-30[1]配制的脂质颗粒中的1.3和10mg/kg DsiRNA和L-30[2]配制的脂质颗粒中的10mg/kg DsiRNA。可以使用任何有用的溶剂或溶剂系统来将RNA结合剂和DsiRNA引入剂，包括与用于转染脂质的溶剂相同或不同的溶剂和溶剂系统（例如，水性和/或非水性溶剂）。

【0409】表9

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA结合剂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DODMA</td>
<td>25.9</td>
<td>25.9</td>
</tr>
<tr>
<td>PEG2000-DMPE</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>转染脂质</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-30</td>
<td>21.6</td>
<td>21.6</td>
</tr>
<tr>
<td>DSPC</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>胆固醇</td>
<td>33.0</td>
<td>28.8</td>
</tr>
<tr>
<td>PEG2000-DSPE</td>
<td>2.8</td>
<td>7.0</td>
</tr>
<tr>
<td>混合</td>
<td>分批</td>
<td>分批</td>
</tr>
<tr>
<td>乙醇%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>LNP缓冲液</td>
<td>盐水</td>
<td>盐水</td>
</tr>
</tbody>
</table>

【0411】^1纯化之前；^2脂质摩尔百分比

【0412】实施例14：使用具有dsRNA的不同L-30脂质制剂减少Hep3B HCC肿瘤组织中的靶基因表达。

[0415] 表10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DODMA</td>
<td>25.9</td>
<td>25.9</td>
<td>25.7</td>
<td>25.9</td>
<td>-</td>
<td>25.9</td>
<td>-</td>
</tr>
<tr>
<td>L-48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25.9</td>
<td>-</td>
</tr>
<tr>
<td>PEG2000-DMPE</td>
<td>2.9</td>
<td>2.9</td>
<td>2.3</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>转染脂质</td>
<td>L-30</td>
<td>L-30</td>
<td>L-30</td>
<td>L-30</td>
<td>L-30</td>
<td>L-30</td>
<td>L-30</td>
</tr>
<tr>
<td>DSPC</td>
<td>13.8</td>
<td>13.8</td>
<td>14.0</td>
<td>13.8</td>
<td>13.8</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>胆固醇</td>
<td>33.0</td>
<td>34.0</td>
<td>34.3</td>
<td>33.0</td>
<td>33.0</td>
<td>33.0</td>
<td>33.0</td>
</tr>
<tr>
<td>PEG2000-DSPC</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>混合</td>
<td>分批</td>
<td>分批</td>
<td>分批</td>
<td>分批</td>
<td>分批</td>
<td>在线</td>
<td>分批</td>
</tr>
<tr>
<td>乙醇%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>LNP缓冲液</td>
<td>PBS</td>
<td>PBS</td>
<td>PBS</td>
<td>盐水</td>
<td>PBS</td>
<td>PBS</td>
<td>盐水</td>
</tr>
</tbody>
</table>

[0417] 1纯化之前; 2脂质摩尔百分比; 3还成功制备了含有8%乙醇的相同制剂。

[0418] 实施例15: 使用具有dsRNA的不同的L-6和L-30脂质制剂减少肺和前列腺肿瘤组织中的靶基因表达。

[0419] 为了评估不同的L-6和L-30制剂的靶向效率和后续功能，测试了不同肿瘤组织中的hHPRT1mRNA的敲除。表9、10和11提供了本研究中使用的包含L-6和L-30脂质的脂质制剂的具体组成。可以使用任何有用的溶剂或溶剂系统将RNA结合剂和核酸有效载体（例如，dSIRNA）引入制剂，包括与用于转染脂质的溶剂相同或不同的溶剂和溶剂系统（例如，水性和/或非水性溶剂）。

大水平的HPRT1靶mRNA敲除。相应地，本文描述的任何脂质可用于替代表9中脂质制剂具体组成中的L-6或L-30, 并且任何dsRNA可用于减少癌症（例如，本文描述的任何癌症）相关靶基因的表达。

[0422] 表11

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA结合剂</td>
<td>DODMA</td>
<td>25.9</td>
<td>25.9</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>PEG₂₀₀₀-DMPE</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>转染脂质</td>
<td>L-6/L-30</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>DSPC</td>
<td>13.8</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>胆固醇</td>
<td>33.0</td>
<td>28.8</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td>PEG₂₀₀₀-DSPE</td>
<td>2.8</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>混合</td>
<td>分批</td>
<td>分批</td>
<td>分批</td>
<td></td>
</tr>
<tr>
<td>乙醇%¹</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>LNP缓冲液</td>
<td>PBS</td>
<td>PBS</td>
<td>PBS</td>
<td></td>
</tr>
</tbody>
</table>

[0423] ¹纯化之前; ²脂质摩尔百分比
[0424] 实施例16: 含有L-30与dsRNA的脂质制剂
[0425] 表12提供了包含L-30作为转染脂质的脂质制剂的具体组分。可以使用任何有用的溶剂或溶剂系统来将RNA结合剂和DsiRNA引入制剂, 包括与用于转染脂质的溶剂相同或不同的溶剂和溶剂系统(例如, 水性和/或非水性溶剂)。而且, 本文描述的任何脂质可用于替代表12中作为转染脂质的L-30 (例如, 本文描述、例如表1中的任何一个), 并且任何dsRNA可用于减少靶基因 (例如, 与本文描述的癌症或疾病相关的靶基因) 的表达。

[0427] 表12
<table>
<thead>
<tr>
<th>组分</th>
<th>MW (g/mol)</th>
<th>量 (mg)</th>
<th>量 (mmol)</th>
<th>mol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA结合剂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DsiRNA</td>
<td>17000</td>
<td>1.00</td>
<td>0.0006</td>
<td>-</td>
</tr>
<tr>
<td>DODMA</td>
<td>620.09</td>
<td>4.43</td>
<td>0.0071</td>
<td>25.9</td>
</tr>
<tr>
<td>PEG-DMPE</td>
<td>2693.3</td>
<td>2.12</td>
<td>0.0008</td>
<td>2.9</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>6.55</td>
<td>0.0079</td>
<td>28.7</td>
</tr>
<tr>
<td>转染脂质</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-30</td>
<td>613.05</td>
<td>3.65</td>
<td>0.0060</td>
<td>21.6</td>
</tr>
<tr>
<td>PEG-DSPE</td>
<td>2805.5</td>
<td>2.14</td>
<td>0.0008</td>
<td>2.8</td>
</tr>
<tr>
<td>DSPC</td>
<td>790.16</td>
<td>3.01</td>
<td>0.0038</td>
<td>13.8</td>
</tr>
<tr>
<td>胆固醇</td>
<td>386.65</td>
<td>3.53</td>
<td>0.0091</td>
<td>33.1</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>12.33</td>
<td>0.020</td>
<td>71.3</td>
</tr>
<tr>
<td>转染脂质：DsiRNA</td>
<td></td>
<td>12</td>
<td>334</td>
<td>-</td>
</tr>
<tr>
<td>总脂质</td>
<td></td>
<td>18.88</td>
<td>0.028</td>
<td>100.0</td>
</tr>
<tr>
<td>总脂质：DsiRNA</td>
<td></td>
<td>19</td>
<td>469</td>
<td>-</td>
</tr>
<tr>
<td>阳离子脂质¹</td>
<td></td>
<td>8.08</td>
<td>0.0131</td>
<td>47.5</td>
</tr>
<tr>
<td>阳离子脂质：DsiRNA</td>
<td></td>
<td>8</td>
<td>223</td>
<td>-</td>
</tr>
</tbody>
</table>

¹DODMA和L-30的组合

其他实施方案

虽然已经结合其具体实施方案描述了本发明，但要理解，其能够做出进一步调整，并且该适用预期涵盖总体遵循本发明原理并且包括落入本发明所指领域已知或惯例内的此类与本公开内容的偏离的本发明的任何变化、用途或适应，并且可适用于前文提出的基本特征。

所有出版物、专利和专利申请通过引用整体并入本文，程度如同每个出版物、专利或专利申请明确且单独地被指明通过引用整体并入。
序列表

110. 迪克纳制药公司（DICERNA PHARMACEUTICALS, INC.）

120. 胶原蛋白脂质及其用途

130. SCT141974-60

140. PCT/US2012/060875
141. 2012-10-18

150. US 61/546,598
151. 2011-10-18

160. 2

170. PatentIn version 3.5

210. 1
211. 25
212. DNA
213. Artificial Sequence

[0001]

220.
223. Synthetic Construct

400. 1
gccagacuu guuggauuag aat

220. 2
221. 27
222. DNA
223. Artificial Sequence

220.
223. Synthetic Construct

220.
221. misc_feature
222. (11)...(11)
223. n 是 2’-O-甲基-C
<220>
 <221> misc_feature
 <222> (13)(13)
 <223>n 2'-O-甲基-A

<220>
 <221> misc_feature
 <222> (15)(15)
 <223>n 2'-O-甲基-C

<220>
 <221> misc_feature
 <222> (17)(17)
 <223>n 2'-O-甲基-A

<220>
 <221> misc_feature
 <222> (19)(19)
 <223>n 2'-O-甲基-G

[0002]
<220>
 <221> misc_feature
 <222> (21)(21)
 <223>n 2'-O-甲基-C

<220>
 <221> misc_feature
 <222> (23)(23)
 <223>n 2'-O-甲基-G

<220>
 <221> misc_feature
 <222> (25)(25)
 <223>n 2'-O-甲基-C

<220>
 <221> misc_feature
 <222> (26)(27)
 <223>n 2'-O-甲基-U

<400> 2
 aauucaaaau ncnaanana nuungnn
图7
图8
图9
图10

图中的内容为一个条形图，图例显示了不同条件下的HPRT1 mRNA含量。图中横轴表示不同的浓度，纵轴表示HPRT1 mRNA的含量。具体数据如下：

- L-1: 25 nM, 5 nM, 1 nM
- L-2: 25 nM, 5 nM, 1 nM
- UTC: 25 nM, 5 nM, 1 nM

图例中还显示了误差范围。
图12

剩余的HPRT1 mRNA

0.00 0.25 0.50 0.75 1.00 1.25

盐水

1 5 L-2 5

1 1 L-5 5

1 1 L-6 5

1 5 L-30

DeRNA剂量, mg/kg
图13
图14
图16
图17
图18
图19
图20
图21
图22
图23
图24