CONTAINERIZED ACCESS CONTROL SYSTEM

Inventor: Robert Rhett SLAGEL, Ironton, OH (US)

Correspondence Address:
DLA PIPER LLP US
P. O. BOX 2758
RESTON, VA 20195 (US)

Assignee: MODULAR SECURITY SYSTEMS, INC., Ironton, OH (US)

Filed: Nov. 20, 2008

Related U.S. Application Data
Continuation of application No. 10/992,126, filed on Nov. 19, 2004.

Publication Classification
Int. Cl. E04B 1/348 (2006.01)
E04H 1/00 (2006.01)
G08B 7/00 (2006.01)
G06F 7/04 (2006.01)

U.S. Cl. 52/65; 52/79.8; 52/173.1; 52/745.02; 340/500; 340/5.83

ABSTRACT
A portable container is provided which comprises a passing room(s) allowing entry into a second area into a first area, the passing room having at least two openings with a walkway in-between. Barrier device(s) can be located in the walkway but not connected to the first or second opening. A control room(s) can also be provided, the control room being connected to the passing room(s).
Fig. 1
CONTAINERIZED ACCESS CONTROL SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. application Ser. No. 10/992,126 filed Nov. 19, 2004. The entirety of all of the above-listed applications are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention is directed generally to access control systems and specifically to portable access control systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 illustrate a front view and a perspective view of a portable container 110, according to embodiments of the invention.

FIG. 3 illustrates a top cross-sectional view of the portable container 110, according to one embodiment of the invention.

FIG. 4 is a detailed top cross-sectional view of a passing room 30 and a control room 40, according to one embodiment of the invention.

FIG. 5 illustrates a perspective view of a passing room 30 and a control room 40, according to one embodiment of the invention.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The Containerized Access Control Unit

FIGS. 1 and 2 illustrate a front view and a perspective view of a portable container 110, according to embodiments of the invention. The portable container 110 has housing 20, which, in one embodiment, is rectangular shaped. However, any other shape is also possible. The housing 20 can be made of a durable material (e.g., iron, stainless steel), enabling the portable container 110 to be securely towed by a vehicle. One or both ends of the portable container 110 can be equipped to be towed by a vehicle. In addition, a security system to ensure that only authorized vehicles move the portable container 110 can also be included. Furthermore, fencing 63 or other material may be attached to the portable container 110 to surround a secured area 62 (e.g., see FIG. 5).

FIG. 3 illustrates a top cross-sectional view of the portable container 110, according to one embodiment of the invention. The portable container 110 comprises at least one passing room 30, which is provided for controlling and directing the movement of people between two areas. In addition, the portable container 110 can also comprise at least one control room 40, for housing a guard or supervisor.

The portable container 110 can be a standard shipping container. In one embodiment, the standard shipping container can be a shipping container which complies with international standards as determined by the International Organization for Standardization (ISO). In one embodiment, the shipping container can include the following features: made from corrugated steel; heavy steel framed to withstand repeated lifting and placing; able to hold a cargo as large as 30 tons; marine grade plywood flooring; lockable accessible doors on one or both sides of the shipping container; forklift pockets; corner connectors; or a venting system; or any combination thereof.

In one embodiment, the portable container 110 can be delivered to a user in a ready-made or turn-key state. In this case, if electricity is not required, the portable container 110 is ready to be used. If electricity is required, all that needs to be done is to render the portable container 110 usable is the provision of electricity. In another embodiment, the portable container can be customized by the user to meet specific needs of the user.

FIG. 4 is a detailed top cross-sectional view of a passing room 30 and a control room 40, according to one embodiment of the invention.

Passing Room. The passing room 30 controls the movement of people between area 60 and another area 62. A fence 63 can also be used to separate areas 60 and 62 in locations where the portable containers 110 are not used. The passing room 30 has at least a first opening 32, and at least a second opening 34, which in one embodiment is on a side opposite the first opening 32. However, the first opening 32, second opening 34, and additional openings can be located on any side of the passing room 30, including being located on the same side of the passing room 30. The second opening 34 is spaced apart from the first opening 32 so as to define a walkway 36 in-between. A closing device 33 (e.g., a door, shutters) is employed to close the openings 32 and 34 when passing room 30 is not in use. A security sensing device for safeguarding the closing device 33 can be employed.

The portable container 110 can comprise at least one barrier device 38 in the inside of the passing room 30 which restricts a person’s movement through the passing room 30. In one embodiment, a turnstile (e.g., a full-body turnstile, a partial-body turnstile, a bi-directional turnstile, or a uni-directional turnstile) is employed as a barrier device of the portable container 110, but other barrier device may be used to restrict a person’s movement through the passing room 30. For example, a sliding door, a revolving door, moving bars, and gates may be used as a barrier device. The barrier device 38 is located inside the walkway 36, defining a first space 50 between the barrier device 38 and the first opening 32, and defining a second space 52 between the barrier device 38 and the second opening 34.

In one embodiment, the passing room 30 can alternatively include at least one security device 54 issuing permission for a person to pass through the passing room 30. In one embodiment, the security device 54 can comprise, but is not limited to, one or more card readers, metal detectors, biometric readers, iris scanners, fingerprint or palm readers, explosive detectors, physical or facial recognition terminology, electronic key locks, or mechanical key locks, or any combination thereof. The security device 54 can also include a security measure, such as, but not limited to, posting an individual proximate to the barrier device 38 to check identification cards (e.g., photo identification cards, licenses). In one embodiment, a security device 54 is located in the first space 50 and also in the second space 52. Security devices 54 can be included inside or outside of the passing room.

The passing room 30 can also comprise lighting.

Control Room. In one embodiment, a control room 40 is provided for housing a guard or supervisor. The control room 40 can include a control panel 42 to control the barrier device(s) 38 and the security device(s) 54 in order for a guard or supervisor to monitor the passing room while staying in the
control room 40. The control panel 42 can comprise an alarm device 43 which gives an alarm in case a problem occurs in the passing room 30.

[0017] The control room 40 and the passing room 30 are separated by at least one wall 12. The wall 12 can comprise at least one window 14, so that a guard in the control room 40 can observe the inside of the passing room 30 or the outside of the portable container 110. The control room 40 has at least one opening 44 with at least one closing device 45. The closing device(s) 45 of the control room 40 can be the same as, or different from, the closing device(s) 33 of the passing room 30.

[0018] The control room 40 can also comprise: heat and/or air-conditioning; lighting; at least one computer/cable outlet; at least one phone jack; at least one electrical outlet; at least one vent; or insulation; or any combination thereof.

[0019] FIG. 5 illustrates a perspective view of a passing room 30 and a control room 40, according to one embodiment of the invention. As the portable container 110 has a housing 20 which comprises both the at least one passing room 30 and the at least one control room 40, it is easy for users to move and use almost anywhere. The portable container has everything that a user needs to control access to an area.

Use of the Containerized Access Control Unit

[0020] The portable container 110 can be put on a vehicle or trailer and transported or towed to reach multiple destinations, and can be used to control access to an area. The portable container may be used by people who have an access device (e.g., people working on a construction site). The access device is read by the security device. The portable container 110 may also be used by people that do not have an access device, but who must pass through security to enter a venue (e.g., an outside concert).

[0021] Use with Access Device. If the portable container 110 is being used in conjunction with an access device, when a person approaches the passing room 30 from an area 60 and enters the first opening 32, the person can stay in the first space 50 in the walkway 36 and present an access device (e.g., identification or electronically read card) to the security device 54. In one embodiment, because the security device 54 is located inside the passing room, the chance that the person will lose or break an identification card or device is decreased because the person does not need to expose the identification card or device outside of the portable container 110. The portable container 110 also protects the security device 54, because the security device 54 is located inside of the passing room 30.

[0022] In one embodiment, the barrier device remains locked or closed until the access device is successfully read by the security device 54. Once a person is approved by the security device 54, the barrier device 38 is unlocked and the person can go through the barrier device 38. If a person is not approved by the security device 54, the barrier device 38 continues to be kept locked, and, the control panel 42 can give an alarm to a guard via the alarm device 43.

[0023] Use without Access Device. If the portable container 110 is being used without an access device, when a person approaches the passing room 30 from an area 60 and enters the first opening 32, the person can stay in the first space 50 in the walkway 36 and go through the security device 54 (e.g., a metal detector). In one embodiment, the barrier device 38 can be the same device as the security device 54 (e.g., a metal detector). In another embodiment, a separate barrier device can be used to stop persons from accessing the secured area 62. The barrier device 38 remains locked or closed until the security device 54 or security personnel authorizes a person to enter the secured area 62. Once a person is approved, the barrier device 38 is unlocked and the person can go through the barrier device 38. If a person is not approved, the barrier device 38 continues to be kept locked, and the control panel 42 can give an alarm to a guard via the alarm device 43. Alternatively, the barrier device can remain open until locked by security personnel, for example.

Manufacturing of the Containerized Access Control Unit

[0024] In one embodiment, a standard shipping container is filled with material to be shipped at a first location. Then, the container is shipped to a second location. The container is next unloaded at the second location. Next, the container is outfitted as an access control unit after the container is unloaded. In one embodiment, the second location can be overseas from the first embodiment.

CONCLUSION

[0025] While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. In fact, after reading the above description, it will be apparent to one skilled in the relevant art(s) how to implement the invention in alternative embodiments. Thus, the present invention should not be limited by any of the above-described exemplary embodiments.

[0026] In addition, it should be understood that the figures, which highlight the functionality and advantages of the present invention, are presented for example purposes only. The architecture of the present invention is sufficiently flexible and configurable, such that it may be utilized in ways other than that shown in the accompanying figures.

[0027] Further, the purpose of the Abstract of the Disclosure is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract of the Disclosure is not intended to be limiting as to the scope of the present invention in any way.

1.38. (canceled)

39. An access control system, comprising:

a portable container;

at least one passing room disposed in the container, the at least one passing room having at least a first passing room opening, and at least a second passing room opening, and a walkway in-between;

at least one turnstile located in the passing room, defining a first space between the first passing room opening and the at least one turnstile, and a second space between the at least one turnstile and the second passing room opening; and

at least one security device coupled to the at least one turnstile and configured and arranged to prevent passage through the at least one turnstile.
40. An access control system, comprising:
 a portable container;
 at least one passing room disposed in the container, the at least one passing room having at least a first passing room opening, at least a second passing room opening, and a walkway in-between;
 at least one turnstile;
 at least one security device coupled to the at least one turnstile and configured and arranged to enable or prevent passage through the at least one turnstile; and
 at least one control area disposed in the container adjacent to the at least one passing room, with at least a first control room opening, the at least one control area having the at least one security device disposed therein for controlling the at least one turnstile to authorize or deny passage through the at least one turnstile, wherein a barrier is disposed between the at least one control area and the at least one passing room.

41. An access control system, comprising:
 a portable ISO shipping container, and
 at least one passing room disposed in the portable container, the at least one passing room having at least a first passing room opening, and at least a second passing room opening, and a walkway in-between; and
 at least one turnstile located in the passing room, defining a first space between the first passing room opening and the at least one turnstile, and a second space between the at least one turnstile and the second passing room opening.

42. The access control system of claim 39, wherein the at least one security device is capable of providing authorization for a person to pass through the at least one turnstile.

43. The access control system of claim 40, wherein the at least one security device is capable of providing authorization for a person to pass through the at least one turnstile.

44. The access control system of claim 41, wherein the at least one passing room further comprises at least one security device capable of providing authorization for a person to pass through the at least one turnstile.

45. The access control system of claim 39, further comprising enclosing material, the container being disposed adjacent to the enclosing material.

46. The access control system of claim 40, further comprising enclosing material, the container being disposed adjacent to the enclosing material.

47. The access control system of claim 41, further comprising enclosing material, the container being disposed adjacent to the enclosing material.

48. The access control system of claim 40, wherein the at least one control area comprises at least one control panel.

49. The access control system of claim 48, wherein the at least one control panel controls the at least one security device to enable a person to monitor the at least one passing room from the at least one control area.

50. The access control system of claim 48, wherein the control panel comprises an alarm device.

51. The access control system of claim 50, wherein the alarm device communicates status information from the at least one passing room.

52. The access control system of claim 40, wherein the barrier disposed between the at least one control area and the at least one passing room includes a wall and at least one window.

53. The access control system of claim 39, wherein the container is delivered in a turnkey state.

54. The access control system of claim 40, wherein the container is delivered in a turnkey state.

55. The access control system of claim 41, wherein the container is delivered in a turnkey state.

56. The access control system of claim 39, wherein features of the container are customizable.

57. The access control system of claim 40, wherein features of the container are customizable.

58. The access control system of claim 41, wherein features of the container are customizable.

59. The access control system of claim 42, wherein the at least one security device includes one or more card readers, one or more metal detectors, one or more biometric readers, one or more iris scanners, one or more fingerprint readers, one or more facial recognition technology, one or more explosive detectors, one or more electronic key locks, or one or more mechanical key locks, or a combination of two or more thereof.

60. The access control system of claim 43, wherein the at least one security device includes one or more card readers, one or more metal detectors, one or more biometric readers, one or more iris scanners, one or more fingerprint readers, one or more facial recognition technology, one or more explosive detectors, one or more electronic key locks, or one or more mechanical key locks, or a combination of two or more thereof.

61. The access control system of claim 44, wherein the at least one security device includes one or more card readers, one or more metal detectors, one or more biometric readers, one or more iris scanners, one or more fingerprint readers, one or more facial recognition technology, one or more explosive detectors, one or more electronic key locks, or one or more mechanical key locks, or a combination of two or more thereof.

62. The access control system of claim 42, wherein the at least one security device is located outside the at least one passing room.

63. The access control system of claim 43, wherein the at least one security device is located outside the at least one passing room.

64. The access control system of claim 44, wherein the at least one security device is located outside the at least one passing room.

65. A method of controlling passage, comprising:
 monitoring persons who are desiring to pass through a portable container, the container including at least one passing room, the at least one passing room having at least a first opening and at least a second opening and a walkway in-between, and at least one turnstile located in the passing room, defining a first space between the first opening and at least one turnstile, and a second space between the at least one turnstile and the second opening; and
 selectively enabling passage through the at least one turnstile, based on the monitoring.

66. The method of claim 65, wherein the first opening and the second opening of the container are located on opposite sides of enclosing material.

67. The method of claim 65, further comprising controlling ingress and egress from and to the second area via at least one control area disposed in the container adjacent to the at least one passing room.
68. The method of claim 67, wherein the controlling comprises authorizing entry of a person into the second area.
69. The method of claim 67, wherein the controlling comprises monitoring the at least one passing room.
70. The method of claim 67, wherein the controlling comprises controlling the at least one turnstile so as to authorize or deny passage therethrough.
71. An access control system, comprising:
 a portable container;
 at least one passing room disposed in the container, the at least one passing room having at least a first passing room opening, and at least a second passing room opening, and a substantially linear path from the first passing room opening to the second passing room opening;
 at least one turnstile located in the passing room, defining a first space between the first passing room opening and the at least one turnstile, and a second space between the at least one turnstile and the second passing room opening;
 and
 at least one security device coupled to the at least one turnstile and configured to prevent passage through the at least one turnstile.
72. An access control system, comprising:
 a portable container;
 at least one passing room disposed in the container, the at least one passing room having at least a first passing room opening, at least a second passing room opening, and a substantially linear path from the first passing room opening to the second passing room opening;
 at least one turnstile;
 at least one security device coupled to the at least one turnstile and configured to prevent passage through the at least one turnstile; and
 at least one control area disposed in the container adjacent to the at least one passing room, with at least a first control room opening, the at least one control area having the at least one security device disposed therein for controlling the at least one turnstile to authorize or deny passage through the at least one turnstile, wherein a barrier is disposed between the at least one control area and the at least one passing room.
73. An access control system, comprising:
 a portable, ISO shipping container;
 and
 at least one passing room disposed in the portable container, the at least one passing room having at least a first passing room opening, and at least a second passing room opening, and a substantially linear path from the first passing room opening to the second passing room opening;
 and
 at least one turnstile located in the passing room, defining a first space between the first passing room opening and the at least one turnstile, and a second space between the at least one turnstile and the second passing room opening.
74. The access control system of claim 71, wherein the at least one security device is capable of providing authorization for a person to pass through the at least one turnstile.
75. The access control system of claim 72, wherein the at least one security device is capable of providing authorization for a person to pass through the at least one turnstile.
76. The access control system of claim 73, wherein the at least one passing room further comprises at least one security device capable of providing authorization for a person to pass through the at least one turnstile.
77. The access control system of claim 71, further comprising enclosing material, the container being disposed adjacent to the enclosing material.
78. The access control system of claim 72, further comprising enclosing material, the container being disposed adjacent to the enclosing material.
79. The access control system of claim 73, further comprising an enclosing material, the container being disposed adjacent to the enclosing material.
80. The access control system of claim 72, wherein the at least one control area comprises at least one control panel which controls the at least one security device in order for a person to monitor the at least one passing room while staying in the at least one control area.
81. The access control system of claim 80, wherein the control panel comprises an alarm device.
82. The access control system of claim 72, wherein the barrier disposed between the at least one control area and the at least one passing room includes a wall and at least one window.
83. The access control system of claim 71, wherein the container is delivered in a turnkey state.
84. The access control system of claim 72, wherein the container is delivered in a turnkey state.
85. The access control system of claim 73, wherein the container is delivered in a turnkey state.
86. The access control system of claim 71, wherein features of the container are customizable.
87. The access control system of claim 72, wherein features of the container are customizable.
88. The access control system of claim 73, wherein features of the container are customizable.
89. The access control system of claim 74, wherein the at least one security device includes one or more card readers, one or more metal detectors, one or more biometric readers, one or more iris scanners, one or more fingerprint readers, one or more facial recognition technology, one or more explosive detectors, one or more electronic key locks, or one or more mechanical key locks, or a combination of two or more thereof.
90. The access control system of claim 75, wherein the at least one security device includes one or more card readers, one or more metal, detectors, one or more biometric readers, one or more iris scanners, one or more fingerprint readers, one or more facial recognition technology, one or more explosive detectors, one or more electronic key locks, or one or more mechanical key locks, or a combination of two or more thereof.
91. The access control system of claim 76, wherein the at least one security device includes one or more card readers, one or more metal detectors, one or more biometric readers, one or more iris scanners, one or more fingerprint readers, one or more facial recognition technology, one or more explosive detectors, one or more electronic key locks, or one or more mechanical key locks, or a combination of two or more thereof.
92. The access control system of claim 74, wherein the at least one security device is located outside the at least one passing room.
93. The access control system of claim 75, wherein the at least one security device is located outside the at least one passing room.
94. The access control system of claim 76, wherein the at least one security device is located outside the at least one passing room.

95. A method of controlling passage, comprising: monitoring persons who are desiring to pass through a portable container, the container including at least one passing room, the at least one passing room having at least a first opening and at least a second opening and a substantially linear walkway in-between, and at least one turnstile located in the passing room, defining a first space between the first opening and the at least one turnstile, and a second space between the at least one turnstile and the second opening; and selectively enabling passage through the at least one turnstile, based on the monitoring.

96. The method of claim 95, wherein the first opening and the second opening of the container are located on opposite sides of enclosing material.

97. The method of claim 95, further comprising controlling ingress and egress from and to the second area via at least one control room disposed in the container adjacent to the at least one passing room.

98. The method of claim 97, wherein the controlling comprises authorizing entry of a person into the second area.

99. The method of claim 97, wherein the controlling comprises monitoring the at least one passing room.

100. The method of claim 97, wherein the controlling comprises controlling the at least one turnstile so as to authorize or deny passage there through.

101. An access control system, comprising:
 a portable structure;
 at least one passing area in the structure, the at least one passing area having at least a first opening, and at least a second opening, and a pathway;
 at least one turnstile in the pathway, defining a first space between the first opening and the at least one turnstile, and a second space between the at least one turnstile and the second opening; and
 at least one security device coupled to the at least one turnstile and configurable to control passage through the at least one turnstile.

102. An access control system, comprising:
 a portable structure;
 at least one passing area disposed in the structure, the at least one passing area having at least a first passing area opening, at least a second passing area opening, and a pathway;
 at least one turnstile;
 at least one security device coupled to the at least one turnstile and configured and arranged to control passage through the at least one turnstile; and
 at least one control area disposed in the structure adjacent to the at least one passing area, with at least a first control area opening, the at least one control area having at least one security device disposed therein capable of controlling passage through the at least one turnstile, wherein a barrier is disposed between the at least one control room and the at least one passing area.

103. An access control system, comprising:
 an ISO shipping container; and
 at least one passing area disposed in the container, the at least one passing area having at least a first passing area opening, and at least a second passing area opening, and a pathway; and
 at least one turnstile located in the pathway, defining a first space between the first passing area opening and the at least one turnstile, and a second space between the at least one turnstile and the second passing area opening.

104. A method of controlling passage, comprising:
 monitoring persons who are desiring to pass through a portable structure, the structure including at least one passing area, the at least one passing area having at least a first opening and at least a second opening and a pathway, and at least one turnstile located in the pathway, defining a first space between the first opening and the at least one turnstile, and a second space between the at least one turnstile and the second opening; and selectively enabling passage through the at least one turnstile, based on the monitoring.

* * * * *