wo 2016/153779 A1 [N NI 00 000000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/153779 Al

29 September 2016 (29.09.2016) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 12/12 (2006.01) HO4L 29/08 (2006.01) kind of national protection available). AE, AG, AL, AM,
GO6F 12/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
21) Tnt tional Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
PCT/US2016/021421 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
9 March 2016 (09.03.2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
14/669,408 26 March 2015 (26.03.2015) Us kind Of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: ALCATEL LUCENT [FR/FR]; 148/152 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Route de la Reine, 92100 Boulogne-Billancourt (FR). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
. . DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) ?;\(;(;12(;15319&1((518'§AR, Shahid; 601 Data Drive, Plano, TX LV. MC. MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK.
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
(74) Agent: DESAI, Niraj, A.; Alcatel-Lucent USA Inc., Att: GW, KM, ML, MR, NE, SN, TD, TG).
Docket Administrator - Room 3B-212F, 600-700 Mountain Published:

Avenue, Murray Hill, NJ 07974-0636 (US).

with international search report (Art. 21(3))

(54) Title: HIERARCHICAL COST BASED CACHING FOR ONLINE MEDIA

10

[fw

END
USER

130

[Ve
il

135F

FIG. 1

140

ORIGIN
SERVER

(57) Abstract: A method of operating a first cache device may include receiving, at the first cache device, a request to send a first as-
set to a second device; determining whether the first asset is stored at the first cache device; and when the determining determines
that the first asset is not stored at the first cache device, obtaining, at the first cache device, the first asset, comparing, at the first
cache device, a moving average of a marginal value of the first asset with respect to the first cache device and a characteristic mar -
ginal value of the first cache device, calculating a cost associated with the first asset, selectively storing the first asset at the first
cache device based on the comparison, and sending the obtained first asset and the calculated cost to the second device.

ig

20

25

WO 2016/153779 PCT/US2016/021421

HIERARCHICAL COST BASED CACHING FOR ONLINE MEDIA

CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit of provisional U.S. Application No. 62/064,631 filed on
Gctober 16, 2014 and U.S. Application No. 14/577.039 filed on December 19, 2014, the

entire disclosure of both of which is hereby incorporated by reference.

BACKGROUND
1. Field
Example embodiments relate generally to caching media, and particularly to providing

hierarchical caching for online media.

2. Related Art

Online video is presently the largest component, or one of the largest components, of internet
traffic. Caching such video adds additional requirements on traditional algorithms. For many
conventional algorithms, hit-rate has traditionally been the key performance metric used to
compare such algornithms. Increasingly newer caches use SSD memory for storage due to
SSD memory’s access speed and reliability. A lifetime of SSD memory may have a limited
number of write cycles available. Replacement rate, or the number of write cycles per request
is another key performance metric that may be of interest with such memory. According to
some online video usage data, a significant part of the online video is used to rebroadcast
recent TV shows which are initially guite popular but rapidly drop in popularity. Measuring
the performance of caching algorithms with such rapid changes is another new performance
metric. Typically online caching stores the video in small chunks of typically between 2 and
10 seconds. Further each video may be encoded into multiple video quality levels further
increasing the number of chunks per video. In all, online video can increase the number of
files that can be requested by end users in a caching system by a thousand fold or more.

Many conventional caching algorithms proposed in research over the last 30 years have not
been implemented in commercial caches. For example, prominent examples of implemented
schernes include simple schemes ke the least recently used (LRU) and a few others like
greedy dual size frequency (GDSF) and least frequently used with dynamic aging (LFU-
DA).

Further, a size of a cache may be finite. Therefore, storage of a new asset may require the

i0

i5

20

WO 2016/153779 PCT/US2016/021421

eviction of a stored asset. However, when determining which stored asset to evict, many
conventional caching algorithms do not factor in the cost associated with re-obtaining each of

the stored assets.

SUMMARY
Some example embodiments relate to a method of operating a cache device.
In some example embodiments, the method inclades receiving, at the first cache device, a
request to send a first asset to a second device; determining whether the first asset is stored at
the first cache device; and when the deterroining determines that the first asset is not stored at
the first cache device, obtaining, at the first cache device, the first asset, calculating a cost
associated with the first asset, selectively storing the first asset at the first cache device based
on a moving average of a marginal value of the first asset with respect to the first cache
device and a characteristic marginal value of the first cache device, the characteristic
marginal value of the first cache device representing a cost conscious average period of time
between receipt of last requests for, and eviction of, assets cached at the first cache, and
sending the obtained f{irst asset and the calculated cost to the second device.
In some example cmbodiments, the first cache is one of a plurality of cache devices of a
content distribution network divided into a plurality of hierarchy levels, and the method
further includes, for each of the plurality of cache devices, determining a moving average of
the marginal value of a requested asset, when a request for the requested asset is received by
a respective one of the plurality of cache devices, and determining a characteristic marginal
value associated with a respective one of the plurality of cache devices, when the cache
device evicts an asset.
In somc cxample cmbodiments, the obtaining obtains the first asset and an obtained cost
associated therewith from a higher level of the plurality of hierarchy levels, and the
calculating the cost includes adding a marginal cost to the obtained cost if the selectively
storing does not store the first asset.
In some example embodiments, the method further includes determining the characteristic
marginal value of the first cache device by, initializing the characteristic marginal value of
the first cache device as a value which is higher than the initialized value of the moving
average of the marginal value (MU) of the first asset with respect to the first cache device,
and updating the characteristic marginal value of the f{irst cache device based on

exponentially weighted moving average of periods of time between receipt of last requests

i0

i5

20

WO 2016/153779 PCT/US2016/021421

for, and eviction of, assets cached at the first cache device and the cost associated with the
assets, in accordance with a least recently used cache eviction policy.

In some example embodiments, the updating the characteristic marginal value of the first
cache device [utther includes, gently increasing the characteristic marginal value of the first
cache device, when the {irst cache evicts an asset.

In some example cmbodiments, the method includes determining the moving average of the
marginal value of the first asset with respect to the first cache device by, initializing the
moving average of the marginal value of the first asset with respect to first cache device as a
value lower than the initialized value of the characteristic marginal value of the first cache
device, and updating the moving average of the marginal value of the first asset with respect
to the first cache device based on exponentially weighted moving average of periods of time
between consecutive receipts of requests for the first asset and the cost associated with the
first asset, at the first cache device, the requests requesting the first cache device to send the
first asset to another device.

In some example embodiments, the sclectively storing includes, assigning the first asset to a
first database, when an initial request for the first asset is received at the first cache device;
and when a second request is received consecutively with respect to the initial request,
determining an inter-arrival time of the first asset based on times al which the nitial and
second requests were received at the first cache device, and if a number of assets stored in an
inter-arrival database is greater than or equal to a threshold then, determining a second asset
to remove {rom an inter-arrival database based on which of a plurality of assets stored in the
inter-arrival database has a largest marginal value associated therewith that decreases as the
cost associated with the second asset increases, the inter-arrival time database storing arrival
timnes of requests corresponding to assets, the inter-arrival time databasce being different than
the first database, and removing the second asset from the inter-arrival database; and
assigning the first asset to the inter-arrival time database.

In some example embodiments, the method further includes determining the marginal value
of the assets by dividing a last requested time of each of the plurality of assets by the cost
associated therewith.

According to one or more example embodiments, a first cache device may include a
processor and a mermory.

In some example embodiments, the memory may contains computer readable code that, when

executed by the processor, configures the processor to, receive a request to send a first asset

i0

i5

20

WO 2016/153779 PCT/US2016/021421

to a second device, determine whether the first asset is stored at the first cache device, and
when the processor determines that the first asset 15 not stored at the first cache device, the
processor is configured to, obtain, at the first cache device, the first asset, calculate a cost
associated with the first asset, selectively store the first asset at the first cache device based
on a moving average of a marginal value of the {irst asset with respect to the {irst cache
device and a characteristic marginal value of the first cache device, the characteristic
marginal value of the {irst cache device representing a cost conscious average period of time
between receipt of last requests for, and eviction of, assets cached at the first cache, and send
the obtained first asset and the calculated cost to the second device.

According to one or more example embodiments, a method of operating a content
distribution network, the conlent distribution network including a plurality of first cache
devices divided into a plurality of hierarchy levels, each of the plurality of first caches
devices including a processor and a memory.

In some example embodiments, the memory may contain computer readable code that, when
executed by a processor, configures the processor of a respective first cache device to, receive
a request to send a first asset to a second device, determine whether the first asset 1s stored at
the first cache device, and when the processor determines that the first asset is not stored at
the first cache device, obtain, at the first cache device, the first asset, calculate a cost
associated with the first asset, selectively store the first asset at the first cache device based on
a moving average of a marginal value of the first asset with respect to the first cache device
and a characteristic marginal value of the first cache device, the characteristic marginal value
of the first cache device representing a cost conscious average period of time between receipt
of last requests for, and eviction of, assets cached at the first cache, and send the obtained

first asset to the second device,

BRIEF DESCRIPTION OF THE DRAWINGS
At least some example embodiments will become more fully understood from the detaied
description provided below and the accompanying drawings, wherein like elements are
represented by like reference mumerals, which are given by way of illustration only and thus
are not limiting of example embodiments and wherein:
FIG. 1 is a diagram illustrating a portion of a data network according some cxample
embodiments;

FIG. 2A is a diagram illustrating the organization of a hierarchical cache systerm;

i0

i5

20

WO 2016/153779 PCT/US2016/021421

FIG. 2B is a diagram illustrating an example structure of a network element according to
example embodiments;

F1G. 3 is a flow chart illustrating an example method of operating a network element to
perform hierarchical caching of online media according to some example embodiments; and
FIG. 4 15 a flow chart illustrating an example method of operating a network element to

perform hicrarchical caching of online media according to other example embodiments.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
Various example embodiments will now be described more {ully with reference to the
accompanying drawings in which some example embodiments are shown.
Detailed illustrative embodiments are disclosed herein. However, specific structural and
functional details disclosed herein are merely representative for purposes of describing at
lcast some example embodiments. Example embodiments may, however, be embodied in
many alternate forms and should not be construed as limited to only the embodiments set
forth herein.
Accordingly, while example embodiments are capable of various modifications and
alternative forms, embodiments thereof are shown by way of example in the drawings and
will herein be described in detail. It should be understood, however, that there is no intent to
limit example embodiments to the particular forms disclosed, but on the contrary, example
embodiments are to cover all modifications, equivalents, and aliematives falling within the
scope of example embodiments. Like numbers refer to like elements throughout the
description of the figures. As used herein, the term "and/or" includes any and all
combinations of one or more of the associated listed items.
It will be understood that when an clement is referred to as being "connected” or "coupled” to
another element, it can be directly connected or coupled to the other clement or intervening
clements may be present. In contrast, when an element is referred to as being "directly
connected” or "directly coupled” to another element, there are no intervening elements
present. Other words used to describe the relationship between elements should be
interpreted 1o a like fashion (e.g., "between” versus "directly between”, "adjacent” versus
"directly adjacent”, etc.).
The terminology used herein is for the purpose of describing particular embodiments only
and is not intended to be limiting of example embodiments. As used herein, the singular

forms "a", "an" and "the” are intended to include the plural forms as well, unless the context

i0

i5

20

WO 2016/153779 PCT/US2016/021421

clearly indicates otherwise. It will be further understood that the terms "comprises”,
"comprising,”, "includes” and/or "including”. when wsed herein, specify the presence of
stated features, integers, steps, operations, elements, and/or components, but do not preclude
the presence or addition of one or more other {eatures, integers, steps, operations, elements,
components, and/or groups thereof.

1t should also be noted that in some alternative implementations, the functions/acts noted may
occur out of the order noted in the figures. For example, two figures shown in succession
may in fact be executed substantially concurrently or may sometimes be cxecuted in the
reverse order, depending upon the functionality/acts involved.

Example embodiments are discussed herein as being implemented in a suitable computing
environment. Although not required, example embodiments will be described in the general
context of computer-executable instructions, such as program modules or functional
processes, being executed by one or more computer processors or CPUs. Generally, program
moduoles or functional processes include routines, programs, objects, components, data
structures, cte. that performs particular tasks or implement particular abstract data types.

The program modules and functional processes discussed herein may be implemented using
existing hardware in existing communication networks. For example, program modules and
functional processes discussed herein may be implemented using existing hardware at
existing network elements or control nodes {e.g., an eNB shown in FIG. 1). Such existing
hardware may include one or more digital signal processors (DSPs). application-specific-
integrated-circuits {ASICs), field programmable gate arrays (FPGAs) computers or the like.
In the following description, iHlustrative embodiments will be described with reference to acts
and symbolic representations of operations {e.g., in the form of flowcharts}) that are
performed by one or more processors, unless indicated otherwise. As such, it will be
understood that such acts and operations, which are at times referred to as being computer-
executed, include the manipulation by the processor of electrical signals representing data in
a structured form. This manipulation transforms the data or maintains it at locations in the
memory system of the computer, which reconfigures or otherwise alters the operation of the

compuier in a manner well understood by those skilled in the art.

Example Network Architecture

FIG. 1 illustrates a portion of a data network 100 according to one or more example

embodiments. Communications network 100 includes an end user 110, a content distribution

i0

i5

20

WO 2016/153779 PCT/US2016/021421

network (CDN)} 130 and an origin server 140.

The end user 110 may be embodied by, for example, an electronic aser device. An electronic
device may include a mobile device, smart phone, laptop, tablet, or a personal computer. The
end user 110 1s capable of receiving coutent stored at the origin server 140 via CDN 130,
The end user 110, the CBN 130 and the origin server 140 may be connecled to each other
through, for example, the internet.

The CDN 130 includes caches 135A~F. Caches 135A~F each include storage for storing
media content. Caches 135A-F may be embodied, together, in groups, or individually in, for
example, servers, roulers, or wircless communications network components inclading, for
example, base stations (BSs), evolved node Bs (eNBs), or a radio network controllers
(RINCs). Though CDN 130 is illastrated as only including six caches 135A~F, the CDN 130
may include any number of caches. Further, in the example illustrated in FIG. 1, the origin
server 140 is separate from the CDN 130. However, according to one or more example
embodiments, the origin server 140 may be considered part of the CDN 130.

The origin server 140 is a server that provides content in response to content requests. For
example, the origin server 140 may store conlent corresponding to one or more videos which
may be requested by the end user 110 for streaming. In this case, the origin server 140 may
receive content requests associated with the particular videos, for example from a cache
within the CDN 130, and the origin server 140 may respond to the requests by providing the
requested content. Though, for the purpose of simplicity, only one origin server 140 is
illustrated, data network 100 may include any number of origin servers.

The caches 1o the CDN 130 may be organized in a hierarchical cache structure. FIG. 2A 15 a
diagram illustrating an example organization of a hierarchical cache system. As is iHustrated
in FIG. 2A, caches in a hierarchical cache system may be organized in a tree structure. Each
cache in FIG. 2A has an index ‘" and a hierarchy level 'k’ denoted by the coordinates (j,k).
Accordingly, the lowest hierarchy level, k=0, includes four caches, cache (0.,0), cache (1.0},
cache (2,0}, and cache (3.0). The next highest hierarchy level, k=1, includes 2 caches, cache
(0.1}, and cache (1.1). The highest hierarchy level, k=2, includes 1 cache, cache (0,2). Cache
(0,2) may be the parent of cache (0,1) and cache (1,1). Cache (0,1) may be the parent of
cache (0,0) and cache (1.0). Cache (1,1) may be the parent of cache (2.0) and cache (3.0).
Every cache that has a parent cache is a child cache with respect to the parent cache. Further,
caches in a hierarchical cache system that are not parent caches may be referred to as ‘leal’

caches. For example, in the tree structure shown in FIG. 2A, the caches of hierarchy level

i0

i5

20

WO 2016/153779 PCT/US2016/021421

k=0 (i.e., cache (0.0), cache (1,0), cache (2,0), and cache (3,0)} are examples of leaf caches.
When a child cache in a hierarchical cache system experiences a cache miss with respect o a
requested asset, the child cache may communicate with the parent cache of the child cache to
determine whether or not the parent cache has the requested asset. If the parent cache does
not have the requested asset, the parent cache may then communicate with a higher level
cache or an origin scrver to obtain the requested asset, before providing the requested asset to
the child cache.

As used herein, the term “asset” refers to data that may be stored in a cache or provided by an
origin server, and may be requested by a wser. For example, with respect to online video, an
example of an asset is a 2-10 second chunk of video data stored at an origin server, that may
be requested by a user and may be stored at one or more caches.

According to one or more example embodiments, the caches in the CDN 130 may be
organized in the hierarchical cache structure shown in FIG. 2A. For example the caches
I135A~F in FIG. 1 may correspond, respectively, to cache (0,2}, cache (0,1), cache (1.1},
cache (0,0), cache {1,0), and cache (2,0).

An example structure of the network elements of data network 100 will now be discussed

below with reference to FIG. 2B.

Example Network Element Structure

FIG. 2B 1s a diagram lustrating an example structore of a network element 251, According
to example embodiments, any or all network elements in the data network 100, including for
example the end user 110, the caches 135A-F, and the onigin server 140, may have the same
structure and operation described below with respect to network element 251.

Referring to FIG. 2B, the network clement 251 may include, for example, a data bus 239, a
transmitting unit 252, a recetving unit 254, a memory unit 256, and a processing unit 258,
The transmutting unit 252, receiving unit 254, memory unit 256, and processing unit 258 may
send data to and/or receive data from one another using the data bus 239.

The transmitting unit 252 is a device that includes hardware and any necessary software for
transmitting signals including, for example, control signals or data signals via one or more
wired and/or wireless connections to other network elements in data network 100.

The receiving unit 254 is a device that includes hardware and any necessary software for
receiving wireless signals including, for example, control signals or data signals via one or

more wired and/or wireless connections to other network elements in the data network 100,

i0

i5

20

WO 2016/153779 PCT/US2016/021421

The memory unit 256 may be any device capable of storing data including magnetic storage,
{lash storage, etc.

The processing unit 258 may be any device capable of processing data including, for
example, a processor,

According to at least one example embodiment, any operations described herein, for example
with reference to any of FIGS. 1-3, as being performed by any onc of a user {e.g., the end
user 110), a cache (e.g., caches 135A-F), and a server {(e.g., the origin server 140) may be
performed by an electronic device having the structure of the network element 251 iHustrated
in FIG. 2B. For example, according to at least one example embodiment, the network element
251 may be programmed, in terms of software and/or hardware, to perform any or all of the
functions described herein as being performed by a user, a cache, or server. Consequently,
each of the end user 110, the caches and the servers described herein may be embodied as
special purpose computers.

Examples of the network element 251 being programmed, in terms of software, to perform
any or all of the functions described herein as being performed by any of a user, a cache, or
server described herein will now be discussed below. For example, the memory anit 256 may
store a program including cxecutable instructions corresponding to any or all of the
operations described herein with reference to FIGS. 1-3 as being performed by a user, a
cache, or server. According to at least one example embodiment, additionally or alternatively
to being stored in the memory onit 256, the executable instructions may be stored in a
computer-readable medium including, for example, an optical disc, flash drive, SD card, etc.,
and the network element 251 way include hardware for reading data stored on the computer
readable-medium. Further, the processing unit 258 may be a processor configured o perform
any or all of the operations described herein with reference to FIGS. 1-3 as being performed
by a user, a cache, or server, for example, by reading and executing the executable
instructions stored in at least one of the memory unit 256 and a computer readable storage
medium loaded into hardware included in the network element 251 for reading computer-
readable mediums.

Examples of the network element 251 being programmed, in terms of hardware, to perform
any or all of the functions described herein as being performed by a user, a cache, or server
will now be discussed below. Additionally or alternatively to executable instructions
corresponding to the functions described with reference to FIGS. 1-3 as being performed by a

user, a cache, or server being stored in a memory unit or a computer-readable medium as is

i0

i5

20

WO 2016/153779 0 PCT/US2016/021421

discussed above, the processing unit 258 may include a circuit that has a structural design
dedicated to performing any or all of the operations described herein with reference to FIGS.
1-3 as being performed by a user, a cache, or server. For example, the above-referenced
circuit included in the processing unit 258 may be a FPGA or ASIC physically programmed
to perform any or all of the operations described with reference to FIGS. 1-3 as being
performed by a uscr, a cache, or server.

An overview of hierarchical caching according to one or more example embodiments will

now be discussed below.

Overview of Hierarchical Caching According to One or More Example Embodiments

With respect to many conventional caching algorithms, some of the impediments to practical
use may have been a perceived complexity of implementation of the algorithms which can
impede throughput performance and an expectation that the value of additional caching
performance gains such as increased hit-rate may be outweighed by factors such as ability to
adapt to asset popularity changes.

Une or more example embodiments use new caching algorithms for online video. The new
caching algorithms have low implementation complexity; and have improved hit-rate and
replacement rate. The new caching algorithms have been evaluated based on simulations that
involve typical popularity of assets and realistic changes using video on-demand (VoD»)
statistics. Some studies have indicated that many assets are quite popular in the beginning of
their lifecycle, but drop in popularity at an exponential rate and are a fraction of their
popularity within days after their introduction. Based on these, not ounly hit-rate, but also byie
bit-rate and replacement rate are used to evalvate caching algorithms according to one or
more example embodiments. Though one or more cxample embodiments of caching
algorithms are described herein with reference to caching online video, one or more example
embodiments described herein for caching online video may also apply to other types of
media transferred through communications networks like the internet including, for example,

audio, pictures, video games, and 3-D objects and models.

Example Method of Providing Hierarchical Caching According to One or More Example

Embodiments
A method of providing hierarchical caching according to one or more example embodiments

will now be discussed with respect to FIG. 3 and with reference to examples in which online

i0

i5

20

WO 2016/153779 PCT/US2016/021421

[
[N

video data is being cached by the CDN 130 of FIG. 1. According to one or more example
embodiments, the method of providing hierarchical caching ilustrated in FIG. 3 is based on a
hierarchical cache, like that shown in FIG. 2A, rather than a horizontally cooperative cache,
because hierarchical caches may be more efficient for operator networks.

According to one or more example embodiments, a method of providing hierarchical caching
uses a caching algorithm that works in a local manner in a given cache without the need for
global information. Further, according to one or more example embodiments, a method of
providing hierarchical caching uses a caching algorithm that is an O(/) algorithm with
respect to the nurmber of assets or nodes.

According to one or more example embodiments, a method of providing hierarchical caching
uses a caching algorithro that is relatively guick to respond to changes in popularity when
previously very popular assets drop their value guickly.

According to onc or more cxample embodiments, a method of providing hierarchical caching
uses a caching algorithm that provides improved hit-rate performance.

According to one or more example embodiments, a method of providing hierarchical caching
uses a caching algorithin that does not use the size of an asset in the decision to evict as this
may cause undesirable behaviour for online video.

According to one or more example embodiments, a method of providing hierarchical caching
uses a caching algorithm that runs at each cache in a given hierarchy independent of the
algorithm 1o other caches. Each cache estimates the jnter-arrival time of each asset locally.
Each cache also calculates its own characteristic time, which is defined as the average time an
asset stays in cache before it 1s evicted. For example the characteristic time of a cache may be
determined by the cache in accordance with known method using LRU, by determining the
average of several eviction times corresponding to several assets where, for each asset, the
eviction time for that asset may be determined when the cache is about to evict an asset, as
the difference between the current time and the time that asset was last requested. One or
more example embodimoents of the above-referenced caching algorithm will now be
discussed in greater detail below.

According (o one or more example embodiments, a method of providing hierarchical caching
uses a caching algorithm that evicts assets in accordance with the known LRU scheme. For
cxample, according to one or more cxample embodiments, once the caching algorithm
determines an asset s (o be evicted form a cache, the asset selected for eviction is the least

recently used asset.

15

WO 2016/153779 12

Table 1 below describes variables that are defined for each asset.

Table 1

PCT/US2016/021421

i | Asset Number from 0 to N.

J | Cache number in a given level of hierarchy from O to P.

k i Cache hierarchy level from 0 to M, higher number is higher in
higrarchy.

T | Average inter-arrival time of asset i for cache j in hierarchy k.

of

P | Previous time asset { was seen in cache j in hierarchy &.

Table 2 below describes variables that are defined for each cache.

Table 2

TCy | Characteristic time of cache j in hierarchy &.

PLj | Last time this asset was seen in cache j in hierarchy &. This is part

of the LRU function which leaves a timestamp for the last time
request for an assct was scen in a cache.

7S | Current time.

Table 3 below describes variables that are defined for the whole cache hierarchy.

Table 3

Woe | Weight for the exponential moving average for the characteristic
time. Example values include 0.01 — 0.05.

Wy | Weight for the exponential moving average for the inter-arrival
times. Example values include 0.01 — 0.05,

GS | Gentle slope parameter on how quickly ¥Cj is increased over time.

Example valoes include 0.001 — 0.0001.

Table 4 below describes imitial conditions that, according to one or more ecxample

embodiments, are set before the caching algorithm used by the method of providing

hierarchical caching ilinstrated in FIG. 3 s run.

Tablc 4

P | Set all to the current time.

Ty | Set all to a large number, but smaller than the number used for

to be cached until 7C;; 1s updated to a real value. An example
would set this number 100 times higher than the largest expected
inter-arrival time.

initial value for the characteristic times 7Cy. This allows all assets

TCy | Set all to a large number, larger than the number for 7. Typically

set this at 10 times the Ty vumber.

Equation (1) below illustrates the manner in which 7Cjy, the characteristic time value of a

10

i5

20

25

30

WO 2016/153779 PCT/US2016/021421

cache {j,k}, is calculated.

O, =wye X (T S =Fy } + (l = Wi >X ey,

(1)

Equation (1) calculates the characteristic time 7Cjy as an exponential moving average of times
assets stay in cache (k) without being requested before being evicted from the cache (3,k},
for example, in accordance with an LRU cache eviction policy. For example, the
characteristic time 7C; as an exponential moving average of times between receipt last
requests for assets in cache (3,k) and eviction of the assets from cache (3,k}. According to one
or more example embodiments, in accordance with known LRU methods for operating
caches, the value Py is updated to the current time whenever a cache receives a request for
the /" asset by the LRU function itself.

Equation (2) below illustrates the manner in which the average the inter-arrival time of asset §
for a cache (jk}, Ty is calculated. According to one or more example embodiments, the
value Ty may be calculated whenever an asset 1s requested {rom any cache, whether it is a

leaf cache or a higher layer cache.

Fow =wp X (TS = Py } +{1- Wi)XTyk (2)

Equation (2} calculates an exponential moving average of the inter-arrival time of asset i
using the weight wa.
According to one or more example embodiments, after calculating the value 7Cj in
accordance with equation (1), the characteristic time TCy is gently increased so that the
characteristic time 7Cy does not get stuck at a low number. The characteristic time 7Cy is
gently increased in accordance with equation (3) below.
TC, =TC, +GSx{7s - PL,) 3
According to one or more example embodiments, after gently increasing the value 7Cy in
accordance with equation (3), the current value for PLy 18 set to the current time as is

illustrated by equation (4) below.

PL, =TS ;
" 4

io

15

20

25

30

WO 2016/153779 14 PCT/US2016/021421

An example of a caching algorithm used by the method of providing hierarchical caching
according {0 one or more example embodiments 15 described below n the forro of pseudo
code by algorithm 1. According to one or more example embodiments, algorithm 1 may be
performed, individually, by each cache in the hierarchical tree structure of CDN 130. For
example, every time a cache from among the caches of the CDN 130 receives a request for an
asset {, the cache may perform Algorithm 1 to determine if the requested asset needs to be

cached by the cache.

Algorithm 1

Update asset counts 73y; as defined earlier

If (asset already in cache) begin
Deeliver asset 7 to client or lower layer cache
Update LRU Database (£;) with timestamp {or that asset
end)
else if (Z;fk <TCy) begin
Request asset { from upstream cache or origin
Deliver asset { to client or lower layer cache
Store asset { in the local cache
end
else begin
Request asset i {rom upstream cache or origin
Deliver asset 7 - note here we do not store this asset
end

An example use of Algorithm 1 will be discussed in greater detail below with respect to FIG.
3. FIG. 3 15 a flow chart illustrating an example method of operating a network clement to
perform hierarchical caching of online media. FIG. 3 will be explained {rom the perspective
of cache 135B which, as is explained above with reference to FIG. ZA, corresponds to cache
0,1 in FIG 2A (e, the O cache in hierarchy level k=1).

Referring to FIG. 3, in step 5305, a request for an asset is received at the cache. For example,
in step 53035, the cache 135B receives a request for an asset x. The cache 1358 may receive
the request for the asset x from one of the children caches of cache 135B (i.e., as is illustrated
in FIG. 2A, the cache 135B is the parent to caches 135D and 135E, which correspond to
cache (13,0) and cache (1,0) illustrated in FI(G. 2A, respectively). The method shown in FIG.

3 will be explained with reference to an example where the cache 135B receives a reguest for

i0

i5

20

WO 2016/153779 i PCT/US2016/021421

the asset x from the cache 135D. For example, the cache 135D may send a request for the
asset x to cache 1358 in response o receiving, al the cache 135D, a request for the asset x
from the end user 110. Accordingly, when the method shown in FIG. 3 is performed by the
cache 135B when receiving a request for an asset x, i=x, j=0, and k=1.

As is shown in Algorithm 1, upon receiving the request {or the asset x in step $303, the cache
1358 may calculate the value Ty vsing equation (2). Next the cache may set the value for Py
as the current time. Next, the cache 135B may proceed to step 5310. Whenever the cache
1358 evicts an asset, it may calculate the value 7C; using equation (1) and then the cache
1358 may gently increase the value 7Cj; using equation (3).

in step S310, the cache determines whether or not the asset for which the request was
received 1n step 5305 is stored (1.¢., cached) in the cache. For example, in step 5310, the
cache 135B may determine whether the asset x is already cached in the cache 135B. If the
asset the asset x is currently stored in the cache 1358, then the cache 1338 proceeds to step
S315.

In step S315, the cache provides the asset requested in step S305 and updates the LRU
database of the cache. For example, in step S3135, the cache 135B may provide the asset x to
the network element that requested the asset in step S310, the cache 135D, Further, in
accordance with known LRU methods of operating a cache, the cache 135D may update an
LRU database within the cache 135D (e.g., within the memory 256 of the cache 135D) that
stores timestamps indicating, respectively, times of the most recent uses of each the assets
presently stored in the cache.

Returning to step 5310, if the cache determines in step S310 that the asset requested in siep
5305 is not included in the cache, the cache proceeds to step $320. For example, if, in step
S310, the cache 135B determines that the asset x is not currently stored in the cache 135B,
then the cache 135B proceeds to step S320.

In step 5320, the cache retrieves the asset requested in step S305. For example, in step S320,
the cache 135B may send a request for the asset x to the parent of the cache 1338, cache
I35A. In response to the request sent by the cache 1358, the cache 135B may receive the
asset x from the cache 135A. For example, the cache 135A may be storing the asset x
already, or the cache 135A may retrieve the asset x from the origin server 140 before
providing the asset x to the cache 135B.

Next, in step S325, the cache performs a comparison based on the values 7Cjy and Ti and

determines whether or not to store the asset x based on the comparison. For example, in step

10

i5

20

25

30

WO 2016/153779 16 PCT/US2016/021421

5325, the cache 135B may compare the value 7Cy to the value 7 in accordance with
equation (5) below.
(r

ik

<7C, } 5)

If the result of the comparison operation in step 5325 is true, the cache 135B may proceed to
step 3335 before proceeding to step S330. In step 8335, the cache 135B stores the assel X in
the cache 135B. In step S330, the cache 135B provides the asset to the network element that
reguested the asset, cache 135D,

I the result of the comparison operation in step 5325 is false, the cache 135B may proceed
directly to step S330 without proceeding to step S335. Accordingly, if the result of the
comparison operation in step 83235 is false, the cache 1338 may provide the asset x to the
cache 135D without caching the asset x in the cache 135B. Thus, according to one or more
example erbodiroents, caches in the CDN 130 may determine whether or not to cache a
retrieved asset in accordance with the comparison defined by equation (5).

Alter providing the requested asset x in step S330, the cache 1358 returos to step 5305 to
await receipt of the next asset request.

Though FIG. 3 is explained from the perspective of the cache 1358, the operations discussed
above with respect to the cache 135B may be performed by any cache in the CDN 130. For
cexample, all caches in the CDN may perform the operations discussed above with respect to
the cache 135B concurrently.

A new database, which may be included in caches of the CDN 130 (c.g., within the memories
256 of the caches of the CDN 130) in addition (o the LRU databases of the caches, will now

be discussed below.

Large Asset Inter-arrival Time Database

As is discussed above, caches of the CDN 130 may include LRU databases in accordance
with known LRU methods for operating caches. Further, each of the caches of the CDN 130
may also include a database {or storing inter-arrival times of various assets for example, for
calculating the average inter-arrival of asset 1, Tj.

Given that the number of assets in a library can be very large, sometimes much larger than
the number of assets that can be stored 1o a cache, it may be desirable to use more than one
database to store the inter-arrival time statistics. For example, according to one or more
example embodiments, the caches of the CDN 130 may nclude a main database of infer-

arrival times and an additional database of inter-arrival times. In accordance with one or

i0

i5

20

WO 2016/153779 PCT/US2016/021421

more example embodiments, the main database of inter-arrival times for a cache does not
contain inter-arrival times that are more than a few times the 7C; value for that cache; for
example 3 times. According to one or more example embodiments, the exact value above
which inter-arrival times are not included in the main inter-arrival timne data base may be
based on the popularity distribution of assets stored at that cache.

The additional database may be a “one occurrence” database that is used to store assets which
have seen only a single request so far and assets that are demoted from the main inter-arrival
time database. For example, when a cache sees a sccond request for an asset, the cache may
calculale an inter-arrival time based on the timings of the first and second requests, and the
cache may place that asset into the main inter-arrival time database based on the newly
calculated nder-arrival time. Further, upon placing asset which has the newly calculated
inter-arrival time into the main database, the asset with the largest inter-arrival time in the
main databasc may be removed from the main database. In order to return to the main
database, the removed asset may need to enter the “one occurrence” database first, and then
be promoted to the main inter-arrival database in the manner discussed above.

The additional database may be a “one occurrence” database that is used to store assets which
have seen only a single request so far. When the cache sees a second request for an asset in
the “one occurrence” database, the cache may calculate an inter-arrival time based on the
timnings of the first and second requests, then the cache may place that asset into the main
inter-arrival time database based on the newly calculated inter-arrival time while also deleting

29

that entry from the “one occurrence” database. Further, upon placing asset which has the
newly calculated inter-arrival time ioto the main database, the asset that was the least recently
used in the main database may be removed from the main database. Least recently used
means the asset whose last request was the oldest among all assets. In order to return to the
imain database, the removed asset may need to enter the “one occurrence” database fivst, and
then be promoted to the main inter-arrival database in the manner discussed above.

Table 5 below describes additional vanables for the cost function that are defined for each

asset.

Table 5

CVy Characteristic marginal value of cache j in hierarchy £.

Uit The current cost of asset 1 in cache § in hierarchy k

MV The marginal value of asset 1 in cache j in hievarchy k

MU The exponential moving averages of marginal valoe of asset t in cache j
in hierarchy k

10

i5

20

25

30

35

WO 2016/153779 PCT/US2016/021421

18
C-outy The cost of asset 1 in cache j in hierarchy k sent {rom origin or upstream
cache
C-inyg The cost of asset 1 in cache j in hierarchy k sent to downstream cache
C-stoi The marginal value of asset 1 in cache j in hierarchy k
7S Current time.

As discussed below, in other example embodiments, the caches in the CDN 130 may perform

Algorithm 2 when receiving a request {for an asset.

Algorithm 2

Update asset counts Ty; as defined earhier

If (asset already in cache) begin
Deliver asset i and cost Cy, ¢ of asset 1 to client or lower layer cache,
Update LRU Database (£;;) with timestamp for that asset;
end

ege M. <« /"” .
else if (’ 10 C‘/Jk) begin

Request asset i {rom upstream cache or origin

Deliver asset i and cost Cy, 3 of asset 1 to client or lower layer cache

Store asset { in the cache, where the storage includes evicting a currently stored asset if the
cache is full.

end

else begin

Request asset i {rom upstream cache or origin

Deliver asset 7 and cost Coyip of asset 1 to client or lower layer cache, where the cost
Couij includes an additional marginal cost Cy i due to the asset 7 not being stored locally

end

Algorithm 2 will be explained with reference to FIG. 4, from the perspective of cache 135B
which, as explained above with reference to FIG. 2A, corresponds to cache (0,1) in FIG 2A
(i.c., the 0" cache in hierarchy level k=1).

Referring to FIG. 4, in operation 5405, the cache receives a request for an asset. For
example, the cache 135B may receive the request {or the asset x from one of the children
caches of cache 135B (i.e., as is tllustrated in FIG. 2A, the cache 1358 is the parent to caches
135D and 135E, which correspond to cache (0,0) and cache (1.0) illustrated in FI1G. 2A,
respectively).

Hereinafter, for the sake of explanation, it is assumed that cache 135B receives a request for
the asset X from the cache 135D, for example, in response to cache 135D receiving a request

for the asset x {rom the end user 110. Therefore, from the point of view of cache 1338

i0

i5

20

WO 2016/153779 19 PCT/US2016/021421

receiving a request for asset x, 1=x, =0, and k=1.

As is shown in Algorithm 2, the cache 1358 may calculate the exponential moving averages
of the marginal value MU using Equation (7). Next the cache may set the value for Fy; as
the current {ime.

In operation 5410, the cache 1358 may determine whether or not the asset x is stored {(i.e.,
cached) in the cache 1358, If the cache 135B determines that the asset x is currently stored in
the cache 135B, then the cache 135B may proceed to operation 54135, otherwise the cache
1358 may proceed to operation S420.

In operation $415, the cache 1358 provides the asset x to cache 135D and updates the LRU
database of the cache in accordance with known least recently used (LRU)} methods. For
example, the cache 135D may update an LRU database withio the cache 135D (e.g., within
the memory 256 of the cache 135D) that stores timestamps indicating, respectively, times of
the most recent uses of cach the assets presently stored in the cache. Further the cache 1358
provides the cost Couipe Of the asset i=x to cache 135D where the cost Couije equals the
current cost Ciy associated with the asset 1.

In some example embodiments, the cost may represent the number of hops (numbers of
caches) the asset has passed before being stored in the cache. In other example embodiments
the cost may represent the latency the asset has encountered before being stored in the cache.
In still other example embodiments, the cost may represent a combination of metrics, for
example, both the number of hops and the latency encountered.

If the cache 135B determines in operation S410 that the asset x is not stored therein, the
cache 135B proceeds to operation S420.

In operation $420, the cache 1358 retrieves the asset x {rom the origin or another one of the
caches. For example, the cache 135B may send a request for the asset x to the parent of the
cache 1358, cache 135A. In response to the request sent by the cache 1338, the cache 1358
may receive the asset x from the cache 135A. For example, the cache 135A may be storing
the asset x already, or the cache 135A may retrieve the asset x from the origin server 140
before providing the asset x to the cache 135B.

In operation S425, the cache 135B determines whether to store the asset x based oun a
comparison between the moving average of the marginal value MU;; associated with the
asset i=x and the characteristic marginal value C'Vj of the cache 135B.

For example, the cache 135B may compare the value MU to the value CVj 10 accordance

with Equation (6) below.

io

20

30

WO 2016/153779 20 PCT/US2016/021421

AAET N
(mu,, <cv,) (&)

The cache 1358 may calculate the characteristic marginal value CVj using Equation (7). The
cache 1358 may recalculate the value of the characteristic marginal value CVj, only when the
cache 1358 is full and one of the previously stored assets needs to be evicted to make room
for the asset x. The cache 135B may store the updated value of the characteristic marginal
value CVj.

Yo o= TCjk —y <TS B P;‘j,’(} 1y IOV

T TTETE Yre X/ """""" +{ =Wy JXC

)

As illostrated in Equation 7, the characteristic marginal value is egual to the characteristic
tume value 7T, determined in Equation 1 divided by the cost Cin of asset 1 to cache (3.k).
Therefore, when cvicting an asset 1 from cache (3,k), if the cost Cj associated with obtaining
the asset ¢ is high, the characteristic marginal value CVj, which represents a cost conscious
average period of time assets stay in a cache (j.k) without being requested before eviction,
will be low.

Further, the cache 1358 may calculate the exponential moving averages of the marginal value

MU of the asset =X using Equation (8) below.
LTy (rs - £,) ,
MU, = (_" = Wy, X “""E,"""""" +(1- Wis } XMU,,
< ik <k (%)

The cache 135B may calculate the marginal value MUy for each asset 1 retrieved by the
cache 135B, and may recalculate the marginal value MUj; of a stored asset 1 when one of the
stored assets i 1s requested.

As illustrated 1o Equation &, the expounential moving averages of the marginal value MUy is
equal to the average the inter-arrival time of asset T divided by the cost Ciy of asset 1 to
cache {},k}.

If the cache 135B determines, using Equations 6 to 8, that the moving average of the
marginal value MU, associated with the asset 1=x 5 not less than the characteristic marginal
value CVj of the cache 135B, the cache 135B may proceed to operation 5430.

In operation 5430, if the moving average of the marginal value MUy associated with the
asset 1=x is not less than the characteristic marginal value CVjy of the cache 1358, the cache
1358 provides the assct to the network element that requested the asset, cache 135D.
Further, the cache 1358 provides the cost Coui of the asset i=x to cache 135D where, due to

the cache 135B not storing the asset x, the cost Co i includes an additional marginal cost C-

i0

20

WO 2016/153779 PCT/US2016/021421

stoy. indicating the cost of cache 135B retrieving the asset x if cache 135D decides to evict
the asset at a later time period.

In operation 5435, if the cache 135B determines, using Equations 6 o 8, that the moving
average of the marginal value MU, associated with the asset i=x 1s less than the
characteristic marginal value CVj of the cache 135B, the cache 135B may store the asset X in
the cache 135B and proceed to operation S440.

When the cache 1358 stores the asset x therein, since the size of the cache 1358 may be
definite, the cache 135B may require eviction of a currently stored asset to generate space to
store the asset x.

For example, the cache 135B may determine which asset to evict based the largest marginal
value MV of the stored assets 1.

For example the cache 135B my utilize Equation @ below to determine the marginal value
MV of the assets 1, and evict the asset with the largest marginal value MV, .

frs-p,)

ifk {9)

MV, =

As illustrated 1o Equation 9, if the cost Gy associated with the asset i is relatively high, then
the marginal value MV, of the asset 1 will be relatively low, and, therefore, that asset 1 will
likely not be evicted due to the high costs associated with re-obfaining that asset 1.

Thus, according to one or more example embodiments, caches in the CDN 130 may
determine whether or not to cache a retrieved asset in accordance with the comparison
defined by equation (6) such that the determination of whether to cache an asset is based on
the cost associated with retrieving that asset. Further, the cache 135B may determine which
asset to evict to make space for the stored asset in consideration of the cost of obtaining each
of the assets i.

In operation 5440, the cache 135B may provide the asset x (o cache 135D. Further the cache
1358 provides the cost Cougi of the asset i=x to cache 135D where the cost Coy i equals the
current cost Cyy associated with the asset 1.

After providing the requested asset x in operations S415, S430 and 5440, the cache 1358
returns to operation 54035 to await receipt of the next asset reguest.

Example embodiments being thus described, it will be obvious that embodiments may be
varied in many ways. Such variations are not {0 be regarded as a departure from example
embodiments, and all such modifications are intended to be included within the scope of

example embodiments.

i0

i5

20

30

WO 2016/153779 PCT/US2016/021421

device,

22

WE CLAIM:

1. A method of operating a first cache device, the method comprising:
receiving, at the first cache device, a request to send a first asset to a second device;
determining whether the first asset is stored at the {irst cache device; and

when the determining determines that the first asset is not stored at the first cache

obtaining, at the first cache device, the first asset,

calculating a cost associated with the first asset,

selectively storing the first asset at the first cache device based on a moving
average of a marginal value of the first asset with respect to the first cache device and
a characteristic marginal value of the first cache device, the characteristic marginal
value of the first cache device representing a cost conscious average period of time
between receipt of last requests for, and eviction of, assets cached at the first cache,
and

sending the first asset and the calculated cost to the second device.

2. The method of claim 1, wherein the first cache is one of a plurality of cache

devices of a content distribution network divided into a plurality of hierarchy levels, and the

method turther comprises:

for each of the plurality of cache devices,

determining a moving average of the marginal value of a reguested asset,
when a request for the requested asset is received by a respective one of the phirality
of cache devices, and

determining a chavacteristic marginal value associated with a respective one of

the plurality of cache devices, when the cache device evicts an asset.

3. The method of claim 2, wherein the obtaining obtains the f{irst asset and an

obtained cost associated therewith from a higher level of the plurality of hierarchy levels, and

the calculating the cost includes adding a marginal cost to the obtained cost if the selectively

storing does not store the first asset.

i0

i5

20

WO 2016/153779 PCT/US2016/021421

4. The method of claim 1, further comprising:
determining the characteristic marginal value of the first cache device by,

initializing the characteristic marginal value of the first cache device as a value
which is higher than the jnitialized value of the moving average of the marginal value
of the first asset with respect to the {irst cache device, and

updating the characteristic marginal value of the first cache device based on
exponentially weighted moving average of periods of time between receipt of last
requests for, and eviction of, assets cached at the first cache device and the cost
associated with the assets, in accordance with a least recently used cache eviction

policy.

5. The method of claim 1, Turther comprising:
determining the moving average of the marginal value of the first asset with respect to
the first cache device by,

initializing the moving average of the marginal value of the first asset with
respect o first cache device as a value lower than the initialized value of the
characteristic marginal value of the first cache device, and

updating the moving average of the marginal value of the first asset with
respect to the first cache device based on exponentially weighted moving average of
periods of time between consecutive receipts of requests for the first asset and the cost
associated with the first asset, at the first cache device, the requests requesting the first

cache device 1o send the first asset {o another device.

6. The method of claim 1, wherein the selectively storing includes,
assigning the first asset to a fivrst database, when an initial request for the {irst asset is
received at the first cache device; and

when a second request s received consecutively with respect to the initial request,

determining an inter-arrival time of the first asset based on times at which the
initial and second requests were received at the first cache device, and

if a number of assets stored in an inter-arrival database is greater than or equal
to a threshold then,

determining a second asset to remove from an inter-arrival database

based on which of a plurality of assets stored in the inter-arrival database has a largest

i0

i5

20

WO 2016/153779 PCT/US2016/021421

24

marginal value associated therewith that decreases as the cost associated with the
second assel increases, the inter-arrival time database storing arrival times of requests
corresponding {o assets, the inter-arrival time database being different than the first
database, and

removing the second asset from the inter-arrival database; and

assigning the first asset to the inter-arrival time database.

7. The method of claim 6, {urther comprising:

determining the marginal value of the assets by dividing a last requested time of each

of the plurality of assets by the cost associated therewith, wherein

the cost associated with the first asset represents one or more of a number of

hops between a source of the {irst asset and the first cache device and a latency the first asset

encountered therebetween.

8. A first cache device comprising:

a processor and a memory, the memory containing computer readable code that, when

executed by the processor, configures the processor to,

device.

receive a request to send a first asset to a second device,
determine whether the first asset is stored at the first cache device, and
when the processor determines that the fivst asset is not stored at the {lirst cache
device, the processor is configured to,
obtain, at the first cache device, the first asset,
calculate a cost associated with the first asset,
sclectively store the first asset at the first cache device based on a
moving average of a marginal value of the first asset with respect to the first cache
device and a characteristic marginal value of the first cache device, the characteristic
marginal value of the first cache device representing a cost conscious average period
of time between receipt of last requests for, and eviction of, assets cached at the first
cache, and

send the obtained first asset and the calculated cost to the second

9. The first cache device of claim 8, wherein,

WO 2016/153779 - PCT/US2016/021421

the first cache is one of a plurality of cache devices of a content distribution network
divided into a plurality of hierarchy levels, each of the plurality of cache devices having a
processor associated therewith, and
cach one of the plurality of cache devices is configured to,
determine a moving average of the marginal value of a requested asset, when a
request for the requested asset is received by a respective one of the plurality of cache
devices, and
determine a characteristic marginal value associated with a respective one of

the plurality of cache devices, when the cache device evicts an asset.

10, The first cache device of claim 9, wherein the processor is configured to,
obtain the first asset and an obtained cost associated therewith from a higher level of
the plurality of hierarchy levels,
calculate the cost by adding a marginal cost to the obtained cost if the processor
determines not to store he first asset, and
selectively store the {irst asset by,
assigning the first asset to a first database, when an initial request for the first
asset 1s recetved at the first cache device;
if a number of assets stored in an inter-arrival database is greater than or equal
to a threshold when a second request is received consecutively with respect to the initial
request then,
determining an infer-arrival time of the f{irst asset based on times at
which the initial and second requests were received at the first cache device, and
determining a second asset to remove from an inter-arrival database
based on which of a plurality of assets stored in the inter-arrival database has a largest
marginal value associated therewith that decreases as the cost associated with the
second asset increases, the mder-arrival time database storing arrival times of requests
corresponding to assets, the inter-arrival time database being different than the first
database, and
removing the second asset from the inter-arrival database; and

assigning the first asset to the inter-arrival time database.

PCT/US2016/021421

WO 2016/153779

1/5

YIS
NIOIMO

L "OId

~ ~
X 3w gegy /!

—

i’

\ gy LN

gs¢ _‘\

0¢l

43sn
and

bl

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/021421

WO 2016/153779

2/5

V¢ ‘Old

AHOMYSIIH NINO Y NI () SIHOVD

() aHovo

A

(0¢)
JHOYD

{02
JHOVD

(0°1) (0'0)
JHOVD JHOVD

L

('Y
JHOYD

-

(1'0)
JHOVD

(Z'0)
JHOYD

(DAHOUYYIH

SUBSTITUTE SHEET (RULE 26)

WO 2016/153779

3/5

251
T 259

PCT/US2016/021421

254
"

252
[

TRANSMITTING
UNIT

RECEIVING
UNIT

258
N

256
\

MEMORY
UNIT

PROCESSING
UNIT

FIG. 2B

SUBSTITUTE SHEET (RULE 26)

WO 2016/153779 PCT/US2016/021421

4/5
5305 '
\ RECEIVE, AT CACHE,
REQUEST FOR ASSET FROM
REQUESTING ELEMENT
$315
5310 -
VES PROVIDE ASSET FROM
CACHE, AND UPDATE
LRU'DATABASE
NO
5320
N osmanasser rro
ORIGIN OR OTHER CACHE
ﬁm
7| PROVIDEASSET

S335
\ STOREASSET IN CACHE

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2016/153779 PCT/US2016/021421

5/5
S405 *
\ RECEIVE, AT CACHE,
REQUEST FOR ASSET FROM
REQUESTING ELEMENT
S415
S410 /
YES PROVIDE ASSET FROM
CACHE AND COST, AND >
UPDATE LRU DATABASE
NO
$420
X OBTAIN ASSET FROM
ORIGIN OR OTHER CACHE
ﬁBO

PROVIDE ASSET AND COST,
WITHOUT STORING ASSET

» SUCH THAT THE COST

INCLUDES MARGINAL

ADDITIONAL COST
5440
5435 \

\ STORE ASSET IN CACHE » PROVIDE ASSET AND COST

FIG. 4

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/021421

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/12 GO6F12/08
ADD.

HO4L29/08

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/268733 Al (NARAYANAN ASHOK [US] ET 1-10
AL) 10 October 2013 (2013-10-10)
abstract
paragraph [0027] - paragraph [0036]
figures 1, 3-4
A US 20117107030 AL (BORST SIMON [US] ET AL) 1-10
5 May 2011 (2011-05-05)
abstract
figures 1, 3, 5
A US 6 826 599 Bl (SHAFFER SHMUEL [US] ET 1-10
AL) 30 November 2004 (2004-11-30)
abstract
column 7, 1ine 1 - column 8, Tline 34
figures 1, 3
_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :
"A" document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

U=

UK

"Qr

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 April 2016

Date of mailing of the international search report

06/05/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Mandato, Davide

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/021421

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 20147280679 Al (DEY SUJIT [US] ET AL)
18 September 2014 (2014-09-18)

abstract

paragraph [0055] - paragraph [0067]
paragraph [0163] - paragraph [0185]
figures 2, 3, 12C, 13, 14

US 2012/054445 A1l (SWART GARRET FREDERICK
[US] ET AL) 1 March 2012 (2012-03-01)
abstract

figures 2, 3, 4A, 4B, 10

EP 2 830 285 Al (THOMSON LICENSING [FR])
28 January 2015 (2015-01-28)

abstract

paragraph [0007] - paragraph [0018]
figure 3

US 20067090040 Al (ESCHMANN MICHAEL K
[US]) 27 April 2006 (2006-04-27)
abstract

paragraph [0010] - paragraph [0017]
figure 3

1-10

1-10

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/021421
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2013268733 Al 10-10-2013 NONE

US 2011107030 Al 05-05-2011 NONE

US 6826599 Bl 30-11-2004 US 6826599 Bl 30-11-2004
us 7107321 Bl 12-09-2006

US 2014280679 Al 18-09-2014 NONE

US 2012054445 Al 01-63-2012 CN 103154912 A 12-06-2013
CN 103168293 A 19-06-2013
CN 104850510 A 19-08-2015
EP 2612249 Al 10-07-2013
EP 2612250 A2 10-07-2013
EP 2746954 A2 25-06-2014
US 2012054445 Al 01-03-2012
US 2012054447 Al 01-03-2012
WO 2012030900 Al 08-03-2012
WO 2012030903 A2 08-03-2012

EP 2830285 Al 28-01-2015 EP 2830285 Al 28-01-2015
EP 2830288 Al 28-01-2015
US 2015033255 Al 29-01-2015

US 2006090040 Al 27-04-2006 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report

