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802: Initialization; 
804: Partition a large audio database into NG smaller groups; 
806: Establish a model for target audio clip; 
808: #pragma omp parallel for schedule(dynamic,1), 

num_threads(NumO?'hread); 
/* dynamically schedule smaller groups to available processors and 
start parallel processing of the scheduled groups by multiple I 
processors */ 

810: For groupid = O to NG-1 

812: { 
814: Partition current group into NS partially overlapped 

segments, if necessary; ' 

816: For segmentid = 0 to NS-1 

818: { ' . 

820: Extract a feature vector sequence; 
- 822: , Establish a model for the segment; 

824: - Computedistance between the model of each 

segment and the target audio clip model; 
826: ' lf Distance < threshold #1, Match! 

828: else if Distance > threshold #2, 
' Skip M segments in the same audio stream; 

830: Store'results into an local array for the group; 
832: ' } ' 

834: } 
842: Output search results of local arrays from each processor; 

FIGURE 8 
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METHOD AND APPARATUS FOR FAST 
AUDIO SEARCH 

[0001] This application is a continuation of US. patent 
application Ser. No. 10/590,397, ?ledAug. 21, 2006, entitled 
“METHOD AND APPARATUS FOR FAST AUDIO 
SEARCH,” the content of Which is hereby incorporated by 
reference. 

BACKGROUND 

[0002] This disclosure relates generally to signal process 
ing and multimedia applications, and more speci?cally but 
not exclusively, to methods and apparatus for fast audio 
search and audio ?ngerprinting. 
[0003] Audio search (e.g., searching a large audio stream 
for an audio clip, even if the large audio stream is corrupted/ 
distorted) has many applications including analysis of broad 
cast music/commercials, copyright management over the 
Internet, or ?nding metadata for unlabeled audio clips, and 
etc. A typical audio search system is serial and designed for 
single processor systems. It normally takes a long time for 
such a search system to search for a target audio clip in a large 
audio stream. In many cases, hoWever, an audio search system 
is required to Work ef?ciently on large audio databases, e. g., 
to search large databases in a very short time (e.g., close to 
real-time). Additionally, an audio database may be partially 
or entirely distorted, corrupted, and/or compressed. This 
requires that an audio search system be robust enough to 
identify those audio segments that are the same as the target 
audio clip, even if those segments may be distorted, cor 
rupted, and/or compressed. Thus, it is desirable to have an 
audio search system Which can quickly and robustly search 
large audio databases for a target audio clip. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0004] The features and advantages of the disclosed subject 
matter Will become apparent from the folloWing detailed 
description of the subject matter in Which: 
[0005] FIG. 1 shoWs one example computing system Where 
robust and parallel audio search may be performed using an 
audio search module; 
[0006] FIG. 2 shoWs another example computing system 
Where robust and parallel audio search may be performed 
using an audio search module; 
[0007] FIG. 3 shoWs yet another example computing sys 
tem Where robust and parallel audio search may be performed 
using an audio search module; 
[0008] FIG. 4 is a block diagram of an example audio 
search module that performs robust audio search; 
[0009] FIG. 5 is an example illustrating hoW a robust audio 
search module shoWn in FIG. 4 Works; 

[0010] FIG. 6 is a block diagram of an example audio 
search module that performs robust and parallel audio search 
in a multiprocessor system; 

[0011] FIGS. 7A, 7B, and 7C illustrate a method of parti 
tioning a large audio database into smaller groups for robust 
and parallel audio search in a multiprocessor system; and 
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[0012] FIG. 8 is pseudo code illustrating an example pro 
cess for performing robust and parallel audio search in a 
multiprocessor system. 

DETAILED DESCRIPTION 

[0013] According to embodiments of the subject matter 
disclosed in this application, a large audio stream or a large 
audio database in a multiprocessor system may be searched 
for a target audio clip using a robust and parallel search 
method. The large audio database may be partitioned into a 
number of smaller groups. These smaller groups may be 
dynamically scheduled to be processed by available proces 
sors or processing cores in the multiprocessor system. Pro 
cessors or processing cores may process the scheduled groups 
in parallel by partitioning each group into smaller segments, 
extracting acoustic features from the segments; and modeling 
the segments using a common component Gaussian Mixture 
model (“CCGMM”). The length of these segments may be 
the same as the length of the target audio clip. Before pro 
cessing any group, one processor or processing core may 
extract acoustic features from the target audio clip and model 
it using the CCGMM. A Kullback-Leibler (KL) or KL-max 
distance may be further computed betWeen the model of the 
target audio clip and each segment of a group. If the distance 
equals or smaller than a predetermined value, the correspond 
ing segment is identi?ed as the target audio clip. 
[0014] If the distance is larger than a predetermined value, 
the processor or processing core may skip a certain number of 
segments and continue searching for the target audio clip. 
Once a processor or processing core ?nishes searching a 
group, a neW groups may be given to it for processing to 
search for the target audio clip until all of the groups are 
searched. The siZe of the groups may be determined in such a 
Way to reduce the load imbalance and the overlapped com 
putation. Furthermore, Input/Output (I/O) may be optimiZed 
to improve the e?iciency of parallel processing of audio 
groups by multiple processors or processing cores. 
[0015] Reference in the speci?cation to “one embodiment” 
or “an embodiment” of the disclosed subject matter means 
that a particular feature, structure or characteristic described 
in connection With the embodiment is included in at least one 
embodiment of the disclosed subject matter. Thus, the appear 
ances of the phrase “in one embodiment” appearing in various 
places throughout the speci?cation are not necessarily all 
referring to the same embodiment. 
[0016] FIG. 1 shoWs one example computing system 100 
Where robust and parallel audio search may be performed 
using an audio search module 120. Computing system 100 
may comprise one or more processors 110 coupled to a sys 
tem interconnect 115. Processor 110 may have multiple or 
many processing cores (for brevity of description, term “mul 
tiple cores” Will be used hereinafter to include both multiple 
processing cores and many processing cores). Processor 110 
may include an audio search module 120 to conduct robust 
and parallel audio search by multiple cores. The audio search 
module may comprise several components such as a parti 
tioning mechanism, a schedule, and multiple audio searchers 
(see more detailed description for FIGS. 4-6 beloW). One or 
more components of the audio search module may be located 
in one core With others in another core. 

[0017] The audio search module may ?rst partition a large 
audio database into multiple smaller groups or a large audio 
stream into smaller partially overlapped substreams. Second, 
one core may process an audio clip to be searched for (“target 
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audio clip”) to establish a model for the target audio clip. In 
the mean While, the audio search module dynamically sched 
ules smaller audio groups/substreams to multiple cores, 
Which partition each group/substream into segments and 
establish a model for each audio segment, in parallel. The siZe 
of each segment may be equal to the siZe of the target audio 
clip. A Gaussian mixture model (“GMM”) With multiple 
Gaussian components, Which are common to all of the audio 
segments including both the target audio clip and the audio 
database/stream, may be used for modeling each audio seg 
ment and the target audio clip. Once a model is established for 
an audio segment, Kullback-Leibler (“KL”) or KL-max dis 
tance may be computed betWeen the segment model and the 
target audio clip model. If the distance is not larger than a 
predetermined value, the audio segment may be identi?ed as 
the target audio clip. The search process may continue until 
all audio groups/substreams are processed. 
[0018] The computing system 100 may also include a 
chipset 130 coupled to the system interconnect 115. Chipset 
130 may include one or more integrated circuit packages or 
chips. Chipset 130 may comprise one or more device inter 
faces 135 to support data transfers to and/or from other com 
ponents 160 of the computing system 100 such as, for 
example, BIOS ?rmware, keyboards, mice, storage devices, 
netWork interfaces, etc. Chipset 130 may be coupled to a 
Peripheral Component Interconnect (PCI) bus 170. Chipset 
130 may include a PCI bridge 145 that provides an interface 
to the PCI bus 170. The PCI Bridge 145 may provide a data 
path betWeen the processor 110 as Well as other components 
160, and peripheral devices such as, for example, an audio 
device 180 and a disk drive 190. Although not shoWn, other 
devices may also be coupled to the PCI bus 170. 

[0019] Additionally, chipset 130 may comprise a memory 
controller 125 that is coupled to a main memory 150. The 
main memory 150 may store data and sequences of instruc 
tions that are executed by multiple cores of the processor 110 
or any other device included in the system. The memory 
controller 125 may access the main memory 150 in response 
to memory transactions associated With multiple cores of the 
processor 110, and other devices in the computing system 
100. In one embodiment, memory controller 150 may be 
located in processor 110 or some other circuitries. The main 
memory 150 may comprise various memory devices that 
provide addressable storage locations Which the memory 
controller 125 may read data from and/or Write data to. The 
main memory 150 may comprise one or more different types 
of memory devices such as Dynamic Random Access 
Memory (DRAM) devices, Synchronous DRAM (SDRAM) 
devices, Double Data Rate (DDR) SDRAM devices, or other 
memory devices. 

[0020] FIG. 2 shoWs another example computing system 
200 Where robust and parallel audio search may be performed 
using an audio search module 240. System 200 may comprise 
multiple processors such as processor0 220A. One or more 
processors in system 200 may have many cores. System 200 
may include an audio search module 240 to conduct robust 
and parallel audio search by multiple cores. The audio search 
module may comprise several components such as a parti 
tioning mechanism, a schedule, and multiple audio searchers 
(see more detailed description for FIGS. 4-6 beloW). One or 
more components of the audio search module may be located 
in one core With others in another core. Processors in system 
200 may be connected to each other using a system intercon 
nect 210. System interconnect 210 may be a Front Side Bus 
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(FSB). Each processor may be connected to Input/Output 
(IO) devices as Well as memory 230 through the system 
interconnect. All of the cores may receive audio data from 
memory 230. 

[0021] FIG. 3 shoWs yet another example computing sys 
tem 300 Where robust and parallel audio search may be per 
formed using an audio search module 340. In system 300, 
system interconnect 310 that connects multiple processors 
(e.g., 320A, 320B, 320C, and 320D) is a links-based point 
to-point connection. Each processor may connect to the sys 
tem interconnect through a links hub (e.g., 330A, 330B, 
330C, and 330D). In some embodiments, a links hub may be 
co-located With a memory controller, Which coordinates traf 
?c to/from a system memory. One or more processor may 
have many cores. System 300 may include an audio search 
module 340 to conduct robust and parallel audio search by 
multiple cores. The audio search module may comprise sev 
eral components such as a partitioning mechanism, a sched 
ule, and multiple audio searchers (see more detailed descrip 
tion for FIGS. 4-6 beloW). One or more components of the 
audio search module may be located in one core With others in 
another core. Each processor/core in system 300 may be 
connected to a shared memory (hot shoWn in the ?gure) 
through the system interconnect. All of the cores may receive 
audio data from the shared memory. 

[0022] In FIGS. 2 and 3, the audio search module (i.e., 240 
and 340) may ?rst partition a large audio database into mul 
tiple smaller groups or a large audio stream into smaller 
partially overlapped substreams. Second, one core may pro 
cess an audio clip to be searched for (“target audio clip”) to 
establish a model for the target audio clip. In the mean While, 
the audio search module dynamically schedules smaller 
audio groups/substreams to multiple cores, Which partition 
each group/substream into segments and establish a model 
for each audio segment, in parallel. The siZe of each segment 
may be equal to the siZe of the target audio clip. A Gaussian 
mixture model (“GMM”) With multiple Gaussian compo 
nents, Which are common to all of the audio segments includ 
ing both the target audio clip and the audio database/ stream, 
may be used for modeling each audio segment and the target 
audio clip. Once a model is established for an audio segment, 
Kullback-Leibler (“KL”) or KL-max distance may be com 
puted betWeen the segment model and the target audio clip 
model. If the distance is not larger than a predetermined value, 
the audio segment may be identi?ed as the target audio clip. 
The search process may continue until all audio groups/sub 
streams are processed. 

[0023] FIG. 4 is a block diagram of an example audio 
search module 400 that performs robust audio search. Audio 
search module 400 comprises a feature extractor 410, a mod 
eling mechanism 420, and a decision maker 430. Feature 
extractor 410 may receive an input audio stream (e.g., a target 
audio clip, a substream of a large audio stream, etc.) and 
extract acoustic features from the input audio stream. When 
the input audio stream is an audio stream to be searched for 
the target audio clip, the feature extractor may apply sliding 
WindoW on the audio stream to partition it into multiple over 
lapped segments. The WindoW has the same length as the 
target audio clip. Each segment of the input audio stream (the 
target audio stream has only one segment) is further separated 
into frames. Each frame may have the same length and may 
overlap With its neighboring frames. For example, in one 
embodiment, a frame may be 20 milliseconds in length With 
the overlap betWeen frames being 10 milliseconds. A feature 
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vector may be extracted for each frame, Which may include 
such features as Fourier coe?icients, Mel-Frequency cepstral 
coe?icients, spectral ?atness, and means, variances, other 
derivatives thereof. Feature vectors from all of the frames in 
an audio segment form a feature vector sequence. 

[0024] The overlap betWeen tWo adjacent segments is to 
reduce the likelihood of missing any target audio clip betWeen 
tWo adjacent segments. The longer the overlap is, the less 
likely a miss is. In one embodiment, the overlap may be equal 
to the length of a segment minus the length of a frame to avoid 
missing any match. HoWever, longer overlap means more 
computation. Thus, there should be a balance betWeen the 
computation load and the likelihood of miss (e.g., the overlap 
is equal to or less than 1/2 of the segment length). In any case, 
feature vectors for frames that are overlapped betWeen tWo 
segments only need to be extracted once. 
[0025] Modeling mechanism 420 may establish a model for 
an audio segment based on its feature vector sequence 
extracted by feature extractor 410. Depending on What model 
is used, the modeling mechanism Will estimate parameters for 
the model. In one embodiment, a common component Gaus 
sian mixture model (“CCGMM”) may be used for modeling 
an audio segment. The CCGMM includes multiple Gaussian 
components Which are common across all of the segments. 
For each segment, the modeling mechanism estimates a spe 
ci?c set of mixture Weights for the common Gaussian com 
ponents. In another embodiment, other models (e.g., hidden 
Markov model) may be used for modeling an audio segment. 
In one embodiment, only the target audio clip may be mod 
eled; and the feature vector sequence of an audio segment 
may be directly used to determine Whether the audio segment 
is substantially the same as the target audio clip. 
[0026] Decision maker 430 may determine Whether an 
audio segment in the input audio stream is suf?ciently similar 
so that the audio segment can be identi?ed as a copy of the 
target audio clip. To achieve this goal, the decision maker may 
derive a similarity measure by comparing the model of the 
audio segment and the model of the target audio clip. In one 
embodiment, the similarity measure may be a distance com 
puted betWeen the tWo models. In another embodiment, the 
similarity measure may be probability of the audio segment 
model being the same as the target audio clip model. Yet in 
another embodiment, the similarity measure may be derived 
by comparing the feature vector sequence of the audio seg 
ment and the model of the target audio clip. For example, 
When a hidden Markov model (“HMM”) is used to model the 
target audio clip, a Viterbi based algorithm may be used to 
compute a likelihood score betWeen the audio segment and 
the target audio clip, based on the feature vector sequence of 
the audio segment and the HMM of the target audio clip. 
[0027] Based on the value of the similarity measure, the 
decision maker may determine Whether an audio segment can 
be identi?ed as the target audio clip. For example, if the value 
of the similarity measure is not larger than a predetermined 
threshold (e.g., similarity measure is distance betWeen the 
audio segment model and the target audio clip), the audio 
segment may be identi?ed as substantially the same as the 
target audio clip. Similarly, the audio segment may be iden 
ti?ed as substantially the same as the target audio clip if the 
value of the similarity measure is not smaller than a predeter 
mined threshold (e. g., similarity measure is a likelihood score 
of the audio segment being substantially the same as the target 
audio clip). On the other hand, if an audio segment is found to 
be substantially different from the target audio clip based on 
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the similarity measure, a certain number of segments imme 
diately folloWing the audio segment may be skipped. The 
actual number of segments to be skipped Will depend on the 
value of the similarity measure and/or empirical data. By 
skipping a number of folloWing segments, it is not likely to 
miss any target audio clip When the similarity measure indi 
cate the current segment is so different from the target audio 
clip because the WindoW used to partition an input audio 
stream into segments slides forWard gradually and as a result, 
there is continuity of similarity measure from one segment to 
the next. 

[0028] FIG. 5 is an example illustrating hoW a robust audio 
search module shoWn in FIG. 4 Works.A target audio clip 510 
is received by a feature extractor Which segments it into 
frames and produces a feature vector sequence (540) at block 
530A, With a feature vector per frame. A feature vector may 
be an x dimensional vector (Wherein x>:l) because the fea 
ture vector may include one or more parameters. At block 

570A, Feature vector sequence 540 may be modeled using a 
GMM as shoWn beloW: 

M 

. 1' 
1+1 

The GMM, P(k)(x), includes M Gaussian components With 
component Weights Wig“), means [1.1 (k), and covariance 21.0“), 
With iIl, 2, . . . , M; Wherein k denotes segment k and N( ) 
denotes a Gaussian distribution. For the target audio clip, 
there is only one segment, and hence there is no need to use k 
to identify a segment. For the input audio stream 520, hoW 
ever, there is typically more than one segment, and it is thus 
desirable to identify the GMM for different segments. 

[0029] In the example shoWn in FIG. 5, Kullback-Leibler 
(KL) or KL-max distance is used as a similarity measure. To 
simplify KL-max distance computation, it is assumed that the 
GMMs used for all the audio segments share a common set of 
Gaussian components, i.e., for the ith Gaussian component, 
the mean ([1,) and variance Q1.) are the same across different 
audio segments. As a result, Equation (1) becomes: 

M (2) 

PM) =2 wEk’Npmm. 

For each audio segment, only a set of Weights, Wig“), iIl, 2, . 
. . , M, need to be estimated for the common Gaussian com 

ponents. Given a feature vector sequence for segment k, 
Which has T feature vectors, xt(t:l, 2, . . . , T), Weights may be 
estimated as folloWs, 

1 
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wherein WZ-(H) or W]-(”) is a universal Weight for the ith or jth 
segment, Which may be obtained by experiments based on 
some sample audio ?les or be initialiZed With a random value. 

[0030] An input audio stream 520, Which is to be searched 
for the target audio clip 510, may be received by a feature 
extractor. At block 530B, the feature extractor partitions the 
input audio stream into partially overlapped segments. For 
each segment, the feature extractor further partitions the seg 
ment into multiple partially overlapped frames and extracts a 
feature vector from each frame. Block 560 shoWs a feature 
vector sequence for the input audio stream 520 and also 
illustrates hoW the audio stream is partitioned into partially 
overlapped segments. For example, a WindoW With the siZe 
being the same as the length of the target audio clip may be 
applied to input audio stream 520. For illustration purpose, a 
WindoW is shoWn for the feature vector sequence of the target 
audio clip to obtain a segment 560A although there is typi 
cally no need to apply a WindoW to the target audio clip since 
there is only one segment. A shifting WindoW is applied to the 
input audio stream to obtain multiple partially overlapped 
segments such as 560B and 560C. The WindoW shifts by time 
"c from segment 560B to segment 560C, Where '5 is smaller 
than the WindoW siZe. 

[0031] Each audio segment is modeled using the CCGMM, 
for example, segment 560B is modeled at block 570B and 
segment 560C is modeled at block 570C. Models for each 
segment of input audio stream 520 and for target audio clip 
510 have common Gaussian components With different sets 
of Weights. In one embodiment, feature vectors may be 
extracted from the entire input audio stream frame by frame to 
produce a long feature vector sequence for the entire input 
audio stream. A WindoW With a length being N><FL (Where N 
is a positive integer and FL is the frame length) is subse 
quently applied to the long feature vector sequence. Feature 
vectors Within the WindoW constitute a feature vector for an 
audio segment, Which is used to establish a CCGMM. The 
WindoW is shifting forWard by '5 time. 
[0032] To determine if a segment is substantially the same 
as the target audio clip, KL-max distance may be calculated 
betWeen the model of the segment and the target audio clip as 
folloWs, 

If the KL-max distance so calculated is beloW a predeter 
mined threshold, the audio clip may be considered to be 
detected. As the WindoW applied over input audio stream 520 
shifts forWard in time, distances typically shoW certain con 
tinuity from one time-step to the next. In other Words, if the 
distance is too large, it is unlikely that one or more segments 
immediately folloWing the current segment matches the tar 
get audio clip. Thus, depending on the value of the distance, 
a certain number of immediately folloWing segments in the 
same audio stream/substream may be skipped from search. 

[0033] FIG. 6 is a block diagram of an example audio 
search module 600 that performs robust and parallel audio 
search in a multiprocessor system. The audio search module 
600 comprises a partitioning mechanism 610, a scheduler 
620, an I/O optimiZer 630, and a plurality of audio searchers 
(e.g., 640A, 640N). Partitioning mechanism 610 may parti 
tion a large audio stream into multiple smaller substreams 
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and/or a large audio database into multiple smaller groups. 
FIGS. 7A, 7B, and 7C illustrate a method of partitioning a 
large audio database into smaller groups for robust and par 
allel audio search in a multiprocessor system. FIG. 7A shoWs 
an example database that contains a single large audio stream 
710. The partitioning mechanism may partition audio stream 
710 into multiple smaller substreams such as 712, 714, and 
716, With each substream constituting a group. The length of 
substreams can vary from each other, but it is normally uni 
form for the simplicity purpose. To avoid missing any correct 
detection of a target audio clip, each substream overlaps With 
its immediately folloWing substream; and the overlap 
betWeen tWo adjacent substreams (e.g., 712 and 714, 714 and 
716) should equal or longer than FNClip-l, Where FNClip is 
the total number of frames in the target audio clip. 

[0034] FIG. 7B shoWs another example database that 
includes multiple relatively small audio streams (e.g., 720, 
725, 730, 735, and 740). In one embodiment, partitioning 
mechanism 610 may partition the database into multiple 
smaller groups With each group consisting of only one audio 
stream. In another embodiment, the partitioning mechanism 
may partition the database into multiple smaller groups With 
some groups each consisting of only one audio stream and 
With others each consisting of more than one small audio 
stream, as illustrated in FIG. 7B. FIG. 7C shoWs yet another 
example database that includes some relatively small audio 
streams (e.g., 750, 755, and 760) as Well as some large audio 
stream (e.g., 770). The partitioning mechanism may put those 
relatively small audio streams into groups With each group 
consisting of only one audio stream or With some groups 
consisting of only one audio stream (e.g., 750) While others 
consisting of more than one small audio streams (e.g., 755 
and 760 may be grouped together).As for a large audio stream 
such as 770, the partitioning mechanism may partition it into 
multiple partially overlapped smaller substreams (e.g., 712 
and 714) With each substream constituting a group, using the 
method illustrated in FIG. 7A. 

[0035] Additionally, the partitioning mechanism partitions 
a large audio database into groups With proper siZes to reduce 
the overlapped computation (in the situation Where a large 
audio stream is partitioned into multiple overlapped smaller 
substreams) and load imbalance in parallel processing by 
multiple processors. Smaller group siZe may result in large 
overlapped computation, While larger group siZe may result 
in considerable load imbalance. In one embodiment, the 
group siZe may be about 25 times of the siZe of the target 
audio clip. 
[0036] Turning back to FIG. 6, scheduler 620 may dynami 
cally schedule multiple groups of a large database into mul 
tiple processors in the multiprocessor system With each pro 
cessor having one group to process at one time. The scheduler 
periodically checks the availability of processors in the sys 
tem and assigns an audio group for each available processor to 
process and search for the target audio clip. If another pro 
cessor becomes available later, the scheduler may assign one 
group to this processor. The scheduler also assigns an 
unsearched audio group to processor immediately after it 
?nishes searching its previously assigned group no matter 
Whether other processors ?nish their searching. In fact, even 
for groups With the same siZe, searching for the same target 
audio clip may take different amount of time for different 
processors because the number of segments to be skipped 
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may be different from one segment to another. Using dynamic 
scheduling as outlined above may further reduce load imbal 
ance effectively. 

[0037] U0 optimizer 630 may optimiZe I/O tra?ic on the 
system interconnect (e.g., system bus connecting a shared 
system memory With processors in the system). The U0 opti 
miZer may decide not to load the entire audio database to be 
searched for from the disk into the memory in the beginning 
While the data range for each processor is being de?ned. 
Additionally, the I/O optimiZer may let each processor read 
only a portion of its as signed segment from the memory at one 
time. By optimiZing the I/O traf?c, the I/O optimiZer may 
reduce I/O contention, implement the overlap of I/O opera 
tions and computation, and help to improve computation 
e?iciency. As a result, the scalability of audio search can be 
signi?cantly improved. 
[0038] Audio search module Audio 600 also comprises a 
plurality of audio searchers 640A through 640N. Each audio 
searcher (e.g., 640A) is located in a processor to process a 
group assigned to the processor and to search for the target 
audio clip. Similar to an audio searching module 400 shoWn 
in FIG. 4, an audio searcher includes a feature extractor (e.g., 
410), a modeling mechanism (e.g., 420), and a decision 
maker (e.g., 430). Each audio searcher conducts serial active 
search of an audio group assigned to it for a target audio clip 
by partitioning audio streams in the audio group into partially 
overlapped segments With length being the same as the target 
audio clip, extracting feature vector sequence for each seg 
ment, and modeling each segment using a CCGMM as illus 
trated in Equations (1) through (4). Additionally, the 
CCGMM for the target audio clip Which is used by all of the 
audio searchers just needs to be estimated once by one of the 
audio searchers. Each audio searcher computes KL-max dis 
tance betWeen the model for each segment and the model of 
the target audio clip. Based, on the KL-max distance, an audio 
searcher may determine if the target audio clip is detected. 
Moreover, each audio searcher may skip a number of seg 
ments that folloWing the current segment if the KL-max dis 
tance for the current segment is larger than a threshold. 

[0039] FIG. 8 is pseudo code illustrating an example pro 
cess 800 for performing robust and parallel audio search in a 
multiprocessor system. At line 802, audio search module may 
be initialiZed, e.g., target audio clip ?le and audio database 
?le may be opened, and global parameters may be initialiZed. 
At line 804, a large audio database may be partitioned into NG 
smaller groups as illustrated in FIGS. 7A, 7B, and 7C. At line 
806, a model (e.g., CCGMM) may be established for the 
target audio clip. At line 808, NG audio groups may be 
dynamically scheduled to available processors and parallel 
processing of the scheduled groups may be started. Line 808 
uses one example instruction that sets up parallel implemen 
tation and other parallel implementation instructions may 
also be used. 

[0040] Lines 810 through 846 illustrate hoW each of NG 
groups are processed and searched for the target in parallel by 
a processor in the multiprocessor system. It is Worth noting 
that for illustration purpose, process in lines 812 to 846 is 
shoWn as iteration from the ?rst group until the last group. In 
practice, if there are several processors available, several 
groups are processed in parallel by these available processors. 
At line 814, some or all of audio streams in each group may be 
further partitioned into NS partially overlapped segments if 
such streams are longer in time than the target audio clip. Line 
816 starts iterative process for each segment of the group, 

Jul. 28, 2011 

shoWn in lines 818 through 832. At line 820, a feature vector 
sequence (frame by frame) may be extracted from the seg 
ment. At line 822, a model (e.g., CCGMM as shoWn in Equa 
tions (1) to (3)) may be established for the segment. At line 
824, distance (e.g., KL-max distance as shoWn in Equation 
(4)) betWeen the segment model and the target audio clip 
model may be computed. At line 826, Whether the segment 
matches the target audio clip or not may be determined based 
on the distance calculated in line 824 and a predetermined 
threshold #1. If the distance is less than the threshold #1, the 
segment matches the target audio clip. At line 828, Whether a 
number of folloWing segments (e. g., M segments) in the same 
audio stream/substream may be skipped from searching may 
be determined based on the distance calculated in line 824 and 
a predetermined threshold #2. If the distance is larger than the 
threshold #2, M segments may be skipped from searching. In 
one embodiment, the number of segments to be skipped may 
vary depending upon the value of the distance. At line 830, the 
search results (e.g., index or starting time of a match segment 
in each group) may be stored in an array Which is local to the 
processor that processes the group. At line 842, search results 
from local arrays from all of the processors may be summa 
riZed and outputted to a user. 

[0041] Using the robust and parallel search strategy as out 
lined in FIG. 8 along With other techniques such as I/O opti 
miZation, search speed for a target audio clip in a large audio 
database in a multiprocessor system may be signi?cantly 
improved. One experiment shoWs that search speed for a 15 
second target audio clip in a 27 hour audio stream increases 
by 11 times on a l6-Way Unisys system, compared to serial 
search of the same audio stream for the same target audio clip. 

[0042] In one embodiment, a modi?ed search strategy may 
be used. Using this strategy, a preliminary model (e. g., 
CCGMM) may be established for the ?rst K frames (K>:l) 
of the target audio clip along With a full model for the entire 
target audio clip. Accordingly, a preliminary model (e. g., 
CCGMM) may be ?rst established for the ?rst K frames 
(K>:l) of an audio segment. During active search, the pre 
liminary model of the ?rst K frames of each audio segment 
may be ?rst compared With the preliminary model of the ?rst 
K frames of the target audio clip to produce a preliminary 
similarity measure. If the preliminary similarity measure 
indicates that these tWo preliminary models are signi?cantly 
similar, a full model may be established for the entire audio 
segment and compared With the full model of the entire target 
audio clip; otherWise, no full model Will be established for the 
audio segment and the next segment may be searched by ?rst 
establishing a preliminary model for its ?rst K frames and by 
comparing this preliminary model With the preliminary 
model of the target audio clip. This modi?ed search strategy 
may further reduce computation load. 
[0043] Although an example embodiment of the disclosed 
subject matter is described With reference to block and How 
diagrams in FIGS. 1-8, persons of ordinary skill in the art Will 
readily appreciate that many other methods of implementing 
the disclosed subject matter may alternatively be used. For 
example, the order of execution of the blocks in How dia 
grams may be changed, and/or some of the blocks in block/ 
?oW diagrams described may be changed, eliminated, or 
combined. 

[0044] In the preceding description, various aspects of the 
disclosed subject matter have been described. For purposes of 
explanation, speci?c numbers, systems and con?gurations 
Were set forth in order to provide a thorough understanding of 
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the subject matter. However, it is apparent to one skilled in the 
art having the bene?t of this disclosure that the subject matter 
may be practiced Without the speci?c details. In other 
instances, Well-knoWn features, components, or modules 
Were omitted, simpli?ed, combined, or split in order not to 
obscure the disclosed subject matter. 

[0045] Various embodiments of the disclosed subject mat 
ter may be implemented in hardWare, ?rmware, softWare, or 
combination thereof, and may be described by reference to or 
in conjunction With program code, such as instructions, func 
tions, procedures, data structures, logic, application pro 
grams, design representations or formats for simulation, emu 
lation, and fabrication of a design, Which When accessed by a 
machine results in the machine performing tasks, de?ning 
abstract data types or loW-level hardWare contexts, or produc 
ing a result. 

[0046] For simulations, program code may represent hard 
Ware using a hardWare description language or another func 
tional description language Which essentially provides a 
model of hoW designed hardWare is expected to perform. 
Program code may be assembly or machine language, or data 
that may be compiled and/or interpreted. Furthermore, it is 
common in the art to speak of softWare, in one form or another 
as taking an action or causing a result. Such expressions are 
merely a shorthand Way of stating execution of program code 
by a processing system Which causes a processor to perform 
an action or produce a result. 

[0047] Program code may be stored in, for example, vola 
tile and/ or non-volatile memory, such as storage devices and/ 
or an associated machine readable or machine accessible 

medium including solid-state memory, hard-drives, ?oppy 
disks, optical storage, tapes, ?ash memory, memory sticks, 
digital video disks, digital versatile discs (DVDs), etc., as 
Well as more exotic mediums such as machine-accessible 

biological state preserving storage. A machine readable 
medium may include any mechanism for storing, transmit 
ting, or receiving information in a form readable by a 
machine, and the medium may include a tangible medium 
through Which electrical, optical, acoustical or other form of 
propagated signals or carrier Wave encoding the program 
code may pass, such as antennas, optical ?bers, communica 
tions interfaces, etc. Program code may be transmitted in the 
form of packets, serial data, parallel data, propagated signals, 
etc., and may be used in a compressed or encrypted format. 

[0048] Program code may be implemented in programs 
executing on programmable machines such as mobile or sta 
tionary computers, personal digital assistants, set top boxes, 
cellular telephones and pagers, and other electronic devices, 
each including a processor, volatile and/ or non-volatile 
memory readable by the processor, at least one input device 
and/or one or more output devices. Program code may be 
applied to the data entered using the input device to perform 
the described embodiments and to generate output informa 
tion. The output information may be applied to one or more 
output devices. One of ordinary skill in the art may appreciate 
that embodiments of the disclosed subject matter can be prac 
ticed With various computer system con?gurations, including 
multiprocessor or multiple-core processor systems, mini 
computers, mainframe computers, as Well as pervasive or 
miniature computers or processors that may be embedded 
into virtually any device. Embodiments of the disclosed sub 
ject matter can also be practiced in distributed computing 

Jul. 28, 2011 

environments Where tasks may be performed by remote pro 
cessing devices that are linked through a communications 
netWork. 
[0049] Although operations may be described as a sequen 
tial process, some of the operations may in fact be performed 
in parallel, concurrently, and/ or in a distributed environment, 
and With program code stored locally and/or remotely for 
access by single or multi-processor machines. In addition, in 
some embodiments the order of operations may be rearranged 
Without departing from the spirit of the disclosed subject 
matter. Program code may be used by or in conjunction With 
embedded controllers. 
[0050] While the disclosed subject matter has been 
described With reference to illustrative embodiments, this 
description is not intended to be construed in a limiting sense. 
Various modi?cations of the illustrative embodiments, as 
Well as other embodiments of the subject matter, Which are 
apparent to persons skilled in the art to Which the disclosed 
subject matter pertains are deemed to lie Within the scope of 
the disclosed subject matter. 
What is claimed is: 
1. A method comprising: 
parallel processing audio segments, including ?rst and sec 

ond audio segments, to search for a target audio clip; 
determining a target model for the target clip and ?rst and 

second segment models respectively for the ?rst and 
second segments; 

determining ?rst and second distances respectively 
betWeen the target model and the ?rst and second seg 
ment models; and 

skipping searching a number of audio segments based on 
the ?rst distance, and determining the second segment 
matches the target clip based on the second distance. 

2. The method of claim 1, Wherein the magnitude of the 
number of audio segments is based on the magnitude of the 
?rst distance. 

3. The method of claim 1, Wherein (a) determining the 
target model comprises extracting a target feature vector 
sequence (“FVS”) from the target clip and modeling the 
target FVS based on a Gaussian Mixture model (“GMM”), 
and (b) determining the ?rst segment model comprises 
extracting a ?rst segment FVS from the ?rst segment and 
modeling the ?rst segment FVS based on a GMM. 

4. The method of claim 1, Wherein the ?rst segment par 
tially overlaps a third segment. 

5. The method of claim 1, Wherein the ?rst segment par 
tially overlaps one of the number of audio segments. 

6. The method of claim 1, including: 
partitioning an audio database into the ?rst and second 

segments; and 
determining ?rst and second siZes for the ?rst and second 

segments, the ?rst and second siZes being determined to 
reduce the amount of overlapped computation among 
the audio segments and load imbalance in parallel pro 
cessing of the audio segments. 

7. The method of claim 1, including determining the ?rst 
segment does not match the target clip based on the ?rst 
distance satisfying a ?rst threshold; Wherein (a) the ?rst and 
second audio segments are each partitioned from an audio 
database, and (b) the number of audio segments exceeds 1. 

8. An article comprising a machine-readable medium that 
contains instructions, Which When executed by a processing 
platform, cause the processing platform to perform opera 
tions comprising: 
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parallel processing audio segments, including ?rst and sec 
ond audio segments, to search for a target audio clip; 

determining a target model for the target clip and ?rst and 
second segment models respectively for the ?rst and 
second segments; 

determining ?rst and second similarity measures respec 
tively betWeen the target model and the ?rst and second 
segment models; and 

skipping searching a number of audio segments based on 
the ?rst similarity measure, and determining the second 
segment matches the target clip based on the second 
similarity measure. 

9. The article of claim 8, Wherein (a) the ?rst similarity 
measure includes a ?rst distance, and (b) the magnitude of the 
number of audio segments is based on the magnitude of the 
?rst distance. 

10. The article of claim 8, Wherein (a) determining the 
target model comprises extracting a target feature vector 
sequence (“FVS”) from the target clip and modeling the 
target FVS based on a Gaussian Mixture model (“GMM”), 
and (b) determining the ?rst segment model comprises 
extracting a ?rst segment FVS from the ?rst segment and 
modeling the ?rst segment FVS based on a GMM. 

11. The article of claim 8, Wherein the ?rst segment par 
tially overlaps a third segment. 

12. The article of claim 8, Wherein the ?rst segment par 
tially overlaps one of the number of audio segments. 

13. The article of claim 8, including: 
partitioning an audio database into the ?rst and second 

segments; and 
determining ?rst and second siZes for the ?rst and second 

segments, the ?rst and second siZes being determined to 
reduce the amount of overlapped computation among 
the audio segments and load imbalance in parallel pro 
cessing of the audio segments. 

14. The article of claim 8, including determining the ?rst 
segment does not match the target clip based on the ?rst 
similarity measure satisfying a ?rst threshold; Wherein (a) the 
?rst and second audio segments are each partitioned from an 
audio database, and (b) the number of audio segments 
exceeds 1. 

15. An apparatus comprising: 
a memory to receive audio segments; and 
a plurality of processor cores, coupled to the memory, to: 

(a) parallel process the audio segments, including ?rst 
and second audio segments, to search for a target audio 

Jul. 28, 2011 

clip; (b) determine a target model for the target clip and 
?rst and second segment models respectively for the ?rst 
and second segments; (c) determine ?rst and second 
similarity measures respectively betWeen the target 
model and the ?rst and second segment models; and (d) 
determine the second segment matches the target clip 
based on the second similarity measure; 

Wherein the second segment partially overlaps a third seg 
ment. 

16. The apparatus of claim 15, Wherein the plurality of 
processor cores are to skip searching a number of audio 
segments based on the ?rst similarity measure. 

17. The apparatus of claim 16, Wherein (a) the ?rst simi 
larity measure includes a ?rst distance, and (b) the magnitude 
of the number of audio segments is based on the magnitude of 
the ?rst distance. 

18. The apparatus of claim 16, Wherein (a) determining the 
target model comprises extracting a target feature vector 
sequence (“FVS”) from the target clip and modeling the 
target FVS based on a Gaussian Mixture model (“GMM”), 
and (b) determining the ?rst segment model comprises 
extracting a ?rst segment FVS from the ?rst segment and 
modeling the ?rst segment FVS based on a GMM. 

19. The apparatus of claim 16, Wherein the plurality of 
processor cores are to: 

partition an audio database into the ?rst and second seg 
ments; and 

determine ?rst and second siZes for the ?rst and second 
segments, the ?rst and second siZes being determined to 
reduce the amount of overlapped computation among 
the audio segments and load imbalance in parallel pro 
cessing of the audio segments. 

20. The apparatus of claim 16, Wherein the plurality of 
processor cores are to determine the ?rst segment does not 
match the target clip based on the ?rst similarity measure 
satisfying a ?rst threshold; Wherein (a) the ?rst and second 
audio segments are each partitioned from an audio database, 
(b) the number of audio segments exceeds 1, and (c) the 
plurality of processor cores are included in a plurality of 
processors. 

21. The apparatus of claim 15, Wherein the ?rst segment 
partially overlaps one of the number of audio segments. 

* * * * * 
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