
US 20110184952A1

(19) United States
(12) Patent Application Publication (10) Pub. N0.: US 2011/0184952 A1

Chen (43) Pub. Date: Jul. 28, 2011

(54) METHOD AND APPARATUS FOR FAST (52) US. Cl. 707/737; 707/769; 707/E17.101;
AUDIO SEARCH 707/E17.089

(57) ABSTRACT
(76) Inventor: Yurong Chen’ BelJmg (CN) According to embodiments of the subject matter disclosed in

this application, a large audio database in a multiprocessor
(21) APP1- NOJ 13/018,635 system may be searched for a target audio clip using a robust

and parallel search method. The large audio database may be
(22) Filed; Feb, 1, 2011 partitioned into a number of smaller groups, Which are

dynamically scheduled to available processors in the system.
Related U‘s‘ Application Data Processors may process the scheduled groups in parallel'by

partitionmg each group mto smaller segments, extracting
(63) Continuation of application No. 10/ 590,397, ?led on acoustic features from the Segments; and modeling the Seg

Aug 21, 2006, now pat NO_ 7,908,275, ?led as appli- ments using a common component Gaussian Mixture model
Cation NO_ pCT/CN2006/0015 50 on]u1_ 3 2006 (“CCGMM”). One processor may also extract acoustic fea

’ tures from the target audio clip and model it using the
CCGMM. Kullback-Leibler (KL) distance may be further

P bl- t- Cl -? t- computed between the target audio clip and each segment.
u lea Ion assl ca Ion Based on the KL distance, a segment may be determined to

(51) Int. Cl. match the target audio clip; and/or a number of following
G06F 1 7/30 (2006.01) segments may be skipped.

0

AUDIO SEARCHER 640A

PARTITIONING
MECHANISM FEATURE MODELING DECISION

EXTRACTOR > MECHANISM > MAKER
L O m w m

A I

SCHEDULER
620

r\ AUDIO SEARCHER 640N

I/O OPTIMIZER
630

Patent Application Publication Jul. 28, 2011 Sheet 1 0f 8 US 2011/0184952 A1

H EDGE mm

mun w._.zwzOn=200

,mOQEm 5m a

A

WEI-PO Q9.

a , mmjoEzou Eosmz

_ _ _ _

w - . n

n 330: " mrom?m 05:5 . a _llllll.|llllll_ ‘ m3. mowwwoOmm

lull-Ill co

m:

Patent Application Publication Jul. 28, 2011 Sheet 2 0f 8 US 2011/0184952 Al

N MMDUE _I ' l i ' | | I I | I l I I l -ll- . W l I | l l l | I . | | I i I ulnl

“ 9M “ n olm “ " mIDQOE ‘ n . H M43002 "
“ zom?w 063. L. “ mum/mm 053 .n

lllsoww v . |||<o 2 mowwmooE . o mowwwooma

ovw

Patent Application Publication Jul. 28, 2011 Sheet 3 0f 8 US 2011/0184952 Al

O 3

PROCESSOR 1

AUDIO SEARCH
MODULE

PROCESSOR 0

AUDIO SEARCH
MODULE

FIGURE 3

Patent Application Publication Jul. 28, 2011 Sheet 4 0f 8 US 2011/0184952 A1

400

FEATURE MODELING
EXTRACTOR > MECHANISM : DECISKZgIOMAKER
m g _

ll

FIGURE 4

Patent Application Publication Jul. 28, 2011 Sheet 5 0f 8 US 2011/0184952 A1

Extraction

g Feature Vector Dlmension

Distance Calculator \
\\g 590

FIGURE 5

Patent Application Publication Jul. 28, 2011 Sheet 6 0f 8 US 2011/0184952 A1

6 0

AUDIO SEARCHER 640A

FEATURE MODELING DECISION
EXTRACTOR > MECHANISM > MAKER

m m m w

A I

SCHEDULER
@

A AUDIO SEARCHER 64ON

I/O OPTIMIZER
@

FIGURE 6

Patent Application Publication Jul. 28, 2011 Sheet 7 0f 8 US 2011/0184952 A1

FIGURE 7A

720 725 730 i‘ 735 740 i‘

FIGURE 7C

Patent Application Publication Jul. 28, 2011 Sheet 8 0f 8 US 2011/0184952 A1

I

802: Initialization;
804: Partition a large audio database into NG smaller groups;
806: Establish a model for target audio clip;
808: #pragma omp parallel for schedule(dynamic,1),

num_threads(NumO?'hread);
/* dynamically schedule smaller groups to available processors and
start parallel processing of the scheduled groups by multiple I
processors */

810: For groupid = O to NG-1

812: {
814: Partition current group into NS partially overlapped

segments, if necessary; '

816: For segmentid = 0 to NS-1

818: { ' .

820: Extract a feature vector sequence;
- 822: , Establish a model for the segment;

824: - Computedistance between the model of each

segment and the target audio clip model;
826: ' lf Distance < threshold #1, Match!

828: else if Distance > threshold #2,
' Skip M segments in the same audio stream;

830: Store'results into an local array for the group;
832: ' } '

834: }
842: Output search results of local arrays from each processor;

FIGURE 8

US 2011/0184952 A1

METHOD AND APPARATUS FOR FAST
AUDIO SEARCH

[0001] This application is a continuation of US. patent
application Ser. No. 10/590,397, ?ledAug. 21, 2006, entitled
“METHOD AND APPARATUS FOR FAST AUDIO
SEARCH,” the content of Which is hereby incorporated by
reference.

BACKGROUND

[0002] This disclosure relates generally to signal process
ing and multimedia applications, and more speci?cally but
not exclusively, to methods and apparatus for fast audio
search and audio ?ngerprinting.
[0003] Audio search (e.g., searching a large audio stream
for an audio clip, even if the large audio stream is corrupted/
distorted) has many applications including analysis of broad
cast music/commercials, copyright management over the
Internet, or ?nding metadata for unlabeled audio clips, and
etc. A typical audio search system is serial and designed for
single processor systems. It normally takes a long time for
such a search system to search for a target audio clip in a large
audio stream. In many cases, hoWever, an audio search system
is required to Work ef?ciently on large audio databases, e. g.,
to search large databases in a very short time (e.g., close to
real-time). Additionally, an audio database may be partially
or entirely distorted, corrupted, and/or compressed. This
requires that an audio search system be robust enough to
identify those audio segments that are the same as the target
audio clip, even if those segments may be distorted, cor
rupted, and/or compressed. Thus, it is desirable to have an
audio search system Which can quickly and robustly search
large audio databases for a target audio clip.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The features and advantages of the disclosed subject
matter Will become apparent from the folloWing detailed
description of the subject matter in Which:
[0005] FIG. 1 shoWs one example computing system Where
robust and parallel audio search may be performed using an
audio search module;
[0006] FIG. 2 shoWs another example computing system
Where robust and parallel audio search may be performed
using an audio search module;
[0007] FIG. 3 shoWs yet another example computing sys
tem Where robust and parallel audio search may be performed
using an audio search module;
[0008] FIG. 4 is a block diagram of an example audio
search module that performs robust audio search;
[0009] FIG. 5 is an example illustrating hoW a robust audio
search module shoWn in FIG. 4 Works;

[0010] FIG. 6 is a block diagram of an example audio
search module that performs robust and parallel audio search
in a multiprocessor system;

[0011] FIGS. 7A, 7B, and 7C illustrate a method of parti
tioning a large audio database into smaller groups for robust
and parallel audio search in a multiprocessor system; and

Jul. 28, 2011

[0012] FIG. 8 is pseudo code illustrating an example pro
cess for performing robust and parallel audio search in a
multiprocessor system.

DETAILED DESCRIPTION

[0013] According to embodiments of the subject matter
disclosed in this application, a large audio stream or a large
audio database in a multiprocessor system may be searched
for a target audio clip using a robust and parallel search
method. The large audio database may be partitioned into a
number of smaller groups. These smaller groups may be
dynamically scheduled to be processed by available proces
sors or processing cores in the multiprocessor system. Pro
cessors or processing cores may process the scheduled groups
in parallel by partitioning each group into smaller segments,
extracting acoustic features from the segments; and modeling
the segments using a common component Gaussian Mixture
model (“CCGMM”). The length of these segments may be
the same as the length of the target audio clip. Before pro
cessing any group, one processor or processing core may
extract acoustic features from the target audio clip and model
it using the CCGMM. A Kullback-Leibler (KL) or KL-max
distance may be further computed betWeen the model of the
target audio clip and each segment of a group. If the distance
equals or smaller than a predetermined value, the correspond
ing segment is identi?ed as the target audio clip.
[0014] If the distance is larger than a predetermined value,
the processor or processing core may skip a certain number of
segments and continue searching for the target audio clip.
Once a processor or processing core ?nishes searching a
group, a neW groups may be given to it for processing to
search for the target audio clip until all of the groups are
searched. The siZe of the groups may be determined in such a
Way to reduce the load imbalance and the overlapped com
putation. Furthermore, Input/Output (I/O) may be optimiZed
to improve the e?iciency of parallel processing of audio
groups by multiple processors or processing cores.
[0015] Reference in the speci?cation to “one embodiment”
or “an embodiment” of the disclosed subject matter means
that a particular feature, structure or characteristic described
in connection With the embodiment is included in at least one
embodiment of the disclosed subject matter. Thus, the appear
ances of the phrase “in one embodiment” appearing in various
places throughout the speci?cation are not necessarily all
referring to the same embodiment.
[0016] FIG. 1 shoWs one example computing system 100
Where robust and parallel audio search may be performed
using an audio search module 120. Computing system 100
may comprise one or more processors 110 coupled to a sys
tem interconnect 115. Processor 110 may have multiple or
many processing cores (for brevity of description, term “mul
tiple cores” Will be used hereinafter to include both multiple
processing cores and many processing cores). Processor 110
may include an audio search module 120 to conduct robust
and parallel audio search by multiple cores. The audio search
module may comprise several components such as a parti
tioning mechanism, a schedule, and multiple audio searchers
(see more detailed description for FIGS. 4-6 beloW). One or
more components of the audio search module may be located
in one core With others in another core.

[0017] The audio search module may ?rst partition a large
audio database into multiple smaller groups or a large audio
stream into smaller partially overlapped substreams. Second,
one core may process an audio clip to be searched for (“target

US 2011/0184952 A1

audio clip”) to establish a model for the target audio clip. In
the mean While, the audio search module dynamically sched
ules smaller audio groups/substreams to multiple cores,
Which partition each group/substream into segments and
establish a model for each audio segment, in parallel. The siZe
of each segment may be equal to the siZe of the target audio
clip. A Gaussian mixture model (“GMM”) With multiple
Gaussian components, Which are common to all of the audio
segments including both the target audio clip and the audio
database/stream, may be used for modeling each audio seg
ment and the target audio clip. Once a model is established for
an audio segment, Kullback-Leibler (“KL”) or KL-max dis
tance may be computed betWeen the segment model and the
target audio clip model. If the distance is not larger than a
predetermined value, the audio segment may be identi?ed as
the target audio clip. The search process may continue until
all audio groups/substreams are processed.
[0018] The computing system 100 may also include a
chipset 130 coupled to the system interconnect 115. Chipset
130 may include one or more integrated circuit packages or
chips. Chipset 130 may comprise one or more device inter
faces 135 to support data transfers to and/or from other com
ponents 160 of the computing system 100 such as, for
example, BIOS ?rmware, keyboards, mice, storage devices,
netWork interfaces, etc. Chipset 130 may be coupled to a
Peripheral Component Interconnect (PCI) bus 170. Chipset
130 may include a PCI bridge 145 that provides an interface
to the PCI bus 170. The PCI Bridge 145 may provide a data
path betWeen the processor 110 as Well as other components
160, and peripheral devices such as, for example, an audio
device 180 and a disk drive 190. Although not shoWn, other
devices may also be coupled to the PCI bus 170.

[0019] Additionally, chipset 130 may comprise a memory
controller 125 that is coupled to a main memory 150. The
main memory 150 may store data and sequences of instruc
tions that are executed by multiple cores of the processor 110
or any other device included in the system. The memory
controller 125 may access the main memory 150 in response
to memory transactions associated With multiple cores of the
processor 110, and other devices in the computing system
100. In one embodiment, memory controller 150 may be
located in processor 110 or some other circuitries. The main
memory 150 may comprise various memory devices that
provide addressable storage locations Which the memory
controller 125 may read data from and/or Write data to. The
main memory 150 may comprise one or more different types
of memory devices such as Dynamic Random Access
Memory (DRAM) devices, Synchronous DRAM (SDRAM)
devices, Double Data Rate (DDR) SDRAM devices, or other
memory devices.

[0020] FIG. 2 shoWs another example computing system
200 Where robust and parallel audio search may be performed
using an audio search module 240. System 200 may comprise
multiple processors such as processor0 220A. One or more
processors in system 200 may have many cores. System 200
may include an audio search module 240 to conduct robust
and parallel audio search by multiple cores. The audio search
module may comprise several components such as a parti
tioning mechanism, a schedule, and multiple audio searchers
(see more detailed description for FIGS. 4-6 beloW). One or
more components of the audio search module may be located
in one core With others in another core. Processors in system
200 may be connected to each other using a system intercon
nect 210. System interconnect 210 may be a Front Side Bus

Jul. 28, 2011

(FSB). Each processor may be connected to Input/Output
(IO) devices as Well as memory 230 through the system
interconnect. All of the cores may receive audio data from
memory 230.

[0021] FIG. 3 shoWs yet another example computing sys
tem 300 Where robust and parallel audio search may be per
formed using an audio search module 340. In system 300,
system interconnect 310 that connects multiple processors
(e.g., 320A, 320B, 320C, and 320D) is a links-based point
to-point connection. Each processor may connect to the sys
tem interconnect through a links hub (e.g., 330A, 330B,
330C, and 330D). In some embodiments, a links hub may be
co-located With a memory controller, Which coordinates traf
?c to/from a system memory. One or more processor may
have many cores. System 300 may include an audio search
module 340 to conduct robust and parallel audio search by
multiple cores. The audio search module may comprise sev
eral components such as a partitioning mechanism, a sched
ule, and multiple audio searchers (see more detailed descrip
tion for FIGS. 4-6 beloW). One or more components of the
audio search module may be located in one core With others in
another core. Each processor/core in system 300 may be
connected to a shared memory (hot shoWn in the ?gure)
through the system interconnect. All of the cores may receive
audio data from the shared memory.

[0022] In FIGS. 2 and 3, the audio search module (i.e., 240
and 340) may ?rst partition a large audio database into mul
tiple smaller groups or a large audio stream into smaller
partially overlapped substreams. Second, one core may pro
cess an audio clip to be searched for (“target audio clip”) to
establish a model for the target audio clip. In the mean While,
the audio search module dynamically schedules smaller
audio groups/substreams to multiple cores, Which partition
each group/substream into segments and establish a model
for each audio segment, in parallel. The siZe of each segment
may be equal to the siZe of the target audio clip. A Gaussian
mixture model (“GMM”) With multiple Gaussian compo
nents, Which are common to all of the audio segments includ
ing both the target audio clip and the audio database/ stream,
may be used for modeling each audio segment and the target
audio clip. Once a model is established for an audio segment,
Kullback-Leibler (“KL”) or KL-max distance may be com
puted betWeen the segment model and the target audio clip
model. If the distance is not larger than a predetermined value,
the audio segment may be identi?ed as the target audio clip.
The search process may continue until all audio groups/sub
streams are processed.

[0023] FIG. 4 is a block diagram of an example audio
search module 400 that performs robust audio search. Audio
search module 400 comprises a feature extractor 410, a mod
eling mechanism 420, and a decision maker 430. Feature
extractor 410 may receive an input audio stream (e.g., a target
audio clip, a substream of a large audio stream, etc.) and
extract acoustic features from the input audio stream. When
the input audio stream is an audio stream to be searched for
the target audio clip, the feature extractor may apply sliding
WindoW on the audio stream to partition it into multiple over
lapped segments. The WindoW has the same length as the
target audio clip. Each segment of the input audio stream (the
target audio stream has only one segment) is further separated
into frames. Each frame may have the same length and may
overlap With its neighboring frames. For example, in one
embodiment, a frame may be 20 milliseconds in length With
the overlap betWeen frames being 10 milliseconds. A feature

US 2011/0184952 A1

vector may be extracted for each frame, Which may include
such features as Fourier coe?icients, Mel-Frequency cepstral
coe?icients, spectral ?atness, and means, variances, other
derivatives thereof. Feature vectors from all of the frames in
an audio segment form a feature vector sequence.

[0024] The overlap betWeen tWo adjacent segments is to
reduce the likelihood of missing any target audio clip betWeen
tWo adjacent segments. The longer the overlap is, the less
likely a miss is. In one embodiment, the overlap may be equal
to the length of a segment minus the length of a frame to avoid
missing any match. HoWever, longer overlap means more
computation. Thus, there should be a balance betWeen the
computation load and the likelihood of miss (e.g., the overlap
is equal to or less than 1/2 of the segment length). In any case,
feature vectors for frames that are overlapped betWeen tWo
segments only need to be extracted once.
[0025] Modeling mechanism 420 may establish a model for
an audio segment based on its feature vector sequence
extracted by feature extractor 410. Depending on What model
is used, the modeling mechanism Will estimate parameters for
the model. In one embodiment, a common component Gaus
sian mixture model (“CCGMM”) may be used for modeling
an audio segment. The CCGMM includes multiple Gaussian
components Which are common across all of the segments.
For each segment, the modeling mechanism estimates a spe
ci?c set of mixture Weights for the common Gaussian com
ponents. In another embodiment, other models (e.g., hidden
Markov model) may be used for modeling an audio segment.
In one embodiment, only the target audio clip may be mod
eled; and the feature vector sequence of an audio segment
may be directly used to determine Whether the audio segment
is substantially the same as the target audio clip.
[0026] Decision maker 430 may determine Whether an
audio segment in the input audio stream is suf?ciently similar
so that the audio segment can be identi?ed as a copy of the
target audio clip. To achieve this goal, the decision maker may
derive a similarity measure by comparing the model of the
audio segment and the model of the target audio clip. In one
embodiment, the similarity measure may be a distance com
puted betWeen the tWo models. In another embodiment, the
similarity measure may be probability of the audio segment
model being the same as the target audio clip model. Yet in
another embodiment, the similarity measure may be derived
by comparing the feature vector sequence of the audio seg
ment and the model of the target audio clip. For example,
When a hidden Markov model (“HMM”) is used to model the
target audio clip, a Viterbi based algorithm may be used to
compute a likelihood score betWeen the audio segment and
the target audio clip, based on the feature vector sequence of
the audio segment and the HMM of the target audio clip.
[0027] Based on the value of the similarity measure, the
decision maker may determine Whether an audio segment can
be identi?ed as the target audio clip. For example, if the value
of the similarity measure is not larger than a predetermined
threshold (e.g., similarity measure is distance betWeen the
audio segment model and the target audio clip), the audio
segment may be identi?ed as substantially the same as the
target audio clip. Similarly, the audio segment may be iden
ti?ed as substantially the same as the target audio clip if the
value of the similarity measure is not smaller than a predeter
mined threshold (e. g., similarity measure is a likelihood score
of the audio segment being substantially the same as the target
audio clip). On the other hand, if an audio segment is found to
be substantially different from the target audio clip based on

Jul. 28, 2011

the similarity measure, a certain number of segments imme
diately folloWing the audio segment may be skipped. The
actual number of segments to be skipped Will depend on the
value of the similarity measure and/or empirical data. By
skipping a number of folloWing segments, it is not likely to
miss any target audio clip When the similarity measure indi
cate the current segment is so different from the target audio
clip because the WindoW used to partition an input audio
stream into segments slides forWard gradually and as a result,
there is continuity of similarity measure from one segment to
the next.

[0028] FIG. 5 is an example illustrating hoW a robust audio
search module shoWn in FIG. 4 Works.A target audio clip 510
is received by a feature extractor Which segments it into
frames and produces a feature vector sequence (540) at block
530A, With a feature vector per frame. A feature vector may
be an x dimensional vector (Wherein x>:l) because the fea
ture vector may include one or more parameters. At block

570A, Feature vector sequence 540 may be modeled using a
GMM as shoWn beloW:

M

. 1'
1+1

The GMM, P(k)(x), includes M Gaussian components With
component Weights Wig“), means [1.1 (k), and covariance 21.0“),
With iIl, 2, . . . , M; Wherein k denotes segment k and N()
denotes a Gaussian distribution. For the target audio clip,
there is only one segment, and hence there is no need to use k
to identify a segment. For the input audio stream 520, hoW
ever, there is typically more than one segment, and it is thus
desirable to identify the GMM for different segments.

[0029] In the example shoWn in FIG. 5, Kullback-Leibler
(KL) or KL-max distance is used as a similarity measure. To
simplify KL-max distance computation, it is assumed that the
GMMs used for all the audio segments share a common set of
Gaussian components, i.e., for the ith Gaussian component,
the mean ([1,) and variance Q1.) are the same across different
audio segments. As a result, Equation (1) becomes:

M (2)

PM) =2 wEk’Npmm.

For each audio segment, only a set of Weights, Wig“), iIl, 2, .
. . , M, need to be estimated for the common Gaussian com

ponents. Given a feature vector sequence for segment k,
Which has T feature vectors, xt(t:l, 2, . . . , T), Weights may be
estimated as folloWs,

1

US 2011/0184952 A1

wherein WZ-(H) or W]-(”) is a universal Weight for the ith or jth
segment, Which may be obtained by experiments based on
some sample audio ?les or be initialiZed With a random value.

[0030] An input audio stream 520, Which is to be searched
for the target audio clip 510, may be received by a feature
extractor. At block 530B, the feature extractor partitions the
input audio stream into partially overlapped segments. For
each segment, the feature extractor further partitions the seg
ment into multiple partially overlapped frames and extracts a
feature vector from each frame. Block 560 shoWs a feature
vector sequence for the input audio stream 520 and also
illustrates hoW the audio stream is partitioned into partially
overlapped segments. For example, a WindoW With the siZe
being the same as the length of the target audio clip may be
applied to input audio stream 520. For illustration purpose, a
WindoW is shoWn for the feature vector sequence of the target
audio clip to obtain a segment 560A although there is typi
cally no need to apply a WindoW to the target audio clip since
there is only one segment. A shifting WindoW is applied to the
input audio stream to obtain multiple partially overlapped
segments such as 560B and 560C. The WindoW shifts by time
"c from segment 560B to segment 560C, Where '5 is smaller
than the WindoW siZe.

[0031] Each audio segment is modeled using the CCGMM,
for example, segment 560B is modeled at block 570B and
segment 560C is modeled at block 570C. Models for each
segment of input audio stream 520 and for target audio clip
510 have common Gaussian components With different sets
of Weights. In one embodiment, feature vectors may be
extracted from the entire input audio stream frame by frame to
produce a long feature vector sequence for the entire input
audio stream. A WindoW With a length being N><FL (Where N
is a positive integer and FL is the frame length) is subse
quently applied to the long feature vector sequence. Feature
vectors Within the WindoW constitute a feature vector for an
audio segment, Which is used to establish a CCGMM. The
WindoW is shifting forWard by '5 time.
[0032] To determine if a segment is substantially the same
as the target audio clip, KL-max distance may be calculated
betWeen the model of the segment and the target audio clip as
folloWs,

If the KL-max distance so calculated is beloW a predeter
mined threshold, the audio clip may be considered to be
detected. As the WindoW applied over input audio stream 520
shifts forWard in time, distances typically shoW certain con
tinuity from one time-step to the next. In other Words, if the
distance is too large, it is unlikely that one or more segments
immediately folloWing the current segment matches the tar
get audio clip. Thus, depending on the value of the distance,
a certain number of immediately folloWing segments in the
same audio stream/substream may be skipped from search.

[0033] FIG. 6 is a block diagram of an example audio
search module 600 that performs robust and parallel audio
search in a multiprocessor system. The audio search module
600 comprises a partitioning mechanism 610, a scheduler
620, an I/O optimiZer 630, and a plurality of audio searchers
(e.g., 640A, 640N). Partitioning mechanism 610 may parti
tion a large audio stream into multiple smaller substreams

Jul. 28, 2011

and/or a large audio database into multiple smaller groups.
FIGS. 7A, 7B, and 7C illustrate a method of partitioning a
large audio database into smaller groups for robust and par
allel audio search in a multiprocessor system. FIG. 7A shoWs
an example database that contains a single large audio stream
710. The partitioning mechanism may partition audio stream
710 into multiple smaller substreams such as 712, 714, and
716, With each substream constituting a group. The length of
substreams can vary from each other, but it is normally uni
form for the simplicity purpose. To avoid missing any correct
detection of a target audio clip, each substream overlaps With
its immediately folloWing substream; and the overlap
betWeen tWo adjacent substreams (e.g., 712 and 714, 714 and
716) should equal or longer than FNClip-l, Where FNClip is
the total number of frames in the target audio clip.

[0034] FIG. 7B shoWs another example database that
includes multiple relatively small audio streams (e.g., 720,
725, 730, 735, and 740). In one embodiment, partitioning
mechanism 610 may partition the database into multiple
smaller groups With each group consisting of only one audio
stream. In another embodiment, the partitioning mechanism
may partition the database into multiple smaller groups With
some groups each consisting of only one audio stream and
With others each consisting of more than one small audio
stream, as illustrated in FIG. 7B. FIG. 7C shoWs yet another
example database that includes some relatively small audio
streams (e.g., 750, 755, and 760) as Well as some large audio
stream (e.g., 770). The partitioning mechanism may put those
relatively small audio streams into groups With each group
consisting of only one audio stream or With some groups
consisting of only one audio stream (e.g., 750) While others
consisting of more than one small audio streams (e.g., 755
and 760 may be grouped together).As for a large audio stream
such as 770, the partitioning mechanism may partition it into
multiple partially overlapped smaller substreams (e.g., 712
and 714) With each substream constituting a group, using the
method illustrated in FIG. 7A.

[0035] Additionally, the partitioning mechanism partitions
a large audio database into groups With proper siZes to reduce
the overlapped computation (in the situation Where a large
audio stream is partitioned into multiple overlapped smaller
substreams) and load imbalance in parallel processing by
multiple processors. Smaller group siZe may result in large
overlapped computation, While larger group siZe may result
in considerable load imbalance. In one embodiment, the
group siZe may be about 25 times of the siZe of the target
audio clip.
[0036] Turning back to FIG. 6, scheduler 620 may dynami
cally schedule multiple groups of a large database into mul
tiple processors in the multiprocessor system With each pro
cessor having one group to process at one time. The scheduler
periodically checks the availability of processors in the sys
tem and assigns an audio group for each available processor to
process and search for the target audio clip. If another pro
cessor becomes available later, the scheduler may assign one
group to this processor. The scheduler also assigns an
unsearched audio group to processor immediately after it
?nishes searching its previously assigned group no matter
Whether other processors ?nish their searching. In fact, even
for groups With the same siZe, searching for the same target
audio clip may take different amount of time for different
processors because the number of segments to be skipped

US 2011/0184952 A1

may be different from one segment to another. Using dynamic
scheduling as outlined above may further reduce load imbal
ance effectively.

[0037] U0 optimizer 630 may optimiZe I/O tra?ic on the
system interconnect (e.g., system bus connecting a shared
system memory With processors in the system). The U0 opti
miZer may decide not to load the entire audio database to be
searched for from the disk into the memory in the beginning
While the data range for each processor is being de?ned.
Additionally, the I/O optimiZer may let each processor read
only a portion of its as signed segment from the memory at one
time. By optimiZing the I/O traf?c, the I/O optimiZer may
reduce I/O contention, implement the overlap of I/O opera
tions and computation, and help to improve computation
e?iciency. As a result, the scalability of audio search can be
signi?cantly improved.
[0038] Audio search module Audio 600 also comprises a
plurality of audio searchers 640A through 640N. Each audio
searcher (e.g., 640A) is located in a processor to process a
group assigned to the processor and to search for the target
audio clip. Similar to an audio searching module 400 shoWn
in FIG. 4, an audio searcher includes a feature extractor (e.g.,
410), a modeling mechanism (e.g., 420), and a decision
maker (e.g., 430). Each audio searcher conducts serial active
search of an audio group assigned to it for a target audio clip
by partitioning audio streams in the audio group into partially
overlapped segments With length being the same as the target
audio clip, extracting feature vector sequence for each seg
ment, and modeling each segment using a CCGMM as illus
trated in Equations (1) through (4). Additionally, the
CCGMM for the target audio clip Which is used by all of the
audio searchers just needs to be estimated once by one of the
audio searchers. Each audio searcher computes KL-max dis
tance betWeen the model for each segment and the model of
the target audio clip. Based, on the KL-max distance, an audio
searcher may determine if the target audio clip is detected.
Moreover, each audio searcher may skip a number of seg
ments that folloWing the current segment if the KL-max dis
tance for the current segment is larger than a threshold.

[0039] FIG. 8 is pseudo code illustrating an example pro
cess 800 for performing robust and parallel audio search in a
multiprocessor system. At line 802, audio search module may
be initialiZed, e.g., target audio clip ?le and audio database
?le may be opened, and global parameters may be initialiZed.
At line 804, a large audio database may be partitioned into NG
smaller groups as illustrated in FIGS. 7A, 7B, and 7C. At line
806, a model (e.g., CCGMM) may be established for the
target audio clip. At line 808, NG audio groups may be
dynamically scheduled to available processors and parallel
processing of the scheduled groups may be started. Line 808
uses one example instruction that sets up parallel implemen
tation and other parallel implementation instructions may
also be used.

[0040] Lines 810 through 846 illustrate hoW each of NG
groups are processed and searched for the target in parallel by
a processor in the multiprocessor system. It is Worth noting
that for illustration purpose, process in lines 812 to 846 is
shoWn as iteration from the ?rst group until the last group. In
practice, if there are several processors available, several
groups are processed in parallel by these available processors.
At line 814, some or all of audio streams in each group may be
further partitioned into NS partially overlapped segments if
such streams are longer in time than the target audio clip. Line
816 starts iterative process for each segment of the group,

Jul. 28, 2011

shoWn in lines 818 through 832. At line 820, a feature vector
sequence (frame by frame) may be extracted from the seg
ment. At line 822, a model (e.g., CCGMM as shoWn in Equa
tions (1) to (3)) may be established for the segment. At line
824, distance (e.g., KL-max distance as shoWn in Equation
(4)) betWeen the segment model and the target audio clip
model may be computed. At line 826, Whether the segment
matches the target audio clip or not may be determined based
on the distance calculated in line 824 and a predetermined
threshold #1. If the distance is less than the threshold #1, the
segment matches the target audio clip. At line 828, Whether a
number of folloWing segments (e. g., M segments) in the same
audio stream/substream may be skipped from searching may
be determined based on the distance calculated in line 824 and
a predetermined threshold #2. If the distance is larger than the
threshold #2, M segments may be skipped from searching. In
one embodiment, the number of segments to be skipped may
vary depending upon the value of the distance. At line 830, the
search results (e.g., index or starting time of a match segment
in each group) may be stored in an array Which is local to the
processor that processes the group. At line 842, search results
from local arrays from all of the processors may be summa
riZed and outputted to a user.

[0041] Using the robust and parallel search strategy as out
lined in FIG. 8 along With other techniques such as I/O opti
miZation, search speed for a target audio clip in a large audio
database in a multiprocessor system may be signi?cantly
improved. One experiment shoWs that search speed for a 15
second target audio clip in a 27 hour audio stream increases
by 11 times on a l6-Way Unisys system, compared to serial
search of the same audio stream for the same target audio clip.

[0042] In one embodiment, a modi?ed search strategy may
be used. Using this strategy, a preliminary model (e. g.,
CCGMM) may be established for the ?rst K frames (K>:l)
of the target audio clip along With a full model for the entire
target audio clip. Accordingly, a preliminary model (e. g.,
CCGMM) may be ?rst established for the ?rst K frames
(K>:l) of an audio segment. During active search, the pre
liminary model of the ?rst K frames of each audio segment
may be ?rst compared With the preliminary model of the ?rst
K frames of the target audio clip to produce a preliminary
similarity measure. If the preliminary similarity measure
indicates that these tWo preliminary models are signi?cantly
similar, a full model may be established for the entire audio
segment and compared With the full model of the entire target
audio clip; otherWise, no full model Will be established for the
audio segment and the next segment may be searched by ?rst
establishing a preliminary model for its ?rst K frames and by
comparing this preliminary model With the preliminary
model of the target audio clip. This modi?ed search strategy
may further reduce computation load.
[0043] Although an example embodiment of the disclosed
subject matter is described With reference to block and How
diagrams in FIGS. 1-8, persons of ordinary skill in the art Will
readily appreciate that many other methods of implementing
the disclosed subject matter may alternatively be used. For
example, the order of execution of the blocks in How dia
grams may be changed, and/or some of the blocks in block/
?oW diagrams described may be changed, eliminated, or
combined.

[0044] In the preceding description, various aspects of the
disclosed subject matter have been described. For purposes of
explanation, speci?c numbers, systems and con?gurations
Were set forth in order to provide a thorough understanding of

US 2011/0184952 Al

the subject matter. However, it is apparent to one skilled in the
art having the bene?t of this disclosure that the subject matter
may be practiced Without the speci?c details. In other
instances, Well-knoWn features, components, or modules
Were omitted, simpli?ed, combined, or split in order not to
obscure the disclosed subject matter.

[0045] Various embodiments of the disclosed subject mat
ter may be implemented in hardWare, ?rmware, softWare, or
combination thereof, and may be described by reference to or
in conjunction With program code, such as instructions, func
tions, procedures, data structures, logic, application pro
grams, design representations or formats for simulation, emu
lation, and fabrication of a design, Which When accessed by a
machine results in the machine performing tasks, de?ning
abstract data types or loW-level hardWare contexts, or produc
ing a result.

[0046] For simulations, program code may represent hard
Ware using a hardWare description language or another func
tional description language Which essentially provides a
model of hoW designed hardWare is expected to perform.
Program code may be assembly or machine language, or data
that may be compiled and/or interpreted. Furthermore, it is
common in the art to speak of softWare, in one form or another
as taking an action or causing a result. Such expressions are
merely a shorthand Way of stating execution of program code
by a processing system Which causes a processor to perform
an action or produce a result.

[0047] Program code may be stored in, for example, vola
tile and/ or non-volatile memory, such as storage devices and/
or an associated machine readable or machine accessible

medium including solid-state memory, hard-drives, ?oppy
disks, optical storage, tapes, ?ash memory, memory sticks,
digital video disks, digital versatile discs (DVDs), etc., as
Well as more exotic mediums such as machine-accessible

biological state preserving storage. A machine readable
medium may include any mechanism for storing, transmit
ting, or receiving information in a form readable by a
machine, and the medium may include a tangible medium
through Which electrical, optical, acoustical or other form of
propagated signals or carrier Wave encoding the program
code may pass, such as antennas, optical ?bers, communica
tions interfaces, etc. Program code may be transmitted in the
form of packets, serial data, parallel data, propagated signals,
etc., and may be used in a compressed or encrypted format.

[0048] Program code may be implemented in programs
executing on programmable machines such as mobile or sta
tionary computers, personal digital assistants, set top boxes,
cellular telephones and pagers, and other electronic devices,
each including a processor, volatile and/ or non-volatile
memory readable by the processor, at least one input device
and/or one or more output devices. Program code may be
applied to the data entered using the input device to perform
the described embodiments and to generate output informa
tion. The output information may be applied to one or more
output devices. One of ordinary skill in the art may appreciate
that embodiments of the disclosed subject matter can be prac
ticed With various computer system con?gurations, including
multiprocessor or multiple-core processor systems, mini
computers, mainframe computers, as Well as pervasive or
miniature computers or processors that may be embedded
into virtually any device. Embodiments of the disclosed sub
ject matter can also be practiced in distributed computing

Jul. 28, 2011

environments Where tasks may be performed by remote pro
cessing devices that are linked through a communications
netWork.
[0049] Although operations may be described as a sequen
tial process, some of the operations may in fact be performed
in parallel, concurrently, and/ or in a distributed environment,
and With program code stored locally and/or remotely for
access by single or multi-processor machines. In addition, in
some embodiments the order of operations may be rearranged
Without departing from the spirit of the disclosed subject
matter. Program code may be used by or in conjunction With
embedded controllers.
[0050] While the disclosed subject matter has been
described With reference to illustrative embodiments, this
description is not intended to be construed in a limiting sense.
Various modi?cations of the illustrative embodiments, as
Well as other embodiments of the subject matter, Which are
apparent to persons skilled in the art to Which the disclosed
subject matter pertains are deemed to lie Within the scope of
the disclosed subject matter.
What is claimed is:
1. A method comprising:
parallel processing audio segments, including ?rst and sec

ond audio segments, to search for a target audio clip;
determining a target model for the target clip and ?rst and

second segment models respectively for the ?rst and
second segments;

determining ?rst and second distances respectively
betWeen the target model and the ?rst and second seg
ment models; and

skipping searching a number of audio segments based on
the ?rst distance, and determining the second segment
matches the target clip based on the second distance.

2. The method of claim 1, Wherein the magnitude of the
number of audio segments is based on the magnitude of the
?rst distance.

3. The method of claim 1, Wherein (a) determining the
target model comprises extracting a target feature vector
sequence (“FVS”) from the target clip and modeling the
target FVS based on a Gaussian Mixture model (“GMM”),
and (b) determining the ?rst segment model comprises
extracting a ?rst segment FVS from the ?rst segment and
modeling the ?rst segment FVS based on a GMM.

4. The method of claim 1, Wherein the ?rst segment par
tially overlaps a third segment.

5. The method of claim 1, Wherein the ?rst segment par
tially overlaps one of the number of audio segments.

6. The method of claim 1, including:
partitioning an audio database into the ?rst and second

segments; and
determining ?rst and second siZes for the ?rst and second

segments, the ?rst and second siZes being determined to
reduce the amount of overlapped computation among
the audio segments and load imbalance in parallel pro
cessing of the audio segments.

7. The method of claim 1, including determining the ?rst
segment does not match the target clip based on the ?rst
distance satisfying a ?rst threshold; Wherein (a) the ?rst and
second audio segments are each partitioned from an audio
database, and (b) the number of audio segments exceeds 1.

8. An article comprising a machine-readable medium that
contains instructions, Which When executed by a processing
platform, cause the processing platform to perform opera
tions comprising:

US 2011/0184952 A1

parallel processing audio segments, including ?rst and sec
ond audio segments, to search for a target audio clip;

determining a target model for the target clip and ?rst and
second segment models respectively for the ?rst and
second segments;

determining ?rst and second similarity measures respec
tively betWeen the target model and the ?rst and second
segment models; and

skipping searching a number of audio segments based on
the ?rst similarity measure, and determining the second
segment matches the target clip based on the second
similarity measure.

9. The article of claim 8, Wherein (a) the ?rst similarity
measure includes a ?rst distance, and (b) the magnitude of the
number of audio segments is based on the magnitude of the
?rst distance.

10. The article of claim 8, Wherein (a) determining the
target model comprises extracting a target feature vector
sequence (“FVS”) from the target clip and modeling the
target FVS based on a Gaussian Mixture model (“GMM”),
and (b) determining the ?rst segment model comprises
extracting a ?rst segment FVS from the ?rst segment and
modeling the ?rst segment FVS based on a GMM.

11. The article of claim 8, Wherein the ?rst segment par
tially overlaps a third segment.

12. The article of claim 8, Wherein the ?rst segment par
tially overlaps one of the number of audio segments.

13. The article of claim 8, including:
partitioning an audio database into the ?rst and second

segments; and
determining ?rst and second siZes for the ?rst and second

segments, the ?rst and second siZes being determined to
reduce the amount of overlapped computation among
the audio segments and load imbalance in parallel pro
cessing of the audio segments.

14. The article of claim 8, including determining the ?rst
segment does not match the target clip based on the ?rst
similarity measure satisfying a ?rst threshold; Wherein (a) the
?rst and second audio segments are each partitioned from an
audio database, and (b) the number of audio segments
exceeds 1.

15. An apparatus comprising:
a memory to receive audio segments; and
a plurality of processor cores, coupled to the memory, to:

(a) parallel process the audio segments, including ?rst
and second audio segments, to search for a target audio

Jul. 28, 2011

clip; (b) determine a target model for the target clip and
?rst and second segment models respectively for the ?rst
and second segments; (c) determine ?rst and second
similarity measures respectively betWeen the target
model and the ?rst and second segment models; and (d)
determine the second segment matches the target clip
based on the second similarity measure;

Wherein the second segment partially overlaps a third seg
ment.

16. The apparatus of claim 15, Wherein the plurality of
processor cores are to skip searching a number of audio
segments based on the ?rst similarity measure.

17. The apparatus of claim 16, Wherein (a) the ?rst simi
larity measure includes a ?rst distance, and (b) the magnitude
of the number of audio segments is based on the magnitude of
the ?rst distance.

18. The apparatus of claim 16, Wherein (a) determining the
target model comprises extracting a target feature vector
sequence (“FVS”) from the target clip and modeling the
target FVS based on a Gaussian Mixture model (“GMM”),
and (b) determining the ?rst segment model comprises
extracting a ?rst segment FVS from the ?rst segment and
modeling the ?rst segment FVS based on a GMM.

19. The apparatus of claim 16, Wherein the plurality of
processor cores are to:

partition an audio database into the ?rst and second seg
ments; and

determine ?rst and second siZes for the ?rst and second
segments, the ?rst and second siZes being determined to
reduce the amount of overlapped computation among
the audio segments and load imbalance in parallel pro
cessing of the audio segments.

20. The apparatus of claim 16, Wherein the plurality of
processor cores are to determine the ?rst segment does not
match the target clip based on the ?rst similarity measure
satisfying a ?rst threshold; Wherein (a) the ?rst and second
audio segments are each partitioned from an audio database,
(b) the number of audio segments exceeds 1, and (c) the
plurality of processor cores are included in a plurality of
processors.

21. The apparatus of claim 15, Wherein the ?rst segment
partially overlaps one of the number of audio segments.

* * * * *

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description/Claims
	Page 16 - Claims

