The invention relates to GM-CSF for use in a method for the prevention of spontaneous abortion in a subject suffering from recurrent miscarriage, comprising administering to said subject an effective amount of GM-CSF as sole active substance, wherein said method also prevents or reduces the likelihood of embryo implantation failure in the subject undergoing an assisted reproduction procedure.
Title: GM-CSF for use in the prevention of spontaneous abortion and embryo implantation failure

DESCRIPTION

Field of application

The present invention relates to the use of GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor) in the prevention of spontaneous abortion and embryo implantation failure.

Prior Art

GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor) is a protein secreted by different cell strains including macrophages, T lymphocytes, mastocytes, NK cells, endothelial cells and fibroblasts.

GM-CSF is a cytokine which performs the function of a white blood cell growth factor. GM-CSF stimulates the growth of stem cells and the differentiation of stem cells into granulocytes (neutrophils, eosinophils and basophils) and into monocytes. The monocytes which exit the circulatory system and penetrate into the tissues develop and mature into macrophages and dendritic cells. Therefore GM-CSF is a component of the immuno-inflammatory cascade system which, by means of activation of a small number of macrophages, rapidly leads to a substantial increase in the number of these activated cells, this being a crucial process for combating infections. The active form of this protein is present extracellularly as a homodimer. In its mature biological form, the human Granulocyte Macrophage-Colony Stimulating Factor is a glycosylated protein.

The gene of GM-CSF has been localized in human beings in a cluster of related genes on the long arm of the chromosome 5 in the region 5q31, recognized as being associated with the chromosome deletion that produces the 5q- syndrome and acute myelogenous leukemia. The genes of this cluster also encode the interleukins 4, 5 and 13.

This growth factor performs its function by bonding to a specific receptor thereof present on the surface of the target cells, the Granulocyte
Macrophage-Colony Stimulating Factor receptor, also known as CD116 (Cluster of Differentiation 116). The receptor for the GM-CSF is located on the white blood cells, promoting the growth thereof, as well as on the stem cells, myeloblasts and neutrophils, but not on the erythroid cells and megacaryocytes. Moreover this receptor is associated with the surfactant metabolism dysfunction type 4.

This receptor is a heterodimer composed of at least two different subunits, alpha chain and beta chain, the latter also being present in the receptor of IL-3 and IL-5. The alpha subunit contains a specific site for the GM-CSF binding, while the beta subunit is involved in signal transduction. Association of the alpha and beta subunits results in functional activation of the receptor. Upon dimerization of the two subunits, alpha and beta, the latter is phosphorylated on a tyrosine residue by a kinase, a phosphorylating enzyme of the Janus kinase (JAK) family. This results in an association of the receptor with a She protein, or adaptor protein. This protein interacts with the GRB2/SoS complex, which activates a whole series of molecules in the post-receptor pathway which leads to nuclear activation of the cell.

GM-CSF is also known as molgramostim or, when the protein is produced by yeast cells, as sargramostim (Leukine); these molecules have a pharmacological use.

GM-CSF is used as a drug for stimulating the production of white blood cells in patients who have undergone oncological chemotherapy.

GM-CSF is also used and is currently being evaluated in controlled studies for its potential as a vaccine adjuvant in HIV-infected patients. The preliminary studies have been particularly encouraging, but the American Food and Drug Administration (FDA) has not yet approved use of GM-CSF for this purpose.

Leukine is the registered trade name of sargramostim, recombinant GM-CSF produced by yeast cells, developed by Immunex (now Amgen), administered for the first time in 1987, as part of a compassionate-use protocol, to six men who were victims of radioactive cesium contamination following the accident which occurred in Goiania. It is currently produced by Berlex Laboratories, a subsidiary of Schering AG. Its use is currently
approved both in the USA and in Europe for treatment following autologous bone marrow transplantation in patients with myeloproliferative pathologies such as non-Hodgkin's lymphoma, acute lymphocytic leukemia or Hodgkin's disease. Moreover, in 1996 the FDA approved the use of sargamostim for the treatment of fungal infections and the treatment of post-chemotherapy aplastic anemia.

Recently Berlex, the pharmaceutical company producing GM-CSF, funded a study which was published in 2005 in the New England Journal of Medicine and which concluded that GM-CSF promotes a significant increase in remissions in patients suffering from Crohn's disease with a reduction in the severity of the illness and improvement in the quality of life, even though this data has not been confirmed by other studies.

Moreover recently GM-CSF has been tested for the treatment of patients suffering from Alzheimer's disease, for demyelinating diseases such as multiple sclerosis, for treatment and revascularization in myocardial infarction and for the treatment of cerebral thrombosis, with encouraging results. In these cases the capacity of GM-CSF to stimulate the growth of stem cells, and in particular those which regenerate the endothelial cells, has been advantageously employed.

In 1999 it was also shown how GM-CSF added to the culture medium for mice embryos promoted their development to blastocysts.

It was also proposed using culture media to which GM-CSF (Granulocyte-macrophage colony stimulating factor) was added in order to favour the development of human embryos in vitro (C. Sjoblom et al., "Granulocyte-macrophage colony-stimulating factor promotes human blastocyst development in vitro", Human Reproduction vol. 14, No. 12, pp 3069-3076, 1999).

Patent application WO 2005/539505 refers to a method for preventing spontaneous abortion, comprising the administration of an effective amount of G-CSF. The application in question refers also to a method for preventing implantation failure during assisted reproduction, comprising the administration of an effective amount of G-CSF.

Patent application WO 2010/ 126528 describes a method for preventing or
reducing the probability of implantation failure in a subject undergoing artificial insemination, comprising the administration of an effective amount of a composition containing G-CSF. This application mentions the possibility that this composition may comprise an additive, including GM-CSF among the numerous additives mentioned, but it does not attribute any particular function to it.

Patent application WO 2010/126553 refers to a method for reducing the probability of implantation failure or spontaneous abortion in a subject undergoing an assisted reproduction procedure selected from among FET, ICSI, GIFT or ZIFT, comprising the administration of an effective amount of a composition containing G-CSF. This application mentions the possibility that this composition may comprise an additive, including GM-CSF among the numerous additives mentioned, but it does not attribute any particular function to it.

Patent application WO 2004/026333 describes the treatment of recurrent miscarriage and spontaneous abortion by means of administration of an effective amount of a compound which inhibits the activity of IFN-γ, such as a TGF-β, and the possible additional administration of GM-CSF.

Aagaard-Tillery et al., "Immunology of normal pregnancy", Seminars in fetal and neonatal medicine, Elsevier, GB, vol. 11, No. 5, 1 October 2006, pages 279-295, describe the administration of GM-CSF to a murine model of spontaneous abortion, which results in a reduction of pregnancy loss and an increase in the placental and fetal weight.

Mori T et al., "Immunomolecular mechanisms in mammalian implantation", Endocrine Journal, Tokyo, JP, vol. 41, Suppl. No. 1 January 1994, pages S17-S31, describes the administration of GM-CSF to prevent spontaneous abortion in mice. This article states that, in the murine model CBA/J DBA/2 of spontaneous abortion, the administration
of GM-CSF increased the placental and fetal weight, but was unable to reduce the incidence of fetal resorption in the pregnant mice which were spontaneous abortion prone.

Leif Matthiesen et al. "Multiple pregnancy failures: an immunological paradigm", American Journal of Reproductive Immunology, vol. 67, No. 4, 1 April 2012, pages 334-340, describes the use of GM-CSF for treatment of recurrent spontaneous abortion. In this article it is reported that GM-CSF was launched to be used in the settings of in vitro fertilization (IVF) because it improves apposition, adhesion, differentiation and invasion of the embryo.

Since 1997 the research group of the Applicants has been carrying out various clinical and laboratory studies into the use of G-CSF (Granulocyte Colony Stimulating Factor), a hormone of the CSF family, to which GM-CSF and M-CSF (Macrophage-Colony Stimulating Factor) also belong, in the treatment of recurrent miscarriage, repeated implantation failure and development of the embryo in vitro.

With reference to the aforementioned studies, the Applicants have directed their research efforts towards developing a new method for preventing recurrent miscarriage and repeated embryo implantation failure, which might show unexpected results compared to the known methods.

Therefore the object of the present invention is to provide a method for preventing spontaneous abortion in patients with a history of recurrent miscarriage, where "recurrent miscarriage" is understood as meaning at least three miscarriages, and for preventing or reducing the likelihood of spontaneous abortion or implantation failure in the aforementioned subjects, when undergoing assisted reproduction procedures.
Summary of the invention

In order to achieve this object, the present invention provides GM-CSF for use in a method for the prevention of spontaneous abortion in a subject suffering from recurrent miscarriage, which comprises administering to said subject an effective amount of GM-CSF as the sole active substance, wherein said method prevents or also reduces the likelihood of embryo implantation failure in the aforementioned subject when undergoing an assisted reproduction procedure.

GM-CSF is preferably administered parenterally, conveniently subcutaneously. The daily administered dose is preferably 0.1 to 100 meg/kg, conveniently 0.5 to 10 meg/kg and advantageously about 1 meg/kg.

GM-CSF, when used for the method described above, is administered every day from the day of ovulation to the ninth week of pregnancy.

The aforementioned assisted reproduction procedure may be any one from among those commonly used in medical practice, such as ICSI (intracytoplasmic sperm injection), GIFT (gamete intrafallopian transfer), ZIFT (zygote intrafallopian transfer) and FET (frozen embryo transfer).

GM-CSF is used in the pharmaceutical forms which are commercially available, namely in the form of a lyophilized powder intended to be reconstituted by means of the addition of water for injectable solutions and containing any excipients suitable to ensure the stability of the protein GM-CSF, favour the solubilization thereof and ensure the isotonicity of the reconstituted solution. An example of a GM-CSF formulation which can be used for the present invention consists of the product marketed by Novartis under the trade name Leucomax®.

As will emerge from the examples provided in the description below, with the GM-CSF used in the aforementioned method it has been possible to obtain results which were entirely unexpected in the light of the known methods of the prior art and achieve a substantial reduction in the spontaneous abortion rate in subjects suffering from recurrent miscarriage as well as pregnancy and embryo implantation rates higher than those achieved hitherto with the methods according to the prior art.
Brief description of the drawings

Figure 1 is a diagrammatic representation of the results of experiments according to Example 1 reported in the description below.

Figure 2 is a diagrammatic representation of the results of experiments according to Example 2 reported in the description below.

Figure 3 is a diagrammatic representation of the results of experiments according to Example 3 reported in the description below.

Detailed description of a preferred embodiment

Further features and advantages of the present invention will become clear from the examples provided hereinbelow by way of illustration and not of limitation.

EXAMPLE 1

This experiment was intended to study the use of GM-CSF or Molgramostim (trade name Leucomax) in the daily dose of 1 meg/kg (about 60 meg per day) in women suffering from recurrent miscarriage (at least three consecutive miscarriages) *sine causa* (without a cause which can be diagnosed by current diagnostic methods) in an attempt to prevent miscarriage in these women.

This treatment was compared with a control group of women suffering from the same pathology treated daily with 100 mg of intramuscular progesterone for the same period following ovulation.

The study included 30 women divided into two groups of 15 patients each, less than 38 years old, who suffered from recurrent miscarriage and had had at least 4 preceding consecutive miscarriages and in whom the last miscarriage had taken place during treatment with high doses of intravenous immunoglobulin where the karyotype of the aborted embryo was normal (46XX or 46XY).

15 of these women were treated daily with 1 meg/kg of Molgramostim (Leucomax, Novartis), equivalent to a daily dose of about 60 meg, subcutaneously, starting from the day of ovulation (diagnosed by means of
ultrasound during monitoring of the menstrual cycle) until the day of the pregnancy test, i.e. 14 days after ovulation, and, if the test was positive, until the ninth week of pregnancy still with the same dose.

The other 15 women were treated daily with intramuscular progestins using the same procedures and for the same duration as the other group (Prontogest, IBSA, 100 mg per day). All 30 women were monitored in the same manner by means of ultrasound fortnightly as from the positive pregnancy test and with weekly plasmatic determination of the beta-HCG.

All the women remained pregnant within three months following the start of the study. The results showed that 12 out of the 15 women (80%) treated with GM-CSF (1 mg/kg of Molgramostim per day) completed the pregnancy, while 6 out of the 15 women (40%) treated with "placebo", i.e. Prontogest, completed pregnancy (P=0.03).

Moreover, the beta-HCG values for the completed pregnancies in the two groups showed that these were much higher in the women treated with GM-CSF (see Fig. 1). The beta-HCG values of the women treated with GM-CSF, in addition to being higher than those recorded in the group treated with "placebo", were also higher than the beta-HCG values recorded for women who had non-pathological pregnancies without miscarriage (shown in the columns marked "Normal" in the graph of Figure 1).

This experiment shows that GM-CSF is able to prevent in an effective and significant manner spontaneous abortion in female subjects suffering from *sine causa* recurrent miscarriage.

EXAMPLE 2

This experiment was intended to study the use of GM-CSF or Molgramostim (trade name Leucamax) in a daily dose of 1 mg/kg (about 60 mg per day) in women suffering from repeated implantation failure following *in vitro* fertilization cycles (at least three attempts at assisted reproduction or ICSI cycles, with transfer into the uterus of at least 8 embryos of good morphological quality) *sine causa* (without a cause which can be diagnosed by current diagnostic methods) in an attempt to obtain pregnancy in these women. This treatment was compared with a control group of women suffering from the same pathology treated daily with 100
mg of intramuscular progesterone for the same period following in vitro fertilization.

The study included 30 women divided into two groups of 15 patients each, who suffered from repeated implantation failure following in vitro fertilization cycles as specified above. The first group of 15 women were treated daily with 1 meg/kg of Molgramostim (Leucomax, Novartis) subcutaneously, equivalent to a daily dose of about 60 meg, starting from the day prior to embryo transfer until the day of the pregnancy test, i.e. 14 days after transfer, and, if the test was positive, until the ninth week of pregnancy still with the same dose.

The 15 women of the second group were treated daily with intramuscular progestins using the same procedures and for the same duration as the other group (Prontogest, IBSA, 100 mg per day). All 30 women were monitored in the same manner by means of ultrasound forntightly as from the positive pregnancy test and with weekly plasmatic determination of the beta-HCG.

The results, illustrated in the graph of Figure 2, show that 10 out of the 15 women treated with GM-CSF (1 meg/kg of Molgramostim per day) achieved pregnancy, equivalent to a pregnancy rate of 66.6%, while 4 out of the 15 women treated with "placebo" (Prontogest) achieved pregnancy, equivalent to a pregnancy rate of 26.7% (P=0.0328).

Moreover, the implantation rate (i.e. the percentage of the embryos which were implanted and showed clinical signs such as a gestational sac revealed by ultrasound) in the women treated with GM-CSF was 31.1% as opposed to 11.1% (P=0.0185).

EXAMPLE 3

This experiment was intended to study the use of GM-CSF or Molgramostim (trade name Leucomax) in a daily dose of 1 meg/kg (about 60 meg per day) on women suffering from repeated implantation failure following in vitro fertilization cycles (at least three attempts at assisted reproduction or ICSI cycles, with transfer into the uterus of at least 8 embryos of good morphological quality) sine causa (without a cause which can be diagnosed by current diagnostic methods) in an attempt to obtain
pregnancy in these women. This treatment was compared with a control group of women suffering from the same pathology treated daily with 1 meg/kg of G-CSF (Granulokine 30) for the same period following in vitro fertilization.

The study included 40 women divided into two groups of 20 patients each, who suffered from repeated implantation failure following in vitro fertilization cycles (at least three attempts at assisted reproduction or ICSI cycles, with transfer into the uterus of at least 8 embryos of good morphological quality). The 20 women of the first group were treated daily with 1 meg/kg of Molgramostim (Leucomax, Novartis), equivalent to a daily dose of about 60 meg, subcutaneously, starting from the day prior to embryo transfer until the day of the pregnancy test, i.e. 14 days after transfer, and, if the test was positive, until the ninth week of pregnancy still with the same dose.

The 20 women of the second group were treated daily with G-CSF (Granulokine 30) in a daily dose of 1 meg/kg (about 60 meg) using the same procedures and for the same duration as the other group. All 40 women were monitored in the same manner by means of ultrasound fortnightly as from the positive pregnancy test and with weekly plasmatic determination of the beta-HCG.

The results, illustrated in the graph of Figure 3, show that 14 out of the 20 women treated with GM-CSF (1 mcg/kg of Molgramostim per day) achieved pregnancy, equivalent to a pregnancy rate of 70.0%, while 7 out of the 20 women treated with G-CSF achieved pregnancy, corresponding to a pregnancy rate of 35.0% (P=0.028).

Moreover, the implantation rate (i.e. the percentage of the embryos which were implanted and showed clinical signs such as a gestational sac revealed by ultrasound) in the women treated with GM-CSF was 31.6% as opposed to 15.0% (P=0.0225).

The results of this experiment clearly showed the superiority of GM-CSF compared to G-CSF for the prevention or reduction of the likelihood of spontaneous abortion or implantation failure in subjects undergoing assisted reproduction procedures.
CLAIMS

1. GM-CSF for use in a method for preventing spontaneous abortion in a subject suffering from recurrent miscarriage, comprising administering to said subject an effective amount of GM-CSF, as the sole active substance, wherein said method also prevents or reduces the likelihood of implantation failure in said subject, when undergoing an assisted reproduction procedure.

2. GM-CSF for the use according to claim 1, wherein GM-CSF is administered parenterally.

3. GM-CSF for the use according to claim 2, wherein GM-CSF is administered subcutaneously.

4. GM-CSF for the use according to any one of claims 1 to 3, wherein the daily administered dose of GM-CSF is 0.1 mcg/kg to 100 mcg/kg, preferably 0.5 mcg/kg to 10 mcg/kg.

5. GM-CSF for the use according to claim 4, wherein said daily administered dose is about 1 mcg/kg.

6. GM-CSF for the use according to any one of the preceding claims, wherein GM-CSF is administered every day from the day of ovulation until the ninth week of pregnancy.

7. GM-CSF for the use according to any one of the preceding claims, wherein said assisted reproduction procedure is selected among the group comprising the ICSI, GIFT, ZIFT and FET procedures.
FIG. 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A61K38/19</th>
<th>A61P15/06</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| A61K | A51P |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

| EPO-Internal, BIOSIS, EMBASE, WPI Data |

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>wo 2010/126528 AI (NORA THERAPEUTICS INC [US]; CARTER DARRY L) 4 November 2010 (2010-11-04) cited in the application on paragraph s [0033], [0035], [0052]-[0058], [0103], [0106]-[0107], [0141]; claims 1, 19, 21</td>
<td>1-7</td>
</tr>
<tr>
<td>✗</td>
<td>wo 2004/026333 AI (UNIV ADELAIDE [AU]; ROBERTSON SARAH ANN [AU]; SHARKEY DAVID JAMES [AU]) 1 April 2004 (2004-04-01) claims 1-14, 32 page 10, lines 15-16 page 13, lines 11-29</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search

23 April 2014

Date of mailing of the international search report

30/04/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentbaan 2 NL-2280 HV Rijswijk

Tel (31-70) 340-2040, Fax (31-70) 340-3016

Authorized officer:

Cami Ileri, Alain
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2010/126553 AI (NORA THERAPEUTICS INC; CARTER DARRYL L [US]) 4 November 2010 (2010-11-04) cited in the application claims 1,2,6,7,19-21 paragraphs [0028], [0156], [0160]</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>AAGAARD-TILLLERY ET AL: "Immunology of normal pregnancy". SEMINARS IN FETAL AND NEONATAL MEDICINE, ELSEVIER, GB, vol. 11, no. 5, 1 October 2006 (2006-10-01), pages 279-295, XP005541378, ISSN: 1744-165X, DOI: 10.1016/J.SINY.2006.04.003 page 290, left-hand column, last paragraph - right-hand column, paragraph 1</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>MORI T ET AL: "Immunomolecular Mechanisms in Mammalian Implantation". ENDOCRINE JOURNAL, TOKYO, JP, vol. 41, no. Suppl, 1 January 1994 (1994-01-01), pages S17-S31, XP008091355, ISSN: 0918-8959 page 523, right-hand column, paragraph 2 - page 526, right-hand column, paragraph 2 figure 11; table 3</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>the whole document</td>
<td>1-7</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Y</td>
<td>the whole document</td>
<td>1-7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2010126528 A1</td>
<td>04-11-2010</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2004026333 A1</td>
<td>01-04-2004</td>
<td>CA 2539477 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005272636 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004026333 A1</td>
</tr>
<tr>
<td>WO 2010126553 A1</td>
<td>04-11-2010</td>
<td>US 2010080837 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010126553 A1</td>
</tr>
</tbody>
</table>