A device for receiving waste products of a dog has a harness to be securely placed on the dog. The harness has two elongated straps, each adapted to extend from the top of the hind end of the dog, under a respective leg to a buckle on the side of the dog. A normally flat opaque polyethylene bag having an opening and two side flaps disposed about the opening is connected to the harness in a position to receive the waste products of the dog. The straps are advantageously made from a vinyl plastic material and the bag is connected to the straps by means of two-sided adhesive pressure transfer tape which is releasably connected to the straps.
ANIMAL WASTE RECEIVING DEVICE

BACKGROUND OF THE INVENTION

The present invention relates to a device for receiving the waste products of an animal, particularly a dog. The crusting of dogs has increasingly created a problem, particularly in large cities where many dogs are found. Aside from it being unpleasant, the waste products of animals, dogs included, create a health hazard. The few known devices which have been proposed to collect the waste products and for disposing the same, have been impractical or ineffective. Consequently, the problem has remained and has become increasingly serious.

SUMMARY OF THE INVENTION

Accordingly, it is object of the present invention to provide a device for receiving the waste products of an animal which does not possess the disadvantages of such similar devices known in the prior art.

It is another object of the present invention to provide a device as described above which is simple in construction and economical to manufacture.

It is still another object of the present invention to provide a device for receiving waste products of the type under discussion which is simple to use.

It is another object of the present invention to provide a device for receiving the waste products of a dog which permits efficient collection of the waste products and easy disposition thereof.

It is still a further object of the present invention to provide a device as described above which includes inexpensive disposable bags which are adapted to collect the waste products and which can easily be sealed and disposed with minimum effort on the part of the owner of the dog.

To achieve the above objects, the present invention, for a device for receiving the waste products of an animal, particularly of a dog, and for containing the waste products for subsequent disposal, comprises harness means configured to be worn by the animal. Said harness means includes holding means arranged in the region of the hind end of the animal. Disposable container means are provided which has an opening and has peripheral portions substantially surrounding said opening. Adhesive means are provided which cooperate with said peripheral portions of said disposable container means and said holding means for adhearing said peripheral portions to said holding means in a position to receive the waste products of the animal. In this manner, said adhesive means maintains such adherence when the waste material is being collected while permitting the separation of said disposable container means from said holding means by the application of a suitable pulling force on said disposable container means relative to said holding means.

According to a presently preferred embodiment, said harness means has a rear part and said holding means comprises strap means connected to said rear part for securing the latter to the animal. Said rear part has side portions, and said strap means comprises two straps, one end of each strap being connected to said rear part. Further, buckling means are provided on each of said side portions. Each other end of said straps are adapted to pass underneath a different hind leg of the animal and are adjustably connectable to a respective buckle means. In this manner, adjustment of said straps tightens or loosens the fit of the straps about the animal. Advantageously, said strap means are made from a vinyl plastic material while said holding means comprises a bag made from an opaque polyethylene material. The presently preferred embodiment holding means comprises a normally flat bag having two major sections joined to one another about a substantial part of their peripheries, excepting said opening. Said peripheral portions comprise two flaps extending from each section beyond said opening — each flap having an inner surface. Said adhesive means comprises adhesive applied directly to each inner surface.

BRIEF DESCRIPTION OF THE DRAWINGS

With the above and additional objects and advantages in view, as will hereinafter appear, this invention comprises the devices, combinations and arrangements of parts hereinafter described and illustrated in the accompanying drawings of a preferred embodiment in which:

FIG. 1 is a perspective view of a harness forming part of the device for receiving the waste products of an animal in accordance with the present invention, showing a dog in outline wearing the harness;

FIG. 2 is a top view of the harness shown in FIG. 1, laid out in one plane and showing in dashed lines how the straps cooperate with the buckles on the sides of the harness;

FIG. 3 is a top view of a plastic bag used in conjunction with the present invention, showing the construction of the normally closed bag;

FIG. 4 is a fragmented top view of one major section of the bag shown in FIG. 3, showing the use of double-sided transfer tape on the flaps of the bag instead of adhesive directly applied thereto; and

FIG. 5 shows the bag of FIG. 3, showing the two flaps of the bag in FIG. 3 adhered to the straps of the harness and in a position to receive the waste products of the dog.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The device for receiving the waste products of an animal, here to be described in conjunction with a dog, is shown in FIG. 1 to consist of a harness 10 generally comprising a front part 12 and a rear part 14. The front part is adapted to be placed around the neck of the dog and be adjustably tightened thereabout, as will be described hereafter. The rear part 14 is generally positioned over the hind end of the dog.

The detailed construction of the harness 10 is shown in FIG. 2, wherein the front part 12 is shown to have neck portions 12a, 12b which respectively have snap portions 12c, 12d which are adapted to engage one another to adjust the size of the neck receiving opening. The rear part 14 is provided with a rear part 14a and side portions 14b. The rear part 14 is also provided with back portions 14c which the front part 12 is provided with back portions 12c. The back portions 12c are provided with snaps 12′, 12″ while the back portions 14c are provided with snaps 14′, 14″. The snaps 12′, 12″ and 14′, 14″ are adapted to respectively engage one another to adjust the length of the overall harness. The portions 12c, 14c together form an opening 28, whose function will be described hereafter.
Extending from the rear portion 14a are two hind straps 20, 22. Each strap is selected to have a width of approximately ½ of an inch and a length equal to approximately between one and two feet. The dimensions for the width and/or the length of the straps may be varied to accommodate different dogs. The above numerical examples are merely illustrative and not critical for the purpose of the present invention. The length of the straps are so selected so that when they engage the buckles 24, 26 (dashed outline), the hind legs of the dog may pass therethrough in fitting relationship.

An opening 28 is optionally provided — the opening being formed by the back portions 12e, 14c. The opening 28 is useful to prevent choking action caused by portions 12a, 12b when the latter are fitted around the neck of the dog. When the dog squats or performs acrobatics, the slight stretching or pulling between the front part 12 and the rear part 14 causes the back portions 12c, 14c to become more or less tight — this action causing the width of the opening 28 to change slightly. Thus, this construction facilitates slight elongation of the harness and decreases the pulling action on the neck of the dog.

Each of the straps 20, 22 is made from a vinyl plastic material. Although this is the presently preferred material, any other material having the desired characteristics described below may be utilized.

FIG. 3 illustrates a bag which is used in conjunction with the present invention. The bag 30 is preferably made from an opaque polyethylene material. The bag 30 has a storage portion 34 and, as can be seen in FIG. 5, and an opening 38. Surrounding the opening are two flaps 36. The bag 30 is normally flat, as can thus be seen in FIG. 3. The bag 30 generally comprises two major portions, as can be seen in FIG. 3, which are normally joined along a seam 50. Each flap 36 has an inside or interior surface which faces the other flap. In accordance with the presently preferred embodiment, the inside surface of each flap 36 is coated with an adhesive portion 40. To prevent the facing adhesive portions from joining one another, a protective paper (not shown) may be utilized to cover each adhesive portion 40 prior to use. FIG. 4 shows a second presently preferred embodiment wherein each inside surface of the flaps 36' have applied thereto a double-sided pressure sensitive transfer tape 40'. The length of the strip of tape is substantially equal to the width of the flap 36' while its width is approximately equal from between ¼th to ⅝th of an inch wide. Any double-sided pressure sensitive tape 40' or adhesive portions 40 which are suitable may be utilized.

The use of the device will now be described in conjunction with FIG. 5. The protective paper, which either covers the adhesive portions 40 or the transfer tape 40', are removed to expose the adhesive surfaces of the respective flaps 36, 36'. Each flap 36 is joined to one of the respective straps 20, 22 — exposing the opening 38 therebetween. The bag 30 is adhered to those portions of the straps 20, 22 so that the opening 38 is in a position to receive the waste material of the dog. Subsequently to the waste products contained in the bag 30 may be removed from the straps 20, 22 by applying a suitable pulling force on the bag 30 relative to the straps.

Advantageously, the adhesive portions 40, 40' remain on the flaps 36, 36' respectively so that the opening 38 may be sealed subsequently to use for disposition.

In order to insure that the adhesive portions remain on the flaps, the surface finish of the straps, the type and grade of the plastic material as well as the adhesive utilized must be so selected so that the adhesive remains, on separation, on the flaps instead of on the straps. One suitable combination includes the use of a smoothly finished vinyl material for the straps 20, 22 while utilizing an opaque polyethylene bag material whose thickness is approximately in the range of from 1 to 2 mils in thickness. When double-sided pressure sensitive transfer tape 40' is utilized, the latter is so selected so that the adhesive portions form a better or stronger contact with the polyethylene bag material than that with the strap surface.

Numerous alterations of the structure herein disclosed will suggest themselves to those skilled in the art. However, it is to be understood that the present disclosure relates to a preferred embodiment of the invention which is for purposes of illustration only and is not to be construed as a limitation of the invention.

What is claimed is:

1. Device for receiving the waste products of an animal, particularly of a dog, and for containing the waste products for subsequent disposal, comprising harness means configured to be worn by the animal, said harness means including a rear part provided with straps which extend about the hind end of the animal; disposable container means having an opening and having peripheral portions substantially surrounding said openings; and an adhesive cooperating with said peripheral portions of said disposable container means and said straps for releasably adhering said peripheral portions to said straps in a position to receive the waste products of the animal, whereby said adhesive maintains such adherence when the waste material is being collected while permitting the separation of said disposable container means from said straps by the application of a suitable pulling force on said disposable container means relative to said straps.

2. Device as defined in claim 1, wherein said harness means has a predetermined length and comprises a front part arranged to be placed around the neck of the animal, said front and rear parts including adjusting means for changing said predetermined length.

3. Device as defined in claim 2, wherein said front part defines a neck receiving opening having a predetermined size, and further including another adjusting means for changing said size.

4. Device as defined in claim 1, wherein said container means comprise a bag made from an opaque material.

5. Device as defined in claim 1, wherein said rear part has side portions, and wherein two straps are provided, one end of each strap being connected to said rear part; and further comprising buckle means provided on each of said side portions, each other end of said straps being adapted to pass underneath a hind leg of the animal and being adjustable connectable to a respective buckle means, whereby adjustment of said straps tightens or loosens the fit of the latter about the animal.

6. Device as defined in claim 1, wherein said straps are made from a vinyl plastic material.

7. Device as defined in claim 1, wherein said container means comprises a bag made from a polyethylene material.
8. Device as defined in claim 7, wherein the thickness of the polyethylene is approximately within the range of from 1 to 2 mils.

9. Device as defined in claim 1, wherein said container means comprises a normally flat bag having two major sections joined to one another about a substantial part of their peripheries excepting said opening, and wherein said peripheral portions comprise two flaps extending from each section beyond said opening.

10. Device as defined in claim 9, wherein said adhesive is applied directly to each inner surface.

11. Device as defined in claim 9, wherein each flap has an inner surface and wherein said adhesive comprises a strip of double-sided adhesive pressure sensitive transfer tape placed on each inner surface.