
(12) STANDARD PATENT (11) Application No. AU 2012340677 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method and apparatus for allocating erasure coded data to disk storage

(51) International Patent Classification(s)
G06F 3/06 (2006.01)

(21) Application No: 2012340677 (22) Date of Filing: 2012.11.21

(87) WIPO No: W013/078342

(30) Priority Data

(31) Number (32) Date (33) Country
13/302,510 2011.11.22 US

(43) Publication Date: 2013.05.30
(44) Accepted Journal Date: 2017.12.14

(71) Applicant(s)
Hewlett Packard Enterprise Development LP

(72) Inventor(s)
Healey, Michael W.;Cordella, David;Beaverson, Arthur J.;Bagby, Steven

(74) Agent / Attorney
FB Rice Pty Ltd, L 23 44 Market St, Sydney, NSW, 2000, AU

(56) Related Art
US 2006085594 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/078342 Al
30 May 2013 (30.05.2013) W I PO I P CT

(51) International Patent Classification: 01719 (US). BAGBY, Steven [US/US]; 88 E. San
G06F 3/06 (2006.01) Fernando Street, Unit #2007, San Jose, CA 95113 (US).

(21) International Application Number: (74) Agent: HENDRICKS, Therese, A.; Rissman Hendricks &
PCT/US2012/066297 Oliverio, LLP, 100 Cambridge Street, Suite 2101, Boston,

(22) International Filing Date: MA 02114 (US).

21 November 2012 (21.11.2012) (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

13/302,510 22 November 2011 (22.11.2011) US KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(71) Applicant (for all designated States except US): SIM- ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

PLIVITY CORPORATION [US/US]; 8 Technology NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,

Drive, Westborough, MA 01581-1756 (US). RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(72) Inventors; and ZM, ZW.
(71) Applicants (for US only): HEALEY, Michael, W.

[US/US]; 48 Gaumond Road, North Grosvenordale, CT (84) Designated States (unless otherwise indicated, for every

06255 (US). CORDELLA, David [US/US]; 15 Ruthen kind of regional protection available): ARIPO (BW, GH,

Circle, Shrewsbury, MA 01545 (US). BEAVERSON, Ar- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

thur, J. [US/US]; 37 Cobleigh Road, Boxborough, MA UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR ALLOCATING ERASURE CODED DATA TO DISK STORAGE

(57) Abstract: Allocation process that allows erasure coded data to

100 incoming data objects 102 be stored on any of a plurality of disk drives, in a pool of drives, so
100 in Data o02 that the allocation is not tied to a fixed group of drives. Still further,

(D01, D02, DOS. the encoded data can be generated by any of multiple different eras
ure coding algorithms, where again storage of the encoded data is

-- not restricted to a single group of drives based on the erasure al

106 7104 gorithm being utilized to encode the data. In another embodiment,
Erasure Coding Algorithm Selection Component the encoded data can be "stacked" (aligned) on select drives to re

duce the number of head seeks required to access the data. As a res
108 ult of these improvements, the system can dynamically determine

which one of multiple erasure coding algorithms to utilize for a giv
Disk Storage Allocation Component en incoming data block, without being tied to one particular al

gorithm and one particular group of storage devices as in the prior
art.

Encoded data chunk groups 110

(ED1, ED2, ED3.

/~12

ED1 ED1 E03 ED1 E01 ED2
ED2 E03

ED3

d, d, d, d d, d,

Pool of Disk Storage Devices

W O 2 0 13 /0 7 8 3 4 2 A 1 l l lll|||1ll|||1lllllllllllll|||II|||
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK' - with international search report (Art. 21(3))
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

1

METHOD AND APPARATUS FOR ALLOCATING ERASURE

CODED DATA TO DISK STORAGE

Field of the Invention

[0001] The present invention relates to computer storage systems and to methods and

apparatus for placement of data on disk storage which allows for the use of multiple erasure

coding algorithms.

Background

[0002] A significant job of a file system, operating system or other storage manager is to place

data on a storage medium, such as a disk storage device. Where the data is written (placed on

the disk) and when and how it is accessed, can have a significant effect on the read/write

performance.

[0003] Another significant job is protecting the data from loss in the event of physical damage

to the storage medium (fault tolerance). RAID, an acronym for Redundant Array of Independent

Disks, is an umbrella term for various data storage schemes that divide and replicate data

among multiple physical drives, so that if one (or possibly more) drive(s) is damaged, the data

on those lost drives can be recovered. Each scheme provides a different balance between the

two primary goals: increased data reliability and increased input/output (1/O) performance.

[0004] Erasure coding is a collection of error correction algorithms that enable recovery of

data lost on a failed drive in a storage system based on multiple disk drives (e.g., of a RAID

array). The general process for generating and writing erasure coded data to storage

comprises:

1. data arrives in a series of blocks;

2. each block is broken into sub-blocks;

3. the erasure coding algorithm is applied to the group of sub-blocks;

4. the result is a larger number of sub-blocks as determined by the specific

algorithm used (e.g., to include parity data);

5. the resulting sub-blocks are written out in groups of one or more sub-blocks as

determined by the specific algorithm used, to the storage media, one group per device

(e.g., disk drive).

2

[0005] The recovery process (i.e., recovery of the data that has been lost on a failed disk

drive) then proceeds as follows:

1. read the remaining groups of sub-blocks from the other (non-failed) devices;

2. apply the recovery algorithm to the remaining sub-blocks to generate the lost

data;

3. return the original complete data block.

[0006] The above process descriptions are generic and apply to many different erasure coding

algorithms. Each coding algorithms has its own set of trade-offs regarding:

1. 1/O performance;

2. CPU utilization;

3. storage efficiency;

4. number of drive failures tolerated.

[0007] According to current industry standards, the data size, the erasure coding algorithm,

and the array of disk drives are tied together as one integral whole, such that once a drive

grouping configuration is established for the data and algorithm, the erasure coding algorithm

cannot be changed. In designing such a system, a choice is made based on the redundancy

required, the amount of data being stored, and the granularity of the data blocks. Based on

these parameters, and balancing performance characteristics such as access time and recovery

time, a configuration array (fixed group of physical disk drives) is selected. Once this drive

grouping is established, only the designated erasure coding algorithm can be used to store data

on those drives. Still further, writing data in a size smaller than the minimum specified by the

selected erasure coding algorithm causes a performance hit (drop) because it requires a more

time consuming read-modify-write, rather than simply a write.

[0008] Any discussion of documents, acts, materials, devices, articles or the like which has

been included in the present specification is not to be taken as an admission that any or all of

these matters form part of the prior art base or were common general knowledge in the field

relevant to the present disclosure as it existed before the priority date of each of the appended

claims.

3

Summary of the Invention

[0009] A more flexible system for allocating erasure coded data to disk storage is desirable.

Increased flexibility would be desirable to enhance one or more of 1/O performance, CPU

utilization, storage capacity, fault tolerance, and/or recovery time.

[0010] Throughout this specification the word "comprise", or variations such as "comprises" or

"comprising", will be understood to imply the inclusion of a stated element, integer or step, or

group of elements, integers or steps, but not the exclusion of any other element, integer or step,

or group of elements, integers or steps.

[0011] In a first aspect, a method is provided comprising allocating encoded data objects for

storage in a pool of disk storage devices comprising multiple disk drives; at least some of the

encoded objects being generated by different error correction algorithms and allocation is not

restricted to a group of drives based on the algorithm utilized to generate the encoded object;

each disk drive is divided into multiple logical storage units, each defined as a partition; a logical

storage unit group (LSU group) comprising a group of partitions extending across a group of

disk drives, wherein the partitions of the LSU group are each of the same size and cannot be on

the same drive; the method including generating an allocation bitmask to describe how the

encoded data object is to be stored; the allocating of each encoded data object being performed

by comparing the allocation bitmask for the encoded data object and a single allocation bitmap

that extends across the LSU group to identify available locations for storage of the object,

wherein the object is allocated to one available location defined by contiguous bits of the

bitmap, or to multiple locations aligned along a common partition boundary allowing a gap of

non-contiguous allocation between the two locations.

[0012] In a second aspect, a data storage system is provided comprising an error correction

algorithm component operable to select, for different incoming data objects, different error

correction algorithms for generating encoded data objects; and a disk storage allocation

component for allocating the encoded data objects for storage in a pool of disk storage devices

comprising multiple disk drives, at least some of the encoded objects generated by different

error correction algorithms being allocated to the same or a different group of drives that is not

based on the algorithm utilized to generate the encoded object. Each disk drive is divided into

multiple logical storage units, each defined as a partition. A logical storage unit group (LSU

group) comprising a group of partitions extending across a group of disk drives wherein the

partitions of the LSU group are of each of the same size and cannot be on the same drive. The

allocation component comparing an allocation bitmask describing how the encoded data object

is to be stored to a single allocation bitmap that extends across the LSU group to identify

4

available locations for storage of the object, wherein the object is allocated to one available

location defined by contiguous bits of the bitmap, or to multiple locations aligned along a

common partition boundary allowing a gap of non-contiguous allocation between the two

locations.

[0013] In a third aspect there is provided, in a computing environment for locating data

storage, a data structure comprising an allocation bitmap to request available allocation units for

storing encoded data objects in a pool of disk storage devices comprising multiple disk drives; at

least some of the encoded objects being generated by different error correction algorithms and

allocation is not restricted to a group of drives based on the algorithm utilized to generate the

encoded object; each disk drive is divided into multiple logical storage units, each defined as a

partition; a logical storage unit group (LSU group) comprising a group of partitions extending

across a group of disk drives, wherein partitions of the LSU group are each of the same size

and cannot be on the same drive; the single allocation bitmap extends across the LSU group to

identify, by a comparison of an allocation bitmask describing how an encoded data object is to

be stored, to the allocation bitmap, available locations for storage of the object, the bitmap

including multiple available locations aligned along a common boundary allowing a gap of non

contiguous allocation between the two locations.

[0014] An optional allocation process is provided that allows erasure coded data to be stored

on any of a plurality of disk drives, in a pool of drives, so that the allocation is not tied to a fixed

group of drives. Still further, the encoded data may be generated by any one of multiple different

erasure coding algorithms, where again storage of the encoded data is not restricted to a single

group of drives based on the erasure algorithm being utilized to encode the data.

[0015] The encoded data may be "stacked" (aligned) on select drives to reduce the number of

head seeks required to access the data. As a result of these improvements, the system can

dynamically determine which one of multiple erasure coding algorithms to utilize for a given

incoming data block, without being tied to one particular algorithm and one particular group of

storage devices.

[0016] An optional computer-implemented method may be provided for locating data on

storage comprising computer-executable acts of:

allocating for storage on the same or different devices in a pool of disk storage

devices, a plurality of encoded data objects encoded by the same or different erasure

codes;

5

for each encoded object to be stored on multiple logical storage units, utilizing an

allocation bitmask as a single request for available allocation units to store the

respective encoded object on the multiple logical storage units, wherein the allocation

bitmask spans the multiple logical storage units and includes a gap aligned with a

starting partition boundary for the encoded object being stored.

[0017] The allocating step may include allocating the encoded objects on different devices.

[0018] The allocating step may include allocating encoded objects encoded by different

erasure codes.

[0019] The allocating step may include allocating multiple encoded objects on the same local

storage unit.

[0020] The allocating step may include allocating multiple encoded objects on the same

logical storage unit group.

[0021] The method may include using the allocation bitmask to request allocation units aligned

with a logical storage unit boundary.

[0022] The object size of the data being encoded may be fixed.

[0023] The object size of the data being encoded may be variable.

[0024] The data objects may be encoded by different categories of erasure codes.

[0025] The method may include providing an index of the encoded data objects which maps

each encoded data object to its respective erasure code.

[0026] The allocating may step includes using an allocation bitmap marking the available

allocation units.

[0027] The allocation bitmap may map to a logical address space.

[0028] A logical object number (LON) may define a pointer to the encoded object.

[0029] A pointer to the encoded object may be stored in an index record.

6

[0030] The index record may include multiple pointers to the encoded object.

[0031] The allocating step may use a boundary bitmap marking the allocation unit for an initial

chunk of the encoded object.

[0032] A computer-readable medium is provided having stored thereon instructions which

perform, when loaded into a computer, the method steps of the two methods described above.

[0033] A programmable logic is provided configured to implement the method steps of the two

methods described above.

[0034] An optional data storage system is provided comprising:

an erasure coding algorithm selection component operable to select, for different

incoming data objects, different erasure coding algorithms for generating encoded data

objects; and

a disk storage allocation component for allocating the encoded data objects

encoded by the different algorithms to any available allocation units on the same or

different devices in a pool of disk storage devices.

[0035] The system may include a pool of disk storage devices for storing the encoded data.

[0036] The disk storage allocation component may utilize an allocation bitmask to request, for

each encoded data object, available storage units for storing the encoded object across one or

multiple logical storage units of a logical storage unit group that spans multiple devices in the

pool, and wherein the bitmask includes a gap allowing the encoded object to be stored on

multiple logical storage units on at least one device in the pool.

[0037] The system may include an index of the encoded data objects to its respective erasure

coding algorithm.

[0038] An optional computing environment for locating data storage, a data structure is

provided comprising an allocation bitmask to request available allocation units for storing

encoded objects across one or multiple logical storage units, the encoded data objects being

encoded in different erasure codes, the allocation bitmask spanning multiple logical storage

units across a plurality of disk drives, and the bitmask including a gap aligned with a starting

7

partition boundary for the encoded object being stored where the available allocation units are

requested across multiple logical storage units.

Brief Description of the Drawings

[0039] Fig. 1 is a schematic high level system architecture for one embodiment of the

invention, illustrating the encoding of the incoming data objects with different erasure coding

algorithms and subsequent allocation of encoded data to storage in a pool of disk storage

devices;

[0040] Fig. 2 is a flow chart of a process according to one embodiment of the invention for

selecting an erasure coding algorithm and allocating the encoded data to disk storage in the

pool of disk storage devices;

[0041] Figs. 3A-3B illustrate one example of encoding a data object with a 2 of 4 coding

algorithm;

[0042] Figs. 3C-3D illustrate another example of encoding a data object with a 4 of 6 coding

algorithm;

[0043] Figs. 3E-3F illustrate a further example of encoding a data object with a 8 of 10

encoding algorithm;

[0044] Figs. 4A-4B illustrate a pool of disk drives, each drive being broken into partitions, and

a logical storage unit (LSU) group extending across the drives in the pool;

[0045] Fig. 5 illustrates one example of an allocation bitmask for allocating encoded data

objects according to one embodiment of the invention;

[0046] Figs. 6A-6C illustrate another embodiment of an allocation bitmask for allocating

encoded data objects according to another embodiment of the invention; and

[0047] Fig. 7 illustrates one embodiment of a general system configuration for processing and

storing data.

Detailed Description

8

[0048] Various embodiments of the present invention are now described with reference to the

drawings. In the following description, for purposes of explanation, numerous specific details are

set forth in order to provide a thorough understanding of one or more implementations of the

present invention. It will be evident, however, that the present invention may be practiced

without these specific details. In other instances, well-known structures and devices are shown

in block diagram form in order to facilitate describing the present invention.

[0049] As used in this application, the terms "component" and "system" are intended to refer

to a computer-related entity, either hardware, a combination of hardware and software,

software, or software in execution. For example, a component may be, but is not limited to

being, a process running on a processor, a processor, an object, an executable, a thread of

execution, a program, and/or a computer. By way of illustration, both an application running on

a server and the server can be a component. One or more components may reside within a

process and/or thread of execution and a component may be localized on one computer and/or

distributed between two or more computers.

[0050] The present invention may also be illustrated as a flow chart of a process of the

invention. While, for the purposes of simplicity of explanation, the one or more methodologies

shown in the form of a flow chart are described as a series of acts, it is to be understood and

appreciated that the present invention is not limited by the order of acts, as some acts may, in

accordance with the present invention, occur in a different order and/or concurrent with other

acts from that shown and described herein. For example, those skilled in the art will understand

and appreciate that a methodology could alternatively be represented as a series of interrelated

states or events, such as in a state diagram. Moreover, not all illustrated acts may be required

to implement a methodology in accordance with the present invention.

[0051] In various embodiments of the invention disclosed herein, the terms "data", "data

element" or "data object" are used interchangeably. As used herein, data means an opaque

collection of data, e.g., any sequence of symbols (typically denoted "0" and "1") that can be

input into a computer, stored and processed there, or transmitted to another computer. As used

herein, data includes metadata, a description of other data. Data written to a storage system as

described herein may be data objects of the same size, or data objects of variable sizes.

[0052] A "storage system" as used herein may be any system or application for storing data to

disk storage, for example a file system, a block storage device, or other system. A storage

system may use an identifier or name to reference each data element in storage. In one

example, the name is a globally unique identifier (GUID), such as a hash of the data content,

preferably a cryptographic hash or collision resistant hash of the data content. Other naming

9

conventions are possible, as long as each data element has a name within the storage system

that permits reconstituting the data stored to the user. In one embodiment a central server

generates the names. Data names are usually fixed length binary strings intended for use by

programs, as opposed to humans. An index (sometimes as referred to as a dictionary or

catalog) of all the data may be needed by the storage system in order to access (locate) each

data element. Each record in the index may contain the name of a data element, its logical

and/or physical location (address), and other information concerning the respective data

element. In one embodiment, each index entry includes a pointer that points to a physical block

address on a disk where the data object is stored. In one embodiment a fixed algorithm may be

used to locate the physical location on a disk where the data is stored.

A. System Architecture

[0053] Fig. 1 illustrates a high level system architecture 100 for one embodiment of the

invention. Incoming data objects 102 are received by a storage system 104 for placement on

disk storage devices dl, d2, d3, d4, d5, d6... of disk storage pool 112. The system 104 includes

an erasure coding algorithm selection component 106 and a disk storage allocation component

108. For each incoming data object (DO1, D02, D03 ...) the component 106 selects one of

multiple erasure coding algorithms (ECA1, ECA2, ECA3 ...) to encode the selected data object

into encoded data chunk groups 110 (ED1, ED2, ED3...). The component 108 then allocates

these chunk groups to a plurality of disk storage devices in the pool 112 of such devices, one

chunk group per device, wherein the allocation of chunk groups to devices can be made

independently for each data object, and the allocation is not limited to a contiguous or fixed set

of devices in the device pool 112. For example, Fig. 1 shows the multiple chunk groups ED1 for

data object D01 have been allocated to disks dl, d2, d4, d5....; the multiple chunk groups ED2

for data object D02 have been allocated to devices d2, d6... ; and the multiple chunk groups

ED3 for D03 have been allocated to devices dl, d3, d4.... Thus, for the three different encoding

algorithms the resulting encoded data can be stored on the same or different sub-groups of

disks in the disk pool 112.

[0054] Fig 2 is a flow chart of a process illustrating one embodiment of the invention for

selecting an erasure coding algorithm and allocating the encoded data to disk storage in a pool

of disk storage devices. At 202, the process starts by receiving an incoming data object (DO). At

204, the process selects one from a plurality of different erasure coding algorithms (ECA1,

ECA2, ECA3...) for generating encoded data for the DO. At 206, the selected algorithm

generates the encoded data ECDO. At 208, the process allocates the encoded data ECDO into

a number of chunk groups (as required by the selected EC algorithm) and selects a

corresponding number of disk storage devices from those in the pool of devices. At 210, the

10

resulting chunk groups are written to the selected disk storage devices, one chunk group per

device. If, at step 212, there is a further incoming DO, the process returns to step 202.

Otherwise, the process ends.

[0055] In accordance with various embodiments of the present invention, the Erasure Code

(EC) algorithm selected to encode data can be different with different incoming data objects. For

example, the storage system may decide, during a busy part of the day when there is a high

utilization of the system, e.g., running at 85% of capacity, to select a simpler erasure code

algorithm to reduce the CPU time required to encode the data. The tradeoff would be less

tolerance to drive failure. However, later in the day, e.g., at night, when the CPU is not busy, the

storage system could retrieve the original data from the encoded data stored in the pool,

recalculate the original data using a different more complicated erasure code and then store this

encoded data to increase the level of data protection.

[0056] In another scenario, a decision on which erasure code to use may depend upon the

type of data being received. For example, larger data objects may accommodate many different

erasure coding algorithms, all resulting in an efficient utilization of storage space and an

acceptable number of compute cycles. Alternatively, smaller objects may be suitable for only a

smaller number or different types of erasure coding algorithms. Thus, based on the incoming

data, the storage system can dynamically determine which erasure code algorithm to use for

coding each respective incoming data.

[0057] By way of example, Figs. 3A-3F illustrate the use of different erasure coding algorithms

to generate encoded data, which encoded data can then be stored on a common pool of disk

storage devices.

[0058] In this series of examples, an erasure code category is labeled "a of b", where "b" is

the number of disk storage devices (e.g., drives) on which the encoded data chunk groups are

to be stored, one chunk group per device, and "a" is the number of devices that must survive in

order to regenerate the original data. Figs. 3A-3B illustrate Example A in which an EC category

2 of 4 algorithm is used to encode a data object of size 8KB. Figs. 3C-3D illustrate Example B in

which an EC category 4 of 6 algorithm is used to encode a data object of size 16KB. Figs. 3E

3F illustrate Example C in which an EC category 8 of 10 algorithm is used to encode a data

object of size 32KB. The algorithm(s) can be used to encode data objects of other sizes, for

example those shown in the tables of Figs. 3C and 3E.

[0059] In Example A of Figs. 3A-3B, a data object 302 is encoded by a 2 of 4 erasure

algorithm at 304 and the encoded data is allocated as 4 chunk groups 306, one to each of 4

11

disk drives dl, d2, d4 and d6 in the disk storage pool 308. Fig. 3B illustrates the encoding

process in which the original data object 302 of size X = 8KB is broken into 8 elements of size

X/8, collectively shown as object 312. Next, the 8 elements are combined with error correction

algorithms (according to the EC algorithm) resulting in 16 chunks each of size X/8, collectively

shown as object 314. The 16 chunks are separated into 4 chunk groups each of size X/2, the 4

chunk groups being labeled 316a, 316b, 316c, and 316d. A different one of the chunk groups is

sent to each of the selected disk drives dl, d2, d4 and d6 in the pool 308 as shown in Fig. 3A.

The total storage utilized for the encoded data is 16KB (table 300). This represents a 50%

efficiency (storing an object of size 8KB on a total storage of 16KB).

[0060] By comparison, Example B utilizes a 4 of 6 category algorithm to encode a larger

object of size 16KB, on a total storage of 24KB, for a 67% efficiency. Alternatively, larger object

sizes, e.g., 32KB, 64KB, 128KB, and 256KB can be encoded with this 4 of 6 algorithm and

produce similar efficiency as shown in the table 320 of Fig. 3C. In this particular example, data

object 322 is encoded by a 4 of 6 algorithm at 324, and the 6 resulting chunk groups 326 are

stored on any six disk drives, here dl, d2, d4, d5, d6 and d7, in the same pool 308 as used with

the 2 of 4 category encoded data of Fig. 3A. Fig. 3D illustrates how the data object 322 of size X

= 16KB is broken into 16 elements of size X/16, collectively shown as object 332. Next, the 16

elements of 332 are coded into 24 equal size chunks (including error correction elements) of

size X/16, collectively shown as object 324. Next, the 24 chunks are divided into 6 equal size

chunk groups of size X/4, here designated 336a-f and stored on six drives dl, d2, d4, d5, d6,

and d7. Thus, the 4 of 6 encoding for an object size 16KB was stored in a total storage of 24KB,

a 67% efficiency. Also, in accordance with the present invention, the encoded data from this 4

of 6 EC category algorithms (different than the algorithm category of Fig. 3A) can be stored on

all or some of the same drives in the disk storage pool 308 as the encoded data from the 2 of 4

category algorithm (of Fig. 3A).

[0061] Fig. 3E illustrates Example C wherein an 8 of 10 EC category algorithm is used to

encode a 32KB object size on 40KB total storage, an 80% efficiency. A data object 342 is

encoded by an 8 of 10 EC algorithm at 344 and separated into 10 equal size chunk groups 346

which are sent to any of 10 disk drives in the pool 308, here dl, d2, d3, d4, d5, d6, d7, d9, dl0

and dl. As shown in Fig. 3F, the data object 342 of size X = 32KB is broken into 32 elements of

size X/32, collectively shown as object 352. The elements are then coded into 40 equal chunks

of size X132, including error correction codes, and shown collectively as object 354. The object

354 if then divided into 10 equal size chunk groups each of size X/8, shown as chunk groups

356a-j. Again, these chunk groups are stored on some or all of the same disk drives in the pool

308 shown in Figs. 3A, 3C and 3E. This same 8 of 10 EC algorithm can be used to encode

other data sizes as shown in table 340.

12

B. Bitmask Allocation and Allocation of Aligned Boundaries

[0062] More specific implementations of the invention will now be described in which the

encoded data is allocated to a plurality of one or more disk storage devices using a bitmask for

allocation along one or more aligned boundaries to expedite the allocation and recovery

process.

[0063] In one example, based on the number of data objects to be stored in an index (number

of index entries) and based on the size of the medium for storing the index, a smallest object

size is selected to be 4KB (i.e., the minimum size of data an index entry can represent). Each

index entry has a pointer that points to a physical location on disk where the object is stored.

The pointer cannot represent less than 4KB of data. Here, an allocation unit (smallest data size

request) is chosen to be the same as the smallest object size, namely 4KB. As a result, one bit

on the allocation bitmask, and one bit on each of the corresponding allocation bitmap and

boundary bitmap as described below, represents 4KB.

[0064] Figs. 4A-4B illustrate one embodiment of a disk storage pool 402 which includes six

disk drives 404a-f. The drives can be of different types and sizes. Each disk drive is partitioned,

meaning each disk drive is divided into multiple logical storage units, each defined as a partition

406. The six partitions 406a-f in a group of partitions extending across the drives 404a-f are

each of the same size, and belong to one logical storage unit group 408. There cannot be two

partitions in one logical storage unit group on the same drive. An allocation bitmap and a

boundary bitmap are used for allocating erasure coded data to the drives as described below.

[0065] Fig. 4B shows more details of the same drive pool 402 of Fig. 4A, including a

schematic representation of one logical storage unit (LSU) group 408a extending across all of

the drives 404a-f. The LSU group 408a includes a plurality of layered logical storage units 412a

o, each of which extend across all drives (partitions) in the LSU group 408a. Each partition

406a-f of the LSU group 408a has a plurality of layered partition segments of the logical storage

units 412a-o, each of the LSU segments in the partition being aligned along an initial partition

boundary 414 and an ending partition boundary 416, labeled 414af and 416a-f respectively for

each of the disk drives 404a-f. The multiple logical storage units of group 408a in each partition

406 are of equal size and shown stacked one on top of the other.

[0066] In general, encoded data can be allocated to a single logical storage unit group as

follows. First, the data comes in and is broken up into objects (pieces of data of the same or

variable size) and then typically hashed. An object record is created which contains the object

name (e.g., hash) and the size of the object. The object is then encoded according to the

13

chosen erasure code and an allocation bitmask is generated to describe to an allocator, see

e.g., component 108 in Fig. 1, how that encoded object must be stored. The allocator finds

storage space on media (e.g., disk storage) that matches the bitmask. The data is then written

out to the media and a pointer is stored in the object record for that object in the index.

[0067] Generally, the allocator performs a bit-for-bit comparison between the allocation

bitmask and the allocation bitmap. A single allocation bitmap is used by the storage system to

record the state (availability) of all storage in the entire system. The bitmap may be stored in a

configuration file. A comparison of the allocation bitmask and the allocation bitmap may be

described (abstractly) as sliding the bitmask over the bitmap (the direction does not matter) until

the pattern in the bitmask matches the bitmap underneath it. When a match is found, this

identifies a location to store the data. The location is then stored in the object record in the index

as a pointer. In one embodiment, the allocation bitmap maps to a logical address space, and

the pointer to the encoded object is a logical object number (LON) that is stored in the object

record in the index.

[0068] Fig. 5 illustrates one example of allocating encoded data on a single logical storage

unit according to the invention. In this example, an allocation bitmask 502 is provided for an

object for locating 40KB of available storage on 24 drives of a drive pool, e.g., a pool of the type

shown in Figs. 1, 3 and 4. A data object of size 32KB is encoded by an 8 of 10 erasure coding

algorithm, resulting in 10 equal size chunk groups, each of size 4KB. Here, an allocation

bitmask 502 is shown having 24 allocation segments (bits), one bit for each of the 24 drives in

the logical storage unit group. The first 10 bits (501) are set to "0", meaning they are needed

(requested) for allocating the encoded data on any 10 contiguous drives in the logical storage

unit group (for storing the 10 encoded chunk groups, one chunk group per drive), where

contiguous can mean wrapping back around to the first drive of the next logical storage unit

(LSU). For example, if the first available block was on drive 20 at LSU 11, an object with 10

chunk groups would be stored by placing the first 5 chunk groups on drives 20-25 at LSU 11,

and the remaining 5 chunk groups would wrap around to drive 1, LSU 12 and continue until

completely stored on drives 1-5, at LSU 12. In contrast, in the example of Fig. 5, the first block

available aligns with the first drive in the LSU group. The remaining 14 bits (503) are labeled X,

meaning they are not needed (don't care whether they are free or not). Typically, the bitmask

would be shortened (e.g., for reasons of consuming less memory and less processing) to the

shortest length of the requested "0" bits, 10 in this example. The resulting allocation bitmap 504

is shown aligned below the bitmask 502. The first 10 bits (505) of the allocation bitmap are

labeled "1', thus allocating the 10 encoded chunk groups, one each to the first 10 drives in the

pool, while the remaining 14 bits (507), which will not be used for storing the encoded data, are

labeled "0". These bits could be either 0 or 1, depending on whether they were previously

14

allocated. In this case they have not been previously allocated. A boundary bitmap 506, shown

aligned below the allocation bitmap 504, similarly has 24 segments (bits), the first bit (508)

being labeled "1" to designate which partition number (which drive) the first chunk of the

encoded data object is stored on, here the first drive in the LSU group.

[0069] In accordance with this coding scheme, whole or partial logical storage units can be

allocated and written to at once. Also, a partial logical storage unit read is possible, e.g., reading

only the object requested.

[0070] For example, a starting block (allocation unit) for an object along with the length of the

object can be stored in an index record. This would provide all of the information needed to

locate (read) one object and only that object. However, in some cases the object size is beyond

the capacity of the allocation bitmask. One solution to this problem is illustrated by the encoding

example of Figs. 6A-6C, where it is desired to encode a large object (80KB) within the

requirements of the 8 of 10 erasure code (10 drives), such that each drive must hold 8KB of

data. It was previously determined (in this example) that each bit of the allocation bitmask can

only represent 4KB of data. This leads to a choice.

[0071] One option is to limit the object size to a number equal to the product of: (granularity of

allocation) (number of chunk groups as required by EC algorithm). This would force a large

object, such as in the present example (80KB), to be encoded as two separate objects, each of

which could land on different logical storage unit groups or with a gap between logical storage

units on the same logical storage unit group. This option is still more flexible than the prior art

allocation method which only allows contiguous allocation, whereas the allocation bitmask of the

present invention allows for gaps and permits noncontiguous allocation.

[0072] A second option, according to a preferred embodiment of the invention, allows one

request to have multiple allocation bits per chunk group. This choice is illustrated in Figs. 6A-6C.

In Fig. 6A, each chunk group is allocated two bits in the allocation bitmask, and the initial bits of

each chunk group are aligned along the common boundary of two logical storage units 615a,

615b in the same logical storage unit group. More generally, the common boundary can be any

partition boundary, i.e., the data chunks need not be stored on the first drive in the logical

storage unit group, but rather can be stored starting at any drive in the pool. In Fig. 6A, the

allocation bitmask 602, for one object locating 80KB of data, has an initial 24 bits representing a

first logical storage unit 601 (across 24 drives) and a second 24 bits representing a second

logical storage unit 603 (across the 24 drives). The first 10 bits (608) of the first 24 bits

representing the first logical storage unit, are shaded to mark them as being requested (must be

free), while the next 14 bits (610) are unshaded (need not be free). Also, the first 10 bits (612) of

15

the second 24 bits representing the second logical storage unit, are also shaded (requested to

be free), while the next 14 bits (614) are not required (and not relevant in this example, where

only two logical storage units are requested). The unshaded bits 610 are important --they

constitute a "gap" which enables all 80KB of data to be allocated with one request across two

logical storage units on 10 drives.

[0073] Here, a single bitmask 602 is used to store a single object to 80KB of total storage, the

stored data being allocated in two equal 40KB portions 608, 612 that are aligned on the logical

storage unit boundary 615. A 14 segment non-allocated "gap" 610 is provided in the allocation

bitmask between the allocated segments 1-10 (608) of the first logical storage unit, and the

allocated segments 1-10 (612) of the second logical storage unit, enabling a single bitmask to

be used to allocate the encoded data to multiple logical storage units aligned on a common

logical storage unit boundary 615. As previously sated, the common boundary can be any

partition boundary, it need not be the logical storage unit boundary.

[0074] Fig. 6B illustrates the resulting allocation bitmap 604 and boundary bitmap 606. The

allocation bitmap 604 similarly has 48 segments, the first 24 segments designating the first

logical storage unit 601 and the second 24 segments designating the second logical storage

unit 603. The first 10 segments 608, 612 in each of the first and second logical storage units

601, 603 respectively are allocated for the 10 chunk groups of the encoded object data (2 bits

for each chunk group). The boundary bitmap 606 has 48 segments, the first segment 625

marking the disk block (first block of first logical storage unit) that contains the first chunk of the

encoded object.

[0075] Fig. 6C illustrates how the two equal size 40KB portions of encoded data 628, 632 are

aligned on the same partition (e.g., logical storage unit) boundary 615, in stacking alignment.

Fig. 6C is a view of the encoded data stored on disk storage 630, where each column is a drive

and each row is a logical storage unit. By stacking the encoded data on a common boundary

615, this enables the disk head to access two logical storage units of encoded data with a single

drivehead seek, i.e., a single head can access a larger volume of stored data on multiple logical

storage units, without violating the requirements of the erasure coding. This improves the 1/O

performance. In this example, if two drives fail, the encoded data can be regenerated with 8

head seeks. In contrast, the prior art may require 16 head seeks to regenerate the data.

[0076] The above example illustrates how to allocate a single object across multiple logical

storage units using a single pointer in the index, without breaking the erasure code

requirements. The allocation bitmap allows non-allocated gaps that line up with the partition

boundaries. It also allows larger objects to be encoded in a single request. By placing a single

16

object across contiguous partitions and contiguous logical storage units in a logical storage unit

group, encoded data can be stacked (tiled) on one or more disk drives. In the example of Fig. 6,

a single bitmask (request) was used to map a 4KB block from each drive, consecutively and

wrapping back around to the first drive once the last drive is mapped.

[0077] Still further, in accordance with one embodiment of the present invention, more than

one data object can be placed on a logical storage unit, e.g., the remaining 14 drives on the

allocation bitmask 502 illustrated in Fig. 5, or the remaining 14 drives on the allocation bitmask

of Fig. 6, can store other data objects. Also, the encoded data on a logical storage unit can be

encoded by multiple different encoding algorithms. The only requirement is that the number of

drives required by an encoding algorithm be less than or equal to the partitions in a logical

storage unit group, for the object to be stored on this logical storage unit group.

[0078] The allocation bitmap in the above examples marks which logical object numbers

(LONs) are available for storing the encoded data. The boundary bitmap marks the block that

contains the first chunk of an encoded object. The boundary bitmap is used for reverse mapping

from the physical block number (PBN) to the object record. For example, if a disk drive fails, in

order to regenerate the data that was on the drive when it failed one must know which object

chunk-group resided on the failed drive in order to recalculate the missing data from the coded

data. There are two ways to do this:

1) Scan the index for all objects that have an address (LON through LON + length)

that belongs on the failed drive ; when an object is found that meets the criteria,

read the remaining object chunk-groups, recalculate the missing data, and rewrite

the missing chunk-group; or

2) Scan the allocation and boundary bitmaps for object boundaries that span the

failed drive; when found, read the remaining object chunk-groups, recalculate the

missing data, and rewrite the missing chunk group.

Method 1 requires both disk and index operations. Method 2 only requires disk operations.

C. Computing and Storage Environment

[0079] The previously described EC algorithm selection and data storage allocation methods

may be implemented in a suitable computing and storage environment, e.g., in the context of

computer-executable instructions that may run on one or more computers. In for example a

distributed computing environment certain tasks are performed by remote processing devices

17

that are linked through a communications network and program modules may be located in both

local and remote memory storage devices. The communications network may include a global

area network, e.g., the Internet, a local area network, a wide area network or other computer

network. It will be appreciated that the network connections described herein are exemplary and

other means of establishing communications between the computers may be used.

[0080] A computer may include a processing unit, a system memory, and system bus, wherein

the system bus couples the system components including, but not limited to, the system

memory and the processing unit. A computer may further include disk drives and interfaces to

external components. A variety of computer-readable media can be accessed by the computer

and includes both volatile and nonvolatile media, removable and nonremovable media. A

computer may include various user interface devices including a display screen, touch screen,

keyboard or mouse.

[0081] Referring now to Fig. 7, there is illustrated one example of a general system

configuration 700 for communications between a computer and a plurality of disk storage

devices. The disk storage can be any of various storage devices in which data are digitally

recorded by various electronic, magnetic, optical or mechanical methods on a surface of one or

more rotating disks, including hard disk drives, floppy disk drives and optical disk drives. A CPU

702 is shown attached to system memory 704, and a system bus 706 connects the CPU to

chipset 708. The chipset is connected via an 10 bus 710 and multiple 10 slots 712, to any of

various input/output devices, such as a drive controller for connecting a plurality of disk drives

716. The chipset may also be connected to other storage devices 718. The chipset may include

one or more of a video port 720, a network port 722, a mouse port 724, a keyboard port 726,

etc.

[0082] What has been described above includes examples of the present invention. It is, of

course, not possible to describe every conceivable combination of components or

methodologies for purposes of describing the present invention, but one of the ordinary skill in

the art will recognize that further combinations and permutations of the present invention are

possible. Accordingly, the present invention is intended to embrace all such alternations,

modifications and variations that fall within the present disclosure and/or claims.

18

CLAIMS:

1. A method comprising:

allocating encoded data objects for storage in a pool of disk storage devices

comprising multiple disk drives;

at least some of the encoded objects being generated by different error correction

algorithms and allocation is not restricted to a group of drives based on the algorithm utilized to

generate the encoded object;

each disk drive is divided into multiple logical storage units, each defined as a partition;

a logical storage unit group (LSU group) comprising a group of partitions extending

across a group of disk drives, wherein the partitions of the LSU group are each of the same size

and cannot be on the same drive;

the method including generating an allocation bitmask to describe how the encoded

data object is to be stored;

the allocating of each encoded data object being performed by comparing the

allocation bitmask for the encoded data object and a single allocation bitmap that extends

across the LSU group to identify available locations for storage of the object, wherein the object

is allocated to one available location defined by contiguous bits of the bitmap, or to multiple

locations aligned along a common partition boundary allowing a gap of non-contiguous

allocation between the two locations.

2. The method of claim 1, wherein:

the allocating step includes allocating the encoded objects on different drives.

3. The method of claim 2, wherein:

the allocating step includes allocating encoded objects encoded by different error

correction algorithms.

4. The method of claim 1, 2 or 3, wherein:

19

the method includes encoding data by different error correction algorithms to generate

the encoded objects and maintaining an index which maps the encoded object to its respective

error correction algorithm.

5. The method of any one of the preceding claims, wherein:

the allocating step includes allocating multiple encoded objects on the same logical

storage unit.

6. The method of any one of the preceding claims, wherein:

the allocating step includes allocating multiple encoded objects on the same logical

storage unit group.

7. The method of any one of the preceding claims, including:

using the allocation bitmap to request allocation units aligned with a common partition

boundary.

8. The method of any one of the preceding claims, wherein:

the object size of the data being encoded is fixed.

9. The method of any one of claims 1 to 7, wherein:

the object size of the data being encoded is variable.

10. The method of any one of the preceding claims, wherein:

the data objects are encoded by different categories of error correction algorithms.

11. The method of any one of the preceding claims, including:

providing an index of the encoded data objects which maps each encoded data object

to its respective error correction algorithm.

12. The method of any one of the preceding claims, wherein:

20

the allocating step includes using an allocation bitmap assigning multiple allocation bits

per chunk group of the respective error correction algorithm.

13. The method of claim 12, wherein:

the allocation bitmap maps to a logical address space.

14. The method of claim 13, wherein:

a logical object number (LON) defines a pointer to the encoded object.

15. The method of any one of the preceding claims, wherein:

a pointer to the encoded object is stored in an index record.

16. The method of claim 15, wherein:

the index record includes multiple pointers to the encoded object.

17. The method of claim 12, wherein the allocating step uses a boundary bitmap marking

the allocation unit for an initial chunk of the encoded object.

18. A computer-readable medium having stored thereon instructions which perform, when

loaded into a computer, the method steps according to any one of the preceding claims.

19. A programmable logic configured to implement the method steps according to any one

of the preceding claims.

20. A data storage system comprising:

an error correction algorithm component operable to select, for different incoming data

objects, different error correction algorithms for generating encoded data objects; and

a disk storage allocation component for allocating the encoded data objects for storage

in a pool of disk storage devices comprising multiple disk drives, at least some of the encoded

objects generated by different error correction algorithms being allocated to the same or a

different group of drives that is not based on the algorithm utilized to generate the encoded

object;

21

wherein each disk drive is divided into multiple logical storage units, each defined as a

partition;

a logical storage unit group (LSU group) comprising a group of partitions extending

across a group of disk drives wherein the partitions of the LSU group are of each of the same

size and cannot be on the same drive;

the allocation component comparing an allocation bitmask describing how the encoded

data object is to be stored to a single allocation bitmap that extends across the LSU group to

identify available locations for storage of the object, wherein the object is allocated to one

available location defined by contiguous bits of the bitmap, or to multiple locations aligned along

a common partition boundary allowing a gap of non-contiguous allocation between the two

locations.

21. The storage system of claim 20, further comprising:

the pool of disk storage devices for storing the encoded data objects.

22. The storage system of claim 20 or 21, wherein;

the allocation bitmap assigns multiple bits per chunk group of the respective error

correction algorithm.

23. The storage system of claim 20, 21 or 22, including:

an index of the encoded data objects which maps each encoded data object to its

respective error correction algorithm.

24. In a computing environment for locating data storage, a data structure comprising:

an allocation bitmap to request available allocation units for storing encoded data

objects in a pool of disk storage devices comprising multiple disk drives;

at least some of the encoded objects being generated by different error correction

algorithms and allocation is not restricted to a group of drives based on the algorithm utilized to

generate the encoded object;

each disk drive is divided into multiple logical storage units, each defined as a partition;

22

a logical storage unit group (LSU group) comprising a group of partitions extending

across a group of disk drives, wherein partitions of the LSU group are each of the same size

and cannot be on the same drive;

the single allocation bitmap extends across the LSU group to identify, by a comparison

of an allocation bitmask describing how an encoded data object is to be stored, to the allocation

bitmap, available locations for storage of the object, the bitmap including multiple available

locations aligned along a common boundary allowing a gap of non-contiguous allocation

between the two locations.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

