The present technology is directed to a surgical drape which decreases the likelihood of infection by protecting the surgical site both during and after the operation. Further, the present technology can be used in conjunction with a fluid-collection system for surgical procedures which result in a large volume of fluid to be collected from the surgical site.
Title: SURGICAL DRAPE WITH SELECTIVELY DETACHABLE BARRIER

Abstract: The present technology is directed to a surgical drape which decreases the likelihood of infection by protecting the surgical site both during and after the operation. Further, the present technology can be used in conjunction with a fluid-collection system for surgical procedures which result in a large volume of fluid to be collected from the surgical site.
SURGICAL DRAPE WITH SELECTIVLEY DETACHABLE BARRIER

FIELD OF THE INVENTION

[0001] The present invention relates generally to surgical drapes and to methods for using surgical drapes.

BACKGROUND OF THE INVENTION

[0002] Surgical and other medical treatment procedures require a sterile field to avoid infection. To that end, sterile surgical drapes were developed. Surgical drapes are employed to keep the surgical site sterile from any non-sterile surfaces and environments in part to reduce the infection potential to the patient. Maintaining sterility in and about the surgical site is not only a concern during the operation or procedure, but also after the operation or procedure is complete and the patient is recovering.

[0003] Surgical drapes can be used in high volume surgeries. As used herein, the term “high volume surgery” means a surgery, operation or procedure which results in significant fluid loss, particularly abdominal procedures and operations, or surgical procedures which require significant irrigation of the surgical site. For instance, a Cesarean section (C-section) operation is a high volume surgery because it results in a large volume of fluid loss by the patient. The surgical drapes used in C-section procedures contain pockets or pouches made from folds in the surgical drape or some other impermeable liner.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.

[0005] FIG. 1 is a cross section view of a prior art surgical drape.

[0006] FIG. 2 is a top view of a prior art surgical drape as applied to a patient.

[0007] FIG. 3 is a top view of one embodiment of the surgical drape according to the present technology.

[0008] FIG. 4 is a top view of an alternate embodiment of the surgical drape according to the present technology.
[0009] FIG. 5 is a cross section view of the surgical drape as depicted in FIG. 4.

[0010] FIG. 6 is a magnified view of the fenestrated ring in FIG. 4.

[0011] FIG. 7 is a top view of an alternate embodiment of the surgical drape according to the present technology.

[0012] FIG. 8 is a flowchart demonstrating the use of the surgical drape.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0013] The present technology is directed to a surgical drape that has a removable portion that is left behind with the patient for a predetermined period of time.

[0014] There are many concerns doctors address for their patients when dealing with any type of invasive surgery. Infection, scarring, and physical appearance are just some of these issues. Currently, in operating rooms across the country, surgeons use a surgical drape which forms a barrier between the outside elements and the patient's skin during surgery. The current standard surgical drape surrounds the anticipated surgical field, typically called a fenestration, and is removed prior to closure of the incision. Figure 1 depicts a cross section of this current standard surgical drape 1 surrounding the surgical site 5 as it lies atop the patient's skin 2. As illustrated in Figure 2, this current standard surgical drape surrounds the surgical field 5 and consists of two materials: plastic 4, such as a film and generally known as an incise and a barrier fabric such as a non-woven material or other paper 3.

[0015] A new surgical drape is provided herein. Once the patient's skin has been thoroughly cleaned, the surgical drape can be affixed to the patient's skin by an adhesive on the surgical drape’s surface. As illustrated in Figure 3, the surgical drape comprises a thin and plastic material 11 and can be translucent. This translucent material enables the surgeon to make the incision directly through the surgical drape without screening the surgical field from the surgeon’s view while still providing protection for the actual incision from the outside elements. The plastic material may have antimicrobial characteristics to reduce infection potential and may be left in place post-operatively. In one embodiment, the surface of the material can be coated with any antimicrobial substance to provide the benefit of carrying the sterility of the surgical field through the post-operative healing time. In other embodiments, the antimicrobial characteristic is incorporated into the plastic/incise material. Said another way, the antimicrobial properties of the surgical drape can be due to the
surgical drape’s material or an antimicrobial substance added to the surgical drape’s surface. Antimicrobial substances include, but are not limited to, germicides, antibiotics, antibacterials, antivirals, antifungals, antiprotozoals and antiparasites. Specifically, silver ions or compounds, chlorhexidine, iodine or iodine based, triclosan, bacitracin, clindamycin, erythromycin, metronidazole, mupirocin, neomycin, retamapulin, polymyxin B, mupirocin, fusidic acid, gentamicin, or combinations thereof are contemplated. The antimicrobial substance can be provided in solutions, pastes, suspensions, gels or films. An advantage of this embodiment of the surgical drape is the decrease in the chance of post-operative infection.

[0016] The surgical drape may be equipped with factory-made or pre-made perforations. These perforations may be presented in various patterns so that the surgical drape may be configured for use by different surgeons or for different types of procedures. Figure 3 demonstrates how these perforations can be integrated into the surgical drape as well as a glue packet 10 affixed to the drape which can assist in surgical field closure. These perforations provide the surgeon the option of selecting (1) the size of the drape to be used in the operation and (2) the size of the surgical field. Different operations require various sizes of surgical drapes and sterile fields. By tailoring the size of the surgical drape to the operation or procedure, the surgeon can reduce the risk of dislodging the drape and compromising any sterile field. The factory perforations at the termination of the surgical drape 6 allow the surgeon the flexibility to change the size of the drape. The factory perforations placed in a grid configuration – horizontally 7 and/or vertically 8 across the surgical site of the surgical drape allow the surgeon the flexibility of defining a square or rectangular drape or surgical field of various sizes. The surgeon need not use these perforations to define the surgical field if he/she desires to make the incision directly through the surgical drape.

[0017] Further, these perforations through the surgical site can aid the surgeon during the closure of the surgical field. If the surgeon chooses to remove the drape immediately after surgery, these perforations will allow for partial or sequential removal of the plastic / adherent drape material so that the surgeon can still utilize the drape to aid in the closure during surgery. Also, because the perforated portions of the drape can be removed sequentially, the drape can accommodate different styles of closure. Therefore, the surgeon’s preferred style of closure, be it continuous suturing,
individual sutures, and/or staples, for example, need not be altered to take advantage of the many other benefits provided by the present drape, including aligning the incision. In addition to the grid perforation configuration, a second pattern of perforations, for example, a concentric oval pattern 9, will allow the surgeon to choose how much of the drape material is left in place over and around the surgical site both during the operation and post-operatively. Numerous other patterns are contemplated, including, but not limited to an animal or cartoon character pattern.

[0018] The surgical drape may also or alternatively be equipped with markings; the markings, used either in conjunction with or instead of the factory perforations, will allow the surgeon to more accurately line up the patient’s skin during the closure of the surgical site. This feature will allow for a more aesthetic and symmetrical closing, therefore minimizing the chances for any type of disfigurement to the patient. This feature is especially valuable when the surgical site necessitates an incision into skin already under tension due to an underlying growth or edema. For example, these markings would be especially useful in cases where the surgeon is excising a tumor or performing a C-section operation. During a C-section the skin on the patient’s abdomen is stretched and can therefore pose a challenge to the surgeon attempting to close the abdomen after birth. With the current invention in place, the surgeon can utilize the markings, or perforations, on the surgical drape to guide alignment and complete the closure with little worry as to symmetry or positioning.

[0019] Also, because the surgical drape can remain in place post-operatively, the surgical drape’s adhesive properties can be used to aid in keeping the incision not only sterile, but also closed. Due to this benefit, the surgeon may be able to utilize a surgical tape or glue to hold together major incisions, where surgery using conventional surgical drapes may have required sutures and staples. This provides a benefit to the patient as it will greatly reduce post-operative scarring. Of course, more typical surgical closure devices may be used, including, but not limited to adhesive strips, paper tape, staples, sutures or surgical glue.

[0020] Figures 4-6 depict a surgical drape adapted for use in high volume surgeries. Specifically, this surgical drape would be well-suited for use in conjunction with C-section operations. During a C-section the patient typically releases an enormous amount of fluid (amniotic and blood) at the moment of infant delivery. Fenestrated drapes using an adhesive plastic section surrounded by a paper section, are unable to
stay fixed on patients because of the high fluid output coupled to the necessary handling of the surgical drape during the procedure. The confluence of these events creates a separation between the surgical drape and patient. Invariably fluid leaks out and the surgeons and floor are covered with this amniotic-blood slurry. This fluid leak constitutes a safety problem for the patient and the hospital staff.

[0021] Figure 4 shows the surgical drape designed for high-volume surgeries. This surgical drape has an adhesive plastic section 11 surrounded by a paper section 13, and also including a fenestrated ring 12 which is hollow or tubular and has one or more openings. The fenestrated ring 12 surrounds the surgical field 5, and is under the plastic section 11. In use, the fenestrated ring is place on the patient’s skin, below the plastic section 11 of the surgical drape. The fenestrated ring 12 has a port 16 for attachment to a vacuum tube 14, to provide suction within the ring. The vacuum within the fenestrated ring 12 will hold the surgical drape in place and evacuate any fluids with which the fenestrations 18 comes into contact. This will greatly reduce leaking of fluid, keeping the fluid away from the floor and the hospital staff. The fenestrated ring 12 may also include a second port 17 for attachment of a hand held suction tube 15 for use during the procedure.

[0022] Figure 5 depicts the lumen 19 of the fenestrated ring which would carry the evacuated fluids away from the surgical site towards the vacuum source.

[0023] Figure 6 shows the fenestrated ring 12 magnified to illustrate the fenestrations 18 in the fenestrated ring 12 which provide the avenue by which the fluids are evacuated.

[0024] Figure 7 depicts the surgical drape 20 left on a patient during the post-operative recovery period. The surgical drape can be further secured to the patient using tape 21 or other means. The incision 22 is shown to be made through the drape and then the wound is closed by suturing or stapling 23 through the drape.

[0025] Figure 8 portrays a decision-making flowchart demonstrating how the surgical drape can used by the surgeon, including certain decision points.

[0026] In another preferred embodiment, the adhesive plastic section may contain excess or redundant material. The plastic material can be formed into a ridge or barrier adapted to prevent fluid from overflowing from the surgical site. This ridge or barrier draping configuration prevents separation of the surgical drape from the
patent’s skin due to tension and movement of the patient’s skin or the plastic section where it is adhered. The ridge or barrier draping configuration may be used with the fenestrated tube, or instead of the fenestrated tube. If the excess material forming a ridge or barrier is used in conjunction with the fenestrated ring, the ridge or barrier will hold the fluid in place until the fenestrated ring can evacuate the fluid.

[0027] The present surgical drapes also provide a branding opportunity. The logo of either the hospital providing the surgical drape or the signature of the surgeon can be placed directly onto the surgical drape itself. This can provide the doctor the benefit of “signing his work” and/or the hospital the benefit of a new and interesting form of advertising; the first thing many visitors say to a recovering surgical patient is “let me see your incision”. With the present surgical drape in place, that simple request can lead to an advertisement opportunity for the surgeon and/or the hospital. Additional branding, including, but not limited to cartoon characters or other objects are contemplated in the present surgical drapes.

[0028] Due to the many ways the current invention can be utilized, a “surgical kit” may be assembled for retail sale. This kit would include not only the aforementioned surgical drape, but will also include the surgical tape and/or surgical glue discussed above as part of a more aesthetic closing technique. The surgical tape may be made of a similar material to the surgical drape, or a currently used paper tape, and would adhere to the surgical drape more strongly than to the skin. Usage of this would allow for “cross-taping” over the incision where the surgical drape was left on post-operatively, therefore increasing the chances that the closure can be made suture or staple free, yet retain the time advantage of staples without the physical scarring associated with them. The surgical glue, such as or similar to Octylseal™, would adhere the skin to itself, eliminating the need for top layer suturing or stapling. It may be provided in a single use applicator packaged in a blister pouch. The applicator may be a crushable glass ampule contained within a plastic vial with attached applicator tip. The surgical glue provides the same benefits as the tape, where closure and/or scarring reduction is concerned. Providing a variety of surgically useful devices in one surgical kit not only provides convenience for the surgeon and his staff, but would also aid in the surgeon’s ability to provide better patient care.

[0029] While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may
be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the invention, which is set forth in the following embodiments.
We Claim:

1. A surgical drape having a patient side and a surgeon side, comprising an adhesive material on the patient side and having perforations at least partially surrounding the surgical site.

2. The surgical drape of claim 1, comprising a plurality of concentric perforations.

3. The surgical drape of claims 1 or 2, further comprising markings or perforations in a grid configuration.

4. The surgical drape of claim 3, further comprising a brand on a surface of the surgical drape.

5. The surgical drape of any one of claims 1-4, wherein the perforations are in an oval, circular, rectilinear, animal, or cartoon character pattern.

6. The surgical drape of any one of claims 1-4, further comprising an antimicrobial substance on a surface of the surgical drape.

7. The surgical drape of any one of claims 1-4, wherein the surgical drape has antimicrobial activity.

8. A surgical kit, comprising:
 the surgical drape of any one of claims 1-7, and
 a surgical closure device.

9. The surgical kit of claim 8, where the surgical closure device is selected from the group consisting of the surgical drape itself, adhesive strips, paper tape, staples, sutures or surgical glue.
10. A method of performing surgery, comprising:
applying the surgical drape of any one of claims 1-7 to a patient and
retaining at least a portion of the surgical drape on the patient post-operatively.

11. The method of claim 10, further comprising making an incision
through the surgical drape.

12. The method of claims 10, further comprising using perforations or
markings to align the skin for closure.

13. A method of performing surgery, comprising:
applying the surgical drape of any one of claims 1-7 to a patient;
making an incision in the patient through the surgical drape;
aligning the incision with the markings or perforations on the surgical drape;
and
closing the incision.

14. The method of claim 13, where the surgical drape is removed along
perforations as the incision is closed.

15. The method of claim 13, wherein portions of the surgical drape are
removed along perforations prior to closing the incision.

16. The method of claim 13, where remaining portions of the surgical
drape are removed along perforations after the incision is closed.

17. A method of performing surgery, comprising:
applying a surgical drape to a patient,
making an incision in the patient through the surgical drape,
closing the incision, and
retaining at least a portion of the surgical drape post-operatively.
18. The method of claim 17, where the closing of the incision is carried out using a surgical closure device.

19. The method of claim 18, where the surgical closure device is selected from the group consisting of the surgical drape itself, adhesive strips, paper tape, staples, sutures or surgical glue.

20. A method of performing surgery, comprising:
 applying a surgical drape to a patient,
 making an incision in the patient through the surgical drape,
 aligning the incision with markings or perforations on the surgical drape, and closing the incision.

21. The method of claim 20, where portions of the surgical drape are removed along perforations as the incision is closed.

22. The method of claim 20, wherein portions of the surgical drape are removed along perforations prior to closing the incision.

23. The method of claim 20, where remaining portions of the surgical drape are removed along perforations after the incision is closed.

24. A surgical drape, comprising
 a plastic material having an adhesive side adapted for contacting the patient;
 a paper material surrounding the adhesive plastic material, and
 a fenestrated ring, having a first port for attachment to a tube and on the adhesive side of the plastic material.

25. The surgical drape of claim 24, where the fenestrated ring has a second port for attachment to a tube.

26. The surgical drape of claim 24, where additional plastic material forms a ridge or barrier.
27. A method of performing surgery, comprising
applying the adhesive side of the surgical drape of any one of claims 24-26 to a
patient,
attaching a tube to the first port of the fenestrated ring and applying suction
within the fenestrated ring, and
carrying out the surgery.

28. The method of performing surgery of claim 27, where the surgery is
high volume surgery.

29. The method of performing surgery of claim 27, where the surgery is a
C-section.

30. The method of performing surgery of claim 27, where fluid from the
patient is evacuated into the fenestrated ring during the surgery.

31. A surgical drape, comprising
a plastic material having an adhesive side contacting the patient, and
a paper material surrounding the adhesive plastic material,
where additional plastic material forms a ridge or barrier around the incision.

32. A method of performing surgery, comprising
applying the adhesive side of the surgical drape of claim 31 to a patient, and
carrying out the surgery.

33. The method of performing surgery of claim 32, where the surgery is
high volume surgery.

34. The method of performing surgery of claim 32, where the surgery is a
C-section.
Select Drape Size → Use Perforations to Optimize Drape Size → Apply Drape to Patient → Affix Drape with Adhesive → Align Grid Perforations/Markings → Make Incision Through Drape → Perform Surgical Procedure → Use Perforations/Markings to Align Skin → Close Incision → Suture/Staple/Etc. Through the Drape → Do Not Suture/Staple/Etc. Through the Drape → Remove Drape from Patient → Leave Drape Affixed to Patient During Post-operative Recovery → Further Secure Drape (e.g., with Tape) → Remove Sutures/Staples/etc. and Drape After Recovery

FIG. 8