[发明名称]
射出液体的书写工具

[摘要]
本发明涉及一种书写工具，其具有液体喷射头(41)，该喷射头能在一定距离将液体喷射到介质(8)上；一个处理器单元(6)，其激活液体喷射头，该工具还包括测量装置(12)，测量喷射头(41)和介质(8)之间的距离，捏持探测装置(18)，其探测管状元件(2)是否为使用者所捏持，首先测量装置(12)确定了喷射头和介质之间的距离小于预设的最大值，然后捏持探测装置(18)探测到使用者正捏持管状元件(12)，于是该处理器单元能够激活液体喷射头(41)。
1. 一种书写工具，其包括管状的元件（2），该元件在第一端（2a）和第二端（2b）之间延伸，使用者捏持该元件，该管状的元件（2）包括：
 - 液体容器（3）；
 - 液体喷射系统（4），包括连接液体容器（3）的液体喷射头（41），该喷射头在一定距离将液体喷射到介质（8）上；
 - 处理器单元（6），其激活液体喷射系统（4），使喷射头（41）在一定距离将液体喷射到介质（8）上，其特征在于管状的元件还包括：
 - 测量装置（12），其无需书写工具（1）和介质（8）之间的物理接触，就能测量喷射头（41）和介质（8）之间的距离，测量装置（12）连接处理器单元（6）；
 - 捏持探测装置（18），其探测管状元件（2）是否被使用者所捏持，该捏持探测装置（18）连接处理器单元（6）；

首先测量装置（12）确定了喷射头（41）和介质（8）之间的距离小于预设的最大值，然后捏持探测装置（18）探测到使用者是否正捏持管状元件（12），于是该处理器单元（6）激活液体喷射系统（4）。

2. 按照权利要求1所述的工具，其中首先测量装置（12）确定了喷射头（41）和介质（8）之间的距离在预设的最小值和最大值之间，然后捏持探测装置（18）探测到使用者正捏持管状元件（12），于是该处理器单元（6）激活液体喷射系统（4）。

3. 按照上述任一权利要求所述的工具，其中管状元件（2）还包括电源（10）和连接电源（10）的开关装置（11，18），使用者打开开关装置（11），从而启动液体喷射系统（4）、处理器单元（6）和测量装置（12）。

4. 按照权利要求3所述的工具，其中由使用者打开的开关装置由捏持探测装置（18）形成，该装置探测使用者是否正捏持管状元件（2）。

5. 按照权利要求3所述的工具，其中由使用者打开的开关装置（11）
还启动捏持探测装置（18），从而探测使用者是否正捏持管状元件（2）。

6. 按照权利要求1或2所述的工具，其中管状元件还包括移动探测装置（14；16，2），该装置探测管状元件的移动，该移动探测装置（14；16，2）连接处理器单元，处理器单元在下列条件下激活液体喷射系统（4）：
- 当测量装置（12）确定了喷射头（41）和介质（8）之间的距离小于预设的最大值；
- 当捏持探测装置（18）探测到使用者正捏持管状元件（2）；
- 当移动探测装置（14）探测到管状元件（2）的移动。

7. 按照权利要求1或2所述的工具，其中测量装置（12）包括测量喷射头（41）和介质（8）之间的距离的光学系统（13）。

8. 按照权利要求1或2所述的工具，其中测量装置（12）包括测量喷射头（41）和介质（8）之间的距离的超声波声学探头。

9. 按照权利要求1或2所述的工具，其中液体喷射头（41）具有至少一个喷射液滴（7）的喷嘴（43），液体喷射系统（4）还包括电信号发生器（42），其产生电信号激活该液体喷射头（41）的至少一个喷嘴（43）。
射出液体的书写工具

技术领域
本发明涉及一种书写工具，其能喷射出液体，比如墨水。

更具体地，在上述书写工具中，本发明涉及的工具具有大致管状的元件，该元件在第一端和第二端之间延伸，使用者捏持该元件，该管状的元件包括：
- 一个液体容器；
- 一个液体喷射系统，包括连接液体容器的液体喷射头，该喷射头在一定距离将液体喷射到介质上；
- 一个处理器单元，其激活液体喷射系统，使喷射头在一定距离将液体喷射到介质上。

背景技术
在公知的这类书写工具中，管状元件一般带有探针，探针一端在书写时接触介质，另一端连接探测装置，探测装置探测接触介质的探针的移动。探测装置连接处理器单元，从而激活液体喷射系统。因此，当使用者手持书写工具并使之靠近介质时，探针接触介质的表面，致使探测装置向处理器单元传送一个信号，激活液体的喷射。

因此，尽管书写头（即液体喷射头）不再需要接触介质，但是书写工具的探针必须接触介质，以使液体得以喷射。特别是当介质较粗糙时，将探针接触介质会使使用者觉得不舒服。

另外，由于接触介质的探针末端比较靠近液体喷射到介质上的那一点，该探针末端很可能接触未干的液体，进而在书写工具正常使用中用液体弄脏介质。

最后，当书写工具不小心处于打开状态时，必须远离液体喷射头的探针也可能发生意外接触，比如将装置放在口袋或其它地方里面，从而发生意外的液体喷射。
发明内容

本发明的一个目的是提供一种简单可靠的书写工具，以解决上述技术问题，使用者使用该装置书写会很舒服。

总的来讲，本发明提供的书写工具的特征是管状元件还包括：
- 测量装置，其无需书写工具和介质之间的物理接触，就能测量喷头和介质之间的距离，测量装置连接处理器单元；
- 捏持探测装置，其探测管状元件是否被使用者所捏持，该捏持探测装置连接处理器单元；

首先测量装置确定了喷射头和介质之间的距离小于预设的最大值，然后捏持探测装置探测到使用者是否正捏持管状元件，于是该处理器单元能够激活液体喷射系统。

借助上述设置，该书写工具不会和要喷射液体的介质发生接触，该装置的使用者只须将该装置置于离介质的合适距离，并正常手持并按下管状元件，就能激活液体喷射，该管状元件形成书写工具外周的至少一部分。使用者只须将书写工具，或者更准确地说，将液体喷射头移开介质，就能停止液体的喷射。该书写工具使液体能在适当的条件下喷射或停止喷射，该适当的条件与常用的书写工具（比如圆珠笔或标签笔）接近，同时无需和书写介质发生任何微小的物理接触。

在本发明的优选实施例中，还使用以下一种或多种设置：
- 首先测量装置确定了喷射头和介质之间的距离在预设的最小值和最大值之间，然后捏持探测装置探测到使用者是否正捏持管状元件，于是该处理器单元能够激活液体喷射系统。
- 管状元件还带有电源和连接电源的开关装置，使用者可打开开关装置，从而启动液体喷射系统、处理器单元和测量装置；
- 由使用者打开的开关装置由捏持探测装置形成，该装置探测使用者是否正捏持管状元件；
- 由使用者打开的开关装置还能启动捏持探测装置，从而探测使用者是否正捏持管状元件；
- 管状元件还带有移动探测装置，该装置探测管状元件的移动，该装置连接处理器单元，处理器单元在下列条件下激活液体喷射系统：

5
当测量装置确定了喷射头和介质之间的距离小于预设的最大值；
当捏持探测装置探测到使用者是否正捏持管状元件；
当移动探测装置探测到管状元件的移动。
测量装置包含用于测量喷射头和介质之间的距离的光学系统；
测量装置包含用于测量喷射头和介质之间的距离的超声波声学探头；
液体喷射头具有至少一个喷射液滴的喷嘴，喷射系统还带有电信号发生器，其产生电信号激活该液体喷射头的至少一个喷嘴。

本发明的其他特征和优点体现在以下参照附图对于实施例的描述中，其范围不限于实施例。

附图说明
图 1 是本发明书写工具第一实施例的剖面图；
图 2 是本发明书写工具第一实施例的各个组件的方框图；
图 3 是书写工具第二实施例的剖面图。
在不同的图中，相同的附图标记代表相同或相似的元件。

具体实施方式
图 1 中的书写工具 1 具有大致管状的元件 2，该元件在第一端 2a 和第二端 2b 之间延伸。该管状的元件 2 具有形成内空腔的内壁 21，以及使用者能捏持的外壁 22。
管状的元件 2 的内壁 21 形成的内空腔内具有一个液体容器 3 和一个喷射液体的液体喷射系统 4，该喷射系统直接连接液体容器 3。液体容器 3 可移动地安装在管状的元件 2 的内空腔内，液体用完之后，其能被另一个容器替换。根据工具的用途，容器内的液体可以是墨水，或者当该工具是修正器时，是擦去或覆盖墨水的液体，甚至当该工具是胶水机或喷射器时，该液体可以是胶水。液体喷射系统 4 由液体喷射头 41 构成，喷射头通过管道 31 直接连接液体容器 3，通过电信号发生器 42 来控制该喷射头 41 的激活和停止。
在本例中，喷射头 41 是压电的喷射头，其包括的喷射喷嘴 43 设置在管状元件 2 的末端 2a。该管状元件的末端 2a 由终端板构成，该板直接安
装入管状元件 2 的中部，位于该中部的内壁 22 之上。该终端板 2a 上设有终孔，喷射头 41 的喷嘴 43 位于孔内。喷嘴 43 可以固定在终端板 2a 上，或用合适的装置可缩进地安装，这样该喷嘴就能缩进终端板内，防止喷嘴在不使用书写工具时被损坏。根据本发明，喷射头 41 内具有压电元件，当接收到来自电信号发生器 42 的电信号时，该压电元件能够发生形变，从而在喷射头 43 处产生微滴 7，并喷射到介质 8 上。

液体喷射系统 4 也可以由玻璃基质构成，其上安装至少一个电阻加热器元件，其位于至少一条小尺寸管道上，管道中含有少量的来自容器 3 的墨水。这样，当电信号发生器 42 向电阻元件发送一个电信号时，该电阻元件温度马升高，在墨水中形成蒸汽泡，该气泡将一滴微小的液滴 7 排到介质 8 上。

液体喷射系统 4 可以由至少一个压缩空气筒构成，其配合空气扩张机构和液体筒。该空气扩张机构包括一个冲头和数个阀门，冲头在压力作用下将筒中的空气释放到一个准备腔，阀门控制通向喷嘴的气体流速，喷嘴也连接液体容器 3。

书写工具还包括一个处理器单元 6，其激活电信号发生器 42 产生电信号（或电脉冲），使液体喷射系统的喷嘴 43 在一定距离将液滴 7 喷射到介质 8 上。管状元件 2 的内空腔在其末端 2b 处带有电源 10，电源可以是一个电池，或者两个电池，可充电或其它种类，通过开关 11 可以启动构成书写工具的各个电子元件。

管状元件 2 的末端 2b 可以是一个盖子，其可移动地安装在该管状元件 2 的中部，以便用新电池来替换两个耗尽的电池 10。

管状元件 2 的末端 2b 还具有测量装置 12，其无需书写工具和介质 8 之间的物理接触，就能测量喷射头 41 和介质 8 之间的距离，更确切地说，测量装置 12 能测量喷嘴 43 和介质 8 之间的距离。

在本实施例中，测量装置 12 由光学系统 13 构成，该系统包括红外线发光二极管（LED）13a，其向介质 8 发出一束入射光线 FI，在该介质 8 上形成光点，以及形成反射光线 FR。然后用光电二极管 13b 来分析光线，计算入射光线 FI 和介质 8 的夹角。

由于光电二极管 13b 和红外 LED13a 之间的距离是已知的，而且因为
入射光线 F1 的倾角已经计算出来，简单的三角关系就足以算出红外 LED 和介质 8 之间的距离。光电二极管可以是 HAMAMATSU 商标的 S6560。

在另一个实施例中，光学系统 13 也包括发射锥形光束的发射装置，光束的对称轴与管状元件 2 的纵轴重合。光学系统带有传感器，其能计算锥形光束在介质 8 上形成光点的半径。由于光点半径与介质 8 和发射锥形光束的发射装置之间的距离成比例，因此可以用线性方法来确定发射装置和介质之间的距离。相似地，如果锥形光束的对称轴相对于介质倾斜，则介质上形成的光点不再是圆形，而是椭圆形，传感器能够测量椭圆形点的短轴长度，确定介质和发射锥形光束的发射装置之间的距离。在这里，无论书写工具倾斜角如何变化，椭圆形点的短轴长度只和发射装置和介质之间的距离成比例，只有椭圆形点的长轴长度才和锥形光束的倾斜角成比例。

在另一个实施例中，测量装置 12 也可由超声波声学探头构成。这里，喷嘴 43 和介质 8 之间的距离等于该喷嘴 43 和介质 8 之间的最小距离，而待书写工具相对介质 8 的夹角无关。

参见图 1 和 2，形成测量装置 12 的光学系统 13 直接连接处理器单元 6，该元件将光学系统 13 的测量结果存在储存器内。处理器单元可以使光学系统 13 以预定的时间间隔重复测量。比如，时间间隔可以在 1 毫秒（ms）和 0.1 秒（s）之间。

管状元件 2 还带有捏持探测装置 18，其探测管状元件 2 是否为使用者所捏持，该捏持探测装置连接处理器单元 6。

该捏持探测装置 18，由使用者启动，可以由电容传感器或压电传感器或电阻传感器构成，设置在管状元件外壁 22 处，当使用者手持工具时，就能探测到压力。

因此参见图 1 和 2，当使用者打开开关 11，从而启动各种电子元件，即测量装置 12，捏持探测装置 18 和液体喷射系统 4。

然后使用者手持书写工具，这样电容或压电传感器检测到使用者在向介质 8 移动书写工具时施加的压力。测量装置 12 自动测量喷嘴 43 和介质 8 之间的距离，向处理器单元 6 传送测量结果。

处理器单元 6 能够激活液体喷射系统 4，只有当捏持探测装置 18 探测
到压力，并且测量装置12测量的喷嘴43和介质8之间的距离小于预设的最大值时，才向介质8喷射液滴7。

例如，预设的最大值可以是约1厘米（cm）。

因此，当测量装置12测量的喷嘴43和介质8之间的距离大于预设的最大值，以及当捏持探测装置18探测到书写工具受到压力时，处理器单元6不会激活液体喷射系统4，液滴不会喷射到介质8上。

同样地，当使用者并未手写书写工具，即使喷嘴43和介质之间的距离合适，也就是小于预设的最大值，处理器单元6也不会使液滴喷射。

在另一个实施例中，当喷嘴43离介质8太近，以至于液滴不能很好地喷射到介质8上时，处理器单元6可以停止激活液体喷射系统。此时，只有当捏持探测装置18探测到压力，并且测量装置12测量的喷嘴43和介质8之间的距离介于预设的最小值和最大值之间时，处理器单元6才激活液体喷射系统。书写工具的管状元件2的外壁22上具有选择液滴7尺寸的选择装置15，以此调整修改一串液滴在介质8上形成的线条。选择装置15特别可以是按钮的，其有三个位置，可以获得三种不同的线条。选择装置15直接连接喷射系统4的电控号发生器，这样就可以用预设的方式改变直接传到液体喷射头41的电信号的频率和/或振幅，从而使液滴的尺寸和喷射到介质8上的频率成比例地变化。

管状元件2上还带有捏持探测装置18。在本实施例中，移动探测装置14可以是直接连接处理器单元6的加速计。该捏持探测装置特别提供了一种附加的途径，通过该途径能够激活液体喷射系统4，以及将液滴7喷射到介质8上。

这样，处理器单元6在下列条件下激活液体喷射系统4：
- 当测量装置12确定了喷射头和介质之间的距离小于预设的最大值；
- 当捏持探测装置18探测到使用者是否正捏持管状元件2；
- 当移动探测装置14探测到管状元件2的移动。

同样地，为了改善使用者的舒适度，处理器单元6能激活通讯装置16。当光学系统13首先觉察喷嘴43和介质8之间的距离小于预设的最大值时，然后移动探测装置14并未探测到喷射头41相对介质8在预设的时间间隔内发生移动，则通讯装置16发出报警信号。比如，该通讯装置16可以是
发射可见光信号或声音信号的发射器，令使用者得知液体喷射头 41（更确切地说使喷射头 43）与介质之间的距离适合激活电子信号发生器 42。书写工具的上述移动，即使是无意间的移动，也可以激活液体喷射系统 4，将液滴喷射到介质 8 上。

同样地，为了改善使用者的舒适度，处理器单元 6 能激活通讯装置 16，当液体喷射系统 4 未在某些时间间隔（例如 30 秒或 1 分钟）内被激活，测量装置 12 检测到喷射头 41 和介质 8 之间的距离合适时，且移动探测装置探测到书写工具移动，则通讯装置 16 发出报警信号。此时，处理器单元能激活通讯装置长达两秒，警告使用者马上就要喷射液体了，在两秒的最大时间间隔之后，处理器单元 6 激活液体喷射系统 4。

在图 3 所示的另一个实施例中，在书写工具末端 2b 上可以省略打开各个电子元件的开关按钮 11。此时，书写工具的开/关功能直接由捏持探测装置 18 担当。这样，只要当使用者将书写工具置于书写位置，使用者的手指向管状元件的外壁 22 的设置捏持探测装置 18 的区域施加压力，捏持探测装置 18 就能通过电源，打开其它的整合到书写工具中的电子元件。

使用者可以向介质移动喷嘴 43。测量装置 12 自动测量喷嘴 43 和介质之间的距离，当该距离小于预定的最大值，只要喷嘴 43 和介质 8 之间的距离合适，而且捏持探测装置 18 探测到使用者施加的压力，处理器单元 6 就自动激活，将液体经过一段距离喷射到介质 8 上。

自然地，图 3 中书写工具实施例可以具有和图 1 实施例相似的移动探测装置 14。
图 1
图 2