PROCESS FOR PREPARING A CYCLIC AMINO ACID ANTICONVULSANT COMPOUND

Inventors: Carl Francis Deering, Fennville; Kenneth Earl Mennen, Holland, both of MI (US); Robert Ramage, Edinburgh (GB)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

App. No.: 09/647,401
PCT Filed: Sep. 16, 1998
PCT No.: PCT/US98/19359
€371 Date: Nov. 14, 2000
€102(e) Date: Nov. 14, 2000
PCT Pub. No.: WO99/18063
PCT Pub. Date: Apr. 15, 1999

Related U.S. Application Data
Provisional application No. 60/061,383, filed on Oct. 7, 1997.

Int. Cl. 7 C07C 229/00
U.S. Cl. 562/507; 558/359; 514/529;
514/561
Field of Search 562/507; 585/277;
564/448, 449

References Cited
U.S. PATENT DOCUMENTS
4,024,175 5/1977 Sztzingler et al.
4,152,326 5/1979 Hartenstein et al.
4,894,476 1/1990 Butler et al.
4,958,044 9/1990 Mettler et al.
5,025,035 6/1991 Wallace
5,068,413 11/1991 Steiner et al.
5,084,479 1/1992 Woodfruf
5,130,455 7/1992 Mettler et al.
5,136,091 8/1992 Mettler et al.
5,149,870 9/1992 Mettler et al.
5,510,381 4/1996 Pande
5,633,848 12/1997 Esselbron et al.
5,792,791 8/1996 Kogami et al.
6,054,482 4/2000 Augart et al.

OTHER PUBLICATIONS

Primary Examiner—Gary Geist
Assistant Examiner—Paul A. Zacker
Attorney, Agent, or Firm—Merchant & Gould P.C.

ABSTRACT
An improved process for the preparation of a cyclic amino acid by a novel synthesis is described where benzamidine is treated with an alkali metal and an amine under Birch reduction conditions to generate in situ an anionic intermediate which is alkylated with an α-haloacetic acid moiety which is subsequently converted to the desired product, as well as valuable intermediates used in the process.

49 Claims, No Drawings

BACKGROUND OF THE INVENTION

U.S. Pat. Nos. 4,024,175 and 4,087,544, which are herein incorporated by reference, disclose novel cyclic amino acids of Formula A

$$\text{H}_2\text{N}-\text{CH}-(\text{CH}_2)_{n}-\text{CO}_{2}\text{R}_1 $$

wherein R_1 is a hydrogen atom or a lower alkyl radical, and n is 4, 5, or 6 and the pharmacologically compatible salts thereof.

The compounds disclosed in the above United States patents are useful for the therapy of certain cerebral, diseases, for example, they can be used for the treatment of certain forms of epilepsy, faintness attacks, hypokinesia, and cranial traumas. Additionally, they bring about an improvement of cerebral functions, and thus are useful in treating geriatric patients. Particularly valuable is 1-(aminomethyl)cyclohexanecarboxylic acid (gabapentin).

Gamma-amino butyric acid (GABA) is an inhibitory amino acid found in the mammalian central nervous system (CNS). It has been reported that dysfunction with GABA neurotransmission in the CNS may contribute or even cause psychiatric and neurological diseases such as epilepsy, schizophrenia, Parkinson’s disease, Huntington’s Chorea, and dyskinesia (Saletu B., et al., International Journal of Clinical Pharmacology, Therapy and Toxicology, 1986;24:362-373). Gabapentin was designed as a GABA analog that would cross the blood-brain barrier. Gabapentin was found to have anticonvulsant and antispastic activity with extremely low toxicity in man.

The aforementioned compounds of Formula A including gabapentin have been prepared from a compound of formula

$$\text{HO}_2\text{C}-\text{CH}-(\text{CH}_2)_{n}-\text{CO}_{2}\text{R}_2 $$

wherein R_2 is an alkyl radical containing up to eight carbon atoms, and n is as defined above by well-known standard reactions such as, for example, the Hofmann, Curtius, or Lossen rearrangements into the amino derivatives of Formula A. Although these reactions provide the target compounds, they require a large number of synthetic steps and in some cases involve potentially explosive intermediates.

U.S. Pat. No. 4,152,326 discloses cyclic sulphonyloxy-imides of formula

wherein R_3 is a saturated, straight-chained, branched or cyclic lower aliphatic radical or an unsubstituted or substituted aryl radical, and n is 4, 5, or 6, which can be converted into a compound of Formula A. Again, similar to the previous processes, this process requires a large number of synthetic steps to obtain a compound of Formula A. Finally, all of the previous processes require as the penultimate step conversion of an intermediate salt of the target compound to an amino acid of Formula A.

U.S. Pat. Nos. 5,132,451, 5,319,135, 5,362,883, 5,091, 567, 5,068,413, 4,956,473, 4,958,044, 5,130,455, 5,095,148, 5,136,091, and 5,149,870 disclose additional processes and intermediates for preparing gabapentin. These processes require a number of steps and in some cases utilize large quantities of hazardous materials.

The object of the present invention is an improved process for preparing gabapentin employing a novel synthesis.

Further, we have unexpectedly found that gabapentin can be prepared from novel intermediates in fewer steps and higher yields than the previous methods. Moreover, the present method proceeds from inexpensive starting materials and is amenable to large-scale synthesis.

SUMMARY OF THE INVENTION

Accordingly, a first aspect of the present invention is an improved process for the preparation of the compound of Formula I

$$\text{HO}_2\text{C}-\text{CH}-(\text{CH}_2)_{n}-\text{CO}_{2}\text{R}_2 $$

which comprises:

Step (a) treating the compound of Formula VII

with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI
Step (b) treating the compound of Formula VI with a compound of Formula V

wherein X is halo or sulfonate and R is hydrogen, an alkali metal, an alkaline earth metal, ammonium, an amine cation, alkyl, or benzyl in the presence of a solvent to afford a compound of Formula IV

Step (c) treating a compound of Formula IVa

wherein R is as defined above;

Step (d) treating the compound of Formula IIIa

wherein R' is alkyl with hydrogen in the presence of an acid in a solvent to afford the compound of Formula Vb or treating a compound of Formula Vc

Step (e) treating the compound of Formula IVa-1

wherein R" is alkyl excluding tertiary butyl with an acid or base in a solvent to afford the compound of Formula II or treating the compound of Formula IVb

Step (f) treating the compound of Formula IVa-2

with an acid in a solvent to afford the compound of Formula II
wherein R_{1-w} is alkyl excluding tertiary butyl with an acid or base in a solvent to afford the compound of Formula IVb; and

Step (f) treating either the compound of Formula IVb or the compound of Formula IVc or the compound of Formula II with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula I.

A second aspect of the present invention is an improved process for the preparation of a compound of Formula IV wherein R is hydrogen, an alkali metal, an alkaline earth metal, ammonium, an amine cation, alkyl, or benzyl which comprises:

Step (a) treating the compound of Formula VII with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI and

Step (b) treating the compound of Formula VI with a compound of Formula V wherein X is halo or sulfonate and R is hydrogen, an alkali metal, an alkaline earth metal, ammonium, an amine cation, alkyl, or benzyl in the presence of a solvent to afford a compound of Formula IV.

A third aspect of the present invention is an improved process for the preparation of a compound of Formula III wherein R is as defined above; and
Step (c) treating a compound of Formula IVa

wherein \(R^{1a} \) is alkyl with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula III.

A fourth aspect of the present invention is an improved process for the preparation of the compound of Formula II

which comprises:

Step (a) treating the compound of Formula VII

with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

Step (b) treating the compound of Formula VI with a compound of Formula V

wherein \(R^{1a} \) is as defined above; and

Step (d) treating the compound of Formula IIIa

with an acid in a solvent to afford the compound of Formula II or treating a compound of Formula IIIb

wherein \(R^{1a} \) is alkyl excluding tertiary butyl with an acid or base in a solvent to afford the compound of Formula II or treating the compound of Formula IVb

with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula II or treating the compound of Formula IVc
with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula II.

A fifth aspect of the present invention is an improved process for the preparation of the compound of Formula IVb

which comprises:

Step (a) treating the compound of Formula VII with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

Step (b) treating the compound of Formula VI with a compound of Formula Vα

wherein X is halo or sulfonate and R'α is alkyl, in the presence of a solvent to afford a compound of Formula IVα
wherein R^2 is alkyl;
Step (c) treating a compound of Formula IX with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula X

wherein R^2 is as defined above;
Step (d) treating a compound of Formula IX with an acid in the presence of a solvent to afford the compound of Formula IVb

or treating a compound of Formula X with an acid in the presence of a solvent to afford the compound of Formula II

Step (e) treating either the compound of Formula IVb or Formula II with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula I.

A seventh aspect of the present invention is an improved process for the preparation of a compound of Formula IX

wherein R^2 is alkyl which comprises:

Step (a) treating the compound of Formula VII

with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

An eighth aspect of the present invention is an improved process for the preparation of a compound of Formula X

wherein X is halo or sulfonate and R^2 is alkyl in the presence of a solvent to afford a compound of Formula IX.
Step (b) treating the compound of Formula VI with a compound of Formula VIII

wherein X is halo or sulfonate and R² is alkyl in the presence of a solvent to afford a compound of Formula IX

Step (c) treating a compound of Formula IX with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula X

wherein R² is alkyl;

Step (d) treating a compound of Formula X with an acid in the presence of a solvent to afford the compound of Formula II

A ninth aspect of the present invention is an improved process for the preparation of the compound of Formula IVb

which comprises:

Step (a) treating the compound of Formula VII with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

which comprises:
Step (a) treating the compound of Formula VII with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

Step (b) treating the compound of Formula VI with a compound of Formula VIII wherein R₂ is alkyl

Step (c) treating a compound of Formula IX with an acid in the presence of a solvent to afford the compound of Formula IV

An eleventh aspect of the present invention is a novel compound of Formula IV

A twelfth aspect of the present invention is a novel compound of Formula IX

Detailed Description of the Invention

In this invention, the term “alkyl” means a straight or branched hydrocarbon group having from one to twelve carbon atoms and includes, for example, methyl, ethyl, n-propyl, isopropyl, n-buty, isobuty, tertiary-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, undecyl, dodecyl, and the like.

“Alkaline-earth metal” is a metal in Group IIA of the periodic table and includes, for example, calcium, barium, strontium, magnesium, and the like.

“Halo” is halogen which is fluorine, chlorine, bromine, or iodine.

“Sulfonate” is tosyl, mesyl, phenylsulfonate, chlorophenylsulfonate, bromophenylsulfonate, methoxyphenylsulfonate, and the like.

“Higher order amine” is methyamine, dimethyamine, methylethylamine, diethylamine, and the like.

The compounds of Formula I are capable of further forming both pharmaceutically acceptable acid addition and/or base salts. All of these forms are within the scope of the present invention.

Pharmaceutically acceptable acid addition salts of the compounds of Formula I include salts derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such
as aliphatic mono and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkylidioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenophosphate, dihydrogenophosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dihydrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginine and the like and gluconate, galacturonate (see, for example, Berge S. M., et al., "Pharmaceutical Salts," Journal of Pharmaceutical Science, 1977;66:1–19).

The acid addition salts of said basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free bases for purposes of the present invention.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge S. M., supra.).

The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acids for purposes of the present invention.

Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention.

U.S. Pat. Nos. 4,894,476 and 4,960,931 disclose gabapentin monohydrate and a process for producing the gabapentin monohydrate.

The following table provides a list of abbreviations and definitions thereof used in the present invention:

<table>
<thead>
<tr>
<th>DEFINITION</th>
<th>ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary butyl alcohol</td>
<td>t-BuOH</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
</tr>
<tr>
<td>Trifluoroacetic acid</td>
<td>TFA</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>THF</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>EtOAc</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>MgSO₄</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>CH₂Cl₂</td>
</tr>
<tr>
<td>Proton nuclear magnetic resonance spectroscopy</td>
<td>H-NMR</td>
</tr>
<tr>
<td>Deuterated chloroform</td>
<td>CDCl₃</td>
</tr>
<tr>
<td>Carbon nuclear magnetic resonance spectroscopy</td>
<td>¹³C-NMR</td>
</tr>
<tr>
<td>Methanol</td>
<td>MeOH</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H₂</td>
</tr>
<tr>
<td>Methyl tertiary butyl ether</td>
<td>MTBE</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>HCl</td>
</tr>
<tr>
<td>Palladium on charcoal</td>
<td>Pd/C</td>
</tr>
<tr>
<td>Ammonium hydroxide</td>
<td>NH₄OH</td>
</tr>
<tr>
<td>Deuterated methanol</td>
<td>CD₂OD</td>
</tr>
<tr>
<td>Silicon dioxide (silica)</td>
<td>SiO₂</td>
</tr>
<tr>
<td>Palladium on barium sulfate</td>
<td>Pb₂SO₄</td>
</tr>
<tr>
<td>Pounds per square inch</td>
<td>PSI</td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td>KOH</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>NaOH</td>
</tr>
<tr>
<td>Potassium bromide</td>
<td>KB₃</td>
</tr>
<tr>
<td>Ethanol</td>
<td>EtOH</td>
</tr>
<tr>
<td>tertiary Butyl</td>
<td>t-Bu</td>
</tr>
<tr>
<td>Benzyl</td>
<td>Bn</td>
</tr>
<tr>
<td>Refractive index high performance liquid chromatography</td>
<td>RI HPLC</td>
</tr>
<tr>
<td>Infrared spectroscopy</td>
<td>IR</td>
</tr>
<tr>
<td>Deuterium oxide</td>
<td>D₂O</td>
</tr>
<tr>
<td>Thin layer chromatography</td>
<td>TLC</td>
</tr>
</tbody>
</table>

Preferred compounds of Formula IV prepared by the improved process of the first aspect of the present invention are:

(1-Cyanocyclohexa-2,5-dienyl)acetic acid ethyl ester; (1-Cyanocyclohexa-2,5-dienyl)acetic acid; (1-Cyanocyclohexa-2,5-dienyl)acetic acid benzyl ester; and (1-Cyanocyclohexa-2,5-dienyl)acetic acid t-buty1 ester; or a pharmaceutically acceptable salt thereof.

Preferred compounds of Formula IX prepared by the improved process of the fifth aspect of the present invention are:

1-(2,2,2-Trimethoxy-ethyl)-cyclohexa-2,5-diene-carbonitrile; 1-(2,2,2-Trichloro-ethyl)-cyclohexa-2,5-diene-carbonitrile; and 1-(2,2,2-Trisopropoxy-ethyl)-cyclohexa-2,5-diene-carbonitrile.

Preferred compounds of Formula X prepared by the improved process of the fifth aspect of the present invention are:

1-(2,2,2-Trimethoxy-ethyl)-cyclohexane-carbonitrile; 1-(2,2,2-Trichloro-ethyl)cyclohexane-carbonitrile; and 1-(2,2,2-Trisopropoxy-ethyl)-cyclohexane-carbonitrile.

As previously described, the compound of Formula I is useful for the treatment of certain forms of epilepsy, fainness attacks, hypokinesia, and cranial trauma.

The process of the present invention in its first aspect is a new, improved, economical, and commercially feasible method for preparing the compound of Formula I. Furthermore, the process can be carried out in a two-pot procedure. The process of the present invention in its first aspect is outlined in Scheme 1.
A compound of Formula IV is prepared from benzonitrile (VII) using a Birch reduction, i.e., dissolving metal reduction of the anionic intermediate (VI) which is generated in situ.

The alkylation of anions generated in Birch reductions is an established methodology (see “Organic Reactions”, ed. Paquette L. A., et al., John Wiley & Sons, New York, N.Y., 1992:42:1–334) in organic synthesis. However, there is only one report of the reductive alkylation of benzonitrile (Schultz A. G. and Macielag M., Journal of Organic Chemistry, 1986:51:4983). There is no disclosure of alkylation of these intermediate anions with α-halo acetic acid esters. Though alkylation of nitrites has been disclosed (“Organic Reactions”, ed. Dauben W. G., et al., John Wiley & Sons. New York, N.Y., 1984:31:1–364), the alkylation of cyclohexancarbonitrile and cyclohexacarbonitrile type compounds with α-halo acetic acid esters has not been reported. We have unexpectedly and surprisingly found that the Birch reduction anionic intermediate (VI) is successfully alkylated with α-haloacetic acid and α-haloacetic acid esters in high yields.

Thus, a solution of benzonitrile in a solvent such as, for example, an alcohol such as tertiary butyl alcohol, ethanol, isopropyl alcohol, tetrahydrofuran, diethyl ether, methyl tertiary butyl ether (MTBE) and the like is treated with an alkali metal such as, for example, lithium, sodium, potassium, and the like; an amine such as, for example, ammonia and the like at about 78°C to about 33°C for about 0.5 to about 8 hours to generate in situ the anionic intermediate (VI) followed by subsequent treatment with a compound of Formula V wherein X is halo or sulfonate and R is hydrogen, an alkali metal, an alkaline earth metal, ammonium, an amine cation, alkyl, or benzyl to afford a compound of Formula IV wherein R is hydrogen, alkyl, or benzyl. Preferably, the reaction is carried out with lithium in ammonia in tertiary butyl alcohol and tetrahydrofuran.

A compound of Formula IVa wherein R (R^1a2) is alkyl is treated with hydrogen in the presence of a catalyst such as, for example, rhodium on carbon containing palladium, rhodium on carbon containing platinum, rhodium on catalyst containing palladium, palladium on carbon, palladium on carbon in the presence of a mineral acid, Raney nickel, and Raney cobalt and the like and a solvent such as, for example, methanol and the like to afford a compound of Formula III wherein R^1a2 is alkyl. Preferably, the reaction is carried out with palladium on charcoal and methanol.

A compound of Formula IIIa (R^1a is tertiary butyl [t-Bu]) is treated with an acid such as, for example, hydrochloric acid, hydrobromic acid, trifluoroacetic acid, hydrobromic acid in acetic acid, formic acid, para toluenesulfonic acid, and the like in a solvent such as, for example, dichloromethane, toluene, diethyl ether and the like to afford the compound of Formula II. Preferably, the reaction is carried out with trifluoroacetic acid in dichloromethane.

A compound of Formula IIIb (R^1a is alkyl excluding t-Bu) is treated with an acid such as, for example, hydrochloric acid, hydrobromic acid, trifluoroacetic acid, paratoluene sulfonic acid, and the like in a solvent such as, for example, water and/or an alcohol such as methanol, ethanol and the like to afford the compound of Formula II. Preferably, the reaction is carried out with potassium hydroxide in ethanol.

A compound of Formula IVc (R is benzyl [Bn]) is treated with hydrogen in the presence of a catalyst using the conditions previously described for preparing a compound of Formula III from a compound of Formula IVa to afford the compound of Formula II.

The compound of Formula IVa-1 (R^1 is t-Bu) is treated with an acid in the presence of a solvent using the conditions previously described for preparing a compound of Formula II from the compound of Formula IIIa to afford the compound of Formula IVb.

The compound of Formula IVa-2 (R^1 is alkyl excluding t-Bu) is treated with an acid or base in the presence of a solvent using the conditions previously described for preparing a compound of Formula II from a compound of Formula IIIb to afford the compound of Formula IVb.
The compound of Formula IVb is treated with hydrogen in the presence of a catalyst using the conditions previously described for preparing a compound of Formula III from a compound of Formula IVA to afford the compound of Formula II.

The compound of Formula IVb, or the compound of Formula IVC, or the compound of Formula II is treated with hydrogen in the presence of a catalyst and a solvent using the conditions previously described for preparing a compound of Formula III from a compound of Formula IVA to afford the compound of Formula I.

The process of the present invention in its fifth aspect is outlined in Scheme 2.

Compounds of Formula V and Formula VIII are either known or capable of being prepared by methods known in the art.

EXAMPLE 1

1-(Aminomethyl)cyclohexaneacetic Acid Ethyl Ester

Method A

Step A: Preparation of (1-Cyanocyclohexa-2,5-dienyl) Acetic Acid Ethyl Ester

Lithium (0.17 g, 24 mmol) was added in portions to a solution of benzonitrile (0.99 mL, 1.0 g, 9.7 mmol) and t-BuOH (0.93 mL, 0.72 g, 9.7 mmol) in NH₂ (50 mL) and

Thus, the anionic intermediate (VI) is generated in situ as described above followed by subsequent treatment with a compound of Formula VIII wherein X is halo or sulfonate and R² is alkyl using the conditions previously described for preparing a compound of Formula IV from the compound of Formula VI to afford a compound of Formula IX wherein R² is as described above.

A compound of Formula IX is treated with hydrogen in the presence of a catalyst and a solvent using the conditions previously described for preparing a compound of Formula III from a compound of Formula IVA to afford a compound of Formula X wherein R² is as defined above.

A compound of Formula IX is treated with an acid such as, for example, formic acid, acetic acid, hydrochloric acid, hydrobromic acid, trifluoroacetic acid, para toluenesulfonic acid and the like in a solvent such as, for example, dichloromethane, toluene, tetrahydrofuran, diethyl ether and the like to afford the compound of Formula IVb. Preferably, the reaction is carried out with is hydrochloric acid in dichloromethane.

A compound of Formula X is treated with an acid in a solvent using the conditions previously described for preparing the compound of Formula IVb from a compound of Formula IX to afford the compound of Formula II.

The compound of Formula IVb or Formula II is treated with hydrogen in the presence of a catalyst and a solvent using the conditions previously described for preparing a compound of Formula III from a compound of Formula IVA to afford the compound of Formula I.

THF (10 mL) under N₂ at −78°C. After 10 minutes, ethyl bromoacetate (2.2 mL, 3.3 g, 20 mmol) was added dropwise. After 1 hour, ammonium chloride (4.0 g, 7.5 mmol) was added and the mixture was slowly warmed to room temperature. Then NH₃ was removed with a stream of N₂. Water (25 mL) was added, and the mixture was extracted with EtOAc (3×25 mL). The combined organic extracts were washed with brine (50 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (SiO₂, CH₂Cl₂) afforded 1.12 g (60%) of product as an oil.

1H-NMR (CDCl₃): δ 1.28 (t, J=7.1 Hz, 3H), 2.71 (m, 4H), 4.20 (q, J=7.1 Hz, 2H), 5.82 (dt, J=1.9, 10.1 Hz, 2H), 6.01 (dt, J=3.3, 10.1 Hz, 2H); 13C-NMR (CDCl₃): δ 14.2, 25.7, 34.4, 45.1, 61.2, 120.5, 123.6, 128.0, 168.3; IR (neat) 2984, 2231, 1736, 1185 cm⁻¹.

Step B: Preparation of (1-Cyanocyclohexyl)acetic Acid Ethyl Ester

Added 1% Pd/C catalyst (1.67 g, 0.157 mmol) to a solution of (1-cyanocyclohexa-2,5-dienyl)acetic acid ethyl ester (3.00 g, 15.7 mmol) in MeOH (75 mL). After shaking the reaction under 20 psi H₂ at room temperature for 2 hours, the pressure was slowly released. The reaction was filtered and concentrated under reduced pressure to afford 2.89 g (94%) of product as an oil.

1H-NMR (CDCl₃): δ 1.10−1.55 (m, 5H, inc. 1.29, 1.3, J=7.1 Hz), 1.72 (m, 6H), 2.05−2.18 (m, 2H), 2.55 (s, 2H), 4.20 (q, J=7.1 Hz, 2H); 13C-NMR (CDCl₃): δ 14.3, 22.9, 25.2, 35.6, 36.7, 44.5, 61.1, 122.4, 169.1.
Step C: Preparation of (1-Cyanocyclohexyl)acetic Acid

(1-Cyanocyclohexyl)acetic acid ethyl ester is reacted with aqueous sodium hydroxide solution using the methodology disclosed at Column 15, Method C, Step B of U.S. Pat. No. 5,132,451 which is herein incorporated by reference to afford the title product.

Step D: Preparation of 1-(Aminomethyl)-cyclohexanecarboxylic Acid

(1-Cyanocyclohexyl)acetic acid is hydrogenated using the methodology disclosed at Columns 14 to 15, Method B, of U.S. Pat. No. 5,132,451 to afford the title compound.

Method B

Step A: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid

Lithium (0.17 g, 24 mmol) was added to portions to a stirred solution of benzonitrile (0.99 mL, 1.0 g, 9.7 mmol) and t-BuOH (0.93 mL, 0.72 g, 9.7 mmol) in NH₄ (50 mL) and THF (10 mL) under N₂ at ~78°C. After stirring for 15 minutes, benzyl-2-bromooacetate (3.1 mL, 4.5 g, 20 mmol) was added dropwise. After 1 hour, ammonium chloride (4.0 g, 75 mmol) was added in portions. The reaction mixture was slowly warmed to room temperature while the NH₄ was removed with a stream of N₂. Water (25 mL) was added, and the mixture was extracted with EtOAc (3x5 mL). The combined organic extracts were washed with brine (50 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (SiO₂, 1:1-3:1 CH₂Cl₂:hexane) afforded 1.79 g (73%) of product as an oil.

Step B: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid ethyl ester

To a solution of 2.4 mL (2.4 g, 22 mmol) of anisole in 50 mL of 2-propanol is added 5.00 g (22.4 mmol) of Pd/C (90.0 mg, 4.2 mmol) to a solution of (1-cyanocyclohexa-2,5-dienyl)acetic acid benzyl ester (1.00 g, 5.95 mmol) in MeOH (20 mL). After stirring the reaction mixture under an atmosphere of H₂ at 0°C for 0.5 hour and room temperature for 1.5 hours, additional 5% Pd/C was added. After stirring the reaction mixture under an atmosphere of H₂ at 0°C for 1 hour and room temperature for 19.5 hours, the reaction was filtered and concentrated under reduced pressure to afford 0.56 g (87%) of crude oil.

Step C: Preparation of 1-(Aminomethyl)-cyclohexanecarboxylic Acid

(1-Cyanocyclohexyl)acetic acid is hydrogenated according to the procedure of Method A, Step D to afford the title compound.

Method D

Step A: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid t-buty1 Ester

Lithium (1.73 g, 249 mmol) was added to portions to a stirred solution of benzonitrile (10.2 mL, 10.3 g, 99.9 mmol) and t-BuOH (0.6 mL, 7.4 g, 100 mmol) in NH₄ (50 mL) and THF (10 mL) under N₂ at ~78°C. After stirring for 25 minutes, t-buty1 bromoacetate (29.5 mL, 39.0 g, 200 mmol) was added dropwise. After 1 hour, ammonium chloride (41.8 g, 781 mmol) was added in portions. The reaction mixture was slowly warmed to room temperature while the NH₄ was removed with a stream of N₂. Water (125 mL) was added and the mixture was extracted with MTBE (3x50 mL). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (SiO₂, CH₂Cl₂:MeOH, 1:1-3:1) afforded 3.10 g (73%) of product as an oil.

Step B: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid Benzyl Ester

Lithium (0.17 g, 24 mmol) was added to portions to a stirred solution of benzonitrile (0.99 mL, 1.0 g, 9.7 mmol) and t-BuOH (0.93 mL, 0.72 g, 9.7 mmol) in NH₄ (50 mL) and THF (10 mL) under N₂ at ~78°C. After stirring for 15 minutes, benzyl-2-bromooacetate (3.1 mL, 4.5 g, 20 mmol) was added dropwise. After 1 hour, ammonium chloride (4.0 g, 75 mmol) was added in portions. The reaction mixture was slowly warmed to room temperature while the NH₄ was removed with a stream of N₂. Water (25 mL) was added, and the mixture was extracted with EtOAc (3x5 mL). The combined organic extracts were washed with brine (50 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (SiO₂, 1:1-3:1 CH₂Cl₂:hexane) afforded 1.79 g (73%) of product as an oil.

Step C: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid

To a solution of 2.4 mL (2.4 g, 22 mmol) of anisole in 50 mL of trifiuoroacetic acid is added 5.00 g (22.4 mmol) of...
(1-cyanocyclohexyl)acetic acid, t-butyl ester. The reaction is monitored (TLC) for the loss of starting material and when the reaction is complete it is concentrated under reduced pressure. Water (~10 mL) is added to the residue and the mixture is adjusted to pH=10–12 with base (NaOH). The basic aqueous layer is extracted with a suitable organic solvent (EtOAc) to remove impurities. The aqueous layer is acidified with acid (HCl) to pH=0–4 and extracted with a suitable solvent (EtOAc). The combined organic extracts of the acidified aqueous layer are dried and concentrated under reduced pressure to afford the product.

Step D: Preparation of 1-(Aminomethyl)cyclohexanecarboxylic Acid

(1-Cyanocyclohexyl)acetic acid is hydrogenated according to the procedure of Method A, Step D to afford the title compound.

Method E

Step A: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid

Method a:

Added dropwise a solution of KOH (1.73 M, 5.0 mL, 8.7 mmol) in 1:4 H₂O:EtOH to a stirred solution of (1-cyanocyclohexa-2,5-dienyl)acetic acid ethyl ester (3.00 g, 15.7 mmol) in EtOH (15 mL) at 0° C. After stirring for 1 hour, a solution of KOH (1.73 M, 5.0 mL, 8.7 mmol) in 1:4 H₂O:EtOH was added dropwise. After stirring for 2.5 hours, the reaction was concentrated under reduced pressure. Water (5 mL) was added, and the mixture was extracted with CH₂Cl₂ (3x10 mL). The aqueous layer was cooled to 5° C. and acidified to pH=3 with 37% HCl (1.1 mL, 13.4 mmol). The solids were filtered, washed with H₂O (pH=5), and dried under vacuum at room temperature for 16 hours to afford 1.57 g (61%) of the product as a solid.

**H-NMR (CDCl₃): δ 2.73 (m, 2H), 2.78 (s, 2H), 5.83 (dt, J=1.9, 10.3 Hz, 2H), 6.03 (dt, J=3.4, 10.4 Hz, 2H), 9.27 (brd, s, 1H); **¹³C-NMR: δ 25.8, 34.3, 44.8, 120.5, 123.4, 128.4, 173.8.

Method b

To a solution of 2.5 mL (2.5 g, 23 mmol) of anisole in 50 mL of trifluoroacetic acid is added 5.00 g (22.8 mmol) of (1-cyanocyclohexa-2,5-dienyl) acetic acid, t-butyl ester. The reaction is monitored (TLC) for the loss of starting material and when the reaction is complete it is concentrated under reduced pressure. Water (~10 mL) is added to residue and the mixture is adjusted to pH=10–12 base (NaOH). The basic aqueous layer is extracted with a suitable organic solvent (EtOAc) to remove impurities. The aqueous layer is acidified with acid (HCl) to pH=0–4 and extracted with a suitable solvent (EtOAc). The combined organic extracts of the acidified aqueous layer are dried and concentrated under reduced pressure to afford the product.

Step B: Preparation of 1-(Aminomethyl)cyclohexanecarboxylic Acid

Added 5% Pd/C catalyst (0.33 g, 0.16 mmol) to a solution of (1-cyanocyclohexa-2,5-dienyl)acetic acid (0.25 g, 1.5 mmol) and 28% NH₄H₂O (70 μL, 63 μg, 0.50 mmol) in MeOH (20 mL). After shaking the reaction mixture under 50 psi H₂ at 50° C. for 3.5 hours, the pressure was slowly released, and the reaction was cooled to room temperature. The reaction was filtered and concentrated under reduced pressure to afford 0.27 g (102%) of crude product.

**H-NMR (D₂O): δ 1.46 (m, 11H, theo. 10H), 2.43 (s, 2H), 3.00 (s, 2H), 4.78 (s, 4H, theo. 3H); **¹³C-NMR (D₂O): δ 20.5, 24.8, 33.0, 33.8, 45.4, 47.8, 179.8.

Method F

Preparation of 1-(Aminomethyl)cyclohexanecarboxylic Acid

Added 5% Pd/C catalyst (0.84 g, 0.40 mmol) to a solution of (1-cyanocyclohexa-2,5-dienyl)acetic acid benzyl ester (1.00 g, 3.95 mmol) and 28% NH₄H₂O (0.55 mL, 0.50 g, 4.0 mmol) in MeOH (20 mL). After shaking the reaction mixture under 50 psi H₂ at 50° C. for 18 hours, the pressure was slowly released, and the reaction was cooled to room temperature. The reaction was filtered and concentrated under reduced pressure to afford 0.63 g (93%) of crude product.

Method G

Step A: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic acid

The title compound is prepared as described in Method B, Step A.

Step B: Preparation of 1-(Aminomethyl)cyclohexanecarboxylic acid

The title compound is prepared as described in Method E, Step B.

Method H

Step A: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid Ethyl Ester

The title compound is prepared as described in Method A, Step A.

Step B: Preparation of (1-Cyanocyclohexa-2,5-dienyl)acetic Acid

The title compound is prepared as described in Method B, Step B.

Step D: Preparation of 1-(Aminomethyl)cyclohexanecarboxylic Acid

The title compound is prepared as described in Method A, Step D.

What is claimed is:

1. A process for the preparation of the compound of Formula I

```
HOCCH2CN
```

which comprises:

- treating either the compound of Formula IVb

```
HO2CCH2CH2NH2
```

IVb

US 6,294,690 B1
or the compound of Formula IVc

![Chemical structure](image)

with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula I.

2. A process for the preparation of the compound of Formula I

![Chemical structure](image)

which comprises:

Step (a) treating the compound of Formula VII

![Chemical structure](image)

with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

![Chemical structure](image)

Step (b) treating the compound of Formula VI with a compound of Formula V

![Chemical structure](image)

wherein X is halo or sulfonate and R is hydrogen, an alkali metal, an alkaline earth metal, ammonium, an amine cation, alkyl, or benzyl in the presence of a solvent to afford a compound of Formula IV

Step (c) treating a compound of Formula IVa

![Chemical structure](image)

wherein R is as defined above;

Step (d) treating the compound of Formula IIIa

![Chemical structure](image)

wherein R' is alkyl with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula III

Step (e) treating the compound of Formula IIIb

![Chemical structure](image)

wherein R'' is alkyl excluding tertiary butyl with an acid or base in a solvent to afford the compound of Formula II or treating the compound of Formula IVb
with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula IVc

with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula II;
Step (e) treating the compound of Formula IVa-1

with an acid in a solvent to afford the compound of Formula IVb or treating a compound of Formula IVa-2

wherein R''' is alkyl excluding tertiary butyl with an acid or base in a solvent to afford the compound of Formula IVb; and
Step (f) treating either the compound of Formula IVb or the compound of Formula IVc or the compound of Formula II with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula I.

3. A process according to claim 2 wherein the alkali metal in Step (a) is selected from the group consisting of: lithium, sodium, and potassium.

4. A process according to claim 3 wherein the alkali metal is lithium.

5. A process according to claim 2 wherein the solvent in Step (a) is selected from the group consisting of: ethanol, isopropyl alcohol, tertiary butyl alcohol, tetrahydrofuran, diethyl ether, and methyl tertiary butyl ether.

6. A process according to claim 5 wherein the solvent is a mixture of tertiary butyl alcohol and tetrahydrofuran.

7. A process according to claim 2 wherein the higher order amine in Step (a) is selected from the group consisting of: methylyamine, dimethylamine, methylmethylylamine, and diethylamine.

8. A process according to claim 2 wherein the compound of Formula V in Step (b) is selected from the group consisting of: ethyl bromoacetate, ethyl chloroacetate, bromoacetic acid, chloroacetic acid, bromoacetic acid ammonium salt, chloroacetic acid ammonium salt, benzyl-2-bromoacetate, benzyl-2-chloroacetate, t-buty1 bromoacetate, and t-buty1 chloroacetate.

9. A process according to claim 2 wherein the solvent in Step (b) is a mixture of tertiary butyl alcohol and tetrahydrofuran.

10. A process according to claim 2 wherein the catalyst in Step (c) is selected from the group consisting of: rhodium on carbon containing palladium, rhodium on carbon containing platinum, rhodium on calcium carbonate containing palladium, rhodium on alumina containing palladium, palladium on carbon, palladium on carbon in the presence of a mineral acid, Raney nickel, and Raney cobalt.

11. A process according to claim 10 wherein the catalyst is palladium on carbon.

12. A process according to claim 2 wherein the solvent in Step (c) is methanol.

13. A process according to claim 2 wherein the acid in Step (d) is selected from the group consisting of: hydrochloric acid, hydrobromic acid, trifluoroacetic acid, hydrobromic acid in acetic acid, formic acid, and para toluenesulfonic acid.

14. A process according to claim 13 wherein the acid is trifluoroacetic acid.

15. A process according to claim 2 wherein the solvent in Step (d) is selected from the group consisting of: dichloromethane, toluene, and diethyl ether.

16. A process according to claim 15 wherein the solvent is dichloromethane.

17. A process according to claim 2 wherein the base in Step (d) is selected from the group consisting of: an alkali metal hydroxide and an alkali earth metal hydroxide.

18. A process according to claim 17 wherein the base is an alkali metal hydroxide.

19. A process according to claim 18 wherein the base is potassium hydroxide.

20. A process according to claim 2 wherein the acid in Step (c) is selected from the group consisting of: hydrochloric acid, hydrobromic acid, trifluoroacetic acid, hydrobromic acid in acetic acid, and para toluenesulfonic acid.

21. A process according to claim 20 wherein the acid is trifluoroacetic acid.

22. A process according to claim 2 wherein the solvent in Step (e) is selected from the group consisting of: dichloromethane, toluene, and diethyl ether.

23. A process according to claim 22 wherein the solvent is dichloromethane.

24. A process according to claim 2 wherein the base in Step (c) is selected from the group consisting of: an alkali metal hydroxide and an alkali earth metal hydroxide.

25. A process according to claim 24 wherein the base is an alkali metal hydroxide.

26. A process according to claim 2 wherein the catalyst in Step (f) is selected from the group consisting of: rhodium on carbon containing palladium, rhodium on carbon containing platinum, rhodium on calcium carbonate containing palladium, rhodium on alumina containing palladium, palladium on carbon, palladium on carbon in the presence of a mineral acid, Raney nickel, and Raney cobalt.

27. A process according to claim 26 wherein the catalyst is palladium on carbon.

28. A process according to claim 2 wherein the solvent in Step (f) is methanol.

29. A process for the preparation of a compound of Formula III.
wherein R' is alkyl which comprises:

Step (a) treating the compound of Formula VII with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

Step (b) treating the compound of Formula VI with a compound of Formula V

wherein X is halo or sulfonate and R is hydrogen, an alkali metal, an alkaline earth metal, ammonium, an amine cation, alkyl, or benzyl in the presence of a solvent to afford a compound of Formula IV

wherein R is as defined above; and
wherein R is as defined above;
Step (c) treating a compound of Formula IVa with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula II.

1. A process for the preparation of the compound of Formula I which comprises:
Step (a) treating the compound of Formula VII with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI

wherein R is alkyl with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula III

Step (d) treating the compound of Formula IIIa with an acid in a solvent to afford the compound of Formula II or treating a compound of Formula IIIb

wherein R is alkyl excluding tertiary butyl with an acid or base in a solvent to afford the compound of Formula II or treating the compound of Formula IVb

with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula II or treating the compound of Formula IVc

wherein X is halo or sulfonate and R² is alkyl in the presence of a solvent to afford a compound of Formula IX
wherein R^2 is alkyl;
Step (c) treating a compound of Formula IX with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula X

$$\text{OR}^2 \text{C} = \text{CH} \text{OR}^2 \text{CN}$$

wherein R^2 is as defined above;
Step (d) treating a compound of Formula IX with an acid in the presence of a solvent to afford the compound of Formula IVb

$$\text{HO}_2\text{CCH}_2\text{CN}$$

or treating a compound of Formula X with an acid in the presence of a solvent to afford the compound of Formula II

$$\text{HO}_2\text{CCH}_2\text{CN}$$

Step (e) treating either the compound of Formula IVb or Formula II with hydrogen in the presence of a catalyst and a solvent to afford the compound of Formula I.

32. A process according to claim 31 wherein the alkali metal in Step (a) is selected from the group consisting of: lithium, sodium, and potassium.

33. A process according to claim 32 wherein the alkali metal is lithium.

34. A process according to claim 31 wherein the solvent in Step (a) is selected from the group consisting of: ethanol, isopropyl alcohol, tertiary butyl alcohol, tetrahydrofuran, diethyl ether, and methyl tertiary butyl ether.

35. A process according to claim 34 wherein the solvent is a mixture of tertiary butyl alcohol and tetrahydrofuran.

36. A process according to claim 31 wherein the solvent in Step (a) is a mixture of tertiary butyl alcohol and tetrahydrofuran.

37. A process according to claim 31 wherein the compound of Formula VIII in Step (b) is selected from the group consisting of: 2-chloro-1,1,1-trimethoxyethane, 2-bromo-1,1,1-trimethoxyethane, 2-chloro-1,1,1-triethoxyethane, 2-bromo-1,1,1-triethoxyethane, 2-chloro-1,1,1-trisopropylethene, and 2-bromo-1,1,1-trisopropylethene.

38. A process according to claim 31 wherein the solvent in Step (b) is a mixture of tertiary butyl alcohol and tetrahydrofuran.

39. A process according to claim 31 wherein the catalyst in Step (c) is selected from the group consisting of: rhodium on carbon containing palladium, rhodium on carbon containing platinum, rhodium on calcium carbonate containing palladium, rhodium on alumina containing palladium, palladium on carbon, palladium on carbon in the presence of a mineral acid, Raney nickel, and Raney cobalt.

40. A process according to claim 39 wherein the catalyst is palladium on carbon.

41. A process according to claim 31 wherein the solvent in Step (c) is methanol.

42. A process according to claim 31 wherein the acid in Step (d) is selected from the group consisting of: formic acid, acetic acid, hydrochloric acid, hydrobromic acid, trifluoroacetic acid, and para toluenesulfonic acid.

43. A process according to claim 41 wherein the acid is hydrochloric acid.

44. A process according to claim 41 wherein the solvent in Step (d) is selected from the group consisting of dichloromethane, toluene, tetrahydrofuran, and diethyl ether.

45. A process according to claim 44 wherein the solvent is dichloromethane.

46. A process according to claim 41 wherein the catalyst in Step (e) is selected from the group consisting of: rhodium on carbon containing palladium, rhodium on carbon containing platinum, rhodium on calcium carbonate containing palladium, rhodium on alumina containing palladium, palladium on carbon, palladium on carbon in the presence of a mineral acid, Raney nickel, and Raney cobalt.

47. A process according to claim 46 wherein the catalyst is palladium on carbon.

48. A process according to claim 41 wherein the solvent in Step (c) is methanol.

49. A process for the preparation of the compound of Formula II which comprises:

Step (a) treating the compound of Formula VII

$$\text{HO}_2\text{CCH}_2\text{CN}$$

with an alkali metal in ammonia or higher order amine in the presence of a solvent to afford in situ the compound of Formula VI
Step (b) treating the compound of Formula VI with a compound of Formula VIII

wherein X is halo or sulfonate and R² is alkyl in the presence of a solvent to afford a compound of Formula IX

Step (c) treating a compound of Formula IX with hydrogen in the presence of a catalyst and a solvent to afford a compound of Formula X

wherein R² is alkyl;

Step (d) treating a compound of Formula X with an acid in the presence of a solvent to afford the compound of Formula II.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16.
Line 50, before the amine drawing, please insert -- Amine cation is --

Column 20.
Line 33, "is be treated" should read -- is treated --

Column 21.
Line 57, "with is hydrochloric" should read -- with hydrochloric --

Column 23.
Line 14, insert a new paragraph starting with "Lithium"
Line 23, "warned" should read -- warmed --

Column 24.
Line 23, insert a new paragraph starting with "(1-Cyanocyclohexyl)"

Signed and Sealed this Twenty-first Day of May, 2002

Attest:

JAMES E. ROGAN
Attesting Officer