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(57) ABSTRACT

The present teaching relates to method, system, medium,
and implementation of lane planning in an autonomous
vehicle. Sensor data are received that capture ground images
of a road the autonomous vehicle is on. Based on the sensor
data, a current lane of the road that autonomous vehicle is
currently occupying is detected. Information indicating pres-
ence of a passenger in the vehicle is obtained and used to
retrieve a personalized lane control model related to the
passenger. Lane control for the autonomous vehicle is
planned based on the detected current lane and self-aware
capability parameters in accordance with the personalized
lane control model. The self-aware capability parameters are
used to predict operational capability of the autonomous
vehicle with respect to a current location of the autonomous
vehicle. The personalized lane control model is generated
based on recorded human driving data.
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METHOD AND SYSTEM FOR
PERSONALIZED DRIVING LANE
PLANNING IN AUTONOMOUS DRIVING
VEHICLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 15/856,728, filed Dec. 28, 2017, which
is a continuation of U.S. patent application Ser. No. 15/845,
294, filed Dec. 18, 2017, and this application is also related
to U.S. patent application Ser. No. 15/845,173, filed Dec. 18,
2017; U.S. patent application Ser. No. 15/845,337, filed Dec.
18, 2017; and U.S. patent application Ser. No. 15/845,423,
filed Dec. 18, 2017, all of which are incorporated herein by
reference in their entireties.

BACKGROUND

1. Technical Field

The present teaching generally relates to autonomous
driving. More specifically, the present teaching relates to
planning and control in autonomous driving.

2. Technical Background

With recent technological advancement in artificial intel-
ligence (Al), there is a surge in applying Al in different
application fields. This includes the field of autonomous
driving, in which planning and control are essential. This is
shown in FIG. 1 (Prior Art), in which an autonomous driving
module 110 includes a planning module 120 and a vehicle
control module 130. Planning may include, as shown in FIG.
2, route planning, motion planning, or behavior planning.
Route planning refers to the effort to plan a route from a
source to a destination based on certain considerations.

Motion planning may generally refer to the effort of
planning the movement of a vehicle to achieve certain effect.
For example, the movement of the vehicle may be planned
in a way that complies with the traffic regulations or safety.
Motion planning is then to determine what movement the
vehicle needs to make to achieve that. Behavior planning
generally refers to the effort to plan how the vehicle should
behave in different situations, e.g., the vehicle behavior
while crossing an intersection, the vehicle behavior in stay-
ing within or following a lane, or the vehicle behavior in
making a turn. For instance, in terms of overtaking a slow
moving front vehicle, certain vehicle behavior may be
planned. Behavior planning and motion planning may be
related. For example, the planned vehicle behavior may need
to be translated into motion in order to implement the
behavior.

Vehicle control 130 as shown in FIG. 1 may involve
various aspects of control. This is illustrated in FIG. 3, which
shows that vehicle control may involve, e.g., roadway
specific control, motion specific control, mass specific con-
trol, geometry specific control, aerodynamic specific con-
trol, and tire specific control.

Surrounding information 100 in FIG. 1 may be used for
vehicle planning. Traditionally, surrounding information
100 includes, e.g., current location of the vehicle, intended
destination, and/or traffic information. Utilizing such sur-
rounding information, the conventional planning module
120 may devise, e.g., a plan for a route from the current
location to the destination. Known criteria used in route
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2

planning may include, e.g., shortest distance, shortest time,
use of highways, use of local roads, traffic, etc. Such criteria
may be applied based on known information such as the
distance of each road segment, known traffic patterns asso-
ciated with roads, etc.

The planning module 120 may also perform motion
planning, which is traditionally based on, e.g., rapidly
exploring random trees (RRT) for state space or Markov
Decision Process (MDP) for environmental modeling. The
planning module 120 may generate, based on the planned
route/motion, planning data to be fed to the vehicle control
module 130 so that the vehicle control module 130 can
proceed to control the vehicle in a way as planned. To make
the vehicle to move to carry out the plan, the vehicle control
module 130 may then generate control signals 140 which
may be sent to different parts of the vehicle to implement the
planned vehicle movement. Vehicle control is traditionally
exercised based on generic vehicle kinematic models and/or
different types of feedback controllers.

Each human driver generally operates or controls a
vehicle differently with diverse preferences. Human drivers
also operate vehicles adaptively based on real time situa-
tions, which may arise out of the present conditions of the
vehicle itself, the extrinsic environment conditions that
serve to limit the ability of the vehicle to operate, and/or the
reaction or response to the current vehicle movement from
passengers in the vehicle. For example, with children in the
vehicle, a human driver may elect, for safety, to avoid (route
planning) a route that is curvy on a snowy day. A human
driver may drive in different manners when different pas-
sengers are riding in the vehicle to ensure comfort of the
passenger. Although a human driver generally controls a
vehicle by following a lane by staying roughly in the middle
of'the lane, the behavior may change when faced with a right
turn. In this case, the same human driver may curve to the
right side of the lane when the vehicle is approaching the
point of the right turn. In addition, different human drivers
may curve to the right in different ways. Furthermore, lane
changing behavior may also differ with respect to different
vehicles in different surrounding situations. The existing
technologies do not address those issues, let alone providing
solutions.

Therefore, there is a need to provide improved solutions
for planning and control in autonomous driving.

SUMMARY

The teachings disclosed herein relate to methods, systems,
and programming for online services. More particularly, the
present teaching relates to methods, systems, and program-
ming for developing a virtual agent that can have a dialog
with a user.

In one example, a method for lane planning in an autono-
mous vehicle is disclosed. Sensor data are received that
capture ground images of a road the autonomous vehicle is
on. Based on the sensor data, a current lane of the road that
autonomous vehicle is currently occupying is detected.
Information indicating presence of a passenger in the vehicle
is obtained and used to retrieve a personalized lane control
model related to the passenger. Lane control for the autono-
mous vehicle is planned based on the detected current lane
and self-aware capability parameters in accordance with the
personalized lane control model. The self-aware capability
parameters are used to predict operational capability of the
autonomous vehicle with respect to a current location of the
autonomous vehicle. The personalized lane control model is
generated based on recorded human driving data.
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In another example, a system for lane planning in an
autonomous vehicle is disclosed. The system comprises a
driving lane detector and a driving lane planning unit. The
driving lane detector is configured for receiving sensor data
capturing ground images of a road the autonomous vehicle
is on and detecting, from the sensor data, a current lane of
the road the autonomous vehicle is currently occupying. The
driving lane planning unit is configured for obtaining infor-
mation indicating presence of a passenger within the autono-
mous vehicle, retrieving a personalized lane control model
related to the passenger, and planning lane control for the
autonomous vehicle based on the detected current lane and
self-aware capability parameters in accordance with the
personalized lane control model. The self-aware capability
parameters are used to predict the operational capability of
the autonomous vehicle with respect to a current location of
the vehicle. The personalized lane control model is gener-
ated based on recorded human driving data.

Other concepts relate to software for implementing the
present teaching on developing a virtual agent. A software
product, in accord with this concept, includes at least one
machine-readable non-transitory medium and information
carried by the medium. The information carried by the
medium may be executable program code data, parameters
in association with the executable program code, and/or
information related to a user, a request, content, or infor-
mation related to a social group, etc.

In one example, machine readable non-transitory medium
is disclosed, wherein the medium has information recorded
thereon for lane control in an autonomous vehicle, where the
information, when read by the machine, causes the machine
to perform various steps. Sensor data are received that
capture ground images of a road the autonomous vehicle is
on. Based on the sensor data, a current lane of the road that
autonomous vehicle is currently occupying is detected.
Information indicating presence of a passenger in the vehicle
is obtained and used to retrieve a personalized lane control
model related to the passenger. Lane control for the autono-
mous vehicle is planned based on the detected current lane
and self-aware capability parameters in accordance with the
personalized lane control model. The self-aware capability
parameters are used to predict operational capability of the
autonomous vehicle with respect to a current location of the
autonomous vehicle. The personalized lane control model is
generated based on recorded human driving data.

Additional novel features will be set forth in part in the
description which follows, and in part will become apparent
to those skilled in the art upon examination of the following
and the accompanying drawings or may be learned by
production or operation of the examples. The novel features
of the present teachings may be realized and attained by
practice or use of various aspects of the methodologies,
instrumentalities and combinations set forth in the detailed
examples discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The methods, systems and/or programming described
herein are further described in terms of exemplary embodi-
ments. These exemplary embodiments are described in
detail with reference to the drawings. These embodiments
are non-limiting exemplary embodiments, in which like
reference numerals represent similar structures throughout
the several views of the drawings, and wherein:

FIG. 1 (Prior Art) shows some essential modules in
autonomous driving;
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4

FIG. 2 illustrates exemplary types of planning in autono-
mous driving;

FIG. 3 illustrates commonly known types of vehicle
control;

FIG. 4A depicts an autonomous driving vehicle with a
planning module and a vehicle control module, according to
an embodiment of the present teaching;

FIG. 4B illustrates exemplary types of real time data,
according to an embodiment of the present teaching;

FIG. 5 depicts an exemplary high level system diagram of
a planning module, according to an embodiment of the
present teaching;

FIG. 6A illustrates exemplary ways to realizing a safe-
aware capability model, according to an embodiment of the
present teaching;

FIG. 6B illustrates an exemplary construct of a self-aware
capability model with parameters, according to an embodi-
ment of the present teaching;

FIG. 6C illustrates exemplary types of intrinsic vehicle
capability parameters, according to an embodiment of the
present teaching;

FIG. 6D illustrates exemplary types of extrinsic capability
parameters, according to an embodiment of the present
teaching;

FIG. 7 depicts an exemplary high level system diagram of
a mechanism for generating self-aware capability param-
eters to be considered for planning, according to an embodi-
ment of the present teaching;

FIG. 8 depicts an exemplary high level system diagram of
a self-aware capability parameter generator, according to an
embodiment of the present teaching;

FIG. 9 is a flowchart of an exemplary process for gener-
ating self-aware capability parameters, according to an
embodiment of the present teaching;

FIG. 10 depicts an exemplary high level system diagram
of a route planning module, according to an embodiment of
the present teaching;

FIG. 11 is a flowchart of an exemplary process for route
planning, according to an embodiment of the present teach-
mg;

FIG. 12 depicts an exemplary high level system diagram
of a global route planner, according to an embodiment of the
present teaching;

FIG. 13 is a flowchart of an exemplary process for a
global route planner, according to an embodiment of the
present teaching;

FIG. 14A depicts an exemplary high level system diagram
of' a motion planning module, according to an embodiment
of the present teaching;

FIG. 14B illustrates exemplary types of passenger mod-
els, according to an embodiment of the present teaching;

FIG. 14C illustrates exemplary types of user reactions to
be observed for motion planning, according to an embodi-
ment of the present teaching;

FIG. 15 depicts an exemplary high level system diagram
of a passenger observation analyzer, according to an
embodiment of the present teaching;

FIG. 16 is a flowchart of an exemplary process of a
passenger observation analyzer, according to an embodi-
ment of the present teaching;

FIG. 17 is a flowchart of an exemplary process for a
motion planning module, according to an embodiment of the
present teaching;

FIG. 18 depicts an exemplary high level system diagram
of a model training mechanism for generating different
models for motion planning, according to an embodiment of
the present teaching;
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FIG. 19 illustrates different types of reactions to be
observed and their roles in model training, according to an
embodiment of the present teaching;

FIG. 20A illustrates exemplary types of lane related
planning, according to an embodiment of the present teach-
mg;

FIG. 20B illustrates exemplary types of behavior related
to lane following, according to an embodiment of the present
teaching;

FIG. 20C illustrates exemplary types of behavior related
to lane changing, according to an embodiment of the present
teaching;

FIG. 21 depicts an exemplary high level system diagram
of a lane planning module, according to an embodiment of
the present teaching;

FIG. 22 is a flowchart of an exemplary process for a lane
planning module, according to an embodiment of the present
teaching;

FIG. 23A illustrates the traditional approach to generate
vehicle control signals based on a vehicle kinematic model;

FIG. 23B depicts a high level system diagram of a vehicle
control module that enables human-like vehicle control,
according to an embodiment of the present teaching;

FIG. 23C depicts a high level system diagram of a vehicle
control module that enables personalized human-like
vehicle control, according to an embodiment of the present
teaching;

FIG. 24 depicts an exemplary high level system diagram
of a human-like vehicle control unit, according to an
embodiment of the present teaching;

FIG. 25 is a flow chart of an exemplary process of a
human-like vehicle control unit, according to an embodi-
ment of the present teaching;

FIG. 26 depicts an exemplary high level system diagram
of' a human-like vehicle control model generator, according
to an embodiment of the present teaching;

FIG. 27 is a flowchart of an exemplary process of a
human-like vehicle control model generator, according to an
embodiment of the present teaching;

FIG. 28 depicts an exemplary high level system diagram
of a human-like vehicle control signal generator, according
to an embodiment of the present teaching;

FIG. 29 is a flowchart of an exemplary process of a
human-like vehicle control signal generator, according to an
embodiment of the present teaching;

FIG. 30 depicts the architecture of a mobile device which
can be used to implement a specialized system incorporating
the present teaching; and

FIG. 31 depicts the architecture of a computer which can
be used to implement a specialized system incorporating the
present teaching.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide
a thorough understanding of the relevant teachings. How-
ever, it should be apparent to those skilled in the art that the
present teachings may be practiced without such details. In
other instances, well known methods, procedures, compo-
nents, and/or circuitry have been described at a relatively
high-level, without detail, in order to avoid unnecessarily
obscuring aspects of the present teachings.

The present disclosure generally relates to systems, meth-
ods, medium, and other implementations for planning and
control of route/vehicle behaviors in a self-capability aware,
human-like, and personalized manner that is adaptive to real
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time situations. FIG. 4A shows an autonomous vehicle with
a vehicle planning/control mechanism 410, according to an
embodiment of the present teaching. The autonomous
vehicle planning/control mechanism 410 includes a plan-
ning module 440 and a vehicle control module 450. Both
modules take various types of information as input in order
to achieve operations that are self-capability aware, human-
like, personalized and adaptive to real time situations. For
example, as shown, both the planning module 440 and the
vehicle control module 450 receive historical manual driv-
ing data 430 in order to learn human like ways to handle the
vehicle in different situations. These modules also receive
real time data 480 in order to be aware of the dynamic
situations surround the vehicle in order to adapt the opera-
tions accordingly. Furthermore, the planning module 440
accesses a self-aware capability model 490 which charac-
terizes what limits the operational ability of the vehicle
given the situation the vehicle is currently in.

Real time data 480 may include various types of infor-
mation useful or relevant for planning and control of the
vehicle. FIG. 4B illustrates exemplary types of real time
data, according to an embodiment of the present invention.
For example, exemplary real time data may include vehicle
related data, time related data, passenger related data,
weather related data, . . . , and data related to the nearby
roads. Vehicle related data may include, e.g., the motion
state, position, or conditions of the vehicle at the time. The
motion state of a vehicle may involve, e.g., its current speed
and driving direction. The real time position information
may include, e.g., the current latitude, longitude, and altitude
of the vehicle. The real time conditions of the vehicle may
include the functional state of the vehicle such as whether
the vehicle is currently in a full or partial functional state or
specific parameters under which different components of the
vehicle are operating, etc.

Real time data related to time may generally include
current date, time, or month. Passenger related data may
include various characteristics related to the passenger of the
vehicle such as passenger reaction cues, which may include
visual, acoustic, or behavior cues observed from the pas-
senger, or conditions of the passenger such as mental state,
physical state, or functional state of the passenger. The
conditions of the passenger may be inferred based on the
cues observed from the passenger reaction cues. Weather
related data may include the weather of the locale where the
vehicle is currently situated. The road related data may
include information about the physical condition of the
nearby road(s), e.g., wetness, steepness, or curviness of the
road, or the local traffic condition such as congestion along
the road.

FIG. 5 depicts an exemplary high level system diagram of
the planning module 440, according to an embodiment of the
present teaching. In this exemplary embodiment, the plan-
ning includes, but not limited to, route planning, motion
planning, and the planning of lane related behavior, includ-
ing lane following, lane changing, etc. Accordingly, in this
illustrated embodiment, the planning module 440 comprises
a route planning module 550, a motion planning module
560, and a lane planning module 570. Each of the modules
aims at operating in a self-capability aware, human-like, and
personalized manner. Each of the modules 550, 560, and 570
takes, in addition to the surrounding information 420,
recorded human driving data 430, real time data 480, and the
self-aware capability model 490 as inputs and generates
their respective outputs to be used by the vehicle control
module 450 to convert into the vehicle control signals 470
to control the vehicle. For example, the route planning
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module 550 generates the planned route information 520 as
its output, the motion planning module 560 generates
planned motion 530 as its output, and the lane planning
module 570 generates planned lane control information 540
as its output.

Each of the planning modules may be triggered via some
triggering signal. For instance, the route planning module
550 may be activated via a route planning trigger signal; the
motion planning module 560 may be activated upon receiv-
ing a motion planning trigger signal; while the lane planning
module 570 may start to operate when a lane planning
trigger signal is received. Such a trigger signal may be
manually provided (by, e.g., a driver or a passenger) or
automatically generated based on, e.g., certain configuration
or certain event. A driver may manually activate the route
planning module 550 or any other planning module for the
route/motion/lane planning, much like what people do to
manually start, e.g., cruise control in a car.

The planning activities may also be activated by a certain
configuration or an event. For example, the vehicle may be
configured to activate route planning whenever the vehicle
accepts an input indicating the next destination. This may be
regardless what the current location of the vehicle is. In
some embodiments, the planning modules may be always
triggered on whenever the vehicle is on and depending on
the situation, they may become engaged in different plan-
ning activities as needed. In different situations, they may
also interact with each other in a manner called for by the
situation. For example, the lane planning module 570 may
determine to change lane in certain circumstance. Such a
planned lane control is output by the lane planning module
570 and may be fed to the motion planning module 560 so
that a specific path trajectory (planned motion) appropriate
for carrying out the planned lane changing may be further
planned by the motion planning module 560.

Output of a planning module may be fed into another
within the planning module 440 for either further planning
or for providing an input for the future planning of another.
For example, the output of the route planning module 550
(planned route 520) may be fed to the motion planning
module 560 so that the route information may influence how
the vehicle motion is planned. As discussed above, the
output (planned lane control 540) of the lane planning
module 570 may be fed to the motion planning module 560
so that the lane control behavior planned may be realized via
planned motion control. Conversely, the output of the
motion planning module 560 (the planned motion 530) may
also be fed to the lane planning module 570 to influence the
planning of the lane control behavior. For instance, in
personalized motion planning, the motion planning module
560 may determine that the motion of the vehicle needs to
be gentle due to the observation that the passenger of the
vehicle prefers smooth motion. Such a determination is part
of the motion planning and may be to be sent to the lane
planning module 570 so that the lane control behavior of the
vehicle may be carried out in a way that ensures smooth
motion, e.g., change lane as little as possible.

To ensure that the vehicle behavior is planned and con-
trolled in a self-capability aware manner, the route planning
module 550, the motion planning module 560, and the lane
planning module 570 also access the self-aware capability
model 490 and use it to determine the planning strategy in
a manner that takes into account of what the vehicle is
actually capable of in the current scenario. FIG. 6A illus-
trates exemplary ways that the self-aware capability model
490 is realized, according to an embodiment of the present
teaching. As illustrated, the self-aware capability model 490
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may be constructed as a probabilistic model, a parameterized
model, or a descriptive model. Such a model may be trained
based on, e.g., learning. The model may include a variety of
parameters to be used to characterize factors that may
influence or have an impact on the actual ability of the
vehicle. The model may be implemented as a probabilistic
model with parameters being estimated probabilistically.
The model may also be implemented as a parameterized
model with explicit model attributes applicable to different
real world conditions. The model 490 may also be provided
as a descriptive model with enumerated conditions with
values instantiated based on real time scenarios.

The self-aware capability model 490 in any situation may
include various parameters, each of which is associated with
some factors that may impact the actual ability of the vehicle
so that the vehicle planning (route, motion, or lane) has to
consider. In the following disclosure, self-aware capability
model and self-aware capability parameters will be used
interchangeably. FIG. 6B illustrates an exemplary construct
of the self-aware capability model or parameters 510,
according to an embodiment of the present teaching. As
illustrated, self-aware capability parameters 510 may
include intrinsic capability parameters and extrinsic capa-
bility parameters. Intrinsic vehicle capability parameters
may refer to parameters associated with the vehicle itself
which may impact what the vehicle is capable of in opera-
tion and such parameters may be determined based on either
how the vehicle is manufactured or how the vehicle is at the
time. Extrinsic capability parameters may refer to the param-
eters or characteristics of the surrounding that are extrinsic
to the vehicle but nevertheless may impact the way the
vehicle can be operated.

FIG. 6C illustrates exemplary types of intrinsic vehicle
capability parameters, according to an embodiment of the
present teaching. As illustrated, intrinsic vehicle capability
parameters may include, but not limited to, characteristics of
the vehicle in terms of, e.g., its engine, its safety measures,
and its tires, etc. For instance, in terms of its engine, the
intrinsic capability parameters may specify the maximum
speed the vehicle is capable of, the control that can be
exercised on the engine, including cruise control or any
restrictions on manual control of the engine. In terms of
safety measures, the intrinsic capability parameters may
include information on what sensors the vehicle is equipped
with, specific parameters related to breaks, or information
about the seats of the vehicle. For example, some vehicles
may have seats that are backed by metal support (stronger)
and some with only plastic support. Some seats may have
mechanism which allows automatic control to have vibra-
tions and some may not. In terms of other components of the
vehicle, the intrinsic capability parameters may also specify
the type of the tires of the vehicle (which may have a bearing
on what operation can be done) and whether the vehicle
currently has snow tires installed or equipped with anti-skip
measures. Such intrinsic vehicle capability parameters may
be used to assess what types of routes and motions may be
possible and which types of vehicle behaviors may be
achievable. Thus, making such intrinsic capability param-
eters available to the planning modules allows the planning
modules to plan appropriately without exceeding what the
vehicle is actually capable of.

FIG. 6D illustrates exemplary types of extrinsic capability
parameters, according to an embodiment of the present
teaching. As discussed above, extrinsic capability param-
eters specify information that are external to the vehicle but
nevertheless may impact the ability of planning and such
extrinsic capability parameters are used to determine appro-
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priate planning given the conditions external to the vehicle.
The ultimate output from the planning modules may be
determined within the confine of both intrinsic and extrinsic
capability parameters. As extrinsic capability parameters
may include parameters describing the conditions or situa-
tions the vehicle is in or may encounter, they likely will
impact what should be planned. For example, the surround-
ing situations related to the road(s), either close to the
vehicle or even relatively remote from the vehicle. The road
condition related parameters may indicate how crowded the
road is (so that the driving speed cannot be planned to be
fast), whether there are speed limits on the road (regulated
minimum and maximum speeds as well as the actual per-
missible speed due to traffic), whether there is any accident
along the road, or the surface condition of the road (so that
the motion cannot be too swift), or whether the surface of the
road presents certain conditions that will impede the ability
of the vehicle in its planning.

There are other conditions external to the vehicle that may
affect various planning activities. This includes the light or
atmosphere related conditions as well as the surrounding of
the vehicle. For instance, if the vehicle is positioned in such
a way that there is a sun glare so that sensors may not work
well, this will impact the planning decisions. If the vehicle
is in an area with a heavy fog condition, such information is
also important to the planning module. If there is a high level
of precipitation, such information may also be taken into
account by the planning modules. The surrounding traffic
may also be important in terms of planning. For instance,
extrinsic parameters may provide information related to
nearby vehicles or objects so that the planning modules may
consider such information in their respective planning. The
extrinsic parameters may include information about such
nearby vehicles/objects, e.g., the nearby vehicle is a big
truck or a bicycle, which may also impact how the planning
decision is made. In addition, events occur along the road the
vehicle is on may also impact the planning. For instance,
whether the vehicle is currently on a road that is in a school
zone or whether there is a construction going on along the
road the vehicle is currently on may also be important
information to the planning modules for obvious reasons.

The extrinsic capability parameters may be acquired and
updated continuously in time to support the planning mod-
ules to adapt their decisions based on external situations in
real time. In some situations, the extrinsic capability param-
eters may also be predicted. For example, if the vehicle is
driving on a road to the west in the afternoon, it may be
predicted that there will be sun glare. Although such pre-
dicted extrinsic capability parameter may not be the real
time information, it nevertheless will assist the planning
module (e.g., the route planning module) to make an appro-
priate decision. For instance, if the intended destination for
a vehicle is in the north west direction and there are roads
available at the time to both the west and the north, knowing
that there will be sun glare if heading to the west in late
afternoon, the route planning module 550 may accordingly
decide to presently take the road heading to the north first
and later take a road to head to the west after sun is down
to avoid sun glare (safer). Such predicted extrinsic capability
parameters may be determined based on other information
such as the current location of the vehicle and the intended
destination of the vehicle.

With capability parameters (including both intrinsic and
extrinsic), the vehicle becomes self-aware of both intrinsic
and extrinsic capability related limitations, which may be
crucial in terms of planning. FIG. 7 depicts an exemplary
high level system diagram for a mechanism 700 for gener-
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ating self-aware capability parameters, according to an
embodiment of the present teaching. In this illustrated
embodiment, the mechanism 700 comprises a locale context
determining unit 730 and a self-aware capability parameter
generator 740. The locale context determining unit 730 is to
gather information locale to where the vehicle is and/or will
be (i.e., both where the vehicle is presently and where the
vehicle will be on its way to the destination) based on, e.g.,
information about the current location of the vehicle and/or
the destination the vehicle is heading to. The self-aware
capability parameter generator 740 is to generate both
intrinsic and extrinsic capability parameters, e.g., on a
continuous basis, based on information related to the vehicle
and the locale context information determined based on,
e.g., the current and future location of the vehicle.

To facilitate the self-aware capability parameter generator
740 to generate extrinsic capability parameters, the locale
context determining unit 730 may retrieve information
stored in a map configuration 750 and a road context
configuration 760 based on the current location 720 and the
destination information 710. The locale context information
related to the roads may include the surrounding or contex-
tual information of the road the vehicle is currently on and/or
the roads that the vehicle will be on subsequently. For
example, the map configuration 750 may provide informa-
tion about the roads from the current location to the intended
destination, while the road context configuration 760 may
provide some known or static information about the char-
acteristics associated with roads, such as altitude, steepness,
curviness of each road, etc. Such gathered static information
about the roads may then be used by the self-aware capa-
bility parameter generator 740.

The road conditions may change over time. For example,
roads may become icy or slippery due to changes in weather
conditions. Such dynamically changing context information
about the roads may be acquired separately by, e.g., the
self-aware capability parameter generator 740 on a continu-
ous basis and used in generating extrinsic capability param-
eters that are reflective of the real time situations. As will be
discussed below in reference to FIG. 8 about the self-aware
capability parameter generator 740, both the current location
and the source-destination information may also be sent to
the self-aware capability parameter generator 740 in order
for it to gather real time information about road conditions
to determine the extrinsic capability parameters.

To generate intrinsic vehicle capability information, infor-
mation related to the vehicle may be accessed from a vehicle
information storage 750. The vehicle information storage
750 may store vehicle parameters configured when the
vehicle was manufactured such as whether the vehicle is
equipped with cruise control or certain types of sensors. The
storage 750 may also subsequently update information
related to the parameters intrinsic to the vehicle. Such
subsequent update may be generated due to, e.g., vehicle
maintenance or repair or even update observed in real time.
In discussion below in reference to FIG. 8, the self-aware
capability parameter generator 740 includes also the mecha-
nism to collect continuously any dynamic update of the
vehicle related parameters consistent with the actual intrin-
sic capability of the vehicle.

FIG. 8 depicts an exemplary high level system diagram of
the self-aware capability parameter generator 740, according
to an embodiment of the present teaching. In this illustrated
embodiment, the self-aware capability parameter generator
740 comprises a locale context information processor 810, a
situation parameter determiner 820, a self-aware capability
parameter updater 830, and various updaters that continu-
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ously and dynamically gather information of different
aspects related to decision making of the vehicle. Such
dynamic information updaters include, e.g., vehicle capa-
bility parameter updater 860-a, weather sensitive parameter
updater 860-b, traffic sensitive parameter updater 860-c,
orientation sensitive parameter updater 860-d, road sensitive
parameter updater 860-¢, . . . , and time sensitive parameter
updater 860-f-

In some embodiments of the operation, upon receiving the
locale context information from the locale context determin-
ing unit 730, the locale context information processor 810
processes the received information and, e.g., extracts infor-
mation related to the current route the vehicle is on and
sends such information to the self-aware capability param-
eter updater 830. Such information related to the current
route may include steepness or curviness of the route or
other types of static information such as the altitude and
orientation of the route. The situation parameter determiner
820 receives the current location 720 and, e.g., separates
location and time information and sends the information to
the self-aware capability parameter identifier 830 so that it
may use that information to identify capability parameters
specific to the location and the precise time.

With the information about the location of the vehicle and
the current time, the self-aware capability parameter updater
830 may access intrinsic capability models 840 and/or
extrinsic capability models 850 to retrieve capability related
parameter values specific to the current location and time. In
some embodiments, the intrinsic capability models 840 may
be configured to specity types of parameters relevant to the
intrinsic capabilities of the vehicle and the current values
thereof. Similarly, the extrinsic capability models 850 may
be configured to specify types of parameters that have an
impact on the ability of the vehicle to operate and their
current values.

In operation, in order to keep the values of the parameters
current, the intrinsic and extrinsic capability models (840
and 850) may regularly trigger the updaters (860-a, . . .,
860-f) to gather real time information and update the values
of the corresponding parameters based on such gathered real
time information. For example, the intrinsic capability mod-
els 840 may be configured to have a mechanism to activate
the vehicle capability parameter updater 860-a to gather
updated information related to the intrinsic capabilities of
the vehicle. Such a mechanism may specify different modes
of triggering. For instance, it may be on a regular schedule,
e.g., daily or hourly. It may also specify to be triggered by
some external event such as a signal received from a
maintenance shop or a sensor in the vehicle that senses that
some functional state of a component in the vehicle has been
changed. In this case, the vehicle capability parameter
updater 860-a may accept real time vehicle information
from the sensor(s) and update the values/states of the
relevant capability parameter in the intrinsic capability mod-
els to reflect that real time status of the vehicle. For instance,
if during the operation of the vehicle, the headlight or a
break may become non-functional. Such information sensed
in real time may be gathered by the vehicle capability
parameter updater 860-a and used to update the information
stored in the intrinsic capability parameter storage 840. Such
updated information relates to the vehicle may then be used
by the self-aware capability parameters generator 740 to
generate intrinsic capability parameters.

Similarly, the extrinsic capability models 850 may be
configured to specify the update mechanism(s) for updating
different types of extrinsic capability parameters. The update
mechanism may specify regularly scheduled update or
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update to be triggered by some events. Different types of
extrinsic capability parameters may be configured to be
updated based on different triggering mechanisms. For
example, for weather related extrinsic capability parameters
or extrinsic capability parameters that may be keyed on
weather, e.g., visibility in the vicinity of the vehicle, the
update may be made regularly, e.g., every few minutes.
Similarly, traffic sensitive parameters, e.g., the actual per-
missible speed which is usually direct result of the traffic
condition, may also be updated regularly. Different types of
parameters, although all regularly updated, may have dif-
ferent update schedule, which may range from every few
seconds to every few minutes or every few hours.

On the other hand, some extrinsic capability related
parameters may be made upon the occurrence of some
events. For instance, for an orientation sensitive parameter,
e.g., whether sun glare exists, the update may be triggered
when the vehicle is heading in certain directions. If the
direction of the vehicle is heading changes from north to
north-west at some afternoon time, this may trigger the
orientation sensitive parameter updater 860-4 to gather
information related to sun glare and update the situation with
regard to sun glare. In some situations, the update may
indicate that there is no sub glare, e.g., when it is a cloudy
day. In some situations, the update may indicate that there is
sun glare. In either situation, such orientation sensitive
information is then used to update the value of the corre-
sponding extrinsic capability parameter stored in the extrin-
sic capability parameter storage 850. Similarly, update of
time sensitive parameters, such as visibility of the vehicle
due to time of the day, may be triggered based on detected
location, time zone of the location, and the specific time of
the day at the moment. In some embodiments, the update of
some of the capability parameters may also be triggered by
event related to the detected updates of other capability
parameter values. For example, the update of road sensitive
parameters such as slippery road condition may be triggered
when the update for the weather condition indicates that it
started to rain or snow.

In the illustrated embodiments, the vehicle capability
parameter updater 860-a receives the static vehicle infor-
mation from storage 750 and dynamic vehicle information
update from real time vehicle information feed which may
be from multiple sources. Examples of such sources include
dealers, vehicle maintenance places, sensors on the vehicle
reporting the status change of components, or other sources.
The weather sensitive parameter updater 860-5 may receive
both dynamic weather update and the updates of other
weather sensitive capability parameters, e.g., precipitation,
visibility, fog, or any other parameters that relate to weather
and have the potential to impact the operation of the vehicle.
Weather related information may be from multiple data
sources that feed real time data.

The traffic sensitive parameter updater 860-c may receive
both dynamic traffic reports and other information relating to
the traffic that may influence the operation of the vehicle.
Examples include the extent of the traffic jam (which may be
used to determine whether the route of the vehicle needs to
be re-planned) or the time of the accident that had caused the
traffic (to estimate how long the delay will continue in order
to determine whether to re-do the route planning). Traffic or
traffic related information may be received from one or more
sources for real time data feed. The orientation sensitive
parameter updater 860-d may be configured to gather infor-
mation along the road in the direction of the vehicle. Such
orientation sensitive information may include sun glare in
certain directions (e.g., east or west) or any potential situ-
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ations in the direction of the road the vehicle is on (e.g.,
landslide situation ahead of the road). Similarly, the road
sensitive parameter updater 860-¢ may, once triggered,
gather information about various roads or road conditions
with respect to the location of the vehicle, from one or more
real time information feed sources. Such information may be
related to the roads (e.g., open, close, detoured, school zone,
etc.) or conditions thereof (e.g., slippery, icy, flooded, con-
struction, etc.). The time sensitive parameter updater 860-f
may be configured to collect from data source(s) real time
data that depend on time. For example, the visibility of the
road may depend on the time of day at the zone the vehicle
is in.

The collected real time data may then be used to update
the intrinsic capability models 840 and/or the extrinsic
capability models 850. Such updated data may be time
stamped. The self-aware capability parameter updater 830
may then access both the intrinsic and extrinsic capability
models 840 and 850 to determine relevant capability param-
eters and the updated values thereof. The retrieved intrinsic/
extrinsic capability parameters may then be output so that
they can be used by various planning modules as shown in
FIG. 5. Specifically such generated self-aware capability
parameters 510 are used by the route planning module 550
for route planning, as will be discussed with reference to
FIGS. 10-13. The self-aware capability parameters are also
used by the motion planning module 560 for personalized
motion planning, which will be disclosed in detail with
reference to FIGS. 14-19. The self-aware capability param-
eters are also used by the lane planning module 570 for lane
control, which will be detailed with reference to FIGS.
20-22.

FIG. 9 is a flowchart of an exemplary process of the
self-aware capability parameter generator 740, according to
an embodiment of the present teaching. First, the locale
context information is received at 910 and location and time
information are extracted at 920 and used at 930 by different
updaters to obtain information feeds from different sources
related to various aspects of intrinsic and extrinsic capabili-
ties. Such acquired information is then used by different
updaters at 940 to update the intrinsic capability parameters
840 and extrinsic capability parameters 850. Based on the
current location, time, and the received locale contextual
information, the self-aware capability parameter updater 830
then identifies various intrinsic and extrinsic capability
parameters 510 relevant to the vehicle at the present time to
update, at 940, the intrinsic/extrinsic capability parameters
and generates, at 950, the updated capability parameters.
Such updated intrinsic/extrinsic capability parameters 510
are then output at 960.

Such dynamically gathered self-aware capability param-
eters are to be used in various vehicle behavior planning
operations, including route planning, motion planning, and
lane related vehicle behavior planning. For example, in
human driving, choosing a route to a destination is often
done with consideration of factors captured by the self-
aware capability parameters. For example, a human driver
may choose a route to a desired destination based on, e.g.,
what the vehicle is equipped with or capable of (intrinsic
capability parameters). If the vehicle is in such a condition
that it cannot handle steep road well, then such road needs
to be avoided. In addition, a human driver may also consider
other factors such as weather of the day, conditions of the
roads considered, events known or scheduled at certain time
of day (extrinsic capability parameters). For instance, it one
road points to the west and the sun will be setting at that
time, perhaps there will be too much glare so that it is better
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to take another alternative road. For both safety and reli-
ability, autonomous vehicles ought to also consider such
intrinsic and extrinsic capabilities with respect to route
choices during route planning.

Traditional approaches to route planning often adopt
some cost function so that the cost of a route selected is
minimized. For instance, conventional route planning con-
siders, e.g., optimization of distance traveled, minimization
of time required to arrive the destination, or minimize the
fuel used to get to the destination. In some instances,
conventional approaches may also consider traffic condi-
tions in optimizing the cost, e.g., high traffic route may
decrease the speed leading to increased time and fuel to get
to the destination. Such optimization functions often assume
that all vehicles can handle all routes in the same manner and
all routes can be handled equally well. Such assumptions are
often not true so that when autonomous vehicles apply such
planning schemes, they often find unable to proceed or even
become unsafe in some situations. The present teaching aims
to achieve safe, realistic, and reliable route planning that is
adaptive to the changing intrinsic and extrinsic capability
related parameters.

As shown in FIG. 5, the self-aware capability parameters
510 are considered by the planning module 450 in achieving
different planning tasks, including the route planning mod-
ule 550, the motion planning module 560, and the lane
planning module 570. Below, in reference to FIGS. 10-13,
details about the route planning module 550 are provided.
FIG. 10 depicts an exemplary high level system diagram of
the route planning module 550, according to an embodiment
of the present teaching. The purpose of the route planning
module 550 is to plan a route based on desired destination
in a self-aware manner in terms of both intrinsic and
extrinsic capabilities. In contrast, conventional route plan-
ning technologies consider mainly criteria such as shortest
distance, shortest time, most use of highways/local ways,
etc. without taking into account the dynamic intrinsic capa-
bility parameters and the real time extrinsic capability
parameters.

In this illustrated embodiment, the route planning module
550 comprises a route selection preference determiner 1030
and a global route planner 1020. The route selection pref-
erence determiner 1030 is to determine the preferences to be
considered in selecting a route. The global route planner
1020 is to select an appropriate route based on a variety of
information, including the self-aware capability parameters
150. In some embodiments, the route planning activities
may be triggered based on the route planning trigger signal
as shown. Upon being activated, the global route planner
1020 may gather various types of dynamic information
relevant to the present route planning operation. For
example, the global route planner 1020 may rely on infor-
mation related to the source/current location and the desti-
nation desired. The planning is performed with respect to the
source/current location and the destination. The destination
information may be determined in different ways. For
example, it may optionally be received from a driver/
passenger via an interface unit 1010.

The global route planner 1020 may also take real time
data 480 as input and plans a route accordingly. As discussed
with respect to FIG. 4B, real-time data include information
related to real time vehicle related information (position),
information about passenger observed in the vehicle, . . .,
and road characteristics. Such real-time data provide sur-
rounding information needed for the route planning. The
global route planner 1020 also receives the self-aware
capability parameters 510 that inform the planner what is
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possible given the dynamic intrinsic and extrinsic situations
at the time of the planning. For instance, intrinsic capability
parameters may indicate that the vehicle is currently not able
to run fast due to some mechanical problems so that the
global route planner 1020 may take that into account to, e.g.,
plan a route that involves mainly local roads and may
possibly pass some car repair shops. Similarly, extrinsic
capability parameters may indicate that in the north direction
of the current location of the vehicle, the sun glare is quite
severe so that the global route planner may base that
information to avoid a nearby route that is in the north
direction before the sun is set. The real-time data 480 and the
self-aware capability parameters 510 provide information to
the global route planner 1020 to enable it to plan a route that
is appropriate given, e.g., the present time, the present
location of the vehicle, the present weather, the present
passenger’s situation, and present road conditions.

The global route planner 1020 may also consider prefer-
ence(s) to be applied in route planning. Such preferences
may be specified by a driver/passenger via the user interface
unit 1010 (which may be forwarded to the global route
planner 1020) or may be obtained via other means (see
disclosure below with reference to FIG. 12). In considering
the preferences to be applied, information stored in route
selection preference configuration 1050 may also be
accessed and considered. Such route selection preference
configuration may specify some general preference in route
selection in different scenarios, e.g., avoid steep/curvy roads
in raining/snow scenarios, avoid small streets at night, avoid
roads with very few gas stations, etc. The global route
planner 1020 may forward relevant information received
from real-time data 480 and self-aware capability param-
eters 510 to the route selection preference determiner 1030,
which is in turn used by the route selection determiner 1030
to retrieve certain route selection preference configuration
from 1050. For example, if it is currently snowing (from
real-time data 480) and the vehicle has no snow tire (from
the intrinsic capability parameter 510), such dynamic infor-
mation may be forwarded from the global route planner
1020 to the route selection preference determiner 1030 so
that selection preference configuration related to such
dynamic scenarios may be retrieved from the route selection
preference configuration 1050 (e.g., avoid steep/curvy road)
and sends back to the global route planner 1020 so that it can
be relied on in selecting an appropriate route.

To determine an appropriate route, in addition to knowing
the selection preferences, the global route planner 1020 may
also need to know additional information about the roads,
such as what routes available from the current location of the
vehicle to the intended destination. In addition, for each
route available, the map/road configuration 1060 may also
store characteristic information about each of the available
roads/routes. Such characteristic information of the roads/
routes may include, but not limited to, geometric character-
istics such as nature of the roads/routes (highway or not),
dimension of the roads/routes, steepness/curviness, condi-
tion of the roads/routes, etc. During planning, the global
route planner 1020 may first determine the roads/routes
available between the current location of the vehicle to the
desired destination. To select an appropriate route to the
destination, for such available roads/routes, their character-
istic information may also be accessed by the global route
planner 1020 so that selections may be made based on such
characteristic information.

With the information about the available roads/routes
available as well as the characteristic information about
those available roads/routes, the global route planner 1020
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may then select an appropriate route to the destination by
matching the route selection preferences, determined by the
route selection preference determiner 1030, with the char-
acteristic information of the available roads/routes. Details
about the global route planner 1020 are provided with
reference to FIGS. 12-13.

As discussed previously, the global route planner 1020
selects a planned route based on dynamic information from
different sources, including real-time data 480 and self-
aware capability parameters 510. In addition to that, as the
vehicle may be on move or the destination may change over
time, the current location of the vehicle and the destination
may also change in time, just like the real-time data 480 and
the self-aware capability parameters 510. When such infor-
mation changes, it may impact the global route planned. For
example, when the current location changes, the real-time
data associated with the current location may also change,
e.g., from good weather associated with the previous spot to
the raining condition associated with the current location.
This may in turn lead to a change in terms of route selection
preferences and ultimately, the route selected. Thus, the
global route planner 1020 may interact with the route
selection preference determiner 1030 in a bi-directional
manner and dynamic manner. Whenever there is a change
that may warrant a re-determination of route selection
preferences, the global route planner 1020 may then activate
the route selection preference determiner 1030 to modify or
re-generate the preferences to be used by the global route
planner 1020 to determine an appropriate route given the
situation.

FIG. 11 is a flowchart of an exemplary process for the
route planning module 550, according to an embodiment of
the present teaching. Information about the destination of
the vehicle and optionally about the preferences is received
at 1110. Real-time data 480 as well as self-aware capability
parameters 510 are received by the global route planner
1020 at 1120 and various information related to the current
scenario or situation of the vehicle may then be identified, at
1130, from the received real-time data and the self-aware
capability parameters. Based on the relevant information
related to the current scenario, preferences specific to the
current scenario are determined, at 1140. To plan a route, the
global route planner 1020 accesses, at 1150, information
about available roads/routes with respect to the current
location and the desired destination as well as the charac-
teristic information of such available roads/routes. At 1160,
based on the specific preferences determined based on the
current scenario as well as the roads/routes information, the
global route planner 1020 selects a route appropriate for the
current situation.

FIG. 12 depicts an exemplary high level system diagram
of the global route planner 1020, according to an embodi-
ment of the present teaching. In this illustrated embodiment,
the global route planner 1020 comprises a self-aware capa-
bility parameter analyzer 1205, an intrinsic capability based
filter generator 1210, and a route selection engine 1230.
Optionally, the global route planner 1020 also comprises a
destination updater 1225 for dynamically determine and
update the current destination. In the illustrated embodi-
ment, the global route planner 1020 also optionally include
a mechanism for personalizing preferences of a driver/
passenger so that the route in selecting a route. The route
selection preference determiner 1030 is to determine the
preferences related to selecting a route based on the specific
situation the vehicle is currently in, which differs from
obtaining personalized preferences directed to a specific
driver/passenger.
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Tlustratively, the optional mechanism to determine per-
sonalized preferences comprises a passenger driving data
analyzer 1245, a preference personalization module 1250,
and a passenger preference determiner 1240. In operation,
the passenger driving data analyzer 1245 receives recorded
human driving data 430 as input and analyzes or learns from
such data to understand route preferences relevant to specific
drivers/passengers. For example, from the recorded human
driving data 430, it may be learned that a specific driver
prefers to drive on local roads instead of highway or
historically chose to use highways at nights even though it
involved much longer distance. It may also learn preferences
of all drivers associated with the vehicle. For instance,
multiple people (husband, wife, and a child of a household)
may be associated with the vehicle, i.e., anyone of these
people may operate the vehicle. The passenger driving data
analyzer 1245 may learn from the recorded human driving
data 430 various types of information associated with the
driving behavior of such drivers, which may enable the
preference personalization module 1250, upon receiving
such driving behavior information, to establish personal
preferences of each of such individuals.

Upon receiving the information related to each individual
driver from the passenger driving data analyzer 1245, the
preference personalization module 1250 may then generate
personalized preferences in terms of route choices. Such
route related preferences may reflect not only route choices
but also represent preferences of route choices in different
situations such as specific time frames of a day, seasons,
locations, etc. Such established preferences for each indi-
vidual driver may then be stored in storage 1265. At the time
of route planning, the passenger preference determiner 1240
receives the real-time data 480 and based on various types
of information in the real-time data 480 (e.g., month/day/
time, passenger information, locale weather, etc.), the pas-
senger preference determiner 1240 may access, from the
route selection preference storage 1265, relevant preferences
that can be applied in current route planning. For example,
if the real-time data indicate that the driver is a specific
person and the time is currently 7:45 pm in January, etc., the
passenger preference determiner 1240 may identify person-
alized route preferences in 1265 related to the current
specific driver which are associated with the specific time
frame and season of the year (e.g., a driver may prefer
driving on highway in winter season). The personalized
route selection preferences so identified may then be sent to
the route selection engine 1230 so that personalized prefer-
ences of the driver/passenger at the time of the route
planning can be considered in determining what route is to
be selected.

As shown in FIG. 12, the route selection engine 1230 may
also take the preferences estimated by the route selection
preference determiner 1030 as input and use that in its route
selection operation. In some embodiments, the route selec-
tion engine 1230 may rely on the preferences from 1030
without considering the personalized preferences of a driver,
i.e., it may rely on merely the preferences identified by the
route selection preference determiner 1030 in its route
selection.

In selecting route appropriate for the current situation, the
route selection engine 1230 may also receiving self-aware
capability parameters 510. In the illustrated embodiment, the
self-aware capability parameter analyzer 1205 separates
extrinsic capability parameters and intrinsic capability
parameters and sends the extrinsic capability parameters to
the route selection engine 1230 so that extrinsic conditions
associated with the current situation the vehicle is in can be
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considered in selecting a route. For example, the extrinsic
capability parameters may indicate that there is on-going
construction on Route 7, the route selection engine 1230
may consider that and avoid Route 7. However, if the
destination is currently set for a school on Route 7 and the
driver’s habit is to pick up children from the school each day
at the present time (e.g., 3:30 pm), the route selection engine
1230 may elect to choose Route 7, given all things consid-
ered.

Similarly, intrinsic capability parameters may also be
considered in selecting an appropriate route. In this illus-
trated embodiment, the intrinsic capability parameters are
fed to the intrinsic capability based filter generator 1210,
which may create different filters 1215 based on the intrinsic
capability parameters so that such filters may be utilized by
the route selection engine to filter out routes that are not
appropriate given the intrinsic capability parameters. For
example, if the intrinsic capability parameters indicate that
the vehicle has no snow tire, any routes that are steep and/or
curvy may not be appropriate on a snowy day.

The route selection engine 1230 selects a route based on
both the current location of the vehicle, tracked by a current
location updater 1235, and a destination, tracked by a
destination updater 1225. Depending on the situation,
changed current location and destination may trigger the
route selection engine 1230 to activate the route selection
preference determiner 1030 to re-evaluate the preferences in
route selection given the changed circumstance.

FIG. 13 is a flowchart of an exemplary process for the
global route planner 1020, according to an embodiment of
the present teaching. At 1310, self-aware capability param-
eters are received. Intrinsic capability parameters are used to
generate, at 1320, intrinsic capability based filter(s) so that
certain routes can be filtered out as inappropriate given the
intrinsic conditions of the vehicle. Extrinsic capability
parameters are extracted, at 1330, from the received self-
aware capability parameters. At the same time, real-time
data 480 are continuously received at 1340 and recorded
human driving data are received at 1350. Such data are then
used to determine, at 1360, personalized route selection
preferences relevant to the current driver, current situation,
and current time. At 1370, self-aware capability parameters
and/or the personalized preferences of the driver may then
be used to select a route appropriate given all factors
considered. At 1380, the selected route is output.

The route planning according to the present teaching
allows various types of information, such as real-time data
and self-aware capability parameters, to be taken into
account in route planning so that the planned routes are
adaptive with respect to the vehicle condition at the time (via
intrinsic capability parameters), the dynamic environment
the vehicle is in at the time (via real-time data as well as
extrinsic capability parameters), the passenger characteris-
tics determined based on, e.g., dynamically updated real-
time data (see FIG. 4B), as well as passenger personalized
preferences. Similarly, such information may also be utilized
in other types of planning operations so that the planned
vehicle activities are adapt to the real-time situation, per-
sonalized based on individual preferences, and allows the
vehicle to behave more human driver like. Below, more
details are provided, with respect to FIGS. 14-19 on per-
sonalized adaptive motion planning.

Human drivers control their vehicle motion in a manner
that is comfortable. In most situations, human drivers also
pay attention to the feedback or reaction of passengers who
ride with them in the vehicle and respond to the vehicle
motion. For example, some human drivers may prefer start
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and stop the vehicle smoothly. Some human drivers who
usually start and stop the vehicle fairly abruptly may adjust
their driving when they observe that passengers sitting in
their vehicle respond in a certain way. Such human behavior
may play an important role in autonomous vehicles. It is
commonly recognized that driving behavior changes from
person to person and how such behavior is to be adjusted in
the presence of others in the same vehicle may also differ
from person to person.

Traditionally, autonomous vehicles may adopt planning
models that are trained to capture the characteristics of
human driving behavior of the general population. Such
generalized models do not customize the planning approach
based on individual driver/passenger preferences or intents.
The present teaching aims to provide personalized motion
planning based on knowledge of the driver/passenger as well
as the dynamic observations of driver/passenger response to
vehicle motions.

FIG. 14A depicts an exemplary high level system diagram
of the motion planning module 560, according to an embodi-
ment of the present teaching. In this illustrated embodiment,
the motion planning module 560 aims at personalized,
human-like, and adaptive motion planning, i.e., motions of
the vehicle are planned in accordance with, e.g., general and
personal likings, which may include what is known to be the
preferences of a passenger and what is the reaction or
feedback of a of a passenger of the current motion of the
vehicle. The motion planning module 560 according to the
present teaching may comprise a generic motion planner
1450 and a passenger motion adapter 1460. The motion
planning module 560 may plan vehicle motion based on
various considerations, including real-time situations the
vehicle is in (e.g., on a curvy road, raining day, dim lighting,
etc.), vehicle conditions (via intrinsic capability parameters),
and personal preferences of the passenger in the vehicle
(known preferences or dynamically determined based on
driver feedback observed). Given those considerations,
vehicle motion may be planned based on motion planning
models, which may be invoked in a manner suitable for
different scenarios. Motion planning models may include
different models appropriate for the given situation in hand.

FIG. 14B illustrates exemplary types of motion planning
models, according to an embodiment of the present teaching.
In the illustrated embodiment, motion planning models may
include generic motion planning models (1450 in FIG. 14A),
sub-category models (1480 in FIG. 14A), or personalized
models (1430 in FIG. 14A). The generic motion planner
1450 may be preference based models or impact based
models (see FIG. 14B). A preference based model may be
provided specifying preferred vehicle motion in different
scenarios based on general knowledge about vehicle opera-
tion. For instance, when roads are slippery or icy, it is
preferred to plan motions that are slower without sharp
turns. An impact based model may specify which kind of
motion may cause what type of impact and such specifica-
tion may be used to guide motion planning to achieve or
avoid certain impact.

A sub-category model for motion planning may be, as
compared with the generic models, directed to a sub-cat-
egory of vehicles or a sub-category of drivers/passengers.
For example, a sub-category model may be directed to sports
cars and another sub-category model may be provided for
vans. In addition, a sub-category model may be directed to
teenager drivers and another sub-category model may be
directed to senior citizens. Each sub-category model is tuned
or specialized so that the motion planning for a matching
sub-category can be performed more accurately. According
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to the present teaching, motion planning models may also
include personalized models which may include individual
models, each of which may specify preferences of each
individual in terms of vehicle motions. For example, a
passenger’s individual preference model may specify that
the passenger prefers smooth vehicle motion and another
passenger’s individual preference model may specify some
different preferences. Such generic, sub-category and indi-
vidual models for motion planning may be derived based on
recorded human driving data so that the motion planned
based on such models are more human-like.

With reference back to FIG. 14A, in operation, to achieve
personalized, human-like, and adaptive motion planning, the
motion planning module 560 receives various types of
information and utilizes different motion planning models.
The received information includes planned route 520 from
the route planning module, surround information 420, real-
time data 480, and self-aware capability parameters 510.
Based on the real-time data 480 and the self-aware capabil-
ity parameters 510, the generic motion planner 1450 deter-
mines the situation the vehicle is in (e.g., raining, dark, etc.)
and accordingly invokes appropriate generic motion plan-
ning models in 1440 to retrieve general motion planning
information. In some embodiment, the generic motion plan-
ner 1450 may also determine relevant sub-category of the
vehicle and/or passenger so that associated sub-category
motion planning models may be retrieved from 1480 and
utilized for motion planning. The generic motion planning
models 1440 may specify general motion planning strate-
gies, e.g., if it is a snowy day or the vehicle is on a curvy
road, it is preferred to make the vehicle motion slower and
steady. Each sub-category model may be provided to specify
the generic motion planning strategies for the sub-category
(e.g., a type of cars such as sports car or a sub-group of
passengers such as senior citizens).

The motion planned by the generic motion planner 1450
(based on generic motion planning models and/or sub-
category motion planning models) may be further adjusted
or adapted according to personalized preferences. In the
illustrated embodiment, this is achieved by the passenger
motion adapter 1460. There may be different ways to adapt
the motion planned to meet personalized preferences. In
some embodiments, personalized preferences may be
accessed from individual passenger models 1430. If the
identity of the passenger is known, the associated individual
passenger model for the passenger may be retrieved from
1430 and the specified preferences in vehicle motion may be
used to determine how to achieve personalized motion
planning. For instance, an individual model for a particular
passenger may indicate that the passenger prefers a smooth
ride without taking risks.

Another way to achieve personalized motion planning is
adaptively adjusting motion planning based on dynamically
observed information. As discussed previously with refer-
ence to FIG. 4B, real-time data 480 includes information
related to passenger characteristics, which can be passenger
condition, . . ., and/or passenger reaction cues. Passenger
condition may refer to mental, physical, and functional state
of the passenger. Information to be used in personalized
motion planning may also include other types of data
collected related to the situation. A passenger observation
analyzer 1420 may collect various types of information and
extract relevant indications and then send such indications to
the passenger motion adapter 1460 so that such dynamic and
personalized information can be taken into account in
motion planning. Details about the passenger observation
analyzer 1420 are provided with reference to FIGS. 15-16.
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FIG. 14C illustrates exemplary types of observations
collected for consideration in motion planning, according to
an embodiment of the present teaching. Observations may
include explicit expression from, e.g., the passenger such as
voice or text input which may explicitly indicate what the
passenger desires. For instance, the passenger may shout
“faster!” or “I am going to be late!” or “I really get there on
time.” Such explicit expression detected may be relied on in
motion planning. The observations may also include
detected scenarios that may indicate something in terms of
motion planning. Scenario information may include event
involved (which may indicate the urgency of the passenger
is faced with), the current state of the passenger (such as age,
known health conditions, etc.), time of day which may imply
certain task the passenger has at that time (e.g., pick up
children from school) which requires certain safety level.
Observations may also include observed physical reactions
of the passenger which may be considered as relevant for
motion planning. For instance, sensors inside the vehicle
may capture any data that may indicate the emotion of the
passenger, the body language of the passenger, or the tone in
passenger’s voice, all of which may reflect the desire of the
passenger in response to the current vehicle motion. For
instance, the passenger may appear to be uneasy or even
show anxiety, which may indicate that the vehicle motion is
too rough for the passenger. A sharp tone in passenger’s
voice may indicate the same. Certain physical behavior may
also suggest certain reaction from the passenger to the
vehicle motion. For example, if the passenger is napping,
yawning, looking sleepy, or reading, it may indicate that the
passenger is comfortable with the vehicle motion. On the
other hand, if it is observed that the passenger keeps
checking watch, it may indicate that the passenger feels the
vehicle is moving too slow.

According to the present teaching, in addition to person-
alized motion planning (e.g., not only with respect to sub-
categories but also with respect to individuals), motion
planning may also be adaptive to the current situation
characterized by, e.g., self-aware capability parameters and
real-time situations such as weather, road conditions, etc.
The passenger motion adapter 1460 receives the extrinsic
capability parameters from 1410 and plans motion accord-
ingly. For example, if extrinsic capability parameters indi-
cate that there is sun glare or foggy, motion may be planned
accordingly (e.g., slow down).

FIG. 15 depicts an exemplary high level system diagram
of the passenger observation analyzer 1420, according to an
embodiment of the present teaching. In this illustrated
embodiment, the passenger observation analyzer 1420 is
provided for obtaining the dynamic preferences of the
passenger in terms of vehicle motion so that the motion
planning can be adapted to the personal likings. The
dynamic preferences of the passenger are derived based on
analysis of the passenger’s reaction cues to the current
vehicle motion, observed via different sensors. The exem-
plary passenger observation analyzer 1420 comprises a
sensor activator 1500, a plurality of in-situ sensors 1510, a
passenger detector 1520, a passenger feature detector 1540,
a visual-based reaction cue estimator 1580, an acoustic-
based reaction cue estimator 1590, a passenger expression
detector 1560, a passenger scenario detector 1570, and a
user reaction generator 1595.

The passenger observation analyzer 1420 is provided to
determine the reaction or feedback of the passenger to the
current vehicle motion to determine whether the vehicle
motion needs to be adjusted. For example, if passenger
reaction indicates that the passenger is not happy about the
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current vehicle motion, an adjustment may be made in
motion planning accordingly. The passenger reaction is to be
estimated based on different cues, including visual, acoustic,
text, or contextual scenarios.

In some embodiments, the sensor activator 1500 activates
the in-situ sensors 1510 to detect the passenger reaction. The
in-situ sensors 1510 comprise a plurality of sensors includ-
ing visual sensors, acoustic sensors, infrared sensors, . . . ,
or communication sensors and the like that enable the
detection of any expression of the passenger. For instance,
the visual sensors included in the in-situ sensors 1510 may
comprise a plurality of spatially distributed (within the
vehicle) camera devices that are capable of capturing, pro-
cessing and fusing images of a scene from a variety of
viewpoints into some form more useful individual images/
videos. For example, the visual sensors may capture a
gesture or facial expression of the passenger, which may be
used to estimate the reaction of the passenger. The in-situ
sensors may be selectively activated. For instance, at night,
in order to observe accurately the passenger’s reaction,
visual sensor may not work well and in this situation,
infrared sensors may be activated instead.

As depicted in FIG. 14C, various physical reactions may
be observed and used to analyze passenger’s reaction cues.
The passenger detector 1520 receives sensor data and
detects the passenger based on, passenger detection models
1530. The detection may be based on either visual or
acoustic information. Thus, the passenger detection models
1530 may include both visual and acoustic models associ-
ated with the passenger and can be either individually
invoked to detect the passenger based on a single modal data
or both invoked to detect the passenger based on both visual
and acoustic features. For instance, the passenger detection
models 1530 may include a face recognition model which
can be used to detect the passenger based on video or
pictorial data from one or more visual sensors. The passen-
ger detection models 1530 may also include a speaker based
passenger detection model by which the passenger may be
recognized based on his/her voice.

Upon the detection of the passenger, the sensor data may
be continuously fed to the passenger feature detector 1540 to
detect various passenger behavior features, which may
include both visual and acoustic. For instance, certain body
language may be detected that may reveal that the passenger
is doing certain things, such as sleeping (napping), reading,
yawning, or frequently checking his/her watch. Such
detected passenger features may also include acoustic fea-
tures. For instance, the passenger feature detector 1540 may
detect that the passenger is saying “slow down.” Visual and
acoustic cues may be simultaneously detected that reveal
consistent reaction cues. For example, the passenger may
constantly check the watch and say “faster!”

The passenger features may be detected based on visual
and acoustic feature detection models 1550. Such models
may guide the passenger feature detector 1540 in terms of
what feature to detect and provide, for each feature to be
detected, a corresponding model that can be used to detect
the feature. Those models may be personalized in the sense
that what is to be detected may depend on the passenger. For
instance, if the passenger is known to be mute, there is no
reason to detect acoustic features associated with the pas-
senger. Those feature detection models may be adaptive so
that once they are trained and deployed on the vehicle, they
may be configured to receive scheduled or dynamic update
so that the models are adaptive to the changing situations.

The detected passenger visual features are then sent to the
visual-based reaction cue estimator 1580, which may then
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estimate the passenger’s reaction cues based on such visual
cues. For example, if it is detected that the passenger is
checking on the watch, the visual based reaction estimator
1580 may the reaction cue may be that the passenger is not
happy with the speed of the vehicle and becomes impatient.
Such an estimated cue may also be derived based on, e.g., a
personalized visual feature model in 1550, which may be
used to determine whether such a behavior (checking watch)
is indicative of certain reaction cue associated with this
particular passenger (may or may not be depending on the
person).

Similarly, the detected passenger acoustic features are
sent to the acoustic based reaction cue estimator 1590, which
may then estimate the passenger’s reaction cue based on
such acoustic features. For example, if it is detected that the
passenger is snoring, the acoustic based reaction cue esti-
mator 1590 may estimate that the passenger is comfortable
with or at least not unhappy with the current vehicle motion.
Such an estimated cue may also be derived based on, e.g., a
personalized acoustic feature model in 1550, which may be
used to determine whether such a behavior is indicative of
certain reaction cue of this particular passenger.

To estimate the reaction of the passenger, the visual based
and acoustic based reaction cue estimators 1580 and 1590
may be engaged in estimating the emotional state of the
passenger. For example, from the body language observed
from the passenger (e.g., restless or seems to be vomiting),
it may indicate that the passenger feels uneasy which may be
a cue of his/her reaction to the vehicle motion. In addition,
the tone of the voice used when the passenger says “faster”
or “slow down” may also be used to estimate a level of
anxiety of the passenger which is a clue as to how unhappy
the passenger is. Such estimated emotional state may be
used in evaluating the severity of the reaction that the
passenger exhibits in response to the current vehicle motion
and may be used to guide whether and/or how to adjust the
motion planning.

In addition to the observed physical features, other param-
eters may also be used to estimate whether the current
vehicle motion is acceptable. For instance, the source of
observation may be an input directly entered by the passen-
ger via some communication interface (e.g., a touch screen
display) within the vehicle. The passenger may input via the
display interface in the vehicle that he/she wants the vehicle
motion to be smoother. This may be detected by the pas-
senger expression detector 1560 via different communica-
tion sensors, which could be textual or acoustic.

As discussed previously, the scenarios that the passenger
is currently in may also influence how the motion should be
planned. The passenger scenario detector 1570 is configured
to detect any scenario parameters that may be relevant to
motion planning. For instance, if it is known that each
afternoon between 3:30 pm and 4:30 pm (time of day), the
vehicle is used to pick up children from school (task in
hand), this may place a restriction on motion planning. That
is, the motion planned may need to be based on safety. Once
detected, such a restriction may be configured to trump the
estimated desire (of the passenger) to be faster in order to
ensure safety of the children. Other scenario related factors
may also be observed, e.g., the health and age of the
passenger. If it is observed (from a passenger model 1535)
that the passenger is an elderly and suffers from dementia,
such scenario parameters may be used to void some detected
desire of the passenger. For instance, if the current vehicle
motion is already pretty fast and the passenger keeps
demanding to be even faster, given the age and known health
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condition of the passenger, the motion planning module may
use such information to make an appropriate motion plan-
ning decision.

The various passenger reaction cues, detected by the
visual/acoustic based reaction cue estimators 1580 and
1590, the passenger expression detector 1560, and the
passenger scenario detector 1570, are then send to the user
reaction generator 1595, where the detected different param-
eters are selected and integrated to generate estimated user
reaction and sent to the passenger motion adapter 1460 so
that the motion planned by the generic motion planner 1450
may be adapted in accordance with the observed dynamic
user reaction to the current vehicle motion.

FIG. 16 is a flowchart of an exemplary process for the
passenger observation analyzer 1420, according to an
embodiment of the present teaching. To gather observations
associated with the passenger, appropriate sensors are acti-
vated at 1610. Information from activated sensors is pro-
cessed at 1620. To ascertain the physical behavior of the
passenger, the passenger is detected, at 1630, based on
passenger detection models 1530. Once the identity of the
passenger is ascertained, different types of features associ-
ated with the passenger may be obtained. At 1640, any
explicit expression from the passenger is detected. The
scenario parameters associated with the passenger are
detected at 1660. Such gathered explicit expression from
and scenario parameters related to the passengers are then
sent to the user reaction generator 1595.

Visual/acoustic features of the passenger are detected at
1650 and are used to estimate, at 1670 and 1680 respec-
tively, the visual and acoustic reaction cues, which are then
sent also to the passenger reaction generator 1595. Different
types of information so collected (from 1640, 1660, 1670,
and 1680) are then all used by the passenger reaction
generator 1595 to generate, at 1690, the estimated user
reaction.

Going back to FIG. 14, the estimated user reaction output
by the passenger observation analyzer 1420 is sent to the
passenger motion adapter 1460 so that the real-time passen-
ger reaction to the current vehicle motion may be considered
in determining how to adapt the planned motion based on the
dynamic feedback from the passenger.

FIG. 17 is a flowchart of an exemplary process for the
motion planning module 560, according to an embodiment
of'the present teaching. At 1710 and 1720, real-time data 480
and the self-aware capability parameters are received,
respectively. The self-aware capability parameters are pro-
cessed, at 1730, and split into intrinsic and extrinsic capa-
bility parameters. Based on real time data and the intrinsic
capability parameters, the generic motion planner 1450
generates, at 1740, planned motion for the vehicle. Such
planned motion is generated based on generic motion plan-
ning models 1440 as well as any applicable sub-category
motion planning models 1480.

To personalize the motion planning, the generically
planned motion may then be adapted based on personalized
information, which may include both known personal pref-
erences and dynamically observed passenger reaction to the
current vehicle motion. To achieve that, know passenger
preferences are identified, at 1750, based on the individual
passenger models 1430. In addition, dynamic passenger
reaction/feedback is estimated, at 1760, based on informa-
tion gathered from different sources/sensors. The personal
preferences, either already known or estimated dynamically,
are then used to personalize the motion planned, e.g., by
adapting, at 1770, the motion planned based on generic
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information. Such personalized planned motion is then
output, at 1780, as the planned motion 530.

As discussed with respect to FIG. 14A, various models
are used in motion planning, some being generic, some
being semi-generic (sub-category models are semi-generic),
and some being personalized. In addition to being person-
alized and adaptive, the motion planning scheme as dis-
closed herein also aims at behaving in a manner that is more
human-like. Being adaptive to the dynamic reaction of the
passenger may be part of it. In some embodiments, the
models used by the motion planning module 560 may also
be generated to capture human-like behavior so that when
they are applied in motion planning, the planned motion 530
will be more human-like.

FIG. 18 depicts an exemplary high level system diagram
of a motion planning model training mechanism 1800 for
generating those models, according to an embodiment of the
present teaching. In this illustrated embodiment, the motion
planning model training mechanism (MPMTM) 1800 com-
prises data pre-process portion and a model training portion.
The data pre-processing portion comprises a sub-category
training data classifier 1820, an individual training data
extractor 1830, and an observation segmenter 1850. The
model training portion comprises a model training engine
1810 and an independent impact model training engine
1840, and an independent impact model training engine
1840.

Recorded human driving data 430 are utilized to train
models so that the models can capture characteristics related
to motion planning that are more human-like. To train the
generic motion planning models 1440, the received recorded
human driving data are sent to the model training engine
1810 and the trained models are saved as the generic motion
planning models 1440. To obtain sub-category motion plan-
ning models 1480, the recorded human driving data 430 are
classified by the sub-category training data segmenter 1820
into training data sets for the sub-categories and then fed to
the model training engine 1810 for training. For each
sub-category model, appropriate sub-category training data
set is applied to derive the corresponding sub-category
model and such trained sub-category models are then saved
in 1480. Similarly, for obtaining individual passenger mod-
els 1430 for motion planning, recorded human driving data
may be processed to generate different training sets by the
individual training data extractor 1830, each for an indi-
vidual, and used by the model training engine 1810 to derive
individual passenger models that characterize the prefer-
ences of the corresponding individuals.

In addition to the individual preferences, the individual
passenger models 1430 may also include models that char-
acterize impact of vehicle motions on individual passengers
observed from the reaction or feedback of passengers. The
observed reaction/feedback may be positive or negative and
can be used to influence how the motion should be planned
in the future for passengers. FIG. 19 illustrates different
types of reactions observed and their roles in model training,
according to an embodiment of the present teaching. For
example, passenger reaction/feedback that can be used to
train impact based models may include negative or position
impact. Negative reaction (negative reinforcement) of a
passenger to certain planned motion may be captured in a
model so that similar motion may be avoided in the future
as to this particular passenger. Similarly, positive reaction to
a planned motion or positive reinforcement observed may
also be captured in the model for future motion planning.
Some reaction may be neutral which may also be captured
by the individual passenger models.
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To obtain impact based models for individuals, the real-
time data 480, which capture the passenger characteristics in
terms of their behavioral, visual, acoustic cues as well as
their conditions (including mental, physical and functional
states during vehicle movement), may be segmented based
on individuals and such segmented data may then be used to
derive models that characterize how certain motions impact
passengers. In some embodiments, the mechanism 1800
includes an observation classifier 1850 that segments the
real-time data 480 according to individual passengers and
fed such segmented training data sets to the independent
impact model training engine 1840 to derive individual
impact models. Such derived individual impact models are
then stored as part of the individual passenger models 1430.

Referring back to FIG. 5, the planning module 440 also
includes lane planning module 570, which may be directed
to lane following and lane changing as illustrated in FIG.
20A. Lane following may refer to the behavior to stay in the
lane while the vehicle is moving. Lane changing may refer
to the behavior to move from one lane the vehicle is
currently in to an adjacent lane while the vehicle is moving.
Lane planning may refer to the planning of vehicle behavior
in terms of either lane following or lane changing.

FIG. 20B illustrates exemplary types of behavior related
to lane following, according to an embodiment of the present
teaching. As illustrated, there are multiple lanes (2010, 2020,
and 2030) and a vehicle in each lane may follow its lane.
Depending on different situations, the lane following behav-
ior of individual vehicles may differ. For instance, as shown,
when a vehicle merely tries to stay in a lane without turning,
the vehicle may behave to stay in the middle of the lane. This
is shown in FIG. 20B with respect to the vehicles in lane
2010 and 2020. This may be referred to as normal behavior
2040. When a vehicle in lane 2030 needs to turn to the right,
e.g., as shown 2050 in FIG. 20B, the vehicle in lane 2030
may behave differently. For example, instead of remain in
the middle of lane 2030, vehicle in that lane may pull to the
right side of the lane before the turn so that the turn is, e.g.,
safer and easier. Similarly, when a vehicle is turning left, the
lane following behavior may differ as well. The lane plan-
ning module 570 is configured to capture, e.g., via modeling,
lane following behavior in different situations so that the
autonomous driving vehicle may be controlled in a natural
and human-like way.

On the other hand, lane changing may involve behavior of
the vehicle when it moves from one lane to an adjacent lane
while the vehicle is moving. Different passengers may
exhibit different lane changing behaviors. From safety con-
siderations, there may be desirable lane changing behaviors
for different situations. Lane planning in terms of lane
changing is to plan the vehicle movement with respect to the
lanes in a manner that is safe, natural, human-like, and
personalized.

FIG. 20C illustrates exemplary types of behavior related
to lane changing, according to an embodiment of the present
teaching. Illustrated are different lane changing behavior,
i.e., changing from a current lane 2020 to the lane left to it
(lane 2010) and changing from the current lane 2020 to the
lane right to it (lane 2030). With respect to the lane changing
from lane 2020 to lane 2010, different lane changing behav-
iors may be characterized in terms of (1) how fast to make
the change and (2) in what manner the vehicle is to move to
the next lane. For instance, as shown in FIG. 20B, there are
illustrated three plans to move to the lane 2010, which are
left lane changing behavior 1 2060, left lane changing
behavior 2 2070, and left lane changing behavior 3 2080,
representing respectively different speeds to move to lane
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2010. By behavior 2060, the vehicle is to move to lane 2010
fastest. By behavior 2080, the vehicle is to move to lane
2010 slowest. The speed to move to lane 2010 by behavior
2070 is in the middle. Similarly, when a vehicle is to move
from lane 2020 to the lane to its right (2030), there may also
be different lane changing behavior, e.g., right lane changing
behavior 1 2065, right lane changing behavior 2 2075, and
right lane changing behavior 2085, as shown in FIG. 20B.

In addition to the speed by which the vehicle is to move
to the next lane, the lane changing behavior may also differ
in terms of how the vehicle moves into the next lane. Also
as shown in FIG. 20B, when the vehicle is to move from lane
2020 to lane 2010 by employing left lane changing behavior
1 2060, there are different behaviors for the vehicle to adopt
to ease into lane 2010, e.g., by following a straight line 2061,
by following curve 2062 (cut in first and then straight out the
vehicle), or by following curve 2063 (ease towards the edge
of'lane 2020 first and watch and then cut in when ready). So,
with regard to lane changing, decisions as to vehicle behav-
ior may be made at different levels.

Different drivers/passengers may exhibit different lane
planning (include both lane following and lane changing)
behaviors and in some situations, the same driver/passenger
may behave differently under different circumstances. For
instance, if there is no one on the street, a driver may decide
to cut into the next lane quickly in lane change. When the
street is crowded, the same driver may be more careful and
decide to take time to gradually ease into the next lane. The
lane planning module 570 is configured to learn different
human behaviors in different circumstances and use such
learned knowledge/models to achieve lane planning in
autonomous driving.

Smooth and predictable lane following and lane changing
behavior is a key aspect of offering human-like driving
experience in autonomous vehicles. It may be especially
challenging when significant environment noise is present in
camera images and/or videos captured during the vehicle
operation. Traditional approaches rely on computer vision to
detect lanes by detecting drivable area on the fly. Some uses
end to end image raw pixels for vehicle control signal
prediction. Such conventional approaches fail to utilize the
available manual driving data collected so that they usually
produce rigid planning and control and are susceptible to
environment variances, while ultimately limit the capability
to operate the vehicle satisfactorily.

The present teaching utilizes lane detection models and
lane planning models for lane planning and control. Both
models are trained based on large amount of training data,
some labeled and some are as collected. For lane detection,
lane detection models are obtained using training data with
labeled lanes to derive supervised models for lane detection.
Such supervised models are to be trained using a large set of
training data covering a wide range of environmental con-
ditions to ensure the representativeness and robustness of the
trained models.

For lane planning, to achieve human-like lane planning
behavior, large volume of human driving data are collected
and used to train lane control models that, when used for
lane planning, are to exhibit human-like behavior in maneu-
vering the vehicles. Although the lane detection models and
the lane planning models are trained separately, in operation,
the two sets of models are used in a cascade manner for
inference in order to produce robust behavior in diverse
types of environment or conditions with human-like opera-
tional behavior. In some embodiments, when human driving
data are classified according to individual drivers, the pres-
ent teaching can be configured to further personalize to
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create personalized human-like lane planning models. With
such personalized human-like lane planning models, an
autonomous driving vehicle may be operated during lane
planning/control in an adaptive manner, depending on who
is the passenger in the vehicle.

FIG. 21 depicts an exemplary high level system diagram
of the lane planning module 570, according to an embodi-
ment of the present teaching. In this illustrated embodiment,
the lane planning module 570 comprises two model training
engines 2110 and 2140 for training lane detection models
2120 and lane planning models 2150, respectively. Such
trained models are then used, in lane planning, in a cascaded
manner by a driving lane detector 2130 and a driving lane
planning unit 2160. As discussed above, the lane detection
models 2120 are supervised models and are trained using
training data with labeled lanes. Such supervised training
data are processed and used by the driving lane detection
model training engine 2110 to obtain the driving lane
detection models 2120.

In some embodiments, the lane detection models 2120
may correspond to a generic model, capturing the charac-
teristics of lane detection in different situations. In some
embodiments, the lane detection model 2120 may include
different models, each of which may be for providing a
model to detect lanes in a specific distinct situation. For
example, some model(s) may be for detecting lanes in
normal road conditions, some may be for detecting lanes
when the road is wet, some may be for detecting lanes when
the road has glare or reflection, some may even be for
estimating lanes when the roads are covered with, e.g., snow
or other types of visual obstructing objects. The lane detec-
tion models may also provide separate models for different
types of vehicle. For example, some vehicles have higher
gravity so that cameras capturing the ground image in front
of the vehicle may be installed at higher positions relative to
the ground. In this case, the lane detection models for such
vehicles may be different from the lane detection models for
vehicles with cameras installed at a level closer to the
ground level. Each type of model may be trained using
appropriate labeled training data that are related to the
corresponding scenario.

To achieve human-like lane planning behavior in autono-
mous driving, the driving lane planning model training
engine 2140 takes recorded human driving data 430 as input
and learns human-like behavior in terms of lane planning. As
discussed above, such human driving data may be collected
from a wide range of drivers/situations/conditions in order
for the driving lane planning model training engine 2140 to
learn and capture the characteristics of a wide range of
human driving behavior in lane planning/control. In some
embodiments, the driving lane planning model training
engine 2140 may optionally take some supervised training
data with labeled lanes as input, e.g., as seeds or some small
set of data to drive the learning towards convergence more
quickly.

Based on the recorded human driving data 430, the
driving lane planning model training engine 2140 may learn
and/or train models for both lane following and lane chang-
ing. In some embodiments, for each of lane following and
lane changing, a generic model in 2150 for generic human
behavior may be derived. In some embodiments, the lane
planning model training engine 2140 may also learn and/or
train multiple models for lane planning, each of which may
be for different known situations, e.g., lane following or lane
changing for specific subgroups of the general population, or
for particular different driving environment scenarios (wet
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road, dark light, crowded road). Such models for subgroups
of the general population may also be stored in 2150.

The human-like lane control models 2150 may also be
personalized and stored in 2150. When multiple models are
to be derived via training, lane human driving data that meet
the condition associated with each of different model may be
extracted and used to train the models. For example, lane
planning (including lane following and lane changing) mod-
els for lane related behavior exhibited when driving on
crowded roads may be learned based on human driving data
related to lane driving behavior on crowded roads. The
models for lane planning may also be personalized. To
achieve personalization, the driving lane planning model
training engine 2140 may derive a model for each individual
passenger (e.g., with respect to each of lane following and
lane changing) based on the passenger’s past driving data.
Optionally, information from a personal profile associated
with the passenger may also be used during learning in order
to obtain a model that is more accurately reflect the prefer-
ences of the passenger.

Such obtained different types of lane planning/control
models may then be stored in the driving lane control model
storage 2150. In some embodiments, different models for
different situations may be organized and indexed for easy
identification and quick access in real time during the
operation of the vehicle. In some embodiments, the driving
lane detection model training engine 2110 and the driving
lane planning model training engine 2140 may reside
remotely from the vehicle and the learning may be per-
formed in a centralized manner, i.e., they may be operating
based on training data from different sources and the learn-
ing and update may be activated regularly. The trained
models may be sent to distributed vehicles. In some embodi-
ments, personalized models for lane planning may be
updated locally in each vehicle based on data acquired
locally.

The training via both 2110 and 2140 engines may be
achieved via any learning mechanism including artificial
neural networks, deep leaning networks, etc. Depending on
the types and number of models to be obtained, each training
engine may comprise a plurality of sub training engines,
each for a specific (set of) models for some specific purposes
and each may be configured and implemented differently in
order to deriving the most effective models. Each training
engine (2110 and 2140) may also include, in addition to
learning, pre-processing mechanisms (not shown) for pro-
cess the training data prior to being used by learning
mechanism to derive trained models. For example, it may
include data segmentation mechanism that segment the
received training data into separate sets, each may be used
for training a specific model directed for a particular situa-
tion, e.g., the driving lane planning model training engine
2140 may be configured to derive a generic model for the
general population, a personalized model for the driver/
passenger of the vehicle, a model for lane planning in day
light condition, a model for lane planning in night light
condition, a model for lane planning in wet road condition,
and a model for lane planning for snowy day condition. In
this case, the pre-processing mechanism may then first
group the received recorded human driving data 430 into
different groups, each of which for one model planned so
that the training engine may then use the appropriate training
data group to learn the appropriate model. The models may
be continuously updated when the new training data arrive.
The update of the models may be performed by re-learning
based on all data received (batch mode) or by incremental
mode.
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Once the models, include the lane detection models 2120
and the driving lane control models 2150, are generated,
they are used to plan lane related behavior for an autono-
mous driving vehicle in a human-like manner and in some
instances personalized. As discussed previously, in opera-
tion, the obtained driving lane detection models 2120 and
the driving lane control models 2150 are applied in a cascade
manner. In the illustrated embodiments, when the vehicle is
on the road, sensor(s) installed in the vehicle take pictures/
videos of the road the vehicle is currently driving on and
send such sensor data to the driving lane detector 2130. In
addition to the sensor data, the driving lane detector 2130
may also receive the self-aware capability parameters 510.
Via the self-aware capability parameters, the driving lane
detector 2130 may determine various types of information,
e.g., road condition, the vehicle’s capabilities, etc., in order
to determine how it may proceed in a way that is appropriate.
For example, if it is night time of the day, which may be
indicated in the extrinsic capability parameters, the driving
lane detector 2130 may proceed to invoke a lane detection
model that is trained for detecting lanes in dark light
situation to achieve reliable performance.

Using the appropriately invoked lane detection model(s),
the driving lane detector 2130 estimates segments of the
lanes from the sensor data and optionally the estimated
position of the vehicle. Such estimated lane segments and
the vehicle position are then sent to the driving lane planning
unit 2160, where appropriate driving lane planning model(s)
may then be applied in a cascade manner for planning the
lane control behavior of the vehicle.

As discussed previously, lane planning includes both lane
following and lane changing. In operation, lane planning is
directed to either controlling the vehicle behavior in lane
following or the vehicle behavior in lane changing. When
the vehicle is in motion, the operation context may provide
some indication as to whether lane following or lane chang-
ing planning is needed. For instance, if the vehicle needs to
exit, it may need first to get into an exit lane from a current
lane that does not lead to the exit. In this case, lane changing
is implied so that the task involved in lane planning is for
lane changing. In some embodiments, the passenger in the
vehicle may also provide an explicit lane control decision to
indicate lane changing, e.g., by turning on the turn signal. In
some embodiments, an indication of lane changing may also
be from the vehicle itself, e.g., the engine may experience
some problem so that the autonomous driving system may
send a lane control decision signal to the driving lane
planning unit 2160, instructing to prepare for lane changing
so that the vehicle can move to the emergency lane. In
normal situations, the vehicle may assume a default mode of
lane following in absence of any indication of entering into
a lane changing mode.

To perform lane planning, the driving lane planning unit
2160 receives, from different sources, various types of
information (e.g., detected lanes, estimated vehicle position,
lane planning decision, and self-aware capability parameters
510) and proceeds to lane planning accordingly. For
example, if the lane control decision signal indicates that the
current task is for lane following, models for lane following
are to be retrieved and used for planning. If the current task
is for lane changing, then models for lane changing are to be
used.

Similar to the driving lane detector 2130, the driving lane
planning unit 2160 may invoke the generic lane planning
model from 2150 for the planning. It may also invoke
different lane planning models that are appropriate for the
situation in hand in order to enhance the performance. As
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discussed earlier, the self-aware capability parameters 510
provide both intrinsic and extrinsic capability parameters,
which may indicate the weather condition, road condition,
etc. which can be used by the driving lane planning unit
2160 to invoke appropriate lane planning models for the
planning. For example, if the current task is for lane fol-
lowing with a right turn coming up, personalized human-like
models for the passenger in the event of a right turn from the
current lane may be retrieved from 2150 and used to plan the
vehicle behavior as to how to ease into a position in the
current right lane and then make a right turn.

On the other hand, if the current task is for lane changing,
the lane control decision indicates that it is to change to the
lane left to the current one, and the self-aware capability
parameters indicate heavy rain and flooded roads, then the
driving lane planning unit 2160 may appropriately access
lane planning models trained for planning lane changing
behavior on very wet roads. In some embodiments, such
tasks may also be carried out using generic lane changing
models. Based on selected models for the tasks in hand, the
driving lane planning unit 2160 generates the planned lane
control, which may then be sent to the vehicle control
module 450 (FIG. 4A) so that the planned lane control
behavior can be implemented.

The driving lane planning unit 2160 may also perform
personalized lane planning. In some embodiments, the pas-
senger currently present in the vehicle may be known, e.g.,
either via driver/passenger information sent to the driving
lane planning unit 2160 or via detection of the passenger
(now shown) from the sensor data. Upon receiving such
information about the passenger, the driving lane planning
unit 2160 may appropriately invoke lane control models
suitable for the passenger. Such invoked customized models
may be a model for a subgroup that the passenger belongs
to or may be a model that is personalized for the passenger.
Such customized models may then be used to control how
the lane planning is performed in a personalized manner.

FIG. 22 is a flowchart of an exemplary process for the lane
planning module 570, according to an embodiment of the
present teaching. To obtained lane detection models, training
data with labeled lanes are first received at 2210 and such
received supervised data are then used to obtain, at 2230 via
training, driving lane detection models. On the other hand,
to obtain driving lane planning models, recorded human
driving data, and optionally together with personalized
profile information, are received at 2220 and used to derive,
at 2240 via training, lane planning models. Once the models
are obtained, they may be dynamically updated based on
newly arrived training data (now shown).

During operation, when a vehicle is in motion, the sensors
on the vehicle acquire sensor data including imagery of the
road ahead of the vehicle with lanes present. Such sensor
data are received at 2250 and are used to detect, at 2260,
lanes in front of the vehicle based on the lane detection
models. The relative position of the vehicle may also be
optionally estimated. Such detected lanes and optionally
estimated vehicle position may then be sent to the driving
lane planning unit 2160. At the driving lane planning unit
2160, various types of information received at 2270, which
include lane control decision, detected lanes, and self-aware
capability parameters. Such information is used to determine
the lane planning models to be used so that the lane planning
can be achieved, at 2280, based on appropriated selected
lane planning models.

By learning from human driving data, the learned lane
planning models capture the characteristics of human behav-
ior in lane planning so that when such models are used in
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autonomous driving, the vehicle can be controlled in a
human-like manner. In addition, by further personalizing
lane planning models based on relevant driving data of the
passengers/drivers, the lane planning behavior of the vehicle
can be controlled in a manner that is familiar and comfort-
able for the passenger/driver in the vehicle.

With reference to FIGS. 5-22; details of the planning
module 440 on route planning, motion planning, and lane
planning are disclosed. The output of the planning module
440 includes the planned route 520 from the route planning
module 550, the planned motion 530 from the motion
planning module 560, and the planned lane control 540 from
the lane planning module 570 (see FIG. 5). Such output may
be sent to different parts of the autonomous driving vehicle
in order to carry out the planned vehicle behavior. For
instance, the planned route 520 may be sent to the part of the
vehicle that is responsible for guide the vehicle in terms of
route control, e.g., such as the built in GPS. The planned
motion 530 and the planned lane control 540 may be sent to
the vehicle control module 450 (in FIG. 4) so that the
planned vehicle behavior as to motion and lane control may
be carried out on the vehicle via the vehicle control module
450.

When the motion and lane control planned to achieve
human-like behavior, the vehicle control module 450 aims at
delivering the planned action. According to the present
teaching, the vehicle control module 450 also aims at
learning how to control the vehicle according to the knowl-
edge in terms of how the vehicle behaves or responds to
different control signals in different situations so that the
vehicle can be controlled to achieve the desired effect,
including the planned vehicle behavior. Traditional
approaches apply machine learning based control and derive
vehicle dynamics models from classical mechanics, which
often fail to model a variety of situations that occurred in
real world. As a consequence, it often leads to poor perfor-
mance and in some situations, may cause dangerous conse-
quences. Although some conventional approaches is
designed to learn the vehicle dynamics models from historic
data via, e.g., neural networks, are able to learn the vehicle
dynamics models in common scenarios, in some situations,
such systems have made predictions that have substantial
and unpredicted errors, which in real life can be fatal.

The present teaching discloses an approach that enables
both achieving accurate simulation and safety of the vehicle
performance. Instead of directly learn the vehicle dynamics
model from the historic data, classical mechanics model is
used as backbone model and learn how to adjust the pre-
dicted result from the historic data. In addition, limitation to
the adjustment to be made is specified as a way to prevent
a prediction result that significantly deviates from the nor-
mal situations.

FIG. 23A depicts a system diagram of traditional
approach for generating vehicle control signal. To determine
vehicle control signals needed for control the vehicle to
achieve certain target motion, a vehicle kinematic model
2310 is provided and used by a vehicle kinematic model
(VKM) vehicle control signal generator 2320 based on the
target motion and information about the current vehicle
state. For example, if the current vehicle state is 30 miles per
hour and the target motion is reaching 40 miles per hour in
the next 5 seconds, the VKM vehicle control signal genera-
tor 2320 uses such information to determine, based on the
vehicle kinematic model 2310, what kind of vehicle control
is to be applied so that the velocity acceleration can enable
the vehicle to achieve the target motion. The approach as



US 12,071,142 B2

33

depicted in FIG. 23A is based on the traditional vehicle
kinematic models 2310, which is merely a mechanical
dynamic model.

FIG. 23B depicts a high level system diagram of the
vehicle control module 450 in FIG. 4A, according to an
embodiment of the present teaching. The vehicle control
module 450 as disclosed herein aims at providing the ability
of generating vehicle control signals that can enable human-
like driving behavior for autonomous vehicles. As shown,
the vehicle control module 450 comprises a human-like
vehicle control unit 2340 and a human-like vehicle control
(HLVC) model 2330. To achieve human like autonomous
driving, the human-like vehicle control unit 2340 receives
recorded human driving data 430 to uses that for learning
human like vehicle control and generate the HLVC model
2330 that characterizes vehicle control behavior that is
humanlike.

With the HLVC model 2330 created, when the human-like
vehicle control unit 2340 receives information related to a
target motion and the current vehicle state, it generates a
human-like vehicle control signal based on the HLVC model
2330 with respect to the real time situation associated with
the vehicle (characterized by the real time data 480). When
additional recorded human driving data 430 are made avail-
able, the HLVC model 2330 may be dynamically updated or
re-trained so that it captures the characteristics of human
vehicle control behavior in a variety of situations. The
dynamic update of the HLVC model 2330 may be triggered
via a model update signal as shown in FIG. 23B. The model
update signal may be triggered manually or automatically
when certain conditions are met, e.g., set up with regular
update with a pre-determined internal or when additional
data available for update amounts to a certain level.

In some embodiments, the HLVC model 2330 may also
be personalized. This is illustrated in FIG. 23C. The HLVC
model 2330 in this case may comprise a plurality of HLVC
sub-models (e.g., 2330-1, 2330-2, . . . , 2330-N), each of
which may correspond to a sub-population with, e.g., similar
characteristics, and trained based on a part of the recorded
human driving data 430 that are related to the sub-popula-
tion. For instance, a HLVC sub-model may be directed to
sub-population for people who may prefer to drive cau-
tiously so that the model may be derived based on training
data in the recorded human driving data 430 from the driving
record of a corresponding sub-population that exhibit cau-
tious driving record. A HLVC sub-model may also be
personalized (e.g., a sub-model is for an individual) if
appropriate training data are applied to derive a personalized
sub-model.

Details on the human-like vehicle control unit 2340 is
disclosed below with reference to FIGS. 24-29. FIG. 24
depicts an exemplary internal high level architecture of the
human-like vehicle control unit 2340, which comprises a
human-like vehicle control model generator 2410 and a
human like vehicle control signal generator 2420. The
human like vehicle control model generator 2410 takes
recorded human driving data 430 as input and uses that
information for learning and training the HLVC model 2330.
Exemplary types of data extracted from the recorded human
driving data 430 for training may include, e.g., the vehicle
control data applied to the vehicle and the vehicle states,
which may include both the vehicles states prior to and after
the vehicle control data are applied.

Data to be used for deriving the HLVC model 2330 may
also include environment data that characterize the sur-
rounding condition under which the vehicle control data
yielded the corresponding vehicle state. The environment
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data may include various types of information, e.g., road
condition, whether condition, vehicle type and condition. In
some embodiments, the environment data may also include
information about the passenger in the vehicle as well as
characteristics of the passenger, e.g., gender, age, health
situation, preferences, etc. All these different types of infor-
mation from the human driving data may present some
variables that may impact the passenger’s vehicle control
behavior. For instance, when the road is wet or slippery,
human drivers may exhibit different vehicle control behavior
in terms of break the vehicle (e.g., apply pressure on the
brake more slowly) than that when the road is not slippery.

When the HLVC model 2330 is generated, it can be used
by the human-like vehicle control signal generator 2420 to
generate a vehicle control signal, when it receives a desired
target motion, to yield human-like vehicle control behavior
in achieving the desired target motion. To generate a human-
like vehicle control signal, the vehicle control signal gen-
erator 2420 obtains real time data 480 comprising informa-
tion about the surrounding of the vehicle at the time of the
desired target motion and use such information in invoking
the HLVC model 2330 to generate a human-like vehicle
control signal. As illustrated in the example above, a target
motion may be to accelerate, in 5 seconds, the vehicle to 40
miles per hour starting from the current velocity of 30 miles
per hour. The real time data for that moment may indicate
that the road the vehicle is on has a deep slope and the road
is slippery because it is currently raining. Such real time data
is relevant and may be provided as environment data to the
HLVC model 2330. The human-like vehicle control signal
generator 2420 may invoke the HLVC model 2330 with such
parameters in order to obtain an inferred human-like vehicle
control signal that enables the autonomous vehicle to
achieve the desired target motion in a manner similar to
human driving.

FIG. 25 is a flowchart of an exemplary process of the
human-like vehicle control unit 2340, according to an
embodiment of the present teaching. To generate the HLVC
model 2330, recorded human driving data are received at
2510 to obtain training data, which are used in a training
process, at 2520, to derive, at 2530, the HLVC model 2330.
Such generated HLVC model 2330 is then used in operation
when a requested target motion is received, at 2550. Based
on the requested target motion, the human-like vehicle
control signal generator 2420 obtains, at 2560, the real time
data 480 in order to extract information related to the vehicle
at the time, including environment data, current vehicle
state, etc. In some embodiments, information related to the
passenger (e.g., identification of the passenger or character-
istics of the passenger) in the vehicle may also be obtained
(not shown) so that such information may be used to
personalize the process of generating an appropriate human-
like vehicle control signal.

The information obtained by the human-like vehicle con-
trol signal generator 2420 may then be applied to the HLVC
model 2330 to generate, at 2570, the human-like vehicle
control signal in accordance with the HLVC model 2330. In
the event of personalization, one or more specific HLVC
sub-models appropriate for the situation may be invoked and
used to generate personalized human-like vehicle control
signal. During the operation, the human-like vehicle control
unit 2340 may check, at 2540, whether an update triggering
signal is present. If an update signal is received, determined
at 2540, the human-like vehicle control model generator
2410 proceeds to step 2510 to gather training data and
re-train or adaptively adjust the HLVC model 2330 based on
the dynamically collected human driving data.
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FIG. 26 depicts an exemplary high level system diagram
of the human-like vehicle control model generator 2410,
according to an embodiment of the present teaching. In the
illustrated embodiment, the human-like vehicle control
model generator 2410 comprises a training data processing
unit 2610, a VKM vehicle control prediction engine 2630,
and a vehicle control model learning engine 2640. The
training data processing unit 2610 takes the recorded human
driving data 430 as input, processes the input to generate
training data 2620 to be used to train the HLVC model 2330.
The recorded human driving data 430 may include environ-
ment data 2620-1, vehicle state data 2620-2, . . ., and current
vehicle control data 2620-3. The environment data 2620-1
may include information such as the road condition such as
the slope of the road, angle of the turn, slippage of the
surface condition, wetness of the road, etc. The environment
data may also include information related to limitations to
the vehicle such as speed limit, time of the day, season,
location, etc. Such environment data may be used as con-
textual information in training so that the HLVC model 2330
may learn human like vehicle control behavior in different
context conditions such that the trained model characterizes
human-like vehicle control behaviors exhibited in different
situations. If personalization is needed, the obtained training
data may also be classified into different sub-groups of
training data (not shown), each of which may be used to train
an HLVC sub-model specific for passengers that belong to
that group.

The vehicle state data 2620-2 may include information
characterizing the state of the vehicle, including, e.g., posi-
tion of the vehicle, velocity of the vehicle, roll/pitch/yaw of
the vehicle, and steering angle of the vehicle, etc. The
vehicle control data 2620-3 may provide information char-
acterizing the control applied to the vehicle, such as brake
applied with a certain force, steering by turning the steering
wheel by a certain angle, or throttle.

According to the present teaching, rather than training the
HLVC model 2330 to generate the vehicle control signal
directly, the present teaching combines or fuses the tradi-
tional kinematic model based prediction approach with
learning model, created by learning from human driving
data, as to how to adjust a vehicle control signal predicted
using the traditional kinematic model so that the adjustment
yields human-like vehicle control behavior. Such an inte-
grated approach enables not only more accurate vehicle
control but also human-like feel as to control of the vehicle.

In learning the HLVC model 2330, the vehicle state data
2620-2 and vehicle control data 2620-3 are provided to the
VKM vehicle control prediction engine 2630 to predict the
motion achieved because of the control exercised. The VKM
vehicle control prediction engine 2630 performs the predic-
tion based on based on the vehicle kinematic model 2310,
e.g., via traditional mechanical dynamics approach to gen-
erate VKM based prediction signal, as shown in FIG. 26.
The VKM based prediction is then sent to the vehicle control
model learning engine 2640 to be combined with other
information from the training data 2620 to learn. Based on
the outputs of the VKM vehicle control prediction engine
2630 and the training data 2620, the vehicle control model
learning engine 2640 trains the HLVC model 2330 in, e.g.,
in an iterative process until the HLVC model 2330 con-
verges. Once the model 2330 converges, it is used to derive
human-like vehicle control signals given desired target
motions.

As shown, the vehicle control model learning engine 2640
may be triggered by the model update signal. When it is
activated, the vehicle control model learning engine 2640
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invokes the training data processing unit 2610 and the VKM
vehicle control prediction engine 2630 to initiate the training
process. In some embodiment, any subsequent training
based on additional human driving data may be performed
in a derivative manner or in a batch mode, i.e., re-train the
HLVC model 2330.

FIG. 27 is a flowchart of an exemplary process for the
human-like vehicle control model generator 2410, according
to an embodiment of the present teaching. Recorded human
driving data 430 are first received at 2710. The received
human driving data are processed, at 2720, to obtain training
data. Some of the training data are used, at 2730, to generate
VKM based prediction based on the traditional vehicle
kinematic model 2310. For the learning and fusion based
training, various aspects of the training data are identified, at
2740, and used, at 2750, to train the HLVC model 2330.
After convergence, the HLVC model 2330 is created at
2760.

FIG. 28 depicts an exemplary high level system diagram
of the human-like vehicle control signal generator 2420,
according to an embodiment of the present teaching. As
discussed herein, the human-like vehicle control signal
generator 2420 aims to generate, for a specified target
motion, a human-like vehicle control signal based on the
HLVC model 2330 so that when the human-like vehicle
control signal is used to control the vehicle, the vehicle
exhibits human-like vehicle control behavior. In this
embodiment, the human-like vehicle control signal genera-
tor 2420 comprises a VKM vehicle control signal inference
engine 2810, a context data determiner 2820, and an HIVC
model based fusion unit 2830.

In operation, upon receiving a target motion, the human-
like vehicle control signal, the VKM vehicle control signal
inference engine 2810 obtains the current state of the vehicle
and generates a VKM based vehicle control signal based on
the vehicle kinematic model 2310. As discussed herein, the
use of the traditional approach to generate an inferred
vehicle control signal based merely on the vehicle kinematic
model 2310 aims at providing initially an inferred vehicle
control signal based on purely on mechanical dynamics. To
achieve human-like behavior in vehicle control to achieve
the target motion, the inferred VKM based vehicle control
signal is to be further used as an input to the HLVC model
based fusion unit 2830, where the VKM based vehicle
control signal is used as the initial inferred result to be fused
with the HLVC based approach so that the VKM based
vehicle control signal may be adjusted in accordance with
the learned HLVC model 2330.

The HLVC model based fusion unit 2830 may activate,
upon receiving the target motion, the context data deter-
miner 2820 to obtain any information related to the sur-
rounding of the vehicle. The context data determiner 2820
receives the real time data 480 and extracts relevant infor-
mation such as environment data or passenger data, etc. and
sends to the HLVC model based fusion unit 2830. Based on
the target motion, the current vehicle state, context infor-
mation surrounding the vehicle, and the VKM based vehicle
control signal inferred using the traditional vehicle kine-
matic model 2310, the HLVC model based fusion unit 2830
accesses the HLVC model 2330 based on such input data to
obtain a fused human-like vehicle control signal.

As discussed herein, the HLVC model 2330 may be
created by learning the discrepancies between VKM model
based predictions and the observed information from the
recorded human driving data 430. As such, what the HLVC
model 2330 captures and learns may correspond to adjust-
ments to be made to the VKM based vehicle control signals
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to achieve human-like behavior. As discussed previously, as
learning process may create overfitting situation, especially
when the training data include outliers, to minimize the risks
in vehicle control due to adjustment to the VKM based
vehicle control signal, the human-like vehicle control signal
generator 2420 may also optionally include preventative
measures by limiting the adjustments to VKM vehicle
control signals based on some fusion constraints 2840, as
shown in FIG. 28. In this manner, the human-like vehicle
control signal generated as a modified VKM based vehicle
control signal can maximize the likelihood as to human
behavior yet minimize the risks in vehicle control.

In some embodiments, information about the passenger in
the vehicle may also be extracted from real time data 480
and can be used to access personalized HLVC sub-model
related to the passenger, which may be a HLVC sub-model
for a group that the passenger belongs or a completely
personalized HLVC sub-model for the passenger). Using
such a personalized HLVC sub-model may allow the human-
like vehicle control signal generator 2420 to generate per-
sonalized human-like vehicle control signal so that the
vehicle control carried out based on it can be not only
human-like but also to the personal liking of the passenger.

FIG. 29 is a flowchart of an exemplary process of the
human-like vehicle control signal generator 2420, according
to an embodiment of the present teaching. Target motion
information and the vehicle state data are first received at
2910. Based on the target motion and the vehicle state, the
vehicle kinematic model 2310 is accessed, at 2920, and used
to infer, at 2930, the VKM vehicle control signal. Such
inferred control signal based on mechanical dynamic model
is sent to the HLVC model based fusion unit 2830. To yield
a fused human-like vehicle control signal, the context data
determiner 2820 receives, at 2940, real time data 480 and
extracts, at 2950, relevant information related to the vehicle.
Using the context information as well as the VKM vehicle
control signal, the HLVC model based fusion unit 2830
infers, at 2960, the human-like vehicle control signal based
on the HLVC model 2330. Such inferred human-like vehicle
control signal is then output, at 2970, so that human-like
vehicle control to achieve the target motion may be carried
out in a human-like manner.

FIG. 30 depicts the architecture of a mobile device which
can be used to realize a specialized system implementing the
present teaching. This mobile device 3000 includes, but is
not limited to, a smart phone, a tablet, a music player, a
handled gaming console, a global positioning system (GPS)
receiver, and a wearable computing device (e.g., eyeglasses,
wrist watch, etc.), or in any other form factor. The mobile
device 3000 in this example includes one or more central
processing units (CPUs) 3040, one or more graphic process-
ing units (GPUs) 3030, a memory 3060, a communication
platform 3010, such as a wireless communication module,
storage 3090, one or more input/output (I/0) devices 3050,
a display or a projection 3020-a for visual based presenta-
tion, and one or more multi-modal interface channels 3020-
b. The multi-modal channels may include acoustic channel
or other media channels for signaling or communication.
Any other suitable component, including but not limited to
a system bus or a controller (not shown), may also be
included in the mobile device 3000. As shown in FIG. 30, a
mobile operating system 3070, e.g., i0OS, Android, Windows
Phone, etc., and one or more applications 3080 may be
loaded into the memory 3060 from the storage 3090 in order
to be executed by the CPU 3040.

To implement various modules, units, and their function-
alities described in the present disclosure, computer hard-
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ware platforms may be used as the hardware platform(s) for
one or more of the elements described herein. The hardware
elements, operating systems and programming languages of
such computers are conventional in nature, and it is pre-
sumed that those skilled in the art are adequately familiar
therewith to adapt those technologies to the present teach-
ings as described herein. A computer with user interface
elements may be used to implement a personal computer
(PC) or other type of work station or terminal device,
although a computer may also act as a server if appropriately
programmed. It is believed that those skilled in the art are
familiar with the structure, programming and general opera-
tion of such computer equipment and as a result the draw-
ings should be self-explanatory.

FIG. 31 depicts the architecture of a computing device
which can be used to realize a specialized system imple-
menting the present teaching. Such a specialized system
incorporating the present teaching has a functional block
diagram illustration of a hardware platform which includes
user interface elements. The computer may be a general
purpose computer or a special purpose computer. Both can
be used to implement a specialized system for the present
teaching. This computer 3100 may be used to implement any
component or aspect of the present teachings, as described
herein. Although only one such computer is shown, for
convenience, the computer functions relating to the present
teachings as described herein may be implemented in a
distributed fashion on a number of similar platforms, to
distribute the processing load.

The computer 3100, for example, includes COM ports
3150 connected to and from a network connected thereto to
facilitate data communications. The computer 3100 also
includes a central processing unit (CPU) 3120, in the form
of one or more processors, for executing program instruc-
tions. The exemplary computer platform includes an internal
communication bus 3110, program storage and data storage
of different forms, e.g., disk 3170, read only memory (ROM)
3130, or random access memory (RAM) 3140, for various
data files to be processed and/or communicated by the
computer, as well as possibly program instructions to be
executed by the CPU. The computer 2600 also includes an
1/0 component 3160, supporting input/output flows between
the computer and other components therein such as interface
elements 3180 in different media forms. An exemplary type
of interface element may correspond to different types of
sensors 3180-a deployed on the autonomous driving vehicle.
Another type of interface element may correspond to a
display or a projection 3180-b for visual based communi-
cation. There may be additional components for other multi-
modal interface channels such as acoustic device 3180-c for
audio based communications and/or component 2680-d4 for
signaling based on communication, e.g., signal that causes
vibration on a vehicle component such as a car seat. The
computer 3100 may also receive programming and data via
network communications.

Hence, aspects of the methods of the present teachings, as
outlined above, may be embodied in programming. Program
aspects of the technology may be thought of as “products”
or “articles of manufacture” typically in the form of execut-
able code and/or associated data that is carried on or
embodied in a type of machine readable medium. Tangible
non-transitory “storage” type media include any or all of the
memory or other storage for the computers, processors or the
like, or associated modules thereof, such as various semi-
conductor memories, tape drives, disk drives and the like,
which may provide storage at any time for the software
programming.
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All or portions of the software may at times be commu-
nicated through a network such as the Internet or various
other telecommunication networks. Such communications,
for example, may enable loading of the software from one
computer or processor into another, for example, from a
management server or host computer of a search engine
operator or other enhanced ad server into the hardware
platform(s) of a computing environment or other system
implementing a computing environment or similar function-
alities in connection with the present teachings. Thus,
another type of media that may bear the software elements
includes optical, electrical and electromagnetic waves, such
as used across physical interfaces between local devices,
through wired and optical landline networks and over vari-
ous air-links. The physical elements that carry such waves,
such as wired or wireless links, optical links or the like, also
may be considered as media bearing the software. As used
herein, unless restricted to tangible “storage” media, terms
such as computer or machine “readable medium” refer to
any medium that participates in providing instructions to a
processor for execution.

Hence, a machine-readable medium may take many
forms, including but not limited to, a tangible storage
medium, a carrier wave medium or physical transmission
medium. Non-volatile storage media include, for example,
optical or magnetic disks, such as any of the storage devices
in any computer(s) or the like, which may be used to
implement the system or any of its components as shown in
the drawings. Volatile storage media include dynamic
memory, such as a main memory of such a computer
platform. Tangible transmission media include coaxial
cables; copper wire and fiber optics, including the wires that
form a bus within a computer system. Carrier-wave trans-
mission media may take the form of electric or electromag-
netic signals, or acoustic or light waves such as those
generated during radio frequency (RF) and infrared (IR) data
communications. Common forms of computer-readable
media therefore include for example: a floppy disk, a flexible
disk, hard disk, magnetic tape, any other magnetic medium,
a CD-ROM, DVD or DVD-ROM, any other optical
medium, punch cards paper tape, any other physical storage
medium with patterns of holes, a RAM, a PROM and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave transporting data or instructions,
cables or links transporting such a carrier wave, or any other
medium from which a computer may read programming
code and/or data. Many of these forms of computer readable
media may be involved in carrying one or more sequences
of one or more instructions to a physical processor for
execution.

Those skilled in the art will recognize that the present
teachings are amenable to a variety of modifications and/or
enhancements. For example, although the implementation of
various components described above may be embodied in a
hardware device, it may also be implemented as a software
only solution—e.g., an installation on an existing server. In
addition, the present teachings as disclosed herein may be
implemented as a firmware, firmware/software combination,
firmware/hardware combination, or a hardware/firmware/
software combination.

While the foregoing has described what are considered to
constitute the present teachings and/or other examples, it is
understood that various modifications may be made thereto
and that the subject matter disclosed herein may be imple-
mented in various forms and examples, and that the teach-
ings may be applied in numerous applications, only some of
which have been described herein. It is intended by the
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following claims to claim any and all applications, modifi-
cations and variations that fall within the true scope of the
present teachings.

The invention claimed is:

1. A computer-implemented method comprising:

based on sensor data, detecting, by a computing system,

a lane that a vehicle is currently occupying;

receiving, by the computing system, data representing a

presence of a passenger within the vehicle;

based on a dedicated set of training data for each model,

separately training, by the computing device, a) a
generic model for a general population and b) a plu-
rality of personalized lane control models, relating to
preferences of the passenger, associated with a plurality
of driving environment scenarios, each personalized
lane control model trained on training data that includes
past human driving data relating to lane following and
lane changing behavior related to the passenger asso-
ciated with a corresponding driving environment sce-
nario, the lane changing behavior related to the pas-
senger associated with a corresponding driving
environment scenario indicative of a) various speeds
with which to lane change to a right lane, b) various
speeds with which to lane change to a left lane, and ¢)
various straight line or curved paths with which to lane
change to a portion of a right lane or a left lane that is
straight,

wherein the training data associated with the passenger is

driving data of the passenger and grouped into training
data groups, each training data group for training a
personalized lane control model associated with a
related driving environment scenario,

and wherein the personalized lane control model is further

trained based on a personal profile of the passenger to
allow the personalized lane control model to further
reflect preferences of the passenger;
based on the data representing the presence of the pas-
senger within the vehicle and a current driving envi-
ronment scenario, selecting, by the computing system,
apersonalized lane control model related to preferences
of the passenger associated with lane planning includ-
ing lane following and lane changing;
generating, by the computing system, a lane control plan
for the vehicle based on the lane that the vehicle is
currently occupying and the personalized lane control
model, wherein the lane control plan includes lane
following and lane changing, and selection of lane
following or lane changing is based on at least one of
an explicit lane control decision provided by the pas-
senger and an implied lane control decision to enter a
lane to perform an action required in the lane;

generating, by the computing system, a signal to cause
implementation of the lane control plan at the vehicle;
and

in response to the signal, controlling, by the computing

system, movement of the vehicle based at least in part
on the lane control plan.

2. The computer-implemented method of claim 1,
wherein the sensor data includes image data.

3. The computer-implemented method of claim 1,
wherein the personalized lane control model is retrieved
from a remote computing system.

4. The computer-implemented method of claim 1,
wherein the data representing the presence of the passenger
within the vehicle includes image data.

5. The computer-implemented method of claim 1,
wherein the personalized lane control model is associated
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with preferences of the passenger relating to at least one of
lane change speed and lane change path.

6. The computer-implemented method of claim 1,
wherein the personalized lane control model is associated
with a population subgroup to which the passenger belongs.

7. The computer-implemented method of claim 1,
wherein a driving environment scenario of the plurality of
driving environment scenarios relates to lane driving behav-
ior of the passenger associated with at least one of a wet
road, night lighting, day lighting, snowy condition, and a
crowded road.

8. The computer-implemented method of claim 1,
wherein each personalized lane control model is associated
with a corresponding personalized lane following model and
a corresponding personalized lane changing model.

9. The computer-implemented method of claim 1,
wherein the detecting the lane is based on a lane detection
model selected from a plurality of lane detection models,
each lane detection model associated with at least one of a
particular scenario and a particular type of the vehicle.

10. The computer-implemented method of claim 1,
wherein the vehicle is operable in an autonomous mode of
navigation.

11. A non-transitory computer-readable storage medium
including instructions that, when executed by at least one
processor of a computing system, cause the computing
system to perform operations comprising:

based on sensor data, detecting a lane that a vehicle is

currently occupying;

receiving data representing a presence of a passenger

within the vehicle;
based on a dedicated set of training data for each model,
separately training a) a generic model for a general
population and b) a plurality of personalized lane
control models, relating to preferences of the passen-
ger, associated with a plurality of driving environment
scenarios, each personalized lane control model trained
on training data that includes past human driving data
relating to lane following and lane changing behavior
relating to the passenger associated with a correspond-
ing driving environment scenario, the lane changing
behavior related to the passenger associated with a
corresponding driving environment scenario indicative
of a) various speeds with which to lane change to a
right lane, b) various speeds with which to lane change
to a left lane, and ¢) various straight line or curved paths
with which to lane change to a portion of a right lane
or a left lane that is straight,
wherein the training data associated with the passenger is
grouped into training data groups, each training data
group for training a personalized lane control model
associated with a related driving environment scenario,

and wherein the personalized lane control model is further
trained based on a personal profile of the passenger to
allow the personalized lane control model to further
reflect preferences of the passenger;

based on the data representing the presence of the pas-

senger within the vehicle and a current driving envi-
ronment scenario, selecting a personalized lane control
model related to preferences of the passenger associ-
ated with lane planning including lane following and
lane changing;

generating a lane control plan for the vehicle based on the

lane that the vehicle is currently occupying and the
personalized lane control model, wherein the lane con-
trol plan includes lane following and lane changing,
and selection of lane following or lane changing is
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based on at least one of an explicit lane control decision
provided by the passenger and an implied lane control
decision to enter a lane to perform an action required in
the lane;

generating a signal to cause implementation of the lane

control plan at the vehicle; and

in response to the signal, controlling movement of the

vehicle based at least in part on the lane control plan.

12. The non-transitory computer-readable storage
medium of claim 11, wherein the generating the lane control
plan is based on parameters that are predictive of an opera-
tional capability of the vehicle.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the operations further com-
prise dynamically updating the parameters to reflect an
updated scenario associated with the vehicle.

14. The non-transitory computer-readable storage
medium of claim 11, wherein the data representing the
presence of the passenger within the vehicle includes sensor
data.

15. The non-transitory computer-readable storage
medium of claim 11, wherein the operations further com-
prise sending the signal to cause implementation of the lane
control plan at the vehicle.

16. The non-transitory computer-readable storage
medium of claim 15, wherein the sending the signal to cause
implementation of the lane control plan at the vehicle
includes sending the signal to a vehicle control module of
the vehicle.

17. The non-transitory computer-readable storage
medium of claim 11, wherein the vehicle is operable in an
autonomous mode of navigation.

18. A system comprising:

at least one processor; and

a memory operably coupled to the at least one processor

and storing instructions to cause the at least one pro-
cessor to perform operations comprising:

based on sensor data, detecting a lane that a vehicle is

currently occupying;

receiving data representing a presence of a passenger

within the vehicle;
based on a dedicated set of training data for each model,
separately training a) a generic model for a general
population and b) a plurality of personalized lane
control models, relating to preferences of the passen-
ger, associated with a plurality of driving environment
scenarios, each personalized lane control model trained
on training data that includes past human driving data
relating to lane following and lane changing behavior
relating to the passenger associated with a correspond-
ing driving environment scenario, the lane changing
behavior related to the passenger associated with a
corresponding driving environment scenario indicative
of a) various speeds with which to lane change to a
right lane, b) various speeds with which to lane change
to a left lane, and ¢) various straight line or curved paths
with which to lane change to a portion of a right lane
or a left lane that is straight,
wherein the training data associated with the passenger is
grouped into training data groups, each training data
group for training a personalized lane control model
associated with a related driving environment scenario,

and wherein the personalized lane control model is further
trained based on a personal profile of the passenger to
allow the personalized lane control model to further
reflect preferences of the passenger;
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based on the data representing the presence of the pas-
senger within the vehicle and a current driving envi-
ronment scenario, selecting a personalized lane control
model related to preferences of the passenger associ-
ated with lane planning including lane following and
lane changing;
generating a lane control plan for the vehicle based on the
lane that the vehicle is currently occupying and the
personalized lane control model, wherein the lane con-
trol plan includes lane following and lane changing,
and selection of lane following or lane changing is
based on at least one of an explicit lane control decision
provided by the passenger and an implied lane control
decision to enter a lane to perform an action required in
the lane;
generating a signal to cause implementation of the lane
control plan at the vehicle; and
in response to the signal, controlling movement of the
vehicle based at least in part on the lane control plan.
19. The system of claim 18, wherein the operations further
comprise detecting the passenger as being present within the
vehicle based on sensor data.
20. The system of claim 18, wherein the vehicle is
operable in an autonomous mode of navigation.
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