本发明公开了一种变电站设备智能巡检机器人系统，包括控制中心、无线通讯网络和巡检机器人。控制中心通过无线通讯网络与巡检机器人实现远程控制和数据传输，其中，控制中心包括上位控制主机，巡检检测数据处理模块和机器人远程遥控发射模块；巡检机器人包括机器人控制单元、机器人本体机构、机器人探障导航装置、机器人远程遥控接收模块和现场信号采集传输装置。本系统通过巡检机器人对变电站内的电力设备进行巡检，并通过无线网络将实时采集的设备数据发送至控制中心并在相关设备上进行显示，工作人员可以方便地远程监视现场的工作情况和设备的运行情况，从而实现了对偏远地区和无人值守变电站的巡检监测，省时省力。
1. 变电站设备智能巡检机器人系统，其特征在于：所述系统包括控制中心、无线通讯网络和巡检机器人，所述控制中心通过无线通讯网络与巡检机器人实现远程控制和数据传输，其中，所述控制中心包括以下组成部分：
 1) 上位控制主机；
 2) 巡检监测数据处理模块，接收巡检机器人发回的数据并进行处理；
 3) 巡检机器人遥控发射模块，用于向巡检机器人发出遥控指令；

所述巡检机器人包括以下组成部分：
 1) 机器人控制单元；
 2) 机器人本体机构，包括行走装置、行走装置电控系统和安装架，其中，行走装置电控系统与机器人控制单元电联接；
 3) 机器人预警导航装置，采集用于调整机器人的运动姿态的相关信息并传输至机器人控制单元；
 4) 机器人遥控接收接收模块，接受控制中心发出的控制指令并根据控制指令启动相应操作；
 5) 现场信号采集传输装置，用于采集变电站现场的图像、视频和音频信号并通过无线通讯网络传输至控制中心；

所述机器人控制单元、机器人预警导航装置、机器人遥控接收模块和现场信号采集传输装置均设置在机器人本体机构上。

2. 根据权利要求1所述的变电站设备智能巡检机器人系统，其特征在于：所述巡检监测数据处理模块包括现场信号处理子模块、电力设备状态巡检子模块、电力设备监测数据显示器子模块和监测数据存储子模块，所述现场信号处理子模块通过交换器1得到巡检机器人采集的相关数据，经过处理后传输至电力设备状态巡检子模块、电力设备监测数据显示器子模块和监测数据存储子模块。

3. 根据权利要求1或2所述的变电站设备智能巡检机器人系统，其特征在于：所述控制中心还包括电子地图展现模块，用于显示变电站模拟场景和巡检机器人的实时位置和行走路线。

4. 根据权利要求1所述的变电站设备智能巡检机器人系统，其特征在于：所述机器人预警导航装置包括多个定位传感器，以及与机器人本体机构相联接的电控系统，所述电控系统根据定位传感器采集的数据调整巡检机器人的运动姿态。

5. 根据权利要求4所述的变电站设备智能巡检机器人系统，其特征在于：所述定位传感器包括超声波传感器、磁传感器和RFID读写器，所述RFID读写器和磁传感器根据事先设置在变电站巡视路线上的RFID标签和磁条进行实时数据采集，保证行走路线。

6. 根据权利要求1所述的变电站设备智能巡检机器人系统，其特征在于：所述现场信号采集传输装置包括至少一个可见光摄像仪、红外摄像仪、调整云台和视频服务器，所述可见光摄像仪和红外摄像仪采集的现场视频信号通过视频服务器传输到无线通讯网络。

7. 根据权利要求6所述的变电站设备智能巡检机器人系统，其特征在于：所述视频服务器包括视频压缩模块、图像压缩模块和视频图像数据发送模块，所述视频压缩模块与可见光摄像仪的输入端相联接，所述图像压缩模块与红外摄像仪的输入端相联接，所述视频压缩模块和图像压缩模块的输出端均与视频图像数据发送模块的输入端相联接。
8. 根据权利要求1所述的变电站设备智能巡检机器人系统，其特征在于：所述机器人
远程遥控发射模块包括行走遥控发射子模块和云台遥控发射子模块，所述行走遥控发射子
模块用于巡检机器人的行走控制，所述云台遥控发射子模块用于调整云台的角度控制。

9. 根据权利要求1所述的变电站设备智能巡检机器人系统，其特征在于：所述无线通
讯网络包括交换器I、无线网桥Ⅰ、交换器Ⅱ和无线网桥Ⅱ，其中交换器I和无线网桥Ⅰ用
于控制中心的无线通讯，所述交换器Ⅱ和无线网桥Ⅱ用于巡检机器人的无线通讯。

10. 根据权利要求1所述的变电站设备智能巡检机器人系统，其特征在于：所述巡检机
器人还包括故障自诊断与保护模块，用于机器人本体机构发生故障时的自动处理。
变电站设备智能巡检机器人系统

技术领域
[0001] 本发明涉及电力设备保护领域，特别涉及一种用于变电站设备巡视与巡检的智能巡检机器人系统。

背景技术
[0002] 传统的变电站巡检工作主要由工作人员完成，但对于无人值守或少人值守的变电站，巡检工作是一件非常困难的工作，尤其对偏远地区的变电站，需要耗费大量的人力和时间；其次，由于变电站多为高压、高辐射设备，人工巡检具有很大的危险性；同时对于无人值守或少人值守的变电站，当变电站故障时的应急指挥调度难度也非常大。因此运用智能机器人系统在一定程度上代替人工对变电站进行自动巡检，将为变电站巡检的发展趋势。

发明内容
[0003] 有鉴于此，本发明的目的是提供一种变电站设备智能巡检机器人系统，该系统通过定位系统对机器人进行导航、定位，采集电气设备的工作状态，即时向控制中心反馈设备状态和机器人本体工作状态，同时，通过无线网络对机器人实施监控并对返回的数据进行处理，即时发现电气设备的外观异常和内部热缺陷等故障，从而实现对偏远地区和无人值守变电站的安全可靠地巡检。
[0004] 本发明的目的在于通过以下技术方案实现的：

该变电站设备智能巡检机器人系统包括控制中心、无线通讯网络和巡检机器人，所述控制中心通过无线通讯网络与巡检机器人实现远程控制和数据传输，其中，所述控制中心包括以下组成部分：

1）上位控制主机；
2）巡检监测数据处理模块，接收巡检机器人发回的监测数据并进行处理；
3）机器人远程遥控发射模块，用于向机器人发出遥控指令；

所述巡检机器人包括以下组成部分：

1）机器人控制单元；
2）机器人本体机构，包括行走装置、行走装置电控系统和安装架，其中，行走装置电控系统与机器人控制单元电联接；
3）机器人探障导航装置，采集用于调整机器人的运动姿态的相关信息并传输至机器人控制单元；
4）机器人远程遥控接收模块，接收控制中心发出的控制指令并根据控制指令启动相应操作；
5）现场信号采集传输装置，用于采集变电站现场的图像、视频和音频信号并通过无线通讯网络传输至控制中心；

所述机器人控制单元、机器人探障导航装置、机器人远程遥控接收模块和现场信号采
集传输装置均设置在机器人本体机构上。

进一步，所述巡检监测数据处理模块包括现场信号处理子模块，电力设备状态巡检子模块，电力设备监测数据存储模块和监测数据存储子模块，所述现场信号处理子模块通过无线通讯网络得到巡检机器人采集的相关数据，经过处理后传输至电力设备状态巡检子模块，电力设备监测数据存储子模块和监测数据存储子模块；

进一步，所述控制中心还包括电子地图展现模块，用于显示变电站模拟场景和巡检机器人的实时位置和行走路线；

进一步，所述机器人探察导航装置包括多个定位传感器，以及与机器人本体机构相联接的电控系统，所述电控系统根据定位传感器采集的数据调整巡检机器人的运动姿态；

进一步，所述定位传感器包括超声波传感器、磁传感器和 RFID 读写器，所述 RFID 读写器和磁传感器根据事先设置在变电站巡视线路上的 RFID 标签和磁条进行实时数据采集，保证行走路线；

进一步，所述现场信号采集传输装置包括至少一个可见光摄像仪、红外摄像仪、调整云台和视频服务器，所述可见光摄像仪和红外摄像仪采集的现场音视频信号通过视频服务器传输至无线通讯网络；

进一步，所述视频服务器包括视频存储模块、图像压缩模块和图像数据发送模块，所述视频存储模块与可见光摄像仪的输入端相联接，所述图像压缩模块与红外摄像仪的输入端相联接，所述视频存储模块和图像压缩模块的输出端均与视频数据发送模块的输入端相联接；

进一步，所述机器人行远程遥控发射模块包括行远程遥控发射子模块和行远程遥控发射子模块，所述行远程遥控发射子模块用于巡检机器人的行走控制，所述行远程遥控发射子模块用于调整云台的角度控制；

进一步，所述无线通讯网络包括交换器 I、无线网桥 I、交换器 II 和无线网桥 II，其中交换器 I 和无线网桥 I 用于控制中心的无线通讯，所述交换器 II 和无线网桥 II 用于巡检机器人的无线通讯；

进一步，所述巡检机器人还包括故障自诊断与保护模块，用于机器人本体机构发生故障时的自动处理。

【0006】本发明的有益效果是：

1. 本系统通过巡检机器人对变电站内的电力设备进行巡检（机器人通过其所携带的摄像装置对电力设备进行录像和录音等），并通过无线网络将实时采集的相关数据发送至控制中心并在相关设备上进行显示，工作人员可以方便地远程监视现场的工作情况和设备的运行情况，同时，工作人员还能够对机器人本体和摄像装置实施远程遥控操作，不仅可以远程控制机器人行走而且可以控制摄像仪和红外热像仪的云台、焦距等，从而实现了对偏远地区和无人值守站的远程监控，省时省力，节约了人力成本；

2. 本系统通过电力设备监测数据采集模块能够将巡检机器人回传的本体状态数据和电力设备状态数据并将其在窗口中显示出来，便于工作人员了解各项参数；同时，本系统还包括电子地图展现模块，控制中心根据绘制出的变电站电子地图，对巡检机器人的工作过程进行全面展现，其显示直观，便于工作人员及时地了解现场的巡检状况；

3. 本发明还具有可靠的机器人导航定位装置，使机器人能能够沿着巡检路线巡游，同
时对电力设备能够准确定位；

4. 本发明的巡检机器人还具有故障诊断和自保护功能，通过故障诊断和自保护模块对本体机构进行检测，一旦发现故障，系统发出报警信息并采取相应措施进行自我保护，从而提高了巡检机器人的安全性，不会因为机器人发生故障对变电站的正常工作产生影响。

[0007] 本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述，并且在某种程度上，基于对下文的考察研究对本领域技术人员而言将是显而易见的，或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书和权利要求书来实现和获得。

附图说明

[0008] 为了使本发明的目的、技术方案和优点更加清楚，下面将结合附图对本发明作进一步的详细描述，其中:

图 1 为本发明的总体架构示意图；
图 2 为无线通讯网络的网络连接拓扑图；
图 3 为巡检机器人控制的整体框图；
图 4 为 RFID 与磁条安装示意图；
图 5 为现场信号采集传输装置的结构示意图；
图 6 为视频 / 红外图像显示工作图；
图 7 为电子地图展现模块的组成示意图。

具体实施方式

[0009] 以下将参照附图，对本发明的优选实施例进行详细的描述。应当理解，优选实施例仅为了说明本发明，而不是为了限制本发明的保护范围。

[0010] 图 1 为本发明的总体架构图，如图 1 所示，本发明的变电站设备智能巡检机器人系统，主要包括控制中心 1、无线通讯网络 2 和巡检机器人 3 三大部分，控制中心 1 通过无线通讯网络 2 与巡检机器人 3 实现远程控制和数据传输，其中，控制中心主要包括以下组成部分：

1) 巡检检测数据处理模块 11 : 包括现场信号处理子模块 111、电力设备状态检测子模块 112、电力设备监测数据处理模块 113 和监测数据存储子模块 114，其中，现场信号处理子模块 111 通过无线通讯网络得到巡检机器人采集的相关数据，经过处理后传输至电力设备状态巡检子模块 112、电力设备监测数据处理子模块 113 和监测数据存储子模块 114；

2) 机器人远程遥控发射模块 12 : 包括行远遥控发射子模块 121 和云台遥控发射子模块 122，其中，行远遥控发射子模块 121 用于巡检机器人的行走控制，所述云台遥控发射子模块 122 用于调整云台的角度控制；

3) 电子地图展现模块 13 : 用于显示变电站模拟场景和巡检机器人的实时位置和行走路线；

4) 上位控制主机 14 : 发出控制指令至各模块。

[0011] 巡检机器人 3 包括以下组成部分：

1) 机器人本体机构 31 : 包括一个独立的行走装置、行走装置电控系统和安装支架；
2）机器人探障导航装置 32：包括多个传感器单元，行走装置电控系统根据传感器单元
采集的数据调整巡检机器人的运动姿态；本实施例中，传感器单元包括超声波传感器、磁传
感器和 RFID 读写器；

3）机器人远程遥控接收模块 33：接受控制中心发出的控制指令并根据控制指令启动
相应操作；

4）现场信号采集传输装置 34：包括可见光摄像仪、红外摄像仪、调整云台和视频服务
器，可见光摄像仪和红外摄像仪通过调整云台安装在机器人本体机构 31 上，并将采集的现
场音视频信号通过视频服务器传输至无线通讯网络。
[0012] 5）机器人控制单元 35：接收上位控制主机发出的指令，并根据指令控制巡检机器
人的各模块。
[0013] 图 2 为无线通讯网络的网络连接拓扑图，如图所示，无线通讯网络 2 包括交换器 1
21、交换器 II 22 和交换器 II 23 和无线网桥 1 24，其中交换器 I 21 和无线网桥 I 22 用于
控制中心的无线通讯，交换器 II 23 和无线网桥 II 24 用于巡检机器人的无线通讯，控
制中心的服务器与机器人之间采用点对点的无线网络连接，通过在在机器人上安装全向天
线，确保在任何方向上都能够接收到无线网络信号，服务器通过交换机和无线网桥相连，在
网络设置中保证机器人和服务器处于同一个局域网网段中，这样机器人和控制中心就能够
实现相互通信。
[0014] 图 3 为巡检机器人控制的整体简图，如图所示，巡检机器人的运动控制主要分为
三部分：1. 停止运动：由于出现紧急情况（如前方出现障碍物或者机器人内部温度过高）以
及需要检测电气设备时，机器人会停止前进，等现场排除故障或检测结束时，机器人会
继续前进；2. 转弯运动：当机器人收到由导航定位装置发出的转弯命令后，便开始转弯，当
转弯结束后，机器人会开始直线运动；3. 直线行走运动：当机器人没有收到停车命令或者
转弯命令时，机器人按直线行走。
[0015] 本实施例中，巡检机器人的探障导航通过以下传感器单元实现：

1）超声波传感器单元：超声波传感器是利用超声波的特性研制而成的传感器。具有频
率高、波长短、绕射现象小、方向性好、能够成为射线而定向传播等特点。超声波对液体、固
体的穿透性好，超声波碰到杂质或分界面会产生显著反射形成反射成回波，碰到活动物体
能产生多普勒效应，因此，本发明中的超声波传感器用于探测前方障碍，为巡检机器人提供
信息；

2）导航传感器单元：主要包括 RFID 读写器与磁传感器，RFID 读写器和磁传感器分别根
据事先设置在变电站巡视线路上的 RFID 标签和磁条进行实时数据采集，保障行走路线。图
4 为 RFID 与磁条安装示意图，如图所示，通过在巡检线路上每隔一段距离安装 RFID 标签以
提供距离信息，在转弯的地方放置 RFID 标签以提供转弯信息，在待检设备前设置 RFID 标签
提供定位信息，当机器人靠近 RFID 标签时读取标签信息，从而判定行走的里程和行进的方
向，在变电站指定的巡检线路上每隔一定间隔铺设磁条，磁传感器分别安装在巡检机器人
的前端和后端上，磁传感器之间间隔一定的距离，当机器人在磁条上行走时，磁传感器检测
磁条的磁场，根据感应到磁场的磁传感器的位置计算出车体的偏差，控制程序调用校正算
法对车体位置进行校正。
[0016] 需要说明的是，超声波传感器和磁传感器还能够在允许的精度范围内采集电气设
备的相关参数，为工作人员了解电气设备的运行状况提供参考。
[0017] 图 5 为现场信号采集传输装置的结构示意图，本装置读取状态参数或者接收控制中心发出的状态参数，通过调整可见光摄像仪和红外摄像仪的方向、焦距等参数来获取电气设备的运行状态数据和表盘数据。
[0018] 图 6 为视频/红外图像显示工作图，如图所示，视频服务器 344 包括视频压缩模块 344a、图像压缩模块 344b 和视频图像数据发送模块 344c，视频压缩模块 344a 与可见光摄像仪的输入端相连接，图像压缩模块 344b 与红外摄像仪的输入端相连接，视频压缩模块和图像压缩模块的输出端均与视频图像数据发送模块 344c 的输入端相连接。
[0019] 本发明的上位控制主机和机器人控制单元进行通讯后，上位控制主机向机器人控制单元发送控制信息，机器人控制单元通过机器人远程遥控接收模块接收控制参数后，将控制信息参数转化为控制命令，并发送到相应的模块进而完成对云台方向转动控制、摄像机的焦距控制以及红外摄像仪的控制。
[0020] 远端用图像采集设备（可见光摄像仪和视频采集卡、红外摄像仪）寻找目标（控制云台来实现）调节焦距，采集原始图像信息后，然后进行视频压缩，再将图像流上传到控制中心，控制中心在视频解压以后进行显示。
[0021] 在巡检机器人巡检过程中，还可以对视频图像进行截图和录像。控制中心程序发送相应指令，程序就可生成图片和录像文件，作为一种数据资料保存。
[0022] 图 7 为电子地图展现模块的组成示意图，如图所示，该电子地图展现模块主要包含电子地图、机器人状态和路径规划三大板块，其中，电子地图用于展现变电站的模拟场景，巡检机器人通过无线网络将自身所处的位置、行走路线、正在进行的工作等状态信息回传至控制中心软件，经过处理后在电子地图上展现给工作人员。这使得工作人员以非常直观的方式了解现场的情况，也使得人机界面十分友好。
[0023] 机器人状态显示是在利用 GIS（地理信息系统）技术的基础上，通过图形的方式实时展现机器人行走路径、机器人运行状态、设备定位位置以及实施路径规划等。在地理信息系统开发软件和计算机硬件的支持下，将实际的地理空间信息与计算机虚拟的图形界面关联起来，实现对机器人状态的远程监控。
[0024] 路径规划是工作人员根据其需要对指定的电力设备进行巡检时，通过事先选定需要巡检的电力设备，机器人在接收到巡检任务后，在自动巡检模式下，会按照规划路径进行电力设备巡检。
[0025] 本系统的无线通讯网络采用美国 Axelwave 公司的无线网络设备构建而成，该无线网络能够提供较高的传输带宽和稳定的传输质量，满足了本项目对视频数据的传输要求。从现场运行来看，机器人所回传的视频图像和红外图像质量清晰。在设备以及房屋阻挡的情况下很少出现画面 “卡壳” 的现象，所产生的时间延迟在可以接受的范围之内。
[0026] 本发明的需要传输的数据量大，数据类型较多，因此不仅需要高质量、高可靠性的网络，还需要高压缩比的数据压缩技术和 Windows 下的数据传输技术。本发明采用海康的数据压缩卡，实现了快速、高压缩比的数据压缩，接收方采用软件解压，使得视频和红外图像播放十分流畅。
[0027] 系统在数据传输过程中采用 Windows 提供的套接字技术，该技术不考虑底层网络究竟是有线还是无线，也不考虑是什么公司的网络产品，只要支持 TCP/IP 协议，就可以实
现数据传输。因此该系统的网络可移植性较好。

[0028] 本实施例中，上位控制主机与机器人控制单元控制之间采用 TCP/IP 协议进行通讯，在巡检机器人巡检过程中，不断检测网络的通断状态，当检测到网络断开时，上位控制主机立即给机器人发送停止命令，巡检机器人停止运行。

[0029] 最后说明的是，以上实施例仅用以说明本发明的技术方案而非限制，尽管参照较佳实施例对本发明进行了详细说明，本领域的普通技术人员应当理解，可以对本发明的技术方案进行修改或者等同替换，而不脱离本技术方案的宗旨和范围，其均应涵盖在本发明的权利要求范围当中。
图1
电子地图展现模块

电子地图

机器人状态

路径规划

图 7