発明の名称 新規糖誘導体ゲル化剤

発明者 : 小野 野文 成 (ONO, Fumiyasu); 〒812858 1 福 岡 県 福 岡 市 東 区 箱 崎 丁 目 10番 1号 国立 大学 法 人 九 州 大 学 内 北 楽 (JP); 三 島 一 郎 (SARUHASHI, Koichiro); 〒274052 千 萩 県 草 橋 市 幸 身 町 4 8 8 番 地 6 日 産 化 学 工 業 株 式 会 社 材料科学研究所 内 Chiba (JP); 平 田 修 (HIRATA, Osamu); 〒274052 千 萩 県 草 橋 市 幸 身 町 4 8 8 番 地 6 日 産 化 学 工 業 株 式 会 社 材料科学研究所 内 Chiba (JP); 新 海 征 治 (HINKAI, Seiji); 〒810011 福 岡 県 福 岡 市 東 区 三 聖 2 133 17 7 權 船 (JP); 山 本 一 畑 (HANAMOTO, Tatsuhiko); 〒819015 福 岡 県 福 岡 市 西 区 4 丸 1 1 0 3 0 5 小 楽 (JP).

代理人 : 特 業 業 法 人 な ぶ さ 特 業 業 商 標 事 務 所 (HANABUSA PATENT & TRADEMARK OFFICE); 〒101062 東京都千代 田 区 神 田 銀 河 台 3丁 目 2 番 地 新 御 藤 ノ ボ ア パ ン ド リ ト ニ テ (JP); 指 定 国 (表示 に そ の 順 に, 全 て の 種 類 の 国 内 保 護 可 電; AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, IU, IL, IN, 節 葉 有)

製品 : NOVEL SUGAR DERIVATIVE GELLING AGENT

Abs : [Problem] To provide a novel gelling agent containing a sugar derivative.

[Solution] A gelling agent comprising a compound represented by the formula (1) or (2) in the formulae: R1 represents a C9-20 straight or branched alkyl, a C13-20 cyclic alkyl, or a C9-20 straight or branched alkenyl; R2 represents a hydrogen atom, a C1-10 straight or branched alkyl, or an optionally substituted alkyl; and R3 and R4 each represent a hydroxyl.

[要約: 題] 糖誘導体を含む新規ゲル化剤を提供すること。
WO 2017/034004 A1

(84) 指定国（表示のない限り、全ての種類の広域保護が可肯^: ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), ユー

添付公開書類：国際調査報告（条約第21条(3)）
明 細 書

発明の名称：新規糖誘導体ゲル化剤

技術分野

[0001] 本発明は、新規なゲル化剤に関し、詳細にはアルキル−糖誘導体を含む新規なゲル化剤に関する。

背景技術

[0002] ゲル形成能力を有する物質（以下ゲル化剤）により形成された三次元網目構造中に流体が含まれている構造体をゲルと呼び、一般に流体が水である場合をヒドログル（ハイドログル）、水以外の有機液体（有機溶媒や油等）の場合をオルガノゲル又はオイルゲルと呼んでいる。オイルゲル（オルガノゲル）は、化粧品、医薬品、農薬、食品、接着剤、塗料、樹脂等の分野において、化粧品や塗料の流動性の調整に利用されている。また、例えば、廃油をゲル化して固形物として水質汚染を防止したりする等、環境保全の分野においても幅広く利用されている。

ゲル化剤についての研究は、主に高分子化合物について行われてきたが、近年では、高分子化合物に比べて、多様な機能の導入が容易な低分子化合物についての研究開発が進められている。上述したように、オイルゲル（オルガノゲル）は幅広い分野での利用がされており、今後も利用分野の拡大が期待されている。このため、低分子化合物のゲル化剤（以下、低分子ゲル化剤ということがある）には、オイルゲルの用途拡大に当たり、広範な種類の有機溶剤に対するゲル形成能力が求められている。こうした課題に対し、これまでにも、種々の有機溶剤に対して少量の添加量で安定性に優れるゲルを形成できる低分子ゲル化剤として種々の化合物が提案されている。その一つとして、例えば各種単糖類から誘導された糖誘導体は、互いに強い氷水結合をとりやすい構造であることから、様々な種類の有機溶媒をゲル化することが報告されている（非特許文献1）。さらに糖誘導体を用いた低分子ゲル化剤が、水と油（親水性有機溶媒及び疎水性有機溶媒）の双方の溶媒並びにこれ
らの混合溶媒をゲル化できることが報告されている（特許文献1）。

先行技術文献

特許文献

非特許文献

発明の開示

発明が解決しようとする課題

[0005] これまでにも、有機溶媒などの非水性媒体向けの低分子化合物からなるオイルゲル化剤は提案されているものの、ゲル化できる媒体が限られるなどの問題があり、このため新たな用途・機能性を有する新規なオイルゲルの創製にあたり、種々の媒体をゲル化できる新たな低分子オイルゲル化剤の提案が模索されている。

上述の糖誘導体のゲル化剤は、糖の種類を変化させる事で各種溶媒をゲル化させることができるが、逆に1種類の糖誘導体で幅広い種類の溶媒をゲル化することは比較的難しく、また非特許文献1記載の糖誘導体で得られるゲルは保存安定性がない。さらに特許文献1に開示されるゲル化剤は、水と油（親水性有機溶媒及び疎水性有機溶媒）の混合溶媒をもゲル化できるものの、光毒性を始めとする安全性試験に対するコストがかからない。

[0006] このように、水と油（疎水性有機溶媒）の混合溶媒をゲル化し、水/油分散ゲル、すなわちエマルションゲル（ゲルエマルション）を形成できるゲル化剤は、生体安全性の高さが求められる化粧品や医薬品基材において特に有用であるものの、幅広い種類の溶媒に対するゲル化能と生体安全性を確保できる画期的なゲル化剤は、まだ未到達である。

また一般に化粧品等の用途において、W/O（水中油型）エマルションは皮膚上での伸びが軽く油性感が弱いために、これまでより多くの化粧品に応用されている。一方、O/W（油中水型）エマルションは、0/W型と比べ
ると皮膚に適用した際に油性感が多めとなるものの、耐水性（耐汗性）が要求される用途において好適であり、また化粧の効果を長時間持続できる。またWZ〇型エマルションは、分散相（内相）の水分量を多くすることにより、サッパリとした使用感をも実現することができるが期待できる。

このため近年、上記エマルションジェルをW/0型のエマルションジェルとし得ることができるゲル化剤に対する要望も高まっている。

本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、様々な種類の有機溶媒をゲル化でき、水や親水性有機溶媒および疎水性有機溶媒（油等）をそれぞれ単独でゲル化できるだけでなく、これらの混合溶媒、特に水と疎水性有機溶媒（油）の混合溶媒についてもゲル化でき、且つ生体安全性にも優れるゲルを調製でき、しかもW/0型のエマルションジェルを調製できる、新規なゲル化剤を提供することにある。

課題を解決するための手段

本発明者らは、上記の課題を解決すべく研究を行った結果、アルキル—糖誘導体をゲル化剤として適用したところ、驚くべきことに種々の溶媒に対してゲルを形成可能であり、特に水と疎水性溶液（油）との混合溶媒についてゲル化できることを見出し、本発明を完成させた。

すなわち、本発明は、第1観点として、下記式（1）又は式（2）で表される化合物からなるゲル化剤に関する。

[化1]

\[
\begin{align*}
\text{(1)} & \quad \begin{array}{c}
R_1 R_2 R_3 R_4 \\
O O O O
\end{array} \\
\text{(2)} & \quad \begin{array}{c}
R_1 R_2 R_3 R_4 \\
O O O O
\end{array}
\end{align*}
\]

[式中、

\(R\)は、炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数9乃至20の直\]
鎖状若しくは分岐鎖状のアルケニル基を表し,

\[R_2 \] は、水素原子、炭素原子数 1 乃至 10 の直鎖状又は分岐鎖状のアルキル基，又は置換基を有していてもよいアリール基を表し，

\[R_3 \] 及び \[R_4 \] は、ヒドロキシ基を表す。]

第 2 観点として、前記式 (1) で表される化合物は式 (3) で表される化合物である，第 1 観点に記載のゲル化剤に関する。

[式中、\[R_1 \] 及び \[R_2 \] は前記式 (1) に記載の定義と同義である。]

第 3 観点として、前記式 (1) で表される化合物は式 (4) で表される化合物である，第 1 観点に記載のゲル化剤に関する。

[式中、\[R_1 \] 及び \[R_2 \] は前記式 (1) に記載の定義と同義である。]

第 4 観点として，第 1 観点乃至第 3 観点のうち何れか 1 項に記載のゲル化剤と，疎水性有機溶媒，親水性有機溶液，疎水性有機溶液又は水溶液よりなるゲルに関する。

第 5 観点として，第 1 観点乃至第 3 観点のうち何れか 1 項に記載のゲル化剤と，界面活性剤と，疎水性有機溶媒，親水性有機溶媒，水，親水性有機溶液，疎水性有機溶液又は水溶液よりなるゲルに関する。

第 6 観点として，前記疎水性有機溶媒は植物油，エステル類，シリコーン油及び炭化水素類からなる群から選択される少なくとも一種である，第 4 観点又は第 5 観点に記載のゲルに関する。

第 7 観点として，前記疎水性有機溶媒は第 6 観点に記載の疎水性有機溶媒
と水との混合溶媒である、第4観点又は第5観点に記載のゲルに関する。
第8観点として、前記親水性有機溶媒はメタノール、エタノール、2-プロパノール、1-ブタノール、ヘキサノール、1-オクタノール、イソオクタノール、アセトン、シクロヘキサン、アセトニトリル、ジオキサン、グリセロール、プロピレングリコール、エチレングリコール及びジメチルスルホキシドからなる群から選択される少なくとも一種である、第5観点に記載のゲルに関する。
第9観点として、前記親水性有機溶媒は請求項8に記載の親水性有機溶媒と水との混合溶媒である、第4観点又は第5観点に記載のゲルに関する。
第10観点として、さらに微粒子がゲル内に分散されてなる、第4観点乃至第9観点のうちどれか1項に記載のゲルに関する。
第11観点として、イオン液体のゲル化剤である、第1観点乃至第3観点のうちどれか1項に記載のゲル化剤に関する。
第12観点として、第1観点乃至第3観点のうちどれか1項に記載のゲル化剤とイオン液体よりなるゲルに関する。
第13観点として、第1観点乃至第3観点のうちどれか1項に記載のゲル化剤を含む、化粧品基材又は医療用基材に関する。
第14観点として、請求項1に記載の式(1)又は式(2)で表される化合物を製造する方法において、
式R1—CHO (式中、R1は、炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルケニル基を表す。)で表される化合物をグルコース、マンノース又はガラクトース又はそれらの誘導体と縮環反応させて、前記式(1)又は式(2)で表される化合物を製造する工程を、DMF、オルトギ酸トリエチル、p-トルエンスルホン酸の存在下でワンポットで為すことを特徴とする、方法に関する。
第15観点として、下記式(7)又は式(8)で表される化合物からなるゲル化剤に関する。
式中、

R_5は、炭素原子数13乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数13乃至20の直鎖状若しくは分岐鎖状のアルケニル基を表し、

R_2は、水素原子、炭素原子数1乃至10の直鎖状又は分岐鎖状のアルキル基、又は置換基を有していてもよいアリール基を表し、

R_3及びR_4は、ヒドロキシ基を表す。

発明の効果

本発明のゲル化剤は、水と油（疎水性有機溶媒）といった様々な溶媒に対してゲル形成能を有し、例えば水と親水性有機溶媒の親水性の混合溶媒や、
疎水性有機溶媒（油）といった種々の系においてゲルを形成することができ、またチキソトロピー性に優れるゲルを得る事ができる。

特に本発明のゲル化剤は、水と油（疎水性有機溶媒）の混合溶媒から水/油分散ゲルを形成でき、しかも高含水率のW/O型のエマルションゲルを形成することができ、優れた使用感を与える水/油分散ゲルの提供が可能となる。

さらに本発明のゲル化剤は、イオン液体をゲル化でき、イオン液体と油の混合溶媒からイオン液体—油分散ゲル（ゲルエマルション）を形成できる。

そして本発明のゲル化剤は、微粒子を含む系においてもゲル形成でき、微粒子を含む水と油（疎水性有機溶媒）の混合溶媒からも水/油分散ゲルを形成できる。

また本発明のゲル化剤はグルコース、マンノース、ガラクトース又はそれ
らの誘導体といった単糖類を原料とするものであるため、生体安全性が高いのみならず、原料コストを極めて低く抑えることができる。

また本発明の製造方法によれば、グルコースやマンノース、ガラクトースの誘導体から上述のゲル化剤をワンボットで製造でき、安価で簡便にゲル化剤となる化合物が製造できる。しかも製造時にメタノールや金属触媒を必要としないことから、反応後の系からこうした刺激性化合物の残存を排除でき、特に化粧品基材や医療用基材、また食品用基材などの高い安全性が求められる基材に対するゲル化剤として好適な化合物を製造できる。

図面の簡単な説明

クァラン=50/50（vol/vol）ゲル（図6（a））、及び、さらにTWEEN20配合をしたイオン液体[BuMeIm][TFSI]/
スクァラン（イオン液体/スクァラン=50/50（vol/vol））ゲル（図6（b））の、共焦点レーザースキャン顕微鏡像を示す写真である。
[図7]図7は、実施例13で調製した、化合物[8]をゲル化剤として用い、
チタン及びSPAN80配合のKF995/水=20/80（vol/vol）ゲルの共焦点レーザースキャン顕微鏡像を示す写真である。
[図8]図8は、実施例14で調製したファンデーションの外観を示す図である。

発明を実施するための形態

[0013] [ゲル化剤]
本発明のゲル化剤は、下記式（1）又は式（2）で表される化合物からなる。

[化5]

![Chemical Structure](image)

[式中、

R1は、炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数9乃至20の直
鎖状若しくは分岐鎖状のアルケニル基を表し、

R2は、水素原子、炭素原子数1乃至10の直鎖状又は分岐鎖状のアルキル基、又は置換基を有していてもよいアリール基を表し、

R3及びR4は、ヒドロキシ基を表す。]

[0014] 前記炭素原子数9乃至20の直鎖状又は分岐状のアルキル基としては、ノ
ニル基、デシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキ
サテシル基、ヘプタデシル基、オクタデシル基、ノナデシル基及びエイコシ
ール基等、並びにこれらの基が分岐されてなる基が挙げられる。

前記炭素原子数13乃至20の環状のアルキル基としては、環状のアルキ
ル基のみならなる基（例えば、シクロトリデシル基、シクロテトラデシル基、
シクロヘキサデシル基、シクロヘプタデシル基、シクロオクタデシル基、シクロカクテシル基等）だけ
でなく、シクロペンチル環、シクロヘキサシン環等の環構造を有する直鎖状及
び、又は分岐鎖状のアルキル基であって、炭素原子数が13乃至20の基で
あるものも挙げられる。

前記炭素原子数9乃至20の直鎖状又は分岐鎖状のアルケニル基としては、
、ノネニル基、デセニル基、トリセニル基、テトラセニル基、ベンタセ
ニル基、ヘキサセニル基、ヘプタセニル基、オクタセニル基、ノナ
テセニル基、エイコセニル基等、並びにこれらの基が分岐されてなる基が挙
げられる。

前記アリール基としては、フエニル基、ベンジル基、1—ナフチル基、2
—ナフチル基、1—アントリル基及び1—フェナントリル基等が挙げられる
。また、該アリール基は、置換基を有していてもよく、そのような置換基と
しては、アミド結合、アミド結合やエステル結合を含んでもよい直鎖状、
分岐状あるいは環状のアルキル基やハロゲン原子等が挙げられる。

本発明のゲル化剤を用いて、後述の種々の溶媒を良好にゲル化させる観点
から、前記式（1）又は（2）において、R2は水素原子、メチル基、エチル
基が好ましく、中でも水素原子又はメチル基であることが好ましい。

また、R1は例えば炭素原子数が13以上の基、あるいは炭素原子数が15
以上の基とすることができ、後述する種々の溶媒を単独で、もしくはこれら溶媒を混合させた際に、離液することなく透明性及び均一性の高いゲルを得ることができるという観点においては、\(R \) は特に炭素原子数が 17 以上の直鎖アルキル基が好ましい。また \(R_1 \) の炭素原子数を大きくする（炭素鎖長を長くする）ことにより、親水性有機溶媒比率の高い親水性有機溶液をゲル形成できる。

前記 (1) 又は式 (2) で表される化合物は、公知の方法、例えば、上記 \(R \) 基を有するアルデヒドと単糖とを反応させることにより得られる。

使用できる単糖としては、ビラノース環構造を示す単糖に限れば特に限定されるものではないが、アロース、アルトロース、グルコース、マンノース、グルコース、イドース、ガラクトース及びタロース等が挙げられる。

その中でも、比較的安価で生体適合性が特に期待される観点から、単糖としては、グルコース、マンノース、ガラクトースが好ましく、中でも、グルコース及びマンノースが好ましい。

上記式 (1) 又は (2) で表される化合物の中でも、特にグルコース部分を有する下記式 (3) で表される化合物、又はマンノース部分を有する下記式 (4) で表される化合物が好ましい。

\[
\begin{align*}
R_1 & \quad \text{O} \\
\quad & \quad \text{O} \\
\quad & \quad \text{O} \\
\text{HO} & \quad \text{OH} \\
\quad & \quad \text{OR}_2 \\
\end{align*}
\]

式中、\(R_1 \) 及び \(R_2 \) は前記式 (1) に記載の定義と同義である。]

\[
\begin{align*}
R_1 & \quad \text{O} \\
\quad & \quad \text{O} \\
\quad & \quad \text{OH} \\
\text{HO} & \quad \text{OR}_2 \\
\end{align*}
\]

式中、\(R_1 \) 及び \(R_2 \) は前記式 (1) に記載の定義と同義である。]

上記式 (3) で表される化合物の中でも、下記式 (5) で表される化合物
が好ましい。

[化8]

[式中、R₁は前記式（1）に記載の定義と同義である。]

また、上記式（4）で表される化合物の中でも、下記式（6）で表される化合物が好ましい。

[化9]

[式中、R₂は前記式（1）に記載の定義と同義である。]

[0021] 上記式（3）で表される化合物（グルコース型ゲル化剤）は、親水性有機溶液と油（疎水性有機溶媒）のいずれにおいてもゲル形成能を有し、特に水／油混合溶媒に対して水／油分散ゲルを形成することができることを最大の特徴とする。

また式（3）で表される化合物は、チキソトロピー性に優れるゲルを得ることができる。そして自立可能（自己支持性を有する）である透明なゲルを形成できるという特性をも有する。

[0022] なお上記式（1）又は式（2）で表される化合物のうち、R₂が炭素原子数13乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数13乃至20の直鎖状若しくは分岐鎖状のアルケニル基を表す化合物、すなわち、下記式（7）又は式（8）で表される化合物も、本発明の対象である。
【式中、

\(R_5 \) は、炭素原子数 13 乃至 20 の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数 13 乃至 20 の環状のアルキル基、又は炭素原子数 13 乃至 20 の直鎖状若しくは分岐鎖状のアルケニル基を表し、

\(R_2 \) は、水素原子、炭素原子数 1 乃至 10 の直鎖状又は分岐鎖状のアルキル基、又は置換基を有していてもよいアリール基を表し、

\(R_3 \) 及び \(R_4 \) は、ビドロキシ基を表す。]

[0023]【ゲル】

本発明のゲルは、上記ゲル化剤で溶媒をゲル化させることにより、得ることができる。具体的には、溶媒に所定量のゲル化剤を加熱溶解させ、冷却するという製造方法が例示される。通常、加熱溶解の際には、完全に溶解させることが好ましい。

なお、本明細書において、ゲル化とは、流動性のある液体が流動性を失った状態となることをいう。

溶媒をゲル化するに際し、本発明のゲル化剤の使用量は、本発明の効果を奏する限り特に限定されないが、ゲル化される溶媒の質量に対して通常 0.001 乃至 2.0 質量 %、例えば 0.02 乃至 5 質量 % である。

[0024]前記溶媒としては、ゲル化を防げるものでなければ特に限定されないが、好ましい具体例として、疎水性有機溶媒、親水性有機溶媒、水、水と親水性有機溶媒の混合溶媒（本明細書において親水性有機溶液と称する。）、疎水性有機溶媒と水との混合溶媒（本明細書では、疎水性有機溶液という。）若しくは、水に有機酸又は無機酸を、又は水に無機塩又は有機塩を溶解させた水溶液（本明細書において水溶液と称する。）等を挙げることができる。
本発明のゲルは、前記ゲル化剤と、疎水性有機溶媒、親水性有機溶液、疎水性有機溶液又は水溶液を含みて形成され得、或いは、前記ゲル化剤と、界面活性剤と、疎水性有機溶媒、親水性有機溶媒、水、親水性有機溶液、疎水性有機溶液又は水溶液を含みて形成され得る。

前記疎水性有機溶媒の好ましい具体例としては、例えばオリーブ油、ヤシ油、ヒマシ油、ホホバ油又はヒマワリ油等の植物油、酢酸エチル、オクタン酸セチル、ミリスチン酸イソプロピル又はパルミチン酸イソプロピル等のエステル類、トルエン、キシレン、n-ヘキサン、シクロヘキサン、オクタン、スクアラン、スクアレン、ミネラルオイル、シリコーン油又は水添ポリイソブテン等の炭化水素類、クロロホルム等のハロゲン化炭化水素類などが挙げられる。

これらの中でも、前記疎水性有機溶媒としては、オリーブ油、ミリスチン酸イソプロピル、トルエン、シクロヘキサン、スクアラン、スクアレン、直鎖状シリコーン、環状シリコーン、アルキル変性シリコーン、フェニル変性シリコーン、ジメチコン又はジメチコノール等のシリコーン油及びオクタンが好ましい。

上記シリコーン油は、東亜・ダウコーニング（株）より入手し得る直鎖状シリコーン（商品名：2－184）、環状シリコーン（デカメルシクロペンタシクロキサン（商品名：S H 2 4 5）等）、アルキル変性シリコーン（商品名：S S－3 4 0 8）、フェニル変性シリコーン（商品名：P H－15 5 5）、ジメチコン（商品名：B Y _ 1 1 _ 0 シリーズ）、ジメチコノール（商品名：C B－15 5 6）等、また信越シリコーン（株）より入手し得るデカメルシクロペンタシクロキサン（商品名：K F 9 5）などを使用し得る。

前記親水性有機溶媒は、水に任意の割合で溶解する有機溶媒を意味し、アルコールや、アセトン、シクロヘキサン、アセトニトリル、ジオキサン、グリセロール及びジメチルスルホキシド等が挙げられる。

前記アルコールは、好ましくは水に自由に溶解する水溶性アルコールであ
り、より好ましくは炭素原子数1乃至9のアルコール、多価アルコール、高級アルコール、グリセライド類が挙げられる。

具体的には、炭素原子数1乃至9のアルコールとしては、メタンノール、エタノール、プロパノール、ペンタノール、ヘキサノール、オクタノール、イソオクタノール等；多価アルコールとしては、エチレングリコール、プロピレングリコール、ポリプロピレングリコール等；高級アルコールとしては、オクチルデカノール、ステアリルアルコール、オレイルアルコール等；グリセライド類としてはトリオクタノイン、トリ（カプリルカプリル酸）グリセリル、ステアリン酸グリセリル等が挙げされる。

これらの中でも、前記親水性有機溶媒としては、メタンノール、エタノール、プロパノール、ペンタノール、ヘキサノール、オクタノール、イソオクタノール、アセトン、シクロヘキサン、アセトニトリル、ジオキサン、グリセロール、プロピレングリコール、エチレングリコール及びジメチルスルホキシドが好ましく、グリセロール、プロピレングリコール及びエチレングリコールがより好ましい。

[0027] また前記水溶液に使用する前記有機酸又は無機酸は、単独で用いてもよく、複数種を組み合わせて用いてもよい。

好ましい有機酸の例としては、酢酸、クエン酸、コハク酸、乳酸、リンゴ酸、マレイン酸、フマル酸及びトリフルオロ酢酸が挙げられる。より好ましくは、酢酸、クエン酸、コハク酸、乳酸、リンゴ酸であり、さらに好ましくは、酢酸、クエン酸、乳酸である。

また、好ましい無機酸の例としては、塩酸、リン酸、炭酸、硫酸、硝酸及びホウ酸が挙げられる。より好ましくは、塩酸、リン酸、炭酸、硫酸であり、さらに好ましくは、塩酸、リン酸、炭酸である。

さらに、前記水溶液に使用する前記無機塩又は有機塩は、複数種を用いてもよいが、好ましくは1又は2種である。塩を2種類加えることで、水溶液が緩衝能をもつことも望ましい。
好ましい無機塩の例としては無機炭酸塩、無機硫酸塩、無機リン酸塩及び無機リン酸水素塩が挙げられる。より好ましくは、炭酸カルシウム、炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、リン酸カリウム、リン酸水素ナトリウムであり、さらに好ましくは炭酸カルシウム、硫酸マグネシウム、リン酸水素ナトリウム又はリン酸二水素ナトリウムである。

また、好ましい有機塩の例としては、無機酢酸塩、無機乳酸塩、無機クエン酸塩といった無機有機酸塩、有機アミンの塩酸塩若しくは有機アミン酢酸塩が挙げられる。より好ましくは、酢酸ナトリウム、酢酸カリウム、乳酸ナトリウム、クエン酸カリウム、クエン酸カルシウム、エチレンジアミン四酢酸塩、トリスヒドロキシメチルアミノメタン塩酸塩である。

本発明のゲル化剤は、媒体である前述の疎水性有機溶媒、親水性有機溶媒、水、親水性有機溶液、疎水性有機溶液又は水溶液に対して、0.001乃至20質量％で、或いは0.001乃至10質量％で、好ましくは0.05乃至10質量％或いは0.1乃至10質量％、例えば0.02乃至5質量％或いは0.1乃至5質量％となる量で使用することができる。

本発明のゲル化剤を、媒体である前述の疎水性有機溶媒、親水性有機溶媒、水、親水性有機溶液、疎水性有機溶液又は水溶液等に加え、必要に応じて加熱攪拌して溶解させた後、室温に放置することにより、ゲルを得ることができる。ゲル強度は、ゲル化剤の濃度により調整することが可能である。

なお、本発明のゲル化剤によって形成されるゲルは、ゲル化剤のゲル化能を阻害しない範囲において、その適用用途等、必要に応じて各種添加剤（界面活性剤、紫外線吸収剤、保湿剤、防腐剤、酸化防止剤、香料、生理活性物質（薬効成分）等の有機化合物や、酸化チタン、タルク、マイカ、水等の無機化合物等）を混合することができる。

例えば界面活性剤としては、Tween 20、Span 80、ショ糖シュガーエステル等のノニオン性界面活性剤や、各種アニオン性界面活性剤、カ
チオン性界面活性剤等が挙げられる。
また生理活性物質としては、L-アスコルビン酸、L-アスコルビン酸2
— リン酸エステル3ナトリウム（ビタミンC誘導体）、グリシン、グルコサ
ミン等が挙げられる。

[0030] [微粒子]
また本発明のゲルは、さらに微粒子が分散されて含まれる形態として
もよい。
微粒子とは、非常に細かい粒子のことであり、球状を為す形状であっても
、縦、横、高さの値が異なる形状であってもよい。また、該粒子の数平均粒
子径としては、好ましくは0.1nm〜2μmであり、より好ましくは1
nm〜20μmである。
本発明において使用可能な微粒子は無機物や有機物の微粒子であり、例え
ば無機物では、酸化チタン、酸化亜鉛、酸化グロム、黒酸化鉄、赤酸化鉄、
黄酸化鉄、鉱丹、黒酸化チタン、水酸化グロム、チタン酸リチウムコバルト
、コバルトブルー、ターコイズ、チタンイエロー、Fe-Zn-Cr系ブラ
ウン、Cu-Cr系ブラック、アルミナ、カドミウムイエロー、カドミウム
レッド、黄鉛グリーン、グロムパーキリオン、ジンククロメート、マンガン
バイオレット、群青、紺青、リン酸カルシウム、ヒドロキシアパタイト、炭
酸カルシウム、炭酸マグネシウム、硫酸バリウム、アルミニウム粉、ブロン
ズ粉、カーポンブラック、オキシ塩化ビスマス、雲母チタン、鉛白、チタン
酸バリウム、チタン酸ジルコン酸鉛、フェライト、フォルステライト、ジル
コンニア、ジルコン、ムライト、ステアタイト、コーティエライト、窯化アル
ミニウム、窯化ケイ素、カオリン、無水ケイ酸、ケイ酸アルミニウムマグネ
シウム、合成金雲母、セリサイト、タルク、マイカ等が挙げられる。有機物
では、麻セルロース系、小麦でんぶん、シルク末、トウモロコシデンプン、
ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシウム
、ステアリン酸カルシウム、パルミチン酸亜鉛、ミリスチン酸亜鉛、ミリス
チン酸マグネシウム、ウンデシレン酸亜鉛、炭化ケイ素、セルロース系、ポ
リエチレン、ナイロン末、ポリアクリル酸アルキル、架橋ポリスチレン、メチルシロキサン網状重合体、ポリウレタン、レーキレッドC、ブリリアントカーミン6B、リオールレッド498、リオールイエローK—5G、リソールピンB、パーマネントレッド4R、ナフトールレッド、ファーストイエローG、ジスアゾイエローHR、ビラゾンオレンジ、ベンツイミダゾロンカーミンHF4C、ベンツイミダゾロンイエローH3G、総合アゾレッドB-R、総合アゾイエローG-R、フタロシアニンブルー、フタロシアングリーン、ジアントラキノニールレッド、チョインジゴポルドー、ペリレオレンジ、ペリレンレッド、キナクリドンマゼンタ、ジェキサジンパオレッド、キノフタロイエロー、アゾメチニイエロー、イソインドリノイエローG、ジケトキピールレッド、ローダミンB、ローダミン6Gレーキ、キノリンイエロー・レーキ等が挙げられる。微粒子として存在すれば、材質等は限定されず、またこれらの混合物や複合物であってもよい。さらには、光に対する散乱特性や遮蔽特性、色材としての耐久性を考慮すると、金属酸化物又はこれらの混合物若しくは複合物であってもよい。

[0031] 本発明のゲルに微粒子を配合する場合、微粒子の分散方法として、その分散効果を一層高めて様々な種類の微粒子の分散に対応できるようにするために、機械的分散処理を併用してもよい。ここで機械的分散処理とは、凝集した粒子に衝撃や剪断等物理的な力を加え、凝集体を解して分散させる処理のことをいう。例として、超音波洗浄や超音波溶媒化イザー等のように、発生した粗密状態や膨張に伴うキャビテーの消滅により凝集体を変形させて解砕する方法、高速ホモミキサーやコロイドミル等のように回転翼と固定環との微細な間隙で生じる強力な剪断力や衝撃力を利用する方法、高圧ホモジナイザー等の凝集体の高速衝突を利用する方法、ピーズミル等の媒体との衝突-剪断・衝撃・摩擦等を利用して分散する方法等が挙げられるが、特にこれらに限定されない。

[0032] 微粒子を配合する場合、その配合量は、微粒子が均一に分散されていれば、特に限りは無いが、ゲル化させたい流体の体積に対して、0.1〜20質
量%（w/v %）が好ましく、さらに好ましくは、0.5〜10質量%（w/v %）である。

[0033] [各種用途]

本発明のゲル化剤は、上述のように種々の溶媒をゲル化でき、また水と油の混合溶媒をもゲル化できる。このため本発明のゲル化剤及びそれから得られるゲルは、化粧品基材又は医療用基材、ゲル電解質、細胞培養基材、細胞やタンパク質などの生体分子保存用基材、外用基材、生化学用基材、食品用基材、コンタクトレンズ、紙おむつ、人工アキチューター、乾燥地農業用基材など、様々な分野における材料に使用することができる。また、酵素などのバイオリアクター担体として、研究、医療、分析、各種産業に幅広く利用することができる。

[0034] [化粧品基材又は医療用基材]

本発明の化粧品基材又は医療用基材は、上記ゲル化剤を含む。

また、本発明の化粧品基材又は医療用基材は、上記ゲル化剤の他に、水、アルコール、多価アルコール、親水性有機溶媒、疎水性有機溶媒、又はそれらの混合溶液を含むことができる。なお、前記アルコール、多価アルコール、親水性有機溶媒及び疎水性有機溶媒としては、前述のアルコール、多価アルコール、親水性有機溶媒及び疎水性有機溶媒で例示された化合物が挙げられる。

さらに、本発明の化粧品基材又は医療用基材は、必要に応じて、一般的に化粧品基材又は医療用基材に配合される生理活性物質及び機能性物質等の添加成分を含むことができ、そのような添加成分としては、油性基剤、保湿剤、感触向上剤、界面活性剤、高分子、増粘・ゲル化剤、溶剤、噴射剤、酸化防止剤、還元剤、酸化剤、防腐剤、抗酸剤、殺菌剤、キレート剤、pH調整剤、酸、アルカリ、粉体、無機塩、紫外線吸収剤、美白剤、ビタミン類及びその誘導体類、育毛用薬剤、血行促進剤、刺激剤、ホルモン類、抗しわ剤、抗老化剤、ひきしめ剤、冷感剤、温感剤、創傷治癒促進剤、刺激緩和剤、鎮痛剤、細胞賦活剤、植物・動物・微生物エキス、鎮痒剤、角質剥離・溶解剤
、制汗剤、清涼剤、収れん剤、酵素、核酸、香料、色素、着色剤、染料、顔料、消炎剤、抗炎症剤、抗喘息、抗慢性閉塞性肺疾患、抗アレルギー、免疫調整剤、抗感染症剤及び抗真菌剤等が挙げられる。

[0035] また、本発明の化粧品基材又は医療用基材は、上記ゲル化剤及び少なくとも1種の高分子化合物を含み得る。

前記高分子化合物としては、ゼラチン、アルギン酸ナトリウム、アルギン酸プロビレンジリコール、アラビアガム、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸ナトリウム、カルボキシメチルセルロース、ジェラングム、キサンタンガム、カラギーナンポリスチレン、ポリメチルメタクリレート、ポリビニルビロリドン、ポリエチレンオキシド、ポリ乳酸、ポリスチレンスルホン酸、ポリアクリロニトリル、ポリエチレン及びポリエチレンテレフタレート等が挙げられる。

[0036] これらの添加成分を例示すると、油性基剤としては、セタノール、ミリスチルアルコール、オレインアルコール、ラウリルアルコール、セトステアリルアルコール、ステアリルアルコール、アラキルアルコール、ヘドニルアルコール、ホホバアルコール、キミルアルコール、セラキルアルコール、パチルアルコール、ヘキシルデカノール、イソステアリルアルコール、2-オクチルデカノール、ダイマージオール等の高級（多価）アルコール類；ベンジルアルコール等のアラキルアルコール及びその誘導体；ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、ヘン酸、ウンデシレン酸、12-ヒドロキシステアリン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレイン酸、エラック酸、ドコサヘキサエン酸、エイコサペンタエン酸、イソヘキサデン酸、アンティソヘンイコサン酸、長鎖分岐脂肪酸、ダイマー酸、水素添加ダイマー酸等の高級脂肪酸類、及びそのアルミニウム塩、カルシウム塩、マグネシウム塩、亜鉛塩、カリウム塩、ナトリウム塩等の金属石けん類、並びにアミト等の含窒素誘導体類；流動パラフィン（ミネラルオイル）、重質流動イソパラフィン、軽質流動イソパラフィン、α-オレフィンオリゴマー、ポリイソブテン、水添ポリイソブテン
、ポリブテン、スクアラン、オリーブ由来スクアラン、スクアレン、ウセリ
ン、固形パラフィン等の炭化水素類；キャンディリラワックス、カルナウバ
ックス、ライスワックス、木ろう、みつろう、モンタンワックス、オゾケラ
イト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、ペ
トロラタム、フィッシャートロプシュワックス、ポリエチレンワックス、エ
チレン・プロピレンコポリマー等のワックス類；ヤシ油、バーム油、バーム
核油、サフラワー油、オリーブ油、ヒマシ油、アポカド油、ゴマ油、茶油、
月見草油、小麦胚芽油、マカデミアナッツ油、ヘーゼルナッツ油、クイナッ
ツ油、ローズヒップ油、メドウフォーム油、パーシック油、ティートリー
油、ハツカ油、トウモロコシ油、ナタネ油、ヒマラリ油、小麦胚芽油、アマ
ニ油、綿実油、大豆油、落花生油、コメヌカ油、カカオ脂、シア脂、水素添
加ヤシ油、水素添加ヒマシ油、ホホバ油、水素添加ホホバ油等の植物油脂類
；牛脂、乳脂、馬脂、卵黄油、ミンク油、タートル油等の動物性油脂類；鰐
ロウ、ラノリン、オレンジラッフィー油等の動物性ロウ類；液状ラノリン、
還元ラノリン、吸着精製ラノリン、酢酸ラノリン、酢酸液状ラノリン、ヒド
ロキシラノリン、ポリオキシエチレンラノリン、ラノリン脂肪酸、硬質ラノ
リン脂肪酸、ラノリンアルコール、酢酸ラノリンアルコール、酢酸（セチル
・ラノリル）エステル等のラノリン類；レシチン、ホスファチジルコリン、
ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジル
グリセロール、ホスファチジルイノシトール、スフィンゴミエリン等のスフ
インゴリシン脂質、ホスファチジン酸、リゾレシチン等のリン脂質類；水素添
加大豆リン脂質、部分水素添加大豆リン脂質、水素添加卵黄リン脂質、部分
水素添加卵黄リン脂質等のリン脂質誘導体類；コレステロール、ジヒドロコ
コレステロール、ラノステロール、ジヒドロラノステロール、フィトステロー
ル、コール酸等のステロール類；サボゲニン類；サボニン類；酢酸コレステ
リル、ノナン酸コレステリル、ステアリン酸コレステリル、イソステアリン
酸コレステリル、オリエン酸コレステリル、N—ラウロイル—L—グルタミ
ン酸ジ（コレステリル／ベヘニル／オクチルドデシル）、N—ラウロイル—
L-グルタミン酸ジ（コレステリン/オクチルドデシル）、N-ラウロイル-L-グルタミン酸ジ（フイトステリル/ベヘニル/オクチルドデシル）、N-ラウロイル-N-ラウロイル-L-グルタミン酸ジ（フイトステリル/オクチルドデシル）、N-ラウロイルサルコシンイソプロピル等のアシルサルコシsterolアルキルエステル、12-セドロキシステアリン酸コレステリル、マカデミアナッツ油脂肪酸コレステリル、マカデミアナッツ油脂肪酸フイトステリル、イソステアリン酸フイトステリル、軟質ラノリン脂肪酸コレステリル、硬質ラノリン脂肪酸コレステリル、長鎖分岐脂肪酸コレステリル、長鎖α-ヒドロキシ脂肪酸コレステリル等のステロールエステル類；リン脂質・コレステロール複合体、リン脂質・フイトステロール複合体等の脂質複合体；ミリスチン酸オクチルドデシル、ミリスチン酸ヘキシルデシル、イソステアリン酸オクチルドデシル、パリミチン酸セチル、パルミチン酸オクチルドデシル、オクタン酸セチル、オクタン酸ヘキシルデシル、イソノナノ酸イソトリデシル、イソノナノ酸イソノナノ酸オクチル、イソノナノ酸イソトリデシル、ネオペンタン酸イソデシル、ネオペンタン酸イソトリデシル、ネオペンタン酸イソステアリル、ネオデカン酸オクチルドデシル、オレイイン酸オレイル、オレイイン酸オクチルドデシル、リシノレイン酸オクチルドデシル、ラノリン脂肪酸オクチルドデシル、ジメチルオクタン酸ヘキシルデシル、エルカ酸オクチルドデシル、イソステアリン酸硬化ヒマシ油、オレイイン酸エチル、アポカド油脂肪酸エチル、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、パルミチン酸オクチル、イソステアリン酸イソプロピル、ラノリン脂肪酸イソプロピル、セバチ酸ジェチル、セバチ酸ジイソプロピル、セバチ酸ジオクチル、アジェビ酸ジイソプロピル、セバチ酸ジブチルオクチル、アジェビ酸ジイソプロピル、コハク酸ジオクチル、クエン酸トリエチル等のモノアルコールカルボン酸エステル類；乳酸セチル、リンゴ酸ジオステアリル、モノイソステアリン酸水添ヒマシ油等のオキシ酸エステル類；トリオクタン酸グリセリル、トリオレイン酸グリセリル、トリイソステアリン酸グリセリル、トリ（カプリル酸/カプリ
ン酸)グリセリル、トリ（カプル酸/カプリン酸/ミリスチン酸/ステアリン酸）グリセリル、水添ロジントリグリセリド（水素添加エステルガム）、ロジントリグリセリド（エステルガム）、ベヘン酸エイコサン二酸グリセリル、トリオクタン酸トリメチロールプロパン、トリイソステアリン酸トリメチロールプロパン、ジオクタン酸ネオペンチルグリコール、ジカプリン酸ネオペンチルグリコール、ジオクタン酸2-ブチル-2-エチル1、3-プロパンジオール、ジオレイン酸ブロピレングリコール、テトラオクタン酸ペンタエリスリチル、水素添加ロジンペンタエリスリチル、トリエチルヘキサン酸ジトリメチロールプロパン、（イソステアリン酸/セバシン酸）ジトリメチロールプロパン、トリエチルヘキサンペンタエリスリチル、（ヒドロキシステアリン酸/ステアリン酸/ロジン酸）ジペンタエリスリチル、ジイソステアリン酸ジグリセリル、テトライソステアリン酸ポリグリセリル、ノナイソステアリン酸ポリグリセリル_10、テカ（エルカ酸/イソステアリン酸/リシノレイン酸）ポリグリセリル_8、（ヘキシルデカン酸/セバシン酸）ジグリセリルオリゴエステル、ジステアリン酸グリコール（ジステアリン酸エチレングリコール）、ジネオペンタン酸3-メチル1、5-ペンタンジオール、ジネオペンタン酸2、4-ジェチル1、5-ペンタンジオール等の多価アルコール脂肪酸エステル類；ダイマージリノール酸ジイソプロピル、ダイマージリノール酸ジイソステアリル、ダイマージリノール酸ジ（イソステアリル/フィトステリル）、ダイマージリノール酸（フィトステリル/イソステアリル/セチル/ステアリル/ベヘニル）、ダイマージリノール酸ダイマージリノレイル、ジイソステアリン酸ダイマージリノレイル、ダイマージリノレイル水添ロジン総合物、ダイマージリノール酸硬化ヒマシ油、ヒドロキシアルキルダイマージリノレイルエーテル等のダイマー酸若しくはダイマージオールの誘導体；ヤシ油脂肪酸モノエタノールアミド（コカミドM E A）、ヤシ油脂肪酸ジエタノールアミド（コカミドD E A）、ラウリン酸モノエタノールアミド（ラウラミドM E A）、ラウリン酸ジエタノールアミド（ラウラ
ミドEA）、ラウリン酸モノイソプロピルアミド（ラウラミドMIPA）、パルミチ
酸ジエタノールアミド（パルタミドDEA）、ヤシ油脂肪酸メチルエタノ
ールアミド（コカミドメチルMEA）、パラレチン酸モノエタノールアミド
（パラレタミドMEA）、パルミチン酸ジエタノールアミド（パルタミドDEA）、
ヤシ油脂肪酸メチルエタノールアミド類（ジメチコン（ジメチルポリシロキサン）、
高重合ジメチコン（高重合ジメチルポリシロキサン）、シクロメチコン（環状ジメチルシロキサン、テカメチル
シクロペンタシロキサン）、フェニルトリメチコン、ジフェニルジェチコン
、フェニルジメチコン、ステアロキシプロピルジェチルアミン、（アミノエチル
アミノプロピルメチコン／ジメチコン）コポリマー、ジメチコンノール、
ジメチコンノールクロスポリマー、シリコーン樹脂、シリコーンゴム、アミノ
プロピルジメチコン及びアモジメチコン等のアミノ変性シリコーン、カチオン
変性シリコーン、ジメチコンポリオール等のポリエーテル変性シリコーン
、ポリグリセリン変性シリコーン、糖変性シリコーン、カルボン酸変性シリ
コーン、リン酸変性シリコーン、硫酸変性シリコーン、アルキル変性シリ
コーン、脂肪酸変性シリコーン、アルキルエーテル変性シリコーン、アミノ
酸変性シリコーン、ペプチド変性シリコーン、フッ素変性シリコーン、カチオ
ン変性及びポリエーテル変性シリコーン、アミノ変性及びポリエーテル変
性シリコーン、アルキル変性及びポリエーテル変性シリコーン、ポリシロキ
サン・オキシアルキレン共重合体等のシリコーン類（バーフォルドデカン、バーフ
ルフレオクタン、バーフルフレオリエーテル等のフッ素系油剤類が、
好ましいものとして挙げられる。}

[0037] 保湿剤・感触向上剤としては、グリセリン、1,3_ブチレンジイソプロピル
、プロピレンジイソプロピル、1,3_メチル_1,3_ブタンジオール、1,3_ブト
プロパンジオール、2_メチル_1,3_プロパンジオール、トリメチロール
プロパン、ペンタエリスリトール、ヘキシレンジイソプロピル、ジグリセリン
、ポリグリセリン、ジエチレンジイソプロピル、ポリエチレンジイソプロピル、ジブ
ロピレンジイソプロピル、ポリブロピレンジイソプロピル、テチレンジイソプロ
ピレンジイソプロピル共重合体等のポリオール類及びその重合体（ジエチレン
グリコールモノエチルエーテル (エトキシジグリコール)、エチレンジコールモノエチルエーテル、エチレンジコールモノブチルエーテル、ジェチレンジコールジブチルエーテル等のグリコールアルキルエーテル類；(エイコサンニ酸/テトラデカンニ酸)ポリグリセリル-10、テトラデカンニ酸ポリグリセリル-10等の水溶性エステル類；ソルビトール、キシリトール、エリシリトール、マンニトール、マルチトール等の糖アルコール類；グルコース、フルクトース、ガラクトース、マノース、トレオース、キシロース、アラビノース、フコース、リボース、デオキシリボース、マルトース、トレハロース、ラクトース、ラフュノース、ダルコン酸、グルロン酸、シクロデキストリン類（α-、β-、アーシクロデキストリン及び、マルトシル化、ヒドロキシアルキル化等の修飾シクロデキストリン）、β-グルカン、キチン、キトサン、ヘパリン及び誘導体、ペクチン、アラビノガラクタン、デキストリン、デキストラン、グリコーダン、エチルダルコンシド、メタクリル酸ダルコンシルエチル重合物若しくは共重合物等の糖類及びその誘導体類；ヒアルロン酸、ヒアルロン酸ナトリウム；コンドロイチン硫酸ナトリウム；ムコイチン硫酸、カロニン硫酸、ケラト硫酸、メラタン硫酸；シロキクラゲ抽出物、シロキクラゲ多糖体；フコイダン；チューベロース多糖体又は天然由来多糖体；クエン酸、酒石酸、乳酸等の有機酸及びその塩；尿素及びその誘導体；2-ビリリドン-5カルボン酸及びそのナトリウム等の塩；ペタイン（トリメチルグリシン）、ブロリン、ヒドロキシブロリン、アルギニン、リジン、セリン、グリシン、アラニン、フェニルアラニン、チロシン、β-アラニン、スレオニン、グルタミン酸、グルタミン、アスパラギン、アスパラギン酸、システイン、システイン、メチオニン、ロイシン、イソロイシン、パリン、トリプトファン、ヒスチジン、タウリン等のアミノ酸類及びその塩；コラーゲン、魚由来コラーゲン、アテロコラーゲン、ゼラチン、エラスチン、コラーゲン分解ペプチド、加水分解コラーゲン、塩化ヒドロキシプロピルアンモニウム加水分解コラーゲン、エラスチン分解ペプチド、ケラチン分解ペプチド、加水分解ケラチン、コンキオリン分解ペプチド、
加水分解 コンキオン、シルク蛋白分解ペプチド、加水分解シルク、ラウロイル加水分解シルクナトリウム、大豆蛋白分解ペプチド、小麦蛋白分解ペプチド、アシル化ペプチド等の蛋白ペプチド類及びその誘導体；パルミトイルオリゴペプチド、パルミトイルペンタペプチド、パルミトイルテトラペプチド等のアシル化ペプチド類；シリル化プロテイド；乳酸菌培養液、酵母抽出液、卵殻膜タンパク、牛顎下腺ムチン、ヒポタウリン、ガマリグナン配糖体、グルタチオン、アルプミン、乳清；塩化コリオン、ホスホリルコリオン；胎盤抽出液、エアラスチン、コラーゲン、アロゲン抽出物、ハマメリスク、ヘテマ水、カモミラエキス、カンゾウエキス、コンフィーマガミ、シルクエキス、イザヨイバラエキス、セイヨノコギリソウエキス、ユーカリエキス、メリロートエキス等の動物・植物抽出成分、天然型セラミド（タイプ1、2、3、4、5、6）、ヒドロキシセラミド、疑似セラミド、スフィンゴ糖脂質、セラミド及び糖セラミド含有エキス等のセラミド類が好ましいものとして挙げられる。

[0038] 界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、高分子界面活性剤等が好ましいものとして挙げられる。界面活性剤として好ましいものを例示すると、陰イオン性界面活性剤としては、ラウリン酸カリウム、ミリスチン酸カリウム等の脂肪酸塩；ラウリン硫酸ナトリウム、ラウリン硫酸トリエタノールアミン、ラウリン硫酸アンモニウム等のアルキル硫酸エステル塩；ラウレス硫酸ナトリウム、ラウレス硫酸トリエタノールアミン等のポリオキシエチレンアルキル硫酸塩；ココイルメチルタウリンナトリウム、ココイルメチルタウリンカリウム、ラウロイルメチルタウリンナトリウム、ミリストイールメチルタウリンナトリウム、ラウロイルメチルアラニンナトリウム、ラウロイルアラニンナトリウム、ラウロイルグルタミン酸メチルアラニンナトリウム等のアシルN—メチルアミノ酸塩；ココイルグルタミン酸ナトリウム、ココイルグルタミン酸ナトリウム、ラウロイルグルタミン酸ナトリウム、ミリストイールグルタミン酸ナトリウム、ミリスを行い、加水分解コンキオン、シルク蛋白分解ペプチド、加水分解シルク、ラウロイル加水分解シルクナトリウム、大豆蛋白分解ペプチド、小麦蛋白分解ペプチド、加水分解小麦蛋白、カゼイン分解ペプチド、アシル化ペプチド等の蛋白ペプチド類及びその誘導体；パルミトイルオリゴペプチド、パルミトイルペンタペプチド、パルミトイルテトラペプチド等のアシル化ペプチド類；シリル化プロテイド；乳酸菌培養液、酵母抽出液、卵殻膜タンパク、牛顎下腺ムチン、ヒポタウリン、ガマリグナン配糖体、グルタチオン、アルプミン、乳清；塩化コリオン、ホスホリルコリオン；胎盤抽出液、エアラスチン、コラーゲン、アロゲン抽出物、ハマメリスク、ヘテマ水、カモミラエキス、カンゾウエキス、コンフィーマガミ、シルクエキス、イザヨイバラエキス、セイヨノコギリソウエキス、ユーカリエキス、メリロートエキス等の動物・植物抽出成分、天然型セラミド（タイプ1、2、3、4、5、6）、ヒドロキシセラミド、疑似セラミド、スフィンゴ糖脂質、セラミド及び糖セラミド含有エキス等のセラミド類が好ましいものとして挙げられる。
ム、ステアロイルグルタミン酸ナトリウム、パルミトイルアスパラギン酸ジトリエタノールアミン、ココイルアラニントリエタノールアミン等のアシルアミノ酸ナトリウム、ラウレス酢酸ナトリウム等のポリオキシエチレンアルキルエーテル酢酸ナトリウム、脂肪酸アルカノールアミドエーテルカルボン酸、アシル乳酸塩、ポリオキシエチレン脂肪アミン硫酸塩、脂肪酸アルカノールアミド硫酸塩、硬化ヤシ油脂肪酸グリセリン硫酸ナトリウム等の脂肪酸グリセリン硫酸塩、アルキルベンゼンポリオキシエチレン硫酸塩、α-オレフィンスルホン酸ナトリウム等のオレフィンスルホン酸塩、スルホコハク酸ラウリル2ナトリウム、スルホコハク酸ジオクチルナトリウム等のアルキルスルホコハク酸塩、スルホコハク酸ラウレス2ナトリウム、モノラウロイルモノエタノールアミドポリオキシエチレンスルホコハク酸ナトリウム、ラウリルポリプロピレングリコールスルホコハク酸ナトリウム等のアルキルエーテルスルホコハク酸塩、テトラデシルベンゼンスルホン酸ナトリウム、テトラデシルベンゼンスルホン酸トリエタノールアミン等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、α-スルホ脂肪酸メチルエステル塩、アシルイセチオホ酯酸塩、アルキルグリシジルエーテルスルホン酸塩、アルキルスルホエステル塩、ラウレスリン酸ナトリウム、ジラウレスリン酸ナトリウム、トリラウレスリン酸ナトリウム、モノラウレスリン酸ナトリウム等のアルキルエーテルリン酸エステル塩、ラウリルリン酸カリウム、リン酸ナトリウム等のアルキルリン酸エステル塩、カゼインナトリウム、アルキルアリールエーテルリン酸塩、脂肪酸アミドエーテルリン酸塩、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸等のリン脂質類、カルボン酸変性シリコーン、リン酸変性シリコーン、硫酸変性シリコーン等のシリコーン系陰イオン性界面活性剤等、非イオン界面活性剤としては、ラウレス（ポリオキシエチレンラウリルエーテル）類、セテス（ポリオキシエチレンセチルエーテル）類、ステアレス（ポリオキシエチレンステアリルエーテル）類、ベヘネス類（ポリオキシエチレンベヘニルエーテル）、イソ
ステアレース（ポリオキシエチレンイソステアリルエーテル）類、オクチルドデセス（ポリオキシエチレンオクチルドデシルエーテル）類等の種々のポリオキシエチレンアルキルエーテル類；ポリオキシエチレンアルキルエーテル；ポリオキシエチレンアルキルフェニルエーテル；ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油モノイソステアレート、ポリオキシエチレン硬化ヒマシ油トリイソステアレート、ポリオキシエチレン硬化ヒマシ油モノピログルタルミン酸モノイソステアリン酸ジエステル、ポリオキシエチレン硬化ヒマシ油マルチン酸等のヒマシ油及び硬化ヒマシ油誘導体；ポリオキシエチレンフィトステロール；ポリオキシエチレンコレステロール；ポリオキシエチレンコレステロール；ポリオキシエチレンハクルノリン；ポリオキシエチレン・ポリオキシプロピレンセチルエーテル、ポリオキシエチレン・ポリオキシプロピレン2デシルテトラデシルエーテル、ポリオキシエチレン・ポリオキシプロピレンモノブチルエーテル、ポリオキシエチレン・ポリオキシプロピレン水添ラノリン、ポリオキシエチレン・ポリオキシプロピレングリセリンエーテル等のポリオキシエチレン・ポリオキシプロピレンアルキルエーテル；ポリオキシエチレン・ポリオキシプロピレングリコール；PPG9ジグリセリル等の（ポリ）グリセリンポリオキシプロピレングリコール；ステアリン酸グリセリル、イソステアリン酸グリセリル、パルミチン酸グリセリル、ミリチン酸グリセリル、オレイン酸グリセリル、シャギ油脂肪酸グリセリル、モノオクタン酸グリセリン、モノエチル酸グリセリン、モノオクタン酸グリセリン、モノステアリン酸グリセリン、モノステアリン酸グリセリンリンゴ酸等のグリセリン脂肪酸部分エステル類；ステアリン酸ポリグリセリル2、同3、同4、同5、同6、同7、同8、同9、ジステアリン酸ポリグリセリル6、同10、トリステアリン酸ポリグリセリル－2、デカステアリン酸ポリグリセリル－10、イソステアリン酸ポリグリセリル－2、同3、同4、同5、同6、同7、同8、同9、ジイソステアリン酸ポリグリセリル－2（ジイソステアリン酸ジグリセリル）、同3、同10
トリイソステアリン酸ポリグリセリル－2、デカイソステアリン酸ポリグリセリル－10、オレイン酸ポリグリセリル－2、同3、同4、同5、同6、同8、同10、ジオレイン酸ポリグリセリル－6、トリオレイン酸ポリグリセリル－2、デカオレイン酸ポリグリセリル－10等のポリグリセリン脂肪酸エステル；モノステアリン酸エチレンリコール等のエチレンリコールモノ脂肪酸エステル；モノステアリン酸プロピレンリコール等のプロピレンリコールモノ脂肪酸エステル；ペンタエリスリトール部分脂肪酸エステル；ソルビトール部分脂肪酸エステル；マルチトール部分脂肪酸エステル；ソルビタノオレート、ソルビタンモノイソステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンセスキオレート、ソルビタントリオレート、ペンタ－2－エチルヘキシル酸ジグリセロールソルビタノ、テトラ－2－エチルヘキシル酸ジグリセロールソルビタノ等のソルビタノ脂肪酸エステル；ショ糖脂肪酸エステル、メチルダルコシド脂肪酸エステル、ウエシレン酸トロハロース等の糖誘導体部分エステル；カプリリルダルコシド等のアルキルダルコシド；アルキルポリグリコシド；ラノリンアルコール；還元ラノリン；ポリオキシエチレンジステアレート、ポリオキシエチレンジイソステアレート、ポリオキシエチレンモノオレート、ポリオキシエチレンジオレート等のポリオキシエチレン脂肪酸モノ及びジエステル；ポリオキシエチレン・プロピレンリコール脂肪酸エステル；ポリオキシエチレンリグリセリンモノステアレート、ポリオキシエチレンリグリセリンモノイソステアレート、ポリオキシエチレンリグリセリントライソステアレート等のポリオキシエチレンモノオレート等のポリオキシエチレンリグリセリン脂肪酸エステル；ポリオキシエチレンソルビタノオレート、ポリオキシエチレンソルビタノラウレート、ポリオキシエチレンソルビタンテトラオレート等のポリオキシエチレンソルビタン脂肪酸エステル；ポリオキシエチレンソルビトールモノラウレート、ポリオキシエチレン
ソルビトールモノオレート、ポリオキシエチレンソルビトールベンタオレート、ポリオキシエチレンソルビトールモノステアレート等のポリオキシエチレンソルビトール脂肪酸エステル ;ポリオキシエチレンメチルダルコシド脂肪酸エステル ;ポリオキシエチレンアルキルエーテル脂肪酸エステル ;ポリオキシエチレンソルビトールミツロウ等のポリオキシエチレン動植物油脂類 ;イソステアリルグリセリルエーテル、キミルアルコール、セラキルアルコール、パチルアルコール等のアルキルグリセリルエーテル類 ;多価アルコールアルキルエーテル ;ポリオキシエチレンアルキルアミン ;テトラポリオキシエチレン・テトラポリオキシプロピレン－エチレンジアミン縮合物類 ;サポニン、ソホロリビッド等の天然系界面活性剤 ;ポリオキシエチレン脂肪酸アミド ;ヤシ油脂肪酸モノエタノールアミド （コカミドMEA）、ヤシ油脂肪酸ジエタノールアミド （コカミドDEA）、ラウリン酸モノエタノールアミド （ラウラミドMEA）、ラウリン酸ジエタノールアミド （ラウラミドDEA）、ラウリン酸モノイソプロピノールアミド （ラウラミドMIPA）、パルミチン酸モノエタノールアミド （パルタミドMEA）、パルミチン酸ジエタノールアミド （パルタミドDEA）、ヤシ油脂肪酸メチルエタノールアミド （コカミドメチルMEA）等の脂肪酸アルカノールアミド類 ;ラウラミノキシド、コカミノキシド、ステラミノキシド、ベヘナミノキシド等のアルキルジメチルアミノキシド ;アルキルエトキシジメチルアミノキシド ;ポリオキシエチレンアルキルメルカプタン ;ジメチコンコポリオール等のポリエーテル変性シリコーン、ポリシロキサン・オキシアルキレン共重合体、ポリグリセリル変性シリコーン、糖変性シリコーン等のシリコーン系非イオン性界面活性剤等 ;陽イオン性界面活性剤としては、ペヘントリモニウムクロリド、ステアルトリモニウムクロリド、セトトリモニウムクロリド、ラウリトリモニウムクロリド等のアルキルトリメチルアンモニウムクロリド ;ステアリトリモニウムプロミド等のアルキルトリメチルアンモニウムクロリド ;ジステアリジモニウムクロリド、ジココジモニウムクロリド等のジアルキルジメチルアンモニウムクロリド ;ステアラミドプロ
ピルジメチルアミン、ステアラミドエチルジェチルアミン等の脂肪酸アミドアミン及びその塩；ステアロキシプロピルジメチルアミン等のアルキルエチルアミン及びその塩又は四級塩；エチル硫酸長鎖分岐脂肪酸（12〜31）アミノプロピルエチルジェチルアンモニウム、エチル硫酸ラノリン脂肪酸アミノプロピルエチルジェチルアンモニウム等の脂肪酸アミド型四級アンモニウム塩；ポリオキシエチレンアルキルアミン及びその塩又は四級塩；アルキルアミン塩；脂肪酸アミドヴァニジウム塩；アルキルエテルアミンモノウム塩；アルキルトリアルキレンリン酸長鎖脂肪酸エチル塩；ベンザルコニウム塩；ベンゼトニウム塩；塩化セチルピリジニウム等のピリジニウム塩；イミダゾリニウム塩；アルキルイソキノリニウム塩；ジアルキルモリホニウム塩；ポリアミン脂肪酸誘導体；アミノプロピルジェチルコ言及びアモジメチルコン等のアミノ変性シリコーン、カチオン変性シリコーン、カチオン変性及びポリエーテル変性シリコーン、アミノ変性及びポリエーテル変性シリコーン等のシリコーン系陽イオン性界面活性剤等；両性界面活性剤としては、ラウリンペタイン（ラウリンジェチルアミン酢酸ベタイン）等のN-アルキル-N、N-ジメチルアミノ酸ベタイン；コカミドプロピルベタイン、ラウリミドプロピルベタイン等の脂肪酸アミドアルキル-N、N-ジメチルアミノ酸ベタイン；ココアンホ酢酸ナトリウム、ラウロアノホ酢酸ナトリウム等のイミダゾリン型ベタイン；アルキルジェチルタウリン等のアルキルスルホベタイン；アルキルジメチルアミノエタノール硫酸エステル等の硫酸型ベタイン；アルキルジメチルアミノエタノールリン酸エステル等のリン酸型ベタイン；ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、スフィンゴミエリン等のスフィンゴリン脂質、リゾレシン、水素添加大豆リン脂質、部分水素添加大豆リン脂質、水素添加卵黄リン脂質、部分水素添加卵黄リン脂質、水酸化レシチン等のリン脂質類；シリコーン系両性界面活性剤等；高分子界面活性剤としては、ポリビニルアルコール、アルギン酸ナトリウム、デンプン誘導体、トラガントガム、アクリル酸メタクリル酸アルキル共重合体；シリコーン系各種界面活性剤が好ましいも
のとして挙げられる。

[0039] 高分子・増粘剤・ゲル化剤としては、ゲル・ローカストビーンガム、クイーンスシード、カラギーナン、カタクタン、アラビアガム、タラガム、タマリンド、ファーセララン、カラヤガム、トロロアオイ、キャラガム、トラガントガム、ベクチン、ベクチン酸及びナトリウム塩等の塩、アルギン酸及びナトリウム塩等の塩、マンナン；コメ、トウモロコシ、パレプショ、コムギ等のデンプン；キサンタンガム、テキストラン、サクシノグルカン、カーダラン、ヒアルロン酸及びその塩、メンサンガム、ブルラン、ジエランガム、キチン、キトサン、寒天、カツはどうエキス、コンドロイチン硫酸塩、カゼイン、コラーゲン、ゼラチン、アルブミン；メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース及びそのナトリウム塩の塩、メチルヒドロキシプロピルセルロース、セルロース硫酸ナトリウム、ジアルキルジメチルアンモニウム硫酸セルロース、結晶セルロース、セルロース末等のセルロース及びその誘導体；可溶性デンプン、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン、メチルデンプン等のデンプン系高分子、塩化ヒドロキシプロピルトリメチルアンモニウムデンプン、オクテニルコハク酸トウモロコシデンプンアルミニウム等のデンプン誘導体；アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等アルギン酸誘導体；ポリビニルビドリドン（PVA）、ポリビニルアルコール（PVA）、ビニルビドリドン・ビニアルコール共重合体、ポリビニルメチルエーテル；ポリエチレンリコール、ポリプロピレンリコール、ポリオキシエチレン・ポリオキシプロピレン共重合体；（メタクリロイルオキシジェチルカルボキシペタイン/メタクリル酸アルキル）コポリマー、（アクリレーツ／アクリル酸ステアリル／メタクリル酸エチルアミノキシド）コポリマー等の両性メタクリル酸エステル共重合体；（ジェチコン／ビニルジメチコン）クロスポリマー、（アクリル酸アルキル／ジアセトンアクリルアミド）コポリマー、（アクリル酸アルキル／ジアセトンアクリルアミド）コポリマー。
ポリマーＡＭＰ；ポリ酢酸ビニル部分けん化物、マレイン酸共重合体；ビニルビロリドン・メタクリル酸ジアルキルアミノアルキル共重合体；アクリル樹脂アルカノールアミン；ポリエステル、水分散性ポリエステル；ポリアクリルアミド；ポリアクリル酸エチル等のポリアクリル酸エステル共重合体、カルボキシビニルポリマー、ポリアクリル酸及びそのナトリウム塩等の塩、アクリル酸・メタクリル酸エステル共重合体；アクリル酸・メタクリル酸アルキル共重合体；ポリオタニウム_10等のカチオン化セルロース、ポリオタニウム_7等のジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体、ポリオタニウム_22等のアクリル酸・ジアリルジメチルアンモニウムクロリド共重合体、ポリオタニウム_39等のアクリル酸・ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体、アクリル酸・カチオン化メタアクリル酸エステル共重合体、アクリル酸・カチオン化メタアクリル酸アミド共重合体、ポリオタニウム_47等のアクリル酸・アクリル酸メチル・塩化メタクリルアミドプロピルトリメチルアンモニウム共重合体、塩化メタクリル酸コリンエステル共重合体；カチオン化オリゴ糖、カチオン化デキストラン、グァ－ヒドロキシプロピルトリモニウムクロリド等のカチオン化多糖類；ポリエチレングリコール；カコーンポリマー；ポリオタニウム_51等の2_メタクリロイルオキシエチルホスホリルリゴンの重合体及びメタクリル酸ブチル共重合体等との共重合体；アクリル樹脂エマルジョン、ポリアクリル酸エチルエマルジョン、ポリアクリルアルキルエステルエマルジョン、ポリ酢酸ビニル樹脂エマルジョン、天然ゴムラテックス、合成ラテックス等の高分子エマルジョン；ニトリセルロース；ポリウレタン類及び各種共重合体；各種シリコン類；アクリル－シリコングラフト共重合体等のシリコン系各種共重合体；各種フッ素系高分子；12－ヒドロキシステアリン酸及びその塩；バルミチン酸デキストリン、ミリステン酸デキストリン等のデキストリン脂肪酸エステル；無水ケイ酸、煙霧状シリカ（超微粒子無水ケイ酸）、ケイ酸アルミニウムマグネシウム、ケイ酸ナトリウムマグネシウム、金属石鹸、ジアルキルリン酸金属塩、ベントナイト
ヘクトライト、有機棧性粘土鉱物、ショ糖脂肪酸エステル、フラクトオリゴ糖脂肪酸エステルが好ましいものとして挙げられる。前記例示の中でも、セルロース及びその誘導体、アルギン酸及びその塩、ポリビニルアルコール、ヒアルロン酸及びその塩、又はコラーゲンが好ましい。

[0040] 溶剤。噴射剤類としては、エタノール、2プロパノール（イソプロピルアルコール）、ブタノール、イソプロチルアルコール等の低級アルコール類；プロピレングリコール、1,3プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、イソペンチルジオール等のグリコール類；ジエチレングリコールモノエチルエーテル（エトキシジグリコール）、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、トリエチレングリコールモノエチルエーテル、ジェチレングリコールジェチルエーテル、ジェチレングリコールジブチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル等のグリコールエーテル類；エチレングリコールモノエチルエーテルアセテート、ジェチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルエステル類；コハク酸ジェトキシジェチル、エチレングリコールジサクシネート等のグリコールエステル類；ベンジルアルコール、ベンジルオキシタノール、炭酸プロピレン、炭酸ジアルキル、アセトン、酢酸エチル、N—メチルピロリドン；トルエン、フルオロカーボン、次世代フロン；LPG、ジェチルエーテル、炭酸ガス等の噴射剤が好ましいものとして挙げられる。

[0041] 酸化防止剤としては、トコフェロール（ビタミンE）、酢酸トコフェロール等のトコフェロール誘導体；BHT、BHA；没食子酸プロピル等の没食子酸誘導体；ビタミンC（アスコルビン酸）及び又はその誘導体；エリソルビン酸及びその誘導体；亜硫酸ナトリウム等の亜硫酸塩；亜硫酸水素ナトリウム等の亜硫酸水素塩；チオ硫酸ナトリウム等のチオ硫酸塩；メタ亜硫酸水素塩；チオタウリン、ヒボタウリン；チオグリセロール、チオ尿素、チオグリコール酸、システム塩酸塩が好ましいものとして挙げられる。
還元剤としては、チオグリコール酸、システイン、システアミン等が好ましいものとして挙げられる。

酸化剤としては、過酸化水素水、過硫酸アンモニウム、臭素酸ナトリウム、過炭酸等が好ましいものとして挙げられる。

防腐剤・抗菌剤・殺菌剤としては、メチルパラベン、エチルパラベン、プロピルパラベン、ブチルパラベン等のヒドロキシ安息香酸及びその塩若しくはそのエステル；サリチル酸；安息香酸ナトリウム；フエノキシエタノール；1,2-ペンタンジオール；1,2-ヘキサンジオール等の1,2-ジオール；メチルクロロイソチアゾリノン、メチルイソチアゾリノン等のイソチアゾリン誘導体；イミダゾリニウム塩；デヒドロ酢酸及びその塩；フエノール類；トリクロサン等のフロゲン化ピスフエノール類；酸アミド類、四級アンモニウム塩類；トリクロロカルバニド、ジンクビリチオン、塩化ベンザルコニウム、塩化ベンゼチオン、ソルビ酸、クロルヘキシジン、ダルコン酸クロルヘキシジン、ハロカルペン、ヘキサクロロフェン、ヒノキチョール；フエノール、イソプロピルフエノール、クレゾール、チモール、パラクロロフエノール、フェニルフェノール、フェニルフェノールナトリウム等のその他フエノール類；フエニルエチルアルコール、感光素類、抗菌性ゼオライト、銀イオンが好ましいものとして挙げられる。

キレート剤としては、EDTA、EDTA2Na、EDTA3Na、EDTA4Na等のエデト酸塩（エチレンジアミン四酢酸塩）；HEDTA3Na等のヒドロキシエチルエチレンジアミン三酢酸塩；ベンテ酸塩（ジェチレントリアミン五酢酸塩）；フィチン酸；エチンドロン酸等のホスホン酸及びそのナトリウム塩等の塩類；シモ酸ナトリウム；ポリアスパラシン酸、ポリグルタミン酸等のポリアミノ酸類；ポリリン酸ナトリウム、メタリン酸ナトリウム、リン酸；クエン酸ナトリウム、クエン酸、アラニン、ジヒドロキシエチルグリシン、ダルコン酸、アスコルビル酸、コハク酸、酒石酸が好ましいものとして挙げられる。

pH調整剤・酸・アルカリとしては、クエン酸、クエン酸ナトリウム、乳
酸、乳酸ナトリウム、乳酸カリウム、グリコール酸、コハク酸、酢酸、酢酸ナトリウム、リンゴ酸、酒石酸、フマル酸、リン酸、塩酸、硫酸、モノエタノールアミン、ジェタノールアミン、トリエタノールアミン、イソプロパノールアミン、トリイソプロパノールアミン、2-アミノ-2-メチル-1、3-プロパンジオール、2-アミノ-2-ヒドロキシメチル-1、3-プロパンジオール、アルギニン、水酸化ナトリウム、水酸化カリウム、アンモニア水、炭酸ガス、炭酸アンモニウム、好ましいものをとして挙げられる。

[0047] 粉体としては、マイカ、タルク、カオリノ、セリサイト、モンモリロナイト、カオリナイト、雲母、白雲母、金雲母、合成雲母、赤雲母、黒雲母、パーキシュライト、炭酸マグネシウム、炭酸カルシウム、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸ストロンチウム、タングステン酸金黄、マグネシウム、ゼオライト、硫酸バリウム、焼成硫酸カルシウム、リン酸カルシウム、フッ素アパタイト、ヒドロキシアパタイト、セラミックパウダー、ベントナイト、セメタライト、粘土、泥、金属石鹸（例えば、ミリスチン酸亜鉛、パルミチン酸カルシウム、ステアリン酸アルミニウム）、炭酸カルシウム、ベンガラ、黄酸化物、黒酸化鉄、群青、緑青、カーポンブラック、酸化チタン、微粒子及び超微粒子酸化チタン、酸化亜鉛、微粒子及び超微粒子酸化亜鉛、アルミナ、シリカ、猩蔥状シリカ（超微粒子無水ケイ酸）、雲母チタン、魚鱗箔、窒化ホウ素、ポトクロミック顔料、合成フッ素金雲母、微粒子複合粉体、金、アルミニウム等の各種の大ささ・形状の無機粉体、及び、これらをハイドロジェンシリコーン、環状ハイドロジェンシリコーン等のシリコーン若しくはその他のシラン若しくはチタンカップリング剤等の各種表面処理剤で処理を行って疎水化若しくは親水化した粉体等の無機粉体；デンプン、セルロース、ナイロンパウダー、ポリエチレン末、ポリメタクリル酸メチル末、ポリスチレン末、ポリエステル末、ベンズグアナミン樹脂粉末、ポリエチレンテレフタレート・ポリメチルメタクリレート積層末、ポ
リエチレンテレフタレート、アルミニウム、エポキシ積層末等、ウレタン粉末、シリコーン粉末、テフロン（登録商標）粉末等の各種の大きさ・形状の有機系粉末及び表面処理粉末、有機無機複合粉末が好ましいものとして挙げられる。

[0048] 無機塩類としては、食塩、並塩、岩塩、海塩、天然塩等の塩化ナトリウム含有塩類、塩化カリウム、塩化アルミニウム、塩化カルシウム、塩化マグネシウム、にがり、塩化亜鉛、塩化アンモニウム、硫酸ナトリウム、硫酸アルミニウム、硫酸アルミニウム・カリウム（ミヨウバン）、硫酸アルミニウム・アンモニウム、硫酸バリウム、硫酸カルシウム、硫酸カリウム、硫酸マグネシウム、硫酸亜鉛、硫酸鉄、硫酸銅；リン酸1Na・2Na・3Na等のリン酸ナトリウム類、リン酸カリウム類、リン酸カルシウム類、リン酸マグネシウム類が好ましいものとして挙げられる。

[0049] 紫外線吸収剤としては、バラアミノ安息香酸、バラアミノ安息香酸モノグリセリンエステル、N、N—ジプロポキシバラアミノ安息香酸エチルエステル、N、N—ジエトキシバラアミノ安息香酸エチルエステル、N、N—ジメチルバラアミノ安息香酸エチルエステル、N、N—ジメチルバラアミノ安息香酸ブチルエステル、N、N—ジメチルバラアミノ安息香酸メチルエステル等の安息香酸系紫外線吸収剤；ホモメンチル—Nアセチルアントラニレート等のアントラニル酸系紫外線吸収剤；サリチル酸及びそのナトリウム塩、アミルサリシレート、メチルサリシレート、ホモメンテルサリシレート、オクチルサリシレート、フエニルサリシレート、ベンジルサリシレート、p—イソプロパノールフエニルサリシレート等のサリチル酸系紫外線吸収剤；オクチルシンナメート、エチル_4_イソプロピルシンナメート、メチル—2，5—ジイソプロピルシンナメート、エチル_2_，4—ジイソプロピルシンナメート、メチル_2_，4—ジイソプロピルシンナメート、プロピル—p—メトキシシンナメート、イソプロピル—p—メトキシシンナメート、イソアミル—p—メトキシシンナメート、2—エチルヘキシル—p—メトキシシンナメート（パラメトキシケイヒ酸オクチル）、2—エトキシエチル—p—
メトキシシンナメート、シクロヘキシルβ-フェニルシンナメート、エチルα-シアンβ-フェニルシンナメート、2-エチルヘキシルα-シアンβ-フェニルシンナメート（オクトクリン）、グリセリルモノ2-エチルヘキサノールジパラメトキシシンナメート、フェルラ酸及びその誘導体等の紫皮酸系紫外線吸収剤；2,4-ジヒドロキシベンゾフエノン、2',4'-ジヒドロキシ-4-メトキシベンゾフエノン、2',4'-ジヒドロキシ-4,4'-メチルベンゾフエノン、2-ヒドロキシ-4-メトキシベンゾフエノン（オキシベンゾン-3）、2-ヒドロキシ-4-メトキシベンゾフエノン-5-スルホン酸塩、4-フェニルベンゾフエノン、2-エチルヘキサノール-4'-フェニルベンゾフエノン-2カルボキシレート、2-ヒドロキシ-4'-n-オクチルベンゾフエノン、4-ヒドロキシ-3-カルボキシベンゾフエノン等のベンゾフエノン系紫外線吸収剤；3-(4,メチルベンジリデン)-d1-カンフル、3-ベンジリデン-d1-カンフル；2-フェニル-5-メチルベンゾキサゾール；2,2'-ヒドロキシ-5-メチルフェニルベンゾトリアゾール；2-(2'-ヒドロキシ-5'-t-オクチルフェニル)ベンゾトリアゾール；2-(2'-ヒドロキシ-5'-メチルフェニルベンゾトリアゾール；ジベンザリン；ジアニソイルメタノン；5-(3,3-ジメチル-2-ノルボルリデン)；3-ペンタン-2-オン；4-t-ブチルメトキシベンゾイルメタン等のジベンゾイルメタン誘導体；オクチルトリアゾン；ウロカニン酸及びウロカニン酸エチル等のウロカニン酸誘導体；2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、1-(3,4-ジメトキシフェニル)；4,4-ジメチル-1,3-ペンタンジオン、ジメトキシベンジリデンジオキソイミダゾリジンプロピオン酸フェニルフェニルメチルジスイミダゾールスルホン酸、テレフタリデンジカンフルスルホン酸、ドロメトリゾールトリシキサン、アントラニル酸メチル、ルチン及びその誘
導体、オリザノール及びその誘導体が好ましいものとして挙げられる。

美白剤としては、アルプチン、α—アルプチン等のヒドロキノン配糖体及びそのエステル類；アスコルピン酸、アスコルピン酸リン酸エステルナトリウム塩及びアスコルピン酸リン酸エステルマグネシウム塩等のアスコルピン酸リン酸エステル塩、アスコルピン酸ジトリアソパルミチン酸エステル等のアスコルピン酸脂肪酸エステル、アスコルピン酸エチルエーテル等のアスコルピン酸アルキルエーテル、アスコルピン酸—2—ダルコシド等のアスコルピン酸ダルコシド及びその脂肪酸エステル類、アスコルピン酸硫酸エステル、リン酸トコフェリルアスコルビル等のアスコルピン酸誘導体；コウジ酸、エラグ酸、トラネキサム酸及びその誘導体、フェルラ酸及びその誘導体、ブラセンタエキス、グルタチオン、オリザノール、プチルレソルシノール、油溶性カルモミラエキス、油溶性カンジウエキス、西河柳エキス、ユキノシタエキス等植物エキスが好ましいものとして挙げられる。

ビタミン類及びその誘導体類としては、レチノール、酢酸レチノール、バルミチン酸レチノール等のビタミンA類；チアミン塩酸塩、チアミン硫酸塩、リポフラビン、酢酸リポフラビン、塩酸ビリドキシン、ビリドキシンジオクタノエート、ビリドキシンジペルミエート、フランピシンジスクレオチド、シャノコパラミン、葉酸類、ニコチン酸アミド・ニコチン酸ベンジル等のニコチン酸類、コリン類等のビタミンB群類；アスコルピン酸及びそのナトリウム等の塩等のビタミンC類；ビタミンD；α、β、ア、δ—トコフェロール等のビタミンE類；パントテン酸、ビオチン等のその他ビタミン類；アスコルピン酸リン酸エステルナトリウム塩及びアスコルピン酸リン酸エステルマグネシウム塩等のアスコルピン酸リン酸エステル塩、アスコルピン酸テトリアソパルミチン酸エステル・ステアリン酸アスコルビル・バルミチン酸アスコルビル・ジバルミチン酸アスコルビル等のアスコルピン酸脂肪酸エステル、アスコルピン酸エチルエーテル等のアスコルピン酸アルキルエーテル、アスコルピン酸—2—ダルコシド等のアスコルピン酸ダルコシド及びその脂肪酸エステル、リン酸トコフェリルアスコルビル等のアスコルピン酸
誘導体;ニコチン酸 トコフェロール、酢酸 トコフェロール、リノール酸 トコフェロール、フェルラ酸 トコフェロール、トコフェロール リン酸エステル等の トコフェロール誘導体等のビタミン誘導体、トコトリエノール、その他各種ビタミン誘導体類が好ましいものとして挙げられる。

[0052] 育毛用薬剤・血行促進剤・刺激剤としては、センプリエキス、トウガラシチンキ、ショウキヨウチンキ、ショウキヨウエキス、カタクリチンキ等の植物エキス・チンキ類;カブサイシン、ノニアル酸ウレニルアミド、ジンゲロング、インタモール、タンニン酸、ポルネール、シクラメンデート、シンナリシン、トラゾリン、アセチルコリン、ヘラバミル、セファランチン、アーチルサノール、ビタミンE及びニコチン酸 トコフェロール・酢酸 トコフェロール等の誘導体、アーオリサノール、ニコチン酸及びニコチン酸アミド、ニコチン酸ベンジルエステル・イノシトールヘキサコニチネート、ニコチンアールコール等の誘導体、アラントイン、感光素301、感光素401、塩化カプロニウム、ベンタデカン酸モノグリセリド、フラバノノール誘導体、ステゴマステロール又はステゴマスタノール及びその配糖体、ミノキシジルが好ましいものとして挙げられる。

[0053] ホルモン類としては、エストラジオール、エストロン、エチニルエストラジオール、コルチゾン、ヒドロコルチゾン、プレドニゾン等が好ましいものとして挙げられる。

[0054] 抗しわ剤、抗老化剤、ひきしめ剤、冷感剤、温感剤、創傷治癒促進剤、刺激緩和剤、鎮痛剤、細胞賦活剤等のその他の薬効剤としては、レチノール類、レチノイン酸類、レチノイン酸トコフェリル、乳酸、グリコール酸、グルコン酸、フルーツ酸、サリチル酸及びその配糖体・エステル化物等の誘導体、ヒドロキシカルブリン酸、長鎖α—ヒドロキシ脂肪酸、長鎖α—ヒドロキシ脂肪酸コステリル等のα—又はβ—ヒドロキシ酸類及びその誘導体類、γ—アミノ酸、アーガミノβ—ヒドロキシ酸;カルニチン;カルノシン;クレアチン;セラミド類、スフインゴシン類;カフェイン、キサンチン等及びその誘導体;コエンザイムQ10、カロチン、リコピン、アスタキサン
チン、ルチン、α-リポ酸、白金ナノコロイド、フラーレン類等の抗酸化活性酸素消去剤；カテキン類；ケルセチン等のフラボン類；イソフラボン類；没食子酸及びエステル糖誘導体；タンニン、セサミン、プロトアントシアニジン、クロロゲン酸、リンゴポリフェノール等のポリフェノール類；ルチン及び配糖体等の誘導体；ヘスペリジン及び配糖体等の誘導体；リグナン配糖体；グラプビシジン、グラプレン、リクイリチン、イソリクイリチン等のカンゾウエキス関連物質；ラクトフェリン；ショウガオール、ジンゲロール；メントール、セドロール等の香料物質及びその誘導体；カプサイシン、バニリン等及び誘導体；ジェチルトルアミド等の昆虫忌避剤；生理活性物質とシクロデキストリン類との複合体が好ましいものとして挙げられる。

[0055] 植物・動物・微生物エキス類としては、アイリスエキス、アシタバエキス、アスナロエキス、アスパラガスエキス、アボカドエキス、アマチャヤエキス、アーモンドエキス、アルテアエキス、アルニカエキス、アロエエキス、アンズエキス、アンズ核エキス、イチヨウエキス、インチコウエキス、ウイキヨウエキス、ウコンエキス、ウロロン茶エキス、ウワルシエキス、エイジツエキス、エチナシ葉エキス、エンメイソウエキス、オウゴンエキス、オウバクエキス、オウレンエキス、オオムギエキス、オタネニシジンエキス、オトギリソウエキス、オトリコソウエキス、オノニエキス、オランダカラシエキス、オレンジエキス、海水乾燥物、海藻エキス、カキ葉エキス、カキヨクエキス、加水分解エラスチチン、加水分解コムギ末加水分解シルク、カツコンエキス、カモミラエキス、油溶性カモミラエキス、カロットエキス、カワラヨモギエキス、カラスムギエキス、カルデエキス、カンゾウエキス、油溶性カンゾウエキス、キウイエキス、キョウエキス、ククラゲエキス、キナエキス、キューカンパーエキス、グアノシン、グアバエキス、クジンエキス、クチナシエキス、クマザサエキス、クララエキス、クルミエキス、クリエキス、グレープフルーツエキス、クレマテイスエキス、黒米エキス、黒砂糖抽出物、黒酢、クロレラエキス、クウエキス、ゲンチアナエキス、ゲンノショウコエキス、紅茶エキス、酵母エキス、コッポクエキス、
コーヒーエキス、コボウエキス、コメエキス、コメ発酵エキス、コメヌカ発酵エキス、コメ胚芽油、コンフィーチェキス、コラーゲン、コケモモエキス、コメンソウエキス、コメンシエキス、コンフリーエキス、コラーゲン、コケモモエキス、サイシンエキス、サイコエキス、サイタイ抽出液、サフランエキス、サルサエキス、サラスエキス、サルスエキス、サリエキス、サヨビエキス、サレガエキス、セイヨウツタエキス、セイヨウサンザシエキス、セイヨウニットコエキス、セイヨウノコギリソウエキス、セイヨウハツカエキス、セージエキス、ゼニアオイエキス、センキュウエキス、センプリエキス、ソウハクヒエキス、ダイオウエキス、ダイズエキス、タイソウエキス、タイムエキス、タンポポエキス、地衣類エキス、茶エキス、チヨウジエキス、チガヤエキス、チンピエキス、ティートリー油、甜茶エキス、トウガラシエキス、トウキエキス、トウキンセンカエキス、トウニンエキス、トウヒエキス、ドウダミエキス、トマトエキス、納豆エキス、ニンジンエキス、ニンニクエキス、ノバラエキス、ハイビスカスエキス、バクモンドウエキス、ハスエキス、パセリエキス、ハーブエキス、ハマメリスエキス、ハリエタリアエキス、ヒキョコシエキス、ヒサボロール、ヒノキエキス、ヒナズラシマツエキス、ヒウエキス、フキタンポポエキス、フキノトウエキス、ブクリヨウエキス、プッチャーブルームエキス、ブドウエキス、ブドウ種子エキス、プロポリス、ヘチマエキス、ヘナナナエキス、ヘパルミントエキス、ボダイジユエキス、ボタンエキス、ホップエキス、マイカイカエキス、マツエキス、マロニエエキス、ミズバショウエキス、ムクロジェキス、メリッサエキス、モズクエキス、モモエキス、ヤグルマギクエキス、ユーカリエキス、ユキノシタエキス、ユズエキス、ユリエキス、ヨクイニンエキス、ヨモギエキス、ラベンダーエキス、緑茶エキス、卵殻膜エキス、リンゴエキス、ルイボステキス、レインボーテキス、レタスエキス、レモンエキス、レンギヨウエキス、レングソウ
エキス、ローズエキス、ローズマリーエキス、ローマカミツレエキス、ローヤルゼリーエキス、ウレモコウエキス等のエキスが好ましいものとして挙げられる。

[0056]鎮痒剤としては、塩酸ジフェンヒドラミン、マレイン酸クロルフェニラミン、カンフル、サブスタンス－P阻害剤等が挙げられる。

[0057]角質剥離・溶解剤としては、サリチル酸、イオウ、レゾルシン、硫化セレン、ピリドキシン等が挙げられる。

[0058]制汗剤としては、クロルヒドロキシアルミニウム、塩化アルミニウム、酸化亜鉛、バラフエノールスルホン酸亜鉛等が挙げられる。

[0059]清涼剤としては、メントール、サリチル酸メチル等が挙げられる。

[0060]吸収剤としては、クエン酸、酒石酸、乳酸、硫酸アルミニウム・カリウム、タンニン酸等が挙げられる。

[0061]酵素剤としては、スーパーオキサイドディスムターゼ、カタラーゼ、塩化リゾチーム、リバーゼ、パライン、パンクレアチン、プロテアーゼ等が挙げられる。

[0062]核酸剤としては、リポ核酸及びその塩、デオキシリポ核酸及びその塩、アデノシン三リン酸二ナトリウムが好ましいものとして挙げられる。

[0063]香料としては、アセチルセドラレン、アミルシンナムアルデヒド、アリルアルミルグリコレート、β－イオノン、イソブチルキノリン、イリス油、イロン、インドール、イランイラン油、ウデカナール、ウデセナール、アーチュラクション、エストラゴール、オイゲノール、オーキモス、オポポナックスレジノイド、オレンジ油、オイゲノール、オーキモス、オランチオール、ガラクソリッド、カルバクロール、L－カルボン、カンフール、キャノン、キアロットシード油、クロープ油、ケイヒ酸メチル、ゲラニオール、ガラニリニトリル、酢酸イソポルニル、酢酸グラニル、酢酸ジェチルベンジルカルビニル、酢酸スチラリル、酢酸セドリル、酢酸テレピネル、酢酸p_ t_ ブチルシクロヘキシル、酢酸ベチルリル、酢酸ペンジル、酢酸リナリル、サリチル酸イソベンチル、サリチル酸ペンジル、サンダルウッド油、サ
ノタロール、シクラメンアルデヒド、シクロペンタデカントリド、ジヒドロジャスモン酸メチル、ジヒドロミルセノール、ジャスミンアルコール、ジャスミンラクトン、cis—ジャスモン、シトラール、シトロネルール、シトロネラール、シナモンバーク油、1、8—シネオール、シンナムアルデヒド、スチラックスレジソイド、セダーウッド油、セドレン、セドロール、セロリシード油、タイム油、ダマスク、ダマセンソ、チモール、チュベローズアルコール、ナニアル、ナニリン、バジル油、バチヨリ油、ヒドロキシシトロネラール、α—ビニン、ビベリトン、フェネチルアルコール、フェニルアセトアルデヒド、プチグレン油、ヘキシルシンナムアルデヒド、cis _ 3 _ ヘキセノール、ベルーバルサム、ベチバー油、ベチベロール、ベーミント油、ベバー油、ベリオトロピン、ベルガモット油、ベンジルベンゼート、ポルネオール、ミルレジソイド、ムスクケトン、メチルノリンアセトアルデヒド、アーメチルヨノノン、メントール、L—メントール、L—メントロン、ユーカリ油、β—ヨノノン、ライム油、ラベンダー油、D—リモネノ、リナロール、リラール、リリアール、レモン油、ローズアルコール、ローズオキシド、ローズ油、ローズマリー油、各種精油等の合成香料及び天然香料並びに各種混合香料が好ましいものとして挙げられる。
赤色219号、赤色220号、赤色221号、赤色223号、赤色225号、赤色226号、赤色227号、赤色228号、赤色230号、赤色230号、赤色231号、赤色232号、赤色3号、赤色401号、赤色404号、赤色405号、赤色501号、赤色502号、赤色503号、赤色504号、赤色505号、赤色506号、橙色201号、橙色203号、橙色204号、橙色205号、黄色202号、黄色203号、黄色204号、黄色205号、黄色206号、黄色207号、黄色401号、黄色402号、黄色403号、黄色404号、黄色405号、黄色406号、黄色407号、黄色5号:Acid Red 14等のその他酸性染料;Arianor Sienna Brown、Arianor Madder Red、Arianor Steel Blue、Arianor Straw Yellow等の塩基染料;HC Yellow 2、HC Yellow 5、HC Red 3、4-hydroxypropylaminone-3-nitrophenol、N,N'-bis(2-hydroxyethyl)-2-nitro-p-phenylenediamine、HC Blue 2、Basic Blue 26等のニトロ染料;分散染料;ニ酸化チタン、酸化亜鉛等の無機白色顔料;酸化鉄(ペンカラ)、チタン酸鉄等の無機赤色系顔料;アーチ酸化鉄等の無機褐色系顔料;黄酸化鉄、黄土等の無機黄色系顔料;黒酸化鉄、低次酸化チタン等の無機黑色系顔料;マンゴバイオレット、コバルトバイオレット等の無機紫色系顔料;酸化クロム、水酸化クロム、チタン酸コバルト等の無機緑色系顔料;群青、紺青等の無機青色系顔料;酸化チタンコーティングドマイカ、酸化チタンコーティングドマイカ、オキシ塩化ビスマス、酸化チタンコーティングタルク、着色酸化チタンコーティングドマイカ、オキシ塩化ビスマス、魚鱗箔等のパール顔料;アルミニウムパウダー、カッパーパウダー、金等の金属粉末顔料;表面処理無機及び金属粉末顔料;ジルコンイオウ、バリウム又はアルミニウムレーキ等の有機顔料;表面処理有機顔料;アスタキサンチン、アリザリン
等のアントラキノン類、アントシアニジン、β－カロチン、カテナール、カプサンチン、カルコン、カルサミン、クエルセチン、クロチン、クロロフィル、クロムミン、コチニール、シコシン等のナフトキシン類、ビキシン、フラボン類、ベタシアニジン、ヘナ、ヘモグロビン、リコピン、リポフラビン、ルチン等の天然色素、染料；p—フエニレンジアミン、トルエン—2 ; 5—ジアミン、o ; m—，若しくはp—アミノフェノール、m—フエニレンジアミン、5—アミノー2 _メチルフェノール、レゾルシン、1 _ ナフトーール、2 、6 —ジアミノピリジン等及びその塩等の酸化染料中間体及びカップラー；インドリル等の自動酸化型染料；ジヒドロキシアセトンが好ましいものとして挙げられる。

消炎剤・抗炎症剤としては、グリチルリチン酸及びその誘導体、グリチルレチン酸誘導体、サリチル酸誘導体、ヒノキチオール、グアイアズレン、アラントイン、インドメタシン、ケットプロフェン、イブプロフェン、ジクロフェナク、ロキソプロフェン、セレコシキブ、インフリキシマブ、エタネルセプト、酸化亜鉛、酢酸ヒドロコルチゾン、プレドニゾン、塩酸ジフエドラミン、マレイン酸クロルフェニラミン；桃葉エキス、蓬葉エキス等の植物エキスが好ましいものとして挙げられる。

抗喘息、抗慢性閉塞性肺疾患、抗アレルギー、免疫調整剤としては、アミノフィリン、テオフィリン類、ステロイド類（フルチカゾン、ベクロメタゾンなど）、ロイコトリエン拮抗薬類、トロンボキサン阻害薬類、インターロー

β２刺激薬類（フルオロメタロール、サルメデロール、アルブテロール、トルブテロール、クレンプテロール、エビネフリンなど）、ホストロピウム、イプラトロピウム、デキストロメトルファン、ジメシルフアン、ブロムヘキシン、トラニラスト、ケトチフェン、アゼラスト、セチリン、クロルフェニラミン、メキタジン、タクロリムス、シクロスポリン、シロリムス、メトトレキサート、サイトカイン調整剤類、インターフェロン、オマリズマブ、タンパク/抗体製剤が好ましいものとして挙げられる。

抗感染症剤、抗真菌剤としては、オセルタミビルとザナミビル、イトラコ
ナゾールが好ましいものとして挙げられる。

これらの他、化粧品原料基準、化粧品種別配合成分規格、日本化粧品工業
連合会成分表示名称リスト、INCI辞書（The International Cosmetic Ingredient Dictionary
and Handbook）、医薬部外品原料規格、日本薬局方、医薬品
添加物規格、食品添加物公定書等に記載されている成分、及び、国籍特許分
類I P CがA 6 1 K 7及びA 6 1 K 8の分類に属する日本国及び諸外国特許
公報及び特許公開公報（公表公報・再公表を含む）に記載されている成分等
、公知の化粧料成分、医薬品成分、食品成分などを、公知の組み合わせ及び
配合比・配合量で含有させることが可能である。

一般に市販されている化粧料としては、例えば、洗浄成分として界面活性
剤及び消毒剤、エモリエント成分として多価アルコール及び脂肪酸エステル
等の油性基材、保湿成分として保湿剤、油性基材及び増粘剤、並びに肌荒れ
防止成分として消炎剤、さらに、防腐剤及び安定剤等を添加して、洗顔料、
ボディーソープ、クレンジング等が製造される。さらに粉体を添加すること
で粘度を調製することができる。

例えば、ベース成分として水及び無機塩、保湿成分として多価アルコール
及び脂肪酸エステル等の油性基材及び植物エキス、増粘剤、肌荒れ防止成分
として消炎剤、並びに機能性成分としてビタミン類、美白剤、酸化防止剤、
抗しわ剤、抗老化剤、又はひきしめ剤等を添加して、化粧水及び美容液等が
製造される。

例えば、ベース成分として水及びゲル化剤、エモリエント成分として多価
アルコール及び脂肪酸エステル等の油性基材、保湿成分として保湿剤、油性
基材及び増粘剤、乳化剤、並びに機能成分として抗酸化剤等を添加して、ク
リームが製造される。

例えば、ベース成分として水、エモリエント成分としてシリコーン油、植
物油、脂肪酸エステル等の油性基材、保湿成分として多価アルコール等の保
湿剤、増粘剤、乳化剤並びに機能性成分として抗酸化剤等を添加して、アイ
ケア等が製造される。
例えば、ベース成分として水及び無機塩、エモリエント成分としてシリコーン油、脂肪酸エステル、多価アルコール及び脂肪酸等の油性基材、保湿成分として多価アルコール等の油性基材及び保湿剤並びに顔料を添加して、ベースメイク、口紅等が製造される。
例えば、ベース成分としてゲル化剤及び無機塩、エモリエント成分として増粘剤、顔料、製油並びに粉体を添加してチークカラー及びパウダーファンデーション等が製造される。
例えば、ベース成分としてエステル等の油性基材、エモリエント成分として油脂等の油性基材、及び増粘剤を添加して、ネイルカラーリムーバー等が製造される。
さらに、前記製品に、抗酸化剤として炭水素及びロウ、紫外線散乱成分として無機塩及び粉体、並びに紫外線吸収剤等を添加することで、UVケアの性能を持たせることができる。

[0070] 本発明の糖誘導体ゲル化剤は、化粧料においてゲル化剤・増粘剤としての働きを有するため、上記の従来市販されている化粧料のゲル化剤・増粘剤に置き換えて用いることができ、従来の化粧用よりもさらに安全性、使用感を良好にするものである。

[0071] よって、本発明の糖誘導体ゲル化剤を含む化粧料としては、基礎化粧料、メイクアップ化粧料、ポディケア化粧料、芳香用化粧料、及びヘアケア化粧料が挙げられる。ただし、ここに例示されるものに限定されない。

[0072] 基礎化粧品とは、洗顔料・メイク落とし・化粧水・乳液・美容液・フェイスクリーム・パック・アイケア及びその他の顔のスキンケア用化粧品を指す。

[0073] 例えば、固形せっけん、洗顔フォーム、洗顔パウダー、及び洗顔シート用途等の洗顔料；クレンジングフォーム、クレンジングクリーム、クレンジングゲル、クレンジングローション、クレンジングジェル、クレンジングオイル及びクレンジングマスク等のメイク落とし；リポソース化粧水、柔軟化
粧水、収れん化粧水、洗浄用化粧水及び多層式化粧水等の化粧水；エモリエントローション、モイストチャーローション、ミルキーーローション、ナリシングローション、ナリシングミルク、スキンモイスチャー、モイスチャーエマルション、マッサージローション及び顔用角質スムーザー等の乳液；リポソーム化粧水、保湿美容液、美白美容液、及び紫外線防止美容液等の美容液；エモリエントクリーム、栄養クリーム、ナリシングクリーム、パニッシングクリーム、モイスチャークリーム、ナイトクリーム、マッサージクリーム、クレンジングクリーム、メーキャップクリーム、ベースクリーム、シェービングクリーム及び顔用角質軟化クリーム等のクリーム；ビールオフパック、粉末パック、ウォッシングパック、オイルパック、及びクレンジングマスク等のパック；アイセラム、アイジェル、アイクリーム等のアイケア；顔用のU Vプロテクトエマルション、サンプロテクト、サンプロテクター、U Vケアミルク、サンスクリーン、サンスクリーンクリーム及びサンタンクリーム等のU Vケア、イスチャージュエル等のジェル、フェイスビーリング、フェイスリミング剤等のその他基礎化粧料が挙げられる。

[0074] メイクアップ化粧料としては、ベースメイク化粧料とポイントメイク化粧料が挙げられる。

[0075] ベースメイク化粧料とはポイントメイクを引き立たせるためにする基礎のメイクのことを指し、化粧下地、コンシーラー、ファンデーション及びフェイスパウダー等を指す。例えば、メイクアップベース、ベースクリーム、カラーコントロールベース、U Vカットベース等の化粧下地；パウダーコンシーラー及びクリーム、リキッドコンシーラー等のコンシーラー；パウダーファンデーション、U Vカットファンデーション、クリームファンデーション、U Vカットクリームファンデーション等のファンデーション；ルースパウダー、プレストパウダー、フェイスカラー、白粉等のフェイスパウダー等が挙げられる。

[0076] ポイントメイク化粧料とは肌を彩り、美しく見せる化粧品を指し、例えば、アイカラー、アイライナー、マスカラ、アイブロウ、チークカラー、リツ
プカラー、ネイルカラー等が挙げられる。
例えば、パウダーファンデーション、ペンシルアイライナー、リキッドアイライナー等のアイライナー；ポリュームアップマスカラ、ロングラッシュマスカラ、カールキューマスカラ、及びカラーマスカラ等のマスカラ；アイブロウペンシル、アイブロウパウダー及びアイブロウリキッド等のアイブロウ；パウダーチークカラー—及びクリームチークカラー等のチークカラー；リップカラー、リップスティック、口紅、リップグロス及びリップライナー等のリップカラー；ネイルカラー、マニキュア、ネイルトップ、ベースコート、トップコート、オーバーコート、ネイルカラーリムーバー、除光液、ネイルカラーアクセサリー及びネイルトリートメント等のネイルカラーが挙げられる。

[0077] ボディケア化粧料としては、ボディローション、ボディクリーム、リップクリーム、ハンドクリーム、UVケア、むだ毛処理、フットケア、生汗防止剤等が挙げられる。

例えば、ボディローション、ボディオイル及びボディミスト等のボディローション；ボディクリーム、ボディミルク、ボディジェル及びボディムース等のボディクリーム；保湿用リップクリーム、UVケア用リップクリーム及びカラーリップクリーム等のリップクリーム；ハンドクリーム及びハンドジェル等のハンドクリーム；ボディ用のUVプロテクトエマルション、サンプルケット、サンスクレート、UVケアミルク、サンスクリーン、サンスクリーンクリーム及びサンタンククリーム等のUVケア；除毛クリーム、除毛ムース、脱毛ワックス、むだ毛脱色剤及び体毛用シェービングクリーム等のむだ毛処理；フットマッサージ剤、フットクリーム、フットピーリング剤、かかと等の関節部位の皮膚健康剤及びエモリエント剤等のフットケア；デオドラントローション、デオドラントパウダー、デオドラントスプレー、デオドラントスティック等の制汗防臭剤；虫除けスプレー等のインセクトリペラーが挙げられる。

[0078] 芳香化粧料としては、香水、パルファム、オードパルファム、オードトワ
し、オーデコロン、練香水、芳香パウダー、香水石鹸、バスオイルが挙げられる。

ヘアケア化粧料としては、シャンプー、ヘアリンス・コンディショナー、トリートメントパック、ヘアスタイリング、ヘアスプレー、ヘアロス、育毛・養毛剤、パーマ剤、ヘアカラーが挙げられる。

例えば、オイルシャンプー、クリームシャンプー、コンディショニングシャンプー、ふけ用シャンプー、ヘアカラー用シャンプー、リンス一体型シャンプー等のシャンプー、ヘアリンス・コンディショナー、フケ・スカルプケアリンス・コンディショナー、コントロールリンス・コンディショナー等のリンス・コンディショナー、ダメージケアトリートメントパック、ダメージケアトリートメントパック、フケ・スカルプケアトリートメントパック及びコントロールトリートメントパック等のトリートメントパック、ヘアフォーム、ヘアクリーム、ヘアワックス、ヘアジエル、ヘアウォーター、ヘアローション、ヘアオイル及びヘアリキッド等のスタイリング、ヘアセットスプレー、ヘアセットミスト及びヘアグロス等のヘアスプレー、ヘアグロス、育毛剤、養毛剤、ヘアトニック及びヘアエッセンス等の育毛・養毛剤、ストレートパーマ剤、ウェーブパーマ剤、パーマプレートリートメント及びパーマアフタートリートメント等のパーマ剤、酸化染毛剤、ヘアブリーチ、ヘアカラープレートリートメント、ヘアカラーアフタートリートメント及びヘアマニキュア等のヘアカラーが挙げられる。

[イオン液体]

本発明のゲル化剤は、前述の疎水性有機溶媒や親水性有機溶媒のみならず、イオン液体もゲル形成可能である。

すなわち、本発明はイオン液体のゲル化剤である前述のゲル化剤を対象とし、さらに、前記ゲル化剤とイオン液体よりなるゲルも対象とする。

上記イオン液体としては、一般に「イオン液体」として既知のものを使用でき、例えばイミダゾリウム、ピリジニウム、ピペリジニウム、ピロリジニウム、ホスホニウム、アンモニウム及びスルホニウムからなる群から選択され
れるカチオンと、ハロゲン、カルボキシレート、サルフェート、スルホネート、チオシアネート、ニトリート、アルミネート、ポレート、ホスファート、アミド、アンチモニート、イミド及びメチドからなる群から選択されるアニオンから構成されるものが挙げられる。

例えば、カチオン種としては、1, 3 —ジアルキルイミダゾリウムイオン、1, 2, 3 —トリアルキルイミダゾリウムイオン、N —アルキルビリジニウムイオン、N —アルキルピロリジニウム、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、トリアルキルスルホニウムイオ

などが挙げられる。

また、アニオン種としては、テトラフルオロポレート（B F₄⁻）、ヘキサフルオロスフエート（P F₆⁻）、トリフルオロメタンスフルホネート（C F₃ S O₃⁻）、ヘキサフルオロアンチモネート（S b F₆⁻）、イオン、ビス（トリフルオロメチルスルホニル）イミド（C F₃ S O₂⁻）2 N⁻、イオン、ビス（フルオロスルホニル）イミド（F S O₂⁻）2 N⁻、イオン、トリス（トリフルオロメチルスルホニル）メチド（C F₃ S O₂⁻）3 C⁻、イオン、ニトレート（N O₃⁻）、イオン、トリフルオロメチルカルボキシレート（C F₃ C O₂⁻）、イオン、カルボキシレート（C H₃ C O₂⁻）、イオン、クロロアルミネート（A l₂ C l₇⁻）などが挙げられる。

[0081] [ゲル電解質]

本発明のゲルは、ゲル電解質として使用することができる。ゲル電解質は、有機溶媒あるいは水からなる電解液（液体電解質）、さらには前述のイオン液体をゲル化して得られる。使用するゲル化剤と電解液は特に限定されるものではなく、使用に応じて適時選択すればよい。

例えば、前記有機溶媒からなる電解液の場合、非プロトン性有機溶媒の少なくとも1種に電解質塩を溶解させたものである。

前記非プロトン性有機溶媒としては、グライム、アルケンカーポネート、アルキルカーポネート、環状エーテル、アミド類、二トリル類、ケトン類及びエステル類等が挙げられ、好ましい具体例として、プロピレンカーポネー
ト、エチレンカーボネート、ジェチルカーボネート、アーポテロラクトン、1,2ジメチルキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジェチルホルムアミド、ジェチルホルムアミド、1,3ジオキサン、ホルムアミド、ジェチルホルムアミド、1,4ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキサン誘導体、スルホラン、3-メチル2オキサリジン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジェチルエーテル及び1,3プロパンサルトン等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。

前記電解質塩は、カチオン金属と対アニオンからなり、カチオン金属としてはLi⁺、Na⁺、K⁺などが挙げられ、その対アニオンとしてはCI⁻〇₄⁻、LiBF₄⁻、PF₆⁻、CF₃S〇₃⁻、CF₃C〇₂⁻、AsF₆⁻、SbF₆⁻、(CF₃S〇₂)₂N⁻、B₁₀Cl₁₀〇₂⁻、(1,2ジメチルキシエタン)₂ClO₄⁻、低級脂肪族カルボン酸塩、AlCl₄⁻、Cl⁻、Br⁻、I⁻、クロロボラン化合物及び四フエニルホウ酸等が挙げられる。これらの中でも、好ましい電解質塩として、リチウム塩が挙げられる。これらの電解質塩は、単独で又は2種以上を組み合わせて使用することができる。

[0082] [ゲル化剤の製造法]

本発明はまた、前述の本発明のゲル化剤である式 (1) 又は式 (2) で表される化合物を製造する方法も対象とする。

すなわち該製造方法は、式R₁—CH₃O (式中、R₁は、炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルケニル基を表す。) で表される化合物をグルコース、マンノース又はガラクトース又はそれらの誘導体と縮環反応させて、前記式 (1) 又は式 (2) で表される化合物を製造する工程を、オルトギ酸トリエチル、DMF、及びP-トルエンスルホン酸の存在下でウェンボットで為すことを特徴とする、方法である。
実施例

以下に、本発明の特徴をさらに明らかにするため実施例を示すが、本発明はこれらの実施例によって制限されるものではない。

下記実施例の合成原料として使用した試薬を以下に示す。

1—オクタデカノール、1—テトラデカノール（特級）、1—ヘキサデカノール（一級）、1—オクタナール、エチルα—D—ダルコビラノシド（食品分析用）、メチルα—D—マンノピラノシド（特級）、メチルα—D—ガラクトピラノシド—水和物、臭化シトラプチルアンモニウム、炭酸カリウムは和光純薬工業（株）より入手し、N—クロロスルホンイミド2, 2, 6, 6—テトラメチルピベリジン—1—オキシル、メチルα—D—ダルコビラノシド、p—トルエンスルホン酸—水和物、オルトギ酸トリエチル、1—ウンデカナール、メチルβ—D—ダルコビラノシド0.5水和物は東京化成工業（株）より入手した。

また反応溶媒として使用したN—ジメチルホルムアミド（D M F）（脱水、有機合成用）、ジクロロメタン（特級）は和光純薬工業（株）より入手し、ヘキサン（特級）は関東化学（株）より入手した。

反応後処理および精製時に使用したトリエチルアミン（特級）、硫酸ナトリウム（特級）、炭酸水素ナトリウム（特級）、エタノール（特級）、アセトニトリル（特級）、ジェチルエーテル（特級）、塩化ナトリウム（特級）、トルエン（特級）は和光純薬工業（株）より入手し、ヘキサン（特級）、酢酸エチル（特級）、メタノール（特級）、クロロホルム（特級）は関東化学（株）より入手した。

水は純水を使用した。NMR測定用に使用した重クロロホルム（0.03% T M S（テトラメチルシラン）含有）はシグマアルドリッチジャパン（株）より入手した。

下記ゲル化試験およびエマルション調製時に使用した溶媒および試薬を以下に示す。
オクタン（特級）、シクロヘキサン（特級）、スクアレン（特級）、トルエン（特級）、デデシル硫酸ナトリウム（生化学用）、ウラニン（特級）、ローダミンB（特級）、ミリスチン酸イソプロピル（特級）、オーリープオイル（一級）、エタノール（特級）、スクアラン（特級）、ポリオキシエチレン（20）ソルビタンモノラウレート（Tween 20相当品）、レーアスコルピン酸、グリシン、レーアスコルピン酸2_リン酸エステル三ナトリウムは和光純薬工業（株）より入手し、ジメチルホキシド（DMSO）、1_ブチル_3_メチルイミダゾリウム塩化フルホスホラート（[BuMelm][BF_4]）、トリメチルプロピルアンモニウムビス（トリフルオロメタンスルホニル）イミド（[TMPA][TFSI]）、ヘキサデシルピリジニウムクロリド—水和物（CPC）、ヘキサデシルトリメチルアンモニウムプロミド（CTAB）、スルホこば酸ビス（2—エチルヘキシル）ナトリウム（AOT）、Span 80（ソルビタンモノオレアート）、D—＋—ダルコサミン塩酸塩は東京化成工業（株）より入手し、クロロホルム（特級）、酢酸エチル（特級）、アセトニトリル（特級）、エチレングリコール（特級）、エタノール（特級）、1_エチル_3_メチルイミダゾリウムビス（トリフルオロメチルスルホニル）イミド（[EtMelm][TFSI]）、ヨウ化1_ブチル_3_メチルイミダゾリウム（[BuMelm][I]）、1_ブチル_3_メチルイミダゾリウムヘキサフルオロホスフエート（[BuMelm][PF_6]）、1_ブチル_3_メチルイミダゾリウムトリフラーート（[BuMelm][CF_3SO_3]）、1_ブチルピリジニウムビス（トリフルオロメチルスルホニル）イミド（[BuPy][TFSI]）、N—メチル—N_プロピルビロリジニウムビス（トリフルオロメタンスルホニル）イミド（[P13][TFSI]）は関東化学（株）より入手し、1_ブチル_3_メチルイミダゾリウムビス（トリフルオロメチルスルホニル）イミド（[BuMelm][TFSI]）はシグマアルドリッチジャパン合同会社より入手し、1_ヘキシル_3_メチルイミダゾリウムビス（トリフルオロメチルスルホニル）イミド（[HeMelm][TFSI]）はメルク（株）より入手し、SH245（デカメチルシクロペンタシロキサン）は東レダウコーニング（株）より入手し、KF995（デカメ
チルシクロペンタシロキサン）は信越シリコン（株）より入手し、ホホバオイルは株式会社良品計画から入手し、タルクDN-SH、チタンDN—SH（2）、セリサイトDN—MC（2）、DN—HAP（SH）は大日本合成（株）より入手した。水は純水を使用した。

[0086]また以下に各種測定、分析及び重合に用いた装置及び条件を示す。

(1) 1H-NMRスペクトル
・装置：AVANCE 500、ブラー・バイオスピン（株）製
JNM-ECS 400、日本電子（株）製

(2) ポルテックスミキサー
・装ま：Voltex Genie 2、Scientific Industries社製

(3) 共焦点レーザースキャン顕微鏡
・装置：LSM 700、カールツアイス（株）製

(4) 走査型電子顕微鏡（SEM）
-装ま：Inspect S50、FEI Company製

[0087] [実施例1：ゲル化剤の合成]
<炭化水素基を有する脂肪族アリテヒド（化合物[1]～[3]）の合成>
[化11]

\[
\begin{align*}
CH_3(CH_2)_nCH_2OH & \rightleftharpoons \text{TEMP}^O\text{NCS-TBAB} & \text{零} & H_2nCHO \\
\text{CH}_2\text{Cl}_2 & \text{[1]～[3]} & \text{[1]} & \eta = 12 \\
\text{[2]} & \eta = 14 \\
\text{[3]} & \eta = 16 \\
\end{align*}
\]

[0088] 化合物[1]の合成
1—テトラデカノール（10.7 g, 50 mmol）、臭化テトラブチルアンモニウム（TBA）（0.81 g, 2.5 mmol）および2, 2, 6, 6—テトラメチルビペリジン—1—オキシル（TEMPO）（0.39 g, 2.5 mmol）のジクロロメタン100 mL溶液に、炭酸水素ナトリウム（4.2 g, 50 mmol）および炭酸カリウム（0.69 g, 5.0
m m o l) を溶解させた純水 1 0 0 m L 溶液を加えて、室温下で搅拌した。
この溶液に、N－クロロスツインイミド (N C S) (8 . 0 g , 6 0 m m o l) を加えて、室温下で 1 時間搅拌した。搅拌後、有機層を分取し、該有機層を純水 1 0 0 m L で 3 回洗浄した。洗浄後、有機層を分取し、硫酸ナトリウムを加え乾燥し、その後硫酸ナトリウムをろ過により除去し、ろ液を濃縮した。残留物をカラムクロマトグラフィー（シリカゲル、ヘキサン : 酢酸エチル = 1 0 0 : 0 から 9 5 : 5 (v / v)) で精製し、目的物である 1 －テトラデカナール（化合物 [1] ）を得た。: 収率 7 7 % (8 . 2 g) , 1 H NMR (400MHz, CDCl3) : δ 9 . 7 7 (1H, t, J = 1 . 8 Hz) , 2 . 4 2 (2H, dt, J = 1 . 8 , 7 , 3 Hz) , 1 . 6 3 (2H, quintet, J = 7 . 3 Hz) , 1 . 3 8 -1 . 1 7 (20H, m) , 0 . 8 8 (3H, t, J = 6 . 9 Hz) 。

1 －ヘキサデカノール (2 4 . 4 g , 1 0 0 m m o l) 、臭化テトラブチルアンモニウム (T B A B) (1 . 6 7 g , 5 . 2 m m o l) および 2 , 2 , 6 , 6 －テトラメチルピペリジン _ 1 －オキシル (E M P O) (0 . 7 9 g , 5 . 1 m m o l) のジクロロメタン 2 0 0 m L 溶液に、炭酸水素ナトリウム (8 . 4 7 g , 1 0 0 m m o l) および炭酸カリウム (1 . 4 2 g , 1 0 . 3 m m o l) を溶解させた純水 2 0 0 m L 溶液を加えて、室温下で搅拌した。この溶液に、N－クロロスツインイミド (N C S) (1 6 . 1 g , 1 2 0 m m o l) を加えて、室温下で 1 時間搅拌した。搅拌後、有機層を分取し、該有機層を純水 1 0 0 m L で 3 回洗浄した。洗浄後、有機層を分取し、硫酸ナトリウムを加え乾燥し、その後硫酸ナトリウムをろ過により除去し、ろ液を濃縮した。残留物をカラムクロマトグラフィー（シリカゲル、ヘキサン : 酢酸エチル = 1 0 0 : 0 から 9 5 : 5 (v / v)) で精製し、目的物である 1 －ヘキサデカナール（化合物 [2] ）を得た。: 収率 8 3 % (2 0 . 0 g) , 1 H NMR (400MHz, CDCl3) : δ 9 . 7 6 (1H, t, J = 1 . 8 Hz) , 2 . 4 2 (2H, dt, J = 1 . 8 , 7 . 3 Hz) , 1 . 6 3 (2H, quin, J = 7 . 3 Hz) , 1 . 3 7 -1 . 1 9 (24H, m) , 0 . 8 8 (3H, t, J = 6 . 9 Hz) 。
化合物 [3] の合成

1-オクタデカノール (4.6 g, 150 mmol)、臭化テトラブチルアンモニウム (TBAI) (2.42 g, 7.5 mmol) および 2, 6, 6-テトラメチルビヘンジン 1-オキシル (TEMPO) (1.17 g, 7.5 mmol) のジクロロメタン 750 mL 溶液に、炭酸水素ナトリウム (63.0 g, 750 mmol) および炭酸カリウム (10.4 g, 75 mmol) を溶解させた純水 1.5 L 溶液を加えて、室温下で搅拌した。この溶液に、N-クロロスクラシンイミド (NCS) (22.0 g, 165 mmol) を加えて、室温下で 2 時間搅拌した。搅拌後、有機層を分取し、該有機層を純水 500 mL で 3 回洗浄した。洗浄後、有機層を分取し、硫酸ナトリウムで乾燥し、その後硫酸ナトリウムをろ過により除去し、ろ液を濃縮した。濃縮物にアセトニトリル 200 mL を加え、室温下、一晩搅拌した。搅拌後、ろ過により白色粉末を得、減圧乾燥して、目的物である 1-オクタデカナール (化合物 [3]) を得た。:収率 86% (3.44 g), 1H NMR (500MHz, CDCl3) : δ 9.76 (1H, d, J = 1.9 Hz), 2.42 (2H, dt, J = 7.3 Hz), 1.63 (2H, quintet, J = 7.3 Hz), 1.37-1.19 (28H, m), 0.88 (3H, t, J = 6.9 Hz)。

[009] 1 < グルコース誘導体 (化合物 [4] - [8]) の合成>

[化 12]

化合物 [4] の合成

メチル α-D-グロシラノシド (1.9 g, 10 mmol) の DMF (10 mL) 酸重溶液に、p-トルエンスルホン酸一水和物 (46 mg, 0.
24 mmol) とオルトキ酸トリエチル (1.7 mL, 10 mmol) を室温下で加えた。この懸濁溶液に、1-ウンデカナール (1.7 g, 10 mmol) のDMF (5 mL) 稅濁溶液を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を50℃に設定して、系内を50 hPaに減圧しながら5時間回転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、飽和塩化ナトリウム水溶液で洗浄した。洗浄後、抽出液を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ過で除去した後、溶媒を減圧留去した。残渣にヘキサンを加え、水浴で冷却しながら振とうした。得られた懸濁液をろ過し、冷やしたヘキサンで洗浄した。得られた粉体をメタノールに溶解し、水で再結晶させ、目的物（化合物 [4]）を得た。:収率 33% (1.2 g) 1H NMR (400MHz, CDCl3) : δ 4.76 (1H, d, J = 4.1Hz), 4.54 (1H, t, J = 5.0Hz), 4.13 (1H, dd, J = 4.8, 10.3Hz), 3.85 (1H, dt, J = 1.8, 9.2Hz), 3.68-3.54 (2H, m), 3.51 (1H, t, J = 10.1Hz), 3.43 (3H, s), 3.26 (1H, t, J = 9.4Hz), 2.66 (1H, s), 2.23 (1H, d, J = 9.6Hz), 1.72-1.60 (2H, m), 1.45-1.34 (2H, m), 1.34-1.20 (14H, m), 0.88 (3H, t, J = 6.9Hz)。

メチルα-D-グルコピラノシド (7.8 g, 40 mmol) のDMF (50 mL) 稲濁溶液に、p-トルエンスルホン酸水和物 (190 mg, 1 mmol)、オルトキ酸トリエチル (6.7 mL, 40 mmol)、1-ードデカナール (7.4 g, 40 mmol) を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を50℃に設定して、系内を50 hPaに減圧しながら6時間回転させた。6時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液を加え、減圧下、濃縮した。残渣にトルエン (200 mL) および水 (200 mL) を加え、分液ロート中で激しく振とうさせた。有機層を分取し、硫酸ナトリウムで乾燥させ、硫酸ナトリウムをろ過で除去した後、溶媒を減圧留去した。残渣にヘキサン (2
O O m L）を加え撹拌した。得られた懸濁液をろ過し、白色固体を得た。得られた白色固体にヘキサン（1 O O m L）を加え、水浴で冷却しながら撹拌した。得られた懸濁液をろ過し、冷やしたヘキサンで洗浄し、得られた粉体を乾燥させ、目的物（化合物 [5]）を得た。収率 63%（9.1 g）。

NMR（400MHz, CDC l3）: δ 4.76 (1H, d, J = 4.1Hz), 4.54 (1H, t, J = 5.0Hz), 4.13 (1H, dd, J = 4.8, 10.3Hz), 3.84 (1H, t, J = 9.2Hz), 3.68-3.54 (2H, m), 3.51 (1H, t, J = 10.3Hz), 3.43 (3H, s), 3.26 (1H, t, J = 9.4Hz), 2.65 (1H, s), 2.22 (1H, d, J = 9.6Hz), 1.70-1.60 (2H, m), 1.44-1.34 (2H, m), 1.34-1.20 (16H, m), 0.88 (3H, t, J = 6.9Hz)

メチルα-D-グルコピラノシド（1.9 g, 10 mmol）のDMF（5 mL）懸濁溶液に、p-トルエンスルホン酸-水和物（5.5 mg, 0.29 mmol）、オルトギ酸トリエチル（1.7 mL, 10 mmol）を室温下で加えた。この懸濁溶液に1-ジトトラデカナール（化合物 [1]）（2.1 g, 10 mmol）のDMF（2.5 mL）とヘキサン（12 mL）溶液を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を40 ℃に設定して、系内を50 hPaに減圧しながら5時間回転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液を加え、得られた沈殿物をろ過し、水で洗浄した。得られた固体をカラムクロマトグラフィー（シリカゲル, ヘキサン:酢酸エチル = 60:40から40:60 (v/v)）で精製し、目的物（化合物 [6]）を得た。収率 31%（1.2 g）。

H NMR（400MHz, CDC l3）: δ 4.78 (1H, d, J = 4.1Hz), 4.54 (1H, t, J = 5.0Hz), 4.12 (1H, dd, J = 5.0, 10.1Hz), 3.85 (1H, t, J = 9.2Hz), 3.68-3.54 (2H, m), 3.50 (1H, t, J = 10.3Hz), 3.43 (3H, s), 3.25 (1H, t, J = 9.4Hz), 2.84 (1H, s), 2.38 (1H, d, J = 9.6Hz), 1.73-1.57 (2H, m), 1.44-1.34 (2H, m), 1.33-1.20 (20H, m), 0.88 (3H, t, J = 6.9Hz)。
《化合物 [7] の合成》

メチルα-D-グロコピラノシド (0.8g, 4mmol) のDMF（5mL）懸濁溶液に、p-トルエンスルホン酸一水和物 (25mg, 0.13mmol)、オルト酸トリエチル (0.7mL, 4mmol) を室温下で加えた。この懸濁溶液に1-ヘキサデカナール (化合物[2]) (1.0g, 4mmol) のジクロロメタン (5mL) 溶液を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を40℃に設定して、系内を500hPaに減圧しながら4時間回転させた。4時間後、室温まで冷却し、飽和炭酸水素ナトリウム溶液を加え、得られた沈殿物をろ過し、水で洗浄した。得られた固体をカラムクロマトグラフィー (シリカゲル、ヘキサン：酢酸エチル = 60:40から40:60 (v/v)) で精製し、目的物 (化合物[7]) を得た。収率21% (0.35g) (H NMR (400MHz, CDCl3) : δ 4.76 (1H, d, J = 3.7Hz), 4.54 (1H, t, J = 5.0Hz), 4.12 (1H, dd, J = 4.8, 10.3Hz), 3.85 (1H, t, J = 9.4Hz), 3.68-3.54 (2H, m), 3.51 (1H, t, J = 10.3Hz), 3.43 (3H, s), 3.26 (1H, t, J = 9.4Hz), 2.72 (1H, s), 2.28 (1H, s), 1.71-1.60 (2H, m), 1.44-1.34 (2H, m), 1.33-1.21 (24H, m), 0.88 (3H, t, J = 6.9Hz)。

《化合物 [8] の合成 - 1》

メチルα-D-ダルコピラノシド (1.9g, 100mmol)、1-オクタデカナール (化合物[3]) (29.5g, 110mmol)、p-トルエンスルホン酸一水和物 (1.05g, 5.5mmol) のDMF (130mL)懸濁溶液に、オルト酸トリエチル (14.7mL, 100mmol) を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を70℃に設定して、系内を220hPaに減圧しながら5時間回転させた。5時間後、室温まで冷冷却し、トリエチルアミンを13.3mL加え、反応溶液を減圧留去した。残渣にエタノール350mLを加えて固液洗浄し、ろ過後、白色粉末を減圧乾燥した。この洗浄操作を2回行い、目的物 (化合物[8]) を得た。収率76% (33.7g) (H
NMR (400MHz, CDC13) : δ 4.76 (1H, d, J = 3.7Hz), 4.54 (1H, t, J = 4.6Hz), 4.13 (1H, dd, J = 5.0, 10.1Hz), 3.86 (1H, t, J = 9.2Hz), 3.69-3.54 (2H, m), 3.51 (1H, t, J = 10.1Hz), 3.43 (3H, s), 3.26 (1H, t, J = 9.2Hz), 2.73 (1H, br s), 2.30 (1H, br s), 1.76-1.55 (2H, m), 1.50-1.14 (30H, m), 0.88 (3H, t, J = 6.4Hz)。

メチルα—D—ダルコピラノシド（1.9 g, 10 mmol）、1—オクタデカナール（化合物 [3])（2.7 g, 10 mmol）、p—トルエンスルホン酸—水和物（105 mg, 0.55 mmol）のDMF（10 mL）溶液に、オルトジ酸トリエチル（1.7 mL, 10 mmol）を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を70℃に設定して、系内を220 hPaに減圧しながら5時間回転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液を加え、得られた沈殿物をろ取し、水（50 mL）で二回洗浄した。得られた残渣にヘキサン（30 mL）を加えて固液洗浄し、ろ過後、白色粉末を減圧乾燥し、目的物（化合物 [8]）を得た。収率70%（3.1 g）

[0098] <グルコース誘導体（化合物 [9]）の合成>

[化13]

メチルβ—D—ダルコピラノシド0.5水和物（2.0 g, 10 mmol）、1—オクタデカナール（化合物 [3]）（2.7 g, 10 mmol）、p—トルエンスルホン酸—水和物（105 mg, 0.55 mmol）のDMF（10 mL）溶液に、オルトジ酸トリエチル（2.5 mL, 15 mmol）を室温下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続し、バス温度を70℃に設定して、系内を220 hPaに減圧しながら5時間回転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液を加え、得られた沈殿物をろ取し、水（50 mL）で二回洗浄した。得られた残渣にヘキサン（30 mL）を加えて固液洗浄し、ろ過後、白色粉末を減圧乾燥し、目的物（化合物 [9]）を得た。収率70%（3.1 g）
リウム水溶液を加え、得られた沈殿物をろ取し、水（50mL）で二回洗浄
した。得られた残渣にジェチルエーテル（30mL）を加えて固液洗浄し、
ろ過後、白色粉末を減圧乾燥し、目的物（化合物[9]）を得た。収率8
1%（3.6g）'H NMR (400MHz, CDCl₃) : 64.55 (1H, d, J = 5.0Hz), 4
28 (1H, t, J = 7.8Hz), 4.23-4.14 (1H, m), 3.80-3.69 (1H, m), 3.61
-3.50 (4H, m), 3.48-3.40 (1H, m), 3.36-3.25 (2H, m), 2.73 (1H, d,
J = 2.3Hz), 2.62 (1H, d, J = 2.3Hz) 1.74-1.56 (4H, m), 1.47-1.16 (30H,
m), 0.88 (3H, t, J = 6.4Hz)。

[0099] <グルコース誘導体（化合物[10]）の合成>

[化14]

\[
\begin{align*}
\text{CH}_3(\text{CH}_2)_{16}\text{CHO} & \xrightarrow{\text{ethyl-α-D-glucopyranoside}} \text{CH}_3(\text{CH}_2)_{16}\text{HO} \\
\rho-\text{TsOH}+\text{H}_2\text{O}, (\text{EtO})_3\text{CH} & \quad \text{DMF}
\end{align*}
\]

エチルα-D-ダルコピラノソド（2.1g, 10mmol）、1-オクタデカナール（化合物[3]）（2.7g, 10mmol）、ρ-トルエン
スルホン酸-水和物（105mg, 0.55mmol）のDMF（10mL
）懸濁溶液に、オルトキ酸トリエチル（1.7mL, 10mmol）を室温
下で加えた。反応溶液が入ったフラスコをロータリーエバポレーターに接続
し、パス温度を70℃に設定して、系内を220hPaに減圧しながら5時間回
転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液
を加え、得られた沈殿物をろ取し、水（50mL）で二回洗浄した。得られ
た残渣にジェチルエーテル（30mL）を加えて固液洗浄し、ろ過後、白色
粉末を減圧乾燥し、目的物（化合物[10]）を得た。収率7.4%（3.4g）

'H NMR (400MHz, CDCl₃) : 64.87 (1H, d, J = 4.1Hz), 4.54 (1H, t,
J = 5.0Hz), 4.11 (1H, dd, J = 4.6, 10.1Hz), 3.90-3.73 (2H, m), 3
.67 (1H, dt, J = 4.6, 10.1Hz), 3.60-3.45 (3H, m), 3.26 (1H, t, J =
9.6Hz), 2.65 (1H, s), 2.20 (1H, d, J = 10.1Hz), 1.75-1.53 (5H, m),
1.46-1.15 (32H, m), 0.88 (3H, t, J = 6.9Hz)。
メチルα-β-マンノピラノシド（化合物[11]）の合成

\[
\text{CH}_3(\text{CH}_2)_{16}\text{CHO} \xrightarrow{\text{p-TsOH} + \text{H}_2\text{O}, (\text{EtO})_3\text{CH}} \text{CH}_3(\text{CH}_2)_{16} \quad \text{[11]}
\]

メチルα-β-マンノピラノシド（1.9 g, 10 mmol）、1-オクタデカノール（化合物[3]）（2.7 g, 10 mmol）、p-トルエンスルホン酸-水和物（105 mg, 0.55 mmol）のDMF（10 mL）懸濁液に、オルトキ酸トリエチル（1.7 mL, 10 mmol）を室温下で加えた。反応溶液が入ったフラスコをロータリーさくばれーターに接続し、ベース温度を70℃に設定して、系を220 hPaに減圧しながら5時間回転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリウム水溶液を加え、得られた沈殿物をろ取し、水（50 mL）で二回洗浄した。得られた残渣にジェチルエーテル（30 mL）を加えて固液液済し、ろ過後、白色固体を減圧乾燥した。得られた固体をカラムクロマトグラフィー（シリカゲル、ヘキサン：酢酸エチル=80:20から50:50（v/v）およびクロルホルム：酢酸エチル=50:50（v/v））で精製し、目的物（化合物[11]）を得た。

生出率2.7％（1.2 g）。

\[
\delta 4.74 (1H, d, J = 1.4Hz), 4.58 (1H, t, J = 5.0Hz), 4.17-4.07 (1H, m), 4.05-3.94 (2H, m), 3.71-3.56 (3H, m), 3.37 (3H, s), 2.55 (1H, d, J = 2.3Hz), 2.51 (1H, d, J = 3.7Hz), 1.69-1.60 (2H, m), 1.47-1.17 (30H, m), 0.88 (3H, t, J = 6.9Hz).
\]

ガラクトース誘導体（化合物[12]）の合成

\[
\text{CH}_3(\text{CH}_2)_{16}\text{CHO} \xrightarrow{\text{p-TsOH} + \text{H}_2\text{O}, (\text{EtO})_3\text{CH}} \text{CH}_3(\text{CH}_2)_{16} \quad \text{[12]}
\]
メチルα-D-ガラクトピラノシドー水和物（2.1 g, 10 mmol）
、1－オクタデカンール（化合物 [3]）（2.7 g, 10 mmol）、p－
トルエンスルホン酸－水和物（105 mg, 0.55 mmol）のDMF
（10 mL）懸濁溶液に、オルトキ酸トリエチル（3.3 mL, 20 mmol）
を室温下で加えた。反応溶液が入ったフラスコをロータリーエバボレーター
に接続し、バス温度を70 ℃に設定して、系内を220 hPaに減圧して
ながら5時間回転させた。5時間後、室温まで放冷し、飽和炭酸水素ナトリ
ウム水溶液を加え、酢酸エチルで抽出し、飽和塩化ナトリウム水溶液で洗浄
した。有機層を分取し、硫酸ナトリウムを加え乾燥し、その後硫酸ナトリウ
ムを過過により除去し、溶液を濃縮した。残留物にヘキサン（30 mL）を
加え、固液洗浄し、ろ過後、白色固体を減圧乾燥した。得られた固体をカラ
ムクロマトグラフィー（シリカゲル、ヘキサン：酢酸エチル = 60 ：40 か
ら40 ：70 (v/v)）で精製し、目的物（化合物 [12]）を得た。
収率55％（2.4 g）。

[0102] [実施例2：ゲル化剤のゲル形成能試験]

に対するゲル形成能の評価を行った。

ゲル化試験は次のように行った。4 mLのねじロサンプル管に、ゲル化剤
スクアレン、ミリスチン酸イソプロピル（IPM）、オリーブオイル、KF
995（デカメチルシクロヘキサシクロタニ）と、エチレングリコールでは1
20 ℃、ホホバオイル、トルエン、水では100 ℃、シクロヘキサン、酢
酸エチル、アセトニトリリ、DMSO（ジメチルスルホキシド）、エタノ
ール、エタノール/水（v/o/l, v/o/l）混合溶媒（75％エタノール（エタ
ノール／水 = 75/25、50％エタノール（同50/50）、25％エタノール（同25/75）では80℃、クロロホルム、メタノールでは60℃で、それぞれ30分間加熱した。一方、化合物[8]～[12]のとき、オクタン、スクアラン、スクアレン、ミリスチン酸イソプロピル（IPM）、オリーブオイル、ホホバオイル、KF995（デカメチルシクロペンタシロキサン）、トルエン、エチレンゲリコール、水では100℃、シクロヘキサン、酢酸エチル、アセトニトリル、DMSO（ジメチルスルホキシド）、エタノール、エタノール／水（vol/vol）混合溶媒（75％エタノール同50/50）、25％エタノール（同25/75）では80℃、クロロホルム、メタノールでは60℃で、それぞれ30分間加熱した。

得られた各溶液を室温にまで冷却し1時間放置してゲルの形成を観察した（なお、トルエン及び酢酸エチルを用いた場合、化合物の種類によって24時間放置（放冷）とした）。なお、放冷後、溶液の流動性が失われて、サンプル管を倒置しても溶液が流れ落ちない状態を「ゲル化」と判断した。ゲル化試験はゲル化剤の濃度：5.0、4.0、3.0、2.0、1.0、0.5、0.25、0.1wt％にて実施し、ゲル化に要するゲル化剤の最低濃度（wt％）を最低ゲル化濃度とした。ここで、濃度の単位を示すwt％は、wt/vol×100を意味する。得られた結果を表1に示す。表中の数字は最低ゲル化濃度（wt％）を表し、表中の符号は形成したゲルの状態を示し（以下、本明細書中の他の表も同様である）、透明なゲルは「G」、半透明なゲルは「T G」、濁ったゲルは「OG」、部分的にゲル化したもので透明なゲルは「P G」、部分的にゲル化したもので半透明なゲルは「P T G」、部分的にゲル化したもので白濁したゲルは「P OG」、溶液のままのときは「S」、沈殿が生じたときは「P」、また、加熱してもゲル化剤が溶解せず不溶となったときは「IS」と評価した。また評価していない溶媒は「-」とした。

[0103]
表1 に示すように、糖誘導体型ゲル化剤（化合物 [4] - [12]）のゲル化試験結果は、
非極性溶媒からプロトン性溶媒まで、幅広い溶媒群に対してもゲル化能を示し
った。

さらに、グルコース誘導体 : 化合物 [8] を 2 wt % 配合し、形成した K
F995 ゲルは、自立可能な硬さ（自己支持性）を有していた（図1参照）
実施例3：チキソトロピー性試験

グルコース誘導体型ゲル化剤（化合物[8]）からなる各種ゲルのチキソトロピー性について評価した。チキソトロピー性試験は次のように行った。実施例2と同様の方法で、ゲル化剤の濃度を変えてゲルを調製した。その後、ボルテックスミキサーを用いてゲルからゾル状態になるまで振盪させることによりゲルを崩壊させ、室温下、一定時間（1.5時間）静置した。一定時間静置後、溶液が入ったサンプル管を倒置し、溶液が流れ落ちない状態のとき「チキソトロピー性がある」と判断した。チキソトロピー性が確認されたゲル化剤の最低濃度（wt%）を表2に示す。

表2．グルコース誘導体型ゲル化剤（化合物[8]）のチキソトロピー性試験結果

<table>
<thead>
<tr>
<th>スクアラン</th>
<th>ホホバオイル</th>
<th>KF995</th>
<th>オリーブオイル</th>
<th>エタノール/水（50/50）（vol/vol）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>1.0</td>
<td>2.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

※ 表中の数値はチキソトロピー性が確認された各溶媒のゲル化に要するゲル化剤（化合物）の最低濃度（wt%）を示す。

実施例4：添加剤配合試験<界面活性剤配合時におけるゲル化試験（1）>

一般に化粧品や医薬部外品には界面活性剤等の各種添加剤が配合され、こうした添加剤を配合した場合においてもゲル化能を有するゲル化剤であることを、特に界面活性剤配合時においてゲル化能を有するゲル化剤は、後述するように水－油分散系ゲルの容易な調製が期待できるため、種々の用途への展開が想定され得ることから非常に有用である。

さらにHLB値の大小に関わらず界面活性剤配合溶液をゲル化することができれば、一つのゲル化剤で、0/W分散系ゲルおよびW/0分散系ゲルのどちらの調製も可能となることが期待される。
以下、HLB値が大きいTween20（HLB=16.7）とHLB値が小さいSpan80（HLB=4.3）を配合した際の、本発明のゲル化剤のゲル化能について検討した。

[0109] ＜界面活性剤配合試験＞

界面活性剤配合時のゲル化試験は、次のように行った。

ノニオン性の界面活性剤であるポリオキシエチレン（20）ソルビタンモノナウラート（Tween20）（HLB=16.7）を添加した際のゲル化能を検討した。まずTween20を水に溶解させて1wt% Tween20配合水溶液を調製した。その後、4mLのスクリュー管に所定濃度になるようにグルコース誘導体型ゲル化剤（化合物8）を添加し、先に調製した界面活性剤配合水溶液を加え、100℃で30分間加熱した。得られた溶液を室温にまで冷却し1時間放置して、スクリュー管を倒置させることによりゲルの形成を確認した。結果を表3に示す。

[0110] 次にノニオン性の界面活性剤であるSpan80（HLB=4.3）を添加したときのゲル化能を検討した。4mLのスクリュー管に所定濃度（0.5wt%）となるようにSpan80と、所定濃度となるようにグルコース誘導体型ゲル化剤（化合物8）を添加し、油剤（スファラン、オリーブオイル、ホホバオイル、KF995）を加え、120℃で30分間加熱した。得られた溶液を室温にまで冷却し1時間放置して、スクリュー管を倒置させることによりゲルの形成を確認した。結果を表3に示す。

[0111] [表3]

<table>
<thead>
<tr>
<th>Tween20 1wt%配合</th>
<th>Span80 0.5wt%配合</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>スファラン</td>
</tr>
<tr>
<td></td>
<td>オリーブオイル</td>
</tr>
<tr>
<td></td>
<td>ホホバオイル</td>
</tr>
<tr>
<td></td>
<td>KF995</td>
</tr>
<tr>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>OG</td>
<td>TG</td>
</tr>
<tr>
<td></td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>TG</td>
</tr>
<tr>
<td></td>
<td>OG</td>
</tr>
</tbody>
</table>

※ 表中の数値は各溶液のゲル化に要するゲル化剤（化合物）の最低濃度（wt%）を示す。
※ G：透明なゲル、TG：半透明なゲル、OG：濁ったゲルを示す。

[0112] 表3に示すように、本発明のゲル化剤は、ノニオン性界面活性剤であるT
Tween 20 を配合した場合において、ヒドロゲルを形成することができるとする結果を得た。
なお、先の表 1 に示すように、化合物 [8] のグルコース誘導体型ゲル化剤は、単独ではヒドロゲル（水 100% ゲル）を形成できず、ゲル化剤と界面活性剤の併用によるヒドロゲル形成は、きわめて特徴的な例といえる。
また表 3 に示すように、どの油剤においても Span 80 配合時にゲルを形成することが確認された。この結果は、水—油分散系ゲル調製時において、W／O 型の分散ゲルを形成できる可能性があることを示唆するものであった。

実施例 5 ：添加剤配合試験 < 界面活性剤配合時におけるゲル化試験 (2) >
本例では、種々の界面活性剤として、ノニオン性の界面活性剤（Tween 20）、アニオン性の界面活性剤 [ジ (2 — エチルヘキシル) スルホコハク酸ナトリウム (AOT) 、 ドテシル硫酸ナトリウム (SDS)] 、及びカチオン性の界面活性剤 [塩化セチルトリメチルアンモニウム (CTAB) 、 塩化セチルピリジニウム (CPC)] を配合した際の、本発明のゲル化剤のゲル化能について検討した。
まず上記種々の界面活性剤を水に溶解させて 0.5 wt%の各種界面活性剤配合水溶液を調製した。その後、4 mL のスクリュー管に所定濃度になるようにグルコース誘導体型ゲル化剤（化合物 [8]）を添加し、先に調製した界面活性剤配合水溶液を加え、100℃で 30 分間加熱した。得られた溶液を室温にまで冷却し 1 日間（Tween 20 は 1 時間）放置して、スクリュー管を倒置させることによりゲルの形成を確認した。結果を表 4 に示す。
表4. 界面活性剤配合時 ゲル化試験結果

<table>
<thead>
<tr>
<th>ノニオン性界面活性剤</th>
<th>イオン性界面活性剤</th>
<th>カチオン性界面活性剤</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween20</td>
<td>AOT</td>
<td>CTAB</td>
</tr>
<tr>
<td>5 OG*</td>
<td>2 TG</td>
<td>1 TG</td>
</tr>
<tr>
<td></td>
<td>1 TG</td>
<td>1 TG</td>
</tr>
</tbody>
</table>

* 室温放冷、1時間後
※ 表中の数値は各溶媒のゲル化に要するゲル化剤（化合物）の最低濃度（wt%）を示す。
※ TG:半透明なゲル、OG:濁ったゲルを示す。

[01 15] 表4に示すように、本発明のゲル化剤は、ノニオン性界面活性剤、イオン性界面活性剤、カチオン性界面活性剤を配合した場合のいずれにおいても、ヒドロゲルを形成することができるとする結果を得た。

[01 16] [実施例6 グルコース誘導体型ゲル化剤（化合物[8]）を用いた水-油分散試験]

油剤と水を均一に分散化し、かつ安定化させる製品の製造技術は、化粧品、医薬品、食品、機能性材料など多種用途で求められている。

連続相のゲル化により、液滴の合体を抑えることは、エマルションの安定化において重要な因子のひとつとなる。すなわち、ある種のゲル化剤が、W／OエマルションおよびW／Wエマルションにおける連続相のゲル化を誘起することは、該ゲル化剤がW／O又はW／Wエマルションを安定化できる可能性を持つことを意味する。

前述の実施例4及び実施例5において、界面活性剤配合時においてもゲル形成能を有するだけでなく、少量の界面活性剤Tween20添加により、ヒドロゲル（水100%ゲル）の形成も可能であった点が確認されている。さらに実施例2において、本発明のゲル化剤は、疎水性有機溶媒（油剤）およびアルコール配合水溶液（エタノール/水溶液）の双方に対してゲル形成能を有するとする結果を得ている。この結果は、本発明のゲル化剤が界面活性剤を用いずとも水と油を均一に分散化し、かつ安定化させることが可能であることを示唆するものである。

そこで、本例では、本発明のゲル化剤が水と油剤の両溶媒を均一に分散
きるか確認すべく、水－油分散試験を行った。

水－油分散試験は次のように行った。4 mLのねじ口サンプル管に所定の濃度になるようにグルコース誘導体型ゲル化剤（化合物[8]）、並びに油剤（KF 995）及び水を加えた。また界面活性剤配合例において、Tween 20は、水の代わりに1 wt% Tween 20水溶液を用い、Span 80は、ゲル化剤添加時に1 wt%（但し KF 995／水（2/8（vol/vol））のときのみ0.5 wt%）となるように加えた。

上記ゲル化剤などの混合溶液の入ったサンプル管を30分間加熱し、混合成分を溶解させた。その後、ボルテックスミキサーを用いてせん断後、室温にて1時間静置させ、分散状態を観察した。なお、放冷後、溶液の流動性が失われて、サンプル管を倒しても溶液が流れ落ちない状態、かつ水と油が均一に分散した状態を水／油分散ゲル」と判断した。得られた結果を表5に示す。

![表5. グルコース誘導体型ゲル化剤（化合物[8]）の水－KF 995分散ゲル調製試験](image)
成できた。

[01 20] < 共焦点レーザースキャン顕微鏡を用いた分散ゲルの分散相および連続相の同定>

図2に、水の代わりに、蛍光色素であるウラニン5M水溶液を用いて、
上記と同様に調製した界面活性剤を配合した水/油分散ゲルの共焦点レーザー
スキャナ顕微鏡観察の結果を示す。なお、水/油分散ゲルとしては水—KF
F995 (KF995/水 = 2 / 8 (vol/vol)) 分散ゲル（ゲル化
剤の添加量は表5参照）を用い、界面活性剤としてTween20を1wt%
配合、あるいはSpan80を1wt%配合とした。図中、蛍光色を発する
相（画像上、白色に見える相）が水相である。

[01 21] 図2 (a) に示すように、Tween20を1wt%配合した水—KF
F995 (KF995/水 = 2 / 8 (vol/vol)) 分散ゲルは、○／Wエマ
ルションゲル（分散相がKF995相で、連続相が水相）であり、一方、
Span80を1.0wt%配合した水—KF995 (KF995/水 = 2
／8 (vol/vol)) 分散ゲルは、W／0エマルションゲル（分散相が
水相で、連続相がKF995相）であることが確認された。

先の実施例2の結果に示されるように、本発明のゲル化剤のうち化合物 [8]
等は１００％水に対するゲル化能を有していないが、この系にTween
20等の界面活性剤を配合することによりヒドロゲルが形成できることは
実施例4及び実施例5において確認されている。そして上記○／Wエマルシ
ョンゲル形成の結果は、グルコース誘導体型ゲル化剤（化合物 [8] ）とT
ween20の複合体がエマルションゲル形成に関与していることが示唆され
る。

[01 22] また、高含水率のW／0エマルションゲルは、一般に化粧品用途において
、汗や水で流れない上に、皮膚上での伸びがよく、きっぱりした使用感と耐
水性が両立する製品群への適用が期待されているが、エマルションが不安定
であることが知られている。

このように調製が難しいとされている高含水率W／0エマルションが、本
発明のゲル化剤を使用し、また、界面活性剤としてSpan80を配合した際にエマルションゲルとして得られるとする結果は、本発明のゲル化剤によって得られる大きな特徴のひとつといえる。

[0123] < グルコース誘導体型ゲル化剤（化合物[8]）の水－スクアラン、水－IPMおよび水－ホホバ油分散ゲル調製試験>

次に、本発明のゲル化剤（化合物[8]）を用い、また油剤としてスカフララン、IPMまたはホホバ油を用いて、先の<水－KFF555分散ゲル調製試験>の手順に従い、水－油分散ゲル調製試験を行った。

得られた結果を表6に示す。

[0124] [表6]

<table>
<thead>
<tr>
<th>添 加 剤</th>
<th>スクアラン/水 (vol/vol)</th>
<th>ホホバオイル/水 (vol/vol)</th>
<th>IPM/水 (vol/vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>なし</td>
<td>3/7 2/8 1/9</td>
<td>3/7 2/8 1/9</td>
<td>3/7 2/8 1/9</td>
</tr>
<tr>
<td>Tween20</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Span80</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

※ 表中の数値は各溶媒のゲル化に要するゲル化剤（化合物）の濃度（wt%）を示す。
※ 添加剤なしの時は加熱温度は80℃、ボルテックスミキサーによるせん断時間は5分。
Tween20添加剂時の加熱温度は100℃、ボルテックスミキサーによるせん断時間は3分。
Span80添加剂時の加熱温度は80℃、ボルテックスミキサーによるせん断時間は5分。
※ Tween20は1wt%Tween20溶液として使用。
Span80はゲル化剤添加時に0.5wt%となるように直接添加。
※ 斜線は未実施を示す。

[0125] 表6より、種々の油性基材において、ゲル化剤（化合物[8]）のみ、およびゲル化剤とTween20の併用時、並びにゲル化剤とSpan80の併用時において、水－油分散ゲル調製を行ことができた。この結果は、グルコース誘導体型ゲル化剤（化合物[8]）が、多様な油性基材において水－油分散ゲルの調製を可能とすることを示唆するものである。

[0126] <水溶性薬剤内包水－油分散ゲルの調製>
次に、水の代わりに、水溶性薬剤水溶液を用いた水一油分散ゲル調製を行った。水溶性薬剤として、L-アスコルビン酸（20％水溶液（pH2.0））、L-アスコルビン酸2-リン酸エステルミナトリウム（40％水溶液（pH8.4）、グリシン（18％水溶液（pH6.1）、D-（+）ーダルコサミン塩酸塩（2.5％水溶液（pH7.1））を用い、グルコース誘導体型ゲル化剤（化合物[8]）およびSpan80をそれぞれ0.5wt％、油性基材にKF995を用い、水溶性液と油性基材の割合を80Z20とし、これらをカツコ内に示す所定の水溶液として使用し、先の<水一KF995分散ゲル調製試験>の手順に従い、水一油分散ゲル調製試験を行った。得られた結果を表7に示す。

[表7] 水溶性薬剤を内包した水一油分散ゲル調製試験

<table>
<thead>
<tr>
<th>L-アスコルビン酸</th>
<th>L-アスコルビン酸2-リン酸エステルミナトリウム</th>
<th>グリシン</th>
<th>グルコサミン</th>
</tr>
</thead>
<tbody>
<tr>
<td>○(0.5分)</td>
<td>○(0.5分)</td>
<td>○(1分)</td>
<td>○(0.5分)</td>
</tr>
</tbody>
</table>

※表中の括弧内の数値は、ポルテックスミキサーによるせん断時間(分)を示す。

[0128] 表7より、いずれの水溶性薬剤を内包しても、安定な水一油分散ゲルの調製が可能であった。また、L-アスコルビン酸水溶液は酸性（pH約2.0）、L-アスコルビン酸2-リン酸エステルミナトリウム水溶液は塩基性（pH約8.4）であり、広範なpH領域において、水一油分散ゲルの調製が可能であることが確認された。

[実施例7 各種ゲルのSEM観察]
<グルコース誘導体型ゲル化剤（化合物[8]）のKF995キセロゲルおよび50％エタノールゲルのSEM観察>
実施例1で調製したゲル化剤（化合物[8]）を0.25wt％加えたKF995ゲルを調製した後、カーポンテープ上で24時間真空乾燥させることにより得られたキセロゲルを走査型顕微鏡（SEM）にて観察した。
また、上記ゲル化剤を0.1wt％加えた50％エタノールゲル（エタノ
ル／水 = 50/50 (vol/vol) を調製した後、カーボンテーブ上に該ゲルを載せ、80 Pa の減圧下で SEM にて観察した。
得られた結果を図 3 (a) : KF995 キセロゲル、 (b) : 50 % エタノールゲル）に示す。
図 3 に示すSEM 画像より、ゲル化剤（化合物 [8]）の KF995 キセロゲル（図 3 (a)）および 50 % EtOH ゲル（図 3 (b)）から、いずれもファイバー状の像が得られた。このことから、グルコース誘導体型ゲル化剤（化合物 [8]）からなるゲルは、三次元網目構造をとっていることが確認された。

[0130] < グルコース誘導体型ゲル化剤（化合物 [8]）の 1 % Tween 20 配合の水——KF995 分散ゲルの SEM 観察 >
次に、実施例 1 で調製したゲル化剤（化合物 [8]）を用いて調製した、1 % Tween 20 配合の水_ KF995 分散ゲルの SEM 観察を行った。
上記ゲル化剤を 2wt % 使用し、Tween 20 を 1 % 配合した水—KF995 分散ゲルを調製した後、カーボンテーブ上にゲルを載せ、80 Pa の減圧下で SEM にて観察した。得られた結果を図 4 （図 4 (a) 5000 倍、 (b) 5000 倍）に示す。
図 4 に示すSEM 画像より、1 % Tween 20 配合の水_ KF995 (KF995/水 = 2/8 (vol/vol)) 分散ゲルは、空孔を有するスポンジ状構造を形成しているとする像が得られた。この空孔は、KF995 相による分散相に由来したものと考えられ、すなわちゲル化剤（化合物 [8]）と界面活性剤 Tween 20 の複合体からなる繊維状構造体が連続相を形成し、水—油分散ゲルを形成していることが示唆される結果となった。

[0131] [実施例 8 :イオン液体のゲル化評価]
実施例 1 で合成した化合物 [8] をゲル化剤として、各種イオン液体に対するゲル形成能の評価を行った。
4 mL のスクリュー管に、所定濃度になるようにグルコース誘導体型ゲル化剤（化合物 [8]）を添加し、ここに表 8 に示す各種イオン液体を加え、
100 ℃で30分間加熱した。得られた溶液を室温にまで冷却し、1時間放置して、スクリュー管を倒置させることによりゲルの形成を確認した。結果を表8に示す。

なお、以下の実施例において使用したイオン液体（カチオン種・アニオン種）は次の通りである。

<カチオン種>
EtMeIm : 1-エチル-3-メチルイミダソリウムイオン
BuMeIm : 1-ブチル-3-メチルイミダソリウムイオン
BuPy : N-ブチルピリジニウムイオン
HeMeIm : 1-ヘキシル-3-メチルイミダソリウムイオン
P13 : N-メチル-N-プロピルピリジニウムイオン
TMPA : N,N,N-トリメチル-N-プロピルアンモニウムイオン

<アニオン種>
TFSI : ビス（トリフルオロメチルスルホニル）イミドイオン
PF6 : ヘキサフルオロホスホフェートイオン
I : ヨウ素イオン
CF3SO3 : トリフルオロメタンスルホネートイオン
BF4 : テトラフルオロアゾートイオン

[0132] [表8]

表8. 各種イオン液体に対するゲル形成能

<table>
<thead>
<tr>
<th>イオン液体</th>
<th>ゲル形成結果</th>
<th>イオン液体</th>
<th>ゲル形成結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EtMeIm][TFSI]</td>
<td>1 TG</td>
<td>[BuMeIm][BF4]</td>
<td>5 TG</td>
</tr>
<tr>
<td>[BuMeIm][TFSI]</td>
<td>2 TG</td>
<td>[BuPy][TFSI]</td>
<td>2 TG</td>
</tr>
<tr>
<td>[BuMeIm][PF6]</td>
<td>1 TG</td>
<td>[HeMeIm][TFSI]</td>
<td>2 TG</td>
</tr>
<tr>
<td>[BuMeIm][I]</td>
<td>1 *</td>
<td>[P13][TFSI]</td>
<td>1 G</td>
</tr>
<tr>
<td>[BuMeIm][CF3SO3]</td>
<td>2 TG</td>
<td>[TMPA][TFSI]</td>
<td>1 TG</td>
</tr>
</tbody>
</table>

* イオン液体自体の色が濃く濁度によって判断できず。
※ 表中の数値は各イオン液体のゲル化に要するゲル化剤（化合物）の濃度（wt%）を示す。
※ G : 透明なゲル、TG : 半透明なゲルを示す。
表8 に示すように、本発明のゲル化剤は、種々のイオン液体をゲル化できることを認めた。
また、グルコース誘導体化合物[8]を2wt%あるいは3wt%配合したイオン液体[BuMeIm][TFSI]より形成したゲルは、自立可能な硬さ（自己支持性）を有していた（図5参照：図5(a)化合物[8]を3wt%配合、(b)化合物[8]を2wt%配合）。

[実施例9 - 電気伝導率測定]
実施例1で合成した化合物[8]をゲル化剤とし、これを種々の濃度にてイオン液体[BuMeIm][TFSI]に加え、100℃で30分間加熱した。得られた溶液を電気伝導率計の測定セルに流し込み、室温下、1時間放置して、電気伝導率測定を行った。
得られた結果を表9に示す。

[表9]

<table>
<thead>
<tr>
<th>サンプル性状</th>
<th>液状</th>
<th>ゲル</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゲル化剤濃度(wt%)</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>電気伝導率(mS/cm)</td>
<td>4.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

※イオン液体[BuMeIm][TFSI]、ゲル化剤化合物[8]

表9に示すように、本発明のゲル化剤を用いて得られたイオン液体ゲルの電気伝導率は、イオン液体（ゲル化剤濃度OWt%）の電気伝導率を大きく低下させることなく、ほぼ同じ値を示した。

[実施例10 - イオン液体-オイル分散型ゲル製製試験]
4mLのねじロサンプル管に、2wt%になるようにグルコース誘導体型ゲル化剤（化合物[8]）、並びにイオン液体[BuMeIm][TFSI]

WO 2017/034004

PCT/JP2016/074860

77
とスクアランを50/50（vol/vol）の比率で加えた。また、ゲル化剤として化合物 [8] を0.25 wt%、並びにTween20を2wt%となるようにイオン液体 [BuMeIm] [TFSI] とスクアランを50/50（vol/vol）の比率で加えた。

上記ゲル化剤などの混合溶液の入ったサンプル管を30分間加熱し、混合成分を溶解させた。その後、ポルテックスミキサーを用いてせん断後、室温にて1時間静置させ、分散状態を観察した。なお、放冷後、溶液の流動性が失われて、サンプル管を倒置しても溶液が流れ落ちない状態、かつイオン液体とスクアランが均一に分散した状態を「イオン液体—オイル分散ゲル」と判断した。

その結果、イオン液体—スクアラン分散ゲル調製において、ゲル化剤（化合物 [8]）を単独で使用した場合、ゲル化剤と界面活性剤（Tween20）を併用した場合のいずれにおいても、イオン液体/オイル分散ゲル（ゲルエマルション）が形成できた。

[0139] <共焦点レーザー顕微鏡を用いたイオン液体ゲルエマルションの分散相および連続相の同定>

10斗MローダミンB配合イオン液体 [BuMeIm] [TFSI] を用いて、上記と同様に、化合物 [8] を2wt%配合したローダミンB配合イオン液体 [BuMeIm] [TFSI] /スクアラン=50/50（vol/vol）ゲルエマルションを調製し、共焦点レーザー顕微鏡観察による観察を行った。得られた結果を図6（a）に示す。

同様に、化合物 [8] を0.25 wt%、界面活性剤としてTween20を2wt%配合した、ローダミンB配合イオン液体 [BuMeIm] [TFSI] /スクアラン=50/50（vol/vol）ゲルエマルションを調製し、共焦点レーザー顕微鏡観察による観察を行った。得られた結果を図6（b）に示す。

図6中、蛍光色を発する相（画像上、白色に明るく見える相）がイオン液体相である。
図6にも示すように、化合物[8]のみ配合したゲルエマルションは、イオン液体/オイル（IL/0）ゲルエマルション（分散相がイオン液体相で、連続相がスクアラン相）を形成し、一方、化合物[8]とTwee n20を併用した系では、オイル/イオン液体（IL/IL）ゲルエマルション（分散相がスクアラン相で、連続相がイオン液体相）を形成したことが確認された。

[0140]＜イオン液体ゲルエマルションの電気伝導率測定＞

前述の化合物[8]を2wt％配合、あるいは、化合物[8]を0.25wt％及びTwee n20を2wt％配合して作成した、各イオン液体[B u M e l m]_2[TFSI]とスクアランの50/50（vol/vol）のゲルエマルションについて、上記[実施例9：電気伝導率測定]の手順に従い、電気伝導率を測定した。

その結果、ゲル化剤（化合物[8]）のみを配合したゲルエマルションの電気伝導率は0μS/cmであり、一方、ゲル化剤と界面活性剤（Twee n20）を併用した場合のゲルエマルションの電気伝導率は1.67mS/cmであった。

先の共焦点レーザースキャン顕微鏡の観察結果と合わせると、電気伝導率が0μS/cmである化合物[8]のみからなるゲルエマルションはIL/0エマルションであることから、イオン液体による電気伝導性が遮蔽されていることが確認された。一方、化合物[8]とTwee n20からなるゲルエマルションはIL/ILエマルションであり、ゲルエマルションの状態でも電気伝導性（1.67mS/cm）を示すことが確認された。

[0141]【実施例11：微粒子分散系におけるゲル形成能試験（1）】

実施例1で合成した化合物[8]をゲル化剤として、微粒子分散系におけるゲル形成能の評価を行った。

微粒子は、シリコーン処理（メチルハイドロシエンポリシロキサン処理）を施した粉体（商品名：タルクDN-SH、チタンDN-SH（2）（微粒子成分：酸化チタン）、セリサイトDN-MC（2）（微粒子成分：マイカ）を含む。
D N - H A P (S H) (微粒子成分 : ヒドロキシアパタイト)、いずれも大日本化成（株）製を用いた。ねじ口サンプル管に、ゲル化剤として合成例 1 で調製した化合物 [8 (1 0 m g 又は 2 0 m g) 、上記の各種微粒子 (5 0 m g 、チタン D N — S H (2) は 5 0 m g または 1 0 0 m g) 、 K F 9 9 5 (1 m L) を加えた。これを 8 0 ℃ で 3 0 分間加熱した後、室温下で 1 時間放冷して、サンプル管を倒置させることによりゲルの形成を確認した。結果を表 1 0 に示す。

[0142] [表 1 0]

表 1 0 . 微粒子分散 ゲル形成結果 (1)

<table>
<thead>
<tr>
<th>ゲル化剤濃度</th>
<th>微粒子種類</th>
<th>ゲル化の可否</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 wt% (2 0 m g)</td>
<td>タルク D N - S H</td>
<td>可</td>
</tr>
<tr>
<td>1 wt% (1 0 m g)</td>
<td>タルク D N - S H</td>
<td>可</td>
</tr>
<tr>
<td>2 wt% (2 0 m g)</td>
<td>チタン D N - S H (2)</td>
<td>可</td>
</tr>
</tbody>
</table>
| 1 wt% (1 0 m g) | チタン D N - S H (2) | 可 *
| 2 wt% (2 0 m g) | セリサイト D N - M C (2) | 可 |
| 1 wt% (1 0 m g) | セリサイト D N - M C (2) | 可 *
| 2 wt% (2 0 m g) | D N - H A P (S H) | 可 |
| 1 wt% (1 0 m g) | D N - H A P (S H) | 可 |

* 印はチタン D N - S H (2) を 1 0 0 m g 添 加したときの結果。

[0143] 表 1 0 に示すように、各種微粒子を分散した系においてもゲル化が可能であることが確認された。

[0144] [実施例 1 2 : 微粒子分散系におけるゲル形成能試験 (2)]

ねじロサンプル管に、ゲル化剤として化合物 [8 (4 0 m g) ; K F 9 9 5 (1 m L) ; 及び ; 水、 L — アスコルビン酸水溶液 (2 0 % 水溶液) 、 L — アスコルビン酸 2 — リン酸エステル三ナトリウム塩水溶液 (4 0 % 水溶液) 、 又はグリシン水溶液 (1 8 % 水溶液) (それぞれ 1 m L) を加えて試料とし、あるいはさらにシリコーン処理を施した微粒子チタン D N — S H
（2）（100mgもしくは200mg）を加えて試料とした（KF995と水等の水系媒体との比率：50/50（vol/vol）。得られた各試料を80℃で30分間加熱し、続いてボルテックスミキサーにより3分間振とうさせた後、室温下で1時間冷冷して、ゲルの形成を確認した。結果を表11に示す。

[0145] [表11]

<table>
<thead>
<tr>
<th>水系媒体</th>
<th>微粒子の有無</th>
<th>ゲル化の可否</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>無</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
<tr>
<td>20％アスコルビン酸水溶液</td>
<td>無</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
<tr>
<td>40％アスコルビン酸エスデルナトリウム塩水溶液</td>
<td>無</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
<tr>
<td>18％グリシン水溶液</td>
<td>無</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
</tbody>
</table>

*印はチタンDN—SH (2) を200mg 使用したときの結果。

[0146] 表11に示すように、いずれの系においても、ゲルエマルジョン化が可能であることが確認された。

[0147] [実施例13：微粒子分散系におけるゲル形成能試験（3）]

さらに、KF995と水の比率を20/80（vol/vol）としたときの、高内相比ゲルエマルジョン（分散相の体積分率の極めて大きいエマルジョン）調製を検討した。
ねじりサンプル管に、ゲル化剤として化合物 [8]（10mg）；KF995（0.4mL）；水、L—アスコルビン酸水溶液（20％水溶液）、L
アスコルビン酸 2 - リン酸エステルミナトリウム塩水溶液 (40 % 水溶液）又はグリシン水溶液 (18 % 水溶液）（それぞれ 1.6 mL）並びに、シリコーン処理を施した微粒子チタンDN-SH (2) (100 mg しくは 200 mg)、さらに Span 80 (10 mg) を加えて試料とした（水のみ、Span 80 を配合しない試料を調製した）。得られた各試料を 80 ℃ で 30 分間加熱し、続いてボルテックスミキサーにより 3 分間振とうさせた後、室温下で 1 時間冷蔵して、ゲルの形成を確認した。結果を表 12 に示す。

表 12. 微粒子分散 ゲル形成結果 (3)

<table>
<thead>
<tr>
<th>水系媒体</th>
<th>Span80の有無</th>
<th>ゲル化の可否</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>無</td>
<td>否</td>
</tr>
<tr>
<td></td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
<tr>
<td>20%アスコルビン酸水溶液</td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
<tr>
<td>40%アスコルビン酸リン酸エステル-ナトリウム塩水溶液</td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
<tr>
<td>18%グリシン水溶液</td>
<td>有</td>
<td>可</td>
</tr>
<tr>
<td></td>
<td>有*</td>
<td>可</td>
</tr>
</tbody>
</table>

* 印はチタンDN—SH (2) を200mg 加えたときの結果。

表 12 に示すように、KF 995 と水系媒体の比率を 20/80 (vol/vol) とした系においては、Span 80 の配合により、高内相ゲルエマルション化が可能であることが確認された。

<共焦点レーザー顕微鏡を用いた微粒子分散系ゲル観察>

ゲル化剤として化合物 [8] を 0.5 wt %、Span 80 を 0.5 wt %、そしてシリコーン処理を施した微粒子チタンDN-SH (2) 5 wt % を配合して作成した、KF 995/水 = 20/80 (vol/vol) ゲルエマルションを共焦点レーザー顕微鏡による観察を行った。得ら
れの結果を図7に示す。

先の[実施例6]の<水に「995分散ゲル調製試験>及び<共焦点レーザースキャン顕微鏡を用いた分散ゲルの分散相および連続相の同定>の結果より、Span80を配合した水_KF995分散ゲルは、W/Oエマルション（分散相が水相で、連続相がKF995相）となることが確認されている。

そして図7に示すように、チタン微粒子は、連続相（KF995相）に分散していることが確認された。

[実施例14:ファンデーション作製]

下記表13に従い、成分（A）全量を自動乳鉢（ANM-1000型、日陶科学株式会社製）にて15分間攪拌混合した。試験に用いた化合物[8]以外は、株式会社オレンジフラワーにて購入したものを使用した。その後、事前に攪拌・混合して調製した成分（B）（処方1乃至処方3は加熱溶解）を添加し、さらに15分間混合を行った。得られた粉末をコンパクトケース（型番：cp_23、メーカー：株式会社オレンジフラワー）に加え、平坦な板を用いて紛体を固めた。

コンパクトケースに入れて得られたファンデーションの外観を図8に示す。図8は（a）比較処方、（b）処方1、（c）処方2、（d）処方3を々々示す。

[0152]
表13. ファンデーション処方

<table>
<thead>
<tr>
<th>成分(A)/g</th>
<th>成分(B)/g</th>
<th>比較処方</th>
<th>処方1</th>
<th>処方2</th>
<th>処方3</th>
</tr>
</thead>
<tbody>
<tr>
<td>セリサイト</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>マイカ</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>二酸化チタン</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>無水ケイ酸</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>タルク</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>黄酸化鉄</td>
<td>適量※1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>黒酸化鉄</td>
<td>適量※1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>赤酸化鉄</td>
<td>適量※1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>スクワラン</td>
<td>-</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>アクアホホバオイル</td>
<td>-</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>オレイン酸ソルビタン</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>化合物[8]</td>
<td>-</td>
<td>-</td>
<td>0.008</td>
<td>0.016</td>
<td>0.032</td>
</tr>
</tbody>
</table>

※1 黄酸化鉄、黒酸化鉄及び赤酸化鉄の全量で0.3g

図8にも示すように、比較処方、処方1乃至処方3のいずれにおいてもファンデーションを作製することが確認された。特に処方1乃至処方3のファンデーションは、配合した各種紡体及びオイルが均一に分散してなることを確認した。なかでも、処方1及び処方2においては、成形が良好であるのみならず、しっとりとした使用感が得られるファンデーションとなることが示唆される結果が得られた。
請求の範囲

[請求項1] 下記式 (1) 又は式 (2) で表される化合物からなるゲル化剤。

[式中、
R₁は、炭素原子数9乃至20の直鎖状又は分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数9乃至20の直鎖状又は分岐鎖状のアルケニル基を表し、
R₂は、水素原子、炭素原子数1乃至10の直鎖状又は分岐鎖状のアルキル基、又は置換基を有していてもよいアリール基を表し、
R₃及びR₄は、ヒドロキシ基を表す。]

[請求項2] 前記式 (1) で表される化合物は式 (3) で表される化合物である、請求項1に記載のゲル化剤。

[式中、R₁及びR₂は前記式 (1) に記載の定義と同義である。]

[請求項3] 前記式 (1) で表される化合物は式 (4) で表される化合物である、請求項1に記載のゲル化剤。

[式中、R₁及びR₂は前記式 (1) に記載の定義と同義である。]

[請求項4] 請求項1乃至請求項3のうち何れか1項に記載のゲル化剤と、疎水性
有機溶媒、親水性有機溶液、疎水性有機溶液又は水溶液よりなるゲル。

[請求項5] 請求項1乃至請求項3のうち何れか1項に記載のゲル化剤と、界面活性剤と、疎水性有機溶液、親水性有機溶液、水、親水性有機溶液、疎水性有機溶液又は水溶液よりなるゲル。

[請求項6] 前記疎水性有機溶液は植物油、エステル類、シリコン油及び炭化水素類からなる群から選択される少なくとも一種である、請求項4又は請求項5に記載のゲル。

[請求項7] 前記疎水性有機溶液は請求項6に記載の疎水性有機溶液と水との混合溶媒である、請求項4又は請求項5に記載のゲル。

[請求項8] 前記親水性有機溶液はメタノール、エタノール、2-_プロパノール、
i—プタノール、ペンタノール、ヘキサノール、1—オクタノール、イソオクタノール、アセトン、シクロヘキサン、アセトニトリル、ジオキサン、グリセロール、プロピレングリコール、エチレングリコール及びジメチルスルホキシドからなる群から選択される少なくとも一種である、請求項5に記載のゲル。

[請求項9] 前記親水性有機溶液は請求項8に記載の親水性有機溶媒と水との混合溶媒である、請求項4又は請求項5に記載のゲル。

[請求項10] さらに微粒子がゲル内に分散されている、請求項4乃至請求項9のうち何れか1項に記載のゲル。

[請求項11] イオン液体のゲル化剤である、請求項1乃至請求項3のうち何れか1項に記載のゲル化剤。

[請求項12] 請求項1乃至請求項3のうち何れか1項に記載のゲル化剤とイオン液体よりなるゲル。

[請求項13] 請求項1乃至請求項3のうち何れか1項に記載のゲル化剤を含む、化粧品基材又は医療用基材。

[請求項14] 請求項1に記載の式（1）又は式（2）で表される化合物を製造する方法において、
式 R₁—C⁻H⁻O（式中、R₁は、炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数9乃至20の直鎖状若しくは分岐鎖状のアルケニル基を表す。）で表される化合物をグルコース、マンノース又はガラクトース又はそれらの誘導体と縮環反応させ、前記式（1）又は式（2）で表される化合物を製造する工程を、オルトキ酸トリエチル、DMF、p-トルエンスルホン酸の存在下でワンボットで為すこと特徴とする、方法。

[請求項15]
下記式（7）又は式（8）で表される化合物。

[式4]

式中、

R₅は、炭素原子数13乃至20の直鎖状若しくは分岐鎖状のアルキル基、炭素原子数13乃至20の環状のアルキル基、又は炭素原子数13乃至20の直鎖状若しくは分岐鎖状のアルケニル基を表し、

R₂は、水素原子、炭素原子数1乃至10の直鎖状又は分岐鎖状のアルキル基、又は置換基を有していてもよいアリール基を表し、

R₃及びR₄は、ヒドロキシ基を表す。]
INTERNATIONAL SEARCH REPORT

International application No. PCT / JP2 016/ 074860

A. CLASSIFICATION OF SUBJECT MATTER
C 07 H 9/0 4 (2 0 0 6 . 0 1) i , A 6 1 K 8 / 6 0 (2 0 0 6 . 0 1) i , A 6 1 K 4 7 / 2 6 (2 0 0 6 . 0 1) i , C 0 9 K 3 / 0 0

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JST Plus / JMEDPlus / JST/T 580 (JDreaml II), CAplus / REGI STRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2 5 1 5 2 6 1 B 2 (Kanebo , Ltd .) , 1 0 July 199 6 (1 0 . 0 7 . 1 9 9 6) , claims ; column 4 , 3 r d line from the bottom to column 5 , 5 t h line from the bottom ; examples ; column 1 2 , 3 r d line from the bottom to 1 st line from the bottom (Family : none)</td>
<td>1 3</td>
</tr>
<tr>
<td>Y</td>
<td>JP 0 1 - 1 3 9 5 2 0 A (Kanebo , Ltd .) , 0 1 June 198 9 (0 1 . 0 6 . 1 9 8 9) , claims ; page 3 , upper left column , 2 n d line from the bottom to left column , line 9 ; examples (Family : none)</td>
<td>1 3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 21 November 2016 (21.11.16)

Date of mailing of the international search report 29 November 2016 (29.11.16)

Name and mailing address of the ISA/ Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.

Form PCT/ISA210 (second sheet) (January 2015)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>SADOZAI Khalid Khan, Synthesis of plasmalopsychobins A and B, two novel lysophingolipids found in human brain, Carbohydrate Research, 1993, 241, 301-307, especially P303 8</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>GOGLAN Charlotte et al., Catalytic reductive cleavage of methyl α-D-glucoside acetals to ethers using hydrogen as a clean reductant, RSC Advances, 2014, 4, 50653-50661</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>DAHLHOFF, Wilhelm V., Mesogenics 4-O-Al kyl-D-Gluco ses via Methyl 4,6-O-Al kylidene -D-glucopyranoside s, Liebig's Annalen der Chemie, 1993.10, 10, P1063-1067</td>
<td>1-15</td>
</tr>
<tr>
<td>P, X</td>
<td>WO 2016/088076 A1 (SYRAL BELGIUM NV), 09 June 2016 (09.06.2016), example s; revendi cat ions & FR 3029522 A</td>
<td>13</td>
</tr>
</tbody>
</table>
Although claim 1 includes every gelling agent that is composed of a compound represented by formula (1) or (2), only those wherein Ri is a linear alkyl group having a specific number of carbon atoms among the compounds represented by formula (1) or (2) are disclosed within the meaning of PCT Article 5. Consequently, claim 1 is not fully supported within the meaning of PCT Article 6.

Similarly, with respect to claim 15, only those wherein R5 is a linear alkyl group having a specific number of carbon atoms among the compounds represented by formula (7) or (8) are disclosed within the meaning of PCT Article 5. Consequently, claim 15 is not fully supported within the meaning of PCT Article 6.

Consequently, this international search has been carried out on those supported and disclosed by the description, namely on compounds wherein Ri or R5 is a linear alkyl group among the compounds represented by formula (1) or (2) and the compounds represented by formula (7) or (8), which are specifically set forth in the description, and on compounds wherein Ri or R5 is a branched alkyl group.
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

<table>
<thead>
<tr>
<th>Int.Cl.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C07H9/04</td>
<td>A61K8/60</td>
<td>A61K47/26</td>
</tr>
</tbody>
</table>

B. 調査を行った分野の分類（国際特許分類（IPC））

<table>
<thead>
<tr>
<th>Int.Cl.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C07H9/04</td>
<td>A61K8/60</td>
<td>A61K47/26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C09K3/00</td>
</tr>
</tbody>
</table>

最寄付資料以外の資料で調査を行った分野に含まれるものの

日本国公報

日本国国際公報

日本国国際出願公報

日本国国際出願登録公報

C. 関連する文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する文書番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X JP 2515261 B2</td>
<td>（発明・特許請求の範囲）</td>
<td>13</td>
</tr>
<tr>
<td>Y JP 01-139520 A</td>
<td>特許請求の範囲</td>
<td>13</td>
</tr>
</tbody>
</table>

X JP 2515261 B2（発明・特許請求の範囲）1996.07.10

Y JP 01-139520 A（発明・特許請求の範囲）1989.06.01

特許請求の範囲

3頁左上欄から２行目～同頁左端

4頁左上欄から２行目～同頁右端

c. 場の続きにも文献が列挙されている。

c. 場の続きにも文献が列挙されている。

国際調査を完了した日

21.11.2016

国際調査報告の発行日

20.11.2016

特許庁審査官（発明のある職員）

古川和久

電話番号 03-3581-1101 内線 3483
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>SADOZAI Khai íd Khan, synthesis of plasmalopsychosines A and B, two novel lysosphingolipids found in human brain, Carbohydrate Research, 1993, 241, 301—307, especially P303 8</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>GOZLAN Charlotte et. al., Catalytic reductive cleavage of methyl α-D-glucoside acetals to ethers using hydrogen as a clean reductant, RSC Advances, 2014, 4, 50653—50661</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>DAHLHOFF, Wlhelm V., Mesogenics 4-O-Alkyl-D-Glucoses via Methyl 4,6-O-Alkylidenegluopyranosides, Liebigs annalen der chemie, 1993, 10, 10, P1063-1067</td>
<td>1-15</td>
</tr>
<tr>
<td>P, X</td>
<td>Ywo 2016/088076 Al (SYRAL BELGIUM NV) 2016.06.09, EXAMPLE, REVENDICATIONS & FR 3029522 A</td>
<td>13</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（2015年1月）
請求項1は、式（1）又は（2）で表される化合物を主成分とするものであるが、PCT第5条の意指において開示されているのは、式（1）又は（2）で表される化合物のうち、R1が、特定の炭素原子数を備えた直鎖状のアルキル基であるもののみであり、PCT第6条の意指での裏付けを欠いている。

請求項15も同様に、PCT第5条の意指において開示されているのは、式（7）又は（8）で表される化合物のうち、R5が、特定の炭素原子数を備えた直鎖状のアルキル基であるもののみであり、PCT第6条の意指での裏付けを欠いている。

よって、調査は、明細書に裏付けられ、開示されている範囲、すなわち明細書に具体的に記載されている、式（1）又は式（2）、或いは式（7）又は式（8）で表される化合物のうち、R1、R5が直鎖状のアルキル基のものに加えて、R1、R5が分岐鎖状のアルキル基であるものについてつた。