woO 2007/038174 A2 | 1IN0 0 0000 A O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T R OO 0O

International Bureau

(43) International Publication Date
5 April 2007 (05.04.2007)

(10) International Publication Number

WO 2007/038174 A2

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2006/036754

(22) International Filing Date:
21 September 2006 (21.09.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/719,560
11/403,962

Us
Us

23 September 2005 (23.09.2005)
14 April 2006 (14.04.2006)

(71) Applicant (for all designated States except US): THE
BLOCKS COMPANY, LLC. [US/US]; 4345 East
Tradewinds Avenue, Fort Lauderdale, FL. 33308 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WORDEN,
Christopher, D. [US/US]; 240 North Compass Drive, Fort
Lauderdale, FL. 33308 (US). PEDERSON, Ole [US/US];
5529 Bayview Drive, Fort Lauderdale, FI. 33308 (US).
GILB, Ken [US/US]; 270 Miramar Avenue, Fort Laud-
erdale, FL 33308 (US).

(74) Agents: HAYDOUTOVA, Juliana et al.; Arent Fox,
PLLC., 1050 Connecticut Avenue, Northwest #400, Wash-
ington, DC 20036-5339 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(81)

(34)

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND SYSTEM FOR RUNTIME GRAPHICAL ASSEMBLY OF RUNNING APPLICATIONS

(57) Abstract: A method and system for dynamic management of running applications and the communications among them at
runtime. Runtime dynamic assembly of running applications is achieved by providing graphical representations of the running soft-
ware applications in block form, and dynamically connecting the blocks into a flow chart, each application being instantiated into a
running object upon inclusion in the flow chart. The method and system of the present invention provide dynamic common access
and/or a dynamic common interface to source code programs authored by different programmers at runtime, while enabling chang-
ing of existing software applications without the need for recompilation of the code. Further, the method and system of the present
invention enable changing of existing running software solutions without the need for interrupting the execution of the software.

WO 2007/038174 PCT/US2006/036754

TITLE OF THE INVENTION

METHOD AND SYSTEM FOR RUNTIME GRAPHICAL ASSEMBLY OF RUNNING
APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present utility application claims priority and is related to U.S. Provisional
Application Serial No. 60/719,560, filed September 23, 2005, the entirety of which is

incorporated by reference herein.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates to a method and system for runtime dynamic
management of running applications and the communications among them.
Specifically, the present invention relates to the graphical presentation of instantiated
objects and the creation of gonnections among them, at the selection of the user,

while the instantiated objects are running.

Background of the Related Art

[0003] One problem in the software industry today is that it is not practicable to
provide dynamic common access and/or a dynamic common interface to source
code programs authored by different software developers, while the programs are
running. Traditionally, software has been created by programmers as a finite
solution for end users. User-specified customization or other changes in the original
software typically require the changes to be made in the source code by a software
developer, reassembly and recompilation of the software, and redistribution of the

customized program to the end user. Any such customization requires at least the

WO 2007/038174 PCT/US2006/036754
following: (a) involvement by a skilled and trained software developer; (b)
recompilation of the software; and (c) interruption in program execution.

[0004] There are known in the art methods and systems that enable an end user,
rather than a software developer, to perform software customization. For example,
graphical or iconic programming languages (also known as “environments”) permit
an end user, through manipulation of a graphical diagram, to instruct a system to
create and/or generate software code of behalf of the user, thus requiring little low
level text-based programming experience. Examples of such graphical programming
environments include Visual Basic, Delphi, Vee, LabView and DT Measure Foundry,
including Visual Basic — made by Microsoft® Corporation of Redmond, Washington,
Delphi — made by Borland® Software Corporation of Cupertino, California, Vee —
made by Agilent Technologies, Inc., of Palo Alto, California, LabVIEW — made by
National Instruments® Corporation of Austin, Texas, and DTMauseure Foundry —
made by Data Translation®, Inc., of Marlboro, Massachusetts, among others. All of
these environments, however, require at least two modes: a development mode and
a runtime mode, during which the developed and assembled program is compiled for
loading and running (e.g., on a computer operating system, micro device, instrument,
embedded hardware, virtual device or virtual operating system). Thus, while these
graphical environments purport to allow end users to perform customization of
existing programs by in essence providing a substitute for a trained software
developer, they fail to avoid the necessity for pre-runtime recompilation of software
upon making changes, and for program execution interruption to make the changes
and recompile the program.

[0005] An additional shortcoming of these graphical programming environments is

that they are not attractive to traditional software developers, being typically limited

WO 2007/038174 PCT/US2006/036754

by pre-defined graphical representations of instructions. Furthermore, while these
environments purport to allow end users to create complete solutions, these
solutions are frequently inefficient. In addition, such environments require end users
to learn some traditional programming constructs, such as loops, conditionals, and
variables, among others. Moreover, all graphical programming environments involve
creation of software code in the background, on behalf of the end user, without
permitting the end user to take advantage of the actual knowledge, experience and
skill of trained software developers in resolving a particular problem.

[0006] Other shortcomings of known graphical software environments include the
fact that most graphical languages are proprietary and require translation from an
existing algorithm to a specific iconic language implementation. Also, making
changes to a program typically requires switching from a runtime mode for execution
of the program, to a development mode for manipulation of the program flow, and
vice versa. In addition, any program in a runtime mode must be terminated prior to
switching to the development and assembly mode to make changes in the software.
[0007] There is a general need in the art, therefore, for methods and systems that
provide dynamic common access and/or a dynamic common interface to source
code programs authored by different programmers at runtime. There is a further
need in the art for methods and systems that enable making changes to existing
software programs without the need for recompilation. There is yet a further need for
methods and systems that enable making changes to existing running software
solutions without the need for interrupting the execution of the software. Finally,
there is a need in the art for methods and systems that permit end users to take
advantage of the skills of software developers in resolving specific problems by

combining different available software applications, while the software applications

WO 2007/038174 PCT/US2006/036754
are in a state of execution, thereby providing an attractive solution to beginners and

skilled software developers alike.

SUMMARY OF THE INVENTION

[0008] The present invention solves the above identified needs, and others, by
providing a method and system for runtime dynamic management of running
applicatjons and the communications among them. The present invention permits
runtime dynamic assembly of running applications by providing graphical
representations of the running software applications in, e.g., block form, and
dynamically connecting the blocks in a block diagram, each application being
instantiated into a running object upon inclusion in the diagram. One of ordinary skill
in the art will appreciate, however, that the graphical representation of compiled
software applications may, besides in block form, be represented in any shape, form,
or visual element.

[0009] Embodiments of the method and system of the present invention provide
dynamic common access and/or a dynamic common interface to source code
programs authored by different programmers at runtime. In addition, embodiments
of the present invention enable making changes to, including adding and subtracting,
existing software applications without the need for recompilation of the code.
Further, embodiments of the present invention enable making changes to existing
running software solutions without the need for interrupting the execution of the
software. Moreover, embodiments of the present invention permit end users to take
advantage of the skills of software developers in resolving specific problems by
combining different available software applications, while the software applications

are in a state of execution.

WO 2007/038174 PCT/US2006/036754

[0010] Other objects, features, and advantages will be apparent to persons of
ordinary skill in the art from the following detailed description of the invention and the

accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

[0011] For a more complete understanding of the present invention, the needs
satisfied thereby, and the objects, features, and advantages thereof, reference now
is made to the following description taken in connection with the accompanying
drawings.
[0012] FIG. 1 presents a flow diagram of functions performed in accordance with an
embodiment of the present invention.
[0013] FIGs. 2A — 2P show Graphical User Interface (*GUI") screens depicting an
example scenario for the task of performing a calculator from the point of view of a
 user of the system, in accordance with an embodiment of the present invention.
[0014] FIGs. 3A-3G show GUI screens depicting an example scenario for the task
of performing a pong game from the point of view of a user of the system, in
accordance with an embodiment of the present invention.
[0015] FIGs. 4A — 4B show GUI screens depicting an example scenario for the task
of performing a statistical stock chart, in accordance with an embodiment of the
present invention.
[0016] FIG. 5 contains a block diagram of various computer system components for
use with an exemplary implementation of a system for runtime dynamic management
of running applications and the communications among them, in accordance with an

embodiment of the present invention.

WO 2007/038174 PCT/US2006/036754
[0017] FIG. 6 presents an exemplary system diagram of various hardware
components and other features in accordance with an embodiment of the present
invention.

[0018] FIG. 7 presents an example open system architecture, in accordance with an

embodiment of the present invention.

DETAILED DESCRIPTION

[0019] Preferred embodiments of the present invention and their features and
advantages may be understood by referring to Figures 1-7, like numerals being used
for like corresponding parts in the various drawings.

[0020] In one embodiment, the system and method of the present invention for
dynamic assembly of running applications and the connections among them while
running, may be implemented as an Internet-based or other network-based system
that allows the end user unlimited or virtually unlimited flexibility in terms of the types
of compatible source code applications that may be connected to each other to form
a graphical assembly of one or more instantiated objects or running blocks and the
connections among them (alternatively referred to herein as a diagram, flow chart or
graphical representation), and in terms of connecting functioning (previously or
simultaneously created) diagrams, such as by nesting diagrams within each other
and/or copnecting blocks and flow charts in a number of possible ways. To facilitate
the understanding of the description that follows, it is assumed that each source
code application is previously compiled by its respective developer. One of ordinary
skill in the art will understand, however, that such applications may be compiled at

any point prior to their inclusion in a diagram as instantiated objects while running.

WO 2007/038174 PCT/US2006/036754

[0021] An example flow diagram of functions performed in accordance with an
embodiment of the present invention will now be described in reference to FIG. 1.
After locating compatible classes of compiled code 110, one embodiment of the
method for dynamically managing running applications and their connections while
running includes creating a list of available compiled codes 120 for inclusion into
diagrams in the form of graphical blocks. It will be recognized by those skilled in the
art that the compiled code may be supplied from or in any device or system capable
of supplying compiled code, such as a network (e.g., the Internet), a server, or any
local, wired or wireless storage medium. It will also be recognized by those skilled
in the art that a class is a definition of an object, and is made up of the software
code. To use an object, a user must instantiate an instance of the class. Therefore,
if 50 television objects are needed, 50 instances of the television class should be
provided. Each of the 50 instances is created by instantiation. According to
accepted terminology in the art, to reduce ambiguity, classes are “created," while
objects are “instantiated.” Class creation is performed at design time when the
software is being built, and involves writing the actual software code. Objects are
instantiated at runtime when the program is being used. See, e.g., Thearon Willis,
Jonathan Crossland & Richard Blair, Beginning VB.NET 2003 327 (Wiley Publishing,
inc.) (2004).

[0022] Referring now to FIG. 1, upon creation of a list of available compiled codes
120, a user (e.g., an “end user”) defines one or more tasks to be performed by one
or more diagrams 130 to be created through any combination of the available
compiled codes (interchangeably referred to herein as “blocks”).

[0023] One or more compatible classes from compiled code or blocks are then

selected from the list for inclusion into the diagram 140. Upon selection and

WO 2007/038174 PCT/US2006/036754

inclusion of each block into the diagram, the block is instantiated into an object and
begins to execute 150. Graphical connections may then be created between/among
the instantiated blocks, whereupon communications are established between/among
the instantiated blocks 160, while the blocks are executing. It will be recognized by
those skilled in the art that the graphical connections may be created by any
available user input device, such as a keyboard or mouse. It will also be recognized
by those of ordinary skill in the art that communications among the instantiated
objects may be established by creating one or more references among the objects,
such as execution address pointers. Further, references may be established among
diagrams, if one or more diagrams are being connected to complete a task, or may
be brokered by a first instantiated object to facilitate an indirect connection between
a second and a third instantiated objects.

[0024] In one embodiment, upon creating the graphical connections among
instantiated objects to establish communication 160, the method of the present
invention is complete, if the task to be performed by the diagram has been
completed 190 and the user does not wish to save 195 the current diagram
configuration, or saves the configuration 185, but does not wish to reload it 170.
Furthermore, the diagram and connections may be saved in XML format, or in any
other format capable of storing the type of data represented by the objects and
connections. The instantiated objects may be saved, for example, as instance
identifiers, such as Globally Unique ldentifiers (“GUID"). The graphical connections
may be saved as connector names, defined by the instance identifiers of the saved
instantiated objects. It will be appreciated by those of ordinary skill in the art that the

references may be stored by each connected instantiated object or by one of the

WO 2007/038174 PCT/US2006/036754

connected objects, depending on the type of the connection (e.g., one-to-one, one-
to-many, many-to-one or many-to-many).

[0025] If the task to be performed by the diagram is not complete 190 and does not
have to be re-defined 180, in one embodiment, the method of the present invention
continues with selecting blocks for inclusion in the diagram 140. In one embodiment,
if the task needs to be rel-defined 180, the method of the present invention continues
with defining the tasks to be performed by the diagram 130. As the diagram is being
constructed by instantiating blocks 150 and creating the graphical connections to
establish communication among the instantiated blocks 160, the corresponding
phase of the task to be performed by the diagram, if capable of being visually
represented, may be made displayed on, e.g., a computer monitor, printed out,
captured as a series of images, or made available by any other means to the end
user.

[0026] To further illustrate the operation of system of the present invention for
dynamic assembly of running applications and the communications among them
while running, an example scenario will now be described from the point of view ofa
user of the system, in reference to the GUI screens shown in FIGs. 2A-2P. In the
example scenario of this embodiment, the user-defined task to be performed by a
diagram is a selected function performed by a calculator.

[0027] Referring now to FIG 2A, shown therein are two exemplary windows, a first
window 202, for dynamically creating and displaying a diagram or flow chart, and a
second window 201, for dynamically displaying the output 203 of the diagram as it is
being created. In this embodiment, upon clicking the mouse or otherwise making a
selection, represented by indicator 204 in the flow chart window 202, a block

selection option 205 appears in flow chart window 202, as shown in FIG. 2B. Upon

WO 2007/038174 PCT/US2006/036754
selecting the “Select Block” option 206, a third window 209 appears on the screen,
containing a list 207 of available blocks (compatible classes of compiled code) for
inclusion into a diagram, as shown in FIG. 2C. It will be recognized by those skilled
in the art that the blocks may be categorized or grouped according to relevant
factors, so that only certain categories or groups of blocks are displayed in list 207.
In the example scenario shown in FIGS, 2A-2P, the list of available blocks 207
represents available compiled codes corresponding to different functions that a
calculator performs, e.g., addition, subtraction, multiplication and square root, among
others.

[0028] Upon scrolling down the list of available blocks 207, a graphical
representation of each block 208 is shown in window 209. Assuming that the task to
be performed by the diagram is addition, for example, the user may select the “Add”
block 208 from list 207 (e.g., by clicking on it with a mouse), upon which the “Add”
block 208 is instantiated as an object 210, as shown in FIG. 2D. The output of
instantiated (alternatively referred to herein as “running” or “executing”) object 210,
shown in the flow chart window 202 of FIG. 2D, is connected to the diagram output
203. It should be noted that, consistent with its function, instantiated “Add” object
210 has two inputs and one output. As shown in FIG. 2D, the two inputs are for
integer numbers; however, the number format may be changed by the user if the
author of “Add” block 208 has provided that the type of inputs to block 208 may be
changed to different number formats.

[0029] As shown in FIG. 2E, upon graphically connecting (e.g., by using a mouse)
the two inputs of instantiated object 210 to blocks 211 and 212 that provide numbers,
each containing a value of 0.00, the diagram output 203, as displayed in data display

window 201, is 0 (zero). When the inputs into running object 210 are changed to

10

WO 2007/038174 PCT/US2006/036754
3.00 and 2.00, as shown by blocks 211 and 212, respectively in FIG. 2F, the diagram
output 203 immediately changes value to 5, as shown in data display window 201 of
FIG. 2F.

[0030] Another example of using functions performed by a calculator will now be
described in reference to FIG. 2G. In this example, the user-defined task is to
calculate the result of a multiplication of fwo numbers, a first number and the sum of
a second number and the first number. In this example, upon selection of the
“Multiply” block from the list of available blocks 207 (as described above in reference
to FIG. 2C), the block is instantiated into object 213, which begins to run. Upon
creating the graphical connection between the output of instantiated object 210 and
one input to instantiated object 213, and providing as a second input to instantiated
block 213 the value in block 212, the diagram output 203 is displayed in the data
display window 201, which is 10 (3.00 + 2.00 = 5.00 x 2.00 = 10), in the example
shown in FIG. 2G. It should be noted that once a block is selected from the list of
available blocks 207, it is instantiated into an object and begins to run, regardless of
the values (or if there are no values) on its inputs and outputs. When connections
are created between blocks, the thus assembled blocks continue to run, without the
necessity of compiling the assembled blocks.

[0031] The process of selecting and adding blocks to the diagram, thus instantiating
them into running objects, continues until the user is satisfied that the task is
completed. It bears mention that each block is instantiated into a running object
while the instantiated objects that have already been included in the diagram
continue to run; that is, it is not necessary to stop the execution of the connected

blocks prior to adding more blocks.

11

WO 2007/038174 PCT/US2006/036754
[0032] For example, the user may choose to redefine the task by selecting a second
“Add” block 208 from the list of available blocks 207 shown in FIG. 2C. Upon
selection, the second “Add” block is added as instantiated object 214, shown in FIG.
2H. Upon creating, for example, a graphical connection connecting the first input of
object 214 with the output of object 213, and providing as the second input of object
214, the value of block 212, the diagram output 203 is displayed in data display
window 201, in this case the value 12.

[0033] FIG. 2l shows the selection of a numeric selector block 215, and FIG. 2
shows its addition to the diagram as object 216. In figure 2I, dragging so as to
provide a connector to the humeric selector 215 adds an existing block 216, which
the numeric selector 215 has instantiated to the diagram, and connects block 216 to
block 210. Therefore, the block 216 is “owned by” (e.g., provides input to) the
numeric selector 215 and will always provide the current value of block 216 to
selector 215.

[0034] In FIG. 2K, the value of numeric selector 215 is set to 4, and object 216 is
connected to provide one input each to instantiated objects 210 and 213. The
second input into instantiated object 210 is the value of block 212, while the second
input into instantiated object 213 is the output of instantiated object 210. The value
of block 212 is provided as one input into instantiated object 214, while the second
input into instantiated object 214 is the output of instantiated object 213. Upon
creating the connections, the diagram output 203, in this case 26, is displayed in
data display widow 201.

[0035] FIG. 2L shows an output of 37 in data display window 201, upon changing
the value of numeric selector 215 to 5. In FIG. 2M, no value is displayed in data

display window 201, as the connection between instantiated objects 213 and 214 is

12

WO 2007/038174 PCT/US2006/036754
severed. As there is only one input into instantiated object 214, the diagram does
not provide an output 203, as object 214 is waiting to receive a value on its second
input.

[0036] FIG. 2N shows recreating the graphical connection between instantiated
objects 213 and 214 by, for example, dragging with a mouse cursor 204 from one
input of instantiated object 214 to the output of instantiated object 213. It will be
appreciated that nothing will be displayed in data display window 201 until the
connection is complete, despite the fact that all objects shown in flow chart window
202 are instantiated and running. Upon completing the connection, however, a value
of 50 is displayed in data display window 201, as shown in FIG. 20, as the value of
numeric selector 215 is 6.

[0037] In one embodiment, upon establishing graphical connections among
instantiated objects, references among the connected objects are established, as
shown in FIG. 2P. For example, FIG. 2P shows how the connectors are defined in
code. Upon creating a graphical connection, the reference provided by the output
blocks simultaneously or approximately simultaneously obtains a property that is
flagged to be provided, and this property is passed td the input block’s set property,
which has been flagged as requiring an input. A reference between the objects is
thereby established.

[0038] Referring now to FIGs. 3A-3G, therein shown is an example scenario for the
task of performing a pong game from the point of view of a user of the system, in
accordance with an embodiment of the present invention. FIG. 3A shows a screen
shot prior to initiating a diagram or flow chart, and the pong ball is immobile, as
shown in data display window 201. The diagram outputs 301 and 302, are

respectively configured to show the next position of the pong ball and the next

13

WO 2007/038174 PCT/US2006/036754

targets. The diagram inputs 303 and 304, are respectively configured to show the
current position of the pong ball and the current targets. Upon selecting a block of
code implementing a “law” to be applied (not shown), thereby instantiating this law
into object 305 (here entitled “Newton’s 3™ Law,” which states that an object in
motion remains in motion; in this example, when the game is started, the ball is
provided an initial velocity vector, but does not move because it needs a block to
make it move) and graphically connecting it as an output of Current Position input
303 and an input to Next Position output 301, as shown in flow chart window 202 in
FIG. 3B, the pong ball in display window 201 begins to move down towards the
paddle.

[0039] FIGs. 3C-3G show the progressive implementation of a pong game
according to this example scenario of one embodiment of the present invention.
Following the principles and procedures described above, FIG. 3C introduces a
paddle 306 and an Angle Paddle instantiated object 307, which causes the pong ball
to bounce off the paddle; FIG. 3D introduces Wall Collision instantiated object 308,
which causes the pong ball to bounce off the walls; FIG. 3E introduces
PongBlockDestroyer instantiated object 309, connected to the output of Current
Targets input 304 and the input of Next Targets output 302, which causes the pong
ball to destroy bricks it comes into contact with (and bounce off of them), as shown in
data display window 201; and FIGs. 3F and 3G introduce Wall Shy and Newton’s 3"
Law instantiated objects 310 and 311, each of which respectively causes the pong
ball to become accelerated/delayed by a variable factor when approaching the
bottom or the walls shown in data display window 201.

[0040] Referring now to FIGs. 4A and 4B, therein shown is an example scenario for

the task of creating a statistical stock chart, in accordance with an embodiment of the

14

WO 2007/038174 PCT/US2006/036754
present invention. FIG. 4A depicts the data display window showing variations of
user-selected stocks according to user-selected criteria (e.g., minimum, maximum,
average, and median values, with such values being provided once an hour, once a
day, every two days, or at any selected interval). The exemplary diagram shown in
flow chart window 202 in FIG. 4B causes the results displayed in the data display
window 201, shown in FIG. 4A.

[0041] The present invention may be implemented using hardware, software or a
combination thereof and may be implemented in one or more computer systems or
other processing systems. In one embodiment, the invention is directed toward one
or more computer systems capable of carrying out the functionality described herein.
An example of such a computer system 500 is shown in FIG. 5.

[0042] Computer system 500 includes one or more processors, such as processor'
504. The processor 504 is connected to a communication infrastructure 506 (e.g., a
communications bus, cross-over bar, or network). Various software embodiments
are described in terms of this exemplary computer system. After reading this
description, it will become apparent to a person skilled in the relevant ar{(s) how to
implement the invention using other computer systems and/or architectures.

[0043] Computer system 500 can include a display interface 502 that forwards
graphics, text, and other data from the communication infrastructure 506 (or from a
frame buffer not shown) for display on the display unit 530. Computer system 500
also includes a main memory 508, preferably random access memory (RAM), and
may also include a secondary memory 510. The secondary memory 510 may
include, for example, a hard disk drive 512 and/or a removable storage drive 514,
representing a floppy disk drive, a magnetic tape drive, an optical disk drive, etc.

The removable storage drive 514 reads from and/or writes to a removable storage

15

WO 2007/038174 PCT/US2006/036754
unit 518 in a well known manner. Removable storage unit 518, represents a floppy
disk, magnetic tape, optical disk, etc., which is read by and written to removable
storage drive 514. As will be appreciated, the removable storage unit 518 includes a
computer usable storage medium having stored therein computer software and/or
data.

[0044] In alternative embodiments, secondary memory 510 may include other
similar devices for allowing computer programs or other instructions to be loaded into
computer system 500. Such devices may include, for example, a removable storage
unit 522 and an interface 520. Examples of such may include a program cartridge
and cartridge interface (such as that found in video game devices), a removable
memory chip (such as an erasable programmable read only memory (EPROM), or
programmable read only memory (PROM)) and associated socket, and other
removable storage units 522 and interfaces 520, which allow software and data to be
transferred from the removable storage unit 522 to computer system 500.

[0045] Computer system 500 may aiso include a communications interface 524.
Communications interface 524 aliows software and data to be transferred between
computer system 500 and external devices. Examples of communications interface
524 may include a modem, a network interface (such as an Ethernet card), a
communications port, a Personal Computer Memory Card International Association
(PCMCIA) slot and card, etc. Software and data transferred via communications
interface 524 are in the form of signals 528, which may be electronic,
electromagnetic, optical or other signals capable of being received by
communications interface 524. These signals 528 are provided to communications
interface 524 via a communications path (e.g., channel) 526. This path 526 carries

signals 528 and may be implemented using wire or cable, fiber optics, a telephone

16

WO 2007/038174 PCT/US2006/036754
line, a cellular link, a radio frequency (RF) link and/or other communications
channels. In this document, the terms “computer program medium” and “computer
usable medium” are used to refer generally to media such as a removable storage
drive 514, a hard disk installed in hard disk drive 512, and signals 528. These
computer program products provide software to the computer system 500. The
invention is directed to such computer program products.

[0046] Computer programs (also referred to as computer control logic) are stored in
main memory 508 and/or secondary memory 510. Computer programs may also be
received via communications interface 524. Such computer programs, when
executed, enable the computer system 500 to perform the features of the present
invention, as discussed herein. In particular, the computer programs, when
executed, enable the processor 504 to perform the features of the present invention.
Accordingly, such computer programs represent controllers of the compute!‘ system
500.

[0047] In an embodiment where the invention is implemented using software, the
software may be stored in a computer program product and loaded into computer
system 500 using removable storage drive 514, hard drive 512, or communications
interface 524. The control logic (software), when executed by the processor 504,
causes the processor 504 to perform the functions of the invention as described
herein. In another embodiment, the invention is implemented primarily in hardware
using, for example, hardware components, such as application specific integrated
circuits (ASICs). Implementation of the hardware state machine so as to perform the
functions described herein will be apparent to persons skilled in the relevant art(s).
[0048] In yet another embodiment, the invention is implemented using a

combination of both hardware and software.

17

WO 2007/038174 PCT/US2006/036754

[0049] FIG. 6 presents an exemplary system diagram of various hardware
components and other features in accordance with an embodiment of the present
invention. As shown in FIG. 8, in an embodiment of the present invention, each
source code author 630, 639 and 640 creates a stand alone source code application,
and makes it available, via network 634, to user 643. User 643, via the system of
the present invention residing on terminal 644, creates a flow chart by connecting the
source codes provided by users 630, 639 and 640. The terminal 644 is coupled to a
server 633, on which portions of the data used by the created flow chart are stored,
via a network 634, such as the Internet, via couplings 635, 636.

[0050] Each of the terminals 631, 637, 641, 644 is, for example, a personal
computer (PC), minicomputer, mainframe computer, microcomputer, telephone
device, personal digital assistant (PDA), or other device having a processor and
input capability. The terminal 631 is coupled to a server 633, such as a PC,
minicomputer, mainframe computer, microcomputer, or other device having a
processor and a repository for data or connection to a repository for maintained data.
[0051] In one exemplary embodiment, the system for dynamic assembly of running
applications and the connections among them while running may be implemented,
for example, as a Microsoft.net® desktop application program (Microsoft.net® is made
by Microsoft® Corporation of Redmond, Washington), which may reside on a
computer hard drive, database or other repository of data, or be uploaded from the
Internet or other network (e.g., from a a personal computer (PC), minicomputer,
mainframe computer, microcomputer, telephone device, personal digital assistant
(PDA), or other device having a processor and input capability). It will be recognized

by those skilled in the art, however, that any available software tool capable of

18

WO 2007/038174 PCT/US2006/036754
implementing the concepts described herein may be used to implement the system
and method of the present invention.

[0052] One embodiment of the present invention is based on an open system
architecture 700, as shown in FIG. 7. In this embodiment, the system for dynamic
assembly of running applications and the connections among them while running
includes an Available Code/Block List module 710, a Task Diagram module 720, and
a Runtime Memory module 730. After identifying a task to be performed, a user
selects the blocks needed to complete the task, instantiates these blocks into
running objects 740 . . .750 in Running Memory module 730, while adding them to
Task Diagram Module 720 and creating graphical connections to enable
communications among the instantiated objects to complete the task while the
objects are running, and without causing interruption in program execution.

[0053] In one embodiment, the end user of the method and system of the present
invention may be the ultimate consumer of data created as a result of the functioning
of the éystem, such as a data analyst. An end user of the system, in another
embodiment, may be a programmer, who creates flow charts based on the blocks
that are available to the system. In yet another embodiment, the end user may be a
user that provides the data to the system of the present invention, to be processed
and manipulated by others. Those of ordinary skill in the art will appreciate the
unlimited spectrum of end users of the system and method of the present invention.
[0054] While the present invention has been described in connection with preferred
embodiments, it will be understood by those skilled in the art that variations and
modifications of the preferred embodiments described above may be made without
departing from the scope of the invention. Other embodiments will be apparent to

those skilled in the art from a consideration of the specification or from a practice of

19

WO 2007/038174 PCT/US2006/036754

Ao

s

" et iiehon ditéioSed Herein. It is intended that the specification and the described
examples are considered exemplary only, with the true scope of the invention

indicated by the following claims.

20

WO 2007/038174 PCT/US2006/036754
CLAIMS

1. A method for graphical assembly of running applications, the method
comprising:

selecting first and second components of compiled code for inclusion in the
diagram;

instantiating the selected first component of compiled code into a first object
and instantiating the selected second component of compiled code into a second
object upon inclusion of the selected first component and the selected second
component in the diagram; and

creating at least one user defined graphical connection among the
instantiated objects to enable communication among the instantiated objects.

2, The method of claim 1, wherein the first and second components of
compiled code are selected from a plurality of available classes of compiled code.

3. The method of claim 1, further comprising:

defining at least one task to be performed via a diagram, wherein each of the
defined at least one task is performed in real time.

4. The method of claim 1, wherein each of the at least one user defined
graphical connection comprises object references.

5. The method of claim 1, wherein each of the at least one user defined
graphical connection is created without generating new code.

6. A method for graphical assembly of running applications, the method
comprising:

receiving a selection of first and second components of compiled code for

inclusion in the diagram;

21

WO 2007/038174 PCT/US2006/036754

instantiating the selected first component into a first object and instantiating
the selected second component into a second object upon inclusion of the selected
first component and the selected second component in the diagram; and

receiving a selection to create at least one user defined graphical connection
among the instantiated objects to enable communication among the instantiated
objects.

7. The method of claim 6, wherein the first and second components of
compiled code are selected from a plurality of available classes of compiled code.

8. The method of claim 6, further comprising:

receiving a selection of at least one task to be performed via a diagram,
wherein each of the selected at least one task is performed in real time.

9. The method of claim 6, wherein each of the at least one user defined
graphical connection comprises object references.

10. The method of claim 6, wherein each of the at least one user defined
graphical connection is created without generating new code.

11. A method of saving assemblies of running applications and references
thereamong as diagrams, the method comprising:

creating one or more user defined graphical connections among a plurality of
instantiated objects to establish one or more object references;

saving each of the instantiated objects and graphical connections in a data
repository; and

re-instantiating the saved instantiated objects and graphical connections at a
selected time.

12. The method of claim 11, wherein each of the instantiated objects and

graphical connections is saved in Extensible Markup Language (XML) format.

22

WO 2007/038174 PCT/US2006/036754

13. The method of claim 11, wherein each of the instantiated objects is
saved as an instance identifier.

14. The method of claim 12, wherein the instance identifier is a Globally
Unique Identifiers (GUID).

15. The method of claim 13, wherein each of the graphical connections is
saved as a connector name, the connector name being defined by the instance
identifier of the saved instantiated object.

16. The method of claim 15, wherein the connector name is a pointer to an
execution address.

17. The method of claim 15, wherein the connector name is a method
name. -

18. The method of claim 15, wherein the connector name is a user defined
name.

19. A method for graphically managing running applications at runtime, the
method comprising:

accessing a list of a plurality of classes of compatible compiled code, a
corresponding plurality of classes of compatible code being accessible via the list;

enabling each of the plurality of classes to be available as one or more blocks
for inclusion in a diagram;

receiving a definition of a task to be performed by the diagram;

receiving a selection of at least two of the one or more blocks for inclusion in
the diagram;

receiving a selection of a user defined graphical connection among the at

least two selected blocks; and

23

WO 2007/038174 PCT/US2006/036754

establishing a reference among the at least two selected blocks upon
receiving the selection of the user defined graphical connection;

wherein upon inclusion in the diagram, each block appears as a graphically
represented instantiated object, the selected blocks appearing as a plurality of
graphically represented instantiated objects.

20. The method of claim 19, wherein the selected blocks comprise a
diagram.

21. The method of claim 19, wherein the user defined graphical connection
is selected via a user input device.

22. The method of claim 19, wherein the reference enables communication
among the plurality of graphically represented instantiated objects.

23. The method of claim 22, wherein each reference is storable via each of
the corresponding graphically connected instantiated objects.

24. The method of claim 22, wherein at least one of the graphically
instantiated objects corresponding to the at least two selected blocks is able to
facilitate brokering of the reference among the corresponding graphically connected
instantiated objects.

25. The method of claim 19, wherein enabling each of the plurality of
classes to be available as one or more blocks for inclusion in a diagram includes:

locating the plurality of classes of compiled code, each of the plurality of
classes having metadata; and

evaluating the metadata of each of the plurality of classes to determine
compatibility with the metadata of each other one of the plurality of classes.

26. The method of claim 19, wherein enabling each of the plurality of

classes to be available as one or more blocks for inclusion in a diagram includes:

24

WO 2007/038174 PCT/US2006/036754

locating the plurality of classes of compiled code; and

attempting to load pairs qf the plurality of classes into a memory to determine
compatibility among each loaded pair of the plurality of classes.

27. A system for graphical assembly of running applications, the system
comprising:

means for receiving a selection of first and second components of compiled
code for inclusion in the diagram;

means for instantiating the selected first component into a first object and
instantiating the selected second component into a second object upon inclusion of
the selected first component and the selected second component in the diagram;
and

means for receiving a ‘selection to create at least one user defined graphical
connection among the instantiated objects to enable communication among the
instantiated objects.

28. A system for graphical assembly of running applications, the system
comprising:

a processor,;

a user interface functioning via the processor, the user interface including a
mechanism for receiving selections from a user; and

a repository accessible by the processor;

wherein a selection of first and second components of compiled code for
inclusion in the diagram is received;

wherein the selected first component is instantiated into a first object and

wherein the selected second component is instantiated into a second object upon

25

WO 2007/038174 PCT/US2006/036754
inclusion of the selected first component and the selected second component in the
diagram; and

wherein a selection to create at least one user defined graphical connection
among the instantiated objects to enable communication among the instantiated
objects is received.

29. The system of claim 28, wherein the processor is housed on a terminal.

30. The system of claim 29, wherein the terminal is selected from a group
consisting of a personal computer, a minicomputer, a main frame computer, a
microcomputer, a hand held device, and a telephonic device.

31. The system of claim 28, wherein the processor is housed on a server.

32. The system of claim 31, wherein the server is selected from a group
consisting of a personal computer, a minicomputer, a microcomputer, and a main
frame computer.

33. The system of claim 31, wherein the server is coupled to a network.

34. The system of claim 33, wherein the network is the Internet.

35. The system of claim 33, wherein the server is coupled to the network
via a coupling.

36. The system of claim 35, wherein the coupling is selected from a group
consisting of a wired connection, a wireless connection, and a fiberoptic connection.

37. The system of claim 28, wherein the repository is housed on a server.

38. The system of claim 37, wherein the server is coupled to a network.

39. A computer program product comprising a computer usable medium
having control logic stored therein for causing a computer to graphically assemble

running applications, the control logic comprising:

26

WO 2007/038174 PCT/US2006/036754

first computer readable program code means for receiving a selection of first
and second components of compiled code for inclusion in the diagram;

second computer readable program code means for instantiating the selected
first component into a first object and instantiating the selected second component
into a second object upon inclusion of the selected first component and the selected
second component in the diagram; and

third computer readable program code means for receiving a selection to
create at least one user defined graphical connection among the instantiated objects
to enable communication among the instantiated objects.

40. A method for graphical assembly of executing software, the method
comprising:

receiving a selection of at least two components of compiled code for
inclusion in a graphical representation; and

receiving a selection of a user defined graphical connection among the at
least two selected components of compiled code;

wherein, upon inclusion in the graphical representation, the at least two
components of compiled code appear as corresponding graphically represented
executing instantiated objects; and

wherein, upon receiving the selection of the user defined graphical
connection, at least one reference is established among the corresponding
graphically represented executing instantiated objects.

41. The method of claim 40, wherein the at least one reference enables
communication among the corresponding graphically represented executing

instantiated objects.

27

WO 2007/038174 PCT/US2006/036754

42. The method of claim 40, wherein the selection of the at least two
components of compiled code is made from a plurality of available classes of
compiléd code.

43. The method of claim 40, wherein each of the at least one reference is

established without generating new code.

28

WO 2007/038174 PCT/US2006/036754
1/29

ey @

Locating Compatible
Classes of Compiled f.—110
Code

Creating List of
Available Compiled [~ 120
Codes/Blocks

»
—i-

Defining Task(s)
To Be Performed by Ve 130
Diagram

.

y

Selecting Block(s)
For Inclusionin | /~ 140
Diagram

y

Instantiating Each

Block Ino An Object | 150
Upon Inclusion in _/

Diagram

No

i

Creating Graphical
Yes daf: Connections Among_

re-defne > | Objcts To Estabish
' Communication

180

Saving Diagram
Configuration

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

2/29

€02 —

v0¢e

Wd £0-¢i

Q) ssaIppy

| syooig uspiopy I IO - awnoog |

(uels

ind 9ifig Jowauuo) w v fx

XA

Aeydsiq ejeq :peyy MOj4

Veold

—— ¢02

xa Aejdsig ereg
x@ - djey mmu_mg m_w._.CmW
=] PaRAUN- sYa0]g Uspiopp

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

3/29

Nd £0'21 O SsaIppy | siooig vspiom ff 501 - uaundoq | (1els
- o M0 DI XHL O 2R) 4] i3 i] 938 2 alieg
u | M ao
g momﬂ L geold
q WERELS s
yo0lg 109108 :
~—~—— °
802_| | 90¢ ~— 202
lInd ajfiS Jojauuod vw Ix|}.-
x A feydsiq ejeq ueyo mold || -
4
i L0¢
e
e e] xa Aejdsiqg Bleg
{ Cllz: zlim /a0 | 6 faf 2 o COOHRENSAUT [JRUONT [Tpesy ROodE V]
XA %m 10} uaysanb e adf) diey SMOPUM s[0o] ojl
TE] X=] PaRIuN- $>00]g UBPIOA

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

4/29

€0¢

80¢

Wd €02}

© ssa:ppy

| s400ig uapiop __...a_z;%saom_

(Le)s

[0 HAO 13 XML 94 2Py vl

<

Il-o -

I |

Wty

[1 995 ¢ 8beq

f

X L4nding-jndu) :sadky Ag

QoK 2i0
deHp3

salioBeye) yp3

SIaqUINY O] Sppy

Iafau)

Qi

XA

J0oH asenbg

mc_m. \\\l\.\\

80U B[Oy sjeluBseq
3L IojeuBiRg
) J3QUINY [ewnaq Jajolerng

ewey fuedutoy
/|

ug],
oquifg
198RqNS

Aduingg

N4 81613 10108UU0) B v 1

U

Aejdsiq BB Q ey) Molg

XEjy

R ENERTEEL VTS T

J¢'Dl

L0¢

N\

Juauods3

PG
auis09

Bpy

SR 305Gy (ity)

polReIY - SIaYI0Ig Uapio loupny

i) siayly hclioe

E— PpY | <« diH tpzag] =

_Joumy

5]

420]g 19885

el
Rejdsiq| MaL

0] BleQ lud
/

)

60¢

V| I AN AT ...o...m...e...n...w..._.x>

fejdsiq ejeq

D= zlmenfa] 1 g [LJeRgRYSULT [euoy pESH

XA djay Joj uogsanb & sdf],

X[]

X=]

FOOdEve
disH SwOpUM _ sjoor ajg

PEjIUN- S400]8 UBPIOM

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

5/29

WETE
1ebayu
Aeydsiqg X8 Nc_u _
0L BleQ ¢
£03 4
labaju)
Lyl
Joquiny ppy AU@
X A 4 ol Jopauoy vy X
[feidsig ereq :1eys moj
_
0le

de’oid

¢0¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

6/29

Wd €02t

© ssaippy

| SYo0jg uspiopm __..._U_E.Emgsm_

(e

!
oL

1eBayuy
cu|

Jaquiny

0l

IndSS a0y WX

XA

Aejdsig eyeq :ueyo moj4

=[A]E

¢0¢

— 112

+0¢C

0

XA

feydsiq ejeg

O BU®
doy smopuit sjooy oy

X

PaJIuN- S¥00|g UapIop

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

7/29

id €0l Q@ ssaippy | 01 - uaun30g |_s¥sorg uapiom | BEE
4¢914 _
........ ©
_ 007 r\l ¢le AN
_mgszz@ E
1aba =
AN ol | 14
S
f—
iabeyuy
208 1aquny = U E
I
112 2
012 Egzé(\ L
- oy
-
— Ind 8ifig ety v I 102 ..._|..
Aeidsig eyeq :1eyn mojg \!L =
7p)
(a8
>
m 7))
xA Reydsiq eieg
] EFOOJRve
- [BH SMOPUIM sjoof 8j4
XEE PaIur}- SY00g UapIofy,

PCT/US2006/036754

WO 2007/038174

8/29

Wd £0:21L Q) Ssaippy | syooig uapiop __...s_z.z_msson__ { uels
g12 50U ¢’ 914
1aBoyuy ! zig 21z
ol
1
X QI 1 fdnyy [
£0¢ 1
1abayyy
Ul
¢0¢
JEE T
0z ke |y E:sm. L2
InJafig iopeie) vy I
XA Aeydsiq ejeq :ueyn mojy
L0¢
ca feydsig ejeq
B O0dEva]
dja smopulp sjoof aji4
XE PoIAUN- s¥00lg uspiopm

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

9/29

¢0g

Wd e0:2t

¢l

xA fejdsiq ejeq
EFOoodgve]

dig Smopui spooy ap4

\X[EC] DU~ $Y00]g UspIof

He 'Ol

Q) ssaippy | Yoo uapiom __...s_s_émsaon_ (uejs
14%4 Jur
2| WAN S o0z
T~
¢le
7 N
bié
e
s:zé\ |
_ 2lelrIggy g oAy oy IX
Aejdsiq ejeq :ueys mopd L0g

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

10/29

€0a

G2

Wd £0'2L) Ss31ppy

| syooig uspiop] o - juswnaog | { 1es

e

feidsig
oL Be(

3

vie

00e

wng

Aduny

SENGIGLY SIS JONAI0Y v I

b -%

e Keidsiq Bieq 14BYD MO)4

d

\ \ of

| J6108[ag SieWnN

Avom

yd ¢

Aejdsiq eleg

XA

El=ERT
dlo smopui sjooL. 8fid

’x

X=C] PaURUN- SY0[G USPIOM

[¢Ol4

¢le

02

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

11/29

€02

¢0¢

Gie

Nd E0¢L

© ssalppy

| s%o0jg uspiog] o - wewnaoq |

(vEls

(002 |~z12

juany
10}99}S
JEY

BENBIOGY SIS IOIBLL) vy I

b -N

3ibug |7

Aeydsiq eyeq ;Yo Mol

9

XA fedsiqg ejeq

w» 10108[95 o:mszm__ ROOJave]
) dloy SMopuip sjoo])

Xi=] PBJHIUN- $X0/g UBPIOA

[¢Old

c0¢

91¢

10¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

12/29

Nd E0'gL

Q) ssaippy

| S¥o0[g uapiop i "Il - Juswindog |

(ves

ajbuig
Juslng

ausuiny

ABARIGEY OlfiS J0RLL0Y 5y IX

XA

10p3fss | -

Aejdsiq eleq 11eyn moj4

m_.N//ll\/.

9¢

- =1 XA fedsig eleq
KA 10}08[a OLBUINN EOoJruve
disy smopuly sjooy a4

XI=] Pajilun- $X00(q UBpIOA

b AN

9l¢c

102

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754
13/29

WO 2007/038174

WNd 802t © sselppy | syoojg uspiom (| "o - uswnaoq | (el
feydsig
£02 oL geq |]
N \-/\Nom
ajbuis
Jusding
10]08)88
Jlawny

gl

4 aleiaiqay alfig JopALL0) iy X

Kedsiq eyeq :Weyn mo|4 14

m&;/\l/ N.m

XA

< XA fedsiq eieg
au» 10}08]8S u__mszrz FOO-E V]
dioy smopuiy sfooy 8)4

X=] DA SY00[g UBPIO,

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

14/29

€0¢
N

Sle

~

Wd £0:21 Q) ssaippy

| 01N - Juawngog |l sxooig usprop |

BES

7

éle

1abayyy

by
ou

Jaquny ,

Juauny
1030988
alouIny

9ic

BleIgy aifig J0i0a0) vy IX

XA

Aejdsig eleq :Jeyn mol4

mw.—

XA

0l
JRETEIRIEIY

XA

fe|dsiq ereg

FOO-dEve]
doH SMopuiw sjoay 8yl

XI=T

10}e[nafed- SY00/g Uapiop,

02

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

15/29

£0¢
N

Sle

Nd €021 O ssaippy | sya0jg uspiopg] I3 - Juauinoog | { Lels
1z Ng"9I4
smme_
. .P |
] ’ (INSa
10)08]88
JlBwnN
saboyuy (= aba
pul N__w !
9le
. Jaquny I
¢le
Ote ind eifig Jojosuuo] vy X
xa Aejdsiq eeq 1BYD MOJ4
10¢
_ A fedsiq ereq
m_w OREIES u_azsl_,_A EOOdaus]
. diey smopuy sjoor 8pd
XI&[T] A0JEN9[E- $X20]g UaPIOp

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

16/29

fid e0'el O ssaippy

| 1ol - wawmnsog {l s¥o0ig uspiog {

{ues

€0¢

N

9le

|

8]
fejdsiqg |, W

0] Bjeq [

1abaju|

lagquin
t quiny

Adningy

.-

1afia)

(Y Iabaj

Eic

cul
91¢ i

Injelfig soBuuo) vy GO

XA

Aeidsiq ereq :peyp mold

L7

05

XA

fejdsiq ejeg

o

XA

10}08]83 J1awn

<

O gue
doH sMopu sjool of4

X=T

10jejnaje - syoo0|g UapIog

10¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

17/29

SNI i 0 u
| Yo ZH0 geu] Apeay
NOQ 01 Sse|) asodx3
SSEIJ WOD
v | R Loy jndino moys
Inding
<] I
A 1>
oSe4 9jQezRUsg Aiadoiq pug
any - 8s o5 pu3
| SSIA NOD {Buion)pabueygeleq juaagesiey
o5je4 SSEI W09 anjea = gujw
o e adApyaoigiebey) sy anjea jepkg) 189 -]
sejnaupy 8segUIBOML umw Dcm
Xga sepJedog gujw uimay 9
EA__h w_a_s_mm 11013 EEU adApyooigseBau] sy (Janjeau; Auadoiy ajand T
o e <(0/2 ‘.gul,) induppainbay> [
qudoigislaiupiedaterety (N0
Qe 0 \ fiadoid pug
awogpuREgOquAs (30 195 pu3
eﬁﬂwmﬁﬁw m“ {Bupion) paiueynereq wangoesiey
gapolpepenBung [QR N anfen = uju
presmmae o (adApyo0jguiabayu) sy anjea jeAkg) 198]
ﬁ.ﬁo_m%agawﬁ”mﬁ mn uju win e
~ OwRogieisueegebug mu ! o 19D)
anug adA]yoolgiabau; sy () anjeau; fiad
epojglueazadug [0 Y 1) 8NJEAU; Aligdold dljqnd
P <(0‘bul,) indujpaimbay> &
gadjdnmpy __W_“
anu | Apadoid pug
A'XE, o
nis_mﬁmeeammmw_ﬂ mn 199 pug
u g.“s:o&u o 8|y uinjey
POYIBONO0IgIEGdonIs g [0 W T
ONPRPRONOIGIROSTA G |1 adAppooigalbug sy () nding Aedoid Auppesy aljqnd —
> o ﬂ_mawmn E_un W “<opspmaig> BB
NPU A é%: L fsuomeregag) [[A] — SSEEUEROAL ||
- W WL W |
l-ogsOam| d-v-«IBBI0] hY|#FE-BEQHE
S digy Ajunwwioy mopupy 153 sjof ejeq fngeg wea] pyng joalosd Mol ypg a4
[OIpNIg {ensiA OSSO0 - SYoojguowwon g

'$)00]g om]
Bunasuuoy

dé 9l

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

18/29

_sE €02t () ssalppy | syooig uapiop {111 - wewnaog | { Mels
sjofite] oNK=1
¢0g
10¢
UolIsod xaN KA ¢
alenalggy olfig Joeuo) vy X
xa auwer) Buog :eyg moj4

=

o]

DDDDUDDUUBHDDUDDDDDU
1 2 0 e T T O O e 1 e) e E C o e e

X4 awey) buog
. = =ERS

dloy smopuIM sjoo 8yl

M=l PfUN- SY00]g] UBpIop

L0¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

19/29

Wd 8021 @ ssaippy [S¥oojg uapiom || iy~ 1uauinaog |
sjebirel xoN K=,
= ¢0¢
G0e
LOE
(~ MeTpIE
S UoJMaN
uonIsod JxaN K3
SEaIGOY SIfIG JOBUL) vy IX
xa awen fuod :11eyn moj4

o

Duunnnunuﬂunuuuuuunﬂ
unuuuunﬂﬂnn”nnnﬂnﬂﬂn

XA

sluey) Huod

FOoOdRve |
deH smopuigy sjoor. [

XI=]

PaliunN- syo01g uspiop

0¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

20/29

Wd €02}

() sseIppy . { o - wewmoog li Swoig uapiofy | (uels

s1abre) ey =

808

L0

Uoisijo)
e

opped. |
aibuy K=

¢ mepig
,UOIMaN

pEg
mom\ e

fuog

SlEaIgny ifig Jopeuue) o o IX

XA

awey) Buod :peyy mojd

o
DUUHDDDDDDDDDDDDUDDD
unﬂﬂnﬂuuﬂﬂﬂununﬂuﬂuuu
XA awey) fuog

- EOO-[dvs]

disH sMopuim sjooL a4
XEC] Paliiun - $¥00]g Uapiopy

€0l

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

21/29

Wd €08t

@ ssalppy | s¥ooig uapiom __...a_s_.smsaoo_ { Lels

sjabire) jxaN -

80¢

LOE

woisljog
liem

9Ipped
ajbuy

S,UOIMaY

\ ppEd
ale
90¢ o

fuod

Spualgny oG oauio) o o IX

XA

auwey Buod :1eyn Mo}

o]

DDDDDDDDDDDUDDUD”_DDB
Unnn”_nnunnununuﬂnﬂuu_unuﬂ

XA swex) Buog
=0 =ERT

Aoy smopuity sjooy o)y

M= PajiiuN- $Y00jg Uapio

aeoid

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

22/29

Wd €021 © ssa.ppy | Sioclg uapiom [ol - jusinaog | { ues
m 3914
sjabie| 1o
Jobie] MeN Ko <
¢0¢
608 Y i 08 \-/\NON
i alpped
UOISJI0 | afuy K
e f
L0g ¢ ME7PIE -
80€ 9ipped jop | SHowN
1]
. ﬁ 3jppeq 50€ A laisod
ouwey) £08 1
gog | Buod
SRURIGEY BAG ORBIN) o o IX
xa weg Buog 7 4
a2 04 JJBYD MO} 107
\l\
| | s | masm | enae | s | s | oo § s | e § s | smus § o | st mnts e
[s § gmn | ﬂﬂﬂﬂ, oo | e | e |
x4 awex) fuod
B 0Oeldve |
djoy SmopuiRh sjool 8l
M POlUN- SX{V0[g UspIop

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

23/29

Wd £0:21

Q) ssaippy

| o - usunoog [Syo0jg uspiom | { Hels
4€°914
Sabire] pray K= o
\—1afonsaiaojgbuod K= ©
{L1] 0
| LLi
> -
f ojpped mn\
:
ssaufyg) 1S 1M ey s __H_
JaquinN =L
“ 1 0] s,uojaN _.."__n._
(00 I appeq 0
UoISINOY 1
I sipped 1 __.._.._
aluey))
fuog
Ind 8ifig Jojoatiuen Y Y 670X ”
XA auwen) fuod :1ieun Mol =
—_— 10¢ 7))
— -
o 7p
UUDDDDDDBDUDDDDDDDUH
WUDDDBDBDUUHUDHDDHUD

<a awet) buoy

FO0EHEVS

dH SMOpUI sjool 8l

X PofiUN- SY00[g UspIopm

PCT/US2006/036754

WO 2007/038174

24/29

Wd €02l

Q) ssalppy

siebie] e K

-ﬁa .- N/ e A

[1o - wewnaoq [[syoojg usplop | . (uels
| Iafonsagyojgbuod Ko x/Siebie
ughin
I5; &
a;eo ’]
ae%z
HE

ed ¥
ssaudyg Iy m%; VR [

(equiny T o7 s uopey [

uonsod

XA

awey 6uod :ueyn Mol4

1] gy
UoISo) apped]
Buog fn4 80 08I0 v GOK

+0¢

o

o | s § v § st | vt § s} s § i s { o s | oo { vt | s | smov | st | v | s § s § s |
e § rnan § e { amveve § e | s | st ¥ e § et | i { s § et { et § ot § s § st § st { pos | s § s |

%4 sluey) buod

=hIE=ERR)
dloy SHOpUI sjooL il

X Pajiun- $400jg Uspiop

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

25/29

Wd mo.ﬁ_ _ @ sssippy [101 - lauindoq [[sxo0[g Uspiog | {1es
IIME —
8002 924 900¢ uer 500¢ 98
902 1€ [z G2 €2 BL 4 3 O 9 b OF 82 §7 1z 6 & B 8 ¢ § m_ ¢
OB PP E=F=Fe FOp=F T ~PoFop Fopapapo
00°000008 : B Lid
: dnoig) Bulau) beslsy o
Jeualeu)l) fleMfeuoy - NOH
m_s_ﬂsr 00 $seidx3 teouaiy dxy
500 o1 Buiaog [T]
00'02 AN P N AN SUOYRIUNWILY UoTIBh A
000p Wi \ / \ Ji \W | Rydisey 199
0009 LY V7 Iy \ 7 > 03 % Bseyg ueBlowdr Wdr
0008 \VAR 7] duion sinoway ap Juod ng aa
00001 Y / auy 09 Aausig e 51
07 911983 jealiay) 39
_ dion) stojoy [e1Rusg L]
GLee 1L ._u T U} jodag suioy H
00'ee I i € SY00i5 nowEalg 98] I QdH
s .I.Ilnllmmadmm S3UYIRY 5S3UISNG [BOIELISIY] [}
05'te .L_ i WED Ao “ﬁw By 4Nt
P O P, e ~ B - 0SULop 3 Uosuyop NP
. dog o Supg] 04 Bj3-8005 o
00've anoway &
el N 0D SPIBEP2YY]
e i M_amwm* acmMEou WE AN
) ou] anory ey ORn
N BN m_ - < HIM 6105 03 R iBH YER
oo.mm ~] 4 < pogiel Bueag diog yososny 1350
52'se hom ..m, LI = 4 . ey] L U] Ja2ld 34d
0568 H il I LE) . B 10 b | o) BIJUED ¥ I00ig Da
§L8g i, Lairem i our g 1
0098 _ ¥ i ﬁ E dnoiBniy 9
5zo0 1 T drog saiBojouyaat perwp Xin
_ 12500) U] SBI0IS LBYY-feM 1N
Uonelodio?) jiqopy Loxxa NOX
=19 ‘07 01}99|3 JeIBUS ausy fueduing joquiks
o 0 : 31 mu I mI hm Al g yetoduioy jeinsnpu; og seuor fog
HElD| x A 1S U%EM
p ! =]
% o SRopumd Sjool ejy
I 18)iR}g diseg- s)00jg UAPIOY

V7Ol

| <—10¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/036754

WO 2007/038174

26/29

gay'ol

10j07) ¥ 8leq
=T
100
Ny

[enuauodx3

mm_._mm._mnE:Z R 3led
(s

jeg % aje
salas 83eea /A.lLL 950[)

VEYD

Sa1108 laquinN ¥ 2ieq t

poLad

1a6ayuj

=)

4 8|1g Jojaauuos /m.u /@ LX

YIN -HBYD Mol

a0e

SUBSTITUTE SHEET (RULE 26)

WO 2007/038174

Communication
Infrastructure
506

JL 10 11

PCT/US2006/036754
27/29
FIG. 5
Computer System
Processor 504 200
Main Memory 508
Display Interface 502 (< Display 530
Secondary Memory 510
Hard Disk Drive 512
Removable Storage Removable Storage
Drive 514 Unit 518
Interface Removat_ale Storage
520 Unit 522

528

=

Communications |)
Interface 524

X

Communications Path
526

WO 2007/038174 PCT/US2006/036754
28/29

FIG. 6

644

635
631 Network

630

PCT/US2006/036754

WO 2007/038174

29/29

064 - - - 0OFL
“ 9 |
weibeig s
o g sl . Ry €O0IE/eP0D
. SjaejieAy
Aowaypy
swumy
0gl 0cL oLz
G0

L Old

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings

