

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2847840 C 2015/11/24

(11)(21) 2 847 840

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

- (86) Date de dépôt PCT/PCT Filing Date: 2012/09/11
- (87) Date publication PCT/PCT Publication Date: 2013/06/06
- (45) Date de délivrance/Issue Date: 2015/11/24
- (85) Entrée phase nationale/National Entry: 2014/03/05
- (86) N° demande PCT/PCT Application No.: US 2012/054628
- (87) N° publication PCT/PCT Publication No.: 2013/081707
- (30) Priorités/Priorities: 2011/09/16 (US61/535,886); 2012/09/10 (US13/608,241)

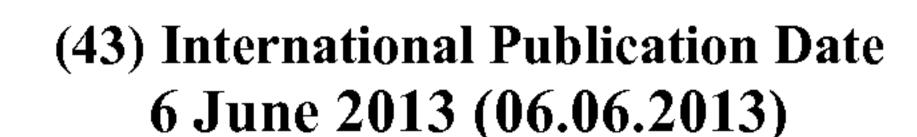
- (51) Cl.Int./Int.Cl. *H01B 1/24* (2006.01), *C09D 181/00* (2006.01)
- (72) Inventeurs/Inventors: SHARABY, AHMED, US; TAN, PONCHIVY, US
- (73) **Propriétaire/Owner**: PRC-DESOTO INTERNATIONAL, INC., US
- (74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre: COMPOSITIONS D'ETANCHEITE CONDUCTRICES

(54) Title: CONDUCTIVE SEALANT COMPOSITIONS

(57) Abrégé/Abstract:

Embodiments of the present disclosure are directed to sealant compositions including a base composition with at least one sulfur-containing polymer, a curing agent composition, and an electrically conductive filler including carbon nanotubes and stainless steel fibers. The electrically conductive filler can be in either or both of the base composition and the curing agent composition. The sealant compositions are substantially Ni-free and exhibit unexpectedly superior EMI/RFI shielding effectiveness.



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2013/081707 A1

(51) International Patent Classification: H01B 1/24 (2006.01) C09D 181/00 (2006.01)

(21) International Application Number:

PCT/US2012/054628

(22) International Filing Date:

11 September 2012 (11.09.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/535,886 16 September 2011 (16.09.2011) US 13/608,241 10 September 2012 (10.09.2012) US

(71) Applicant (for all designated States except US): PRC-DESOTO INTERNATIONAL, INC. [US/US]; 12780 San Fernando Road, Sylmar, California 91342 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHARABY, Ahmed [US/US]; 32070 Elsastre Road, Acton, California 93510 (US). TAN, Ponchivy [US/US]; 29535 Blake Way, Santa Clarita, California 91387 (US).

(74) Agents: PALLADINO, Donald, R. et al.; PPG Industries, Inc., One PPG Place, 39th Floor, Pittsburgh, Pennsylvania 15272 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(57) Abstract: Embodiments of the present disclosure are directed to sealant compositions including a base composition with at least one sulfur-containing polymer, a curing agent composition, and an electrically conductive filler including carbon nanotubes and stainless steel fibers. The electrically conductive filler can be in either or both of the base composition and the curing agent composition. The sealant compositions are substantially Ni-free and exhibit unexpectedly superior EMI/RFI shielding effectiveness.

CONDUCTIVE SEALANT COMPOSITIONS

[0001]

TECHNICAL FIELD

[0002] The present disclosure relates to sealant compositions exhibiting enhanced EMI/RFI shielding effectiveness.

BACKGROUND

[0003] During flight, aircraft face a number of environmental occurrences that can cause dangerous conditions or even physical damage. For example, lightning strikes and electromagnetic interference (EMI) are fairly common environmental occurrences that may lead to dangerous conditions during aircraft flight. Lightning strikes may cause physical damage to the aircraft by puncturing holes through parts of the aircraft, or may cause a dangerous surge current which may contact the fuel reservoir and result in an explosion. EMI may cause excessive energy levels in the wiring and probes of the aircraft's fuel system. Additionally, the electromagnetic noise caused by EMI may result in serious operational difficulties in the electronic components of the aircraft. Given the potential for severe damage or electrical interference caused by these environmental occurrences, means for preventing or mitigating the adverse effects of lightning strikes and EMI are important in aircraft design and manufacture.

SUMMARY

[0004] In embodiments of the present invention, a sealant composition includes a base composition having a sulfur-containing polymer, a curing agent composition having a curing agent, and an electrically conductive filler in at least one of the base composition or the curing agent composition. The electrically conductive filler includes carbon nanotubes and stainless steel fibers.

[0005] In some embodiments, the sealant composition is substantially nickel free.

[0006] The stainless steel fibers may have an average particle dimension larger than an average particle dimension of the carbon nanotubes, or the carbon nanotubes may have an average particle dimension larger than an average particle dimension of the stainless steel fibers. In some embodiments, for example, the carbon nanotubes may have an average length dimension of about 5 μ m to about 30 μ m, and an average diameter dimension of about 10 nm to about 30 nm, and the stainless steel fibers may have an average first dimension of about 8 μ m to about 22 μ m, and an average second dimension of about 330 μ m to about 1 mm. Also, the volume ratio of the carbon nanotubes to the stainless steel fibers may be about 1:1 to 1:50.

[0007] In some embodiments, the sealant compositions further include at least one of an adhesion promoter, a corrosion inhibitor or a plasticizer in at least one of the base composition or the curing agent composition.

[0008] In some embodiments, the sulfur-containing polymer is a polysulfide or a polythioether.

[0009] According to some embodiments, a sealant composition includes a substantially nickel-free base composition including a sulfur-containing polymer, a substantially nickel-free curing agent composition including a curing agent, and a substantially nickel-free electrically conductive filler in at least one of the base composition or the curing agent composition. The electrically conductive filler includes carbon nanotubes and stainless steel fibers. The stainless steel fibers may have an average particle dimension larger than an average particle dimension of the

carbon nanotubes, or the carbon nanotubes have an average particle dimension larger than an average particle dimension of the stainless steel fibers. In some embodiments, for example, the carbon nanotubes have an average length dimension of about 5 μ m to about 30 μ m, and an average diameter dimension of about 10 nm to about 30 nm, and the stainless steel fibers have an average first dimension of about 8 μ m to about 22 μ m, and an average second dimension of about 330 μ m to about 1 mm. Also, the volume ratio of the carbon nanotubes to the stainless steel fibers may be about 1:5 to 1:50.

[0010] The sealant compositions are substantially Ni-free and exhibit unexpectedly superior EMI/RFI shielding effectiveness.

DETAILED DESCRIPTION

[0011] In certain embodiments of the present disclosure, a sealant composition comprises at least one sulfur-containing polymer, and an electrically conductive filler comprising carbon nanotubes and stainless steel fibers. The term "sealant," "sealing," or "seal" as used herein refers to compositions that have the ability to resist atmospheric conditions such as moisture and temperature and at least partially block the transmission of materials such as water, fuel, and other liquids and gasses. Sealants often have adhesive properties, but are not simply adhesives that do not have the blocking properties of a sealant.

[0012] Sealant compositions of the present disclosure can be prepared by blending an electrically conductive base composition, and a curing agent composition. A base composition and a curing agent composition can be prepared separately, and then blended to form a sealant composition. A conductive base composition can comprise, for example, at least one sulfur-containing polymer, at least one plasticizer, at least one adhesion promoter, at least one corrosion inhibitor, at least one electrically non-conductive filler, and an electrically conductive filler comprising carbon nanotubes and stainless steel fibers. However, it is understood that the base compositions need

not contain each of these components. For example, many of these components are optional, for example, the plasticizer, adhesion promoter, corrosion inhibitor, electrically non-conductive filler, and electrically conductive filler. Accordingly, the base composition, in some embodiments, may contain only the polymer (which may be either or both a polysulfide and/or a polythioether), and a solvent. However, as discussed below, at least one of the base composition and/or curing agent composition includes a conductive filler comprising carbon nanotubes and stainless steel fibers.

[0013] A curing agent composition can comprise, for example, at least one curing agent, at least one plasticizer, at least one electrically non-conductive filler, at least one electrically conductive filler, and at least one cure accelerator. However, like the base composition, the curing agent composition need not contain each of these components. Indeed, many of these components are optional, for example, the plasticizer, electrically non-conductive filler, electrically conductive filler, and cure accelerator. Accordingly, the curing agent composition, in some embodiments, may contain only the curing agent. However, as discussed below, at least one of the base composition and/or curing agent composition includes a conductive filler comprising carbon nanotubes and stainless steel fibers.

[0014] In certain embodiments, 5 to 20 parts by weight of a curing agent composition are blended with 100 parts by weight of a base composition, and in certain embodiments, 8 to 16 parts by weight of curing agent composition are blended with 100 parts by weight of a base composition to form an electrically conductive sealant composition.

[0015] In certain embodiments, two-component curable compositions are preferred over one-component curable compositions because the two-component compositions provide the best rheology for application and exhibit desirable physical and chemical properties in the resultant cured composition. As used herein, the two components are referred to as the base composition, and the curing agent composition. In certain embodiments, the base composition can comprise polysulfide polymers,

polythioether polymers, oxidizing agents, additives, fillers, plasticizers, organic solvents, adhesion promoters, corrosion inhibitors, and combinations thereof. However, it is understood that the base compositions need not contain each of these components. For example, many of these components are optional, for example, the oxidizing agents, additives, fillers, plasticizers, adhesion promoters, and corrosion inhibitors. Accordingly, the base composition, in some embodiments, may contain only the polymer (which may be either or both a polysulfide and/or a polythioether), and a solvent. However, as discussed below, at least one of the base composition and/or curing agent composition includes a conductive filler comprising carbon nanotubes and stainless steel fibers.

[0016] In certain embodiments, the curing agent composition can comprise curing agents, cure accelerators, cure retardants, plasticizers, additives, fillers, and combinations thereof. However, like the base composition, the curing agent composition need not contain each of these components. Indeed, many of these components are optional, for example, the cure accelerators, cure retardants, plasticizers, additives, and fillers. Accordingly, in some embodiments, the curing agent composition may contain only the curing agent. However, as discussed below, at least one of the base composition and/or curing agent composition includes a conductive filler comprising carbon nanotubes and stainless steel fibers.

[0017] At least one of the base composition and the curing composition includes a conductive filler comprising carbon nanotubes and stainless steel fibers. The conductive filler may further include any additional conductive filler conventionally used in sealant compositions. However, in some embodiments, the optional additional conductive filler is substantially Ni-free in order to reduce toxicity and adverse environmental concerns. In some embodiments, for example, the conductive filler includes graphite in addition to the carbon nanotubes and stainless steel fibers. As used herein, the term "substantially" is used as a term of approximation, and not as a term of degree. Additionally, the term "substantially nickel-free" is used as a term

of approximation to denote that the amount of nickel in the additional conductive filler or sealant composition is negligible, such that if nickel is present in the additional conductive filler or sealant composition at all, it is as an incidental impurity.

In certain embodiments, sulfur-containing polymers useful in the practice of [0018]the present disclosure include polysulfide polymers that contain multiple sulfide groups, i.e., -S-, in the polymer backbone and/or in the terminal or pendent positions on the polymer chain. Such polymers are described in U.S. Pat. No. 2,466,963 wherein the disclosed polymers have multiple -S-S- linkages in the polymer backbone. Other useful polysulfide polymers are those in which the polysulfide linkage is replaced with a polythioether linkage, i.e., -[-CH₂-CH₂-S-CH₂-CH₂-]_n- where n can be an integer ranging from 8 to 200 as described in U.S. Pat. No. 4,366,307. In some embodiments, for example, the polythioether polymers may be those described in U.S. Patent No. 6,172,179. For example, the polythioether polymer may be the polythioether prepared in Example 1 of U.S. Patent No. 6,172,179. The polysulfide polymers can be terminated with non-reactive groups such as alkyl, although in certain embodiments, the polysulfide polymers contain reactive groups in the terminal or pendent positions. Typical reactive groups are thiol, hydroxyl, amino, and vinyl. Such polysulfide polymers are described in the aforementioned U.S. Pat. No. 2,466,963, U.S. Pat. No. 4,366,307, and U.S. Pat. No. 6,372,849. Such polysulfide polymers can be cured with curing agents that are reactive with the reactive groups of the polysulfide polymer.

[0019] Sulfur-containing polymers of the present disclosure can have number average molecular weights ranging from 500 to 8,000 grams per mole, and in certain embodiments, from 1,000 to 5,000 grams per mole, as determined by gel permeation

chromatography using a polystyrene standard. For sulfur-containing polymers that contain reactive functional groups, the sulfur-containing polymers can have average functionalities ranging from 2.05 to 3.0, and in certain embodiments ranging from 2.1 to 2.6. A specific average functionality can be achieved by suitable selection of reactive components. Nonlimiting examples of sulfur-containing polymers include those available from PRC-DeSoto International, Inc. under the trademark PERMAPOL, specifically, PERMAPOLTM P-3.1 or PERMAPOLTM P-3, and from Akros Chemicals, such as THIOPLASTTM G4.

[0020] A sulfur-containing polymer can be present in the base composition in an amount ranging from about 10% to about 80% by weight of the total weight of the base composition, and in certain embodiments can range from about 10% to about 40% by weight, and in other embodiments can range from about 20% to about 30% by weight. In certain embodiments, the sulfur-containing polymer comprises a combination of a polysulfide polymer and a polythioether polymer, and the amounts of polysulfide polymer and polythioether polymer can be similar. For example, in some embodiments, the amount of polysulfide polymer and the amount of polythioether polymer in a base composition can each range from about 10% by weight to about 15% by weight of the total weight of the base composition.

[0021] The sealant compositions of the present disclosure comprise at least one curing agent for curing the at least one sulfur-containing polymer. The term "curing agent" refers to any material that can be added to a sulfur-containing polymer to accelerate the curing or gelling of the sulfur-containing polymer. Curing agents are also known as accelerators, catalysts or cure pastes. In certain embodiments, the curing agent is reactive at a temperature ranging from 10°C to 80°C. The term "reactive" means capable of chemical reaction and includes any level of reaction from partial to complete reaction of a reactant. In certain embodiments, a curing agent is reactive when it provides for cross-linking or gelling of a sulfur-containing polymer.

[0022] In certain embodiments, the sealant compositions comprise at least one curing agent that contains oxidizing agents capable of oxidizing terminal mercaptan groups of the sulfur-containing polymer to form disulfide bonds. Useful oxidizing agents include, for example, lead dioxide, manganese dioxide, calcium dioxide, sodium perborate monohydrate, calcium peroxide, zinc peroxide, and dichromate. The curing agent may also be an epoxy resin, or the curing agent may include a mixture of another oxidizing agent and an epoxy resin. The amount of curing agent in a curing agent composition can range from about 25% by weight to about 75% by weight of the total weight of the curing agent composition. Additives such as sodium stearate can also be included to improve the stability of the accelerator. For example, a curing agent composition can comprise an amount of cure accelerator ranging from about 0.1% to about 1.5% by weight based on the total weight of the curing agent composition.

[0023] In certain embodiments, sealant compositions of the present disclosure can comprise at least one curing agent containing at least one reactive functional group that is reactive with functional groups attached to the sulfur-containing polymer.

Useful curing agents containing at least one reactive functional group that is reactive with functional groups attached to the sulfur-containing polymer include polythiols, such as polythioethers, for curing vinyl-terminated polymers; polyisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, and mixtures and isocyanurate derivatives thereof for curing thiol-, hydroxyl- and amino-terminated polymers; and, polyepoxides for curing amine- and thiol-terminated polymers. Nonlimiting examples of polyepoxides include hydantoin diepoxide, Bisphenol-A epoxides,. Bisphenol-F epoxides, Novolac-type epoxides, aliphatic polyepoxides, and epoxidized unsaturated resins, and phenolic resins. The term "polyepoxide" refers to a material having a 1,2-epoxy equivalent greater than one and includes monomers, oligomers, and polymers.

[0024] The sealant composition can optionally comprise at least one compound to modify the rate of cure. For example, cure accelerants such as

dipentamethylene/thiuram/polysulfide mixture can be included in the sealant composition to accelerate the rate of cure, and/or at least one cure retardant such as stearic acid can be added to retard the rate of cure and thereby extend the work life of a sealant composition during application. In certain embodiments, the curing agent composition can comprise an amount of accelerant ranging from about 1% to about 1% by weight, and/or an amount of cure retardant ranging from about 0.1% to about 1% by weight, based on the total weight of the curing agent composition. To control the cure properties of the sealant composition, it can also be useful to include at least one material capable of at least partially removing moisture from the sealant composition such as a molecular sieve powder. In certain embodiments, a curing agent composition can comprise an amount of material capable of at least partially removing moisture ranging from about 0.1% to about t1.5% by weight, based on the total weight of the curing agent composition.

[0025] In certain embodiments, sealant compositions of the present disclosure can comprise fillers. As used herein, "filler" refers to a non-reactive component in the composition that provides a desired property, such as, for example, electrical conductivity, density, viscosity, mechanical strength, EMI/RFI shielding effectiveness, and the like.

[0026] Examples of electrically non-conductive fillers include materials such as, but not limited to, calcium carbonate, mica, polyamide, fumed silica, molecular sieve powder, microspheres, titanium dioxide, chalks, alkaline blacks, cellulose, zinc sulfide, heavy spar, alkaline earth oxides, alkaline earth hydroxides, and the like. Exemplary fillers may also include high band gap materials such as zinc sulfide and inorganic barium compounds. In certain embodiments, the base composition can comprise an amount of electrically non-conductive filler ranging from about 2% to about 10% by weight, based on the total weight of the base composition, and in certain embodiments, can range from about 3% to about 7% by weight. In certain embodiments, a curing agent composition can comprise an amount of electrically non-

conductive filler ranging from less than 6 percent by weight, and in certain embodiments ranging from about 0.5% to about 4% by weight, based on the total weight of the curing agent composition.

According to embodiments of the present disclosure, either or both of the [0027] base composition and/or the curing agent composition includes a conductive filler comprising carbon nanotubes and stainless steel fibers. In some embodiments, the sealant composition includes about 80 to about 90% base composition and about 10 to about 20% curing agent composition, and the conductive filler including the carbon nanotubes and stainless steel fibers are included in the base composition. These fillers are used to impart electrical conductivity and EMI/RFI shielding effectiveness to the sealant compositions. The combination of the carbon nanotubes and stainless steel fibers forms an interactive conductive matrix which imparts unexpectedly superior electrical conductivity and EMI shielding effectiveness. In addition, this combination of carbon nanotubes and stainless steel fibers eliminates Ni, which has typically been used in conductive fillers in conventional sealant compositions. Indeed, according to embodiments of the present invention, the conductive filler, as well as the sealant composition, are substantially Ni-free, thereby substantially eliminating the toxicity and environmental downsides attributed to the inclusion of Ni in conventional sealant compositions. As discussed above, as used herein, the term "substantially" is used as a term of approximation, and not as a term of degree. Additionally, as discussed above, the term "substantially nickel-free" is used as a term of approximation to denote that the amount of the nickel in the sealant compositions is negligible, such that if nickel is present at all, it is as an incidental impurity.

[0028] The size of the carbon nanotubes and stainless steel fibers can vary as desired to adjust or modify the electrical conductivity and/or EMI shielding effectiveness of the sealant composition. However, in certain embodiments, one of the carbon nanotubes or the stainless steel fibers has an average particle (i.e., nanotube or fiber) dimension that is larger than an average particle (i.e., nanotube or

fiber) dimension of the other of the carbon nanotubes or stainless steel fibers. For example, in some embodiments, the carbon nanotubes may have a length dimension ranging from about 5 to about 30μm, and a diameter dimension ranging from about 10 to about 30nm. The stainless steel fibers may have dimensions of about 8μm x about 330μm to about 22μm x about 1mm. Also, a volume ratio of the carbon nanotubes to the stainless steel fibers may range from about 1:5 to about 1:50. In one embodiment, for example, the volume ratio of the carbon nanotubes to the stainless steel fibers is about 1:5.

[0029] The sealant compositions may also optionally include one or more corrosion inhibitors Nonlimiting examples of suitable corrosion inhibitors include strontium chromate, calcium chromate, magnesium chromate, and combinations thereof. U.S. Pat. No. 5,284,888 and U.S. Pat. No. 5,270,364, disclose the use of aromatic triazoles to inhibit corrosion of aluminum and steel surfaces. In certain embodiments, a sacrificial oxygen scavenger such as Zn can be used as a corrosion inhibitor. In certain embodiments, the corrosion inhibitor can comprise less than 10% by weight of the total weight of the sealant composition. In certain embodiments, the corrosion inhibitor can comprise an amount ranging from about 2% by weight to about 8% by weight of the total weight of the sealant composition.

[0030] In certain embodiments, the sealant compositions may optionally further comprise one or more plasticizers, nonlimiting examples of which include phthalate esters, chlorinated paraffins, hydrogenated terphenyls, partially hydrogenated terphenyls, and the like. The plasticizer may be included in either or both of the base composition and/or the curing agent composition. In some embodiments, the plasticizer is included in the base composition in an amount ranging from about 0.1% to about 5% by weight based on the total weight of the base composition, and in certain embodiments, can range from about 0.5% to about 3% by weight. In some embodiments, the plasticizer is included in the curing agent composition in an amount

ranging from about 20% to about 60% by weight of the total weight of the curing agent composition, and in certain embodiments, can range from about 30% to about 40% by weight.

[0031] In certain embodiments, the sealant compositions may optionally further comprise an organic solvent, such as a ketone or an alcohol, for example methyl ethyl ketone, and isopropyl alcohol, or a combination thereof.

[0032] In certain embodiments, the sealant compositions may optionally further comprise one or more adhesion promoters, nonlimiting examples of which include phenolic resins, silane adhesion promoters, and combinations thereof. Adhesion promoters help facilitate adhesion of the polymeric components of the sealant composition to a substrate, as well as to the electrically non-conductive and electrically conductive fillers in the sealant composition. The adhesion promoter may be included in either or both of the base composition and/or the curing agent composition. In certain embodiments, the adhesion promoter is included in the base composition in an amount ranging from about 0.10% to about 5.0% by weight (for phenolic adhesion promoters), from about 0.05% to about 1.0% by weight (for mercapto-silane adhesion promoters). The total amount of adhesion promoter in the base composition can range from about 0.5% to 7% by weight, based on the total weight of the base composition.

[0033] In certain embodiments, the base composition can be prepared by batch mixing at least one sulfur-containing polymer, additives, and/or fillers in a double planetary mixer under vacuum. Other suitable mixing equipment includes a kneader extruder, sigma mixer, or double "A" arm mixer. For example, a base composition can be prepared by mixing at least one sulfur-containing polymer, plasticizer, and phenolic adhesion promoter. After the mixture is thoroughly blended, additional constituents can be separately added and mixed using a high shear grinding blade, such as a Cowless blade, until cut in. Examples of additional constituents that can be

added to the base composition include the carbon nanotube/stainless steel conductive filler, corrosion inhibitors, non-conductive fillers, and silane adhesion promoters. The mixture can then be mixed for an additional 15 to 20 minutes under a vacuum of 27 inches of mercury or greater to reduce or remove entrapped air and/or gases. The base composition can then be extruded from the mixer using a high-pressure piston ram.

[0034] The curing agent composition can be prepared by batch mixing a curing agent, additives, and fillers. In certain embodiments, 75% of the total plasticizer (such as partially hydrogenated terphenyl) and an accelerant (such as a dipentamethylene/thiuram/polysulfide mixture) are mixed in a single-shaft anchor mixer. Molecular sieve powder is then added and mixed for 2 to 3 minutes. Fifty percent of the total manganese dioxide is then mixed until cut in. Stearic acid, sodium stearate, and the remaining plasticizer are then mixed until cut in followed by the remaining 50% of the manganese dioxide which is mixed until cut in. Fumed silica is then mixed until cut in. If the mixture is too thick a surfactant may be added to increase wetting. The curing agent composition is then mixed for 2 to 3 minutes, passed over a three-roll paint mill to achieve a grind, and returned to the single-shaft anchor mixer and mixed for an additional 5 to 10 minutes. The curing agent composition can then be removed from the mixer with a piston ram and placed into storage containers and aged for at least 5 days prior to combining with a base composition. The base composition and curing agent composition are mixed together to form the sealant composition, which can then be applied to a substrate.

[0035] It is noted that, as used in this disclosure, the singular forms "a," "an," and, "the" include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to "a filler" includes one or more fillers. Also it is noted that, as used herein, the term "polymer" refers to polymers, oligomers, homopolymers, and copolymers.

[0036] For the purposes of this disclosure, unless otherwise indicated, all numbers expressing quantities of ingredients or percentages or proportions of other materials,

reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure.

Embodiments of the present disclosure can be further defined by reference to the following example, which describes in detail the preparation of an exemplary composition of the present disclosure. It will be apparent to those skilled in the art that modifications, both to materials and methods, may be practiced without departing from the scope of the present disclosure.

Example

[0037] The components of the base composition are indicated in the below table. Specifically, the base composition included 50.7 lbs of a carbon nanotube (CNT) dispersion (i.e., 1% carbon nanotubes dispersed in a polythioether polymer (Permapol P3.1e, available from PRC-DeSoto)), 2.2 lbs conductive graphite, 30.2 lbs stainless steel fibers, and 16.9 lbs solvent.

	Material	Amount (lbs)
1% CNT in P3.1e	CNT/Polymer	50.7
Graphite	conductive graphite	2.2
Stainless Steel fiber	conductive fibers	30.2
ethyl acetate	solvent	16.9

[0038] To the 1% carbon nanotubes dispersed in a polythioether polymer, the graphite is added and mixed in a Hauschild Speed Mixer. The stainless steel fibers and ethyl acetate are then added and dispersed in the Speed Mixer.

[0039] The compositions were cured using a manganese or epoxy based curing agent composition to effect oxidative curing. For example, the curing agent composition may include a manganese oxide or epoxy based composition including a plasticizer and/or a cure rate modifier (e.g., a cure accelerant or a cure retardant). One

example of a suitable curing agent composition is a composition including about 25% to about 75% manganese dioxide.

[0040] The present invention has been described with reference to exemplary embodiments and aspects, but is not limited thereto. Persons skilled in the art will appreciate that other modifications and applications can be made without meaningfully departing from the invention. For example, although the coating compositions are described as being useful for aerospace applications, they may be useful for other applications as well, including in other electronic devices requiring EMI/RFI shielding. Accordingly, the foregoing description should not be read as limited to the precise embodiments and aspects described, but should be read consistent with and as support for the following claims, which are to have their fullest and fairest scope.

[0041] Throughout the text and the claims, use of the word "about" in relation to a range of values is intended to modify both the high and low values recited, and reflects the penumbra of variation associated with measurement, significant figures, and interchangeability, all as understood by a person having ordinary skill in the art to which this invention pertains. Additionally, throughout this disclosure and the accompanying claims, it is understood that even those ranges that may not use the term "about" to describe the high and low values are also implicitly modified by that term, unless otherwise specified.

WHAT IS CLAIMED IS:

- 1. A sealant composition, comprising:
 - a base composition comprising a sulfur-containing polymer;
 - a curing agent composition comprising a curing agent; and
- an electrically conductive filler in at least one of the base composition or the curing agent composition, the electrically conductive filler comprising carbon nanotubes and stainless steel fibers.
- 2. The sealant composition of claim 1, wherein the electrically conductive filler is in the base composition.
- 3. The sealant composition of claim 1, wherein the electrically conductive filler is in the curing agent composition.
- 4. The sealant composition of claim 1, wherein the electrically conductive filler is in both the curing agent composition and the base composition.
- 5. The sealant composition of claim 1, wherein the sealant composition is substantially nickel free.
- 6. The sealant composition of claim 1, wherein the stainless steel fibers have an average particle dimension larger than an average particle dimension of the carbon nanotubes.
- 7. The sealant composition of claim 1, wherein the carbon nanotubes have an average particle dimension larger than an average particle dimension of the stainless steel fibers.

- 8. The sealant composition of claim 1, wherein the carbon nanotubes have an average length dimension of about 5 μ m to about 30 μ m, and an average diameter dimension of about 10 nm to about 30 nm.
- 9. The sealant composition of claim 1, wherein the stainless steel fibers have an average first dimension of about 8 μm to about 22 μm , and an average second dimension of about 330 μm to about 1 mm.
- 10. The sealant composition of claim 1, wherein a volume ratio of the carbon nanotubes to the stainless steel fibers is about 1:5 to 1:50.
- 11. The sealant composition of claim 1, further comprising at least one of an adhesion promoter, a corrosion inhibitor or a plasticizer in at least one of the base composition or the curing agent composition.
- 12. The sealant composition of claim 1, wherein the sulfur-containing polymer is a polysulfide or a polythioether.
- 13. A sealant composition, comprising:
- a substantially nickel-free base composition comprising a sulfur-containing polymer;
- a substantially nickel-free curing agent composition comprising a curing agent; and
- a substantially nickel-free electrically conductive filler in at least one of the base composition or the curing agent composition, the electrically conductive filler comprising carbon nanotubes and stainless steel fibers.

- 14. The sealant composition of claim 13, wherein the stainless steel fibers have an average particle dimension larger than an average particle dimension of the carbon nanotubes.
- 15. The sealant composition of claim 13, wherein the carbon nanotubes have an average particle dimension larger than an average particle dimension of the stainless steel fibers.
- 16. The sealant composition of claim 13, wherein the carbon nanotubes have an average length dimension of about 5 μm to about 30 μm , and an average diameter dimension of about 10 nm to about 30 nm.
- 17. The sealant composition of claim 13, wherein the stainless steel fibers have an average first dimension of about 8 μ m to about 22 μ m, and an average second dimension of about 330 μ m to about 1 mm.
- 18. The sealant composition of claim 14, wherein a volume ratio of the carbon nanotubes to the stainless steel fibers is about 1:5 to 1:50.