(12) STANDARD PATENT (11) Application No. AU 2013201390 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(30)

(31)

(43)
(43)
(44)
(71)

(72)

(74)

(56)

Title
Progress bar

International Patent Classification(s)
GO6F 17/00 (2006.01) GOG6F 3/14 (2006.01)

Application No: 2013201390 (22) Date of Filing: 2013.03.08

Priority Data

Number (32) Date (33) Country
13/615,025 2012.09.13 us
13/615,120 2012.09.13 us
13/614,762 2012.09.13 us
61/609,238 2012.03.09 us
13/615,140 2012.09.13 us
Publication Date: 2013.09.26

Publication Journal Date: 2013.09.26
Accepted Journal Date: 2015.05.07

Applicant(s)
Apple Inc.

Inventor(s)
KALETA, Damian;DECKER, Kevin W_;BERNSTEIN, Dan;DAKIN, Beth Marie;FRASER,
Simon;WEINIG, Samuel;HYATT, Dave; GAREN, Geoffrey S.

Agent / Attorney
Freehills Patent Attorneys, ANZ Tower 161 Castlereagh Street, Sydney, NSW, 2000

Related Art

US 6927770 B2

HARRISON et al., "Rethinking the Progress Bar", UIST '07, 7 - 10 October 2007
US 7577632 B2

1000125110

ABSTRACT

Some embodiments provide a method that displays, by a computing device, a progress bar that
visually displays a completion status indicator for a task being performed, the completion status

indicator representing a completion status of the task. In some embodiments, the method

w

determines a triviality threshold that indicates when the progress bar is to be displayed as showing
completion of the task. The triviality threshold can indicate a time prior to completion of the task.
Upon reaching the triviality threshold, the method causes the progress bar to show completion of the

task in some embodiments.

2013201390 08 Mar 2013

2013201390 08 Mar 2013

10/15

FIG. 12

Att=T, /_/ J

Address: [www.url.com M3 Reader |
Att=T;,

Address: [VI3 : Reader |
At t = Tihresn

Address: | >V B : Reader }
At t = Tinresn

2013201390 02 Apr 2015

—
]

15

20

25

PROGRESS BAR
BACKGROUND

[0001] The present disclosure relates generally to progress bars and in particular to various

improvements to progress bars that can enhance a user’s experience.

[0002] A progress bar (also sometimes referred to as a status bar, or a completion status bar, etc.) is
commonly used to convey a completion status of a task or a process, such as a loading of a web
page, a file download, data transfer, etc. Different application programs may use progress bars in
various different contexts. In one example, a browser application may use a progress bar to indicate
a completion status of a web page being loaded for presentation to a user. In response to the user’s
selection of a uniform resource locator (URL) for a web page, the browser application may display
a progress bar that conveys a completion status of the loading of the web page. The progress bar
can be updated as the completion status of the loading of the web page changes. As such, via the

progress bar, the user can roughly estimate a total completion time for the loading of the web page.

[0003] A progress bar typically includes a completion status indicator that visually represents the
completion status of a task or the operation being performed. The completion status indicator may,
for example, be in the form of a slider bar that moves from a start position towards an end position,
where reaching the end position signals completion of the task or operation. In such an
embodiment, the position of the completion status indicator can convey the completion status (e.g.,
a percentage of the task being completed) of the task or operation to the user. The user can use the
information conveyed by the completion status indicator to approximate a completion time for the

task or operation.

[0004] Conventional progress bars have a number of problems. First, due to the complexity of
modern computing systems, varying disk, memory, processor, bandwidth and other factors can
cause existing progress bars to exhibit non-linear behaviors, such as acceleration, deceleration, and
pauses. This irregular behavior of progress bars can cause the progress bars to appear slow, clunky,

and inaccurate in conveying an estimated completion time to a user.

[0004a] Reference to any prior art in the specification is not, and should not be taken as, an
acknowledgment or any form of suggestion that this prior art forms part of the common general
knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected

to be ascertained, understood and regarded as relevant by a person skilled in the art.

1001050208

2013201390 02 Apr 2015

w

10

15

20

25

30

la

SUMMARY

[0004b] According to a first aspect of the invention there is provided a method for displaying a
completion status indicator, comprising:
at a computing device with a display:
displaying, on the display, an application with a completion status indicator, wherein:
the completion status indicator is a bar that visually shows a completion status of
a task being performed by the application; and
one end of the bar moves towards a position that indicates completion of the task;
and,
prior to completing the task:
while the one end of the bar is moving at a first rate towards the position that
indicates completion of the task, determining whether a threshold has been reached at which the
completion status indicator is configured to indicate that the task has been completed, even
though the task is not completed; and,
in response to determining that the threshold has been reached at which the
completion status indicator is configured to indicate that the task has been completed, even
though the task is not completed, moving the one end of the bar at a second rate, greater than the

first rate, from its current position towards the position that indicates completion of the task.

[0004¢] According to a second aspect of the invention there is provided a computing device for
displaying a completion status indicator, comprising:
a display;
a processor;
memory; and
one or more programs, wherein the one or more programs are stored in the memory and
configured to be executed by the processor, the one or more programs including instructions for:
displaying, on the display, an application with a completion status indicator, wherein:
the completion status indicator is a bar that visually shows a completion status of
a task being performed by the application; and
one end of the bar moves towards a position that indicates completion of the task;
and,

prior to completing the task:

1001050208

2013201390 02 Apr 2015

W

—_
[}

15

20

25

1b

while the one end of the bar is moving at a first rate towards the position that
indicates completion of the task, determining whether a threshold has been reached at which the
completion status indicator is configured to indicate that the task has been completed, even
though the task is not completed; and,

in response to determining that the threshold has been reached at which the
completion status indicator is configured to indicate that the task has been completed, even
though the task is not completed, moving the one end of the bar at a second rate, greater than the

first rate, from its current position towards the position that indicates completion of the task.

[0004d] According to a third aspect of the invention there is provided a computer readable
storage medium storing one or more programs, the one or more programs comprising
instructions, which when executed by a computing device with a display, cause the computing
device to:
display, on the display, an application with a completion status indicator, wherein:
the completion status indicator is a bar that visually shows a completion status of
a task being performed by the application; and
one end of the bar moves towards a position that indicates completion of the task;
and,
prior to completing the task:
while the one end of the bar is moving at a first rate towards the position that
indicates completion of the task, determine whether a threshold has been reached at which the
completion status indicator is configured to indicate that the task has been completed, even
though the task is not completed; and,
in response to determining that the threshold has been reached at which the
completion status indicator is configured to indicate that the task has been completed, even

though the task is not completed, move the one end of the bar at a second rate, greater than the

first rate, from its current position towards the position that indicates completion of the task.

[0005] Certain arrangement of the present disclosure provide techniques for displaying an improved

progress bar on a graphical user interface (GUI) that enhances a user’s computing experience.

1001050208

2013201390 02 Apr 2015

w

—
[

15

25

[0006] In some arrangements, a visual cue can be provided in a progress bar to alert a user when a
triviality threshold is met. The triviality threshold can refer to a threshold at which an average
person would consider a task to be complete regardless of whether the task is actually complete.
For instance, an average person may consider the triviality threshold for loading a particular sports
web page to be met at the instant that one or more sports articles have become visible, regardless of
whether the remaining elements of the page, including various images, advertisements, hyperlinks,
etc., have been loaded. The visual cue can be an animation of an accelerated progression of a
completion status indicator in a progress bar. By providing a visual cue when the triviality
threshold is met, the user can be informed of when “essential” portions of the page are viewable
regardless of whether the entire page has been loaded, instead of having to wait until the entire page

is loaded.

[0007] A progress bar can display a completion status indicator that underreports a completion
status of an ongoing task. In some arrangements, a browser application can overestimate a loading
time for a web page and thereby increment a completion status indicator in a progress bar at a rate in
accordance with the estimated load time. For example, a browser application may overestimate a
loading time to be 10 seconds and increment a completion status indicator in a progress bar in a
manner (e.g., at a rate of (total number of pixels in the progress bar)/10s) such that the progress bar
would show completion of the task in 10 seconds. By underreporting the actual status of the task in
the progress bar minimizes the chances that the completion status indicator would stall towards the
end of the progress bar. Further, some arrangements can update the completion status indicator in
the progress bar in a smooth manner. In some arrangements, linear functions can be used to
determine a location to which to animate the progression of the completion status indicator within
certain intervals. This eliminates discrete jumps and adds fluidity to the progression of the reported

status such that the progress bar can appear intuitive to the user.

[0008] In some arrangements, a visual cue can be provided to alert a user when a threshold
indicating that a task is complete to a threshold degree (also referred to as a triviality threshold) is
met. The visual cue can be an animation of an accelerated progression of a completion status
indicator in a progress bar. In some arrangements, the manner in which a user interface (UI)
element is displayed may be tied to the display of a progress bar. For example, a GUI element may
be visually enabled in response to the position or completion status indicated by the completion

status indicator in a progress bar. In some instances, the GUI may include a button (e.g., a button

1001050208

2013201390 02 Apr 2015

i

—
o

15

20

corresponding to a reader function) that is visually enabled (i.e., its function enabled) upon the
triviality threshold being met and the completion status indicator animated to show completed
status. In this manner, the visual display of a Ul element may be changed in response to the
completion status indicated by the progress bar. In one arrangement, the Ul element may be

visually displayed and modified in a manner so as to draw a user’s attention to the UI element.

[0009] In addition to displaying a completion status of a task or operation, a progress bar in some
arrangements can visually indicate a speed at which the task is being performed at a point in time.
Different types of animations can represent a speed and/or task at which the task is being performed.
For example, the progress bar may display animated waves or ripples with the speed of the waves or
ripples indicating the speed of a particular task or operation being performed. In this example,
waves or ripples of higher frequency (i.e., shorter wavelength) indicate a faster speed or higher rate
at which the task is being performed (e.g., when a web page is loading at .5MB/s the waves or
ripples may be displayed at one animation speed and when the loading rate is at 1GB/s the waves or
ripples may be displayed at a faster animation speed). The speed of the animation can provide the

user a visual cue as to the rate at which the task or operation is being performed.

[0010] Some arrangements provide a method that displays, by a computing device, a progress bar
that visually displays a completion status indicator for a task being performed, the completion status
indicator representing a completion status of the task. In some arrangements, the method
determines a triviality threshold that indicates when the progress bar is to be displayed as showing
completion of the task. The triviality threshold can indicate a time prior to completion of the task.
Upon reaching the triviality threshold, the method causes the progress bar to show completion of the

task in some arrangements.

[0011] In some arrangements, the method that causes the progress bar to show completion of the
task includes determining a current position of the completion status indicator in the progress bar
and advancing the completion status indicator in the progress bar from the current position to one
end of the progress bar to indicate completion of the task. In some arrangements, the triviality
threshold is determined using a set of metrics. In certain arrangements, the task is to display a
webpage and the method receives a user request to view the webpage. The set of metrics can
include at least one of a uniform resource locator (URL) of the webpage, a category to which
contents of the webpage belongs, a number of items included in the webpage, or a source from

which contents of the webpage are to be loaded. In some arrangements, the method receives

1001050208

2013201390 02 Apr 2015

—
e

15

20

25

another progress value and updates the completion status indicator in the progress bar based on the

other progress value.

[0012] Some arrangements provide a method that displays, by a computing device, a progress bar
that includes a completion status indicator for a task. The method determines a set of criteria for the
task, wherein upon satisfying the set of criteria indicates that the task is “essentially complete.” The
method receives a set of progress values associated with the task. The method determines whether
the set of criteria has been satisfied based on the set of progress values. The method displays a type

of animation effect in the progress bar when the set of criteria has been satisfied.

[0013] In some arrangements, the set of criteria can include a threshold amount of data, where the
set of criteria is satisfied when the set of progress values indicates that the threshold amount of data
has been received. In certain arrangements, the type of animation effect is user configurable. In one
arrangement, the type of animation eftect is at least one of a motion blur of an object or a light blur.
In some arrangements, the completion status indicator is a primary progress indicator. The progress
bar in some arrangements can further visually display a secondary progress indicator that indicates a

speed at which the task is being performed.

[0014] Some arrangements provide a computer readable storage medium encoded with program
instructions that, when executed, cause a processor in a computing device to execute a method that
displays a progress bar that visually displays a completion status indicator for a task being
performed. The method can determine a threshold that indicates when the progress bar is to be
displayed as showing completion of the task, the threshold indicating a time prior to completion of
the task. Upon reaching the threshold, the method can cause the progress bar to show completion of

the task.

[0015] In some arrangements, the method receives a progress value. The method can map the
progress value to a location within a portion of the progress bar, the portion being less than the full
length of the progress bar. The method can display the completion status of the task in the progress
bar based on the mapped location. In some arrangements, the task includes rendering a webpage
associated with a newspaper, where the threshold is reached upon loading a particular article
associated with the webpage. In some arrangements, the task can include a set of subtasks, where
the threshold is reached upon completing a subset of the subtasks less than the set of subtasks. In

certain arrangements, the task includes rendering a webpage that includes a set of objects and each

1001050208

2013201390 02 Apr 2015

—
<o

subtask includes a loading of an object in the set of objects, where the threshold is reached upon

loading each object in the subset of subtasks.

[0016] Some arrangements provide an electronic device including a process and a memory device
coupled to the processor. The memory device can include instructions to be executed for displaying
a completion status of a task in a progress bar, where the instructions, when executed by the
processor, cause the processor to display a progress bar that visually displays a completion status
indicator for a task being performed. The instructions can cause the processor to determine a
threshold that indicates when the progress bar is to be displayed as showing completion of the task,
the threshold indicating a time prior to completion of the task. The instructions can also cause the

processor to, upon reaching the threshold, cause the progress bar to show completion of the task.

[0017] In some arrangements, the task includes a set of subtasks and the threshold is reached upon
completing a subset of the set of subtasks that is less than the set of subtasks. In certain
arrangements, the instructions further cause the processor to receive a set of progress values and
update the progress bar prior to reaching the threshold to display an updated completion status
indicator for the task being performed. The updated completion status indicator for the task can
underreport a completion status of the task. In some arrangements, the task includes several
subtasks, each subtask requiring a loading of objects from a different location. The instructions can
further cause the process to determine a respective percentage of each subtask that has been
completed and determine that the threshold is reached when each of the respective percentage of
each subtask has reached a threshold percentage. In certain arrangements, the threshold percentage

for each subtask is configurable by at least one of a user or a system administrator.

[0018] Some arrangements provide a computer readable storage medium encoded with program
instructions that, when executed, cause a processor in a computing device to execute a method. In
some arrangements, the method displays a progress bar that visually displays a completion status
indicator for a task. The method can determine, using a set of metrics, a set of criteria for the task
that, upon satisfying the set of criteria, indicates to a user that the task is “essentially complete. The
method can determine whether the set of criteria has been satisfied based on the set of progress
values. The method can display a type of animation effect when the set of criteria has been

satisfied.

[0019] In some arrangements, the method displays the completion status indicator for the task based

on the set of progress values. The method can update the completion status indicator for the task in

1001050208

2013201390 02 Apr 2015

10

15

20

25

30

the progress bar in response to receiving additional sets of progress values. The method can
determine a threshold location of the progress bar beyond which is reserved for displaying the type
of animation effect when the set of criteria has been satisfied, where the updated completion status
indicator for the task in the progress bar indicates a location in the progress bar before the threshold
location prior to the set of criteria being satisfied. In some arrangements, the method determines the
type of animation effect in response to determining that the set of criteria has been satisfied, where
the type of animation effect is user configurable. In certain arrangements, the set of progress values
is indicative of a progress status indicator for the task. The method can cause the progress bar to
display the completion status indicator for the task that underreports a completion status of the task.
In some arrangements, the task includes a set of subtasks, where the set of criteria is satisfied when

a subset of the set of subtasks has been completed.

[0020] Some arrangements provide a method that displays, by a processor, a progress bar for a task
being performed. In some arrangements, the method receives a first progress value indicative of a
completion status of the task. The method can compute, based on the first progress value, a

completion status indicator in the progress bar.

[0021] In some arrangements, the task is a loading of a web page in a web browser, where the
completion status of the task indicates a percentage at which the loading of the web page is
complete. In certain arrangements, the method receives a third progress value and computes, based
on the third progress value, a fourth progress value that is less than the third progress value. The
method then displays, based on the third progress value, an updated completion status indicator of

the task in the progress bar.

[0022] In some arrangements, the first and second progress values are received from a rendering
engine at a predetermined interval. In certain arrangements, the second progress value represents a
current location in the progress bar and the fourth progress value represents a new location in the
progress bar, where the completion status indicator for the task increments from the current location
to the new location using an animation effect. In one arrangement, the completion status indicator
underreports the completion status of the task. In some arrangements, the method that computes the
second progress values includes determining an estimated amount of time until the task is complete,
where the second progress value is computed based on the estimated amount of time. In some
arrangements, the estimated amount of time is determined by mapping the first progress value to a

time interval in a lookup table.

1001050208

2013201390 02 Apr 2015

W

—
(w)

15

25

[0023] Some arrangements provide a computer-implemented method that displays, by a computing
device, a progress bar for a task being performed. In some arrangements, the method receives a
progress value indicative of a completion status of the task, where the progress value corresponds to
a current location for a completion status indicator in the progress bar and the completion status
indicator represents the completion status of the task. The method can compute, based on the
progress value, a new location in the progress bar. The method can display an animated progression
of the completion status indicator in the progress bar from the current location to the new location,
where the progression of the completion status indicator underreports the completion status of the

task.

[0024] In some arrangements, computing the new location in the progress bar includes determining
an estimated completion time based on the first progress value and constructing a linear function
using the estimated completion time, where the new location is computed using the linear function.
In certain arrangements, the new location can be determined based on a predetermined time interval
at which the completion status indicator is updated in the progress bar. In some arrangements, the
estimated completion time is determined by mapping the progress value to a corresponding
estimated completion time for the task in a lookup table, where the corresponding estimated
completion time is an over-estimate of an amount of time required for the task to complete. In one
arrangements, the completion status indicator for the task increments from a current location to the
next location using an animation effect. In some arrangements, the next location is computed based
at least in part on a time interval allocated for an animation between a current location and the new

location in the progress bar.

[0025] Some arrangements provide a method that displays, by a processor, a progress bar that
visually displays a completion status indicator for a task being performed. The method receives a
progress value indicative of a completion status of the task. In some arrangements, the method
causes, based on the progress value, the progress bar to display the completion status indicator that

underreports the completion status of the task.

[0026] In some arrangements, the completion status indicator corresponds to a current location in
the progress bar, and the method further determines, based on the progress value, an estimated
completion time. The method constructs a linear function using the estimated completion time,
where the current location is determined using the linear function. In some arrangements, the
method further receives another progress value and constructs a new linear function based at least in

part on the other progress value. In some arrangements, the method further determines a new

1001050208

W

2013201390 02 Apr 2015

—
[e)

estimated completion time based on the other progress value, where the new linear function is
constructed using the new estimated completion time. The method determines, based at least in part
on a predetermined time interval, a new location in the progress bar using the new linear function,
and animates the completion status indicator to the new location within the predetermined time

interval.

{0027] In some arrangements, the predetermined time interval is configurable by at least one of a
user or a system administrator. In certain arrangements, the method further determines a triviality
threshold for the task, determines whether the triviality threshold is met, and displays a visual cue

that indicates a completion of the progress bar when the triviality threshold is met.

[0028] Some arrangements provide a method that displays, by a computing device, a progress bar
that visually displays a completion status indicator for a task being performed, the completion status
indicator representing a completion status of the task. The method visually enables, based upon the

completion status indicator of the progress bar, a user interface element associated with a feature.

[0029] In some arrangements, the method further determines a triviality threshold based on a set of
criteria, determines whether the triviality threshold is met, determines whether the feature is
activated when the triviality threshold is met, and displays a visual cue in the progress bar when the
triviality threshold is met, where the user interface element is visually enabled following the
displaying of the visual cue in response to determining that the feature is activated. In some
arrangements, the feature is activated before the triviality threshold is met. In certain arrangements,
the user interface element is visually enabled when a progression of the completion status indicator

reaches one end of the progress bar.

[0030] The method in some arrangements further displays an accelerated progression of the
completion status indicator in the progress bar when the triviality threshold is met, where the visual
cue is displayed subsequent to completion of the progression of the completion status indicator in
the progress bar. In some arrangements, the triviality threshold is met when the task is beyond a
threshold percentage complete, the threshold percentage being preconfigured by at least one of a
user or an administrator. In certain arrangements, the feature is activated in response to completing
primary subtasks of the task, the primary subtasks configurable by a user or an administrator. In
some arrangements, the feature is a reader feature that is activated upon loading one or more articles

of a web page.

1001050208

2013201390 02 Apr 2015

w

—
(e

15

20

[0031] Some arrangements provide a method that displays, by a computing device, a progress bar
that visually displays a completion status indicator for a task being performed. The method
determines a triviality threshold for the task. In some arrangements, upon reaching the triviality
threshold, the method determines a status of a feature. The method visually modifies a user

interface element associated with the feature when the status of the feature is modified.

[0032] In some arrangements, the method further displays an accelerated progression of the
completion status indicator in the progress bar upon reaching the triviality threshold, where the user
interface element is visually modified subsequent to completion of the progression of the
completion status indicator in the progress bar. In one arrangement, the method further displays a
visual cue when the triviality threshold is reached, wherein the visual modification to the user

interface element is displayed in conjunction with the visual cue.

[0033] In some arrangements, the triviality threshold is reached when the task is beyond a threshold
percentage complete, the threshold percentage being preconfigured by at least one of a user or an
administrator. In certain arrangements, the user interface element is visually modified in response
to the status of the feature being modified and in response to reaching the triviality threshold. In
one arrangement, the user interface element is a user-selectable button that becomes visually
enabled when the status of the feature is modified. In some arrangements, the status of the feature is
modified when one or more main elements of a webpage is loaded. In certain arrangements, the one

or more main elements of the webpage includes an article that is to which the webpage is directed.

[0034] Some arrangements provide a method that displays, by a computing device, a progress bar
that visually displays a completion status indicator for a task, the completion status indicator
representing a completion status for the task being performed. The method determines a triviality
threshold and, upon reaching the triviality threshold, the method determines a status of a feature.
The method displays a visual effect when the status of the feature is modified.

[0035] In some arrangements, the visual effect includes visually modifying a user interface element
associated with the modified status of the feature. In certain arrangements, the visual effect
associated with the status of the feature includes a visual modification to a user interface element
associated with the feature. In one arrangement, the method further determines a status of another
feature upon reaching the triviality threshold and displays another visual effect when the status of

the other feature is modified.

1001050208

wn

2013201390 02 Apr 2015

—
(e

10

[0036] Some arrangements provide a method that displays, by a computing device, a progress bar
visually displaying a completion status indicator for a task being performed, the completion status
indicator representing a completion status for the task. In some arrangements, the method displays
a secondary indicator associated with the progress bar, the secondary indicator visually identifying a

speed at which the task is being performed.

[0037] In some arrangement, the method further receives a progress value and determines a value
for the completion status indicator based on the progress value, where the displayed completion
status indicator underreports the completion status of the task. In some arrangement, the method
further determines the speed at which the task is being performed, determines a type of animation
associated with the task, and determines a particular animation in the type of animation
corresponding to the received speed, where displaying the secondary indicator includes displaying

the particular animation in the progress bar.

[0038] In some arrangement, the method further determines another speed at which the task is
being performed, determines another particular animation in the type of animation corresponding to
the other speed, and transitions the secondary indicator from displaying the particular animation to
the other particular animation in the progress bar. In some arrangement, the types of animation
include at least one of a wheel spinning animation or a ripple effect. The type of animation
associated with the task can be determined by mapping the task to the type of animation using a

lookup table. In some arrangement, the type of animation is user configurable.

[0039] In some arrangement, the particular animation corresponding to the received speed is
determined using a lookup table. In one arrangement, the secondary indicator is displayed in the
progress bar. In certain arrangement, the secondary indicator is displayed within the completion
status indicator, where the secondary indicator is represented by brightness intensity within the

completion status indicator.

[0040] Some arrangement provide a method that displays, by a computing device, a progress bar
that concurrently displays a first visual indication of a completion status of a task and a second
visual indication of a speed at which the task is being performed. In some arrangement, the second
visual indication is updated in real-time. In certain arrangement, the second visual indication is
determined by mapping the task to a type of animation using a lookup table. In one arrangement,
the type of animation is user configurable. In some arrangement, the type of animation is

determined based on a type of the task.

1001050208

2013201390 02 Apr 2015

W

—
o

15

20

25

11

[0041] Some arrangement provide a computer readable storage medium encoded with a set of
instructions, which when executed, causes one or more processors to execute a method that displays
a progress bar visually displaying a completion status indicator for a task being performed, the
completion status indicator representing a completion status for the task and displays a secondary
indicator associated with the task in the progress bar, the secondary indicator visually identifying a

speed at which the task is being performed.

[0042] In some arrangement, the method further determines, based at least in part on the speed at
which the task is being performed, the secondary indicator associated with the task. In certain
arrangement, determining the secondary indicator includes mapping the speed to a type of
animation using a lookup table, wherein displaying the secondary indicator includes displaying the
type of animation in the progress bar. In one arrangement, the secondary indicator is a type of
animation determined based at least in part on a type of the task. In some arrangement, the
completion status indicator and the secondary indicator are both graphical user interface elements

displayed within the progress bar.

[0043] The following detailed description together with the accompanying drawings will provide a

better understanding of the nature and advantages of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS

[0044] FIG. 1 illustrates an example of a progress bar system for generating and displaying a user
interface (in this example, web browser) that includes a progress bar in accordance with some

embodiments of the present invention.

[0045] FIG. 2 illustrates an example of a more detailed diagram of fluid progress bar generator and

rocket effect generator according to some embodiments.

[0046] FIG. 3 conceptually illustrates a process for determining when to display the “rocket effect”

in a progress bar in accordance with some embodiments.

[0047] FIG. 4 illustrates an example process of some embodiments for displaying the rocket

animation.

[0048] FIG. 5 illustrates an example process of some embodiments for displaying an underreported

progress status for a task in a progress bar.

[0049] FIG. 6 illustrates another example process of some embodiments for displaying an

underreported progress status for a task in a progress bar.

1001050208

1000125110

12

[0050] FIG. 7 illustrates an example of progression of the completion status indicator in accordance

with some embodiments of the invention.

[0051] FIG. 8 illustrates an example of a time estimate table of some embodiments that enables

browser application to obtain a time estimate until a task is complete based on a progress value.

i

[0052] FIG. 9 illustrates an example sequence of a progress bar that updates smoothly while

underreporting an actual status of a task in accordance with some embodiments.

[0053] FIG. 10 illustrates an example of a more detailed diagram of feature enabler that can signal
browser application to display a visual effect in response to a status change for a feature in

accordance with some embodiments.

2013201390 08 Mar 2013

—_
o

[0054] FIG. 11 illustrates an example process of some embodiments for visually modifying a user

interface (UI) element in response to a feature being enabled when the triviality threshold is met.

[0055] FIG. 12 illustrates an example progression of a completion status indicator for a task in a
progress bar and visually modifying a UI element representing a feature in accordance with some

embodiments.

15 [0056] FIG. 13 illustrates an example of a more detailed diagram of secondary progress generator
and render engine for rendering a secondary progress indicator in addition to a completion status

indicator for a task in a progress bar according to some embodiments.

[0057] FIG. 14 illustrates an example process of some embodiments for displaying a secondary

progress indicator along with the completion status indicator of the task in a progress bar.

20 [0058] FIG. 15 illustrates another example progression for displaying a secondary progress
indicator along with a completion status indicator of a task in a progress bar according to some

embodiments.

[0059] FIG. 16 illustrates another example progression for displaying another type of secondary
progress indicator along with a completion status indicator of a task in a progress bar according to

25 some embodiments.

[0060] FIG. 17 illustrates another example progression for displaying a type of secondary progress
indicator along with a completion status indicator of a task in a progress bar according to some

embodiments.

1000125110

13

[0061] FIG. 18 illustrates a computer system according to an embodiment of the present invention.

[0062] FIG. 19 illustrates an example of an environment that can implement various aspects of the

present invention.
DETAILED DESCRIPTION

[0063] In the following description, numerous details, examples and embodiments are set forth for
the purposes of explanation. However, one of ordinary skill in the art will recognize that the
invention is not limited to the embodiments set forth and that the invention may be practiced
without some of the specific details discussed. Further, some of the examples and embodiments,

including well-known structures and devices, are shown in block diagram form in order not to

2013201390 08 Mar 2013

10 obscure the description with unnecessary detail.

[0064] Certain embodiments of the present invention provide techniques for displaying an
improved progress bar on a graphical user interface (GUI) that enhances user computing
experience. A progress bar can display a completion status indicator that allows a user to visualize
a completion status of an ongoing task or operation. In some embodiments, the user can use the
15 progress bar to verify that performance of the operation is proceeding successfully and to estimate a

completion time for the operation by observing the completion status indicator.

[0065] A progress bar in some embodiments can display a completion status indicator that
underreports the completion status of an ongoing task. For instance, a web browser can determine
an over-estimated load time for a web page to prevent the completion status indicator from stalling
20 at the end of the progress bar. Further, in some embodiments, the completion status indicator is
displayed and updated in a smooth manner. In such embodiments, linear functions are used to
determine a location to which to animate the progression of the completion status indicator within
certain intervals. This eliminates discrete jumps and adds fluidity to the progression of the reported

status such that the progress bar can appear more intuitive and responsive to the user.

25 [0066] In some embodiments, a visual cue can be provided to alert a user when a threshold
indicating that a task is “substantially complete” (also referred to as a triviality threshold) is met. As
such, progress bars can provide a visual cue to a user to indicate when subtasks of a task of interest
to the user is complete. In some embodiments, the visual cue can be an animation of an accelerated
progression of a completion status indicator in a progress bar. In some embodiments, a triviality

30 threshold refers to a threshold at which an average person would consider a task to be complete

1000125110

14

g regardless of whether the task is actually complete. For instance, an average person may consider
(Q\ the triviality threshold for loading a particular sports web page met once one or more sports articles
;Cg are visible, regardless of whether the rest of the page (e.g., including various images,
2 advertisements, hyperlinks, etc.) is loaded. By providing a visual cue when the triviality threshold
% 5 is met, the user can be informed of when portions of the page is viewable regardless of whether the
page is loaded, instead of having to wait until the entire page is loaded.

-

% [0067] In some embodiments, the manner in which a user interface (UI) element is displayed may
S be tied to the display of a progress bar. For example, a GUI element may be visually enabled in
g response to the position or completion status indicated by the completion status indicator in a
§ 10 progress bar. In some instances, the GUI may include a button (e.g., a button corresponding to a

reader function) that is visually enabled (i.e., its function enabled) upon the triviality threshold being
met and the completion status indicator animated to show completed status. In this manner, the
visual display of a UI element may be changed in response to the completion status indicated by the
progress bar in order to highlight the feature represented by the Ul element. In one embodiment,
15 the UI element may be visually displayed and modified in a manner so as to draw a user’s attention

to the Ul element.

[0068] In some embodiments, in addition to showing the completion status of a task or operation
(shown by the completion status indicator of the progress bar), a progress bar may also visually
indicate (e.g., using an animation) a speed at which the task is being performed at a point in time.
20 Conveying to a user the loading rate allows the user to distinguish between loading a relatively large
web page with a fast loading rate and loading a relatively small web page with a slow loading rate.
Since in some instances, a slow loading rate could mean a poor connection between the user and a
particular server, the user may want to cancel his or her requests for data from that server when the
loading rate is unacceptably slow. The user can determine whether to stay on a current web page or

25 to switch to a different one based on the speed at which the page is being loaded in some instances.

[0069] Various different animations may be used to display the speed. For example, the progress
bar may display animated waves or ripples with the speed of the waves or ripples indicating the
speed of the task or operation being performed. In this example, faster animation of the waves or
ripples indicates faster speed (e.g., when a web page is loading at . SMB/s the waves or ripples may
30 Dbe displayed at one animation speed and when the loading rate is at 1 GB/s the waves or ripples may
be displayed at a faster animation speed). The speed of the animation provides a visual cue to the

user of how fast the task or operation is being performed.

1000125110

15

[0070] The terms “status of task” or “progress of task” can be used herein to refer to the amount or
percentage of the task or operation that is complete at a moment in time. The terms “progress status

2 <

indicator,” “completion status indicator,” or “status indicator” can be used herein to refer to a

representation of a status or progress of a task in a progress bar. The term “progression of a

i

completion status indicator” can be used herein to refer to the motion and/or rate at which the
completion status indicator for the task shown in the progress bar is moving. One of ordinary skill
would recognize that although the description is depicted with respect to a particular type of
progress indicator, namely, a progress bar, other types of progress indicators that can indicate a

status of a task or operation can be used as well.

—
o

[0071] FIG. 1 depicts a simplified high level block diagram of a progress bar system 100 in

2013201390 08 Mar 2013

accordance with some embodiments of the invention. As shown in FIG. 1, progress bar system 100
can include multiple subsystems such as a fluid progress bar generator 115, a rocket effect generator
120, a feature enabler 125, a secondary progress generator 130, and a render engine 135. One or
more communication paths can be provided to enable one or more of the subsystems to
15 communicate with and exchange data with one another. The various components described in FIG.
1 can be implemented in software, hardware, or a combination thereof. In some embodiments, the
software can be stored on a transitory or non-transitory computer readable storage medium and can

be executed by one or more processing units.

[0072] It should be appreciated that progress bar system 100 as shown in FIG. 1 can include more
20 or fewer components than those shown in FIG. 1. In some embodiments, progress bar system 100
can be a part of an electronic computing device, such as a computer or a handheld device. The
various components in progress bar system 100 can be implemented as a stand-alone application or
integrated into another application (e.g., a web browser application, an e-mail client, or any other
application that can display progress bars), while in some embodiments the components in progress

25 bar system 100 can be implemented within an operating system.

[0073] In some embodiments, progress bar system 100 can generate and display a progress bar to a
user such as progress bar 145 depicted in FIG. 1. In some embodiments, progress bar 145 can
include a completion status indicator 150 where the position of the completion status indicator
indicates the completion status of a task. By observing a progression of the completion status
30 indicator in progress bar 145, a user can identify the completion status of the page loading task in

some embodiments. The various components in progress bar system 100 can provide visual

1000125110

16

o)
S enhancements to progress bar 145 such that additional useful information is conveyed to the user
@\ using progress bar 145.
S
2 [0074] In some embodiments, render engine 135 is configured to render and display content on a
% display of an electronic computing device. In some instances, render engine 135 can be embedded

5 in a web browser that can retrieve a document (e.g., HTML, XML, image files, etc.) corresponding
() to a URL (e.g., input by a user) and cause render engine 135 to render a graphical representation of
% it on the display of the electronic computing device. In addition to generating a display of a web
S page, render engine 135 in some embodiments can generate a progress bar for display. In some
g embodiments, a web browser can determine progress values that indicate a total loaded percentage
§ 10 of a web page and provide those progress values to various subsystems in progress bar system 100.

These subsystems can then use these progress values to perform various operations in relation to the

progress bar.

[0075] In some embodiments, fluid progress bar generator 115 is configured to underreport of a
status of an ongoing task (e.g., the loading of a web page). Since it is difficult to accurately
15 determine how much of the task remains to be completed, underreporting the progress values to the
users can manage the user’s expectations. Further, underreporting the completion status up front
would permit more space within the progress bar for the completion status indicator to progress
such that stalling towards the end of the progress bar can be minimized or prevented. In some
embodiments, fluid progress bar generator 115 can receive progress values from render engine 135
20 and determine a location in the progress bar to which to increment the completion status indicator
for the task. The determined location can correspond to an underreported value of the status of the

task.

[0076] As described above, fluid progress bar generator 115 is configured to smoothen the manner
in which the completion status indicator in a progress bar is displayed and updated. This is done so
25 as to reduce the clunky updates typically associated with conventional progress bars. Smoothening
the display and update of the completion status indicator in a progress bar enhances the user’s visual

experience with respect to progress bars.

[0077] In one embodiment, fluid progress bar generator 115 uses one or more linear functions to
achieve the smoothening. Fluid progress bar generator 115 may construct a linear function and use
30 a computation performed using the linear function to determine each new location for the

completion status indicator within the progress bar to increment to within the time interval. In some

1000125110

17

o)
S embodiments, using a linear function to compute each next location allows the progression of the
(Q\ completion status indicator to appear to be incrementing smoothly and at a constant speed.
S
2 [0078] In some embodiments, a progress value can indicate a completion status of a task. Browser
% application in some embodiments can receive a progress value from render engine 135. When fluid

5 progress bar generator 115 receives a new progress value, fluid progress bar generator 115 can use
() the progress value to estimate a new time until the task is completed (e.g., using a lookup table).
% Fluid bar generator 115 can then construct a new linear function using the newly estimated time. As
S such, the progression of completion status indicator continues to increase at a steady rate, although
g at a different rate from before. Regardless of the change in progression rate, constructing multiple
§ 10 linear equations to determine locations to increment for each time interval allows the progression of

the completion status indicator to appear smooth and soothing to the user’s eye. Incrementing the
completion status indicator to steadily and within short time intervals causes its appearance to be

smoothly increasing to a user.

[0079] In some embodiments, rocket effect generator 120 is configured to cause the progression of
15 the completion status indicator in the progress bar to “rocket” or accelerate from its current position
to a position indicative of completion of the task when a triviality threshold is met. For example, for
progress bar 145 depicted in FIG. 1, when the triviality threshold is met, the completion status
indicator is animated to advance from its current position to it end position 155, which indicates

completion of the task to the user.

20 [0080] The triviality threshold for a task identifies a threshold at which a task, even though not fully
completed, can be indicated as completed for purposes of the user. The triviality threshold is
configurable and, for a task, is generally set to a threshold less than the full completion of the task.
It should be appreciated in some embodiments, the triviality threshold can be set to the full

completion of the task.

25 [0081] The triviality threshold may be application and task-context specific. For example, if the
task is loading of a web page, the triviality threshold can be set to a threshold percentage of the web
page being loaded, for example, when the page is deemed “substantially loaded” or “visually
complete.” In some embodiments, rocket effect generator 120 can determine a triviality threshold
using a set of criteria. For example, the triviality threshold can be met when 30% of a web page has

30 been loaded.

1000125110

18

[0082] In some embodiments, rocket effect generator 120 can produce an animation that shows an
accelerated progression of the completion status indicator from a current location in progress bar
105 to one end of progress bar 105. This would serve as a visual cue to the user that the page would
appear complete to the user regardless of whether the page loading is complete. The user can use

5 this visual cue as a signal that he or she may now start viewing the page.

[0083] Some embodiments can provide a visual modification of a user interface element in
response to a completion status indicator indicating that the task is complete. In some
embodiments, feature enabler 125 is configured to cause a visual modification of a user interface
element representing a feature. In response to determining that the triviality threshold is met and a

10 “rocket effect” being enabled, feature enabler 125 can determine whether a particular feature is “to

2013201390 08 Mar 2013

be enabled” subsequent to the display of the “rocket effect.” When feature enabler 130 determines
that the feature (e.g., specified by the user) is enabled, render engine 115 in some embodiments can
highlight the enabled feature or visually modify a user interface element representing the feature. In
some embodiments, render engine 115 can display the visual modification to the user interface

15 element immediately following the accelerated progression of the completion status indicator or
“rocket effect” caused by rocket effect generator 120 in order to further highlight the enabled
feature.

[0084] In some embodiments, secondary progress generator 135 is configured to cause an
animation effect to be displayed by the progress bar, where the animation indicates a speed at which
20 atask is being performed. In some embodiments, secondary progress generator 135 can monitor a
speed at which the task, such as the loading of a web page, is currently being performed. Secondary
progress generator 135 can determine an animation to be displayed in the progress bar to represent
the speed. Secondary progress generator 135 can then cause render engine 115 to display the
animation. The animation effect allows the user to identify the speed at which the task is being

25 performed such that the user can determine.

[0085] FIG. 2 illustrates an example of a more detailed diagram 200 of fluid progress bar generator
115 and rocket effect generator 120 according to some embodiments. In FIG. 2, fluid progress bar
generator 115 can include a threshold checker 205, a threshold determiner 210, an under-reporter
215, and a progression smoothening module 220. Rocket effect generator 120 in some
30 embodiments can include a threshold checker 205, a threshold determiner 210, and a rocket effect
creator 225. It should be appreciated that fluid progress bar generator 115 and rocket effect

generator 120 as shown in FIG. 2 can include more or fewer components than those shown in FIG.

1000125110

19

2. Further, one or more components in fluid progress bar generator 115 and rocket effect generator
120 (e.g., threshold checker 205 and threshold determiner 210) can be implemented as a single
function or application shared by both subsystems or integrated into one of the subsystems where it

can be accessible by the other subsystem.

w

[0086] One or more communication paths can be provided to enable one or more of the
components to communicate with and exchange data with one another. The various components

described in FIG. 2 can be implemented in software, hardware, or a combination thereof.

[0087] In some embodiments, threshold determiner 215 is configured to determine a triviality

threshold for a task being performed. As mentioned, the triviality threshold can be the threshold at

2013201390 08 Mar 2013

10 which an average person would deem the task as being “complete” while the task may be only

2

“substantially complete.” For instance, an average person may deem a web page loading task as
appearing “complete” or the web page as being “visually complete” when key components of the
web page (e.g., the leading news article) are loaded. Hence, the triviality threshold is determined to

be met when the key components of the web page are loaded.

15 [0088] The triviality threshold in some embodiments can be different from task to task. In some
embodiments, the triviality threshold for different tasks can be met upon satisfying a different set of
criteria. For instance, the triviality threshold for the loading of a web page on a news website can be
set at when the articles on the page have been loaded while the triviality threshold for the loading of
a web page on a retail website can be set at when the product images have been loaded. In another

20 instance, the triviality threshold relating to a particular website can be met when a threshold
percentage of the total area of elements rendered on the web page is loaded. In even another
instance, the triviality threshold can be met when everything in the page from different URLs aside
from objects from a particular URL has been loaded. The triviality threshold for each task can be
user configurable (e.g., via a preferences setting) or set by a system administrator or web developer

25 to a default setting.

[0089] In some embodiments, threshold determiner 210 can determine the triviality threshold for
threshold checker 205 to use in checking whether the threshold is met. Threshold checker 205 can
receive various information relating to a task (e.g., information necessary for determining whether
the triviality threshold for the task is met) from render engine 135. In this example, threshold
30 checker 205 can obtain a percentage of the total area of elements rendered on the web page from

render engine 135 and determine whether the received percentage passes the threshold percentage

1000125110

20

determined by threshold determiner 210. Upon determining that the received percentage passes the

threshold percentage, threshold checker 205 determines that the triviality threshold is met.

[0090] In some embodiments, in response to determining that the triviality threshold is met, rocket

effect creator 225 in rocket effect generator 120 can determine a visual cue or a type of animation

w

and visually display the visual cue on the progress bar. Rocket effect creator 225 in some
embodiments can cause render engine 135 to display a “rocket effect animation” where the
progression of the completion status indicator in the progress bar accelerates toward one end of the
progress bar that makes it look as if the completion status indicator of a task “rocketed” to

completion.

2013201390 08 Mar 2013

10 [0091] In some embodiments, before threshold checker 205 determines that the triviality threshold
is met, fluid progress bar generator 115 can determine how progression in the progress bar is to be
displayed. Under-reporter 215 in fluid progress bar generator 115 can receive progress values
indicating a completion status of the task from render engine 135 and cause render engine 135 to
display a completion status indicator that underreports the actual progress status of the task. In

15 some embodiments, upon receiving a progress value, under-reporter 215 can determine an estimated
completion time for the task at hand (e.g., using a lookup table). The estimated completion time can
be an over-estimate of the amount of time necessary to complete the task. As such, the completion
status indicator shown by the progress bar would indicate a slower progression (e.g., by

incrementing in smaller increments) than the actual progress of the task.

20 [0092] Progression smoothening module 220 in some embodiments can construct a linear equation
using the estimated completion time. Progression smoothening module 220 can use the constructed
linear equation to determine a next location to which the completion status indicator of the task
should increment in the progress bar. Upon determining the next location, progression smoothening
module 220 can cause render engine 135 to display the incremental progress of the task using the

25 completion status indicator in the progress bar. In some embodiments progression smoothening
module 220 can continue to determine the next location to which to increment the completion status
indicator based on the progress values from render engine 135 and the constructed linear equations.
Progression smoothening module 220 can continue to cause render engine to display a smooth
progression of the completion status indicator of the task in the progress bar until threshold checker

30 205 determines that the triviality threshold is met and rocket effect creator 225 causes render engine

135 to display a “rocket effect.”

1000125110

2013201390 08 Mar 2013

i

—
o

15

25

30

21

[0093] FIG. 3 conceptually illustrates a process 300 for determining when to display the “rocket
effect” in a progress bar in accordance with some embodiments. As described, render engine 135 in
some embodiments can render a visual cue such as a “rocket effect” upon determining that a
triviality threshold is met. Some or all of the process 300 (or any other processes described herein,
or variations and/or combinations thereof) may be performed under the control of one or more
computer systems configured with executable instructions and may be implemented as code (e.g.,
executable instructions, one or more computer programs, or one or more applications) executing
collectively on one or more processors, by hardware, or combinations thereof. The code may be
stored on a computer-readable storage medium, for example, in the form of a computer program to
be executed by processing unit(s), such as a browser application. The computer-readable storage

medium may be non-transitory.

[0094] At block 302, process 300 can receive a request to perform a task such as loading a
particular web page. For example, a browser application can receive a request upon a user entering
a URL for a web page or upon the user activating a hyperlink embedded in a page. At block 304,
process 300 can display a progress bar for the task being performed. The progress bar can display a
completion status indicator in the progress bar that represents a progress status of a task using a such

that the user can visualize the status of the ongoing task.

[0095] At block 306, process 300 can determine a triviality threshold for the task. The triviality
threshold in some embodiments can be a static threshold preconfigured by a user or by an
administrator. For instance, the static threshold can be a percentage of the task that is complete. In
the instance for loading a web page, the triviality threshold can be a percentage of the total area of
elements rendered on the web page. In some embodiments, the triviality threshold can be
dynamically determined using a set of metrics. For instance, some embodiments can determine the
triviality threshold by determining a type of web page to be loaded and determining the amount
and/or types of objects in the page that need to be loaded (e.g., using a lookup table) based on the

type of web page for the page to be deemed “visually complete” to a user.

[0096] At block 308, process 300 can receive a progress value for the task. During the web page
loading process, render engine in some embodiments can periodically send progress values
indicating a total loaded percentage of a page to the browser application. At block 310, process 300
can determine whether the triviality threshold is reached. Browser application in some

embodiments can determine whether the triviality threshold is met using the progress value.

1000125110

22

[0097] When process 300 determines that the triviality threshold is reached, process 300 displays a
rocket effect in the progress bar at block 316. When process 300 displays the rocket effect, the
process ends. On the other hand, when process 300 determines that the triviality threshold is not

reached, at block 312, process 300 displays a progression of completion status indicator of the task

i

in the progress bar based on the progress value. In order to display the progression of the
completion status indicator for the task, web browser in some embodiments can determine a next

location to which to increment the completion status indicator using the progress value.

[0098] At block 314, process 300 can determine whether a new progress value has been received.

When process 300 determines that a new progress value has been received, process 300 returns to

—
o

block 310 and determines whether the threshold is reached. When process 300 determines that a

2013201390 08 Mar 2013

new progress value has not been received, process 300 returns to block 312 to continue displaying
the progression of the completion status indicator of the task in the progress bar. As such, browser
application can resume computing the next location to which to increment the completion status

indicator in the progress bar.

15 [0099] In some embodiments, upon determining that a threshold is met, browser application can
display a visual cue or a type of animation to indicate to the user that the task is “substantially
complete” or that the web page is “visually complete to a user.” FIG. 4 illustrates an example
process 400 of some embodiments for displaying the rocket animation. One of ordinary skill will

recognize that process 400 can be performed at block 316 of process 300 in some embodiments.

20 [0100] At block 402, process 400 can identify the type of animation to show when the threshold is
met. In response to determining that the threshold is met, browser application can identify the type
of animation to show as a visual cue to the user. In some embodiments, the type of animation can
be user configurable or pre-configured by the system administrator as a default setting. The type of
animation can include one or more accelerated progression of a completion status indicator in the

25 progress bar from a current position to another position in the progress bar in one embodiment. In
some embodiments, the type of animation can include a “rocket effect” or “rocket animation” where
the completion status indicator in the progress bar accelerates to one end of the progress bar. At

block 404, process 400 can display the identified type of animation in the progress bar.

[0101] In some embodiments, before the threshold is met, browser application can provide a
30 progress bar that displays a completion status indicator for the task that underreports the actual

status of the task. Some embodiments underreport the completion status of an ongoing task in the

1000125110

23

o)
S progress bar to avoid the completion status indicator being stalled at the end of the progress bar due
(Q\ to miscalculation in the completion status. FIG. 5 illustrates an example process 500 of some
;Cg embodiments for displaying an underreported progress status indicator for a task in a progress bar.
2 One of ordinary skill will recognize that process 500 can be performed at block 312 of process 300
% 5 in some embodiments. At block 502, process 500 can receive a progress value for a task. In some

embodiments, browser application can periodically receive a progress value from a render engine
8 such as render engine 135 in FIG. 1.
o)
S [0102] At block 504, process 500 can determine, based on the progress value, another progress
g value less than the progress value received at block 502. In some embodiments, browser
§ 10 application can receive a progress value for a task from a render engine and determine an estimated

time until the task would be complete (e.g., via a lookup table). Browser application in some
embodiments can construct a linear equation based on the estimated completion time. Using the
linear equation, browser application can determine the next location to where the completion status
indicator in the progress bar should animate after the period of time. The period of time can be

15 preconfigured by the user or pre-selected by an administrator.

[0103] At block 506, process 500 can display the completions status indicator for the task in the
progress bar based on the other value that underreports the actual completion status of the task.
Browser application in some embodiments can display an incremented progress bar where the
completion status indicator of the task indicates the other progress value calculated from the linear

20 equation at block 504.

[0104] FIG. 6 illustrates an example process 600 of some embodiments for displaying a progression
of the completion status indicator for a task in a progress bar. One of ordinary skill will recognize
that process 600 can be performed at block 312 of process 300 in some embodiments. Process 600
can be executed, e.g., in a browser application. In some embodiments, a browser application can
25 provide a progress bar that allows a user to visualize a completion status of a task (e.g., via a
completion status indicator) and a status progression along the progress bar. Some embodiments
can generate a smooth progression using linear equations constructed using a time estimate until
completion of the task. At the same time, web browser in some embodiments can display a
progression of the completion status indicator for the task that underreports the actual status of the

30 task.

1000125110

24

o)

S [0105] At block 602, process 600 can receive a progress value for a task such as loading a web
(Q\ page. In response to receiving a user request to load a web page, browser application in some
;Cg embodiments can receive progress values from a render engine such as render engine 135 in FIG. 1.
2 In some embodiments, the progress values can indicate a total percentage of the web page that has
% 5 beenloaded at a current time.

() [0106] At block 604, process 600 can determine an estimated load time based on the progress value
% received at block 602. Browser application in some embodiments can determine the amount of time
S required to load the rest of the web page based at least in part on the percentage of the web page that
g has already been loaded and the amount of time it took to load that amount. In some embodiments,
§ 10 browser application can determine the amount of time required to load the rest of the web page

using a lookup table. Browser application in some embodiments can map the progress value to an
estimated time in the lookup table. The lookup table can be configurable by a user or a system

administrator.

[0107] In some embodiments, the system administrator can configure and fine tune the lookup table
15 such that the estimated would be more accurate. Browser application in some embodiments can use
other attributes in addition to the progress value for the task, such as the type of web page being
loaded, to compute the estimated load time. Further, in some embodiments, browser application
can determine the estimated load time in such a way that over-estimates the amount of time it could
possibly take to load the rest of the web page. By estimating a longer duration for the web page to
20 finish loading, browser application in some embodiments can increment the completion status
indicator in the progress bar in smaller increments such that it would cause an underreporting of the

actual status for the task.

[0108] At block 606, process 600 can construct a linear equation using the estimated load time
determined from block 604. The linear function F(t) would allow the browser application to
25 determine a location within the progress bar to where the completion status indicator should be
incremented based on time. In some embodiments, the linear function F(t) can take as an argument
the time since the beginning of a page load and return a value with an X position that indicates the

position where the completion status indicator in the progress bar should be at time t.

[0109] Browser application can use two known points to construct linear function F(t). In one

30 example, the domain is the amount of time that has elapsed since the beginning of a load and the

1000125110

25

m
S range is an X location along the fluid progress bar. One of ordinary skill would be able to
(Q\ determine the linear progression between two identified points by using F'(£) =mt +b .

S

<
2 [0110] In this example, one can set the first point to include the current information: T1 = elapsed
% time since the beginning of a load and X1 = current X position (represented as a fraction of the

5 location field’s width). Then, one can determine the second point to include where the completion
8 status should be when the task is completed, that is, T2 = estimated load time and X2 = 1
on (representing 100% of the location field’s width or fluid progress final destination).
—
-
N ‘) X2-X1
&N [0111] The linear equation F(t) can then be computed where m =————¢ and b=0:
— 72-T1
-
(Q\
X2-X1 100% of the location fields width - current X position

F@)= 1=
© 12-11 estimated remaining load time - elapsed time since the beginning of a load

10 [0112] For instance, if the location field has a width of 1000 pixels, and browser application
estimates it will take 10 seconds for the page load to complete and if 3 seconds have already passed,
indicating that the current location is 300, then T1 = 3, X1 = 300/1000 = 3, T2 = 10, X2 =
1000/1000 = 1, which would yield a function F(t) = .1t. In some embodiments, the function is
recomputed every time browser application receives a new progress value from render engine since

15 the time estimate changes every time a new progress value is received.

[0113] At block 608, process 600 can compute a next location using the linear equation constructed
in block 606. In some embodiments, browser application is set to increment every time interval set
by a user or administrator, such as every 200ms or every 250ms. If web browser is set to animate a
single animation every 200 ms, the next location for the completion status indicator in the progress
20 bar can be determined by solving F(3s + .2s) = .1(3.2) = .32 or 320 pixels. At block 610, process
600 can animate to the next location computed in block 608. In some embodiments, browser
application can animate the completion status indicator in the fluid progress bar from location X =

300 to X = 320 within 200 ms.

[0114] Process 600 then ends. In embodiments where process 600 is performed at block 312 in
25 FIG. 3, after process 600 ends, process 300 proceeds to block 314 to determine whether a new
progress value has been received. If a new progress value has not been received, process 300
returns to block 312 where process 600 can be again be performed to calculate and animate the

progress bar indicator to a next location within the progress bar.

1000125110

26

[0115] FIG. 7 illustrates an example of progression 700 of a completion status indicator for a task in
a progress bar in accordance with some embodiments of the invention. As described, browser
application in some embodiments can determine a threshold at which to set off the “rocket effect.”
In response to determining that the threshold is met (e.g., when a progress value indicates that a
5 threshold percentage of the task has been completed), browser application can display a visual cue
that alerts the user that the threshold has been met. In some instance, the visual cue can be a “rocket
effect” where the progression of the completion status indicator in the progress bar accelerates
dramatically to the end of the progress bar. As described, the threshold can often be set at a point in
time or at a loading percentage at which the user can deem a web page to be “visually complete” in

10 terms of loading.

2013201390 08 Mar 2013

[0116] In FIG. 7, a user has requested a browser application to load a web page. Upon receiving
the user request (e.g., when the user types in www.url.com in the address field of the web browser),
browser application in some embodiments can display a GUI including a progress bar that can
indicate a status indicator for the loading of the web page. As shown at t = TO, the progress bar
15 shows that nothing in the web page has been loaded so far. The completion status indicator for the
task reflects 0% at this time. Att = TO + x, the completion status indicator of the task as indicated
in the progress bar has increased to approximately 20% of the progress bar. As described, browser
application in some embodiments can display an underreported status of the task in the progress bar.
This can account for and minimize the chances for pauses in the progression of the completion
20 status indicator in the progress bar. In some embodiments, browser application can display an
initial boost in response to receiving the user request in loading a web page. For instance, the status
in the progress bar can display a 10% increase upon the user’s request regardless of whether 10% of
the web page or any of the web page has already been loaded. This makes the progress bar feel

more responsive to user interaction and provides improved user experience.

25 [0117] In some embodiments, browser application can compute the next location to which to
increment the status indicator in the progress bar and animate the progression (e.g., using process
600 in FIG. 6). Att = TO + 2x, the completion status has increased to approximately 15% of the
progress bar. At t = TO + 3x, the completion status has increased to approximately 40% of the
progress bar. In some embodiments, the progress bar can display a smooth increase in the
30 completion status indicator of the task. The rate at which the web page is being loaded can vary
depending on various factors, such as the transfer rate, the bandwidth of the computing device on
which the browser application is running, the servers from which information must be retrieved, etc.

As browser application receives additional progress values, browser application can determine a

1000125110

27

different rate which the web page is being loaded and display a constant increase in between each

receipt of a new progress value (e.g., using linear functions to compute each new location).

[0118] Upon reaching the triviality threshold at t = TO + 4x = Tthresh (time at which the triviality
threshold is met), the progression in the completion status indicator as shown in FIG. 7 accelerates
5 towards the end of the progress bar to convey completion of the task in loading the web page,
regardless of whether the task is actually completed. This acceleration in the progression of
completion status indicator serves as a visual cue to indicate to a user that the web page is “ visually
complete” at this moment. Att = TO + 5x, the progress bar shows completion of the task. In some
embodiments, as browser application determines that the threshold has been reached, browser

10 application can accelerate the progression to a rate at which the progress bar would immediately

2013201390 08 Mar 2013

indicate that the task has been completed. Different embodiments may display the visual cue to the
user differently. For instance, some embodiments can display the visual cue by displaying multiple
spurts of accelerations instead of a single accelerated progression all the way to the end of the

progress bar.

15 [0119] FIG. 8 illustrates an example of a time estimate table 800 of some embodiments that enables
browser application to obtain a time estimate until a task is complete based on a set of parameters.
In this example, time estimate table 800 provides time estimate values 810 for different progress
values 805 that browser application receives from a render engine such as render engine 135 in FIG.
1. While in this example, browser application can determine a time estimate using a single
20 parameter (i.e., a progress value), in some embodiments, browser application can determine the time

estimate using multiple parameters that are not included in time estimate table 800.

[0120] As shown in this example, the estimated time until a task is complete for a progress value
that is between 0% and 35% is 30 seconds. While some embodiments can provide an estimated
time for a progress value, some embodiments can provide a location in the progress bar for the
25 progress value. In some embodiments, time estimate table 800 can be stored remotely or locally in
a data storage accessible to browser application. Time estimate table 800 can also be stored in
filesystem of an electronic computing device in a properly list format (e.g., as an eXtensible Markup

Language (XML) file) in some embodiments.

[0121] In response to receiving a progress value each time, browser application can retrieve an
30 estimated page load time from time estimate table 800 based on the progress value. Browser

application can then use the estimated time to construct a linear function and increment the

1000125110

28

o)

S completion status indicator in the progress bar based on the linear function. Browser application
(Q\ can continually increment the completion status indicator in the progress bar based on the
;Cg constructed linear function until another progress value is received. In response, browser
2 application can construct a new linear function based on the new progress value and increment the
% 5 completion status indicator in the progress bar based on the new linear function.

() [0122] In some embodiments, the estimated load time can over-estimate the amount of time
% necessary for the task to complete. As such, the linear function constructed based on the over-
S estimated time can cause the completion status indicator in the progress bar to increment in smaller
g increments such that the progress bar would essentially underreport the actual completion status of
§ 10 the task. Further, while browser application in some embodiments uses static mapping and a set of

linear functions to determine new locations in the progress bar to increment the reported status,
some embodiments can determine the new location using other attributes that would also serve to

underreport the status of the task.

[0123] FIG. 9 illustrates an example sequence 900 of a progress bar that updates smoothly while
15 underreporting an actual status of a task in accordance with some embodiments. In some
embodiments, a browser application can display a fluid progress bar that updates a completion
status indicator for a task in a manner that appears “smooth” or “fluid” to a user, instead of
appearing “clunky.” The browser application can over-estimate an amount of time required to
complete the task such that the progression of the status indicator displayed in the progress bar

20 would make smaller increments and, in turn, underreport the actual status progression of the task.

[0124] As described, the browser application can receive a progress value from a render engine,
compute an estimated page load time (e.g., by mapping the progress value to an estimated time
using time estimate table 800 in FIG. 8), construct a linear function using the estimated page load
time, and determine a new location in the progress bar to increment the progress status indicator for
25 atime interval. The browser application in some embodiments can then animate the progression of
the task to the new location. By designating short time intervals (e.g., 200ms, 250ms) for
determining and incrementing to a new location allows the progression of completion status

indicator in the progress bar to appear smooth to a user.

[0125] In FIG. 9, browser application can receive a progress value of 40% from a render engine
30 within a short period of time (e.g., after 5 milliseconds, 50 milliseconds, 3 seconds, 10 seconds)

after receiving a user request for a particular web page. After receiving the progress value, browser

1000125110

29

g application in some embodiments can determine a time estimate for the page loading to complete
(Q\ using time estimate table 800 in FIG. 8. Using time estimate table 800, the estimated time until the
§ web page finishes loading is 10 seconds.
% [0126] Again, as described in block 606 in process 600, browser application can construct a linear
5 function using two known points. If the location field of the progress bar has a width of 1000 pixels

o and browser application (e.g., render engine) estimates that it will take 10 seconds for the load to
% complete, browser application can construct a linear function F(t) upon determining that 3 seconds
S have passed and that the current location is at X =300. In such an instance, browser application can
g construct linear function F(t) in a way such that the progression in the progress bar can complete
§ 10 within the estimated time (i.e., 10 seconds). Using

F() = mt+b = X2-X1 o 100% of the locgtion fields mqm - c.urrent X positign ;

72-T71 estimated remaining load time - elapsed time since the beginning of a load
in this example, F(¢) = 103, _
10-3

[0127] In this case, if the time it takes to animate the status from a current position to a next
position is set at 200 ms, then F(t) = F(3+.2) = .32, or around 320 pixels. As described, the time it
15 takes to animate the status for a current position to a new position is configurable by a user or
administrator in some embodiments. Further, browser application continues to update the status in
the progress bar until a new progress value is received. As such, at t = 3.4, since a new progress
value has not been received, browser application uses the previously constructed linear equation and
determines another new location. Using F(t) = .1t, F(3.4) = .34 of the progress bar, or 340 pixels in
20 the progress that has a width of 1000 pixels. Browser application can continually update the
completion status indicator in the progress bar using the linear function in a linear manner until a
new progress value is finally received. By updating the status within short time intervals (e.g., 200
milliseconds), the progression of the completion status indicator in the progress bar can appear

smooth to the user.

25 [0128] Subsequently, a new progress value 60% is received at t = 3.4s where the new time estimate
until the page load is complete is 5 seconds according to table 800 in FIG. 8. Browser application

can reconstruct a new linear function using two new points and /°(f) =mt +b. One of ordinary

skill would be able to determine the linear function upon identifying two known points. Therefore,

1-.34t_3.4(1-534

in this example, F(¢)=)+0.34=0.132r-0.1088. Using the newly

30 constructed linear function, browser application can then determine the new endpoints at which to

1000125110

30

N

S increment (animate) the completion status indicator after each time interval. Again, if the time

(Q\ interval is at 200 ms, then at t = 3.6, F(3.6) = .37 or 370 pixels. After another 200 ms, the

S

< completion status indicator is calculated to be at F(3.8) = .39 or 390 pixels, so on and so forth.

2 [0129] In some embodiments, in response to receiving the user request to load a new web page,

o0

O 5 browser application can perform an increase in the completion status indicator (e.g., to 10% or 20%
of the progress bar) regardless of the actual status for the task. Including this feature can make the

N progress bar feel responsive to user interaction.

N

—

) [0130] Browser application in some embodiments can visually modify a Ul element on the GUI or

N

oN display a visual effect when a status of a feature changes (e.g., when the feature becomes enabled).

—

8 10 For example, browser application can display a change in the manner a particular Ul element

(representing a feature) is displayed by modifying the color of the particular Ul element. In another
example, the browser application can display a visual appearance of a Ul element representing the
feature on the GUI to indicate the status change. To provide additional visibility that the status of
the feature is changed, some embodiment can visually modify the UI element at the same time or
15 immediately following the “rocket effect” described above. For example, some embodiments can
modify a UI element (e.g., present a visual appearance or highlight a Ul element) or provide a visual
effect next to one end of a progress bar following the completion of the “rocket effect” such that the
animation of the rocket effect (i.e., where the progress status indicator advances from a current
position to an end of a progress bar) would direct the user’s attention to the modified UI element or

20 wvisual effect.

[0131] FIG. 10 illustrates an example of a more detailed diagram 1000 of feature enabler 125 (e.g.,
feature enabling subsystem 125 in FIG. 1) that can signal browser application to display a visual
effect in response to a status change for a feature in accordance with some embodiments. In some
embodiments, feature enabling subsystem 125 can include a rocket effect tracker 1005 that
25 determines when the “rocket effect” is triggered (i.e., when the triviality threshold is met), a feature
status tracker 1010 that determines whether the status for a feature has changed, and an enabler
determiner 1015 that determines whether to visually modify the UI element representing the feature

to convey the change in status.

[0132] In FIG. 10, rocket effect tracker 1005 can receive a signal from rocket effect generator 120
30 in FIG. 1 that indicates whether a triviality threshold is met and therefore the “rocket effect”

triggered. In some embodiments, upon receiving the signal indicating that the threshold is met,

1000125110

31

rocket effect tracker 1005 can send a signal to enable determiner 1015 that causes enable determiner

1015 to determine whether to visually modify the UI element.

[0133] In some embodiments, in response to receiving the signal from rocket effect tracker 1005

indicating that the threshold is met, enable determiner 1015 can send a request to feature status

w

tracker 710 to determine whether the status of the feature is changed. If the status of the feature is
determined to have been modified, enable determiner 1015 can send a request to render engine 115

to visually modify the UI element.

[0134] In some embodiments, feature status tracker 1010 can determine that the status of the feature

has been changed prior to the triviality threshold being met. Feature status tracker 1010 in some

2013201390 08 Mar 2013

10 embodiments can send a signal to enable determiner 1015 indicating that the feature is enabled.
Enable determiner 1015 can then send a signal to render engine 135 to visually modify the Ul
element upon receiving a signal from rocket effect tracker 1005 indicating that the triviality

threshold has been met.

[0135] In some embodiments, render engine 135 can visually modify the Ul element immediately
15 following the “rocket effect” (i.e., as the completion status indicator arrives at one end of the
progress bar from a current position when the threshold is determined to have met). Modifying the
UI element following the “rocket effect” can direct the user’s attention to the modified UI element.
Some embodiments display the visual cue at the same time as the “rocket effect” (i.e., the animation

of the accelerated progress status indicator in the progress bar).

20 [0136] FIG. 11 illustrates an example process 1100 of some embodiments for visually modifying a
Ul element in response to a feature being enabled when the triviality threshold is met. As described,
in some embodiments, feature enabler 125 of FIG. 1 can determine whether the status of a feature is
changed (e.g., a feature is ready to be enabled) when the threshold is met and thereby cause render
engine 135 to display a change in the visual state of a UI element representing the feature’s status.

25 One of ordinary skill will recognize that process 1100 can be performed after process 300

determines that the threshold has been met at block 310 in some embodiments.

[0137] At block 1102, browser application can receive an indication that a the triviality threshold
has been reached. At block 1104, browser application can determine whether a status of a feature is
changed or whether the feature is to be enabled. Some embodiments can determine whether a
30 feature status is changed or whether the feature is to be enabled by inquiring a module that is

responsible for rendering the feature when it is enabled. In some embodiments, browser application

1000125110

2013201390 08 Mar 2013

15

25

30

32

can determine that a feature status is changed when the feature becomes functional from being non-
functional. For instance, a feature that allows readers to view a web page in a different manner is

changed or enabled when the different view is populated and ready for viewing.

[0138] If browser application determines that the feature status is modified, at block 1106, browser
application can visually modify a state of a UI element representing the feature status subsequent to
displaying the “rocket effect.” If web browser determines that the feature is not to be enabled,
process 1100 ends. In some embodiments, after process 1100 ends, browser application displays

the “rocket effect” without visually modifying the Ul element.

[0139] FIG. 12 illustrates an example progression 1200 of a completion status indicator for a task in
a progress bar 1205 and visually modifying a UI element 1210 representing a feature in accordance
with some embodiments. At t = TO, progress bar 1205 displays a completion status indicator
indicating a 0% completion status for a task. Ul element 1210 representing a status for a feature can
be dotted as shown in FIG. 12, indicating that the feature is currently disabled. At t = TI, the
completion status indicator shows that the status of the task is approximately 20% complete. As
described, in some embodiments the completion status indicator displayed in progress bar 1205 can

be an underreported status of the task. Ul element 910 remains disabled at this stage.

[0140] At t = Tthresh, progression of the completion status indicator accelerates toward one end of
the progress bar to indicate completion of the task. In some embodiments, browser application can
determine whether the feature is enabled when the threshold is met. In this instance, the feature is
ready to be enabled when the threshold is met. Before the completion status indicator reaches the

end of the progress bar, Ul element 1210 remains disabled in this example.

[0141] In some embodiments, Ul element 1210 can be enabled when browser application
determines that the threshold is met. In this instance, the visual cue indicating the status change for
the feature (represented by UI element 1210) is enabled when the progression of the completion
status indicator reaches the end of the progress bar. Changing a visual state of Ul element 1210 as
the progression of the completion status indicator reaches the end of the progress bar allows the

user’s attention to be directed to the UI element 1210.

[0142] FIG. 13 illustrates an example of a more detailed diagram 1300 of secondary progress
generator 130 and render engine 135 for rendering a secondary progress indicator in addition to a
status of a task in a progress bar according to some embodiments. In some embodiments, a browser

application can provide a progress bar that displays a secondary progress indicator along with the

1000125110

33

completion status indicator for the task. The secondary progress indicator can convey additional
information about a task including a speed at which the task is currently being performed.
Secondary progress generator 130 can determine a current speed at which a task is being performed
and a type of animation corresponding to the determined speed, while render engine 135 can display

5 the type of animation corresponding to the determined speed.

[0143] In some embodiments, secondary progress generator can include a speed determiner 1305
that can determine a current speed at which the task is being performed, and a translator 1310 that
can determine a type of animation associated with a speed. When speed determiner 1305
determines a current speed at which a task is being performed (e.g., a download rate, a transfer rate),

10 the current speed can be sent to translator 1310. Translator 1310 can then determine the type of

2013201390 08 Mar 2013

animation associated with the current speed. Secondary progress generator 130 can then send the

type of animation to render engine 135 for display to the user.

[0144] FIG. 14 illustrates an example process 1400 of some embodiments for displaying a
secondary progress indicator along with the completion status indicator for the task in a progress
15 bar. In some embodiments, the secondary progress indicator can convey additional information
about the task undergoing completion, such as a current speed at which the task is being performed.
At block 1402, process 1400 can display a progress bar for a task being performed. Browser
application can display the progress bar for a web page loading in some embodiments. At block
1404, process 1400 can receive a progress value for the task. As described, browser application can

20 receive a progress value for loading a web page from a render engine in some embodiments.

[0145] At block 1406, browser application can display a completion status indicator for the task in
the progress bar based on the progress value. As mentioned, in some embodiments, the completion
status indicator displayed in the progress bar can underreport the completion status of the task. At
block 1408, process 1400 can determine a speed at which the task is being performed. In some
25 embodiments, browser application (e.g., speed determiner 1305 in FIG. 13) can determine a speed
at which the page is loading at the particular moment, based at least in part on the network
connection, the transfer rate, location of the web server, number and size of objects to be loaded for

the web page, etc.

[0146] At block 1410, process 1400 can determine a type of animation to be used to represent the
30 speed determined at block 1408. In some embodiments, browser application (e.g., translator 1310

in FIG. 13) can determine a type of animation from a list of different types of animation including a

1000125110

34

o)
S spinning wheel animation where the wheel spins faster when the determined speed is faster, a wave
(Q\ frequency animation where the waves displayed in a progress bar is at a high frequency when the
;Cg determined speed is faster, etc. In some embodiments, the user can select the different types of
2 animation to be used to represent the speed.
S

5 [0147] At block 1412, process 1400 can determine an animation for the type of animation
o associated with the determined speed. In some embodiments, browser application (e.g., translator
% 1310) can map the determined speed to a corresponding animation in the type of animation. For
S instance, browser application can determine that a level three speed corresponds to a wave
g animation that is medium frequency using a lookup table. At block 1414, process 1400 can display
§ 10 the associated animation concurrently with the completion status indicator in the progress bar. In

some embodiments, browser application can cause render engine 135 in FIG. 1 to display the
associated animation simultaneously along with progression of the completion status indicator in the

progress bar.

[0148] FIG. 15 illustrates another example progression 1500 for displaying a secondary progress
15 indicator along with a completion status indicator for a task in a progress bar according to some
embodiments. In some embodiments, a browser application can display multiple indicators in a
progress bar to convey different types of information to the user. As shown in FIG. 15 at t = T1,
progress bar displays the completion status indicator to be at approximately 1/4 of the progress bar,
along with a secondary progress indication represented by the density of the completion status
20 indicator. In this case, the density of the completion status indicator is fairly low (as the dots are

spaced sparsely), indicating that the speed at which the task is being performed is fairly slow.

[0149] Att= T2, progress bar displays a completion status indicator to be at approximately 1/3 of
the progress bar, along with a secondary progress indication with high density. Att= T3, progress
bar displays a completion status indicator to be at around 1/2 of the progress bar, along with a
25 secondary progress indication at medium density. The lessened density indicates that the speed at
which the task is being performed has decreased from t = T2. In some embodiments, textual data
can accompany the density display to convey the exact speed at which the task is being performed.
In some instances, the secondary progress indicator can appear only if the user’s cursor hovers over
the progress bar or the progress bar indicator, indicating that the user would like to have additional
30 information about the task. Further, browser application can display the secondary progress
indicator in the portion of the progress bar that is not occupied by the completion status indicator

such as not to obstruct the web address to the viewer.

1000125110

35

m
S [0150] FIG. 16 illustrates an example progression 1600 for displaying another type of secondary
(Q\ progress indicator along with a completion status indicator of a task in a progress bar according to
S
S some embodiments. In some embodiments, a browser application can display another type of
2 indicator, such as ripples emanating from the edge of the completion status indicator in a progress
o0
O 5 bar to convey additional information to the user. At t = T1, progress bar displays a completion

status around 2/5 of the progress bar, along with a secondary progress indication represented by
g ripples emanating from the edge of the completion status indicator/bar that is inching forward. In
2 this case, the frequency of the ripples are high, indicating that the speed at which the web page is
- . .
e\ being loaded is fast.
o)
—
8 10 [0151] Att= T2, progress bar displays the completion status indicator to occupy around 1/2 of the

progress bar, along with a secondary progress indication displaying medium frequency ripples. In
this case, the speed at which the web page is being loaded is currently at a higher speed than the
speed att=T1. Att= T3, progress bar displays a completion status indicator to occupy around 2/3
of the progress bar, along with a secondary progress indication displaying low frequency ripples.
15 The lowered frequency indicates that the speed at which the task is being performed has decreased
from t = T2. In some embodiments, additional animation effects can be shown in the progress bar.
For example, browser application can display another type of animation in addition to secondary
progress indicator simultaneously in order to convey a speed at which a subtask (e.g., loading a

particular object for the web page) is being performed.

20 [0152] FIG. 17 illustrates another example progression 1700 for displaying a type of secondary
progress indicator along with a completion status indicator for a task in a progress bar according to
some embodiments. In some embodiments, a browser application can display another type of
indicator, such as a spinning wheel, in a progress bar to convey a current speed at which a task is
being performed to the user. Att = T1, progress bar displays a completion status indicator to be

25 around 2/5 of the progress bar, along with a secondary progress indication represented by a spinning
wheel in the progress bar. In this case, the speed at which the wheel is spinning is fast (indicated by
the three arrows), indicating that the rate at which the web page is being loaded at the moment is

high.

[0153] At t = T2, progress bar displays a completion status indicator to occupy around 1/2 of the
30 progress bar, along with a secondary progress indication of a slowly spinning wheel. In this case,
the speed at which the web page is being loaded is currently at a higher speed than the speed at t =
T1. Att = T3, progress bar displays a completion status indicator to occupy around 2/3 of the

1000125110

36

progress bar, along with a secondary progress indication of a wheel that is spinning faster than at T
=T2. The double arrows indicate that the speed at which the task is being performed has increased
from t = T2. Different types of animation can be used in different embodiments. In some

embodiments, the types of animation is configurable by the user and/or the system administrator.

5 [0154] Many of the above-described features and applications can be implemented as software
processes that are specified as a set of program instructions encoded on a computer readable storage
medium. When these program instructions are executed by one or more processing units, the
program instructions cause the processing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable storage media include CD-ROMs, flash drives, RAM

10 chips, hard drives, EPROMs, etc. The computer readable storage media does not include carrier

2013201390 08 Mar 2013

waves and electronic signals passing wirelessly or over wired connections. “Software” refers
generally to sequences of instructions that, when executed by processing unit(s) cause one or more
computer systems to perform various operations, thus defining one or more specific machine

implementations that execute and perform the operations of the software programs.

15 [0155] FIG. 18 illustrates a computer system 1800 according to an embodiment of the present
invention. Progress bar system 100 can be implemented within a computer system such as
computer system 1800 shown here. Computer system 1800 can be implemented as any of various
computing devices, including, e.g., a desktop or laptop computer, tablet computer, smart phone,
personal data assistant (PDA), or any other type of computing device, not limited to any particular

20 form factor. Computer system 1800 can include processing unit(s) 1805, storage subsystem 1810,

input devices 1820, display 1825, network interface 1835, and bus 1840.

[0156] Processing unit(s) 1805 can include a single processor, which can have one or more cores,
or multiple processors. In some embodiments, processing unit(s) 1805 can include a
general-purpose primary processor as well as one or more special-purpose co-processors such as
25 graphics processors, digital signal processors, or the like. In some embodiments, some or all
processing units 1805 can be implemented using customized circuits, such as application specific
integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments,
such integrated circuits execute instructions that are stored on the circuit itself. In other

embodiments, processing unit(s) 1805 can execute instructions stored in storage subsystem 1810.

30 [0157] Storage subsystem 1810 can include various memory units such as a system memory, a

read-only memory (ROM), and a permanent storage device. The ROM can store static data and

1000125110

37

o)
S instructions that are needed by processing unit(s) 1805 and other modules of electronic device 1800.
(Q\ The permanent storage device can be a read-and-write memory device. This permanent storage
;Cg device can be a non-volatile memory unit that stores instructions and data even when computer
2 system 1800 is powered down. Some embodiments of the invention can use a mass-storage device
% 5 (such as a magnetic or optical disk or flash memory) as a permanent storage device. Other

embodiments can use a removable storage device (e.g., a floppy disk, a flash drive) as a permanent
8 storage device. The system memory can be a read-and-write memory device or a volatile
2 read-and-write memory, such as dynamic random access memory. The system memory can store
8 some or all of the instructions and data that the processor needs at runtime.
—
8 10 [0158] Storage subsystem 1810 can include any combination of computer readable storage media

including semiconductor memory chips of various types (DRAM, SRAM, SDRAM, flash memory,
programmable read-only memory) and so on. Magnetic and/or optical disks can also be used. In
some embodiments, storage subsystem 1810 can include removable storage media that can be
readable and/or writeable; examples of such media include compact disc (CD), read-only digital
15 versatile disc (e.g., DVD-ROM, dual-layer DVD-ROM), read-only and recordable Blue-Ray®
disks, ultra density optical disks, flash memory cards (e.g., SD cards, mini-SD cards, micro-SD
cards, etc.), magnetic “floppy” disks, and so on. The computer readable storage media do not

include carrier waves and transitory electronic signals passing wirelessly or over wired connections.

[0159] In some embodiments, storage subsystem 1810 can store one or more software programs to
20 be executed by processing unit(s) 1805, such as a browser application 1845. As mentioned,
“software” can refer to sequences of instructions that, when executed by processing unit(s) 1805
cause computer system 1800 to perform various operations, thus defining one or more specific
machine implementations that execute and perform the operations of the software programs. The
instructions can be stored as firmware residing in read-only memory and/or applications stored in
25 magnetic storage that can be read into memory for processing by a processor. Software can be
implemented as a single program or a collection of separate programs or program modules that
interact as desired. Programs and/or data can be stored in non-volatile storage and copied in whole
or in part to volatile working memory during program execution. From storage subsystem 1810,
processing unit(s) 1805 can retrieve program instructions to execute and data to process in order to

30 execute various operations described herein.

[0160] A user interface can be provided by one or more user input devices 1820, display device

1825, and/or and one or more other user output devices (not shown). Input devices 1820 can

1000125110

38

include any device via which a user can provide signals to computing system 1800; computing
system 1800 can interpret the signals as indicative of particular user requests or information. In
various embodiments, input devices 1820 can include any or all of a keyboard touch pad, touch

screen, mouse or other pointing device, scroll wheel, click wheel, dial, button, switch, keypad,

i

microphone, and so on.

[0161] Display 1825 can display images generated by electronic device 1800 and can include
various image generation technologies, e.g., a cathode ray tube (CRT), liquid crystal display (LCD),
light-emitting diode (LED) including organic light-emitting diodes (OLED), projection system, or

the like, together with supporting electronics (e.g., digital-to-analog or analog-to-digital converters,

—
o

signal processors, or the like). Some embodiments can include a device such as a touchscreen that

2013201390 08 Mar 2013

function as both input and output device. In some embodiments, other user output devices can be
provided in addition to or instead of display 1825. Examples include indicator lights, speakers,

tactile “display” devices, printers, and so on.

[0162] In some embodiments, display 1825 can provide a graphical user interface, in which visible
15 image elements in certain areas of display 1825 are defined as active elements or control elements
that the user selects using user input devices 1820. For example, the user can manipulate a user
input device to position an on-screen cursor or pointer over the control element, then click a button
to indicate the selection. Alternatively, the user can touch the control element (e.g., with a finger or
stylus) on a touchscreen device. In some embodiments, the user can speak one or more words
20 associated with the control element (the word can be, e.g., a label on the element or a function
associated with the element). In some embodiments, user gestures on a touch-sensitive device can
be recognized and interpreted as input commands; these gestures can be but need not be associated

with any particular array in display 1825. Other user interfaces can also be implemented.

[0163] Network interface 1835 can provide voice and/or data communication capability for
25 electronic device 1800. In some embodiments, network interface 1835 can include radio frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular
telephone technology, advanced data network technology such as 3G, 4G or EDGE, WiFi (IEEE
802.11 family standards, or other mobile communication technologies, or any combination thereof),
GPS receiver components, and/or other components. In some embodiments, network interface
30 1835 can provide wired network connectivity (e.g., Ethernet) in addition to or instead of a wireless

interface. Network interface 1835 can be implemented using a combination of hardware (e.g.,

1000125110

39

o)
S antennas, modulators/demodulators, encoders/decoders, and other analog and/or digital signal
(Q\ processing circuits) and software components.
S
2 [0164] Bus 1840 can include various system, peripheral, and chipset buses that communicatively
% connect the numerous internal devices of electronic device 1800. For example, bus 1840 can

5 communicatively couple processing unit(s) 1805 with storage subsystem 1810. Bus 1840 also
() connects to input devices 1820 and display 1825. Bus 1840 also couples electronic device 1800 to a
% network through network interface 1835. In this manner, electronic device 1800 can be a part of a
S network of multiple computer systems (e.g., a local area network (LAN), a wide area network
g (WAN), an Intranet, or a network of networks, such as the Internet. Any or all components of
§ 10 electronic device 1800 can be used in conjunction with the invention.

[0165] Some embodiments include electronic components, such as microprocessors, storage and
memory that store computer program instructions in a computer readable storage medium. Many of
the features described in this specification can be implemented as processes that are specified as a
set of program instructions encoded on a computer readable storage medium. When these program
15 instructions are executed by one or more processing units, they cause the processing unit(s) to
perform various operation indicated in the program instructions. Examples of program instructions
or computer code include machine code, such as is produced by a compiler, and files including
higher-level code that are executed by a computer, an electronic component, or a microprocessor

using an interpreter.

20 [0166] Through suitable programming, processing unit(s) 1805 can provide various functionality
for electronic device 1800. For example, processing unit(s) 1805 can execute browser application
1845. Browser application 1845 can provide various functionality such as the ability to retrieve and
display content items from local or remote sources (e.g., using HTTP or other data transfer
protocols to retrieve and display web pages) in rendering a web page and the ability to receive and

25 interpret user input pertaining to the content items, such as selection of a hyperlink, selection of an
item to view, submission of data by the user in response to a particular content item (e.g., filling out
a form on an interactive web page), and so on. In some embodiments, browser application 1845 can
provide a progress bar that displays a completion status indicator representing a completion status of
a task such as loading a web page. Various additional information can be display within the

30 progress bar e.g., via animation effects. For example, a speed at which a web page is being loaded
at a particular moment in time can be presented by browser application 145 through animating

ripples with varying frequencies.

1000125110

2013201390 08 Mar 2013

i

—
o

15

25

30

40

[0167] It will be appreciated that computer system 1800 is illustrative and that variations and
modifications are possible. Computer system 1800 can have other capabilities not specifically
described here (e.g., mobile phone, global positioning system (GPS), power management, one or
more cameras, various connection ports for connecting external devices or accessories, etc.).
Further, while computer system 1800 is described with reference to particular blocks, it is to be
understood that these blocks are defined for convenience of description and are not intended to
imply a particular physical arrangement of component parts. Further, the blocks need not
correspond to physically distinct components. Blocks can be configured to perform various
operations, e.g., by programming a processor or providing appropriate control circuitry, and various
blocks might or might not be reconfigurable depending on how the initial configuration is obtained.
Embodiments of the present invention can be realized in a variety of apparatus including electronic

devices implemented using any combination of circuitry and software.

[0168] Different approaches can be implemented in various environments in accordance with the
described embodiments. FIG. 19 illustrates an example of an environment 1900 that can implement
various aspects of the present invention. Although a Web-based environment is used for purposes
of explanation, one of ordinary skill would recognize that different environments can be used to

implement various embodiments of the invention.

[0169] Environment 1900 includes an electronic client device 1902, a Web server 1906, and at least
one application server 1908. Electronic client device 1902 can include any appropriate electronic
device operable to send and receive requests, messages, and/or data over a network and convey
information to a user of the device. Examples of such client devices include personal computers,
mobile phones, laptop computers, personal data assistances and the like. Electronic client device
1902 can communicate with a Web server 1906 through at least one network where Web server
1906 can receive requests from electronic client device 1902 and serve content in response to

communications over the network.

[0170] One of ordinary skill would recognize that there can be several application servers, layers or
other elements, processes or components, which can be linked or otherwise configured and can
interact to perform tasks such as obtaining data from a data store (not shown here). As used herein,
the term “data store” can refer to any device or combination of devices capable of storing,
accessing, and retrieving data, such as one or more data servers, databases, data storage devices,
and/or data storage media. Application server(s) 1908 can include hardware and/or software to

execute aspects of one or more applications for the client device and is capable of generating

1000125110

41

content such as text, graphics, audio and/or video to be sent to the user through Web server 1906 in
the form of HTML, XML, or any other appropriate structured language. The handling of all
requests and responses, as well as the delivery of content between client device 1902 and

application server 1908, can be handled by Web server 1906. It should be understood that Web and

i

application servers are not required and are merely examples components of environment 1900.

[0171] In some embodiments, Web server 1906 can run any of a variety of server or mid-tier
applications, including HTTP servers, FTP servers, CGI servers, data servers, Java servers and
business application servers. Web server(s) 1906 can also be capable of executing programs or

scripts in response to requests from client device 1902, such as by executing one or more Web

—
o

applications that can be implemented as one or more scripts or programs written in any

2013201390 08 Mar 2013

programming language, such as Java®, C, C# or C++ or any scripting language, such as Perl,

Python or TCL, as well as combinations thereof.

[0172] Each of the client devices 1902 can include a display 1910 where messages and/or data
received over a network can be locally rendered and displayed to the user. While browser
15 application can cause a local render engine to display content (e.g., a web browser including content
and a progress bar) to the user, processing can be performed “in the cloud” 1904 via Web server
1906 and one or more application servers 1908 in some embodiments. For example, the data
transfer rate, the completion status of a task, the underreporting of a progress status of a task, the
speed at which the web page is being loaded can be determined “in the cloud” 1904. Environment
20 1900 can be a distributed computing system using several computer systems and components

interconnected through various communication links (e.g., computer networks).

[0173] While the invention has been described with respect to specific embodiments, one skilled in
the art will recognize that numerous modifications are possible: different ways to display a
secondary progress indicator for progress bar, different types of animation for conveying the “rocket
25 effect,” different ways to smoothen the progression of a completion status in the progress bar,
different features can be enabled (aside from Safari reader button), etc. Thus, although the
invention has been described with respect to specific embodiments, it will be appreciated that the
invention is intended to cover all modifications and equivalents within the scope of the following

claims.

2013201390 02 Apr 2015

42

WHAT IS CLAIMED IS:

1. A method for displaying a completion status indicator, including:
at a computing device with a display:
displaying, on the display, an application with a completion status indicator,
wherein:
the completion status indicator is a bar that visually shows a completion
status of a task being performed by the application; and
one end of the bar moves towards a position that indicates completion of
the task; and,
prior to completing the task:
while the one end of the bar is moving at a first rate towards the position
that indicates completion of the task, determining whether a threshold has been reached at
which the completion status indicator is configured to indicate that the task has been
completed, even though the task is not completed; and,
in response to determining that the threshold has been reached at which
the completion status indicator is configured to indicate that the task has been completed,
even though the task is not completed, moving the one end of the bar at a second rate,
greater than the first rate, from its current position towards the position that indicates

completion of the task.

2. The method of claim 1, including:

at a same time as the one end of the bar is moved at the second rate from its
current position towards the position that indicates completion of the task or immediately
following movement of the one end of the bar to the position that indicates completion of

the task, visually modifying a user interface element in the application.

3. The method of claim 2, wherein the visually modified user interface element is

located adjacent to the position that indicates completion of the task.

4, The method of any one of claims 1-3, wherein moving the one end of the bar at
the second rate, from its current position towards the position that indicates completion of

the task, includes displaying an animation of the one end of the bar moving towards the

1001050232

2013201390 02 Apr 2015

43

position.

5. The method of any one of claims 1-4, wherein moving the one end of the bar at
the second rate, from its current position towards the position that indicates completion of

the task, includes displaying a rocket effect animation.

6. The method of claim 1, including progressively increasing the second rate while

the one end of the bar moves towards the position that indicates completion of the task.

7. The method of claim 1 or 6, wherein before the threshold is reached, the displayed

completion status indicator underreports the actual completion status of the task.

8. A computing device for displaying a completion status indicator, including:
a display;
a processor;
memory; and
one or more programs, wherein the one or more programs are stored in the memory and
configured to be executed by the processor, the one or more programs including
instructions for:
displaying, on the display, an application with a completion status indicator,

wherein:

the completion status indicator is a bar that visually shows a completion
status of a task being performed by the application; and

one end of the bar moves towards a position that indicates completion of
the task; and,

prior to completing the task:

while the one end of the bar is moving at a first rate towards the position
that indicates completion of the task, determining whether a threshold has been reached at
which the completion status indicator is configured to indicate that the task has been
completed, even though the task is not completed; and,

in response to determining that the threshold has been reached at which
the completion status indicator is configured to indicate that the task has been completed,

even though the task is not completed, moving the one end of the bar at a second rate,

1001050232

2013201390 02 Apr 2015

44

greater than the first rate, from its current position towards the position that indicates

completion of the task.

9. The device of claim 8, including instructions for:

at a same time as the one end of the bar is moved at the second rate from its
current position towards the position that indicates completion of the task or immediately
following movement of the one end of the bar to the position that indicates completion of

the task, visually modifying a user interface element in the application.

10. The device of claim 9, wherein the visually modified user interface element is

located adjacent to the position that indicates completion of the task.

I1. The device of any one of claims 8-10, wherein moving the one end of the bar at
the second rate, from its current position towards the position that indicates completion of
the task, includes displaying an animation of the one end of the bar moving towards the

position.

12. The device of any one of claims 8-11, wherein moving the one end of the bar at
the second rate, from its current position towards the position that indicates completion of

the task, includes displaying a rocket effect animation.

13. The device of claim 8, including instructions for progressively increasing the
second rate while the one end of the bar moves towards the position that indicates

completion of the task.

14. The device of claim 8 or 13, wherein before the threshold is reached, the
displayed completion status indicator underreports the actual completion status of the

task.

15. A computer readable storage medium storing one or more programs, the one or
more programs comprising instructions, which when executed by a computing device
with a display, cause the computing device to:

display, on the display, an application with a completion status indicator, wherein:

1001050232

2013201390 02 Apr 2015

45

the completion status indicator is a bar that visually shows a completion
status of a task being performed by the application; and

one end of the bar moves towards a position that indicates completion of
the task; and,

prior to completing the task:

while the one end of the bar is moving at a first rate towards the position
that indicates completion of the task, determine whether a threshold has been reached at
which the completion status indicator is configured to indicate that the task has been
completed, even though the task is not completed; and,

in response to determining that the threshold has been reached at which
the completion status indicator is configured to indicate that the task has been completed,
even though the task is not completed, move the one end of the bar at a second rate,
greater than the first rate, from its current position towards the position that indicates

completion of the task.

16. The computer readable storage medium of claim 15, including instructions, which
when executed by the computing device with the display, cause the computing device to:
at a same time as the one end of the bar is moved at the second rate from its
current position towards the position that indicates completion of the task or immediately
following movement of the one end of the bar to the position that indicates completion of

the task, visually modify a user interface element in the application.

17. The computer readable storage medium of claim 16, wherein the visually
modified user interface element is located adjacent to the position that indicates

completion of the task.

18. The computer readable storage medium of any one of claims 15-17, wherein
moving the one end of the bar at the second rate, from its current position towards the
position that indicates completion of the task, includes displaying an animation of the one

end of the bar moving towards the position.

19. The computer readable storage medium of any one of claims 15-18, wherein

moving the one end of the bar at the second rate, from its current position towards the

1001050232

2013201390 02 Apr 2015

46

position that indicates completion of the task, includes displaying a rocket effect

animation.

20. The computer readable storage medium of claim 15, including instructions, which
when executed by the computing device with the display, cause the computing device to
progressively increase the second rate while the one end of the bar moves towards the

position that indicates completion of the task.

21. The computer readable storage medium of claim 15 or 20, wherein before the

threshold is reached, the displayed completion status indicator underreports the actual

completion status of the task.

1001050232

2013201390 08 Mar 2013

1/13

Fluid Progress Bar
Generator

11

Rocket Effect
Generator

120

Feature Enabler

125

Generator

Secondary Progress

130

Render Engine

135

Progress Bar System 100)

| Web Browser

1

40

¥ GO
Daily News for
Cider County
I
145
1
Address | 4 GO

155

FIG. 1

2/15

0|
o~
-—

auibug Jspusay

~ A
ugIds
sonjeA uo paiapual
ssaiboid sjusw9jd
JO eaJe [BJOL

|- T T T 77 ||.||||||||||I|||I||||||||l|||||l||||||l|||_
L mEm—m—m—m = + - ———g———— = == =
“ Vv | J ! !

| — — |
. [oze 312 | ! T3
" 02¢ apnpopy ske ! s0¢ 19)09yD " lojeal)d _
| Buuswoows | &— | uopodoyriepun | €= | poysaiyy | T2 | weyziewod | |
" uolssaiboid | ! !
| i |
: sipjeweled | !
| pjoysaiyl | !

| |
| 1| 012 " |
_ " JsuiuieleQ _ !
| ! pioysaiyL “ |
“ [_ i
| ! |
|

00¢

CI0OCIBIN 80 06£10CCI0C

2013201390 08 Mar 2013

3/15

(Start >

A

Receive a request to perform a task

%300

Y

Display a progress bar for the task being
performed

N

Determine a threshold for the task

\ 4

Receive a progress value

>

)

310
Reached NO
threshold?
YES 316

312

Display a progression of a completion
status indicator in the progress bar
based on the progress value

Display rocket effect on the progress bar

Receive new
progress value?,

End

YES

FIG. 3

2013201390 08 Mar 2013

4/15

FIG. 4

(Start }

Y

Identify a type of animation to display upon
determining that a threshold is met

A

Display the identified type of animation in a
progress bar

404

A 4

End

FIG. 5

(Start ’

Receive a progress value for a task

A 4

Determine, based on the progress value, another
progress value less than the progress value

504

4

Display a completion status indicator in a progress
bar based on the other progress value

506

End

2013201390 08 Mar 2013

S/15

FIG. 6

(Start }

Receive a progress value for loading a
web page

y

Determine an estimated load time
based on the progress value

\ 4

Construct a linear equation using the
estimated load time

A 4

Compute a next location based on the
constructed linear equation

Animate to the next location

End

L "Old

ERIER SSaIPPY |
XG +01 =1}V
|09 El[ak ssauppy |
USR] = X +0) =11V
|09 @RBL ssa.ppYy |
\ X +01 =1V
e
=~
) oo @[a] Sse.ppY |
XZ +01 =11V
|09 EA] ssaJppy |
X +01 =11v
oo @] : oo I MWW | SSIPPY _
0 =33
002

CI0OCIBIN 80 06£10CCI0C

C3GEN] SNOIASI]

[oE EVERET

2013201390 08 Mar 2013

7/13

FIG. 8

Progress Value Time Estimate
0% < progress value <= 35% 30 seconds
35% < progress value <= 60% 10 seconds
60% < progress value <= 80% 5 seconds
80% < progress value <= 85% 3 seconds
85% < progress value 2.5 seconds
(& v J . N J
805 810

FIG. 9

Progress value = 40%
F(t) = .1t Att=3, F(3) =.3 or 300 pixels

| Address[www.url.com [MBI GO |

Att=3.2, F(3.2) =.32 or 320 pixels
| Address[www.url.com | B Go |

Att = 3.4, F(3.4) = .34 or 340 pixels

[Address [www.url.com] MBI GO |
New progress value received att = 3.4

F(t) = 132t - .1088 Att= 3.6, F(3.6) = .37 or 370 pixels
| Address[wwwurcom 1 MBI Go |

Att= 3.8, F(3.8) =.39 or 390 pixels
r Address[www.url.com - | _ M3 Go]

Att=4, F(4) = .42 or 420 pixels
[Address[wwwufcom] MBIGo |

%800

900

2013201390 08 Mar 2013

Threshold
Checker
Value

8 /15

FIG. 10

%‘IOOO

J

Feature Enabler 125

Rocket Effect

Tracker
1005

Enable Deteminer

!

1015

Feature Status
Tracker
10

—

Render Engine

-
[
(3]

2013201390 08 Mar 2013

9/13

FIG. 11

(Start }

A

Receive indication that a threshold has | — 1102
been reached

1104
NO

Feature to be
enabled?

1106

Display a status change for a user
interface element subsequent to
displaying the rocket effect

-

End

2013201390 08 Mar 2013

10 /15

FIG. 12

Att=T, /_/ J
Address: [www.url.com M3 Reader

Att=T1

Address: |

At t = Tinresh

Address: |

At t = Tihresh

2013201390 08 Mar 2013

11/18

FIG. 13

Secondary Progress Generator 130

Speed Determiner | —
1305

Translator

1310

Render Engine

—
[&)]

2013201390 08 Mar 2013

12 /15

FIG. 14

(Start ’

A 4

Display a progress bar for a task being performed

y

Receive a progress value for the task

Display, based on the progress value, a
completion status indicator in the progress bar

Determine a speed at which the
task is being performed at the time

A

Determine a type of animation
to represent the speed

A 4

Determine an animation for the type of animation
associated with the determined speed

A

Display the associated animation concurrently with
the completion status indicator in the progress bar

N

End

%1 400

1402
1404
1406
1408
1410
1412

1414

2013201390 08 Mar 2013

13 /15

o FIG. 15

Address [www il com] VB co
Att= T2

Address B M Go
Att= T3

Address Bl co
Att=T,)

Address [www.url.comVVVVVVV\/ vl[2] co
Att= T2

Address [www.url.com™\ N\ N\ /] M co
Att= T3

Address [www.urlcom ~ _~ ~ | ¥ 3] co
Att=T,4

Address [www.url.com MBl co

Att=T2

vl co

Address [www.url.com

Att=Ts

Bl co

Address [www.url.com

%1 500

%1 600

%1 700

2013201390 08 Mar 2013

14 /15

FIG. 18

%1800

1810

,,_,/ 1805
STORAGE /——’/

SUBSYSTEM 1815

BROWSER s PROCESSOR
1840
USER USER NETWORK
INPUT OUTPUT INTERFACE
DEVICES DEVICES

==

1820 1825 1835

2013201390 08 Mar 2013

15/ 15

FIG. 19
%
) =

Application
Server

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

