
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0317551A1

Hecht et al.

US 20120317551A1

(43) Pub. Date: Dec. 13, 2012

(54)

(75)

(73)

(21)

(22)

(63)

POST COMPLE INSTRUMENTATION OF
OBJECT CODE FOR GENERATING
EXECUTION TRACE DATA

Inventors: Daniel Michael Hecht, Los Altos,
CA (US); Michael Lindahl, Santa
Barbara, CA (US); David
Kleidermacher, Goleta, CA (US)

Assignee: GREEN HILLS SOFTWARE,
INC., Santa Barbara, CA (US)

Appl. No.: 13/590,035

Filed: Aug. 20, 2012

Related U.S. Application Data

Continuation of application No. 1 1/463,854, filed on
Aug. 10, 2006, now Pat. No. 8,266,608, which is a
continuation-in-part of application No. 1 1/061,086,
filed on Feb. 18, 2005.

52 5.

< c
Object Code

Virtual Target saw-o- Analyzer/
Platform W instrainietter

Sinitiated Trace — Trace Data Analyzer

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. T17/128

(57) ABSTRACT

The invention is directed to instrumenting object code of an
application and/oran operating system on a target machine so
that execution trace data can be generated, collected, and
Subsequently analyzed for various purposes, such as debug
ging and performance. Automatic instrumentation may be
performed on an application's object code before, during or
after linking. A target machine's operating system's object
code can be manually or automatically instrumented. By
identifying address space Switches and thread Switches in the
operating system's object code, instrumented code can be
inserted at locations that enable the execution trace data to be
generated. The instrumentation of the operating system and
application can enable visibility of total system behavior by
enabling generation of trace information Sufficient to recon
struct address space Switches and context Switches.

-a S

arrrrr Yarrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr'

Patent Application Publication Dec. 13, 2012 Sheet 1 of 9 US 2012/0317551A1

O
A.

to Target Platform
--

c
w

Application ^\! s C
:-P CPu

y
110 Host Contpitter

Applications rays :------- - - - - - - - (Optional
trace Probe --> CPU

V - - - - - - - - - - - - - - - -

--- in st OS rty:
--- I/O Ni

FIG. 1A

Patent Application Publication Dec. 13, 2012 Sheet 2 of 9 US 2012/0317551A1

-a S.

Object Code
Virtual Target a-o- Antalyzery

Platform tastriaetter
arrrrr Yarr'

Sinitiated frace —- Trace Data Analyzer Praig

FIG. 1B

Patent Application Publication Dec. 13, 2012 Sheet 3 of 9 US 2012/0317551A1

--M is

Obieci Coie
Analyzer/

instraitreater
Application

Program

CS Interface
(OPTIONAL)

Sinitiated Trace
Pre - Trace Data Analyzer

F.G. 1 C

Patent Application Publication Dec. 13, 2012 Sheet 4 of 9 US 2012/0317551A1

- 170

Application: s
Progrgin y c

Host Computer

CS Interface
(OFTIONAL)

Object Code
Analyzery
itstrifiaifer

Singariated 9s
Trie Frog :

Trace Oath
Atalyzer

FIG. 1D

Patent Application Publication Dec. 13, 2012 Sheet 5 of 9 US 2012/0317551A1

CS Interface
OTONAL

Simulated Trace
w Prebbe

FIG. TE

Patent Application Publication Dec. 13, 2012 Sheet 6 of 9 US 2012/0317551A1

O
- y

y Sirf

Compile application source
code on host in achine

tlink object code

instrument object code

Transfer instrumented code to
farget hit achine

i Execute instrumented object -N 2.
--- code

Collect and buffer trace data N
N- -

Transfer trace data to host
Fiachite

area s

Perform analysis of trace data
le

Patent Application Publication Dec. 13, 2012 Sheet 7 of 9 US 2012/0317551A1

y 3. 3. {N- (N
- y Locate function boundaries Sir - ------------- in object code

For each function, determine
inistriction laidaries

Analyze instratetions to
ATN determine effects on target
36 its citirie

-\
3S

Construct control flow and/ 3.
or procedure call graphs Yass

ra Y

ru-ri, only caliei Mark function ^ 314
-

N} : Yu.

3. directly? c-it-> entry for
: its affiti -- instrumentation

s -

- for isic blocks r—-r l 3S
-ra -1 do an predecessors N N. Mark block for N. N.

3.6 -st (3.atly have it as - instrumentation
successor? -- - - - -

s -

es
-->Y Mark instructions following procedure

32 - calis for instrinentation

/"\ Fistring eiti irkei instruction
322 - paints in abject code

/N- If pdate abject cade 3.

-- Y - r

- Retiri

FIG. 3

Patent Application Publication

FIG. 4

t
N. y

Dec. 13, 2012 Sheet 8 of 9 US 2012/0317551A1

(Start /

Reserve memory range for
instrumentation writes for

diject code

6
Execite instrumenited code

collect timestan and save - 40s Collect, tintestanp and save / N- t
set of trace writes

ex
Transfer sequence of writes to -N 4

itost in actite Y

Recoits truct program exertificit /N'
flotty r s

Patent Application Publication Dec. 13, 2012 Sheet 9 of 9 US 2012/0317551A1

Reserie memory range for
instrumentation writes for s \- 502
operating system object code

Mantially locate operating 5
system object code that /N
controls address space S

sit-itching

tis

Mantially locate operating
system object code that

controls context switching

Instrument located operati ing 58
systent object code

Reconstruct operating system
object code execution flow

Transfer reconstructed
operating systein object code

to target machine
assessesssssssssssssssssssssssa areas

Q Retiris

FIG. 5

US 2012/0317551A1

POST COMPLE INSTRUMENTATION OF
OBJECT CODE FOR GENERATING

EXECUTION TRACE DATA

CROSS REFERENCE TO RELATED
APPLICATION

0001. The present application is a continuation of U.S.
patent application Ser. No. 1 1/463,854, filed on Aug. 10,
2006, entitled “Post-Compile Instrumentation of Object
Code for Generating Execution Trace Data” and published as
U.S. Patent Publication No. US 2007-0006159 A1 on Jan. 4,
2007, which is a continuation-in-part of U.S. patent applica
tion Ser. No. 1 1/061,086, filed on Feb. 18, 2005, entitled
“Post-Compile Instrumentation of Object Code for Generat
ing Execution Trace Data” and published as U.S. Patent Pub
lication No. US 2006-0190930 A1 on Aug. 24, 2006. Each of
the foregoing patents, patent applications and patent publica
tions is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

0002 The present invention relates generally to computer
Software development, and more particularly to instrumenta
tion of computer program code to generate trace data during
system execution.

BACKGROUND OF THE INVENTION

0003. In any substantial software development project, the
identification and correction of bugs and other erroneous or
undesirable program behavior is a challenging task. Debug
ging of software developed for embedded systems is often
especially difficult. Program errors may be visible on hard
ware only in real time, or they may be intermittent and non
deterministic. Conventional debugging tools are typically not
an adequate solution for correcting Such relatively complex
software problems.
0004 Some microprocessor architectures, including cer
tain architectures used for embedded systems, have been
designed with high-speed trace ports that facilitate the out
putting of cycle-by-cycle trace data about the status of the
processor when code is executed. In essence, hardware trace
data comprises a complete log of instructions executed by the
processor. Trace data may also include information regarding
data read from and written to memory, as well as information
regarding the occurrence of context Switches and operating
system interrupts. This information is highly useful for
debugging embedded applications and the like by providing
visibility. When a system crash occurs, the availability of
trace data, coupled with appropriate Software tools for trace
analysis, enables the developer to reconstruct the program
flow to see precisely what the program was doing at the time
of the crash.
0005 For many microprocessors, unfortunately, there is
no hardware facility that generates trace data. To achieve
useful visibility of execution behavior comparable to that
provided by way of hardware-generated trace data, develop
ers of applications for non-trace architectures often instru
ment the code. Instrumentation has certain drawbacks, par
ticularly the accompanying increase in the size and slowdown
in the execution speed of programs under development. Exist
ing industry instrumentation solutions have required prepro
cessing and recompilation of Source code in order to insert
instrumentation tags. Typically, several instructions are gen
erated for each instrumentation point. For large applications,

Dec. 13, 2012

compile-time or pre-compilation instrumentation entails
undesirably long build times and complex management of
multiple versions of the software system under development.
The debugging process is also adversely affected when code
is instrumented at compile time.
0006 Today's microprocessors typically include on-chip
memory management units that, given appropriate Support
from a memory-protected operating system, enable indi
vidual threads of execution to run in hardware-protected pri
vate virtual address spaces. Memory-protected operating sys
tems improve the reliability of software and facilitate
debugging. A potential drawback to existing instrumentation
Solutions is that they often provide for instrumenting a single
execution address space.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 For a better understanding of the present invention,
reference will be made to the following detailed description,
which is to be read in association with the accompanying
drawings, wherein:
0008 FIG. 1A is a block diagram illustrating an exem
plary operating environment;
0009 FIG. 1B is a block diagram illustrating a host com
puter including a virtual target machine;
0010 FIG. 1C is a block diagram illustrating a host
machine including a program containing a simulated trace
probe;
0011 FIG. 1D is a block diagram illustrating an alterna
tive operating environment;
0012 FIG. 1E is a block diagram illustrating a target
machine including a program containing a simulated trace
probe;
0013 FIG. 2 is a flow diagram illustrating a general over
view of a process for instrumenting object code for a target
machine;
0014 FIG. 3 is a flow diagram illustrating a process for
instrumenting application object code for generating trace
data;
0015 FIG. 4 is a flow diagram illustrating additional
details of a process for employing upper memory address
locations in the instrumenting of object code for a target
machine; and
0016 FIG. 5 is a flow diagram for manually instrumenting
the operating system object code for a target machine, in
accordance with the present invention.

DETAILED DESCRIPTION

0017. In the following detailed description, reference is
made to the accompanying drawings, in which are shown
exemplary but non-limiting and non-exhaustive embodi
ments of the invention. These embodiments are described in
sufficient detail to enable those having skill in the art to
practice the invention, and it is understood that other embodi
ments may be used, and other changes may be made, without
departing from the spirit or scope of the invention. The fol
lowing detailed description is, therefore, not to be taken in a
limiting sense, and the scope of the invention is defined only
by the appended claims. In the accompanying drawings, like
reference numerals refer to like parts throughout the various
figures unless otherwise specified.
0018 Briefly stated, the present invention is directed to a
method and system for instrumenting the object code of a
target machine to that execution trace data can be generated,

US 2012/0317551A1

collected, and Subsequently reviewed for debugging and per
formance analysis. Embodiments of the invention are thus
particularly Suitable for providing trace capability for micro
processors that are not equipped with trace interfaces and/or
ports. In one embodiment, the application's object code is
automatically instrumented after compilation of the Source
code. The automatic instrumentation may be performed by
way of a linker itself or by an alternate facility such as an
object code analyzer, and like. Automatic instrumentation
may also be performed on the object code after linking has
occurred.
0019. In one embodiment, the target machine's operating
system object code can be manually or automatically instru
mented. By identifying address space Switches and thread
Switches in the operating system's object code, instrumented
code can be inserted at locations that enable the execution
trace data to be generated. The post-compile-time instrumen
tation of a memory-protected operating system can be pro
vided for a particular target development platform. Typically,
a virtual memory mapping technique can be used. Also, the
inventive instrumentation of the operating system can enable
simultaneous tracing of tasks running in multiple individual
address spaces above the operating system. Further, the
instrumentation of the operating system object code enables
visibility of total system behavior by enabling generation of
trace information Sufficient to reconstruct address space
Switches and context Switches.
0020. In one embodiment, the instrumentation of the oper
ating system, which can be performed manually or in an
automated manner, is coupled to the post compile instrumen
tation of the target machine's application object code.
0021. In general, the invention enables the generation of
trace data with fewer lines of instrumented code by perform
ing the instrumentation on the object code, i.e., post-compile
time. Also, the invention can recognize architecture-specific
addressing modes to minimize instrumentation overhead, so
that, in many cases, one instruction can be employed togen
erate trace data for an instrumented block of code. Overhead
is also minimized by using the global program view available
at link time to avoid instrumenting blocks that can be inferred
from other instrumented blocks.
0022. Additional advantages to instrumenting for execu
tion trace at, or after, link time is that it permits trace analysis
of object code for which source code is not readily available,
such as externally-supplied runtime libraries. Moreover,
assembly code modules can be instrumented to generate trace
data, an option generally unavailable where instrumentation
occurs at or before compile time.

Exemplary Operating Environment
0023 FIG. 1A illustrates an exemplary operating environ
ment 100 suitable for practicing the present invention. It will
be noted that not all the components and features depicted are
required to practice the invention, and that variations in the
arrangement and type of the components may be made with
out departing from the spirit or scope of the invention.
0024 FIG. 1A illustrates an operating environment 100 in
which the depicted target platform can be an embedded sys
tem or the like, although the invention is not thus restricted.
Components in environment 100 include target machine 102,
host machine 104, and trace probe 106. Software develop
ment generally occurs primarily at host machine 104. Host
machine 104 can be a general-purpose computing device,
Such as a workstation, personal computer, emulation termi

Dec. 13, 2012

nal, notebook computer, mobile device, and the like. The
features of such a computing device are rudimentary to those
skilled in the art and as such need not be described at length
here. A user interacts with host machine 104, and that host
machine includes processor 108 which executes programs
loaded in memory 110 and communicates with input and
output devices 112. Among the programs that may be execut
ing at certain times are operating system 114 and various
applications 116 used in Software development, such as,
including but not limited to, a compiler, editor, linker, project
builder, version control system, debugger, profiler, integrated
development environment, and trace analysis Software, as
well as other applications and processes.
0025 Target machine 102 comprises a platform for which
an application program is being developed. It is contemplated
that some embodiments of the invention include those in
which the target platform includes a microprocessor that does
not Support hardware trace data generation via a trace port or
some other interface. However, the invention may also be
employed with a microprocessor that does enable hardware
trace data generation.
0026 Target machine 102 and host machine 104 are linked
so that executable instrumented code built for target machine
102 can be transferred from host machine 104. This linkage
can be a wired or wireless connection. Target machine 102
includes processor 118 and memory 120. As shown in the
figure, loaded in memory 120 and at times executed on pro
cessor 118 are operating system 122 and application 124. In
different embodiments, one or both of the application pro
gram 124 and operating system 122 are instrumented in
accordance with the invention.
0027. In one embodiment, optional trace probe device 106

is coupled between target machine 102 and host machine 104
by some combination of a wired and/or wireless connection.
Trace probe 106 is used to collect and buffer trace data from
target machine 102, which executes application 124, and to
transmit the collected trace data to host machine 104. The
collected trace data is analyzed on host machine 104, for
example by way of trace analysis software or other debugging
tool, and the execution flow of target machine 102 may
thereby be reconstructed and analyzed for debugging and
other purposes.
0028. Exemplary operating environment 100 illustrated in
FIG. 1A is neither exhaustive nor limiting, and other embodi
ments of the invention may be situated within alternative
environments. For example, as shown in FIG. 1B, a host
machine 150 can include a virtual target machine 152 and/or
a simulated trace probe 156. The virtual target machine 152
and the simulated trace probe 156 are virtual machines run
ning on host machine 150 to perform substantially the same
actions in Substantially the same manner as those discussed
above and below. In particular, as depicted in FIG. 1 B, object
code analyzer/instrumenter facility 154 instruments object
code for a program that has been compiled to run on virtual
target platform 152. When the instrumented object code is
executed on virtual target platform 152, trace data is gener
ated and collected by simulated trace probe 156, from which
it is sent for analysis by trace data analyzer 158 or a similar
tool.

0029 FIG. 1C illustrates host machine 160 that can
include application program 162 which is under development
for a host or target machine. Application program 162
includes simulated trace probe 164, which integrates the gen
eration and collection of trace data along with the execution

US 2012/0317551A1

of instrumented object code for the application program.
Application program 162 can optionally include an operating
system (OS) interface 165 for enabling communication with
an operating system on the host, target machine, and/or the
like.
0030 Object code analyzer/instrumenter facility 166 pro
vides for instrumenting the object code for application pro
gram 162 that has been compiled to run on a host or target
machine. As the instrumented object code of application pro
gram 162 is executed, trace data is generated and collected by
simulated trace probe 164 and provided to trace data analyzer
168, or a similar tool. Additionally, in at least one embodi
ment, the target machine and the host machine can be Sub
stantially the same platform.
0031 FIG. 1D illustrates an alternative operating environ
ment 170. Target machine 180 and host machine 190 may be
linked so that executable instrumented code for target
machine 180 can be transferred from host machine 190. As
discussed in greater detail below with regard to FIG. 1E,
target machine 180 can include application program 182,
which further includes simulated trace probe 184. Addition
ally, application program 182 can optionally include an oper
ating system (OS) interface 185 for enabling communication
with an operating system on the target machine. Additionally,
target machine 180 and host machine 190 may be linked so
that trace data, generated and collected by simulated trace
probe 184, can be sent for analysis to host machine 190. This
linkage can be a wired or wireless connection. Host machine
190 can include an object code analyzer/instrumenter facility
196 and/or a trace data analyzer 198 to perform substantially
the same actions in Substantially the same manner as those
discussed above and below.
0032 FIG. 1E illustrates a target machine 280 that can
include application program 282. Application program 282
includes simulated trace probe 284. If application program
282 executes, trace collection takes place within the applica
tion program. The encapsulation of simulated trace probe
284, by application program 282, enables application pro
gram 282 to generate and/or collect trace data. In at least one
embodiment, application program 282 is, therefore, its own
simulated trace probe that sends collected trace data to a host
machine. Additionally, application program 282 can option
ally include an operating system (OS) interface 285 for
enabling communication with an operating system on the
target machine.

Execution Trace Overview Process

0033 FIG. 2 is a flow diagram showing an overview of
process 200 for debugging an application on a target system,
where the process enables automatic instrumentation of the
application’s object code for the Subsequent generation of
trace data during run time.
0034 Moving from a start block, the process advances to
block 202, at which Source code for an application program
and/or the operating system for the target platform is written
and compiled. Stepping to block 204, the compiled Source
code, i.e., object code, is linked to various modules that are
called by the source code. At block 206, the linked object code
is instrumented for trace generation. In one embodiment, the
instrumentation is performed at link time by the linker or
another facility. In yet another embodiment, the instrumenta
tion is performed by yet another facility after linking.
0035) Next, the process flows to block 208, where the
instrumented object code is transferred to the target machine.

Dec. 13, 2012

At block 210 the instrumented object code is executed on the
target machine, with trace information generated by way of
writes to reserved memory locations. The process then flows
to block 212, at which the generated execution trace data is
collected and buffered. Next, at block 214, the collected trace
data is transferred to the host machine for analysis, and at
block 216 the trace data is read by a trace analysis tool,
debugger, and the like. The process then returns to performing
other actions.

Instrumentation Process

0036 FIG. 3 is a flow diagram illustrating process 300 for
automatically instrumenting application program object code
for generating trace data in accordance with the invention.
Moving from a start block, the process steps to block 302,
where function boundaries in the object code are located. In
one embodiment, the symbol table for the object code is
employed to determine the location of these boundaries.
0037 Flowing to block 304, the process determines for
each function in the object code the instruction boundaries. In
one embodiment, the beginning of a function is employed to
indicate an entry point, and the object code within the func
tion is disassembled from that point forward. Also, the sym
bol table and relocation table can be used to determine the
instruction boundaries. Additionally, the process detects and
avoids non-instruction regions in the code. Such as Switch
statement tables constructed by the compiler, which are typi
cally not instrumented.
0038 Next, the process flows to block 306, at which,
within each function, each instruction is analyzed to deter
mine its high-level effects on the target machine: for example,
which registers are read, which registers are writtento, which
instructions are branch instructions and what their target
addresses are, and so forth. In one embodiment, a machine
independent model of instructions is used, so that the embodi
ment is suitable for use in instrumenting code for different
architectures. For example, an add instruction for the target
machine could be converted into a generic machine-indepen
dent add instruction.
0039 Flowing to block 308, the locations of basic block
boundaries are determined. The information acquired at
block 306 regarding the locations of branch instructions is
typically employed in this step. Moving to block 310, at least
one of a control flow graph and a procedure call graph are
constructed. The control flow graph can be employed to con
nect the basic blocks. The procedure call graph can be used to
connect call points to functions in the code.
0040 Processing next flows to block 312, at which it is
determined which function entries need to be instrumented.
In some cases, analysis indicates that instrumentation of the
first block of a function can be avoided, resulting in an impor
tant optimization. At decision block 312, it is determined
whether the function is only called directly, which is often the
case. If so, then typically the beginning of the function is not
instrumented because it can be statically inferred that the first
instruction of this function is executed when the function that
calls the function executes. Next, the process flows to deci
sion block 316. However, if the relocation table indicated that
the address of the function has been taken, signifying that the
function may be called by way of a register or function
pointer, or if the function is called conditionally, the begin
ning of the function is instrumented because the function is
most likely called indirectly or it cannot be known until
runtime whether the function call actually occurs. In this case,

US 2012/0317551A1

processing would flow to block 314. Typically, this kind of
analysis and optimization is difficult to attain if instrumenta
tion had been performed at compile time, instead of post
compile. From block 314, the process steps to decision block
316.
0041 At decision block 316, the process determines
whether basic blocks require instrumentation. For a given
basic block, it is determined whether all of the predecessors of
the basic block in the control flow have that basic block as the
predecessor's only successor. If true, that basic block isn't
instrumented because it is statically known that this basic
block is executed if the predecessors execute. Next, the pro
cess flows to block 320. Alternatively, if the determination at
decision block 316 is false (the basic block is to be instru
mented), the process flows to block 318 where the basic block
is marked for instrumentation. Next, the process flows to
block 320.
0042. At block 320, points in the object code to which
control may return after a procedure call (i.e., an instruction
that follows a call instruction) are marked as requiring instru
mentation. Such instrumentation is employed to reconstruct
execution flow from trace data and is required because the
return instruction from a function call usually does not
include information about where it returns to. The informa
tion previously acquired regarding the locations of procedure
calls is used.
0043 Moving to block 322, the determined instruction
points in the object code are instrumented. Next, processing
flows to block 324, at which the object code is updated to
enable Subsequent execution on the target machine. For
example, store-byte instructions for instrumentation are
added to the object code. The symbol table is updated and
instructions that reference another point in the program are
revised, including branch instructions. Switch statement
tables and the like are rewritten to reflect changes in the code.
Additionally, the object code may be further processed by a
linker. Processing then flows to a return block to perform
further actions.
0044) Furthermore, in at least one embodiment, during
instrumentation of the application program object code, at
least portions of a simulated trace probe program may be
included in the instrumented code. In still other embodi
ments, at least portions of a simulated trace probe program
may be included before and/or after instrumentation of the
application program object code.

Locators for Code Blocks

0045 FIG. 4 is a flow diagram of a process for enabling
trace generation results from instrumented object code (appli
cation and/or operating system object code) to be stored at
least temporarily in the upper memory address locations asso
ciated with the target machine. Moving from a start block, the
process flows to block 402, at which a range of uncached
memory locations, such as the upper range of addressable
memory, is reserved for writes by the instrumented object
code that yield execution trace data. In one embodiment, a
trace probe and the target device are configured such that the
trace probe appears as this upper range of memory addresses.
In another embodiment, this upper range of memory
addresses occurs on the target machine.
0046 Stepping to block 404, the object code for an appli
cation is instrumented in a manner Substantially similar to the
process disclosed in the discussion of FIG. 3. Each instru
mentation point in the object code is thereby associated with

Dec. 13, 2012

a unique memory address serving as a locator for the corre
sponding instrumented block of object code. Moving for
ward, at block 406, the instrumented application is executed.
Flowing to block 408, the trace probe collects and timestamps
the set of trace data writes to the reserved uncached memory
address space and saves this trace data to a buffer. At block
410, the collected sequence of saves to this buffer is trans
ferred to a host machine. Advancing to block 412, trace analy
sis and/or debugging tools and the like can be employed to
reconstruct the application's execution flow for offline debug
ging, visibility, and analysis. Next, the process 400 flows to a
return block and returns to performing other actions.
0047. In the past, compile-time instrumentation solutions
have stored data values at a special address. Loading Such an
address typically requires two instructions and loading the
data value typically requires two instructions, resulting in
considerable overhead in processing the data value. For
example, a typical RISC processor with a 32-bit address
space typically employs two instructions (or more ifa register
must be backed up and restored).
0048 However, since some microprocessor architectures
enable specific register-indirect addressing modes, the inven
tion can employ one store instruction to perform Substantially
the same function for each instrumented basic block. For
example, a base registeris loaded, and an offset is added to get
the final address. On architectures with the aforementioned
addressing modes, if a special base register (Such as a desig
nated Zero register) is specified, the microprocessor can treat
it as the number Zero rather than actually loading the contents
of this register. In this way, addresses at a high range of
memory can be accessed with a single instruction.
0049. In some embodiments, in addressing bits may be
available for the high address range, but there may be more
than 2" blocks to be instrumented in the code. In this case,
more than one block can be assigned to a given address. A
technique for doing so using, typically, two store instructions
can be provided by the invention. Also, one of the available
addressing bits can be reserved as a stop bit. When the stop bit
is not set, the instruction is not the last store-byte instruction
for the current instrumentation point.
0050 For the first 2" instrumentation points, the stop bit in
the store instruction is set. For an additional instrumentation
point, the stop bit is not set. An additional store instruction is
generated. By concatenating the addresses in the two instruc
tions, the instructions provide a 20n-1)-bit address, allowing
2"' possible instrumentation points. This stop-bit tech
nique can be generalized to accommodate an arbitrarily large
number of instrumentation points.

Operating-System-Aware Instrumented Trace
0051 FIG. 5 is a flow diagram illustrating a process for
manually instrumenting object code of an operating system
for a target machine. Moving from a start block, process 500
flows to block 502, where, a range of memory locations is
reserved for writes by the instrumented operating system
object code. In one embodiment, if the highest range of
memory has been reserved separately for writes by instru
mentation instructions in instrumented application object
code, a range of memory immediately below this highest
range may be used for writes by instrumented operating sys
tem object code.
0.052 Operating system object code is instrumented in
Such a way that information about the address space and task
that is running at a particular time, and information regarding

US 2012/0317551A1

the occurrence of context switches, are made visible. Moving
to block 504, the process locates operating system object code
that controls address space switching. Next, at block 506, the
process locates operating system object code that controls
context Switching.
0053 Moving to block 508, the regions of operating sys
tem object code that were located at blocks 504 and 506 are
instrumented. Thus, trace data collection will include address
space Switch information, and multithreaded application
behavior can be reconstructed.
0054 Process 500 next flows to block 510, at which the
instrumented operating system object code is reconstructed.
Next, at block 512, the instrumented and reconstructed oper
ating system object code is transferred to the target machine,
on which it can be loaded and executed. The process then
flows to a return block and performs other actions.
0055 Previous approaches to instrumented trace execu
tion have instrumented only a single address space of execu
tion, which is inadequate to facilitate analysis of a multi
threaded embedded application running concurrently with a
memory-protected operating system and other tasks, each
running in different address spaces. To reconstruct system
behavior, it is necessary to know not only how individual
programs were executed, but also when execution Switches
from one address space to another and when context Switches
occur, information that is provided by Some hardware trace
mechanisms. For processors that do not generate hardware
trace data, this capability is provided by the embodiment of
the invention described with reference to FIG. 5. Visibility
with respect to total system behavior is thereby achieved. The
techniques for instrumenting the operating system may be
used in combination with, or separately from, the techniques
for instrumenting application program object code that have
been described above.
0056. The steps for instrumentation of the operating sys
tem described above with reference to FIG.5 may be accom
plished manually. Alternatively, the instrumentation can be
automated and may be performed, for example, by a linker.
0057. In another aspect of the embodiment, the instrumen
tation enables trace-based reconstruction of occurrences of
interrupts while a task is executing. A technique similar to the
stop bit mechanism described above is employed. In the store
instructions used at instrumentation points in the operating
system, an addressing bit is reserved, with Zero indicating that
a kernel process is executing and one indicating that a non
kernel task is running in a virtual address space. Thus, if a tag
collected as trace data shows the reserved bit set to one, and a
Subsequent tag shows the bit set to Zero, it indicates that an
interrupt fired, or a system call trap occurred, or the like,
returning control to the kernel. The execution of the program
can be reconstructed accordingly.
0.058. The store instructions used in the instrumentation
again use a reserved address space, as with the instrumenta

Dec. 13, 2012

tion of application code. In one embodiment, the instrumen
tation instructions back up a register and then load a unique
base address to the register. A Subsequent store instruction
includes an offset value representing an address space ID or
task ID. An additional bit is reserved to indicate whether the
value being written out is an address space or task ID.
0059. It will be understood that each block of the flow
diagrams discussed above, and combinations of blocks
therein, can be implemented by program instructions that can
be included as components in a tangible form of processor
readable media, such as a CD-ROM, DVD, Tape, Floppy
Disc, and the like; or an intangible form of processor readable
media, such as an electronic file(s) or electronic component
(s). These program instructions may be provided to a proces
Sor to produce a machine, such that the instructions, which
execute on the processor, create means for implementing the
actions specified in the flow diagram block or blocks. The
computer program instructions may be executed by a proces
Sor to cause a series of operational steps to be performed by
the processor to produce a computer-implemented process
Such that the instructions, which execute on the processor,
provide steps for implementing the actions specified in the
flow diagram block or blocks.
0060 Accordingly, blocks of the flow diagram illustration
Support combinations of means for performing the specified
actions, combinations of steps for performing the specified
actions, and program instruction means for performing the
specified actions. It will also be understood that each block of
the flow diagram illustration, and combination of blocks in
the flow diagram illustration, can be implemented by special
purpose hardware-based systems, and the like, which can
perform at least a portion of the specified actions or steps, or
combinations of special-purpose hardware and computer
instructions.
0061 The above specification, examples, and data provide
a complete description of the manufacture and use of the
composition of the invention. Since many embodiments of
the invention can be made without departing from the spirit
and scope of the invention, the invention resides in the claims
hereinafter appended.
We claim:
1. A method for generating execution trace data for a pro

gram that executes on a target machine, comprising:
determining each block of object code for the program to

be instrumented, wherein at least one block of object
code for the program is instrumented for executing on
the target machine; and

associating an instrumented object code block with a
memory location of the target machine. Such that, if the
instrumented object code block is executed, a simulated
trace probe is arranged to collect trace data that is written
to the memory location.

c c c c c

