ACIDIC INSULIN PREPARATIONS HAVING IMPROVED STABILITY

Inventors: Anette BRUNNER-SCHWARZ, Frankfurt (DE); Norbert LILL, Kronberg (DE)

Correspondence Address:
ANDREA Q. RYAN
SANOFI-AVENTIS U.S. LLC
1041 ROUTE 202-206, MAIL CODE: D303A
BRIDGEWATER, NJ 08807 (US)

Assignee: SANOFI-AVENTIS DEUTSCHLAND GMBH,
Frankfurt am Main (DE)

Appl. No.: 12/773,356
Filed: May 4, 2010

Related U.S. Application Data
Continuation of application No. 12/328,208, filed on Dec. 4, 2008, now Pat. No. 7,713,930, which is a continuation of application No. 11/089,777, filed on Mar. 25, 2005, now Pat. No. 7,476,652, which is a continuation of application No. 10/461,740, filed on Jun. 13, 2003, now abandoned.

Provisional application No. 60/409,338, filed on Sep. 9, 2002.

Foreign Application Priority Data
Jun. 18, 2002 (DE) 10227232.8

Publication Classification
Int. Cl. A61K 38/28 (2006.01)

U.S. Cl. .. 514/3

ABSTRACT
The invention relates to a pharmaceutical formulation comprising a polypeptide selected from the group consisting of insulin, an insulin metabolite, an insulin analog, an insulin derivative and combinations thereof; a surfactant or combinations of two or more surfactants; optionally a preservative or combinations of two or more preservatives; and optionally an isotonicizing agent, buffers or further excipients or combinations thereof, the pharmaceutical formulation having a pH in the acidic range.
ACIDIC INSULIN PREPARATIONS HAVING IMPROVED STABILITY

SUMMARY OF THE INVENTION

[0002] The invention relates to a pharmaceutical formulation comprising a polypeptide selected from the group consisting of insulin, an insulin metabolite, an insulin analog, an insulin derivative or combinations thereof; a surfactant or combinations of two or more surfactants; optionally a preservative or combinations of two or more preservatives; and optionally an isotonicizing agent, buffers or further excipients or combinations thereof, the pharmaceutical formulation having a pH in the acidic range. These formulations can be employed for the treatment of diabetes, and are particularly suitable for preparations in which a high stability to thermal and/or physicochemical stress is necessary. The invention likewise relates to parenteral preparations which contain such formulations and can be used in diabetes and to methods for producing the preparations and for improving the stability of insulin preparations.

BACKGROUND OF THE INVENTION

[0003] Worldwide, approximately 120 million people suffer from diabetes mellitus. Among these, approximately 12 million are type I diabetics, for whom the substitution of the lacking endogenous insulin secretion is the only currently possible therapy. The affected persons are dependent lifelong on insulin injections, as a rule a number of times daily. In contrast to type I diabetes, there is not basically a deficiency of insulin in type II diabetes, but in a large number of cases, especially in the advanced stage, treatment with insulin, optionally in combination with an oral antidiabetic, is regarded as the most favorable form of therapy.

[0004] In the healthy person, the release of insulin by the pancreas is strictly coupled to the concentration of blood glucose. Elevated blood glucose levels, such as occur after meals, are rapidly compensated by a corresponding increase in insulin secretion. In the fasting state, the plasma insulin level falls to a basal value which is adequate to guarantee a continuous supply of insulin-sensitive organs and tissue with glucose and to keep hepatic glucose production low at night. The replacement of endogenous insulin secretion by exogenous, mostly subcutaneous administration of insulin, as a rule does not approximate the quality of the physiological regulation of the blood glucose described above. Often, deviations of blood glucose upward or downward occur, which in their severest forms can be life-threatening. In addition, however, blood glucose levels which are increased for years without initial symptoms are a considerable health risk. The large-scale DCCT study in the USA (The Diabetes Control and Complications Trial Research Group (1993) N. Engl. J. Med. 329, 977-986) demonstrated clearly that chronically elevated blood glucose levels are essentially responsible for the development of diabetic late damage. Diabetic late damage is microvascular and macrovascular damage which is manifested, under certain circumstances, as retinopathy, nephropathy or neuropathy and leads to loss of sight, kidney failure and the loss of extremities and is moreover accompanied by an increased risk of cardiovascular diseases. In view of this, an improved therapy of diabetes should be aimed at keeping the blood glucose as closely as possible in the physiological range. According to the concept of intensified insulin therapy, this should be achieved by repeated daily injections of rapid- and slow-acting insulin preparations. Rapid-acting formulations are given at meals in order to level out the postprandial increase in the blood glucose. Slow-acting basal insulins should ensure the basic supply with insulin, in particular during the night, without leading to hypoglycemia.

[0005] Insulin is a polypeptide of 51 amino acids, which are divided into 2 amino acid chains: the A chain having 21 amino acids and the B chain having 30 amino acids. The chains are connected to one another by means of 2 disulfide bridges. Insulin preparations have been employed for diabetes therapy for many years. Not only are naturally occurring insulins used, but recently also insulin derivatives and analogs.

[0006] Insulin analogs are analogs of naturally occurring insulins, namely human insulin or animal insulins, which differ by substitution of at least one naturally occurring amino acid residue with other amino acids and/or addition/removal of at least one amino acid residue from the corresponding, otherwise identical, naturally occurring insulin. The amino acids can in this case also be those which do not occur naturally.

[0007] Insulin derivatives are derivatives of naturally occurring insulin or an insulin analog which are obtained by chemical modification. This chemical modification can consist, for example, of the addition of one or more specific chemical groups to one or more amino acids. As a rule, insulin derivatives and insulin analogs have a somewhat modified action compared with human insulin.

[0008] Insulin analogs having an accelerated onset of action are described in EP 0 214 826, EP 0 375 437 and EP 0 678 522. EP 0 124 826 relates, inter alia, to substitutions of B27 and B28. EP 0 678 522 describes insulin analogs which in position B29 have various amino acids, preferably proline, but not glutamic acid. EP 0 375 437 includes insulin analogs with lysine or arginine in B28, which can optionally be additionally modified in B3 and/or A21.

[0009] In EP 0 419 504, insulin analogs are disclosed which are protected against chemical modifications, in which asparagine in B3 and at least one further amino acid in the positions A5, A15, A18 or A21 are modified.

[0010] In WO 92/00321, insulin analogs are described in which at least one amino acid of the positions B1-B6 is replaced by lysine or arginine. According to WO 92/00321, insulins of this type have a prolonged action. The insulin analogs described in EP-A 0 368 187 also have a delayed action.

[0011] The insulin preparations of naturally occurring insulins on the market for insulin substitution differ in the origin of the insulin (e.g. bovine, porcine, human insulin), and also the composition, whereby the profile of action (onset of action and duration of action) can be influenced. By combination of various insulin preparations, very different profiles of action can be obtained and blood sugar values which are as physiological as possible can be established. Recombinant DNA technology today makes possible the preparation of such modified insulins. These include insulin glargine (Gly (A21)-Arg(B31)-Arg(B32)-human insulin) with a prolonged duration of action. Insulin glargine is injected as an acidic,
clear solution and precipitates on account of its solution properties in the physiological pH range of the subcutaneous tissue as a stable hexamer associate. Insulin glargine is injected once daily and is distinguished compared with other long-acting insulins by its flat serum profile and the reduction of the danger of nightly hypoglycemia associated therewith (Schroeder-Silovecz et al., 2:125-130 (2001)).

[0012] The specific preparation of insulin glargine, which leads to the prolonged duration of action, is characterized, in contrast to previously described preparations, by a clear solution having an acidic pH. Especially at acidic pH, insulins, however, show a decreased stability and an increased prono-
ness to aggregation on thermal and physicochemical stress, which can make itself felt in the form of turbidity and precip-
itation (particle formation) (Brange et al., J. Ph. Sci 86:517-525 (1997)).

[0013] The propensity to aggregation can additionally be promoted by hydrophobic surfaces which are in contact with
the solution (Sluzky et al., Proc. Natl. Acad. Sci. 88:9377-
9381 (1991)). Surfaces which can be considered as hydropho-
bic are the glass vessels of the preparations, the stopper mate-
rial of the sealing caps or the boundary surface of the solution with the air supernatant. In addition, very fine silicone oil droplets can function as additional hydrophobic aggregation nuclei in the taking of the daily insulin dose by means of customary, siliconized insulin syringes and accelerate the process.

[0014] WO 01/43762 describes aqueous, parenteral phar-
aceutical preparations comprising a polypeptide and gly-
cerol, in which the stabilization of the preparation is to be
achieved by purifying off destabilizing constituents of the
glycerol.

[0015] WO 00/23098 describes insulin preparations stabil-
ized using polysorbate 20 or poloxamer 188 for pulmonary
administration, but does not describe the stabilization in an
critical solution against aggregation nuclei.

[0016] WO 02/076495 describes zinc-free and low-zinc
insulin preparations having improved stability at room and
body temperature and to mechanical stress by the addition of
surfactants, but does not describe the stabilization of acidic
insulin preparations against hydrophobic aggregation nuclei.

[0017] The present invention was thus based on the object
of finding preparations for acid-soluble insulins containing
surfactants, which are distinguished by a high long-term sta-
bility to stress due to temperature or physicochemical
stress and tolerate a high stress with hydrophobic aggre-
gation nuclei.

DETAILED DESCRIPTION OF THE INVENTION

[0018] It has now surprisingly been found that the addition
of surfactants can greatly increase the stability of acidic insu-
l in preparations and thus preparations can be produced which
guarantee superior stability to hydrophobic aggregation nuclei
for several months under temperature stress.

[0019] The pharmaceutical preparations of the present inven-
tion contain 60-6000 nmol/ml, preferably 240-3000
nmol/ml, of an insulin, an insulin metabolite, an insulin anal-
og or an insulin derivative.

[0020] The surfactants which can be used are, inter alia,
nionic surfactants. In particular, pharmaceutically custom-
ary surfactants are preferred, such as, for example: partial and
fatty acid esters and ethers of polyhydric alcohols such as of
glycerol, sorbitol and the like (SPAN®, TWEEN®, in par-
ticular TWEEN® 20 and TWEEN® 80, MYRJ®, BRIJ®,
CREMOPHOR® or poloxamers. The surfactants are present
in the pharmaceutical composition in a concentration of
5-200 µg/ml, preferably of 5-120 µg/ml and particularly pref-
erably of 20-75 µg/ml.

[0021] The preparation can additionally optionally contain preservatives (e.g. phenol, cresol, parabens), isotonizing
agents (e.g. mannitol, sorbitol, lactose, dextrose, trehalose,
sodium chloride, glycerol), buffer substances, salts, acids and
alkalis and also further excipients. These substances can in
each case be present individually or alternatively as mixtures.

[0022] Glycerol, dextrose, lactose, sorbitol and mannitol
are customarily present in the pharmaceutical preparation in
a concentration of 100-250 mM, NaCl in a concentration of
up to 150 mM. Buffer substances, such as, for example,
phosphate, acetate, citrate, arginine, glycolylglycine or TRIS
(i.e. 2-amino-2-hydroxymethyl-1,3-propanediol) buffer and
corresponding salts, are present in a concentration of 5-250
mM, preferably 10-100 mM. Further excipients can be, inter
alia, salts or arginine.

[0023] The invention therefore relates to a pharmaceutical
formulation comprising a polypeptide selected from the
group consisting of insulin, an insulin analog, an insulin
derivative, an active insulin metabolite and combinations
thereof; a surfactant or combinations of two or more sur-
factants; optionally a preservative or combinations of two or
more preservatives; and optionally an isotonizing agent,
buffer substances and/or further excipients or combinations
thereof, the pharmaceutical formulation being a clear
solution which has a pH in the acid range (pH 1-6.8), preferably
pH 3.5-6.8, very particularly preferably 3.5-4.5.

[0024] Preferred pharmaceutical formulations of the
present invention are those wherein the surfactant is selected
from the group consisting of partial and fatty acid esters and
ethers of polyhydric alcohols such as of glycerol and sorbitol,
and polys; the partial and fatty acid esters and ethers of
glycerol and sorbitol being selected from the group consist-
ing of SPAN®, TWEEN®, MYRJ®, BRIJ®, CREMOPHOR®;
the polys being selected from the group consisting of
dextran, pullulan, hydroxypropyl cellulose, hydroxypropyl
methylcellulose, propylene glycol, cellulose ethers, poloxamers,
PLURONICS®; and TETRONICS®; the preservative being
selected from the group consisting of phenol, cresol, and
parabens; the isotonizing agent being selected from the

[

[0025] A further subject of the invention is a pharmaceuti-
cal formulation such as described above, in which the insulin,
the insulin analog, the active insulin metabolite and/or the
insulin derivative is present in a concentration of 60-6000

[0026] The invention relates to a pharmaceutical

nmol/ml, preferably in a concentration of 240-300 nmol/ml (this corresponds approximately to a concentration of 1.4-35 mg/ml or 40-500 units/ml);
in which the surfactant is present in a concentration of 5-200 µg/ml, preferably of 5-120 µg/ml and particularly preferably of 20-75 µg/ml.

[0026] A further subject of the invention is a pharmaceutical formulation such as mentioned above, in which glycerol and/or mannitol is present in a concentration of 100-250 mM, and/or NaCl is preferably present in a concentration of up to 150 mM.

[0027] A further subject of the invention is a pharmaceutical formulation such as mentioned above, in which a buffer substance is present in a concentration of 5-250 mM.

[0028] A further subject of the invention is a pharmaceutical insulin formulation which contains further additives such as, for example, salts which delay the release of insulin. Mixtures of such delayed-release insulins with formulations described above are included therein.

[0029] A further subject of the invention is a method for the production of such pharmaceutical formulations. Likewise, a further subject of the invention is the use of such formulations for the treatment of diabetes mellitus.

[0030] A further subject of the invention is the use or the addition of surfactants as stabilizer during the process for the production of insulin, insulin analogs or insulin derivatives or their preparations.

EXAMPLES

[0031] The following examples illustrate, by no means limit, the present invention.

[0032] Comparison investigations: Different preparations containing the insulin analog insulin glargine (Gly(A21), Arg(B31), Arg(B32)-human insulin) are prepared. To this end, insulin glargine is suspended in one part of water for injection, dissolved at pH 3-4, the other constituents are added, the pH is adjusted to 4.0 +/- 0.2 using hydrochloric acid/NaOH and the mixture is made up to the final volume. The concentration of insulin glargine in each of the experiments described below is 3.6378 mg/ml (corresponds to 100 units/ml). A second preparation is produced identically, but a specific amount of a surfactant is additionally added. The solutions are filled into 10 ml glass vessels (vials) and fitted with crimp caps. These vessels are now exposed to simulated in use orphysicomechanical stress conditions:

[0033] 1. In use test: The vessels are sorted into boxes with turned-up lids and stored during the investigation period of 28 days at +25°C and controlled room humidity with exclusion of light. To simulate taking by the patient, once daily about 5 IU of the solutions are withdrawn using a customary insulin syringe and discarded. At the beginning and end of the working week this procedure is carried out twice in order to simulate taking at the weekend. Before each withdrawal, visual assessment of the solution in the vessels for turbidity and/or particle formation is carried out.

[0034] 2. Shaking test: The vessels are placed in a box with a turned-up lid lying on a laboratory shaker having an incubator and thermostat and shaken at 25°C with 90 movements/min parallel to the horizontal movement for a period of time of 10 days. After defined times, the turbidity value of the samples is determined by means of a laboratory turbidity photometer (nephelometer) in formaldehyde nephelometric units (formaldehyde nephelometric unit=FNU). The turbidity value corresponds to the intensity of the scattered radiation of the light incident on suspended particles in the sample.

Example I

Stabilization of the in Use Period of Insulin Glargine
Using Polysorbate 20 (Tween® 20)

[0035] a) The solution is sterile-filtered through a combination of 0.2 µm and 0.1 µm filters. It is then poured into 10 ml injection vials and sealed using crimp caps having an inserted sealing disk.

b) A comparison solution is prepared identically, but first a suitable amount of surfactant (10-30 ppm of polysorbate 20) is suspended in water for injection. The samples are stored at +5°C, 25°C, and 37°C for a fixed period of time.

[0036] 10 samples in each case are then subjected to an in use test. The results are shown in the table below.

Storage for 3 Months at 5°C.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>7</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 6 Months at 5°C.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>1</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
</tbody>
</table>
Storage for 3 Months at 25°C.

[0039]

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>9</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>2</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 6 Months at 25°C.

[0040]

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>10</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 1 Month at 37°C.

[0041]

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 3 Months at 37°C.

[0042]

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>5</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>1</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 6 Months at 37°C.

[0043]

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Number of vials with particle formation after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>10</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>1</td>
</tr>
</tbody>
</table>

[0044] Without addition of polysorbate 20, particle formation can occur in the solution even after 7 days in use. By addition of polysorbate 20, the particle formation can be markedly suppressed during the use period.

[0045] The stabilizing action of polysorbate 20 is retained even on storage at elevated temperatures for a period of 3 months.

[0046] A decline in the stabilizing action due to possible hydrolysis of the polysorbate in the acidic medium of the solution cannot be determined in comparison with the data after storage for 1 month.

Example 2

Stabilization of Insulin Glargine Using Polysorbate 20 Under Physico-Mechanical Stress Loading

[0047] a) The solution is sterile-filtered through a combination of 0.2 μm and 0.1 μm filters. It is then poured into 10 ml injection vials and sealed using crimp caps having an inserted settling disk.

b) A comparison solution is prepared identically, but first a suitable amount of surfactant (0.010-0.030 mg/ml of polysorbate 20) is suspended in water for injection.

[0048] The samples are stored at +45°C, 25°C, and 37°C for a fixed period of time. 5 samples in each case are then subjected to a shaking test. The results are shown in the table below, the limit 15 FNU corresponds to turbidities which are discernible in daylight.
Storage for 1 Month at 5° C.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>0 days</th>
<th>0.5 days</th>
<th>1 day</th>
<th>2 days</th>
<th>3 days</th>
<th>4 days</th>
<th>6 days</th>
<th>8 days</th>
<th>10 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glargine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 1 Month at 25° C.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>0 days</th>
<th>0.5 days</th>
<th>1 day</th>
<th>2 days</th>
<th>3 days</th>
<th>4 days</th>
<th>6 days</th>
<th>8 days</th>
<th>10 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glargine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.020 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.030 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Storage for 1 Month at 37° C.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>0 days</th>
<th>0.5 days</th>
<th>1 day</th>
<th>2 days</th>
<th>3 days</th>
<th>4 days</th>
<th>6 days</th>
<th>8 days</th>
<th>10 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glargine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Insulin glargine + 0.010 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insulin glargine + 0.015 mg/ml of polysorbate 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Without addition of polysorbate 20, even after 2 days of severe physiomechanical stress, a visible turbidity can occur in the solution. By addition of polysorbate 20, the formation of turbidity during physiomechanical stressing can be markedly delayed. The stabilizing action of polysorbate 20 is retained even on storage at elevated temperatures.

A decline in the stabilizing action due to possible hydrolysis of the polysorbate in the acidic medium of the solution cannot be detected.

Example 3
Comparison of the Stabilization of the in Use Period of Insulin Glargine Using Polysorbate 20 (Tween® 20) and Using Polysorbate 80 (Tween® 20)

Open 10 vials in each case to give 5 ml of insulin glargine injection solution and
a) addition of 0.001 mg/ml of polysorbate 20
b) addition of 0.01 mg/ml of polysorbate 20
c) addition of 0.001 mg/ml of polysorbate 80
d) addition of 0.01 mg/ml of polysorbate 80
in the form of a concentrated stock solution.

The samples are then subjected to an in use test.

The results are shown in the table below.

<table>
<thead>
<tr>
<th>Test sample</th>
<th>7 days</th>
<th>14 days</th>
<th>21 days</th>
<th>28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glargine + 0.001 mg/ml of polysorbate 20</td>
<td>no</td>
<td>yes</td>
<td>Yes, particles increasingly occur</td>
<td>Yes, particles increasingly occur</td>
</tr>
<tr>
<td>Insulin glargine + 0.01 mg/ml of polysorbate 20</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Insulin glargine + 0.001 mg/ml of polysorbate 80</td>
<td>no</td>
<td>yes</td>
<td>Yes, particles increasingly occur</td>
<td>Yes, particles increasingly occur</td>
</tr>
<tr>
<td>Insulin glargine + 0.01 mg/ml of polysorbate 80</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

An addition of polysorbate 20 or of polysorbate 80 in a concentration of 0.001 mg/ml are equally able to stabilize the solution against particle formation during the in use period.

What is claimed is:
1. A pharmaceutical formulation comprising:
 (a) Gly(A21), Arg(B31), Arg(B32)-human insulin;
 (b) polysorbate 20;
 (c) sodium chloride;
 (d) glycerol;
 (e) m-cresol; and
 (f) water,
 wherein the pharmaceutical formulation has a pH in the acidic range from 3.5 to 6.8.

2. The pharmaceutical formulation as claimed in claim 1, wherein the Gly(A21), Arg(B31), Arg(B32)-human insulin is present at a concentration of about 1.4 to about 35 mg per milliliter.

3. The pharmaceutical formulation as claimed in claim 1, wherein the Gly(A21), Arg(B31), Arg(B32)-human insulin is present at a concentration of about 3.6 mg per milliliter.

4. The pharmaceutical formulation as claimed in claim 3, further including zinc.

5. The pharmaceutical formulation as claimed in claim 1, wherein polysorbate 20 is present at a concentration of about 5 to 120 µg per milliliter.

6. The pharmaceutical formulation as claimed in claim 1, wherein polysorbate 20 is present at a concentration of about 20 to 75 µg per milliliter.

7. The pharmaceutical formulation as claimed in claim 1, wherein sodium chloride is present at a concentration of up to 150 mM.

8. The pharmaceutical formulation as claimed in claim 1, wherein glycerol is present at a concentration of about 100 to 250 mM.

9. The pharmaceutical formulation as claimed in claim 1, further comprising a buffer.

10. The pharmaceutical formulation as claimed in claim 9, wherein the buffer is chosen from TRIS, phosphate, citrate, acetate, and glycylglycine.

11. The pharmaceutical formulation as claimed in claim 10, wherein said buffer is present in a concentration of 5-250 mM.

12. The pharmaceutical formulation as claimed in claim 1, wherein the pharmaceutical formulation has a pH in the acidic range from 3.5 to 4.5.

13. The pharmaceutical formulation as claimed in claim 1, wherein the pharmaceutical formulation has a pH of 4 (+/-0.2).

* * * * *