00 O O 0

01/22244 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 March 2001 (29.03.2001)

V0 G 0 0 O

(10) International Publication Number

WO 01/22244 Al

(51) International Patent Classification5: GOG6F 15/16

(21) International Application Number: PCT/US99/21818

(22) International Filing Date:

20 September 1999 (20.09.1999)
(25) Filing Language: English
(26) Publication Language: English

(71) Applicant: MICROLINC, LLC [US/US]; Suite 3180,
One BankOne Plaza, Chicago, IL 60603 (US).

(72) Inventor: KAVIPURAPU, Gautam; 16500 Lauder Lane,
#16202, Dallas, TX 75248 (US).

(74) Agent: CUMMINGS, Eugene, M.; Cook, Alex, McFar-
ron, Manzo, Cummings & Mehler, 200 W. Adams Street,
Chicago, IL 60603 (US).

(81) Designated States (national): AU, CA, JP, KR.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER HAVING PACKET-BASED INTERCONNECT CHANNEL

51a\

"7

y51b
a9b~L. r B

r50

LINK) FUNCTIONAL !

(PROCESSOR, |
: MEM. DEVICES,) INTERFACE
I
{1/0 DEVICES, |
DISPLAY

|IFUNCTIONAL | |
|OUNIT e
STORAGE
DEVICES, |
(@QESELL____J4M
PACKET NODE
48a A

|
(-_:4_' INTERFACE| UNIT
|
|

l |
o
PACKEg NODE

(57) Abstract: A physically non-distributed microprocessor-based computer includes a microprocessor (40), a random access mem-
ory device (46),a mass storage device (46), and an input-output port device (48),all operable from the microprocessor (40) and includ-
ing an interface (51a) for receiving and transmitting data in packet form. A novel packet-based data channel (50) extends between
the microprocessor (40) and the devices. By varying the size of the packets (55) in accordance with actual data transmission require-

ments improved computer performance is achieved.

10

15

20

25

30

WO 01/22244 PCT/US99/21818

COMPUTER HAVING PACKET-BASED INTERCONNECT CHANNEL

DESCRIPTION

Background of the Invention
This invention relates to physically non-

distributed microprocessor based systems and, more
particularly, the communication channel between functional
components within a class of computer systems commonly
known as personal computers.

A personal computer (PC) is comprised of several
major functional components which may be basically defined
as a microprocessor, a read/write memory (RAM), a mass
storage device (e.g., hard drive or CD ROM), and an
input/output (I/0) device (e.g., display, serial port,
parallel ports, etc.). These functional components within
the PC are interconnected by, and communicate via, a
parallel data/address bus which is usually as wide as the
processor data I/O path. The bus is typically of fixed
physical length comprising a number of parallel copper
traces on the PC’s motherboard. In addition, there are
provided a number of fixed tap points to the bus, e.g.,
edge connectors, din connectors, etc., to allow the
customization of the PC’s configuration by adding
peripheral functions, memory, etc., or removing unused
functionality.

While a bus provides a simple-minded mechanism
for customization and communication within a PC, it has

several limitations and unique problems associated with

wn

10

15

20

25

30

WO 01/22244 PCT/US99/21818

it. First, a bus is by nature, single transaction (e.g.,
only one functional unit can communicate with another at
any given time and during this time, no other functional
units can communicate with anything) and sequential
(messages follow one after the other with considerable
handshaking between functional units). A second problem
of a bus is that all functional units connected to the bus
must meet the electrical specifications and requirements
of the bus even if these specifications and requirements
are quite dated, technologically. Thirdly, because the
bus is a generic interconnect in nature, it can not be
truly optimized for communication between any specific
subset of functional units without adversely affecting
communication performance between another subset of
functional units.

Fourth, the speed of the bus is substantially
slower than might otherwise be obtainable. This is due to
two primary issues: First, busses are composed of
relatively long lengths of parallel traces in close
proximity to one another and this results in high
parasitic capacitive coupling between traces of the bus
(i.e., electrical noise). This noise increases as the
frequency, or speed, of the bus increases. Thus, noise
margin requirements restrict the speed (and length) of the
bus. The second issue relates to the unknown and highly
variable electrical loading of the bus. The speed of the
bus is inversely proportional to the capacitive load on
the bus. This capacitive load is determined by the number
of electrical connectors on the bus and the number of
electrical connections to the bus. Since these numbers
are variable, designers typically engineer the bus for
worst case constraints. That is, the bus is typically

slowed down to a rate that would sustain a worst case

10

15

20

25

30

WO 01/22244 PCT/US99/21818

3

loading situation even though this may occur in one PC in
a thousand.

Other major drawbacks of a bus are the need for
electrical handshake signals and its fixed electrical data
width (i.e., 8 bits, 16 bits, 32 bits, etc.) Handshake
signals typically include READ, WRITE, MEM, I/O,
WAIT/READY, etc. These signals are physical and are used
to inform and control functional units (i.e., inform of
the type of request, and control/synchronize between
communicators.) Fixed data width limitations become
problematic as chip data path widths exceed the width of
the bus. As will be seen herein, defining handshaking and
data size at the physical layer is less flexible than
would be desired.

With the ever increasing demand for data
manipulation in such applications as multimedia or
graphics programs, the bottleneck of the bus becomes more
acute. There have been many attempts to address and
remedy this problem (e.g., VESA, Video local bus, PCI,
etc.) but no solution offers greatly improved performance
and complete scalability.

The present invention provides a system with the
configuration flexibility of a bus-based PC while reducing
the electrical problems. Commensurably, interfunctional-
unit communication speed and flexibility are greatly
enhanced. The present invention applies a point-to-point
packetized interconnection structure to facilitate
communication between functional units (e.g., processor,
memory, disk, I/0, etc.) within a PC.

Because it is point-to-point, the
interconnections scheme of the present invention is of
relatively fixed electrical load and can, therefore, be

optimized for speed. Furthermore, the packet protocol

10

15

20

25

30

WO 01/22244 PCT/US99/21818

4

that will be more fully disclosed herein provides a means
of eliminating the typical physical layer control signals
of a bus and replacing them with link-layer control which
is much more flexible.

In order to allow for interconnecting more than
two functional units, the present invention may be
expanded by any of several interconnect topologies, e.g.,
switches, rings, etc. Where speed and a high degree of
parallel traffic is desired, a switch topology provides
the best means, e.g., crossbar switch. If speed is
important but parallel traffic patterns are not very
common, a shuffle-type switch may make the most sense. In
applications that are very cost sensitive, the present
invention may also be expanded by means of a ring
topology.

As will be made clear in the specific disclosure
portion of this document, the packetized point-to-point
interconnection scheme of the present invention improves
speed and performance at reduced cost and with better
noise characteristics (both internal electrical noise and
radiated EMI) as compared to the bus interconnect
currently employed within a PC.

Therefore, it is an object of the present
invention to provide a new and improved PC, specifically,
improving internal communication between microprocessor,
memory, mass storage, I/0, etc. or any subset of these
functional units. It is further an object of the
invention to improve communication speed within a PC. It
is further an object of the invention to reduce
interconnection electrical noise within a PC. It is
further and object of the invention to provide a more
flexible interconnect means within a PC.

Accordingly, it is a general object of the

10

15

20

25

30

WO 01/22244

5

PCT/US99/21818

present invention to provide a new and improved PC,

specifically improving internal communication between

microprocessor,

memory, mass storage,

subset of these functional units.

I/0, etc. or any

It is a more specific object of the present

invention to provide improved communication speed within a

PC.

It is a still more specific object of the

present invention to reduce interconnection electrical

noise within a

PC, and to provide a more flexible

interconnect means.

Summary of the

Invention

The invention is directed to a physically non-

distributed microprocessor-based computer system,

comprising a microprocessor,

device, a mass

a random access memory

storage device, an input-output port

device, wherein the devices are each being operable in

conjunction with the microprocessor and include an

interface for receiving and transmitting data in packet

form, and which further comprise a packet-based data

channel extending between the microprocessor and the

interfaces of the devices for providing simultaneous bi-

directional communication between the microprocessor and

the devices.

Brief Description of the Drawings

The features of the present invention which are

believed to be novel are set forth with particularity in

the appended claims. The invention,

together with the

further objects and advantages thereof, may best be

understood by reference to the following description taken

in conjunction with the accompanying drawings, in the

several figures of which like reference numerals identify

like elements,

and in which:

10

15

20

25

30

WO 01/22244 PCT/US99/21818

6

Figure 1 is a block diagram of current PC
systems which use a bus based interconnect.

Figure 2 is a conceptual block diagram of two
packet nodes and a physical link.

Figure 3 is a general block diagram of a packet.

Figure 4 is a detailed diagram of the packet
header showing each of the fields.

Figure 5 is a general block diagram of an Idle
packet.

Figure 6 is a general block diagram of an
Request packet.

Figure 7 is a general block diagram of a Request
Echo packet.

Figure 8 is a general block diagram of a
Response packet.

Figure 9 is a functional block diagram of a link
interface showing all the necessary elements.

Figure 10 shows the possible structures of a
request queue shown in Figure 9.

Figure 11 shows the possible structures of a
response queue shown in Figure 9.

Figure 12 shows the structure of a linc cache
shown in Figure 9.

Figures 13a and 13b show possible
implementations of the linc using discrete link interface
chips.

Figure 14 shows a processor with an embedded
link interface connected to system memory through another
link interface.

Figure 15 shows detailed structure of the Idle
packet for processor memory I/0.

Figure 16 shows detailed structure of the

request packet for processor memory I/0.

10

15

20

25

30

WO 01/22244 PCT/US99/21818

7

Figure 17 shows a detailed structure of a
Request Echo packet for processor memory I/O.

Figure 18 shows detailed structure of a Response
packet for processor memory I/O.

Figure 19 shows sample request packets for a
load and store instruction.

Figure 20 is a detailed schematic of the
processor node interface chip transmit half.

Figure 21 is a detailed schematic of the
processor node interface chip receive half.

Figure 22 is a detailed schematic of the memory
node interface chip receive half.

Figure 23 is a detailed schematic of the memory
node interface chip transmit half.

Figure 24 shows a possible ring interconnect
topology for packet nodes.

Figure 25 shows a possible switched interconnect
topology for packet nodes.

Figure 26 shows possible structures of response
packets for a given request in response to conditional
branch or jump in program code.

Figure 27 is a flow graph of the processor node
receive protocol.

Figure 28 is a flow graph of the processor node
transmit protocol.

Figure 29 is a flow graph of memory node receive
protocol.

Figure 30 is a flow graph of memory node
transmit protocol.

Description of the Preferred Embodiment

With reference to the Figures, and particularly
to Figure 1, a node is defined as any device or group of

devices which perform a specific system function within a

10

15

20

25

30

WO 01/22244

PCT/US99/21818

8

microprocessor system. Such nodes typically have a
physical address or addresses with which they are
associated. Examples of such nodes include a processor,
memory, an input/output device, a hard disk, etc. The
object of this invention is to interconnect all, or some
subset of all, nodes with a high speed message passing
packetized interconnection channel.

Figure 1 depicts the simplest implementation of
the prior art. Processor node 40 is connected to bridge
node 41. Bridge node 41 is further connected to memory
node 42. Bridge node 41 also provides an interface to
system bus 43 in order to allow processor node 40 to
communicate with peripheral nodes 44, 45, 46 and 47 over
the bus.

The high speed message passing packetized
interconnect channel and protocol is intended to allow
asynchronous communication between any two nodes, so
equipped, in any system configuration using packets of
data or instructions. Figure 2 shows a logical
conceptualization of a node. The functional unit 48 may
be any of the elements of Figure 1. Interface 49, which
is the embodiment of the present invention, provides a
seamless interface between functional unit 48 and the
physical layer 50. Physical layer 50 connects to any
other packet node 51, thereby, in conjunction with
interface 49, allowing communication between any group of
functional units of Figure 1.

Thus, the present invention makes each node in a
computer microprocessor/microcontroller based system
interface with each other using a uniform packed based
message passing interface. The invention creates packet
nodes which speak the same language electrically and

logically. This simplifies communication and minimizes

10

15

20

25

30

WO 01/22244 PCT/US99/21818

)

traditional handshaking and overhead. Therefore,
significant data-rate speedup may be gained because rather
than being pigeonholed into a hardware restricted, single
transaction, high overhead interconnect (i.e., a bus), the
present invention allows messages of varying length
(rather than single transaction) with flexible
handshaking, and minimal overhead. Or, more precisely,
the present invention allows for more intelligent and
flexible information exchange between nodes while
requiring only that overhead and handshaking required for
a specific transaction. The present invention does not
impose, as does a bus, a set of costly rules and
formalism that must be adhered to even if it makes no
sense for a specific transaction.

Again, with reference to Figure 1, current
systems communicate at the hardware level, i.e., the
processor node 40 issues commands on the processor bus
which must then be converted from the virtual address that
the processor understands to a physical address by bridge
41. This, information is then further converted by bridge
41 prior to being placed on the bus 43. At this point,
all other nodes, 42, 44, 45, 46 or 47 on the bus look to
see 1f they are being addressed by processor node 40. The
one node that is in fact being addressed, acknowledges the
processor guery and then takes action based on that query.
Upon receiving the acknowledgment from the queried node,
processor node 40 now may take appropriate data action
(i.e., output data, input data, etc.) and the transaction
is assumed to be completed. Next, the process can repeat
in exactly the same manner, even if the query is to the
exact same node as previously addressed. This is the
handshaking and overhead bottleneck of a conventional bus.

Furthermore, whenever the bus is being utilized by a pair

10

15

20

25

30

WO 01/22244 PCT/US99/21818

10

of nodes, all other nodes are prevented from communicating
with any other node. The present invention stems from the
realization that the byte by byte handshaking and
transmission that is typical of a bus-based system is
greatly inefficient and constraining and may be vastly
improved upon.

In accordance with the invention packet based
message passing techniques are applied to the nodes within
a microprocessor based system. With reference to Figure
2, the following is a simple illustration of the
invention’s operation: Execution unit 48a (e.g.,
processor node) requests information from execution unit
48(b) (e.g., memory node) via link interface 49(a). Link
interface 49(a) assembles a packet requesting said
information (i.e., its address in memory, amount of data
requested, etc.) and then rapidly transmits said packet to
link interface 49 (b) via physical interface 50 (which may
be single-ended line drivers, low voltage differential
drivers, or any other method common in the art). Link
interface 49(b) then decodes the packet and takes the
necessary steps to process the request with respect to
execution unit 48(b). Link interface 49(b) then collects,
from execution unit 48(b), all data necessary to fill the
request, packetizes the data into a response, and then,
when the request is filled, ships the data back to link
interface 49(a) via physical link 50. At this point, link
interface 49(a), depacketizes the data and provides it to
execution unit 48 (a) in a manner befitting the execution
unit’s request. Thus, the physical link is only tied up
for the time when useful information is actually being
sent. Furthermore, requests for several pieces of data
result in less physical interface bandwidth utilization

since the several pieces of data are streamed in the same

10

15

20

25

30

WO 01/22244 PCT/US99/21818

11

message.

A packet node in the present invention
communicates with another packet node using “packets.”
Each packet contains all the necessary information that is
required for the intended receiver without the added
overhead of setting up the receiver or formatting the data
to a node-specific set up.

The structure of a packet 55 such as shown in

Figure 3 may have, for example, the following general
characteristics:

1) Packet components 52 and 53 are of 16 bits
(2 bytes) in width and referred to as a
packet word.

2) Header 52 has means for indicating that the
next packet word is an extension of the
header 52. This means is the extended
header bit 54.

3) A packet body 53 which can be anywhere from
0 bytes to 256 bytes in length.

4) The maximum size of a packet 55 is 258
bytes.
5) The width of the packet remains the same

regardless of the width of the channel

(i.e., for wider channels, more than one

packet word may be sent in parallel.)
The above definitions may easily be changed without
affecting the nature of the invention.

Figure 4 details the fields within the header
packet. The type-of-packet field 59 defines one of four
fundamental packet types that are exchanged between any
two nodes. These are 1) IDLE, 2) REQUEST, 3) REQUEST ECHO,
and 4) RESPONSE. The type-of-instruction field 58

indicates the action that needs toc be taken by the

10

15

20

25

30

WO 01/22244 PCT/US99/21818

12

receiving node of this packet. Examples of such actions
include load, store, input, output, read, write, and other
system level interfunctional unit operations.

The size-of-device field 57 is to allow for the
interface between devices of different physical data
widths with minimum physical layer transmission time. By
knowing the size of a requesting node device, the
interface circuitry of the receiving node can pack the
data into a packet in the most efficient manner for
decoding by the requesting device and only send portions
of the overall required response that are filled, where
‘filled’ is defined as sufficient to meet the width of the
requesting node device as defined in the size-of-device
field.

The flow control field 56 contains the size-of-
response, node ID, extended header bit, and BUSY/OKAY
status bit. The size-of-response indicates the amount of
data being requested. The node ID indicates the logical
functional unit for which this packet is intended. The
extended header bit allows for headers greater than 2
bytes in size, where necessary. The BUSY/OKAY status bit
indicates whether the receiver of request packet can
accept and service the packet.

Having defined the fields of the header packet,
we now define the four fundamental packet types. The IDLE
packet 55a, Figure 5, contains only the header and no data
and is continually sent out by the idle node. A node
receiving the IDLE packet may then use the idle link for
transmitting data that the receiving node believes the
idle node may need based on the idle node’s prior request
history.

It is informative to illustrate the use of IDLE

packets with an example. Assume that the processor node

10

15

20

25

30

WO 01/22244 PCT/US99/21818

13

has been requesting sequential data blocks from the memory
node. At some point in time, the processor node stops
requesting data from the memory node because the processor
node has to do something else (e.g., service an
interrupt). At this point, the processor node sends idle
packets to the memory node. Upon reception of the idle
packet, the memory node reviews the history of processor
node requests and may continue to send data based on a
projection of the history of the processor node requests.
These unrequested data are then stored in the processor
node link interface cache provided the processor node has
not specifically requested some data from any other node.
In this way, idle links can be used most effectively to
transmit data that may be needed before it is requested.

A second type of packet is the REQUEST packet
55b, Figure 6, which has been informally referred to
throughout this disclosure. This packet is transmitted
between any two nodes to indicate or request an action
from the receiving node for the requesting node. The
request packet contains a header (see Fig 3, element 52)
that has the ID of the requested node in the flow control
field and the type of instruction for the receiver to
execute, e.g., load, store, etc. The request packet also
contains a body (see Fig. 3, element 53) to the extent
that there is data sent by the requesting node to the
receiving node for the receiver to perform the requested
instruction.

The REQUEST ECHO packet 55c, Figure 7, 1is sent
by the receiving ncde to acknowledge reception of a
REQUEST packet 55b. This packet is primarily for
indicating whether the request from the requester can be
catered or not. Within the header of the request echo

packet, in the flow control field, the REQUEST ECHO packet

10

15

20

25

30

WO 01/22244 PCT/US99/21818

14

indicate whether the receiver is busy (busy echo) or able
to service the request {okay echo).

The last packet type is the RESPONSE packet 554,
Figure 8. This packet is used to respond to a REQUEST
packet. The header of the RESPONSE packet contains the
node ID of the intended receiver (i.e., the original
requesting node) and other information regarding flow
control, etc. The body of the response packet contains
the data requested to the extent it is required and the
body of the RESPONSE packet is no longer than it needs to
be to hold said data.

A typical transaction between any two nodes

(node a and node b) shown in Figure 2 is summarized below:

1. Node A generates a request packet for Node
B.
2. Node B, based on whether Node B's request

gueue can cater to the request, sends one

of two messages back.:

a. If it can cater to request from Node A
then sends Node B a REQUEST ECHO OKAY
packet.

b. If it can not cater to a request from

Node A then Node B sends a REQUEST

ECHO BUSY
packet.
3. If Node A receives a REQUEST ECHO OKAY

packet then Node A takes no action on the
original request. If Node A receives a
REQUEST ECHO BUSY packet then Node A
resends the original request.

4. If REQUEST ECHO OKAY was sent by Node B,
then Node B sends a RESPONSE packet to

cater to the original request. This

10

15

20

25

30

WO 01/22244 PCT/US99/21818

15

completes the transaction between Node A
and Node B.

If no action is required from either Node A by
Node B or from Node B by Node A , then IDLE packets are
exchanged between them. Node A sending an IDLE packet to
Node B or vice a versa are both independent operations.
The IDLE packet may also be used to exchange configuration
/ status / control information of each node.

To extend the capability of the present
invention to an arbitrary number of nodes requires an
expanded interconnect. Figure 24 and Figure 25 depict two
possible interconnection schemes.

Figure 24 shows a topology commonly referred to
as a ring interconnect 67. In this type of interconnect,
each link interface’s physical link output is connected to
a neighboring nodes link interface physical input until
the ring is closed. For this type of implementation, the
link interface must implement a pass-through mechanism.
That is, each link interface must compare its node ID to
the node ID of the packet header. If the compare is not
successful, the link interface must forward the packet
just received on its physical link input to its physical
link output. In this way, packets circulate in the ring
until they arrive at their ultimate destination. This
receive-check-forward mechanism is functionally similar to
that described in the IEEE 1596 (SCI) specification
(Elastic Buffer).

To improve performance over a ring, Figure 25
shows another common interconnect topology commonly
referred to as a switch 68. The switch 68 of Figure 25
may be a crossbar switch, a shuffle switch, a broadcast
crossbar switch, or similar device. Implementations of

crossbar switches are well known to the art and it is

10

15

20

25

30

WO 01/22244 PCT/US99/21818

16

sufficient to describe a cross bar as N, M to 1
multiplexers, where N is the number of output ports and M
is the number of input ports. When a crossbar switch is
used, each link interface must check the node ID of the
received packet to guarantee that the packet is intended
for the receiving node. This straightforward modification
to the link interface physical link input circuitry is to
include an ID decoder in the receive logic before gqueuing
the request.

Figure 9 depicts a functional diagram of the
link interface 49. The Host Interface 60 provides the
means to connect the link interface to the bus of the
functional unit 48 (i.e., processor, memory, I1/0, disk,
etc.) This part of the link interface contains all the
necessary hardware to handshake with the functional unit
node and is specific to the said functional unit. It also
provides for all necessary signals to complete bus cycles
needed for the functional unit.

The Store Accumulator 61 is responsible for
packing data into a packet body for the STORE instruction.
This is especially useful when the processor node is doing
a burst write. In this case, the several data and
addresses that are sequentially output by the processor
are accumulated by the Store Accumulator 61 of the link
interface and packed into one store message packet. Thus,
a single message transaction results in several data being
stored by the receiving node.

The Control block 62 provides for control of the
internal components of Figure 9 as well as coordinating
the functioning of the physical link. Control block 62 is
essentially a state machine that keeps track of the link
state and provides the necessary housekeeping functions of

the link. Control block 62 also contains the history

10

15

20

25

30

WO 01/22244 PCT/US99/21818

17

register which is used by the requester in conjunction
with the Linc Cache 63 ‘hit’ information to determine the
desired size-of-response for a given request. This same
register is used by the receiver to determine how much
data and from where said data may be returned when the
receiver detects an IDLE packet. The detailed operations
that Control block 62 performs are disclosed in
association with the operation of each the blocks of
Figure 9 and the link interface.

Request Queue 64 provides buffering and storage
for all accesses coming from a functional unit 48. These
accesses can either be stored in raw form (node address
and data format), or in packetized form, depending upon
the access arrival rate. That is, based on the rate that
accesses come into the link interface from the functional
unit 48, the access may be stored raw and then packetized
as the access is converted to a reguest packet and placed
on the physical link or the access may be packetized prior
to being placed in the queue. With reference to Figure
10, if the access is being stored as a packet in the
Request Queue 64, the gueue is configured, as in Figure
10a, to be two bytes wide plus one bit for frame. The
frame bit 67 is used to indicate the presence of header on
the current cycle. If the access is being stored raw,
then the request queue is reconfigured to be as wide as
the functicnal unit’s address width 68 plus data width 69
plus the instruction field width 70 as in Figure 10Db.

The Echo Waiting Queue 65 of Figure 9, is
operable to function as storage for outstanding Request
packets. These Request packets are copied into the Echo
Waiting Queue 65 until an ECHO OKAY packet is received
from the node catering to the request. Storing

outstanding requests provides the means for the Control

10

15

20

25

30

WO 01/22244 PCT/US99/21818

18

Block to handle out-of-order RESPONSE packets and to
verify link integrity by making sure that all requests are
being responded to.

The Response Queue 66 has a structure similar to
the Request Queue 64. It may be configured as in Figure 11
and its operation is the reverse of the Reguest Queue.

The Response Queue can store either packetized information
as received from the physical link for later
depacketization and passage to the functional unit
(function unit data-need is slow), Figure lla, or
information received from the physical link may be
immediately depacketized and stored raw for delivery to
the functional unit (functional unit data-need is fast),
as in Figure 11b.

Linc Cache 63 is basically a directed mapped
cache for caching response data for the functional unit.
The size of the Linc Cache 63 is an integer multiple of
the maximum data packet size 53, i.e., m x 256. To keep
track of the latest data, the Linc Cache 63 is partitioned
into two identical blocks; one block containing the latest
information 71 and the other block containing the
information received before and up to the latest update
72.

With reference to Figure 12, each block of the
Linc Cache 63 is of fixed size (width 73 and depth 74).
However, the Linc Cache line 75 size is variable.
Furthermore, the Linc Cache line size is always at least
as long as the functional unit’s cache line 76 size.

There are N words in a Linc Cache line, where N is
dynamically variable. If an access from the functional
unit misses in the Linc Cache, the link interface will
request the data from the proper node. The amount of data

requested by the link interface, N, depends on the history

10

15

20

25

30

WO 01/22244 PCT/US99/21818

1°

of the ‘hit’ rate within the Linc Cache. If the hit rate
is high, the control circuitry increase the Linc Cache
line size thus maximizing data transmission per physical
link transaction. If the hit rate is low in the Linc
Cache, the Linc Cache line size is reduced in order to
reduce the size of messages on the physical link.

The motivation for this unique and
counterintuitive approach to cache management is the
realization that if the hit rate to the Linc Cache is low,
the accesses are almost certainly not sequential and are
unpredictable. Thus, increasing the Link Cache line size
will probably not improve the hit rate. Therefore, the
invention reduces the line size (which will probably not
hurt the hit rate but will make the link available for all
nodes more often since message sizes from this node will
now be smaller).

Figures 13 and 14 depict two possible
embodiments of the link interface 49. Figure 13 shows an
implementation wherein the link interface is separate from
any of the node’s circuitry. Figure 13a shows an
implementation where the physical link is on a motherboard
or external physical channel with link chips for each
node. The link chips in Figure 13a only contain the link
interface 49. Figure 13b shows an implementation where
the physical link is embedded inside a single chip or a
linc chip 39. The linc chip 39 contains both a link
interface 49 and the physical link or channel 50. Figure
14 shows an implementation wherein the link interface
associated with the processor node is include within the
processor silicon itself. Figure 13b will be discussed
first.

Figures 20 through 23 show a detailed

implementation of a link interface. With no loss of

10

15

20

25

30

WO 01/22244 PCT/US99/21818

20

generality, the interconnect is assumed to be a two point,
point to point interconnection between a processor node
and a memory node. It will be shown in the description to
follow how the memory node interface may be extended to
include any peripheral device

Figures 20 and 21 depict the transmit and
receive, respectively, link interface circuitry for the
processor node. With respect to Figure 20, the transmit
operation starts when the processor node (host) begins a
bus cycle. The transmit circuitry latches the necessary
data and address information into latch 201. As the data
and address are being latched, the bus cycle of the
processor node is decoded to be either a read or write
(load or store). In either case, control circuitry 204
enables the appropriate header from header pool 207. This
header pool encodes all possible header types since the
type of processor is known to the specific implementation
of the link interface and allows for faster assembly of a
packet. The header is put in the request gqueue 202 and
then the address/data/control of the bus cycle is mapped
to the packet as it is put in the request queue 202. The
request queue 202 operates in a first in, first out (FIFO)
manner. If the cycle is deciphered to be a store then the
request is stored in the store accumulator 205. After the
store accumulator 205 is full the control attaches a
header to the information in the store accumulator 208 and
sends it out on the physical linc 50. Once any request
has been sent out, it is gqueued in the echo waiting gqueue
203 to await the receipt of an ECHO OKAY. During the
queuing of a request, when a load or read request 1is
received from the processor node, there is a search done
in the linc cache 206 and the store accumulator 205 to

determine whether the request can be catered to without

10

15

20

25

30

WO 01/22244 PCT/US99/21818

21

going out on the linc (i.e., check to see if a linc cache
hit occurs) .

Referring to Figure 21, in the receive
operation, once a packet is received over the physical
link, the intelligent latch 208 and demultiplexer 209
combination allows depacketization of the incoming
information and the storing of the data/address in the
linc cache 206. Because of the variable linc cache line
size, the returning requested data will be more than the
original processor required amount (to f£ill the larger
linc cache line). Finally, the control 204 issues the
appropriate bus and control signals to satisfy the
processor node request.

The receive operation for the memory node with
respect to Figure 22 is described below. The data comes
in on physical link 50 and latch 208 takes the data and
appropriately fills the request queue 210. The request
gqueue 210 contains the raw request which then goes to the
memory controller 211 for the appropriate action. The
design and implementation of the memory controller is
specific to memory devices being used and the system
memory architecture. Once a load request has been
received, the controller 209 checks the linc cache 212 to
see 1f the data is ready to be packetized and sent across
the physical link 50. This saves cycles since it 1is not
necessary to assert the appropriate control signals to
start the memory access cycle if there is a hit in the
linc cache 212. 1If the request received is a store
request, then it is directly sent to the memory
controller 211 for appropriate action.

The transmit operation with respect to Figure 23
is briefly described below. Once a request is received,

header pool 213 is indexed to provide the appropriate

10

15

20

25

30

WO 01/22244 PCT/US99/21818

22

header for the response packet. The request that was
received over physical link 50 and stored in the request
queue 210 is dequeued and the response is then taken out
of the linc cache 212 or the memory and packetized by
attaching the appropriate headers and put into the
response queue 214. The response queue has a FIFO
operation similar to any of the other queues used in the
current implementation and so the response will be sent
when it is at the head of the queue.

It is important to realize that Figures 22 and
23 describe an Functional Unit specific implementation
embodying a memory node. With the addition of a store
accumulator and the appropriate controller that replaces
the memory controller 211 in Figure 22, this circuitry can
be adapted to Functional Units of any type on any node.

The protocols used for communication between the
processor node and the memory node are described in the

flow graphs in Figures 27, 28, 29 and 30. These protocols

are:
1) Processor node Protocols
a) Receive Protocol (Figure 27)
b) Transmit Protocol (Figure 28) and
2) Memory node Protocols
a) Receive Protocol (Figure 29)
b) Transmit Protocol (Figure 30)

The flow graphs in conjunction with the
description described herein describe the functioning of
the link between the processor node and the memory node.

Figure 14 depicts a provision of the link
interface on the same silicon as the processor. This
results in several important simplifications and
improvements. Moving inside the processor silicon allows

the link interface access to the Translation Lookaside

10

15

20

25

30

WO 01/22244 PCT/US99/21818

23

Buffer (TLB) and the Branch Target Buffer (BTB) which
allows the implementation of sophisticated prefetching and
caching schemes.

Microprocessors typically do speculative
execution based on the load/store instructions in a
program. For standard arithmetic logic unit (ALU)
operations, it is relatively easy to identify the register
operands needed to be accessed during the instruction
decode phase itself. However, for memory access
operations, significant improvement is possible. In
particular, the determination of the memory location that
needs to be accessed requires an address calculation. The
load/store instructions are issued to a pre-execute engine
where address calculation is performed. After address
calculation, the wvirtual address is translated into a
physical address, if necessary. This address is then
issued to the memory interface of the processor to form
the appropriate request.

By moving the link interface inside the
processor, access is gained to TLB which stores a lookup
table or cache translation descriptors of recently
accessed pages. This information is very valuable in
doing intelligent memory prefetches because now the link
interface can look at the TLB and decide the location and
access size of prefetches.

When the link interface is within the processor,
the interface also gains access to the BTB. This allows
two important benefits. First, in any given program or
code, there typically is a branch or jump every five
instructions, on the average. The branch prediction
mechanism of the processor allows the processor to do
speculative execution by predicting where it needs to go

four or five instructions ahead of the current program

10

15

20

25

30

WO 01/22244 PCT/US99/21818

24

counter (PC). When the branch predictor is wrong, there
is a huge performance penalty in the processor because of
stalls and pipelines running empty. By having access to
the BTB, the link interface knows all possible outcomes of
the branch and can prefetch data/instructions for all of
the possible outcomes and have this information available
at the processor. In this way, performance penalties due
to branch prediction errors are significantly reduced.
This implements a virtual zero wait-state operation to
memory on a branch miss.

Second, in the rare event that there are no
jumps in the program, Figure 26 shows a method of
obtaining performance improvement. Rather than fetch a
large block of data from a single address, each packet
would be configured to fetch several smaller blocks of
data from several different addresses. In this context,
“data” means both program data and processor instructions.

For all of the above detailed embodiments of the
invention, Figures 15, 16, 17, 18 and 19 show the
specific implementations of the packet structures along
with which fields of the header are active for each packet
type.

While a particular embodiment of the invention
has been shown and described, it will be obvious to those
skilled in the art that changes and modifications may be
made therein without departing from the invention in its
broader aspects, and, therefore, the aim in the appended
claims is to cover all such changes and modifications as
fall within the true spirit and scope of the invention.

While particular embodiments of the invention
have been shown and described, it will be obvious to those
skilled in the art that changes and modifications may be

made therein without departing from the invention in its

WO 01/22244 PCT/US99/21818

25

broader aspects, and, therefore, the aim in the appended
claims is to cover all such changes and modifications as

fall within the true spirit and scope of the invention.

10

15

20

25

30

WO 01/22244 PCT/US99/21818

26

Claims

A physically non-distributed microprocessor-based
computer system, comprising:

a microprocessor;

a random access memory device;

a mass storage device;

an input-output port device;

said devices each being operable in conjunction
with said microprocessor and including an interface
for receiving and transmitting data in packet form;
and

a packet-based data channel extending between
said microprocessor and said interfaces of said
devices for providing simultaneous bi-directional
communication between said microprocessor and said

devices.

A computer system as defined in claim 1 wherein said
data channel comprises a first signal path in one
direction and a second signal path in the other

direction.

A computer system as defined in claim 1 wherein said
data channel includes switching means for selectively
connecting said microprocessor to selected ones of

said devices.

A computer as defined in claim 3 wherein said
switching means comprise a microprocessor controlled
switch providing individual interconnection between
said microprocessor and any one of said devices or

between any two or more of said devices.

10

15

20

25

30

WO 01/22244 PCT/US99/21818

10.

11.

27

A computer as defined in claim 3 wherein said
switching means comprises a ring circuit connecting

each of said interface circuits.

A computer as defined in claim 1 wherein said packets
include a request-type packet and a reply-type
packet, said reply packet being sent by said devices
in reply to receipt of said request packet by said

device.

A computer as defined in claim 6 wherein said request
packet includes indicia indicating the size of the

reply packet to be returned.

A computer as defined in claim 7 wherein each of said
data packets includes a header, and said header
includes data indicative of the size of the expected

reply packet.

A computer as defined in claim 7 wherein the size of
the reply packet to be sent is dependent on the
plurality of prior such transactions, where such said
transactions result from similar requests for packets

of data.

A computer system as defined in claim 1 wherein said
interface circuits each include a means whereby the
data transmitted from the associated device in a
packet remains in storage pending receipt of a reply

packet.

A computer system as defined in claim 1 wherein said

packets include inquiry-type packets reply-type

WO 01/22244 PCT/US99/21818

12.

13.

10

15

28

packets, and idle-type packets.

A computer system as define d in claim 11 wherein
said idle-type packets are periodically sent when one
of said devices is not requesting an action from any
other said devices or responding to an action from

any other said devices.

A computer system as defined in claim 1 wherein said
interface circuits each include:

a linc cache;

said linc cache being organized with a variable
line size direct mapped cache; and

said cache line is larger than the cache line in

the host cache.

PCT/US99/21818

WO 01/22244

qst g

| LINN
| TYNOILONN

qis

1/21

|
O
A

EAER-ERREN]

ANIT

31D1A30
9t —(39vy01s
/MS1Q

(H3H10 HO 12d)SN8 WILSAS

ayvo

uu<mEMPZ
ANIT

JOV4HILNI

v

JAO0N 13IXMOvd

_ AVdSI1d

D8t

‘S301A30 0/1 |

_ “S301A3A

.. 39vHOlS
l*s301A30 "waw
| ‘40SsS300¥d) |

_ 1INN

| TYNOILONNA]

VA 4

TVH3IHdIY3d

-

!
1% 4

(LYV HOIYHd)

} Old

e

AHOW3INW
W3L1SAS

3AON H0SS300d

ivn

)

— T ~
~ - ,N

390148

HOSS3IDO0HJOYUIINW |

SUBSTITUTE SHEET (RULE 26)

WO 01/22244 PCT/US99/21818

2/21

541 HEADER }52 FIG.3

/" BODY OR DATA

55 (0-256 BYTES) WIDTH = 2 BYTES
SIZE = 2 BYTESTO A
MAXIMUM OF
53~ 258 BYTES
56 52\ F‘ G. 4 58
s s
{ ! |
| ((
54 57 59

FI1G.5

IDLE PACKET

55a
MSB N L'SB

! HEADER 2

54 SIZE: MIN. 2 BYTES

NO DATA

SUBSTITUTE SHEET (RULE 26)

WO 01/22244 PCT/US99/21818

T 3/2]
55b
ot HEADER }52 FIG.6
REQUEST PACKET
80DY | MIN.SIZE: 4BYTES
MAX.SIZE :258 BYTES
531
55¢ FIG. 7
MSB N _ss REQUEST ECHO
PACKET
— HE ADER
o4 MIN.SIZE: 2 BYTES
NO DATA OR BODY
MSB LSB
A HEADER }52 FI1G.8
5h RESPONSE
BODY OR DATA PACKET

(BODY OF RESPONSE)
MIN.SIZE:4 BYTES
MAX. SIZE: 258 BYTES
~S—53

\55d

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

ONIT
J<O_m>I&

|
|
|
|
|

I
/.l\(.\h\./
>4 _“|Y ININ0 ISNOJSIM [e
ANIT AVM 3NO |, _
99 %
I .
_“ B S A 04
I Y Y 3 |
|| J4OLVINWNIOV r 0 |THLND |
__ . 3401S H v
| 9
— I 197 4 v Y S
N\ I O |l€—3 1041N0OD fem| L
¥ [0 ! J_
NOILYOINNWINOD | anano | L [0 N_m L
1ovd || T° omr&_w; 1 S
IRy, e 0
o/ Y H
| , \
I V I *
‘ S
T - 3N3ND 1S3IND3Y | v 03
SINIT VM uzoun__l y
+9

-IOm\H!

JOV4HILNI MNIT 40 WVYHOVIA TVNOILONNA

6 9l

‘019
AD01A3d

XHOM 13N

10

401A3d

OddIA
10

81

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

'HINOD/ H1NI
69 1INMIVNOILONN -

A” \N
v1ivd

LINM TYNOILONN
P E—

HINO LNNTUNOILONNS +]
viva LINN TYNOILONNS 4 ke "TS119 NOIILONYLSNI (e—%
'Haav LINN TUNOILINNA 8]
HL1QIM .
AMVSSIDAN=HIAIM e T yLvda
. -t «\\ e e e
qOL 914 (3ziandvd ol SS3uddv.

waav =

99—«

“re'2' =U (SILAE 8G2) 3ZIS 1INV WNWIXVIA XU =H1d3d

/mw LINO TVNOILIINN 4

o 13s L3S
~ 1ON 10N
13S 13S 13S
“L) w_fﬁ NV
JINV YA
gs—{—TI— ! L I M2
)—lm | m
1\ | | I
(29) INVH4 HO4 £G w A m_ 2 m_ | w
118 T+ S31A8 2=H1AIM <]!V R |y |——3Z113N0Vd WO
d | al a i
LIWSNvHL|y s 9| ¢! d y | d
IS EIN I R
. b9 —5c | M1 ¥ Hy ¢ Hob oy |
D01 914 g 8 | a s

T~ —
65 ¢c 2% 6§

CLINJVG IS LINOVdpug L3INIOVH PAE

S3Y4NLONYLS IN3ND 1S3N03IY F1HISS0Od

04 -

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

mmM -89
7
P - - 8534dav L >
H1GIM A¥YSSAVIN=H1AIM{ —“> ~ -
" m viva 3OVAYILNI
LINOTIYNOILONNS O]
. —— " TYAND / 74 o
q41°914 | |
300903
TETT 04 69
X
© 26 w\mw
L9~ T
118 3Wvyd i _
mow_@wﬂm cg}— 1M Iy
E! 13
T+s31A82 =H1AIM e viag . >
3n13038 woud| y | ¥ v Y| 300030 01
a n: a | H
°H 914 % =
13¥0vd 13Novd

S3HYN1LONYLS ININD ISNO4S3IH 31491SS0d

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

MO00718 J1vddn 1S31v'l

7/ 2l

H1d1M
ONIT IHOVO 1son (P4)

Inovd oNIn 40 3z1s Hiddd

INIT IHOV) INIT G2

~h/

M2018 3J1vddn
1S31v1 0ddn

dHOVO ONI
¢9
/ | f 2.
, _ z
\ " Y 1
— " m
viva 1 'y0av P
i 1
INIT IHOVO ONIT ! v —gy N
INO z_umuzZocﬁ ” INIT IHOVD MNIT 9
]
viva “yaay | 3
! | H
viva | waav | 0
ViVa 4! HOQY ! 0
% \) ~_ 1

ANIT JHOVI 1SOH =3aImigl)

2 914

SUBSTITUTE SHEET (RULE 26)

WO 01/22244 PCT/US99/21818

T 8/2l
OPTION:1 FIG. 13a 5
y30 {
[FONCTIONAL] | [vinivom LNk wioTH | | [FONCTIGNAT] |
| —UNIT] IEACHWAY=ZBITS | ’Aﬁll
I
e NS
| [LINK CHIPLG ™ [[T"LINKCHIP | |
| 497 | |_PHYSICAL LAYER_j |49 |
PACKET NODE ~————~——" PACKET NODE
1 (PHYSICAL LINK) 2
INTERFACE

A SAMPLE TWO NODE LINK WHERE NODE1
FUNCTIONAL UNIT IS THE PROCESSOR AND
NODE 2 FUNCTIONAL UNIT IS THE MEMORY.

OPTION: 2 FI1G.13b

39 LINC CHIP
______ — e —
r 49] | 49 ,
f‘Ml Y et I
HiL | ' IL|H
: 48 ol : { 10 4}3 |
SIN / N| S
| (TR 7 Tk |
IFuncrional|” L m i N L [FuneTionad |
Il uNIT TIT| | BEEE: UNIT |
||(PROCESSOR) E|E| |EE (SYSTEM ||
R| R RI|R MEMORY) |,
| Al A T | Al A |
clc clc I
| ELE| | | JEIE |
T T Facker nooe T
? PACKET NODE > PACKET NODE
1 MINIMUM LINK 2
Sl WIDTH EACH WAY = 2 BITS 51

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

9/2|

8 .
A 1914
912 6%
ww " [IS
113 /
t—» |1 ' J|] ——————- n| r
1,V }) _ 3 “
o4 _ 4 _ 0 _
m__ | W_ | _ \v Y_ _
L3 " | 4§ | thdatniv
o n| | g Y Su0o
o1 1 | | 1 1 | ¥0SS300Yd
b N
AHOWIW fe—nl Y N Lo J _ L
NILSAS WS) &
4 s118 2= 61 8t
W HLOIM NI o
WNAWNINIW

SUBSTITUTE SHEET (RULE 26)

WO 01/22244 PCT/US99/21818

N 10/2]
FI1G.15
IDLE PACKET 55a 59
MSB 7/ (LsB ~52
7T | | %////}GEADER,
1 \] No Bopy
56 57 58 /
ACTIVE
FIELD
F1G.16
REQUEST PACKET: 55b 59 52
MSB/ v/; 7; LSB/
7007007222027 3 v,
e] s
5\7 5|8 53
F1G.17

55¢
REQUEST ECHO PACKET: §7 58 f 59
MSB N (77 LsB

54—-—% | ’ | W}se

NS

|
ONLY ACTIVE FIELDS

SUBSTITUTE SHEET (RULE 26)

WO 01/22244 PCT/US99/21818

T /2]

FI1G.18
RESPONSE PACKET 59
msp CACTIVE j7 (55%3\ (ACTIVE

FLOW/, 1 v
AV A
o4 CONTROL / 7 }52

BODY OF RESPONSE
£

I
53

FIG.19

REQUEST PACKET
FOR A LOAD

HEADER 152

55_/’ ADDRESS TO
’ LOAD FROM 7|

REQUEST PACKET

FOR A STORE /52
55— HEADER 1
ADDR. TO STORE TO|_
53 -
DATA TO STORE

K OF EACH WHERE K IS
THE NUMBER OF STORES
IN THE STORE ACCUMU-
LATOR. _l_

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

JA13234 WOYd

(47vH 3AI1323Y4 OL1) 1IN0~ vivda AA.|||\~\ 80¢

NI ‘4aav
3HOVO ONIT
NI VIva ONTT .] S3LAB 216G ~ .
T
HIND™ EXNW _ ILIM A
[SAFRP W\&S?mma T)— W
MR 212
coz—| N\ ¥37T10H1INOD 100d
A TETE SY3IAVIH
¥ 3 | ova ‘ : -
13INoVd | |3 v AI.I...I_ T_._o» » us_,_\E VAT M
37101 y M = 31am (SSINI 1 4 o
N 0 NI-ad| jav3y °
N H HOYV3S _ TN 4 TOMLNOD
o 1 3 so0z 1o M1 |3 um
A 401y InWNoow 1 a1 —
Om * V_JOJ*V NKOFW " q A Haav P e
*x 31741 "m 1OO-LXNW (380415 saav)
11a &; N wnozxnw | | fviva HER' e [wsav
PRI Y e . + (1)118 3wvyd | LXOW V| 10e
| A.J.m mx:z . ; v
1o 1| X [t 4 riiam wdug | LL ||| oseese o o= o e
_ Al. 3n3no 1sano3d wousy I ¢ 7 u:u:ofmu:om_z 202 — [
E.ﬁ . —k h] 69 <h<D
RN TR x Tz
- 37VH LINSNVYL diHD 1SOH q gg 299V
ERLA'R-EVYEE]-NON]
N 02 914

o

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

47VH LINSNVYHL1l Ol
A - SO O

Q34399141 3903 TVNAE XD ONIT (AQY Sn8) INOA
MD0T1D ZHWOSZ=X1D AHLIH~ 1353y
w8019 TV 3yvV S13S3Y ¥19
LINO GXNI
£02
300030 | | ,
(oniT)s7o 83QVAH HO4 v . g
(INIHOVI 3 LVLS) | 30N
= 'Mi-:_ AA1303Y b P
< (1va019) \Y . _ L= XN
© 13say Y T _u . (3L14M) IULND ™ 030 fat-3-
—_— — —]—- 1 -~ H —l _J
a x“ > 9 N
_ T e
| INVHd———> L ‘ % 40av~o71 | ILIHMTON SSIN/LIH mw
_ _ X 1 | -80¢2 | _ g |-
_ _ A I (3015 LINSNVYL SV JWVS) |
|ONIT NOYH 4 —r—7—> ! . — JHOVO ONIT | Y
_ _ 3 S31AB2IS _ . m
e . s0z— -
MNIT al -eoe 1
1 — e (SSIW) LIV S
05 "dIHD 1SOH 47VH 3A1303Y (301S LINSNVALL)

i 12914 ———"i015 wous”

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

471VH
1IWSNVYYHL NO
, 43710 LNOD Ol

A

(LINSNVHL 404 JWVS)

AHOWIW JHOVD ONIT
Twoud 7| sawrgals
& (SSIW) e
212 LIH~
— (3ais HOHVIS-| LNWV- {
N LIASNYY L t——— | — .
o« NO XNW 01)¥aav (INIHOVW 31V1S)
MOWaN . VLV ¥ITIOHINOD [
- “
0L 'SSIW/LIH=] L1g 3uols 602 A0
avol vivartn 802
118 3H0LS QVO7 0 _
|
4371104 INOD v.iva | S
~ oman | AHOWIW - fSAIGRap | - — — — e i I e
01704LNOD ssayaav - |4 3
[IN3IND 034 gz LL

471vH 3AI13034H dIHDO AHOW3W

é¢ 9l

- INSNVHL OL LNNOWYV

AR B . LB B

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

(34iIS ADY WOH4)

SSIN/LIH INNOWY ain3inbd
& @ % \mom
(INIHOVIN 31VIS) M LN~ XAW
AN——* 4371104 LNOD 7~
. TUIND - XNW
W3IW avay
WOH4) ¢ - V;
INVY A ‘N1 OHD3 >m:m_
fx_:éuv O Im bttt
_ THLIND™ XNW- A _ii..\{s;ﬁ
QN 3HOVD \
> ouﬁu 118 INvyd
WON4 \._-Um|_um HaH J 4 M
llllle ﬁ. D yd 1
— cooo0oo0 v v 4 b
Emumu PN 3
}———> . w H
m@dmOPm\ * ¥4 *
ez ° 13X0vd Wo 13839 | _OHI3 MO |
° . P\Emum 3N3ND 3SNO4S Y)
o P e W
13834 —» ° —(d1HD ADY W3IW WOY4) SSIHAAY 3101 ._\
gygaviH d41VH LINSNVYL dIHD AHOW3W

(100d 43AVv3IH)

€¢ 9l

0}

|

_m—2<w_u

—

—— —— — — —

— '.Wu. i»

EIIE

SUBSTITUTE SHEET (RULE 26)

WO 01/22244

1—'—

5/\

PACKET
NODE

16/2l

FIG.24

PACKET NODE

67~

TN

PCT/US99/21818

IT IS POSSIBLE TO
HAVE MORE THAN

5/ 4 PACKET NODES
< ON ARING.

PACKET
NODE

5

S

S

5/~

PACKET NODE

FIG. 25

PACKET NODE

5/~

I 1

ExrPansiON Bus

PACKET NODE

Si~

-5

\\
/

PackeT NODE

|

68

_—
N\\\“-

<—>5|

PAackKET NODE

CROSSBAR
OR SWITCH
INTERCONNECT

SUBSTITUTE SHEET (RULE 26)

WO 01/22244 PCT/US99/21818

N 17/21

FI1G.26

POSSIBLE RESPONSE PACKETS FOR A REQUEST
WHEN ACCESS TO TLB AND OR BTB IN THE
PROCESSOR |S AVAILABLE

554 RESPONSE REQUEST (MISS/ERROR IN SPEC-

N PACKET PAGKET ULATION EXECUTION)
HEADER 52| HEADER f

. 55b

DATA FOR ADDRESS N ~frog - ADDRESSN =~—|-=OAD

FOR , . FROM

DATA FOR ADDRESS n

+OFFSET U FORPC=XH. correspoNDS TO PC

(PROGRAM COUNTER)
OR PC=X P= SOME NUMBER X

53([DATA FOR ADDRESS Y-

DATA FOR ADDRESS N
. +2XOFFSET

FOR PCsX+2

DATA FOR ADDRESS 2
[

\DATA NEEDED IN CASE OF A JUMP AT PC=X+2

DATA NEEDED IN CASE OF.NO JUMP AT PC=X+2

®
]

AND SO ON.
FOR PROGRAMS WITH VERY HIGH LOCALITY

(GRAPHICS, MULTIMEDIA ETC.)
RESPONSE PACKET

55d
52{ HEADER -
DATA FOR ADDRESS n FOR PC=X

DATA FOR ADDRESSN+ OFFSET FORPC=X+1

DATA FOR ADDRESS n+2 OFFSET| FORPC=X+2

AND SO ON. +—53

SUBSTITUTE SHEET (RULE 26)

WO 01/22244

.1__

18721

FIG.27

PCT/US99/21818

PROCESSOR NODE RECEIVE PROTOCOL

FOR PRESENT DETAILED IMPLEMENTATION, THE MEMORY
NODE IS EXPECTED TO SEND ONLY THE FOLLOWING PACKETS.

IF REQUEST ECHO
PACKET

r

Y

|F ECHO=0KAY

'

ELSE LEAVE REQUESTIN
ECHO WAITING QUEUE

DEQUEUE REQUEST
FROM ECHO
WAITING QUEUE

|IF RESPONSE PACKET

Y

STRIP PACKET

'

FILL LINC
CACHE

q

-«—|N PARALLEL—

¥ LINE HERE INDICATES ONE
PROCESSOR REQUESTED WORD

PUT N™LINES IN
RESPONSE QUEUE

!

PUT K* LINES ON TO
PROCESSOR BUS

(KIS A NUMBER
'F IDLE (NIS A NUMBER}K<
Y
NO ACTION

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

19721

3n3no oNiLivm OHO3]

| _
2% 01 1S3nd3Y u>OS_I._

izt o

[G311IWSNVHL ONI3g LON SI!
| AYLIY 41 13%0Vd LINSNYH Y

"3N3ND ONILIVM

OHO3 3HL NI NOILVYWHOINI

MYYH JHL HO S1S3ND3Y d3Z11LINIvd
1Nd 0L 3J10HJ NOIS3A VYV SLI 2 %

"34NA3004d FNWVS JH1L

S S MOI104 TTIM OST1V HOIHM

[~ 118 32113%DVd NO 1
L 03sva 1S3N03Y 3ZIL3IN0Vd

ININD ONILIYM OHO3I
2% 0L 1SInb34 3A0NW

1

TINFHO0LVINWNDOOVY JHOLS i

LIWSNVYYH L 8 3ZI13XIOYd NIHL

SNOILONYISNI 3HOLS 8 AV0T]

40 S13580NS LNIH34410 38 LHOIW

3JH3H 1L 014103dS "40SS3I00ud 38
T17UM SNOILONYISNI JO 3dAL IHYL | *

— — ——— i

@ wo®

—~—NI 10N 3|

B 118 3Z113%0vd 13So | _

1H0SS300¥d O1 ¥OvE J1ldMo |
I]

(@)HOLYINANDOY £ 3HOLS NI 41

119 3Z113M99d430 13S o]
_mommuuom_a 01 %ovd u:m;o_

(D) 3HOVD ONIN N W:,mw

I |

» D N — YO1VINNNDOJY IHOLS NI 1LON 41
| 30300 1530034 NI ININONT 0 | (
HOLVINWNO OV . JHOVI ONIT MOTHD 0 37701 LIWSNVYL
3401S NI 1Nd 1401V INNNDOV 3OS O3HD o | ALdW3 3N3AND 1S3IND3IY 41
JH0LS 41 Lo<o|_ 41 (3¥0LS MO avo1 10N) 3S13
} % JYOLS ¥O QVOT HOIHD
1371vHVd NI NIddVH | \ NIHLIM SNOILOV 11V

7020108d LINSNVYdL 3AON d40SS3004dd

82 9l

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

1dNYYILINI 1¥ISSY 3d
)

'SIANT3SW3IHL S301A30 JHL
ANV 34N1D3LIHOYY AHOW3IN

]_,

, 3HL NO SAN3IJ3A SNOILY
13X0vd 1S3N03Y 3H1 NI JHOIS 401-y4340 ISTHL 40 AONILVT IHL 43151934 4315193y
HIEWAN HLSI A um%uzi A 0d 1 % [AHOLSIH 31vadn|[AYOLSIH 31vadn
AERER] ﬂu:c@o&d NOILd3034 L3AX0Vd 31A1 1SV X ¥
v1va 3H01S o IHL JONIS INTVA LNIYI4HIA
“. LdNYYIINI 153V o | ¥ SVH HILSIOY AHOISIH any | LdNEYILN] LdNYY3LNI ON
R X 41 NIVOV A31N23X3 SI WD018 SIHL § * ¢k »ovd 09
. [1dn¥¥3LINI 1¥3sSv-3do | 1dNYYILNT ¥23FHOo
7020104d LINSNVYL| |(0g914)7000L08d LIWNSNVHL | | 4315193y
'S | leﬁml.mw_u:;mm&mmz;wou AYOLSIH NI SS34AAY WO |
T o mecn -] (3HOVD ONIT) 'u344nd
_ |1 1dNUYIINI LHISSY 300, | o o HO13434dq
o~ _léos_uz_zoﬁﬁqo 1390, JHOVO ONITT NI 4l rlllxmums L Y
/ — —— —— — — e———— ——
O I} b * L)
—— ALdW3 3N3NO
\ 1 F3HOVD ONIT 303HD o | [FHONOIFe——]"" "3y 71
JHOVO ONIT, | 1dNYYIINI 1Y3SSY o | 3813
NI LON 4| S e T
avold| 3101 41
X |
A |
_ 7171N4 LON 3IN3ND D3Y 4l
IYOLS 1 [+ } —=5—>{Asn8 oHo3|

13INOVd 1S3Nd3Y

7030104d 3IAI3234 3AON AHOW3W

6¢ 9l4

SUBSTITUTE SHEET (RULE 26)

PCT/US99/21818

WO 01/22244

21721

13IMOvd 314l AN3S

1

vivad ON

LINSNV YL

1

EVATEN

*

AHOW3INW
WOY4d vivd

3JHOVO

INIT WOH4 Vv1vd

702001L08d LINSNVHL 3AON AHOW3W

o9l

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/US99/21818

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GO6F 15/16
US CL :709/253
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. 7097253

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

USpatfull database with STN

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passage: Relevant to claim No.

X US 5,909,559 A (SO) 01 June 1999, col. 1, lines 37-38, col. 3, lines| 1-5, 7-10
14-19, col. 16, lines 36-46, col. 24, lines 10-12col. 30, lines 62-63,
col. 40, lines 30-33col. 71, 37-38,and Figure 1

X,E US 5,973,559 A (ALBERTY) 26 October 1999, Col. 1, lines 37-38| 13

A US 5,826,028 A (BENNETT et al.) 20 October 1998 1-13
X US 5,237,567 A (NAY et al.) 17 August 1993, col. 3, lines 7-13 | 6,10-12
A US 4,933,835 A (SACHS et al.) 12 June 1990 1-13

Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T later document published after the international filing date or priority
X R . date and not in conflict with the application but cited to understand
"A* document defining the genersl state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

. X" document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
"L* document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other R i .
special reason (as specified) Y document of pqrucular releyance;_thc claimed invention cannot be
considered to involve an inventive step when the document is
0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P* document published prior to the international filing date but later than =g« document member of the same patent family
the priority date claimed
Date of the actual completion of the intemational search Date of mailing of the intemational search report
03 NOVEMBER 1999 1 4 JAN 2000
Name and mailing address of the ISA/US Authorized officer 5
Commissioner of Patents and Trademarks . .
Box PCT STEPHAN WILLE™T S JE&N
Washington, D.C. 20231 STEPH
Facsimile No. (703) 305-3230 Telephone No. (703) 308-5230

Form PCT/ISA/210 (second sheet)July 1992)x

INTERNATIONAL SEARCH REPORT

Intemational application No.

PCT/US99/21818
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 4,899,275 A (SACHS et al.) 06 February 1990 1-13

Form PCT/ISA/210 (continuation of second sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

