RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

(11) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 458 527

PARIS

Α1

DEMANDE DE BREVET D'INVENTION

N° 80 12646

- 64 Composés perfluoroalkylés et leurs procédés de préparation.
- (51) Classification internationale (Int. Cl. 3). C 07 C 25/13; C 07 B 27/00; C 07 C 143/00.
- 22 Date de dépôt 6 juin 1980.
- (33) (32) (31) Priorité revendiquée : Japon, 6 juin 1979, nº 69979/79.
 - 41) Date de la mise à la disposition du public de la demande........... B.O.P.I. « Listes » nº 1 du 2-1-1981.
 - (71) Déposant : Société dite : SAGAMI CHEMICAL RESEARCH CENTER, résidant au Japon.
 - (72) Invention de : Teruo Umemoto.
 - 73) Titulaire : Idem (71)
 - Mandataire : Cabinet Beau de Loménie, 55, rue d'Amsterdam, 75008 Paris.

La présente invention concerne de nouveaux composés perfluoroalkylés et leurs procédés de préparation.

Plus particulièrement, l'invention concerne des composés perfluoroalkylés répondant à la formule :

$$\begin{array}{c}
\bigoplus \bigcirc \\
R_{f} \longrightarrow I \quad 0 \quad SO_{2}A \\
A T
\end{array} \tag{I}$$

5

25

où $R_{\rm f}$ représente un radical perfluoroalkyle comportant 1 à 20 atomes de carbone, Ar représente un radical phényle non substitué ou substitué par un radical alkyle comportant l à 4 atomes de carbone, ou par 10 un atome d'halogène, I représente un atome d'iode, et A représente un radical perfluoroalkyle comportant 1 à 20 atomes de carbone, qui peut être identique à R_f ou différent, un radical hydroxy, un radical alkyle comportant 1 à 4 atomes de carbone, un radical aryle ou un atome d'halogène, et des procédés pour leur préparation. Les compo-15 sés perfluoroalkylés de formule (I) sont principalement utiles comme agents d'introduction d'un radical perfluoroalkyle.

Les composés perfluoroalkylés représentés par la formule (I) sont utiles comme agents introduisant un radical perfluoroalkyle. Par exemple, on peut faire réagir ces composés avec la 1H,4H-20 quinoxalinedione-2,3 ou un sel correspondant que l'on peut se procurer dans le commerce pour produire des composés de type perfluoroalkyl-6 1H,4H-quinoxalinedione-2,3 utiles comme agents hypnotiques, comme décrit dans le brevet des Etats-Unis d'Amérique n° 3 992 378. (Voir les exemples de référence ci-après).

On sait que l'on peut, par exemple, préparer la pentafluoroéthyl-6 1H,4H-quinoxalinedione-2,3 par réaction du p-bromonitrobenzène avec l'iodure de pentafluoroéthyle en présence de cuivre, pour produire du pentafluoroéthylnitrobenzène que l'on soumet ensuite à une réduction, une acétylation, une nitration, une désacétylation 30 et une réduction pour obtenir la pentafluoroéthyl-4 o-phénylènediamine, puis réaction de la diamine avec l'oxalate de diéthyle, comme décrit dans la demande de brevet DT n° 2 606 982 déposée en République Fédérale d'Allemagne et le brevet des Etats-Unis d'Amérique précité. Cependant, le procédé classique ci-dessus

nécessite des stades réactionnels multiples et on ne considère donc pas qu'il constitue un procédé avantageux en pratique industrielle.

L'invention va maintenant être décrite de façon détaillée.

A la suite d'études importantes relatives aux agents d'introduction d'un radical perfluoroalkyle, la demanderesse a découvert que l'on peut facilement préparer les composés perfluoroalkylés de formule (I) selon les procédés de l'invention.

Les composés perfluoroalkylés (I) de l'invention sont très utiles dans une grande diversité d'applications de la perfluoroalkylation. Par exemple, les composés de type perfluoroalkylthio obtenus par réaction des composés perfluoroalkylés (I) et d'un composé de type mercapto, par exemple l'acide pentafluoroéthylthioacétique, peuvent être utilisés comme agents de modification des céphalosporines. Egalement, ces composés de type perfluoroalkylthiosont utiles comme agents tensioactifs et comme agents de traitement des fibres.

L'invention concerne des composés perfluoroalkylés représentés par la formule :

$$R_{f} = I^{\bigoplus_{i=1}^{n}} So_{2}^{A}$$
 (1)

où R_f représente un radical perfluoroalkyle comportant 1 à 20 atomes de carbone, Ar représente un radical phényle non substitué ou substitué par un radical alkyle comportant 1 à 4 atomes de carbone, ou par un atome d'halogène, I représente un atome d'iode, et A représente un radical perfluoroalkyle comportant 1 à 20 atomes de carbone, qui peut être identique à R_f ou en être différent, un radical hydroxy, un radical alkyle comportant 1 à 4 atomes de carbone, un radical aryle ou un atome d'halogène et des procédés pour préparer les composés perfluoroalkylés de formule (I) ci-dessus, que l'on peut facilement appliquer à la production industrielle.

Le terme "aryle", en ce qui concerne le substituant A, désigne un radical phényle non substitué ou substitué par un atome d'halogène ou un radical nitro.

Le terme "atome d'halogène" désigne un atome de fluor, de chlore, de brome ou d'iode et, de préférence, un atome de fluor ou de chlore.

On peut préparer les composés perfluoroalkylés de 5 formule (I) de l'invention selon le schéma réactionnel suivant :

$$R_{f}^{I} \longrightarrow R_{f}^{-1(OCOCF_{3})}_{2} \xrightarrow{ArH + ASO_{3}H} R_{f}^{-1} \bigcirc So_{2}A$$

$$(V) \qquad (IV) \qquad Ar \qquad (I)$$

où $\mathbf{R_f}$, I, \mathbf{Ar} et \mathbf{A} ont la même définition que ci-dessus.

Le procédé de l'invention consiste à faire réagir un iodoperfluoroalcane de formule :

$$R_f^I$$
 (V)

où R_f a la même définition que ci-dessus, avec une solution aqueuse de peroxyde d'hydrogène ayant une concentration en peroxyde d'hydro15 gène de 40% ou moins et de l'anhydride trifluoroacétique, pour produire un composé de type perfluoroalkyliodo de formule:

$$R_f^{-1(OCOCF_3)}_2$$
 (IV)

où R_f a la même définition que ci-dessus, et à faire réagir le composé de type perfluoroalkyliodo de formule (IV) avec un benzène substitué 20° ou non substitué de formule :

où Ar a la même définition que ci-dessus, et un acide sulfonique de formule:

25 où A a la même définition que ci-dessus.

Les iodoperfluoroalcanes (V) utiles comme matières de départ sont des composés connus que l'on peut facilement se procurer dans le commerce.

Selon d'autres modes opératoires, on peut, pour pré-30 parer les composés de type perfluoroalkyliodo de formule (IV), faire réagir un iodoperfluoroalcane (V) avec du peroxyde d'hydrogène ayant une concentration de 75% ou plus, comme décrit dans Zh. Organ. Khim., 6, 329 (1970); oxyder un iodoperfluoroalcane (V) par l'ozone, puis traiter par l'anhydride trifluoroacétique; ou fluorer un iodoperfluoroalcane (V), puis traiter le composé fluoré avec de l'acide trifluoroacétique, comme décrit dans J. Fluorin Chem., 8, 177 (1976).

On peut citer comme exemples de composés de type perfluoroalkyliodo de formule (IV) : le di(trifluoroacétoxy)iodotrifluorométhane $[CF_3I(OCOCF_3)_2]$, le di(trifluoroacétoxy)iodopentafluoro-10 éthane $[C_2H_5I(OCOCF_3)_2]$, le di(trifluoroacétoxy)iodoheptafluoro-n-propane $[n-C_3F_7I(OCOCF_3)_2]$, le di(trifluoroacétoxy)iodoperfluoro-hexane $[C_3F_7I(OCOCF_3)_2]$, le di(trifluoroacétoxy)iodoperfluoro-octane $[C_8F_{17}I(OCOCF_3)_2]$, le di(trifluoroacétoxy)iodoperfluoro-octane $[C_8F_{17}I(OCOCF_3)_2]$, le di(trifluoroacétoxy)iodoperfluorodécane $[C_1OF_2II(OCOCF_3)_2]$ et similaires.

On peut citer comme exemples de benzènes substitués ou non substitué de formule (IV), le benzène, des alkylbenzènes dont le fragment alkyle comporte 1 à 4 atomes de carbone, tel que le toluène, des benzènes halogénés tels que le fluorobenzène et simi20 laires. On peut se procurer dans le commerce ces benzènes substitués ou non substitué.

On peut citer comme exemples d'acides sulfoniques de formule (II), l'acide sulfurique, des acides halogénosulfoniques tels que l'acide fluorosulfonique, l'acide chlorosulfonique et simi25 laires, des acides alcanesulfoniques tels que l'acide méthanesulfonique, l'acide éthanesulfonique, l'acide butanesulfonique et similaires, des acides arylsulfoniques tels que l'acide benzènesulfonique, l'acide toluènesulfonique, l'acide nitrobenzènesulfonique,
des acides halogénonitrobenzènesulfoniques et similaires, des acides
30 perfluoroalcanesulfoniques tels que l'acide trifluorométhanesulfonique, l'acide perfluorobutanesulfonique, l'acide perfluorohexanesulfonique, l'acide perfluoro-octanesulfonique et similaires. Il est
facile de se procurer ces acides sulfoniques dans le commerce.

On peut effectuer la réaction entre l'iodoperfluoro-35 alcane de formule (V), la solution aqueuse de peroxyde d'hydrogène et l'anhydride trifluoroacétique, à une température comprise entre environ -50°C et environ 100°C, de préférence entre -15°C et la température ordinaire (environ 15 à 30°C) pendant une période d'environ 1 à 24 h.

On peut utiliser la solution aqueuse de peroxyde

5 d'hydrogène ayant une concentration en peroxyde d'hydrogène de 40%
ou moins à raison de 1 à 4 moles par mole de l'iodoperfluoroalcane
de formule (V). On peut utiliser l'anhydride trifluoroacétique en
une quantité environ équimoléculaire ou supérieure aux moles totales
de peroxyde d'hydrogène et d'eau contenues dans la solution aqueuse
10 de peroxyde d'hydrogène.

On peut, pour effectuer la réaction entre le composé de type perfluoroiodo de formule (IV) obtenu comme ci-dessus, le benzène substitué ou non substitué de formule (III) et l'acide sulfonique de formule (II), mélanger ensemble ces composés réagissants.

15 Pour effectuer la réaction, on utilise de préférence un solvant et on peut citer comme exemples de solvants, des acides carboxyliques tels que l'acide trifluoroacétique et similaires, des anhydrides d'acide tels que l'anhydride trifluoroacétique et similaires et des composés halogénés tels que le dichlorométhane, le chloroforme et similaires. On peut utiliser ces solvants séparément ou en mélange. La réaction s'effectue à une température d'environ -100°C à environ 50°C, mais on opère de préférence entre 0°C et la température ordinaire (environ 15 à 30°C).

On peut isoler le composé obtenu de formule (I) du

25 mélange réactionnel de façon classique, par exemple par filtration,
cristallisation, etc., et le purifier, par exemple par recristallisation, etc.

On peut citer comme exemples typiques de composés perfluoroalkylés de formule (I):

le trifluorométhanesulfonate de pentafluoroéthylphényliodonium,
le trifluorométhanesulfonate de pentafluoro-n-propylphényliodonium,
le trifluorométhanesulfonate de pentafluoro-i-propylphényliodonium,
le trifluorométhanesulfonate de perfluoro-n-hexylphényliodonium,
le trifluorométhanesulfonate de perfluoro-n-heptylphényliodonium,
le trifluorométhanesulfonate de perfluoro-n-octylphényliodonium,
le trifluorométhanesulfonate de perfluoro-n-décylphényliodonium,

le trifluorométhanesulfonate de trifluorométhylphényliodonium,

le méthanesulfonate de perfluoro-n-octylphényliodonium,

le méthanesulfonate d'heptafluoro-n-propyl-p-tolyliodonium,

le sulfate de mono(pentafluoroéthylphényliodonium),

5 le sulfate de mono(heptafluoro-n-propylphényliodonium),

le sulfate de mono(perfluoro-n-hexylphényliodonium),

le sulfate de mono(perfluoro-n-octylphényliodonium),

le sulfate de mono(perfluoro-n-décylphényliodonium),

le fluorosulfate de pentafluoroéthylphényliodonium,

10 le benzènesulfonate d'heptafluoro-n-propyl-p-tolyliodonium

et similaires. Egalement, selon un autre mode opératoire, on peut

Egalement, selon un autre mode opératoire, on peut préparer les composés perfluoroalkylés de formule (I) selon le schéma réactionnel suivant :

15

où X représente un atome d'halogène et R_f, Ar et A ont la même définition que ci-dessus. Cet autre procédé de préparation des composés perfluoroalkylés de formule (I) consiste à faire réagir un halogénure d'iodonium de formule (VIII) avec un sulfonate d'argent de formule (IX). On peut effectuer la réaction entre les composés de formules (VIII) et (IX) dans un solvant polaire tel que l'acétonitrile ou des éthers à une température d'environ -50°C à environ 50°C, de préférence de 0°C à la température ordinaire, comme illustré par les exemples 11 et 12 ci-après.

Comme précédemment indiqué, les composés de type perfluoroalkylthio représentés par la formule :

$$R_{f}$$
-S-R (VI)

où R_f a la même définition que ci-dessus et R représente un radical alkyle non substitué ou substitué, que l'on peut préparer par réaction d'un composé perfluoroalkylé de formule (I) avec un composé de type mercapto de formule:

(VII)

où R a la même définition que ci-dessus, sont utiles comme agents de modification chimique. Par exemple, on peut utiliser l'acide pentafluoroéthylthioacétique obtenu dans l'exemple de référence 6, comme agent de modification chimique de la céphalosporine, pour produire l'acide pentafluoroéthylthioacétamido-7 (méthyl-1 lH - tétrazolyl-5)-thiométhyl-3 céphème-3 carboxylique-4 ayant les activités antimicrobiennes suivantes:

10	Micro-organismes étudiés '	Concentration mini- male inhibitrice (µg/ml)
	Staphylococcus aureus 209-P	0,4
	Staphylococcus aureus Smith	3,12
	Staphylococcus epidermidis	6,25
	Escherichia coli NIHJC-2	25
15		12,5
	Klebsiella pneumoniae 8045	6,25
	Proteus mirabilis 1287	12,5
	Pseudomonas putida 264	25
	Escherichia coli S 1073	12,5
20	Escherichia coli S 1049	12,5
	Escherichia coli Rms 213 S 1113 ±	25

L'invention est illustrée par les exemples et exemples de référence non limitatifs suivants.

* Bactérie produisant une pénicillinase.

25 EXEMPLE 1

A un mélange de 18,6 ml (132 mmol) d'anhydride trifluoroacétique et 32 ml d'acide trifluoroacétique, on ajoute goutte à goutte 1,66 ml d'une solution aqueuse à 30% de peroxyde d'hydrogène (H₂O₂: 16,3 mmol et H₂O: 71,7 mmol) au bain-marie glacé. Après achèvement de l'addition, on agite le mélange pendant 3 h et on ajoute 0,90 ml (8,13 mmol) d'iodure de pentafluoroéthyle, puis on laisse le mélange réagir entre O et 5°C, pendant 24 h. On chasse ensuite le solvant par distillation pour obtenir 3,3 g (rendement: 85%) de di(trifluoroacétoxy)iodopentafluoroéthane sous forme de

35 cristaux blancs duveteux.

Point de décomposition : 27-28°C.

IR (KBr) : 1680; 1430, 1320, 1210, 1130, 840, 800, 720 cm⁻¹.

EXEMPLE 2

On reprend le mode opératoire de l'exemple 1 avec
5 les mêmes proportions molaires de composés réagissants, mais avec
0,97 ml (6,76 mmol) d'iodure d'heptafluoro-n-propyle au lieu
d'iodure de pentafluoroéthyle et on obtient 3,5 g (rendement 98%) de
di(trifluoroacétoxy)iodopentafluoro-n-propane sous forme de cristaux
blancs duveteux.

10 Point de décomposition : 57-61°C.
 IR (KBr) : 1680, 1430, 1320, 1210, 1130, 840, 800, 720 cm⁻¹.
 EXEMPLE 3

avec les mêmes proportions molaires de composés réagissants, mais

15 avec 2,0 g (4,5 mmol) d'iodure de tridécafluoro-n-hexyle au lieu
d'iodure de pentafluoroéthyle, et on obtient 2,6 g (rendement : 85%)
de di(trifluoroacétoxy)iodotridécafluoro-n-hexane sous forme de

On reprend le mode opératoire décrit dans l'exemple 1

cristaux blancs duveteux. Point de fusion : 60-62°C.

20 IR (KBr): 1680, 1430, 1210, 1120, 830, 800, 720 cm⁻¹.
EXEMPLE 4

On reprend le mode opératoire décrit dans l'exemple l avec les mêmes proportions molaires des composés réagissants, mais avec 2,0 g (4,0 mmol) d'iodure de pentadécafluoro-n-heptyle

25 au lieu d'iodure de pentafluoroéthyle, et on obtient 2,6 g (rendement : 91%) de di(trifluoroacétoxy)iodopentadécafluoro-n-heptane sous forme de cristaux blancs duveteux.

Point de fusion : 68-70°C.

IR (KBr): 1680, 1430, 1200, 1120, 830, 800, 720 cm⁻¹.

30 EXEMPLE 5

On reprend le mode opératoire décrit dans l'exemple 1 avec les mêmes proportions molaires de composés réagissants, mais avec 2,0 g (3,7 mmol) d'iodure d'heptadécafluoro-n-octyle au lieu d'iodure de pentafluoroéthyle et on obtient 2,6 g (rendement :

35 92%) de di(trifluoroacétoxy)iodoheptadécafluoro-n-octane sous forme de cristaux blancs duveteux. Point de fusion : 70-74°C.

IR (KBr) : 1680, 1430, 1200, 1120, 830, 800, 720 cm⁻¹.

EXEMPLE 6

On dissout 1,3 ml (9,3 mmol) d'anhydride trifluoro
acétique dans 3,3 ml d'acide trifluoroacétique et on ajoute goutte
à goutte, en refroidissant au bain-marie glacé, 0,175 ml d'une solution à 30% de peroxyde d'hydrogène (H₂O₂ : 1,71 mmol et H₂O :
7,55 mmol). Lorsque l'addition est achevée, on agite le mélange
pendant 1,5 h et on ajoute 1,55 mmol d'iodure d'heptadécafluoron-octyle et on laisse le mélange réagir entre O et 5°C pendant
18 h pour obtenir le di(trifluoroacétoxy)iodoheptadécafluorooctane avec un rendement de 66%.

EXEMPLE 7

A un mélange de 10,6 ml (75,2 mmol) d'anhydride

15 trifluoroacétique et 30 ml d'acide trifluoroacétique, on ajoute goutte à goutte 1,36 ml d'une solution aqueuse à 35% de peroxyde d'hydrogène (H₂O₂ : 15,7 mmol) et H₂O : 55 mmol) au bain-marie glacé. Après achèvement de l'addition, on agite le mélange pendant 1,5 h et on ajoute 5,0 g (7,7 mmol) d'iodure de heneicosafluoron
20 n-décyle, puis on laisse le mélange réagir entre 0 et 5°C pen-

dant 24 h. On chasse le solvant par distillation pour obtenir
6,3 g (rendement : 94%) de di(trifluoroacétoxy)iodoheneicosafluoron-décane sous forme de cristaux blancs duveteux.

Point de fusion: 83-88°C.

25 IR (KBr): 1680, 1430, 1200, 1140, 830, 800, 720 cm⁻¹.

Analyse élémentaire :

trouvée : C : 19,39%

théorique : C : 19,28%

EXEMPLE 8

On reprend le mode opératoire décrit dans l'exemple 6, si ce n'est qu'on utilise l'heneicosafluoro-n-décane au lieu de l'heptadécafluoro-n-octane et on obtient le di(trifluoroacétoxy)-iodoheneicosafluoro-n-décane avec un rendement de 81%.

EXEMPLE 9

A un mélange de 6,05 g de di(trifluoroacétoxy)iodopentafluoroéthane et 45 ml d'acide trifluoroacétique, on ajoute 1,1 ml d'acide trifluorométhanesulfonique en refroidissant au bain-marie glacé et en agitant, puis on ajoute goutte à goutte au mélange 1,2 ml de benzène. Après achèvement de l'addition, on agite le mélange pendant 4,5 h et on chasse le solvant par distil-

5 lation pour obtenir un solide cristallin qu'on recristallise dans le chloroforme pour obtenir 3,32 g (rendement 55%) de trifluorométhanesulfonate de pentafluoroéthylphényliodonium, sous forme de paillettes cristallines incolores.

Point de décomposition : 116-120°C.

10 ¹⁹F-RMN (CC1₃F comme référence interne dans le CDC1₃): 76,03 ppm (q, J=4Hz, -CF₂-), 78,93 (s, CF₃SO₂-), 80,94 (t, J=4Hz, -CF₂-CF₃).

H-RMN (dans le CDCl₃): 7,4 - 8,2 ppm (m, 5H).

IR (nujol): 3400, 1460, 1440, 1315, 1280, 1220, 1380, 1310, 1020, 980, 895, 740, 675, 640, 570, 520 cm⁻¹.

Analyse élémentaire :

trouvée : C : 22,62; H : 1,07%

théorique : C : 22,90; H : 1,07%

EXEMPLE 10

15

35

A un mélange de 7,0 ml d'acide trifluoroacétique et 1,0 g de di(trifluoroacétoxy)iodopentafluoroéthane, on ajoute 0,12 ml d'acide sulfurique concentré en refroidissant au bainmarie glacé et en agitant, et on ajoute goutte à goutte au mélange 0,28 ml de benzène. Après achèvement de l'addition, on agite le mélange pendant 3 h, on le laisse se réchauffer à la température ordinaire, puis on chasse le solvant par distillation pour obtenir un solide cristallin que l'on recristallise dans le chloroforme pour obtenir 645 mg (rendement 72,5%) de sulfate de mono(pentafluoroéthylphényliodonium), sous forme de cristaux incolores.

Point de fusion: 107-108°C.

¹⁹F-RMN (CC1₃F comme référence interne dans le CD₃OH): -79,81 ppm (q, J_{CF₂}, CF₃ = 4Hz, CF₂), -80,87 ppm (t, J_{CF₂}, CF₃ = 4Hz, CF₃).

¹H-RMN (dans le CD₃CO): 7,58 - 8,03 ppm (multi, m-H, p-H, 3H), 8,37 ppm (d, J_{O-H. m-H} =7,5Hz, o-H, 2H).

IR (nujol): 3080, 2450, 2350, 1580, 1460, 1320, 1220, 1215, 1195, 1140, 1100, 1040, 1005, 980, 895, 880, 845, 745, 740, 675, 650, 620, 600, 570, 540 cm⁻¹.

SM: 322
$$\left(\begin{pmatrix} c_2F_5I^+\\ Ph \end{pmatrix} - 1\right)$$
, 254, 204 (PhI^+) , 119 (c_2F_5) , 77 (Ph^+) , 69 (CF_3) .

Analyse élémentaire :

trouvée : C : 22,92; H : 1,41% théorique : C : 22,87; H : 1,44%

10 EXEMPLE 11

5

15

20

A un mélange de 5,0 g de di(trifluoroacétoxy)iodoheptafluoro-n-propane et 50 ml d'acide trifluoroacétique, on
ajoute 1,3 ml de benzène en refroidissant au bain-marie glacé et
en agitant, puis on ajoute goutte à goutte 0,85 ml d'acide trifluorométhanesulfonique. Après avoir agité le mélange pendant 3 h,
on le laisse réchauffer à la température ordinaire et on chasse
le solvant par distillation. On extrait le résidu par le chloroforme, on filtre l'extrait et on le concentre. Par repos, on
obtient 3,4 g (rendement 68%) de trifluorométhanesulfonate d'heptafluoro-n-propylphényliodonium sous forme de tablettes cristallines
incolores.

Point de décomposition : 124,5-127°C.

19 F-RMN (CCl₃F comme référence interne dans le CDCl₃) : 70,65 ppm

(s, large, -CF₂-I), 79,00 (s, -SO₂CF₃), 79,70 (t, J=8Hz,

CF₃-CF₂-), 118,5 (s, CF₃-CF₂-).

25 CF_3-CF_2-), 118,5 (s, CF_3-CF_2-). ¹H-RMN (dans le CDCl₃): 7,4-8,2 ppm (m, 5H).

IR (nujo1): 3090, 1460, 1445, 1320, 1275, 1240, 1220, 1195, 1165, 1135, 1055, 1015, 980, 800, 740, 725, 675, 635, 520 cm⁻¹.

Analyse élémentaire :

30 trouvée : C : 22,93; H : 0,93% théorique : C : 23,01; H : 0,97%

EXEMPLE 12

Selon le mode opératoire décrit dans l'exemple 10, on prépare le sulfate de mono(heptafluoro-n-propylphényliodonium).

```
Rendement: 44%.
```

Point de fusion : 109-111°C.

 19 _{F-RMN} (CCl₃F comme référence interne dans le CD₃CN) : -75,65 ppm (q, 1 _{CF₂,CF₃} =10Hz; 2 _{CF₂}, -78,94 ppm (t, 1 _{CF₃,CF₂} =10Hz, CF₃), -118,1 ppm (s, β-CF₂).

¹H-RMN (dans le CDCl₃): 7,4 - 7,9 ppm (multi, n-H, p-H, 3H), 8,2 ppm (d, J_{o-H, m-H} =9Hz, OH, 2H).

IR (nujol): 1330, 1280, 1210, 1140, 1060, 1040, 1020, 985, 880, 810, 750, 730, 680, 650, 580 cm⁻¹.

10 SM: 375 [(C₃F₇-I⁺-Ph)-1], 253, 204, 69.

Analyse élémentaire :

trouvée : C : 23,04; H : 1,34%

théorique : C : 23,00; H : 1,29%

EXEMPLE 13

30

35

Dans un ballon purgé à l'argon, on introduit 0,24 g de méthanesulfonate d'argent et 7 ml d'acétonitrile, puis on ajoute goutte à goutte, en refroidissant au bain-marie glacé et en agitant, une solution de 0,5 g de chlorure d'heptafluoro-n-propyl-p-tolyliodonium dissous dans 8 ml d'acétonitrile. Lorsque

20 l'addition est achevée, on agite le mélange pendant 1 h en le refroidissant au bain-marie glacé et on sépare par filtration les cristaux blancs précipités. On chasse ensuite le solvant du filtrat pour obtenir des cristaux blancs que l'on recristallise dans un mélange de chlorure de méthylène et de pentane pour obtenir 0,35 g

25 (rendement: 61,4%) de méthanesulfonate d'heptafluoro-N-propyltolyliodonium.

Point de fusion: 117,5-119°C.

 19 F-RMN (CCl₃F comme référence interne dans le CDCl₃): -78,05 ppm (q, 1 CF₂,CF₃ =8,0Hz, $^{\alpha}$ -CF₂)₃, -79,74 ppm (t, 1 CF₂,CF₃ =8,0Hz, CF₃), -119,3 ppm (s. large, 19 B-CF₂).

¹H(RMN (dans le CDCl₃): 2,55 ppm (s, Ar-CH₃), 2,68 ppm (s, OSO₂CH₃), 7,52 ppm (d, J=9Hz, ArH, 2H), 8,22 ppm (d, J=9Hz, ArH, 2H).

IR (nujo1): 3070, 1460, 1400, 1380, 1325, 1275, 1225, 1205, 1200, 1180, 1150, 1130, 1060, 1050, 1020, 860, 800, 880, 865, 830, 670, 620, 585, 575, 550, 535, 490 cm⁻¹.

SM: 386
$$[(c_3F_7I^+-CH_3)-1]$$
, 267, 218, 91.

Analyse élémentaire :

trouvée : C : 27,41; H : 2,15%

théorique : C : 27,40; H : 2,09%

5 EXEMPLE 14

10

15

20

Dans un ballon purgé à l'argon, on introduit 0,31 g de benzènesulfonate d'argent et 5 ml d'acétonitrile, puis on ajoute goutte à goutte, en refroidissant au bain-marie glacé et en agitant, une solution de 0,5 g de chlorure d'heptafluoro-n-propyl-p-tolyliodonium dissous dans 7 ml d'acétonitrile. Lorsque l'addition est achevée, on agite le mélange pendant 1 h en refroidissant au bain-marie glacé et on sépare par filtration les cristaux blancs précipités. On chasse le solvant du filtrat pour obtenir des cristaux blancs que l'on recristallise dans un mélange de chlorure de méthylène et de pentane pour obtenir 0,42 g (rendement : 66%) de benzènesulfonate d'heptafluoro-n-propyl-p-tolyliodonium.

Point de fusion : 128-130°C.

¹⁹_{F-RMN} (CCl₃F comme référence interne dans le CDCl₃): -78,38 ppm
(q, J_{CF₂,CF₃} =8,0Hz, α-CF₂), -79,79 ppm (t, J_{CF₂,CF₃} =8,0Hz, CF₃),
-119,3 ppm (s, CF₂).

¹H-RMN (CDC1₃): 2,40 ppm (s, -CH₃), 7,24 ppm (multi, OSO₂Ph), 7,54 ppm (d. large, J=8,OHz, ArH, 2H), 7,95 ppm (d, J=8,OHz, ArH, 2H).

25 IR (nujo1): 3090, 3050, 1480, 1460, 1450, 1380, 1330, 1280, 1235, 1210, 1195, 1180, 1160, 1130, 1120, 1065, 1030, 1010, 995, 810, 755, 730, 690, 670, 610, 560, 490 cm⁻¹.

SM: 386
$$[(C_3F_7I^+-CH_3)-1]$$
, 267, 218, 91.

Analyse élémentaire:

30 trouvée : C : 35,21; H : 2,17% théorique : C : 35,31; H : 2,22%

10

15

30

Dans un ballon, on introduit 0,93 g de di(trifluoro-acétoxy)iodoheptafluoro-n-propane et 7 ml d'acide trifluoro-acétique, puis, après avoir ajouté 0,24 ml de benzène, on ajoute goutte à goutte, en refroidissant au bain-marie glacé, 0,102 ml d'acide fluorosulfonique et on agite le mélange en le refroidissant au bain-marie glacé pendant 2 h. On agite ensuite le mélange à la température ordinaire pendant 1 h et on chasse le solvant par distillation pour obtenir le fluorosulfonate d'heptafluoro-n-propylphényliodonium.

¹⁹F-RMN (CCl₃F comme référence interne dans le chloroforme) : 38,52 ppm (s. large, $^{0S0}_2$ F), $^{-69,00}$ ppm (s. large, $^{\alpha-CF}_2$), $^{-79,74}$ ppm (t, $^{1}_{CF_3}$, $^{CF}_2$) =8Hz, $^{\gamma-CF}_3$), -118,4 ppm (s, $^{\beta-CF}_2$).

Pour confirmer la nature du produit, on le transforme en sulfate de mono(heptafluoro-n-propylphényliodonium) par hydrolyse par l'acétonitrile dans l'air puis cristallisation. EXEMPLE 16

On ajoute 0,2 ml de benzène à un mélange de 1,0 g

de di(trifluoroacétoxy)iodoperfluoro-n-hexane et 10 ml d'acide
trifluoroacétique en refroidissant au bain-marie glacé, puis on
ajoute goutte à goutte, en agitant, 0,13 ml d'acide trifluoroéthanesulfonique. Après 2,5 h d'agitation, on chasse le solvant
par distillation et on recristallise le solide dans le chloroforme pour obtenir 0,82 g de trifluorométhanesulfonate de perfluoro-n-hexylphényliodonium sous forme d'aiguilles incolores.
Rendement : 89%.

Point de décomposition : 120-123°C.

19 F-RMN (CCl₃F comme référence interne dans le CDCl₃) : 70,35 ppm
(m, 2F), 79,00 (s, 3F), 81,28 (t, 3F), 114,2 (m, 2F),
121,7 (m, 2F), 123,0 (m, 2F), 126,5 (m, 2F).

1 H-RMN (dans le CDCl₃) : 7,4 - 8,4 ppm (m, 5H).

IR (nujo1): 1360, 1340, 1240, 1020, 735, 640 cm⁻¹.

10

On reprend le mode opératoire décrit dans l'exemple 10, si ce n'est qu'on utilise le di(trifluoroacétoxy)iodotridécafluoron-hexane au lieu du di(trifluoroacétoxy)iodopentafluoroéthane pour

obtenir le sulfate de mono(tridécafluoro-n-hexylphényliodonium).

Rendement : 51%.

Point de fusion : 107-108°C.

¹⁹F-RMN (CCl₃F comme référence interne dans le CD₃CN): -73,35 ppm (t, J=12Hz, α-CF₂), -80,26 ppm (t, J=10Hz, CF₃), -113,3 ppm (m, CF₂), -120,5 ppm (m, CF₂), -121,7 ppm (m, CF₂), -125,2 ppm (m, CF₂).

¹H-RMN (dans le CD₃CN): 7,5 - 8,0 ppm (multi, m-H, p-H, 3H), 8,3 ppm (d, J_{O-H, m-H} =9Hz, o-H, 2H).

IR (nujo1): 3350, 3070, 1460, 1450, 1380, 1360, 1310, 1280, 1240,

15 1215, 1195, 1190, 1140, 1120, 1095, 1060, 1020, 985, 880, 850, 750, 740, 720, 680, 660, 645, 590, 580, 530 cm⁻¹.

SM: $522 [(C_6F_{13}I^+Ph)-1], 253, 204.$

Analyse élémentaire :

trouvée : C : 23,20; H : 1,06%

20 théorique : C : 23,24; H : 0,98%

EXEMPLE 18

On ajoute 0,18 ml de benzène à un mélange de 1,0 g de di(trifluoroacétoxy)iodoperfluoro-n-heptane et 15 ml d'acide trifluoroacétique en refroidissant au bain-marie glacé, puis on 25 ajoute goutte à goutte, en agitant, 0,12 ml d'acide trifluorométhane-sulfonique. Après 2,5 h d'agitation, on chasse le solvant par distillation et on recristallise le résidu dans le chloroforme pour obtenir 0,75 g de trifluorométhanesulfonate de perfluoro-n-heptyl-phényliodonium sous forme d'aiguilles fines incolores. Rendement:75%.

30 Point de décomposition: 148-150°C.

¹⁹F-RMN (CCl₃F comme référence interne dans l'acétone-d₆): 71,41 ppm (t, 2F), 78,07 (s, 3F), 80,59 (t, 3F), 113,3 (m, 2F), 121,0 (m, 4F), 122,1 (m, 2F), 125,6 (m, 2F).

¹H-RMN (dans l'acétone-d₆): 8,0 ppm (m, 3H), 8,7 ppm (m, 2H). 35 IR (nujol): 1383, 1280, 1240, 1220, 1150, 1020, 745, 640 cm⁻¹. Analyse élémentaire:

trouvée : C : 23,26; H : 0,61% théorique : C : 23,29; H : 0,70%

On ajoute 0,86 ml de benzène à un mélange de 5 g de di(trifluoroacétoxy)iodoperfluoro-n-octane et 30 ml d'acide trifluoro-acétique en refroidissant au bain-marie glacé puis on ajoute goutte à goutte en agitant 0,57 ml d'acide trifluorométhanesulfonique.

Après 3 h d'agitation, on chasse le solvant par distillation et on recristallise le solide obtenu dans le chloroforme pour obtenir 3,93 g de trifluorométhanesulfonate de perfluoro-n-octylphényliodonium sous forme d'aiguilles fines incolores. Rendement : 79%.

10 Point de décomposition : 149-151°C.

19_{F-RMN} (CCl₃F comme référence interne dans l'acétone-d₆) : 71,34 ppm

(t, 2F), 78,17 (s, 3F), 80,65 (t, 3F), 113,3 (m, 2F), 121,0

(m, 6F), 122,1 (m, 2F), 125,7 (m, 2F).

¹H-RMN (dans 1'acetone-d₆): 8,0 ppm (m, 3H, 8,7 (m, 2H).

15 IR (nujol): 1360, 1350, 1240, 1020, 740, 640 cm⁻¹.

Analyse élémentaire :

trouvée : C : 23,28; H : 0,59%

théorique : C : 23,33; H : 0,65%

EXEMPLE 20

25

On reprend le mode opératoire décrit dans l'exemple 10 pour préparer le sulfonate de mono(n-perfluorooctylphényliodonium) monohydraté. Rendement : 62%.

Point de fusion : 114-118°C

 19 F-RMN (CCl $_3$ F comme référence interne dans le CD $_3$ -CN): -72,69 ppm (multi, α -CF $_2$), -80,20 ppm (t, J=10Hz, CF $_3$), -113,1 ppm (multi, CF $_2$), -120,6 ppm (multi, CF $_2$ x 3), -121,7 ppm (multi, CF $_2$), -125,1 ppm (multi, CF $_2$).

 $^{1}_{H-RMN}$ (dans le $CD_{3}CN$): 7,5 - 8,0 ppm (m-H, p-H, 3H), 8,3 ppm (d, $J_{o-H, m-H} = 9Hz$, o-H, 2H).

30 IR (nujo1): 3370, 1320, 1245, 1210, 1150, 1095, 1060, 1020, 980, 915, 880, 735, 640, 560, 530 cm⁻¹.

SM : 611 ($n-c_8F_{17}I^+Ph-H$), 253 (c^+F_2IPh-H), 204 (PhI^+), 60 (c^+F_3). Analyse elémentaire :

trouvée : C : 22,94; H : 1,08%

35 théorique : C : 22,78; H : 1,09%

On met en suspension 1,0 g (1,30 x 10⁻³ mole) de di(trifluoroacétoxy)iodoheptadécafluoro-n-octane dans 6,0 ml d'acide
trifluoroacétique et on ajoute goutte à goutte à la suspension 0,173 ml

(1,95 x 10⁻³ mole) de benzène puis 0,0843 ml (1,30 x 10⁻³ mole) d'acide
méthanesulfonique puis on laisse le mélange réagir pendant 2 semaines
à la température ordinaire. On sèche le mélange réactionnel et on
ajoute une petite quantité d'acétonitrile pour obtenir 240 mg
(rendement : 26%) de méthanesulfonate d'heptadécafluoro-n-octylphényliodonium sous forme de cristaux blancs. On recristallise dans l'acétonitrile un échantillon du produit obtenu pour effectuer l'analyse
élémentaire et les analyses spectrales. Les résultats obtenus
figurent ci-dessous.

Point de fusion : 140 - 141°C.

15 19 F-RMN (CCl $_3$ F comme référence interne dans le CDCl $_3$): -77,09 ppm (t, J CF $_2$, CF $_2$ = 15Hz, CF $_2$, 2F), -81,32 ppm (t, J CF $_2$, CF $_2$ = 10Hz, CF $_3$, 3F), -114,82 ppm (m, CF $_2$, 2F), -122,01 ppm (m, CF $_2$ x 3, 6F), -123,04 ppm (m, CF $_2$, 2F), -126,52 ppm (m, CF $_2$, 2F).

¹H-RMN (dans le CDCl₃): 2,50 ppm (s, 3H), 7,70 ppm (m, 3H), 8,24 ppm (m, 2H).

IR (KBr): 3050, 1465, 1440, 1365, 1320, 1200 (absorption large), 1140, 1085, 1055, 1025, 980, 900, 810, 780, 770, 740, 730, 635, 555, 530 cm⁻¹.

SM: 623 $(c_8F_{17}I^+Ph)$, 622 $[(c_8F_{17}I^+Ph)-1]$, 254, 253, 204.

25 Analyse élémentaire :

trouvée : C : 25,09; H : 1,04% théorique : C : 25,09; H : 1,12%

EXEMPLE 22

20

On ajoute 0,92 ml (10 mmol) de benzène à un mélange de 30 6,0 g (6,9 mmol) de di(trifluoroacétoxy)iodoheneicosafluoro-n-décane et 32 ml d'acide trifluoroacétique en refroidissant au bain-marie glacé et en agitant puis on ajoute goutte à goutte 0,61 ml (6,9 mmol) d'acide trifluorométhanesulfonique. Lorsque l'addition est achevée, on agite le mélange pendant 1,5 h et on chasse le solvant par distillation pour obtenir un solide cristallin. On lave le solide avec du chloroforme chaud pour obtenir 4,4 g de trifluorométhanesulfonate d'heneicosafluoro-n-décylphényliodonium. Rendement : 73%.

Point de fusion : 162-166°C.

5 IR (KBr): 1460, 1440, 1370, 1330, 1210, 1140, 1080, 1020, 980, 940, 820, 740, 730, 630, 540, 520 cm⁻¹.

Analyse élémentaire :

trouvée : C : 23,49; H : 0,57% théorique : C : 23,41; H : 0,58%

10 EXEMPLE 23

20

On reprend le mode opératoire décrit dans l'exemple 10 avec les mêmes proportions molaires de composés réagissants mais avec du di(trifluoroacétoxy)iodoheneicosafluoro-n-décane au lieu de di(trifluoroacétoxy)iodoheptadécafluoro-n-octane et on obtient 2,3 g

15 (rendement : 81%) de sulfonate de mono(heneicosafluoro-n-décylphényliodonium) monohydraté.

Point de fusion : 129-132°C.

¹⁹F-RMN (CCl₃F comme référence interne dans le CD₃CN) : -73,27 ppm (t, -CF₂.1), -80,15 ppm (t, CF₃-), -113,25 \sim - 125,14 ppm [\leftarrow CF₂.CF₂ \rightarrow ₄].

IR (KBr): 1460, 1440, 1380, 1210, 1150, 1120, 1090, 1070, 1040, 1010, 990, 890, 850, 830, 740, 640, 580, 560, 530 cm⁻¹.

Analyse élémentaire :

trouvée : C : 23,00; H : 0,92%

25 théorique : C : 22,93; H : 0,96%

EXEMPLE DE REFERENCE 1

On agite pendant une nuit au bain d'huile à 45°C un mélange de 0,5 g de lH,4H-quinoxalinedione-2,3, 1,60 g de trifluoro-méthanesulfonate de pentafluoroéthylphényliodonium et 10 ml de

- diméthylformamide. On ajoute ensuite de l'acétate d'éthyle au mélange réactionnel et on élimine par filtration la lH,4H-quinoxalinedione-2,3 n'ayant pas réagi (on récupère 0,13 g de matière de départ). On ajoute de l'eau au filtrat et après avoir neutralisé le mélange on l'extrait par l'acétate d'éthyle. On lave l'extrait à l'eau, on sèche sur
- 35 sulfate de magnésium et on chasse le solvant par distillation. On ajoute au résidu une petite quantité de chlorure de méthylène et on

recueille les cristaux précipités par filtration pour obtenir 0,05 g de pentafluoroéthyl-6 lH,4H-quinoxalinedione-2,3 sous forme de cristaux incolores. Rendement : 6% (rendement de conversion : 8%). Point de fusion (après recristallisation dans l'acétonitrile) : 317-320°C (avec décomposition).

19F-RMN (CCl₃F comme référence interne dans l'acétone-d₆) : 84,40 ppm (t, J=2Hz, CF_{2}), 113,1 (q, J=2Hz, CF_{2}).

H-RMN (acétone-d₆): 7,50 ppm (s.large, 2H, hydrogène aromatique), 7,60 (s.large, 1H, hydrogène aromatique), 11,1 (s.large, 2H, hydrogène hydroxylique).

IR (nujol): 3250, 3170, 1725, 1700, 1620, 1400, 1305, 1210, 1180, 1135, 1100, 1050, 930, 820, 775, 740, 675, 650 cm⁻¹.

SM (m/e) : 280 (M⁺).

10

Analyse élémentaire :

: C : 42,96; H : 1,84; N : 10,07% théorique : C : 42,87; H : 1,80; N : 10,00% EXEMPLE DE REFERENCE 2

On ajouté 0,08 g d'hydrure de sodium (à 50% dans l'huile) à 3,5 ml de diméthylsulfoxyde anhydre et on agite le mélange pendant 20 25 min au bain d'huile à 65°C sous atmosphère d'argon. On ajoute ensuite 0,25 g de 1H,4H-quinoxalinedione-2,3 et on agite le mélange pendant 30 min. On laisse refroidir à la température ordinaire puis on ajoute au mélange 0,80 g de trifluorométhanesulfonate de pentafluoroéthylphényliodonium. Il se produit alors une réaction exother-25 mique et on refroidit le mélange au bain-marie glacé. On agite ensuite le mélange pendant une nuit à la température ordinaire puis après avoir ajouté de l'eau on extrait le mélange par l'acétate d'éthyle. On sèche l'extrait sur sulfate de magnésium et on chasse le solvant par distillation. On ajoute au résidu une petite quantité de chlorure 30 de méthylène et on recueille par filtration les cristaux précipités pour obtenir 0,16 g de pentafluoroéthyl-6 lH,4H-quinoxalinedione-2,3 sous forme de cristaux incolores. A partir de la phase aqueuse, on recueille 0,06 g de la matière de départ n'ayant pas réagi (1H-4Hquinoxalinedione-2,3). Rendement: 37% (rendement de la conversion: 35 49%).

EXEMPLE DE REFERENCE 3

Dans un ballon, on introduit 2,0 ml de chlorure de méthylène, 0,06 ml (0,68 mmol) d'acide mercapto-2 propionique et 140 mg (0,68 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute, par petites portions en agitant à la température ordinaire, 320 mg (0,68 mmol) de trifluorométhanesulfonate de pentafluoroéthylphényliodonium, puis on agite le mélange à la température ordinaire pendant 20 min. On sépare par filtration le précipité obtenu, on chromatographie sur une colonne de gel de silice et après avoir élué l'iodobenzène avec du pentane on élue le produit désiré avec de l'éther éthylique. On chasse l'éther éthylique de l'éluat par distillation pour obtenir l'acide pentafluoroéthylthio-2 propionique sous forme d'un liquide incolore. On purifie un échantillon du produit par chromatographie gazeuse. Rendement : 81%.

15 19 F-RMN (CCl₃F comme référence interne dans le CDCl₃): -84,02 ppm (t, $J_{CF_3,CF_2} = 3,5$ Hz, CF_3 , 3F), -91,67 ppm (q, $J_{CF_3,CF_2} = 3,5$ Hz, CF_2 , 2F).

¹H-RMN (dans le CDCl₃): 1,70 ppm (d, J_{CH₃},CH = 7,5Hz, CH₃, 3H), 4,10 ppm (q, J_{CH₃},CH = 7,5Hz, -SCH-, 1H), 10,53 ppm (s, CO₂H, IH).

20 IR (tel quel): 3050 (absorption large), 1730, 1460, 1415, 1380, 1320, 1280, 1210, 1100, 965, 750 cm⁻¹.

SM: 224 (M⁺), 179, 69, 61, 62, 47, 45.

Analyse élémentaire :

25 trouvée : C : 26,83; H : 2,29%

théorique : C : 26,79; H : 2,25%

EXEMPLE DE REFERENCE 4

Dans un ballon, on introduit 2,0 ml de chlorure de méthylène, 0,05 ml (0,58 mmol) d'acide mercapto-3 propionique et 120 mg (0,59 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute par petites portions en agitant à la température ordinaire 261 mg (0,55 mmol) de trifluorométhanesulfonate de pentafluoroéthyl-phényliodonium puis on agite le mélange à la température ordinaire pendant 20 min. On sépare par filtration le précipité blanc obtenu, on chromatographie sur une colonne contenant une petite quantité de gel de silice et après avoir élué l'iodobenzène avec de l'hexane

on élue le produit désiré avec de l'éther éthylique. On chasse l'éther éthylique de l'éluat par distillation pour obtenir l'acide pentafluoroéthylthio-3 propionique sous forme d'un liquide incolore. On purifie un échantillon du produit par chromatographie gazeuse.

5 Rendement: 83%.

10

35

¹⁹F-RMN (CCl₃F comme référence interne dans le CDCl₃): -84,00 ppm
(t, J_{CF₃,CF₂} = 3,5Hz, CF₃, 3F), -92,82 ppm (q, J_{CF₃,CF₂} = 3,5Hz, CF₃, 2F).

1_{H-RMN} (dans le CDCl₃): 2,79 ppm (t, J=7,0Hz, CH₂SC₂F₅, 2H), 3,15 ppm (t, J=7,0Hz, -CH₂CO-, 2H), 10,6 ppm (s.large, CO₂H, 1H).

IR (tel quel): 3050 (absorption large), 2670, 2480, 1720, 1430, 1330, 1215, 1100, 970, 920, 810, 750, 650, 625, 585, 555 cm⁻¹.

SM: 224 (M⁺), 179, 105, 87, 69, 63, 59, 45.

Analyse élémentaire :

15 trouvée : C : 26,83; H : 2,31%

théorique : C : 26,79; H : 2,25%

EXEMPLE DE REFERENCE 5

On introduit dans un ballon 2,0 ml de chlorure de méthylène, 0,10 ml (0,42 mmol) de dodécanethiol-1 et 87 mg (0,42 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute par petites portions en agitant à la température ordinaire 198 mg (0,42 mmol) de trifluorométhanesulfonate de pentafluoroéthylphényliodonium puis on agite à la température ordinaire pendant 20 min. On sépare par filtration le précipité blanc obtenu et on chromatographie sur une colonne de gel de silice. On élue l'iodobenzène et le produit avec du pentane et on purifie par chromatographie gazeuse pour obtenir le pentafluoroéthylthio-1 dodécane sous forme d'une substance huileuse. Rendement : 87%.

19_{F-RMN} (CCl₃F comme référence interne dans le CDCl₃): -84,01 ppm (t, J_{CF₃,CF₂} = 3,5Hz, CF₃, 3F), -92,69 ppm (q, J_{CF₃,CF₂} = 3,5Hz, CF₂, 2F).

 1 H-RMN (dans le CDCl₃): 0,90 ppm (s, CH₃), 1,29 ppm (s.large, CH₂ x 9), 1,53 ppm (s, SCH₂CH₂-), 2,92 ppm (t, 1 CH₂,CH₂ = 7 Hz, SCH₂).

IR (tel quel): 2950, 2925, 2850, 1460, 1375, 1335, 1320, 1210, 1200, 1120, 1090, 970, 750, 720, 640, 620, 545 cm⁻¹.

SM: 201 (C₁₂H₂₅S), 106, 97, 83, 69, 57, 55, 43, 41, 29, 27.

Analyse élémentaire:

5 trouvée : C : 26,83; H : 2,31% théorique : C : 26,79; H : 2,25%

EXEMPLE DE REFERENCE 6

On ajoute 0,12 ml d'acide mercaptoacétique et 350 ml de di-tert-butyl-2,6 méthyl-4 pyridine à 4 ml de chlorure de méthylène et on agite le mélange à la température ordinaire. On ajoute ensuite 800 mg de trifluorométhanesulfonate de pentafluoroéthylphényliodonium et on laisse le mélange réagir pendant 30 min à la température ordinaire. On soumet le mélange réactionnel à une chromatographie sur une colonne de gel de silice et après avoir élué l'iodobenzène par l'hexane on élue le produit par l'éther éthylique. On chasse l'éther éthylique par distillation pour obtenir 319 mg (rendement : 90%) d'acide pentafluoroéthylthioacétique sous forme d'une substance huileuse.

19_{F-RMN} (CCl₃F comme référence interne dans le CDCl₃): -83,98 ppm
(t, J_{CF₃,CF₂} = 3,5Hz, CF₃), -93,39 ppm (q, J_{CF₃,CF₂} = 3,5Hz,
CF₂).

¹H-RMN (dans le CDCl₃): 3,82 ppm (s, CH₂), 6,7 ppm (s.large, COO<u>H</u>). IR (tel quel): 3100 (absorption large), 2670, 2550, 1725, 1410, 1320, 1300, 1280, 1210, 1130, 1100, 970, 900, 775, 750, 640, 620 cm⁻¹.

SM: 210 (M⁺), 165, 119, 69, 47, 45.

Analyse élémentaire :

25

trouvée : C : 22,89; H : 1,63% théorique : C : 22,87; H : 1,44%

30 EXEMPLE DE REFERENCE 7

On ajoute 0,012 ml d'acide mercaptoacétique et 0,027 ml de pyridine à 1,5 ml de chlorure de méthylène. On ajoute ensuite 69,0 mg de sulfate de mono(pentafluoroéthylphényliodonium) et on laisse le mélange réagir à la température ordinaire pendant 20 min pour obtenir l'acide pentafluoroéthylthioacétique. Rendement : 71%.

EXEMPLE DE REFERENCE 8

On introduit dans un ballon 2,5 ml de chlorure de méthylène, 0,072 ml (0,62 mmol) d'α-toluènethiol et 126 mg (0,61 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute par petites portions en agitant à la température ordinaire 320 mg (0,61 mmol) de trifluorométhanesulfonate d'heptafluoro-n-propylphényliodonium puis on agite pendant 10 min à la température ordinaire. On sépare par filtration le précipité blanc obtenu, on chromatographie sur une colonne de gel de silice et on élue par le pentane. On chasse le pentane de l'éluat par distillation et on purifie le résidu par chromatographie gazeuse pour obtenir le sulfure de benzyle et de perfluoro-n-propyle sous forme d'une substance huileuse. Rendement : 76%.

19_{F-RMN} (CCl₃F comme référence interne dans le CDCl₃): -80,50 ppm (t, $J_{CF_3,\alpha-CF_2} = 9,3Hz$, CF_3 , 3F), -88,84 ppm (m, $J_{CF_3,\alpha-CF_2} = 9,3Hz$, $J_{\alpha-CF_2,\beta-CF_2} = 4,0Hz$, $\alpha-CF_2,2F$), -124,6 ppm (t, $J_{\alpha-CF_2,\beta-CF_2} = 4,0Hz$, $\beta-CF_2$, 2F). 1_{H-RMN} (dans le CDCl₃): 4,25 ppm (s, -CH₂-, 2H), 7,50 ppm (s, Ar-H, 5H).

20 IR (tel quel): 3100, 3070, 3040, 2950, 1950, 1880, 1800, 1600, 1495, 1455, 1335, 1220, 1210, 1180, 1110, 1080, 1035, 925, 855, 840, 810, 770, 750, 740, 700, 695, 670, 650, 605, 560, 535, 520 cm⁻¹. SM: 292 (M⁺), 91, 77, 69, 65.

Analyse élémentaire :

25 trouvée : C : 41,07; H : 2,40% théorique : C : 41,10; H : 2,41%

EXEMPLE DE REFERENCE 9

On introduit dans un ballon 2,0 ml de chlorure de méthylène, 57 mg (0,38 mmol) d'acide mercaptosuccinique et 79 mg

30 (0,39 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute en agitant à la température ordinaire 204,2 mg (0,39 mmol) de trifluoro-méthanesulfonate d'heptafluoro-n-propylphényliodonium puis on agite à la température ordinaire pendant 1 h. On sépare le précipité obtenu par filtration et on chromatographie sur une colonne de gel de

35 silice. On élue l'iodobenzène par le pentane et on fait passer de l'éther éthylique à travers la colonne. On chasse l'éther éthylique

5

35

```
de l'éluat par distillation pour obtenir 62,9 mg (rendement : 52,1%)
      d'acide heptafluoro-n-propylthiosuccinique, sous forme de cris-
      taux.
      <sup>19</sup>F-RMN (CCl<sub>3</sub>F comme référence interne dans le CDCl<sub>3</sub>) : -80,49 ppm
              (t, J_{CF_2, CF_3} = 9,5Hz, CF_3), -87,56 ppm (m, J_{CF_3, CF_2} = 9,5Hz, J_{CF_2, CF_2} = 3,5Hz, CF_2 = 3,5Hz, CF_2 = 3,5Hz,

J_{CF_2, CF_2} = CF_2 CF_2 CF_3).

      ^{1}H-RMN (dans le CDC1<sub>3</sub>) : 3,10 ppm (d, J_{CH_{2}CH_{2}} = 7Hz, CH_{2}), 4,22 ppm
               (t, J_{CH,CH} = 7Hz, CH).
                      On estérifie de façon suivante une partie de l'acide
10
      heptafluoro-n-propylthiosuccinique obtenu dans la réaction ci-dessus.
                      On dissout l'acide heptafluoro-n-propylthiosuccinique
      dans l'éther éthylique et on ajoute goutte à goutte à la température
      ordinaire, en agitant jusqu'à ce que la réaction soit achevée, une
      solution de diazométhane dissous dans l'éther éthylique. Après avoir
      chassé l'éther éthylique par distillation, on purifie le résidu par
      chromatographie gazeuse pour obtenir l'heptafluoro-n-propylthiosuc-
      cinate de diméthyle sous forme d'une substance huileuse.
      ^{19}F-RMN (CCl_3F comme référence interne dans le CDCl_3): -80,47 ppm
      (t, J_{CF_2, CF_3} = 9, OHz, CF_3), -87,55 ppm (m, \alpha-CF_2), -124,5 ppm (t, J_{CF_2, CF_3} = 4, OHz, \beta-CF_2).

I_{H-RMN} (dans 1e CDC1<sub>3</sub>): C_3F_7S_{CH}^{CH}(X)CO_2CH_3, 2,93 ppm (d.d., J_{H_A}, H_X
20
               H(A) \stackrel{H}{(B)}
5,8 Hz, J_{H_A, H_B} = 17 Hz, H_A, 1H), 3,09 ppm (d.d., J_{H_R, H_X} = 8,0Hz,
25
               J_{H_A,H_D} = 17Hz, H_B, 1H), 3,69 \text{ ppm (s, CH}_3, 3H), 3,77 \text{ ppm (s,}
               CH_3, 3H), 4,23 ppm (d.d., J_{H_A,H_V} = 8,0Hz, J_{H_B,H_V} = 5,8Hz, H_X,
      IR (tel quel): 3000, 2960, 2850, 1750, 1440, 1415, 1370, 1340, 1310,
               1220, 1180, 1170, 1115, 1685, 1040, 1000, 960, 925, 905, 860,
30
               810, 750, 745, 680, 540 cm<sup>-1</sup>.
      SM: 315 (M^{+}-31), 177, 145, 113, 59.
      Analyse élémentaire :
      trouvée
                   : C: 31,31; H: 2,59%
```

théorique : C : 31,22; H : 2,62%

EXEMPLE DE REFERENCE 10

On ajoute 0,09 ml de mercaptoacétate de n-butyle et

118 mg de di-tert-butyl-2,6 méthyl-4 pyridine à 25 ml de chlorure de

méthylène. On ajoute ensuite par petites quantités 300 mg de trifluoro
méthanesulfonate d'heptafluoro-n-propylphényliodonium et on laisse le

mélange réagir pendant 20 min à la température ordinaire. On sépare

par filtration le précipité formé et on chromatographie sur une colonne

de gel de silice. Après avoir élué l'iodobenzène avec de l'heptane,

on élue le produit désiré avec de l'éther éthylique. On chasse l'éther

éthylique de l'éluat par distillation pour obtenir l'heptafluoro-n
propylthioacétate de n-butyle sous forme d'une substance huileuse.

Rendement : 87,5%.

¹⁹F-RMN (CCl₃F comme référence interne dans le CDCl₃): CF₃ -CF₃ -CF₃ (γ) CF₂ (α) CF₂ -S-, -80,71 ppm (t, J_{F γ}, F_{α} = 9,5Hz, CF₃), -89,52 ppm

 $(q.t., J_{F_{\alpha},F_{\beta}} = 3,5Hz, J_{F_{\alpha},F_{\gamma}} = 9,5Hz, CF_{2\alpha}), -124,7 \text{ ppm (t,}$ $J_{F_{\alpha},F_{\beta}} = 3,5Hz, CF_{2\beta}).$

 1 H-RMN (dans le CDCl₃) : n-C₃F₇S-CH₂-CO₂-CH₂-CH₂-CH₂-CH₃, 0,93 ppm (a) (b) (c) (d)

(m, CH₃, 3H), 1,2-1,8 ppm (m, H_c, H_d, 4H), 3,67 ppm (s, H_a, 2H), 4,16 ppm (t, J_{H_b,H_c} = 6Hz, H_b, 2H).

IR (tel quel): 2960, 2880, 1745, 1460, 1410, 1380, 1340, 1300, 1280, 1210, 1190, 1110, 1090, 1040, 930, 860, 740, 675 cm⁻¹.

 $SM : 215 (^{+}CH_{2}SC_{3}F_{7}), 169, 69, 57, 56.$

Analyse élémentaire :

25 trouvée : C : 34,27; H : 3,37%

théorique : C : 34,18; H : 3,51%

EXEMPLE DE REFERENCE 11

On ajoute 0,02 ml de mercaptoacétate de n-butyle et 28 mg de di-tert-butyl-2,6 méthyl-4 pyridine à 1,5 ml de chlorure de 30 méthylène. On ajoute ensuite 64,6 mg de méthanesulfonate d'heptafluoro-n-propyl-p-tolyliodonium et on laisse le mélange réagir pendant 20 min à la température ordinaire pour obtenir l'heptafluoro-n-propylthioacétate de n-butyle. Rendement : 97%.

EXEMPLE DE REFERENCE 12

5

On ajoute 0,02 ml de mercaptoacétate de n-butyle et 27,7 mg de di-tert-butyl-2,6 méthyl-4 pyridine à 1,5 ml de chlorure de méthylène. On ajoute ensuite 71,5 mg de benzènesulfonate d'hepta-fluoro-n-propyl-p-tolyliodonium et on laisse le mélange réagir pendant 30 min à la température ordinaire pour obtenir le pentafluoro-n-propyl-thioacétate de n-butyle. Rendement : 95%.

EXEMPLE DE REFERENCE 13

On ajoute 0,11 ml de mercaptoacétate de n-butyle et
10 0,062 ml de pyridine à 3,5 ml de chlorure de méthylène. On ajoute
ensuite au mélange 400 mg de trifluorométhanesulfonate d'heptafluoron-propylphényliodonium et on laisse le mélange obtenu réagir pendant
10 min à la température ordinaire pour obtenir l'heptafluoro-n-propylthioacétate de n-butyle. Rendement : 60%.

15 EXEMPLE DE REFERENCE 14

On introduit dans un ballon 3 ml de chlorure de méthylène, 0,046 ml d'acide mercaptoacétique et 0,05 ml de pyridine et on ajoute par petites portions en agitant à la température ordinaire 377 mg de trifluorométhanesulfonate de tridécafluoro-n-hexyl-phényliodonium puis on laisse le mélange réagir pendant 20 min à la température ordinaire. On soumet le mélange réactionnel à une chromatographie sur une colonne de gel de silice et on fait passer du pentane puis de l'éther éthylique à travers la colonne. On chasse l'éther éthylique par distillation pour obtenir 212 mg (rendement : 92%) d'acide tridécafluoro-n-hexylthioacétique sous forme de cristaux blancs.

Point de fusion : 36-38°C.

¹⁹F-RMN (CCl₃F comme référence interne dans le CDCl₃): -81,37 ppm (t, J=10Hz, CF₃), -88,46 ppm (m, -SCF₂-), -120,2 ppm (m, CF₂), -121,9 ppm (m, CF₂), -123,2 ppm (m, CF₂), -126,5 ppm (m, CF₂).

¹H-RMN (dans le CDCl₃): 3,73 ppm (s, CH₂).

IR (nujol): 1720, 1300, 1240, 1200, 1140, 1080, 1040, 1020, 930, 900, 850, 800, 780, 760, 750, 720, 690, 660, 630, 600, 560, 530 cm⁻¹.

35 SM: 410 (M⁺), 365, 169, 141, 119, 69, 47, 45.

Analyse élémentaire :

trouvée : C : 23,44; H : 0,75% théorique : C : 23,43; H : 0,74%

EXEMPLE DE REFERENCE 15

On introduit dans un ballon 3 ml de chlorure de méthylène, 0,04 ml d'acide mercaptoacétique et 0,045 ml de pyridine et on ajoute par petites portions en agitant à la température ordinaire 306 mg de trifluorométhanesulfonate de pentadécafluoro-n-heptylphényliodonium puis on laisse le mélange réagir pendant 20 min à la température ordinaire. On soumet le mélange réactionnel à une chromatographie sur une colonne de gel de silice et on fait passer à travers la colonne du pentane puis de l'éther éthylique. On chasse l'éther éthylique par distillation pour obtenir 119 mg (rendement : 61%) d'acide pentadécafluoro-n-heptylthioacétique sous forme de cristaux blancs.

Point de fusion : 48-50°C.

 19 F-RMN (CCl₃F comme référence interne dans le CDCl₃): -81,35 ppm (t, 1 GCF₃,CF₂ = 10Hz, CF₃), -88,37 ppm (t, 1 GCF₂,CF₂ = 13Hz, -SCF₂-), -120,2 ppm (m, CF₂), -121,6 ppm (m, CF₂), -122,4 ppm (m, CF₂), -123,2 ppm (m, CF₂), -126,5 ppm (m, CF₂).

 1 H-RMN (dans le CDCl₃): 3,73 ppm (s, CH₂).

IR (nujo1): 1710, 1320, 1300, 1240, 1190, 1140, 1100, 985, 930, 900, 830, 800, 780, 750, 720, 700, 670, 645, 560, 530 cm⁻¹.

SM : 460 (M⁺), 415, 169, 141, 119, 69, 47, 45.

25 Analyse élémentaire :

20

trouvée : C : 23,79; H : 0,70% théorique : C : 23,49; H : 0,66%

EXEMPLE DE REFERENCE 16

On introduit dans un ballon 2,0 ml de chlorure de

30 méthylène, 0,03 ml (0,42 mmol) d'acide mercaptoacétique et 80 mg
(0,39 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute par
petites portions en agitant à la température ordinaire 290 mg
(0,38 mmol) de trifluorométhanesulfonate d'heptadécafluoro-n-octylphényliodonium puis on agite pendant 20 min à la température ordinaire.

35 On sépare par filtration le précipité obtenu, on chromatographie sur

une colonne de gel de silice et après avoir élué l'iodobenzène par le pentane on élue le produit désiré par l'éther éthylique. On chasse l'éther éthylique de l'éluat par distillation pour obtenir l'acide heptadécafluoro-n-octylthioacétique sous forme de cristaux blancs.

On purifie un échantillon du produit par chromatographie gazeuse. Rendement : 88%.

Point de fusion : 68-70°C.

10

 $^{19} \text{F-RMN (CCl}_{3} \text{F comme référence interne dans le CD}_{3} \text{CN)} : -80,26 \text{ ppm}$ $(t, J_{\text{CF}_{3},\text{CF}_{2}} = 12 \text{Hz}, \text{CF}_{3}, 3 \text{F}), -87,14 \text{ ppm (t.large, } J_{\text{CF}_{2},\text{CF}_{2}} = 12 \text{Hz}, -\text{CF}_{2}, 2 \text{F}), -119,0 \text{ ppm (s.large, CF}_{2}, 2 \text{F}), -120-121 \text{ ppm (s.large, CF}_{2}, x 3, 6 \text{F}), -121,7 \text{ ppm (s.large, CF}_{2}, 2 \text{F}).$

¹H-RMN (dans le CD₃CN) (60 MHz) : 3,88 ppm (s, -CH₂-), $3 \sim 4$ ppm (s.large, -COOH).

IR (nujo1): 3000 (absorption large), 1710, 1330, 1300, 1240, 1210, 1140, 1110, 1090, 940, 800, 780, 720, 700, 655, 575, 560, 530 cm⁻¹.

SM: 510 (M^{+}), 465, 231, 229, 181, 169, 141, 131, 119, 113, 97, 69, 63, 47, 46, 45.

Analyse élémentaire :

20 trouvée : C : 23,52; H : 0,56%

théorique : C : 23,54; H : 0,59%

EXEMPLE DE REFERENCE 17

On introduit dans un ballon que l'on a purgé à l'argon 2,0 ml de chlorure de méthylène, 0,04 ml (0,4-0,5 mmol) de propényl-2 thiol et 79 mg (0,39 mmol) de di-tert-butyl-2,6 méthyl-4 pyridine et on ajoute en agitant à la température ordinaire 275 mg (0,38 mmol) de trifluorométhanesulfonate d'heptadécafluoro-n-octylphényliodonium puis on agite pendant 10 min à la température ordinaire. On sépare par filtration le précipité blanc obtenu, on chromatographie sur une colonne de gel de silice et on élue par le pentane. On chasse le pentane de l'éluat par distillation et on purifie le résidu par chromatographie gazeuse pour obtenir le sulfure d'heptadécafluoro-n-octyle et d'allyle sous forme d'une substance huileuse. Rendement : 22%.

19_{F-RMN} (CCl₃F comme référence interne dans le CDCl₃) : -81,32 ppm (t, $J_{CF_2,CF_3} = 10Hz$, CF_3), -87,74 ppm (t, $J_{CF_2,CF_2} = 12Hz$, α -CF₂), -120,2 ppm (m, CF₂), -121,6 ppm (m, CF₂), -122,2 ppm (m, $CF_2 \times 2$), -123,0 ppm (m, CF_2), -126,5 ppm (m, CF_2).

1_{H-RMN} (dans le CDC1₃) : H_(A)
H_(B)
CH₂-S-ⁿC₈F₁₇

3,63 ppm (d.large, $J_{H_{C}}^{H_{C}} = 7Hz$, H_{D} , 2H), 5,25 ppm (d.large, $J_{H_A,H_C} = 10Hz$, H_A , 1H), 5,35 ppm (d.large, $J_{H_B,H_C} = 16,5Hz$, H_{B} , 1H), 5,95 ppm (d.d.t., $J_{H_{A}}$, H_{C} = 10Hz, $J_{H_{B}}$, H_{C} = 16,5Hz, $J_{H_C,H_D} = 7Hz, H_C, 1H$.

IR (tel quel): 3090, 1640, 1410, 1370, 1350, 1320, 1240, 1210, 1145, 1130, 1110, 1090, 1020, 980, 955, 930, 825, 810, 800, 780, 760, 745, 730, 725, 700, 670, 650, 640, 560, 530 cm⁻¹.

SM: 492 (M⁺), 123, 73, 69, 41, 39.

Analyse élémentaire : 15

10

; C: 26,97; H: 1,14% trouvée théorique : C : 26,84; H : 1,02%

EXEMPLE DE REFERENCE 18

On introduit dans un ballon 3 ml de chlorure de méthylène, 0,036 ml d'acide mercaptoacétique et 0,04 ml de pyridine 20 et on ajoute en agitant à la température ordinaire 384 mg de trifluorométhanesulfonate d'heneicosafluoro-n-décylphényliodonium puis on laisse le mélange réagir pendant 30 min à la température ordinaire. On soumet le mélange réactionnel à une chromatographie sur une colonne de gel de silice et on fait passer du pentane puis de l'éther 25 éthylique à travers la colonne. On chasse l'éther éthylique par distillation pour obtenir 240 mg (rendement : 89%) d'acide heneicosafluoro-n-décylthioacétique.

Point de fusion : 109-111°C.

19_{F-RMN} (CCl₂F comme référence interne dans l'acétone-d₆): -80,0 ppm (t, J_{CF₂,CF₂} = 10Hz, CF₃), -86,6 ppm (m, -SCF₂-), -116 \sim -121 ppm (m, CF₂ x 7), -124 ppm (m, CF₂).

REVENDICATIONS

 1 - Composés perfluoroalkylés, caractérisés en ce qu'ils répondent à la formule :

5

$$R_{f}^{-1} \stackrel{\bigoplus G}{\circ} so_{2}^{A}$$

$$Ar$$
(1)

où R_f représente un radical perfluoroalkyle comportant 1 à 20 atomes de carbone, Ar représente un radical phényle non substitué ou substitué par un radical alkyle comportant 1 à 4 atomes de carbone, ou par un atome d'halogène, I représente un atome d'iode, et A représente un radical perfluoroalkyle comportant 1 à 20 atomes de carbone, qui peut être identique à R_f ou en être différent, un radical hydroxy, un radical alkyle comportant 1 à 4 atomes de carbone, un radical aryle ou un atome d'halogène.

2 - Procédé pour préparer un composé perfluoroalkylé 15 selon la revendication 1, caractérisé en ce qu'il consiste à faire réagir un composé de type perfluoroalkyliodo répondant à la formule :

$$R_f^{-1}(OCOCF_3)_2$$
 (IV)

où $\mathbf{R}_{\mathbf{f}}$ et I ont la même définition que pour le composé désiré, avec un benzène substitué ou non substitué de formule :

où Ar a la même définition que pour le composé désiré, et un acide sulfonique répondant à la formule :

où A a la même définition que pour le composé désiré.

25 3 - Procédé selon la revendication 2, caractérisé en ce qu'on effectue la réaction à une température comprise entre O°C et la température ordinaire.

4 - Procédé pour préparer un composé selon la revendication 1, caractérisé en ce qu'il consiste à faire réagir un 30 iodoperfluoroalcane répondant à la formule :

où $\mathbf{R}_{\mathbf{f}}$ et I ont la même définition que pour le composé désiré, avec une solution aqueuse de peroxyde d'hydrogène ayant une concentration de 40 % ou moins et de l'anhydride trifluoroacétique, pour produire un composé de type perfluoroalkyliodo de formule :

$$R_{f}^{-1}(OCOCF_{3})_{2}$$
 (IV)

où $\mathbf{R}_{\mathbf{f}}$ et I ont la même définition que ci-dessus, et à faire réagir le composé de type perfluoroalkyliodo obtenu de formule (IV) avec un benzène substitué ou non substitué de formule :

10 où Ar a la même définition que ci-dessus, et un acide sulfonique de formule :

$$H$$
 (II)

où A a la même définition que pour le composé désiré.

5 - Procédé selon la revendication 4, caractérisé
15 en ce qu'on effectue la réaction d'un iodoperfluoroalcane de formule (V) avec une solution aqueuse de peroxyde d'hydrogène ayant une
concentration de 40% ou moins et l'anhydride trifluoroacétique à une
température comprise entre -15°C et la température ordinaire.