
US 2014O165061A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0165061 A1

Greene et al. (43) Pub. Date: Jun. 12, 2014

(54) STATISTICAL PACKING OF RESOURCE Publication Classification
REQUIREMENTS IN DATA CENTERS

(51) Int. Cl.
(71) Applicant: Palo Alto Research Center G06F 9/455 (2006.01)

Incorporated, Palo Alto, CA (US) (52) U.S. Cl.
CPC G06F 9/45533 (2013.01)

(72) Inventors: Daniel H. Greene, Sunnyvale, CA (US); USPC .. 718/1
Maurice Chu, Burlingame, CA (US);

Bryan T. Preas, Palo Alto, CA (US);
Nitin Parekh, Los Altos, CA (US) A computer-implemented method of managing resources in a

virtual machine environment can include determining a
(73) Assignee: Palo Alto Research Center specification of provisioning Success corresponding to each

Incorporated, Palo Alto, CA (US) of a plurality of jobs in the virtual machine environment,
forming a prioritized listing of the plurality of jobs and,
responsive to the specification of provisioning Success and
the prioritized listing, providing a resource specification for
each of the plurality of jobs. The providing can include deter
mining a first prediction of resource needs corresponding to
each of a first subset of the plurality of jobs and determining

(21) Appl. No.: 14/182,933

(22) Filed: Feb. 18, 2014

Related U.S. Application Data
(62) Division of application No. 12/253,111, filed on Oct. a second prediction of resource needs corresponding to a

16, 2008, now Pat. No. 8,656,404. second subset of the plurality of jobs.

2OO

Y

DETERMINE DETERMINE
REOUIRED r

Y- PREDICTION OF - -
PROVISIONING 2O2 RESOURCE NEEDS \
SUCCESS 204

A

2O6

DETERMINE
—b- RESOURCE

SPECIFICATION

210

PROVIDE
RESOURCE

SPECIFICATION TO
SCHEDULING |- st
MODULE

Patent Application Publication Jun. 12, 2014 Sheet 1 of 4 US 2014/O165061 A1

DATA
LINES

Figure 1

Patent Application Publication Jun. 12, 2014 Sheet 2 of 4 US 2014/O165061 A1

2OO

Y

DETERMINE DETERMINE
REGUIRED / \ PREDICTION OF --

PROVISIONING 202 RESOURCE FEEDs
SUCCESS 204

A

206

DETERMINE
op- RESOURCE

SPECIFICATION

210

PROVIDE
RESOURCE

SPECIFICATION TO
SCHEDULING H

MODULE
2O8

Figure 2

Patent Application Publication Jun. 12, 2014 Sheet 3 of 4 US 2014/O165061 A1

300

DETERMINE - DETERMINE -

REOUIRED | 302 PREDICTED | 304
PROVISIONING - RESOURCE -
SUCCESS NEED

- FORMPRIORITIZED LISTING OF JOBS -
Y.

\
306

DETERMINE
RESOURCE

SPECIFICATION -
FOREACH VIRTUAL

MACHINE 3O8

Figure 3

Patent Application Publication Jun. 12, 2014 Sheet 4 of 4 US 2014/O165061 A1

402 406 / 404
| |

DETERMINE POSTULATE DETERMINE
RECURED TOTAL PREDICTED

PROVISIONING RESOURCE RESOURCE
SUCCESS SPECIFICATION NEED

DETERMINE
INDIVIDUAL 408
RESOURCE -

412 SPECIFICATIONS
POSTULATE NEW

TOTAL
RESOURCE

SPECIFICATION

IMPROVEMENT 410
POSSIBLE -

- COMPARE TOTAL OF
INDIVIDUAL RESOURCE

— SPECIFICATIONS TO D
THE TOTAL RESOURCE -

SPECIFICATION NO MORE
Y. - IMPROVEMENT

Y. -

COMPLETE / 414
PROCESSING | -

Figure 4

US 2014/01 65061 A1

STATISTICAL PACKING OF RESOURCE
REQUIREMENTS IN DATA CENTERS

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a divisional of U.S. patent appli
cation Ser. No. 12/253,111, titled “STATISTICAL PACK
ING OF RESOURCE REQUIREMENTS IN DATA CEN
TERS which was filed on Oct. 16, 2008 and issued on Feb.
18, 2014 as U.S. Pat. No. 8,656,404, the content of which is
hereby fully incorporated by reference herein.

TECHNICAL FIELD

0002 The disclosed technology relates to the field of Vir
tual machines (VMs) in data centers and, more particularly, to
various techniques pertaining to the statistical packing of
virtual machine resource requirements in data centers.

BACKGROUND

0003 Data centers are frequently used by various types of
entities for a wide variety of purposes. Service providers such
as phone companies, cable networks, power companies,
retailers, etc., commonly store and access their customers
data in server farms, or data centers. For purposes of the
present specification, data center refers to a facility used to
house computer systems and associated components, such as
telecommunications and storage systems. A data centergen
erally includes not only the computer systems, but also back
up power Supplies, redundant data communications connec
tions, environmental controls such as air conditioning and fire
Suppression, security systems and devices, etc.
0004 Data center operations generally revolve around
customer service levels. For example, a particular customer
may desire to have a defined quality of service for that cus
tomer's computations or data communications. The quality of
service may have different requirements for different custom
ers. For example, for one customer, the key measure of the
quality of service may involve how fast an application
responds when accessed remotely. For another customer, the
quality of service may involve the speed or bandwidth of
connections provided to that customer's Subscriber.
0005. A data center may commit to provide a particular
service level for a given customer in the form of a formally
negotiated service level agreement (SLA). An SLA typically
specifies levels of availability, serviceability, performance,
operation, billing, etc., and may even specify penalties in the
event of violations of the SLA. SLAs commonly address
performance measurement, problem management, customer
duties, warranties, disaster recovery, and termination of
agreement. For example, an SLA may demand that a particu
lar job get a certain amount of resources with a specified
probability. The SLA may also specify a limit on the amount
of resources to be assigned to a certain job or group of jobs.
0006 Virtualization generally refers to a technique for
hiding physical characteristics of computing resources from
the way in which other systems, applications, or end users
interact with those resources. This typically includes making
a single physical resource (e.g., a server, operating system,
application, storage device, etc.) appear to function as mul
tiple logical resources. Virtualization may also include mak
ing multiple physical resources appear as a single logical

Jun. 12, 2014

resource. In addition, it may include making one physical
resource appear, with somewhat different characteristics, as
one logical resource.
0007 VMWare, Inc., is an example of a publicly-listed
company that offers virtualization Software products, such as
VMWare’S ESX Server.

0008 Virtualization can essentially let one computer do
the job of multiple computers, by sharing the resources of a
single computer across multiple environments. Virtual
machines (e.g., virtual servers and virtual desktops) can pro
vide users with the ability to host multiple operating systems
and multiple applications both locally and in remote loca
tions, freeing users from physical and geographical limita
tions. In addition to energy savings and lower capital
expenses due to more efficient use of hardware resources,
users can get a high availability of resources, better desktop
management, increased security, and improved disaster
recovery processes.

0009 Virtual machines serve a wide variety of purposes in
a given computer system. For example, virtual machines may
be used to provide multiple users with simultaneous access to
the computer system. Each user may execute applications in
a different virtual machine, and the virtual machines may be
scheduled for execution on the computer system hardware.
Virtual machines may be used to consolidate tasks that were
previously running on separate computer systems, for
example, by assigning each task to a virtual machine and
running the virtual machines on fewer computer systems.
Virtual machines may also be used to provide increased avail
ability. If the computer system fails, for example, tasks that
were executing in virtual machines on the computer system
may be transferred to similar virtual machines on another
computer system.
0010. Using virtual servers enables the migration of pro
cessing tasks to other physical servers or resources transpar
ently to the consumers of the services provided by the virtual
server, where the consumer may be a user, a process, another
computer, etc. A consumer is typically any entity that uses a
process or service within the power control system. This is
contrasted with a customer which is an identified entity to
which the data centerprovides services according to a service
level agreement. Performance levels are generally tracked by
CuStOmerS.

0011 A virtual server differs greatly from a physical
server. A virtual server typically appears to be a single server
to entities accessing it, while it may actually be a partition or
Subset of a physical server. It may also appear as a single
server but actually be comprised of several physical servers. A
virtual server is created through a virtualization process, as
discussed above.

0012. Thus, in a given data center, virtualization allows
multiple virtual machines (e.g., virtual servers) to share the
physical resources (e.g., CPU, memory, disk, and networking
resources) of the same physical machine(s) in the data center.
Each virtual machine typically has a corresponding specifi
cation of resource requirements that determines how much of
the physical resources should be reserved for the given virtual
machine.

0013 However, a typical specification of resource require
ments for a virtual machine undesirably overbooks or
reserves more physical resources than are actually needed
most of the time by the virtual machine, which results in the
unnecessary wasting of physical resources. Thus, there exists

US 2014/01 65061 A1

a need for greater reductions in cost and power consumption
by virtual machines in data centers.

BRIEF DESCRIPTION OF THE DRAWINGS

0014 FIG. 1 shows an exemplary embodiment of a data
Center.

0015 FIG. 2 is a flowchart of a first exemplary computer
implemented method of managing resources in a virtual
machine environment.
0016 FIG. 3 is a flowchart of a second exemplary com
puter-implemented method of managing resources in a vir
tual machine environment.
0017 FIG. 4 is a flowchart of a third exemplary computer
implemented method of managing resources in a virtual
machine environment.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

0018 FIG. 1 shows an exemplary architecture 10 for a data
center. In this embodiment, the data center includes multiple
physical devices 14 (e.g., servers). A physical device 14 is an
actual machine. Such as a quad-, dual- or single-core comput
ing system that provides a particular service. Examples
include communications servers, database servers, applica
tions servers, etc.
0019. As such, each physical device 14 is depicted as
being having at least one virtual machine 17 (e.g., virtual
server) operating on it. A virtual machine 17 may include an
application running on top of an operating system, for
example. This discussion is provided merely for demonstra
tive purposes and no limitation of location or logical hierar
chy is intended, nor should one be implied.
0020. In the example, the virtual machine 17 allows a
low-level module 18 (e.g., a service/power controller) to task
the physical devices 14 with processing tasks in virtual
machines based in part on the resource needs of the virtual
machines and the resource of the physical devices 14. The
low-level module 18 may be referred to as a controller or
scheduler. The controller 18 can schedule the processing of
virtual machines, or the controller 18 can schedule individual
tasks to be performed within virtual machines. As used
herein, the term 'job' generally refers to the virtual machine
or task being scheduled.
0021. In the example, the controller 18 is shown as being
a single controller, while it may actually be distributed across
several computers, processing cores, etc. The controller 18
can migrate jobs between physical machines and adjust the
power consumption of physical machines. In addition to the
central controller 18, one or more of the individual physical
devices 14 may have local controllers such as 16. Further,
while the only devices depicted in the example are servers,
other types of devices may be included, such as power Sup
plies, storage arrays or other types of storage, tape decks, etc.
0022. The centralized controller 18 may be coupled to data
lines 20. The functions of the data center generally revolves
around data processing of some sort, and the controller may
merely exist in the same power distribution structure as the
data lines, or the power controller may monitor or affect the
operation of the data lines.
0023. Similarly, the power controller may merely exist in
the same power structure as the power lines 22, or the con
troller 18 may take a more active role with the power lines 22.
The power lines 22 come in from the grid, or the local power

Jun. 12, 2014

infrastructure that generally includes transmission lines, con
Verters, transformers, power Switches, etc.
0024. In certain embodiments, the resources requirements
for each virtual machine in a given virtual machine environ
ment can be predicted statistically and potentially described
by a histogram. Predictions of resource requirements can be
performed by various techniques, such as “time-of-day con
ditioning” (i.e., conditioning based on the time of day certain
resources are used) and Markov modeling (i.e., reaching
future states through a probabilistic rather than deterministic
process). However, one of skill in the art will recognize that
any of a number of known modeling techniques can be used
to generate such histograms.
0025 “Time-of-day conditioning and Markov modeling
are typically based on observations of historic resource usage
data. Each technique is capable of capturing resource needs
that may be extreme at certain times of day and extreme for
brief periods of time, and that may occur at unpredictable
times. Such behavior typically results in the wasting of
resources, because resource requirements are usually set
unnecessarily high all of the time.
0026. Predicted resource needs may take into account
various types of information, such as resource usage based on
time of day, day of week, what amount of resources a given
job needed in a preceding time interval (e.g., within the last
ten minutes), and any other information that can be used to
improve the predictability of resource usage by the job.
0027. In certain embodiments, the predicted resource
needs are provided in the form of histograms, which allow for
considerable flexibility in the kind of modeling used to pre
dict resource requirements. Prediction and packing can be
performed at different frequencies. As used herein, "packing
(or "packing together') generally refers to a technique
intended to reduce a total amount of resources required by a
group of jobs in a virtual machine environment by consider
ing the resource needs of the group of jobs as a whole as well
as the resource needs of each of the jobs individually.
0028. Since virtual machine resource needs are typically
well predicted over short periods of time, re-computing of the
packing and adjusting resource requirements every 5-10 min
utes can be very beneficial. The techniques described herein,
however, can desirably be used to packata variety of frequen
C1GS.

0029 Convolving histograms provides a distribution of
the sum of the resource requirements of several virtual
machines, assuming that their resource needs are statistically
independent. When virtual machines are dependent, there are
several options. For example, the virtual machines can be
scheduled together in a pool, with their total resource needs
represented as a single histogram that captures their corre
lated behavior. This pool can then participate in the packing
techniques described herein. Dependent virtual machines can
also be segregated into several different pools, where the
members of the pool are not highly correlated. In these
instances, the packing techniques described herein are
applied separately to each pool.
0030 The packing techniques can include using a speci
fication of required provisioning Success as input. In an exem
plary embodiment of the disclosed technology, it is assumed
that a provided service level agreement (SLA) for a customer
requires a certain probability p that resource needs are met for
a given virtual machine. The probability p can be specified
directly in the SLA or derived from other information in the
SLA. For example, an SLA may specify that resource needs

US 2014/01 65061 A1

for a virtual machine are to be metall the time (with a penalty
for failing to do so), in which situation the probability p would
typically be assigned a small value so that failure (and pen
alties) would be infrequent, at most. For SLAs that specify a
less well-defined resource requirement, a value for p can be
determined that might be higher but would still meet a cus
tomer's expectations. Additionally, SLAS may include caps
on certain criteria Such as maximum resource needs.
0031 Embodiments of the disclosed technology can take
as input various types of parameters. In exemplary embodi
ments, input parameters include a prediction of resource
needs for at least one virtual machine (e.g., presented as a
histogram), and a required provisioning Success (e.g., a prob
ability p corresponding to a maximum rate of failure required
to provide full resource needs).
0032 FIG. 2 is a flowchart of an exemplary computer
implemented method 200 of managing resources in a virtual
machine environment.
0033. At 202, a required provisioning success is deter
mined for each of multiple jobs to be scheduled in a given
virtual machine environment. For example, the required pro
visioning Success can be derived from a corresponding Ser
Vice level agreement (SLA), which can explicitly or implic
itly provide information pertaining to the probability
requirement.
0034. At 204, a prediction of resource needs is determined
for each of the jobs. The prediction can indicate an amount of
resources needed by a particular job for it to properly execute,
for example. Determining the prediction 204 can include
using one or more techniques such as time of day condition
ing and Markov modeling.
0035) Steps 202 and 204 can be performed at different
times or they can be performed at least partially or fully
concurrently with each other.
0036. At 206, a resource specification for each job can be
determined based on the required provisioning Success deter
mined at 202 and the prediction determined at 204. The
resource specification can be in a form suitable for virtual
machine scheduling systems. The resource specification can,
for example, include minimum and maximum resource
requirements for the virtual machines. The resource specifi
cation can thus result in a reduction of the total resources
reserved by the virtual machines in a cluster.
0037. At 208, the resource specification determined for
each job can be provided to a lower-level scheduling module.
For example, the lower-level scheduling module can perform
various types of scheduling-related operations with respect to
the given jobs, such as scheduling jobs that have not been
scheduled yet, consolidating jobs on fewer physical servers,
and adjusting the schedule for jobs on the same physical
SeVe.

0038. In certain embodiments, the step of determining a
prediction of resource needs 204 can be repeated (e.g., at
210). Responsive to the repeated determination of the predic
tion of resource needs, as well as the previously determined
required provisioning Success, the previously determined
resource specification can be adjusted. For example, the tech
niques used at 206 can be re-applied here.
0039. In certain embodiments, an optimization algorithm
(e.g., a greedy packing algorithm) can be used to find a
packing that, while desirable, may not represent the best-case
scenario (e.g., maximum packing). Such embodiments are
generally preferable in situations where approximation speed
is prioritized higher than maximum packing ability. In other

Jun. 12, 2014

words, these embodiments provide fast approximation that
still achieves some or most of the benefit of statistical packing
while potentially erring in reserving more resources than are
actually required. Sucherring, however, is typically only very
slight in inconsequential, particularly in light of the advanta
geous packing.
0040. In certain embodiments, an action list can be
formed. In the action list, jobs having the most severe require
ments can be placed at the beginning. The action list can then
be processed in order, and a resource specification can be
chosen for each virtual machine. For example, a virtual
machine can be given a resource specification consisting of a
minimum resource reservation that will insure that the virtual
machine will have all the resources it needs with a failure
probability less than p.
0041 While processing the action list, the algorithm may
discover that it has already made enough individual minimum
resource reservations such that it can ensure that the total
allocation for a resource pool (e.g., an amount of resources
intended for use by a group of jobs rather than a single job) is
large enough that the combined requirements of the virtual
machines sharing the pool have a failure probability that is not
greater than the failure probability p for the individual virtual
machine being processed, in which case no individual reser
Vation may need to be made for the virtual machine being
processed or for Subsequent virtual machines on the action
list.
0042. In this way, the algorithm can allocate a large
amount of resources to premiumjobs until the total allocation
reaches a level that is sufficient to satisfy a low failure prob
ability for the pool, for example. Additional jobs can be
deemed to require no separate allocation because they effec
tively share the reservation of the premium jobs.
0043 FIG. 3 is a flowchart of an exemplary computer
implemented method 300 of managing resources for virtual
machines in a virtual machine environment.
0044. At 302, a required provisioning success correspond
ing to each of several jobs in the virtual machine environment
can be determined. For example, the required provisioning
Success can be derived from a corresponding service level
agreement (SLA).
0045. At 304, a predicted resource need corresponding to
each of the jobs can be determined. For example, the pre
dicted resource need can be based on a-priori information
given by the user in configuring the job, and can also be based
on historical data from previous processing of the job.
0046. At 306, a prioritized listing of the jobs can be
formed. For example, the jobs can be ranked according to a
level of importance assigned to each of them. The level of
importance can be determined for each job based at least in
part on the required provisioning Success determined at 302
as well as other pertinent information provided by the cus
tomer (e.g., in an SLA) Such as a severity level, for example.
0047 Once the prioritized listing has been created, a
resource specification can be assigned to each of the jobs
based on the prioritized listing, the job’s previously deter
mined required provisioning Success, and the job’s predicted
resource need. At 308, the jobs are processed in order (e.g.,
according to level of importance) to determine an individual
resource specification based on each jobs individual needs as
well as any resources that have been specified for the group of
higher priority jobs earlier in the list and will be available to
the job if they are not fully utilized by the higher priority
group.

US 2014/01 65061 A1

0048. The following exemplary procedure (“ReserveIndi
vidual') describes how a reservation can be determined for a
single virtual machine. In the example, the input includes the
virtual machine’s predicted resource need described by a
histogram ("hist’) (e.g., an array of frequencies of resource
needs where histi is the probability that the virtual machine
will need a resource amount between i*histStep and (i+1)
histStep). The input also includes a required provisioning

success that is specified with an allowed failure probability
(“prob'):

procedure ReserveIndividual (hist., prob)
acc s- 0:
i <-length of hist.);
while acc < prob do

acc <- acc + histi;
i <- i-1:

return (i+1)* histStep

0049. A smaller total reservation can be achieved if the
reservations are computed for a group of virtual machines
together, as described in the following exemplary procedure
(“Reserved roup'). In the example, the histograms for all the
virtual machines are given in a two dimensional array ("his
tograms. . .).

procedure Reserved roup(histgrams...), probs.)
combined s- Convolve all histograms;
for each individual virtual machine do

intercept <- ReserveIndividual (hist.), probi);
otherIntercept <- ReserveIndividual (combined.), probj]);
actionListi <- {j, intercept, otherIntercept
solution <- 0:

sort actionList in descending order of its third component
“otherIntercept

acc <- O
while actionList has elements do

front <- remove first element from actionList
if front3 > acc then

allocation <- Minfront2), front3 - acc);
Solution front1 <- allocation;
acc <- acc + allocation;

else
return solution

0050. The exemplary “Reserved roup' procedure forms
an action list where the jobs with the most severe require
ments are placed at the beginning of the list. The action list is
processed in order, and an allocation is chosen for each virtual
machine according to one of the following two strategies:
either the virtual machine is given its individual requirement
necessary to meet its allowed failure probability (e.g., probj
from the previous procedure), or the total allocation for the
pool is ensured to be large enough that the combined virtual
machine requirements will not fail with a probability greater
than the probability probj for the individual virtual machine
being processed.
0051. In certain embodiments, an exact optimal solution
can be determined. In these embodiments, a binary search can
be performed to find an optimal “total reservation for the
pool. For example, the feasibility of each postulated value for
the “total can be tested by computing individual reserva
tions. If the individual reservations sum to less than the pos
tulated “total then the “total can be deemed to be feasible.
The binary search can be used to find the smallest possible

Jun. 12, 2014

“total’ that is feasible. Individual reservations for virtual
machines can be computed by considering the joint distribu
tion of each individual virtual machine’s histogram and a
combined histogram for all of the other virtual machines in
the environment.
0.052 For an exemplary postulated value of a “total allo
cation, individual reservations can be computed with a func
tion (see, e.g., the “Required function below) that, when
considering a single virtual machine in a given environment,
can consider the resource needs of all of the other virtual
machines in the environment represented by a (cumulative)
convolution (see, e.g., “accumulatedOther below) and then
find the smallest reservationisuch that the probability that the
virtual machine needs more than its resource reservation (and
cannot obtain extra resources from the resource pool) is less
than a specified failure probability. In certain embodiments,
the reservation i represents the substantially smallest value
such that the probability that the virtual machine requires
(which is more than i) and that the “accumulatedOther
requires more than the “total minus, is less than the speci
fied failure probability.

procedure BuildAccumulatedOther(histograms....)
combinedOther <- convolve all histograms except for
acc s- 0:
i <-length of combinedOther;
while i > 0 do

acc <- acc + combinedOtheri;
accumulatedOtheri <- acc:
i <- i - 1:

return accumulatedOther.;
procedure Required (accumulatedOther., hist., total, prob)

accFailure <- 0,
i <-length of hist.
while accFailure < prob do

if i < total then
otherFailure <- accumulatedOther total - i);

else
otherFailure <- 1.0:

accFailure <- histi otherFailure;
i <- i - 1:

return i-- 1:

0053 FIG. 4 is a flowchart of an exemplary computer
implemented method 400 of managing resources for virtual
machines in a virtual machine environment.
0054. At 402, a required provisioning success correspond
ing to each of several jobs in the virtual machine environment
can be determined. For example, the required provisioning
Success can be derived from a corresponding SLA.
0055. At 404, a predicted resource need corresponding to
each of the jobs can be determined. For example, the pre
dicted resource need can be based on a-priori information
given by the user in configuring the job, and can also be based
on historical data from previous processing of the job.
0056. At 406, a total resource specification can be postu
lated. Once the total resource specification has been postu
lated, individual resource specifications for the virtual
machines can be determined based on the postulated total, as
shown at 408.
0057. At 410, a comparison can be made between the total
of the individual resource specifications (determined at 408)
and the total resource specification (postulated at 406). If an
improvement can be made, then a new total resource specifi
cation can be postulated (as shown at 412) and processing can
return to 408. Otherwise, if there does not seem to be any

US 2014/01 65061 A1

indication of further improvement resulting from continued
processing, the process can finish, as shown at 414.
0058 Below is an exemplary procedure (“Reserve
GroupExact’) that can be used in conjunction with certain
embodiments of the disclosed technology:

procedure Reserved roupExact(histograms..., probs.)
combined s- convolve all histograms
for each VMido

accumulate0ther <- BuildAccumulate0therhistograms...,
j):

maxTotal <- ReserveIndividualcombined, min of probs;
minTotal <- 0:
solution <-TestSolution maxTotal,...);
while maxTotal - minTotal + 1 do

middle <- Floor (maxTotal + minTotal)/2):
temp <-TestSolution middle...);
iftemp is not feasible

minTotal <- middle:
else

maxTotal <- middle:
Solution <- temp;

l;
solutionTotal <-sum of solution;
extra = maxTotal - solutionTotal;
distribute extra evenly among solution;

procedure TestSolution (total,accumulateCother...histograms...,
probs.)

for each VMido
requiredi s- Required accumulate0theri, histogramsi,

total, probsi;
if sum of required does not exceed total

return required (indicating it is feasible)
else

return infeasible

0059. The techniques described herein can achieve a
reduced total resource specification by considering the
resource needs of a group of jobs when the resource needs of
individual jobs are determined. The group of jobs often has
more predictable needs, which typically means that there is
less need for excess individual resource specification. In the
example of FIG.3, the group is a collection of higher priority
jobs that were already specified. In the example of FIG. 4, the
group is the entire collection of jobs, whose specification is
postulated. One having ordinary skill in the art will under
stand that a number of possible choices exist to reduce uncer
tainty and reduce the resource specifications.
0060. The techniques described herein typically assume
that the given jobs are independent, although Such techniques
may be modified to handle a virtual environment having
multiple jobs, some of which may be dependent upon other
jobs in the environment.
0061 Additionally, two or more of the techniques
described above can be flexibly implemented in combination
with one another. For example, in Some embodiments, an
approximation-type implementation can be utilized and, if
certain parameters are met (e.g., if there is still enough pro
cessing time left), an exact-optimal-solution-type implemen
tation can also be utilized (e.g., to refine the solution).
0062. The techniques described herein can provide an out
put representing a minimum reservation that can be made for
each applicable virtual machine. This minimum reservation
can be a typical parameter in a virtual machine specification
language (e.g., in VMWare and other virtualization products).
These reservations can be computed such that the virtual
machines can be combined in a single pool on a cluster of
physical machines. A scheduler (typically part of virtualiza

Jun. 12, 2014

tion products) can allocate resources and locate jobs on physi
cal machines to meet the minimum reservations first, before
allocating excess resource to other jobs. Exemplary embodi
ments of the disclosed technology can assume that minimum
resources will be met first but make no assumption about how
resources in excess of minimums are to be shared among
virtual machines.
0063. Application of the techniques described herein can
desirably allow data center operators and users (e.g., custom
ers) rely on more accurate and more compact physical
resource reservations in a data center, which provides various
advantages. For example, the freeing of physical resources
for more customers will typically result in improved business
performance for the data center, and the reduction of the
number of running physical servers will reduce energy costs
for data center operators and reduce costs for users.
0064. The various advantageous techniques described
herein may be implemented as computer-implemented meth
ods. Additionally, they may be implemented as instructions
stored on a tangible computer-readable medium that, when
executed, cause a computer to perform the associated meth
ods. Examples of tangible computer-readable media include,
but are not limited, to disks (such as floppy disks, rigid mag
netic disks, optical disks, etc.), drives (e.g., hard disk drives),
semiconductor or solid state memory (e.g., RAM and ROM),
and various other types of recordable media such as CD
ROM, DVD-ROM, and magnetic tape devices.
0065. It will be appreciated that several of the above
disclosed and other features and functions, or alternatives
thereof, may be desirably combined into many other different
systems or applications. Also that various presently unfore
seen or unanticipated alternatives, modifications, variations,
or improvements therein may be Subsequently made by those
skilled in the art which are also intended to be encompassed
by the following claims.
What is claimed is:
1. A computer-implemented method of managing

resources for at least one virtual machine in a virtual machine
environment, comprising:

determining a specification of provisioning Success corre
sponding to each of a plurality of jobs in the virtual
machine environment;

forming a prioritized listing of the plurality of jobs; and
responsive to the specification of provisioning Success and

the prioritized listing, providing a resource specification
for each of the plurality of jobs, wherein the providing
comprises:
determining a first prediction of resource needs corre

sponding to each of a first subset of the plurality of
jobs; and

determining a second prediction of resource needs cor
responding to a second Subset of the plurality of jobs.

2. The computer-implemented method of claim 1, wherein
the first subset of the plurality of jobs comprises jobs having
a resource specification that meets or exceeds a specified
severity level.

3. The computer-implemented method of claim 1, further
comprising providing a first resource specification corre
sponding to each of the first subset of the plurality of jobs.

4. The computer-implemented method of claim 3, further
comprising providing a second resource specification corre
sponding to a resource pool corresponding to the second
subset of the plurality of jobs.

US 2014/01 65061 A1

5. The computer-implemented method of claim 4, wherein
the resource pool comprises an amount of resources remain
ing after the first resource specification corresponding to each
of the first subset of the plurality of jobs has been provided.

6. The computer-implemented method of claim 1, wherein
the second prediction of resource needs meets or exceeds a
specified probability threshold.

7. A computer-implemented method of managing
resources for at least one virtual machine, comprising:

determining a failure probability for a plurality of jobs
corresponding to the at least one virtual machine;

determining a prediction of resource needs corresponding
to each of the plurality of jobs;

generating a total prediction of resource needs representing
a Sum of each prediction of resource needs; and

determining whether the total prediction of resource needs
is below a specified threshold.

8. The computer-implemented method of claim 7, wherein,
responsive to determining that the total prediction of resource
needs is below the specified threshold, generating a resource
specification corresponding to each of the plurality of jobs.

9. The computer-implemented method of claim 7, wherein,
responsive to determining that the total prediction of resource
needs meets or exceeds the specified threshold, adjusting the
specified threshold.

Jun. 12, 2014

10. The computer-implemented method of claim 9, further
comprising repeating determining whether the total predic
tion of resource needs is below the adjusted specified thresh
old.

11. The computer-implemented method of claim 10,
wherein, responsive to determining that the total prediction of
resource needs is below the adjusted specified threshold, gen
erating a resource specification corresponding to each of the
plurality of jobs.

12. The computer-implemented method of claim 10,
wherein, responsive to determining that the total prediction of
resource needs meets or exceeds the adjusted specified
threshold, adjusting the specified threshold.

13. The computer-implemented method of claim 7, further
comprising determining an initial resource test interval,
wherein the specified threshold is at about a halfway point
within the initial resource test interval.

14. The computer-implemented method of claim 12, fur
ther comprising determining an initial resource test interval,
wherein adjusting the specified threshold comprises adjust
ing the initial resource test interval.

k k k k k

