
(19) United States
US 2007 O150546A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0150546A1
Karakashian et al. (43) Pub. Date: Jun. 28, 2007

(54) WEB SERVICES RUNTIME ARCHITECTURE

(75) Inventors: Todd Karakashian, San Francisco, CA
(US); Manoj Cheenath, San Ramon,
CA (US); Adam Messinger, San
Francisco, CA (US)

Correspondence Address:
FLESLER MEYER LLP
6SO CALFORNASTREET
14TH FLOOR
SAN FRANCISCO, CA 94108 (US)

(73) Assignee: BEA SYSTEMS, INC., San Jose, CA
(US)

(21) Appl. No.: 11/682,164

(22) Filed: Mar. 5, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/366,236, filed on
Feb. 13, 2003.

(60) Provisional application No. 60/359,098, filed on Feb.
22, 2002. Provisional application No. 60/359,231,
filed on Feb. 22, 2002.

interceptors

Msg
Context

Container
river

2.

may name amas a may ammar -

Web Container sg, Cix

Adapter Sg Cix

feti wa
-X.

Custom Codec 223

Lit. XML Codec 226

SOAP Codec 224

222
Java Binding Codec

vocation aider

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. T09/207

(57) ABSTRACT

A runtime architecture for Web services utilizes a container
driver to accept an invoke request for Web services. The
container driver performs any necessary data binding/un
binding required to process the invoke request and associ
ated message context, utilizing an appropriate plugin com
ponent. An interceptor receives the context information and
modifies the message context for Web service compatibility.
An invocation handler receives the formatted context infor
mation and passes parameters from the message context to
the target of the request. The invocation handler processes
values returned from the target and passes them to the
container driver, which can formulate and return a response,
along with the message context, to the client or protocol
adapter. This description is not intended to be a complete
description of, or limit the scope of the invention. Other
features, aspects, and objects of the invention can be
obtained from a review of the specification, the figures, and
the claims.

invocation Context 26

Component
Cortainer

28 Component

e Service
Contairer 3

US 2007/O150546 A1 Patent Application Publication Jun. 28, 2007 Sheet 1 of 4

US 2007/O150546 A1 Patent Application Publication Jun. 28, 2007 Sheet 2 of 4

|| ???
| ?z? bepoo dvos

z aanã,

g?? oopoo Twx 311

is a was swap xi xx ar.4 kW-kwis &

Patent Application Publication Jun. 28, 2007 Sheet 3 of 4 US 2007/O150546 A1

as as as as as as a sarasa as a sesala as as as assae assaea as assassina as as a sarasa is as a sesala as as as assae assae

as a as a sa 'ise r

Web Container
S 9

Container Protocol
Adapter Driver Retr Client Stub

O2 3.
e. 3O8

eturn was
-> ava

Java paians
->XV

Custom Codec 316

Lit., XN Codec 34

SOAP Codec 32
OO * Web Service

3. Ciet
Java Birding Codec

Patent Application Publication Jun. 28, 2007 Sheet 4 of 4 US 2007/O150546 A1

Receiving an invoked request for Web service

Formatting message context for the invoke
request to be used in Web services

Doing data binding on the message content

y

Processing the request using an invocation
handler and generating response data

y

Unbinding the message context containing the
respose data

Reformatting the message context for
responding to the invoke request

Figure 4

US 2007/O 150546 A1

WEB SERVICES RUNTIME ARCHITECTURE

CLAIM OF PRIORITY

0001. This application is a Continuation of and claims
priority to U.S. patent application Ser. No. 10/3.66,236, filed
Feb. 13, 2003, entitled “WEB SERVICES RUNTIME
ARCHITECTURE.” which application claims priority to
U.S. Provisional Patent Application No. 60/359,098, filed
Feb. 22, 2002, entitled “WEB SERVICES RUNTIME
ARCHITECTURE, as well as U.S. Provisional Patent
Application No. 60/359,231, filed Feb. 22, 2002, entitled
WEB SERVICES PROGRAMMING AND DEPLOY
MENT,” each of which is hereby incorporated herein by
reference.

COPYRIGHT NOTICE

0002 A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document of the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

0003. The present invention relates to the implementation
of web services.

BACKGROUND

0004 Web services are becoming an integral part of
many application servers, with an importance that can rival
HTTP or RMI stacks. Java standards for Web services are
being developed through the Java Community Process.
Businesses are building important applications on top of
Web services infrastructures, such as is available in
WebLogic Server from BEA Systems of San Jose, Calif.
Presently, however, there is no complete implementation of
Web services upon which to build.

BRIEF SUMMARY

0005. A system and method in accordance with the
present invention overcome deficiencies in the prior art by
utilizing a runtime architecture for Web services. A container
driver is used in the architecture for accepting an invoke
request for Web services, such as from a protocol adapter.
The container driver can perform any data binding and
unbinding required to process the invoke request, utilizing a
plugin component such as a Java binding codec, SOAP
codec, XML codec, or custom codecs.
0006 An interceptor can receive the context information
for the invoke request from the container driver and modify
the message context to be used with Web services. An
invocation handler can receive the context information from
the container driver after the message context has been
modified by the interceptor. The invocation handler can pass
parameters from the message context to the target of the
request and process values returned from the target. The
invocation handler can then pass these values to the con
tainer driver, such that the container driver can formulate a
response to the invoke request. The response and message
context can then be returned to the client or protocol adapter.

Jun. 28, 2007

0007. Other features, aspects, and objects of the invention
can be obtained from a review of the specification, the
figures, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1 is a diagram of a system in accordance with
one embodiment of the present invention.
0009 FIG. 2 is a diagram of a Web service container that
can be used with the system of FIG. 1.
0010 FIG. 3 is a diagram of a Web service client that can
be used with the system of FIG. 1.
0011 FIG. 4 is a flow chart of a method fo the present
invention.

DETAILED DESCRIPTION

0012 Systems and methods in accordance with one
embodiment of the present invention can overcome defi
ciencies in existing Web service implementations by pro
viding a more stable, complete implementation that is Suit
able as an application integration platform.

0013 A Web services architecture can allow for commu
nication over a number of transports/protocols. HTTP can
continue to be a primary transport mechanism for existing
applications, while transport mechanisms such as SMTP.
FTP, JMS, and file system mailboxes can also be supported.
0014 Message formats such as SOAP 1.1 and 1.2 with
attachments can be used as primary message formats. It is
also possible to accept Web service requests that are XML
encoded and submitted via HTTP posts. A Web services
architecture can Support plugging in other message formats
and provide a mechanism for access to the raw message for
user code.

00.15 AWeb services architecture can utilize a stack that
Supports a standards-based default binding of fundamental
XML data types supported in various Web service platforms.
An API can be used to allow other binding mechanisms to
be plugged in. The binding to be used can be specified on a
per-operation basis.
0016 Various security and messaging standards require a
context or state to be associated with Web service messages.
A Web services architecture can Support the processing of
multiple message contexts, such as those related to security
or conversation ID, and can offer user code access to these
contexts. Many of these contexts can be encoded into a
SOAP header, although it is also possible to include the
contexts in the underlying protocol layer (e.g., cookies in
HTTP) or in the body of the message (e.g., digital signa
tures). A Web services container can explicitly process
contexts associated with planned security features for Web
services.

0017. A Web services stack can support a number of
dispatch and synchrony models. Dispatch to both stateless
and Stateful components can be supported, using both
remote procedure call (RPC) and messaging invocation
semantics. Synchronous and asynchronous processing of
requests can also be supported. In particular, it can be
possible to enqueue an incoming message, to enqueue an
outbound message, and to make asynchronous outbound
calls. Enqueuing involves downloading files, one at a time,
from a queue.

US 2007/O 150546 A1

0018. A component such as a session EJB can be used to
implement application-hosted Web services, such as for
business logic. An API can be provided for sophisticated
users to integrate other types of components, even custom
components, into a Web service mechanism. This may be
used rarely, such as by developers who wish to build
higher-level facilities and infrastructure on top of applica
tion-specific Web services.

0.019 A Web services architecture should not preclude
the embedding of a Web service container in a lightweight
server running in a more restricted Java platform, Such as
J2ME/CDC. A verythin Web service Java client, such as less
than 100 kb, can also be supported. Such an architecture
should not preclude support for future Web service stan
dards, such as JAX-RPC. However, due to the present lack
of maturity and quality of Java Web Service standards,
application-specific APIs can be defined for the implemen
tation of Web services.

0020. A runtime Web services architecture can support
both synchronous and asynchronous (“one-way') RPC style
Web services, such as may be backended by an EJB.
Message-style Web services can also be supported, which
allow content to be submitted to and received from a JMS
destination. Endpoints can be Supported in a transport
specific way. These endpoints can associate a transport
specific address with a Web service. For instance, in HTTP
a particular address can be associated with a Web service to
be invoked. For SMTP an email address can be associated
with a Web Service.

0021 FIG. 1 shows the relationship of a Web container
108 and SMTP listener 104 and a host server or Web Service
container 108, utilizing an architecture in accordance with
one embodiment of the present invention. An HTTP protocol
adapter 102 is shown in the Web container 100. A protocol
adapter for HTTP 102 is shown in a Web container 100, that
can intercept a Web service invoke via HTTP from a Web
services client. A protocol adapter for SMTP 106 is also
shown in an SMTP listener 104, which can accept a Web
service invoke via SMTP. This architecture allows for plug
gability in a number of places.

0022 FIG. 2 shows a diagram of the architecture of the
Web service container 108 of FIG. 1. The HTTP protocol
adapter 102 of the Web container 100 is shown passing
message context to, and receiving message context from, a
container driver 200. The container driver 200 receives the
message context from the protocol adapter 102 and sends the
message context to the registered inbound interceptors 202,
204, 206. After extracting the operation parameters and
performing any necessary data binding. Such as by using a
Java Binding codec 222, a SOAP codec 224, an XML codec
226, or a custom codec 228, the container driver 200 submits
the operation request to the appropriate invocation handler
208, such as for EJB 210 or JMS 212, or to a customized
invocation handler 214. After receiving data back from the
invocation handler 208, the container driver 200 can per
form any data unbinding using the appropriate codecs 222,
224, 226, 228 and send the response to the outbound
interceptors 202, 204, 206. The container driver 200 can
then return the response to the protocol adapter 102. The
protocol adapter, interceptors, and invocation handler can
each have access to an invocation context object 216. The
invocation handler 208 can also provide context access to

Jun. 28, 2007

the component 218 to which it delegates, which can be
contained in a component container 220.
0023. A message context is a representation of a Web
service invocation flowing through a container. A message
context can contain a request message, which is the Web
service request. A message context can be rendered into the
canonical form of SOAP plus attachments. A response
message is the Web services response, or at least a place
holder for the response if the response has not been formu
lated yet. A response message can also be in the canonical
form of SOAP plus attachments. Transport information can
contain relevant information that is specific to the transport
over which the request came, and over which the response
must be sent. For example, the transport information can
contain the HTTP request and response streams for HTTP
transport. An invocation context can also be used, which is
described below.

0024. A protocol adapter can be inserted into the sub
system of a host server. A protocol adapter can be respon
sible for processing incoming requests for a particular
transport/protocol, such as HTTP or SMTP. This allows the
Web service container to process Web service messages in
various formats that are sent over multiple protocols. It will
also allow the Web service container to reside in different
kinds of servers. One condition for a protocol adapter is that
the host server can Support the protocol and that the message
format can be converted into SOAP internally. There are no
known important message formats that cannot be expressed
via SOAP.

0025. A protocol adapter can be responsible for identi
fying requests as Web service messages, as well as routing
the messages to a Web services container. If the protocol
being used supports synchronous responses, a protocol
adapter can also receive the response data and return the data
to the originator of the request. The protocol adapter can
convert the message to the original message format if it is
not SOAP plus attachments. A protocol adapter can deal
with any message context that is required by the container,
Such as a conversation ID, and is transmitted at the protocol
level, such as cookies in HTTP. The protocol adapter can
propagate the message context to and from a Web services
container.

0026. The actual implementation of protocol adapter
functionality can depend on the architecture of the host
server, as well as the way that the protocol is hosted in the
server. For example, the functions of a protocol adapter can
be implemented in part by the normal function of a Web
container for an HTTP protocol. Due to the dependency of
protocol processing on server internals, there may not be
many public protocol adapter APIs.
0027. An invocation context can be used, which is an
inheritable thread-local object that can store arbitrary con
text data used in processing a Web service request. The
context can be available from various components of the
architecture involved in the processing of the request and
response. Typical data that might be stored in Such a context
are a conversation ID, a message sequence number, and a
security token. A particular invocation handler can choose to
make the invocation context available to the target compo
nent. This can allow application code to read and write to the
invocation context.

0028. An architecture can utilize interceptors. Intercep
tors are plugins that can provide access to inbound and

US 2007/O 150546 A1

outbound Web service messages. An interceptor API can be
public, and an implementation of an interceptor API can be
part of a Web service application. An interceptor can modify
SOAP messages as required. An interceptor can also read
and write information on the invocation context. Intercep
tors can be associated with either operation, or with the
namespace of the message body.

0029. There are different types of interceptors. Header
handlers can be used, for example, which operate only on
message headers. Header handlers must declare which mes
sage headers they require so that the header information can
be exposed, such as in the W3C Web service definition
language (WSDL) generated for the Web service. Flow
handlers, on the other hand, can operate on full message
content. Flow handlers do not require a declaration of which
message parts are processed, and do not result in the
existence of any additional information in the generated
WSDL. Application developers may use header handlers
primarily, while business units that are building infrastruc
ture on top of an application server may choose to use flow
handlers. Both APIs, however, can be public.
0030 XML serialization and deserialization plugins can
be supported, which can handle the conversion of method
parameters from XML to Java objects and return values
from Java to XML. Built-in mappings for the SOAP encod
ing data types can be included with an application server.
The processing of literal XML data that is sent outside any
encoding can also be supported, as well as Apache “Literal
XML encoding. Users can also implement their own cus
tom data type mappings and plug those mappings in to
handle custom data types.

0031. A container driver can be used with a Web services
architecture in accordance with one embodiment of the
present invention. A container driver can be thought of as the
conceptual driver of a Web service container. A container
driver can implement the process flow involved in perform
ing a Web service request.

0032) For RPC Web services hosted on an application
server, the default target of a Web service invocation can be
an EJB instance. For message-style Web services, the default
target can be a JMS destination. In certain cases, it may be
desirable to allow other components or Subsystems as tar
gets. People can build middleware infrastructure on top of
application servers to require this functionality. Therefore,
an invocation handler API can be supported to allow the Web
service requests to be targeted at different components
besides EJBs.

0033. An invocation handler can insulate the Web service
container from details of the target object lifecycle, trans
action management, and security policies. The implementer
of an invocation handler can be responsible for a number of
tasks. These tasks can include: identifying a target object,
performing any security checks, performing the invocation,
collecting the response, and returning the response to the
container driver. The implementer can also be responsible
for propagating any contextual state. Such as a conversation
ID or security role, as may be needed by a target component.
0034) A protocol adapter can perform the following steps
in one embodiment. The protocol adapter can identify the
invocation handler of the target component deployment,
Such as a stateless EJB adapter. The protocol adapter can

Jun. 28, 2007

identify any additional configuration information needed by
the invocation handler to resolve the service, such as the
JNDI name of a deployed EJB home. This information can
be in the deployment descriptor of the protocol adapter
deployment, such as a service JNDI name, and/or the
information could be in the headers or body of the request
or in the protocol.
0035) A protocol adapter can identify the style of a Web
service request, such as one-way RPC, synchronous RPC, or
messaging. If necessary, a protocol adapter can convert an
incoming request message into the SOAP with attachments
canonical form. A protocol adapter can create a message
context containing the request, a placeholder for a response,
information about the transport, and information about the
target invocation handler. A protocol adapter can also dis
patch message context configuration to the Web service
container.

0036) A container driver can manage the flow of process
ing in the container. The container driver can receive the
message context from the protocol adapter and, in one
embodiment, sequentially performs the following steps. The
container driver can dispatch to registered inbound inter
ceptors, extract operation parameters, and perform data
binding. The container driver can Submit the operation
request to the appropriate invocation handler, which can
delegate the invoke to a target object. The container driver
can receive a response from the invocation handler, possibly
including a return value. If there is a return value, the
container driver can perform data unbinding. If the Syn
chrony model is request-response, the container driver can
formulate a SOAP response. The response can be dispatched
to registered outbound interceptors and returned to the
protocol adapter for return to the caller.
0037. The protocol adapter can return the SOAP response
to the caller, converting the response back to the original
message format if it was not SOAP. The protocol adapter,
interceptors, and invocation handler can each have access to
the invocation context object. Any necessary state needed
during request processing can be propagated through this
context. The invocation handler can also provide access to
the context, such as to the component to which the invoca
tion handler delegates.
0038 An invocation handler that has been targeted to
process an invoke can receive the following data from the
container: the operation name, an array of Java Object
parameters, any invocation handler configuration data, and
the invocation context. The invocation handler can perform
the invocation and return an array of Java Object return
values.

0039. An invocation handler can perform the following
steps for one method in accordance with the present inven
tion. A target object can be identified for the invocation. The
invocation can be performed bypassing the parameters to the
target. The invocation context object can be provided to the
target. Also, a transaction, security, or component-specific
context can be passed to the target object. Any return
value(s) from the target can be processed and returned to the
container driver.

0040. An API can be used for invocation handlers. Invo
cation handlers can be configured when the protocol adapter
is deployed. For example, the HTTP protocol handler can be
a Web application.

US 2007/O 150546 A1

0041. Many types of built-in invocation handlers can be
used. One such invocation handler is an EJB invocation
handler. EJB invocation handlers can require a service
identity, such as the JNDI name of the EJB home, and
possibly a conversation ID, which can be extracted from a
cookie, in the case of stateful EJB targets. The body of the
request can indicate the operation name that will be mapped
to the proper method call on the EJB.
0.042 A stateless EJB invocation handler can be used to
dispatch Web service invokes to an EJB. This handler can
require the JNDI name of the stateless EJB home. The
handler can obtain an instance of the EJB and can dispatch
the invoke and return the return value, if there is one.

0043. A stateful session EJB invocation handler can be
used to dispatch invokes to a stateful session bean. The
handler can require the JNDI name of the stateful EJB home,
as well as a conversation ID, which can be extracted from
the message. The default approach for HTTP can be to
extract the conversation ID from a cookie in the HTTP
protocol handler and to put it in the invocation context under
a documented name. If this default behavior is not suitable,
the developer can provide a header handler that extracts the
conversation ID from message headers and places the ID in
the invocation context.

0044) A stateful session bean (SFSB) invocation handler
can maintain a table of mappings between a conversation ID
and EJB handles. If no conversation ID is found, the stateful
EJB invocation handler can create a new conversation ID, a
new session bean instance, and can add its handle to the
mapping table. The invoke can then be dispatched to the
SFSB referenced by the handle.
0045 AJMS invocation handler can dispatch the body of
a SOAP message to a JMS destination. The handler can
require the JNDI name of the destination, the JNDI name of
the connection factory, and the destination type.
0046) The configuration of protocol handlers can involve
specifying the mapping between Web service endpoint
URIs, such as URLs in the case of HTTP or email addresses
in the case of SMTP, and the name of an invocation handler.
A particular invocation handler can require additional con
figuration information, such as the JNDI-name of a target
EJB deployment.

0047. An HTTP protocol handler can be a special Web
application that is automatically deployed when a Web
archive file (WAR) is deployed. The URL mappings to
invocation handlers can be extracted from the WSP (“Web
service provider') description of the Web service. An HTTP
protocol handler can map HTTP headers to the invocation
context and can attempt to extract a conversation ID from an
HTTP cookie, if one is present. An SMTP Protocol Handler
can also be utilized.

0048. An HTTP-based Web Service can be packaged in
and deployed from a J2EE WAR that is contained inside a
J2EE Enterprise Archive File (EAR). The WAR can contain
a Web service WSP document, which defines a Web service.
The WSP can describe the shape of the Web service and how
the implementation maps to backend components. A WSP
can be referenced in the URL of a Web service, like a JSP.
It can also allow reference to user-defined tags, like a JSP
which can integrate user-developed functions into the defi
nition of the Web service. It can also support the scripting of

Jun. 28, 2007

Web service functions. Unlike a JSP, however, a WSP may
not compile down to a servlet. The WSP can be directly
utilized by the Web service runtime.
0049. The remaining contents of the EAR can include
EJB-JARs or other classes that are part of the implementa
tion of the Web Service.

0050 A Web container can manage the deployment of
HTTP WSPs in a similar manner to JSPS. There can be a
default WSP servlet registered with each Web application
that intercepts requests for WSPs. The default servlet can
then redirect each request to the appropriate WSP handler.
0051. A user can open a Web application in a console, or
in a console view, and can view the names of the WSPs that
are part of that Web application. It can be necessary to
modify an MBean, such as Web AppComponentMBean, on
order to provide a list of WSPs.
0052 Java-based Web services client distributions can be
used with services hosted on many different platforms. A full
set of features Supported on a client can include:
0053. HTTP protocol with cookie support
0054 SOAP 1.2 with attachments
0055) JAX-RPC client API, including synchronous and
“one-way RPC invokes
0056 Header Handler and Flow Handler API
0057 Message-style Web service client API
0058 Support for “dynamic mode' (no Java interfaces or
WSDL required)
0059 Support for “static mode” (Java interfaces and
service stubs required)
0060. The full set of SOAP encodings+Literal XML+
Support for custom encodings
0061 Security support:

0062 128-bit two-way SSL
0063 Digital Signatures

0064 XML Data Encryption
There is an inherent tradeoff between the “thinness' of a

client and the richness of features that can be supported.
To accommodate customers with differing needs
regarding features and footprint, several different client
runtime distributions can be offered with varying levels
of features.

0065. A J2SE Web Service client, which can have a
footprint of around 1 MB, can be full-featured. SSL and JCE
security functions can be included in separate jars. This
client can run in regular VM environments, such as those
hosting application servers. A J2ME/CDC thin client can
have a limited set of features, but can be designed to run in
a J2ME CDC profile on devices. A JDK 1.1 thin client can
have a limited set of features, but can be intended to run in
JDK 1.1 virtual machines, including those hosting applets.
0066 Client distributions can include classes needed to
invoke Web services in “dynamic' mode. Utilities can be
provided to generate static stubs and Java interfaces, if given
WSDL service descriptions.

US 2007/O 150546 A1

0067. A JavaTM2 Platform, Standard Edition (J2SE) Web
service client can be a standard, full-featured client, which
can be intended to run inside an application server. The
client can be included in a regular server distribution, and
can also be available in a separate jar so that it may be
included in other J2EE or “fat client” JVMs. There may be
no size restriction on this client. The client can utilize JDK
13.

0068 FIG. 3 shows an architecture of the client-side for
a J2SE Web Service client 318 in accordance with one
embodiment of the present invention. The client is closely
related to the Web service container. The client can be an
embeddable Web service container that can run in lighter
weight servers. This can allow asynchronous callbacks to be
invoked on the client.

0069. In FIG. 3, the HTTP protocol adapter 102 of the
Web container 100 is shown passing message context to, and
receiving message context from, a container driver 300. The
container driver 300 can receive message context from the
protocol adapter 102 and send the message context to the
registered inbound interceptors 302,304,306. After extract
ing performing any necessary data binding or unbinding,
such as by using a Java Binding codec. 310, a SOAP codec
312, an XML codec 314, or a custom codec 316, the
container driver 300 can return the data to the client stub
308. If receiving invoke data from the client stub 308, the
container driver 300 can perform any data binding or
unbinding using the appropriate codecs 310, 312, 314, 316
and send the invoke request to the outbound interceptors
302, 304, 306. The container driver 300 can then send
message context for the invoke to the protocol adapter 102.
0070 The foregoing description of preferred embodi
ments of the present invention has been provided for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations will be appar
ent to one of ordinary skill in the art. The embodiments were
chosen and described in order to best explain the principles
of the invention and its practical application, thereby
enabling others skilled in the art to understand the invention
for various embodiments and with various modifications that
are Suited to the particular use contemplated. It is intended
that the scope of the invention be defined by the following
claims and their equivalence.
What is claimed is:

1. A system for asynchronous invocation of a web service
by a web services client using Java Messaging Service
protocol comprising:

a web container that provides an end point for a Java
Messaging Service protocol based web service:

a Java Messaging Service invocation handler that receives
a web service request from the web container, wherein
said web service request includes a SOAP message;
and,

Jun. 28, 2007

a Java Messaging Service destination that receives a body
of the web service requests SOAP message dispatched
by the invocation handler, wherein the Java Messaging
Service destination provides a web service response for
the web service client to retrieve at a later point of time.

2. The system of claim 1, wherein the Java Messaging
Service invocation handler is in the web container.

3. The system of claim 1, wherein the Java Messaging
Service destination is in the web container.

4. The system of claim 1, wherein the Java Messaging
Service destination is a web service.

5. A system for invocation of a web service by a web
services client using Java Messaging Service protocol com
prising:

a web container that provides an end point for a Java
Messaging Service protocol based web service:

a Java Messaging Service invocation handler that receives
a web service request from the web container, wherein
said web service request includes a SOAP message;
and,

a Java Messaging Service destination that receives a body
of the web service requests SOAP message dispatched
by the invocation handler, wherein the Java Messaging
Service destination provides a web service response for
the web service client via the Java Messaging Service
invocation handler and the web container.

6. The system of claim 5, wherein the Java Messaging
Service invocation handler is in the web container.

7. The system of claim 5, wherein the Java Messaging
Service destination is in the web container.

8. The system of claim 5, wherein the Java Messaging
Service destination is a web service.

9. A web service system wherein messages to the web
service use Java Messaging Service to asynchronously com
municate with a service requester.

10. The web service system of claim 9, wherein the
system includes a web container.

11. The system of claim 10, wherein the web container
contains a Java Messaging Service invocation handler.

12. The system of claim 10, wherein, the web container
contains a Java Messaging Service destination.

13. A web service system wherein messages to the web
service from a service requester are asynchronous.

14. The web service system of claim 13, wherein the
system uses Java Messaging Service to send the messages.

15. The web service system of claim 14, wherein the
system includes a web container.

16. The web service system of claim 15, wherein the web
container contains a Java Messaging Service invocation
handler.

17. The web service system of claim 15, wherein, the web
container contains a Java Messaging Service destination.

