The application is directed to compounds of Formula (I) and pharmaceutically acceptable salts and solvates thereof, wherein R^1, R^2, R^3, X, Y, Z, G, O, W^1, and W^2 are defined as set forth in the specification. The invention is also directed to use of compounds of Formula (I), and the pharmaceutically acceptable salts and solvates thereof, to treat disorders responsive to the modulation of one or more opioid receptors, or as synthetic intermediates. Certain compounds of the present invention are especially useful for treating pain.
7-BETA-ALKYL ANALOGS OF ORVINOLS

BACKGROUND OF THE INVENTION

Field of the Invention

This application is in the field of medicinal chemistry. The application relates to novel 7p-alkyl, and especially 7p-methyl, analogs of orvinols, pharmaceutical compositions comprising one or more of these compounds, and and their use.

Description of the Related Art

Pain is the most common symptom for which patients seek medical advice and treatment. While acute pain is usually self-limited, chronic pain can persist for 3 months or longer and lead to significant changes in a patient's personality, lifestyle, functional ability and overall quality of life (K.M. Foley, Pain, in Cecil Textbook of Medicine 100-107, J.C. Bennett and F. Plum eds., 20th ed. 1996).

Pain has traditionally been managed by administering either a non-opioid analgesic (such as acetylsalicylic acid, choline magnesium trisalicylate, acetaminophen, ibuprofen, fenoprofen, diflunisal or naproxen), or an opioid analgesic (such as morphine, hydromorphone, methadone, levorphanol, fentanyl, oxycodone, oxymorphone, or buprenorphine).

Until recently, there was evidence of three major classes of opioid receptors in the central nervous system (CNS), with each class having subtype receptors. These receptor classes are known as μ, δ and κ. As opiates have a high affinity to these receptors while not being endogenous to the body, research followed in order to identify and isolate the endogenous ligands to these receptors. These ligands were identified as endorphins, enkephalins, and dynorphins, respectively. Additional experimentation has led to the identification of the opioid receptor-like (ORL-1) receptor, which has a high degree of homology to the known opioid receptor classes. This more recently discovered receptor was classified as an opioid receptor based only on structural grounds, as the receptor did not exhibit pharmacological homology. It was initially demonstrated that non-selective ligands having a high affinity for μ, δ and κ receptors had low affinity for the ORL-1 receptor. This characteristic, along with the fact that an endogenous ligand had not yet been discovered, led to the ORL-1 receptor being designated as an "orphan receptor".
Kappa (κ) opioid receptor agonists have been evaluated as alternatives to existing analgesics for the treatment of pain. Centrally penetrating κ agonists produce antinociceptive effects in conventional preclinical assays of basal, inflammatory and neuropathic pain (Vanderah et al, J. Pharmacol. Exp. Ther. 370:326-333 (2004); Negus et al., Psychopharmacology (Bed) 270:149-159 (2010)). However, centrally penetrating κ agonists can also produce undesirable side-effects, such as sedative and psychotomimetic effects (Pande et al, Clin. Neuropharmacol. 79:92-97 (1996); Pande et al, Clin. Neuropharmacol 79:451-456 (1996); and Wadenberg, CNS Drug Rev. 9:187-198 (2003)).

Opioid receptor agonists that do not readily cross the blood-brain barrier are peripherally restricted and distribute poorly to the central nervous system after systemic administration. Such compounds would retain an ability to produce analgesia by acting on peripheral opioid receptors, such as peripheral κ-opioid receptors, but their potency to produce centrally mediated side-effects would be reduced.

There is a need for effective analgesics that work by acting on opioid receptors. There is also a need for analgesics that work by acting on peripheral opioid receptors. There is also a need for analgesics that work by acting on central opioid receptors. There is also a need for analgesics that work by acting on κ-opioid receptors. There is also a need for analgesics that work by acting on peripheral κ-opioid receptors.

BRIEF SUMMARY OF THE INVENTION

In one aspect, the present disclosure provides compounds represented by Formulae I-V, below, and the pharmaceutically acceptable salts and solvates thereof, collectively referred to herein as "Compounds of the Invention" (each is individually referred to hereinafter as a "Compound of the Invention").

In another aspect, the present disclosure provides the use of Compounds of the Invention as synthesis intermediates.

In another aspect, the present disclosure provides the use of Compounds of the Invention as modulators of one or more opioid receptors. Specifically, the present disclosure provides the use of Compounds of the Invention as modulators of μ, δ, κ, and/or ORL-1 opioid receptors, and especially modulators of μ and/or κ opioid receptors.
In another aspect, the present disclosure provides a method of treating or preventing a disorder responsive to the modulation of one or more opioid receptors in a patient, comprising administering to the patient an effective amount of a Compound of the Invention.

In another aspect, the present disclosure provides a use of a Compound of the Invention as an agent to treat or prevent pain; or as an agent to treat or prevent withdrawal from alcohol or drug addiction; or as an agent to treat or prevent addictive disorders; or as an agent to treat a pruritic condition; or as an agent to treat or prevent constipation; or as an agent to treat or prevent diarrhea (each of pain, alcohol withdrawal, drug withdrawal, addictive disorders, pruritis, constipation, and diarrhea being a "Condition").

The present invention further provides methods of treating or preventing a Condition, comprising administering to a patient in need thereof a therapeutically effective amount of a Compound of the Invention. In certain embodiments, the Condition is pain (including acute pain, chronic pain (which includes but is not limited to, neuropathic pain, postoperative pain, and inflammatory pain), and surgical pain). The Compounds of the Invention are particularly useful for treating or preventing chronic pain.

In another aspect, the present disclosure provides a pharmaceutical composition comprising a therapeutically effective amount of a Compound of the Invention and one or more pharmaceutically acceptable carriers. Such compositions are useful for treating or preventing a Condition in a patient.

In another aspect, the present disclosure provides Compounds of the Invention for use in treatment or prevention of a disorder responsive to the modulation of one or more opioid receptors. Preferably, the disorder is responsive to modulation of the μ-opioid receptor or the κ-opioid receptor, or to modulation of a combination thereof.

In another aspect, the present disclosure provides a method of modulating one or more opioid receptors in a patient in need of said modulation, comprising administering to the patient an opioid receptor modulating amount of a Compound of the Invention.

In another aspect, the present disclosure provides Compounds of the Invention for use in treatment or prevention of one or more Conditions in a patient in need of said treatment or prevention.

In another aspect, the present disclosure provides Compounds of the Invention for use in treatment or prevention of pain in a patient, such as acute pain, chronic pain
(which includes but is not limited to, neuropathic pain, postoperative pain, and inflammatory pain), or surgical pain.

In another aspect, the present disclosure provides Compounds of the Invention for use in modulation of one or more opioid receptors in a patient.

In another aspect, the present disclosure provides use of Compounds of the Invention in the manufacture of a medicament for treating or preventing a disorder responsive to the modulation of one or more opioid receptors.

In another aspect, the present disclosure provides use of Compounds of the Invention in the manufacture of a medicament for modulating one or more opioid receptors in a patient. Preferably, the µ- or κ-opioid receptor is modulated, or both the µ- and κ-opioid receptors are modulated.

In another aspect, the present disclosure provides Compounds of the Invention for use as a medicament.

In another aspect, the present disclosure provides use of a Compound of the Invention in the manufacture of a medicament for treating or preventing a Condition in a patient.

In another aspect, the present disclosure provides use of a Compound of the Invention in the manufacture of a medicament for treating or preventing pain in a patient, such as acute pain, chronic pain, or surgical pain.

In another aspect, the present disclosure provides a pharmaceutical composition, comprising a Compound of the Invention for treating or preventing a disorder responsive to the modulation of one or more opioid receptors.

The present invention further provides methods for preparing a pharmaceutical composition, comprising admixing a Compound of the Invention and a pharmaceutically acceptable carrier to form the pharmaceutical composition.

In another aspect, the present invention provides radiolabeled Compounds of the Invention, especially ^1H, ^11C and ^14C radiolabeled Compounds of the Invention, and the use of such compounds as radioligands to detect binding to an opioid receptor in screening assays.

In another aspect, the present invention provides a method for screening a candidate compound for the ability to bind to an opioid receptor, comprising a) introducing a fixed concentration of a radiolabeled Compound of the Invention to the receptor under conditions that permit binding of the radiolabeled compound to the
receptor to form a complex; b) titrating the complex with a candidate compound; and c) determining the binding of the candidate compound to said receptor.

[0029] In a further aspect, the invention relates to a kit, comprising a sterile container containing an effective amount of a Compound of the Invention and instructions for therapeutic use.

[0030] Additional embodiments and advantages of the disclosure will be set forth, in part, in the description that follows, and will flow from the description, or can be learned by practice of the disclosure. The embodiments and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.

[0031] It is to be understood that both the foregoing summary and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.

DETAILED DESCRIPTION OF THE INVENTION

[0032] Certain Compounds of the Invention are useful for modulating a pharmacodynamic response from one or more opioid receptors (µ, δ, κ, ORL-1) either centrally or peripherally, or both. The pharmacodynamic response may be attributed to the compound either stimulating (agonizing) or inhibiting (antagonizing) the one or more receptors. Certain Compounds of the Invention may antagonize one or more opioid receptors, while also agonizing one or more other receptors. Compounds of the Invention having agonist activity may be either full or partial agonists.

[0033] In one embodiment, Compounds of the Invention are compounds represented by Formula I:

```
\[
\text{and the pharmaceutically acceptable salts and solvates thereof, wherein:}
\]

[0034] R^1 is selected from the group consisting of hydrogen, (Ci-Cio)alkyl, (C_2-C_i2)alkenyl, (C_2-C_i2)alkynyl, (C_1-C_{10})alkoxy, (C_3-C_2)cycloalkyl, (C_4-C_{12})cycloalkenyl, ((C_3-C_{12})cycloalkyl)-(C_1-C_6)alkyl-, ((C_4-C_{12})cycloalkenyl)-(C_1-C_6)alkyl-, (6- to 12-
membered)aryl, ((6- to 12-membered)aryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (3- to 12-membered)heterocycle, and ((3- to 12-membered)heterocycle)-(C₁-C₆)alkyl--; any of which is optionally substituted with 1, 2, or 3 substituents each independently selected from the group consisting of (C₁-C₆)alkyl, OH, halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₁-C₆)alkyl-COOR⁷, -COOR⁷, NH₂, -NH(C₁-C₆)alkyl, -NR₉R¹⁰, CN, -CONR₉R¹⁰, -NR₉COR¹⁰, -SR¹¹, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl;

Z is -(CH₂)ₙ-, optionally substituted with 1 or 2 - (C₁-C₆)alkyl;

Y is -(CH₂)ₙ-CH or a direct bond, provided that when Y is a direct bond then W² is absent and W¹ is attached to G;

G is selected from the group consisting of-O-, -OC(=0)-, -C(=0)-, -NR², -S-, -SO-, and -SO₂-;

W¹ and W² are each independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₂-C₁₂)alkenyl, (C₂-C₁₂)alkynyl, (C₁-C₁₀)alkoxy, -(OCH₂CH₂)ₐ-(OCH₂CH₂)ₘ-(C₁-C₆)alkyl, -(CH₂CH₂)ₙ-(C₁-C₆)alkyl, NH₂, -NH(C₁-C₆)alkyl, CN, -CONR₅R⁶, -(C₁-C₆)alkyl-CO-NR₅R⁶, -COOR⁷, -(C₁-C₆)alkyl-CO-OR⁷, -(C₁-C₆)alkoxy-COOR⁷, (C₅-C₁₂)cycloalkyl, ((C₅-C₁₂)cycloalkyl)-(C₁-C₆)alkyl-, (C₄-C₁₂)cycloalkenyl, ((C₄-C₁₂)cycloalkenyl)-(C₁-C₆)alkyl-, (C₆-C₁₂)bicycloalkyl, (C₆-C₁₂)bicycloalkyl-(C₁-C₆)alkyl-, (C₈-C₂₀)tricycloalkyl, ((C₆-C₂₀)tricycloalkyl)-(C₁-C₆)alkyl-, (C₇-C₁₄)bicycloalkenyl, ((C₇-C₁₄)bicycloalkenyl)-(C₁-C₆)alkyl-, (C₈-C₂₀)tricycloalkenyl, ((C₈-C₂₀)tricycloalkenyl)-(C₁-C₆)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C₁-C₆)alkyl-, (7- to 12-membered)bicyclic ring system, ((7- to 12-membered)bicyclic ring system)-(C₁-C₆)alkyl-, (7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heterocycle, (5- to 12-membered)heterocycle)-(C₁-C₆)alkyl-, (5- to 12-membered)bicyclic heterocycle, and (5- to 12-membered)bicyclic heterocycle)-(C₁-C₆)alkyl--; any of which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), (d-C₆)alkyl, halo(C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxyl(C₁-C₆)alkyl-, dihydroxy(C₁-C₆)alkyl-, (C₁-C₆)alkoxy, ((C₁-C₆)alkoxy)CO(C₁-C₆)alkoxy-, NH₂, -NH(C₁-C₆)alkyl, -(C₁-C₆)alkyl-NH(C₁-C₆)alkyl-R¹⁴, CN, SH, -OR⁴, -CONR₉R⁶, -(C₁-C₆)alkyl-CO-NR₉R⁶, -COOR⁷, -(C₁-C₆)alkyl-CO-OR⁷, -(C₁-C₆)alkoxy-COOR⁷, -(OCH₂CH₂)ₐ-O(C₁-C₆)alkyl
C\(_6\)alkyl, -(CH\(_2\)CH\(_2\))\(_n\)-(C\(_6\)-alkyl), ((C\(_1\)-C\(_6\))alkyl)sulfonyl(C\(_1\)-C\(_6\))alkyl-, -NH-SO\(_2\)(d-C\(_6\))alkyl, -N(SO\(_2\)(C\(_1\)-C\(_6\))alkyl), -C(=NH)NH\(_2\), -NH-CO-((d-C\(_6\))alkyl, -NH-CO-NH\(_2\), -NH-C(=0)-NH-(C\(_1\)-C\(_6\))alkyl, -NH-C(=0)-(6- to 12- membered)aryl, -NH-C(=0)-(d-C\(_6\))alkyl-(6- to 12- membered)aryl, -NH-(d-C\(_6\))alkyl-CO-OR\(_7\), -NH-(C\(_1\)-C\(_6\))alkyl-CO-OR\(_7\), -NH-C(=0)-CH(NH\(_2\))-(C\(_1\)-C\(_6\))alkyl-CO-OR\(_7\), (C\(_3\)-C\(_2\))cycloalkyl, (((C\(_3\)-C\(_1\))cycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -(C\(_1\)-C\(_6\))alkoxyC(0)NR\(_5\)R\(_6\), -NH-(C\(_1\)-C\(_6\))alkylC(0)-NR\(_5\)R\(_6\), -C(0)NH-(C\(_1\)-C\(_6\))alkyl-COOR\(_7\), ((6- to 12-membered)aryl)-(C\(_1\)-C\(_6\))alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C\(_1\)-C\(_6\))alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C\(_1\)-C\(_6\))alkyl-, (7- to 12-membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(C\(_1\)-C\(_6\))alkyl-, provided that W\(^1\) is other than hydrogen when Y is a direct bond and G is O;

Q is selected from the group consisting of OH, (C\(_1\)-C\(_10\))alkoxy, (C\(_1\)-C\(_10\))alkyl, (C\(_3\)-C\(_2\))cycloalkyl, (6- to 12-membered)aryl, ((C\(_3\)-C\(_2\))cycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, ((6- to 12-membered)aryl)-(C\(_1\)-C\(_6\))alkyl-, -(OCH\(_2\)CH\(_2\))\(_x\)-0(C\(_1\)-C\(_6\))alkyl, -(CH\(_2\)CH\(_2\))\(_x\)-(d-C\(_6\))alkyl, -(OCH\(_2\)CH\(_2\))\(_x\)OH, -OC(=0)R\(_9\), -0-(d-C\(_6\))alkyl-COOR\(_7\), -NH-(C\(_1\)-C\(_6\))alkyl-COOR\(_7\), -0-(d-C\(_6\))alkyl-C(0)OR\(_7\), -NH-(C\(_1\)-C\(_6\))alkyl-C(0)OR\(_7\), -0-(d-C\(_6\))alkyl-C(0)NR\(_9\)R\(_10\), -NH-(C\(_1\)-C\(_6\))alkyl-C(0)NR\(_9\)R\(_10\), -0-C(0)-(d-C\(_6\))alkyl-C(0)NR\(_9\)R\(_10\), and R\(_{14}\);

R\(_{1a}\) and R\(_{1b}\) are each independently selected from the group consisting of hydrogen, (d-C\(_10\))alkyl, (C\(_2\)-C\(_6\))alkeny1, (C\(_2\)-C\(_10\))alkynyl, (d-C\(_10\))alkoxy, OH, hydroxy(d-C\(_6\))alkyl-, -C(halo)\(_3\), -CH(halo)\(_2\), -CH\(_2\)(halo), -(C\(_1\)-C\(_6\))alkyl-C(=0)-(C\(_1\)-C\(_6\))alkoxy, -(C\(_1\)-C\(_6\))alkoxy-C(=0)-(C\(_1\)-C\(_6\))alkyl, -(C\(_1\)-C\(_6\))alkyl-CN, -(C\(_1\)-C\(_6\))alkyl-COOR\(_7\), -(C\(_1\)-C\(_6\))alkoxy-COOR\(_7\), (C\(_3\)-C\(_2\))cycloalkyl, ((C\(_3\)-C\(_2\))cycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, ((C\(_3\)-C\(_1\))cycloalkyl)-(C\(_1\)-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, (C\(_4\)-C\(_2\))cycloalkenyl, (C\(_4\)-C\(_2\))cycloalkenyl)-(d-C\(_6\))alkyl-, (C\(_4\)-C\(_2\))cycloalkenyl)-(C\(_1\)-C\(_6\))alkyl-, (d-C\(_6\))alkenyl-, (d-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, (C\(_4\)-C\(_2\))cycloalkenyl)-(d-C\(_6\))alkyl-, (C\(_4\)-C\(_2\))cycloalkenyl)-(C\(_1\)-C\(_6\))alkyl-, (6- to 12-membered)aryl, (6- to 12-membered)aryl)-(C\(_1\)-C\(_6\))alkyl-, (6- to 12-membered)aryl)-(C\(_1\)-C\(_6\))alkoxy-, (6- to 12-membered)aryl)-(C\(_1\)-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, (5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl)-(C\(_1\)-C\(_6\))alkyl-, (5- to 12-membered)heteroaryl)-(C\(_1\)-C\(_6\))alkoxy-, (5- to 12-membered)heteroaryl)-(C\(_1\)-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, (3- to 12-membered)heterocycle, (3- to 12-membered)heterocycle)-(C\(_1\)-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, (3- to 12-membered)heterocycle)-(C\(_1\)-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, and (3- to 12-membered)heterocycle)-(C\(_1\)-C\(_6\))alkoxy-(C\(_1\)-C\(_6\))alkyl-, or
[0041]  $R^{1a}$ and $R^{1b}$ together form (=0);

[0042]  $R^{1c}$ is Ci-C$_6$ alkyl;

[0043]  $X$ is selected from the group consisting of OH, hydroxy(Ci-C$_6$)alkyl-, dihydroxy(d-C$_6$)alkyl-, halogen, halo(Ci-C$_6$)alkyl, NH$_2$, -NR$_2$ (C=0)R$_{12}$, -CONR$_2$R$_{13}$, -(C$_6$-C$_6$)alkyl-CONH$_2$, -(Ci-C$_6$)alkyl-COOH, COOH, -(0-(C,-C$_6$)alkyl-COOH, -0-(d-C$_6$)alkyl-CONH$_2$, (Ci-C$_6$)alkyl, (C$_2$-C$_6$)alkenyl, (C$_2$-C$_6$)alkynyl, -(C$_6$-C$_6$)alkyl-, -CH(halo)$_2$, -CH$_2$(halo), hydroxy(C$_3$-C$_6$)alkyl-, (C$_3$-C$_6$)alkenyl, -(OCH$_2$CH$_2$)$_n$-OH, -(CH$_2$)$_p$CHOHCH$_2$OH, CN, -NH-SO$_2$R$_3$, (C$_3$-C$_{12}$)cycloalkyl, ((C$_3$-C$_{12}$)cycloalkyl)-(Ci-C$_6$)alkyl-, ((C$_3$-C$_{12}$)cycloalkyl)-(Ci-C$_6$)alkoxy-, (6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(Ci-C$_6$)alkyl-, (6- to 12-membered)aryl)-(Ci-C$_6$)alkoxy-, (5- to 12-membered)aryl)-(Ci-C$_6$)alkyl-, ((6- to 12-membered)aryl)-(Ci-C$_6$)alkoxy-, (5- to 12-membered)aryl)-(Ci-C$_6$)alkyl-, ((7- to 12-membered)bicycloheterocycle, (7- to 12-membered)bicycloheterocycle)-(Ci-C$_6$)alkyl-; and ((7- to 12-membered)bicycloheterocycle)-(Ci-C$_6$)alkoxy-; or

[0044]  $X$ is —O-PG, wherein PG is a hydroxyl protecting group;

[0045]  $R^2$ is selected from the group consisting of hydrogen, (Ci-C$_6$)alkyl, (C$_2$-C$_6$)alkenyl, (C$_2$-C$_6$)alkynyl, -C(halo)$_3$, -CH(halo)$_2$, -CH$_2$(halo), hydroxy(Ci-C$_6$)alkyl-, (C$_3$-C$_{12}$)cycloalkyl, ((C$_3$-C$_2$)cycloalkyl)-(Ci-C$_6$)alkyl-, (C$_6$-C$_6$)bicycloalkyl, ((C$_6$-C$_6$)cycloalkyl)-(Ci-C$_6$)alkyl-, (C$_8$-$C_{12}$)tricycloalkyl, ((C$_8$-$C_{12}$)tricycloalkyl)-(Ci-C$_6$)alkyl-, (C$_4$-$C_{12}$)cycloalkenyl, ((C$_4$-$C_{12}$)cycloalkenyl)-(Ci-C$_6$)alkyl-, (C$_7$-$C_{14}$)bicycloalkenyl, ((C$_7$-$C_{14}$)bicycloalkenyl)-(Ci-C$_6$)alkyl-, (C$_6$-$C_{12}$)tricycloalkenyl, ((C$_6$-$C_{12}$)tricycloalkenyl)-(CrC$_{6}$)alkyl,-(6- to 12-membered)aryl, (6- to 12-membered)aryl)-(Ci-C$_6$)alkyl-, (5- to 12-membered)aryl-heteroaryl, (5- to 12-membered)aryl-(CrC$_6$)alkyl-, (3- to 12-membered)heterocycle-(Ci-C$_6$)alkyl-, (7- to 12-membered)heterocycle-(Ci-C$_6$)alkyl-, (7- to 12-membered)heterocycle-(CrC$_6$)alkyl-;

[0046]  $R^3$ is selected from the group consisting of hydrogen, (Ci-C$_6$)alkyl, (C$_2$-C$_6$)alkenyl, (C$_2$-C$_6$)alkynyl, (Ci-C$_{12}$)cycloalkyl, (C$_3$-C$_6$)cycloalkenyl, ((C$_3$-C$_{12}$)cycloalkenyl)-(Ci-C$_6$)alkyl-, ((C$_3$-C$_{12}$)cycloalkenyl)-(Ci-C$_6$)alkyl-, -C(=0)(Ci-C$_6$)alkyl, and -SO$_2$(Ci-C$_6$)alkyl;

[0047]  $R^4$ is selected from the group consisting of (C$_1$-C$_6$)alkyl, (C$_2$-C$_6$)alkenyl, (C$_2$-C$_6$)alkynyl, -C(halo)$_3$, -CH(halo)$_2$, -CH$_2$(halo), hydroxy(C$_3$-C$_6$)alkyl-, (C$_3$-
C_{12} cycloalkyl, ((C_{3}C_{2}) cycloalkyl)-(C_{1}-C_{6}) alkyl-, (C_{6}-C_{4}) bicycloalkyl, ((C_{6}-C_{4}) bicycloalkyl)-(C_{1}-C_{6}) alkyl-, (C_{8}-C_{20}) tricyclocalkyl, ((C_{8}-C_{20}) tricyclocalkyl)-(C_{1}-C_{6}) alkyl-, (C_{4}-C_{12}) cycloalkenyl, ((C_{4}C_{12}) cycloalkenyl)-(C_{1}-C_{6}) alkyl-, (C_{7}-C_{4}) bicyclocalkenyl, ((C_{7}C_{4}) bicyclocalkenyl)-(C_{1}-C_{6}) alkyl-, (C_{8}-C_{20}) tricyclocalkenyl, ((C_{8}-C_{20}) tricyclocalkenyl)-(C_{1}-C_{6}) alkyl-, (6- to 12-membered) aryl, (6- to 12-membered) aryl)-(C_{1}-C_{6}) alkyl-, (5- to 12-membered) heteroaryl, (5- to 12-membered) heteroaryl)-(C_{1}-C_{6}) alkyl-, (3- to 12-membered) heterocycle, (3- to 12-membered) heterocycle)-(C_{1}-C_{6}) alkyl-, (7- to 12-membered) bicyclocyclocyclocycle, and (7- to 12-membered) bicyclocycle)-(C_{1}-C_{6}) alkyl-;

R^{5} and R^{6} are each independently selected from the group consisting of hydrogen, (C_{1}-C_{6}) alkyl, (C_{3}C_{8}) cycloalkyl, ((C_{3}C_{8}) cycloalkyl)-(C_{1}-C_{6}) alkyl-, -COOR, -(d-C_{6}) alkyl-CO-OR, -CONH, and (C_{1}C_{6}) alkyl-CO-CONH; or

R^{5} and R^{6} together with the nitrogen atom to which they are attached form a (4- to 8-membered) heterocycle;

R^{7} is selected from the group consisting of hydrogen, (C_{1}-C_{6}) alkyl, (C_{2}-C_{6}) alkenyl, (C_{2}C_{6}) alkynyl, (C_{3}C_{12}) cycloalkyl, ((C_{3}C_{12}) cycloalkyl)-(C_{1}-C_{6}) alkyl-, and ((C_{4}C_{12}) cycloalkenyl)-(C_{1}-C_{6}) alkyl-;

R^{9} and R^{10} are each independently selected from the group consisting of hydrogen, (C_{1}-C_{6}) alkyl, (C_{2}-C_{6}) alkenyl, (C_{2}C_{6}) alkynyl, (C_{3}C_{12}) cycloalkyl, ((C_{3}C_{12}) cycloalkenyl)-(C_{1}-C_{6}) alkyl-, and ((C_{4}C_{12}) cycloalkenyl)-(C_{1}-C_{6}) alkyl-;

R^{11} is selected from the group consisting of hydrogen, (C_{1}C_{10}) alkyl, (C_{2}-C_{6}) alkenyl, (C_{2}C_{10}) alkynyl, (C_{1}-C_{6}) alkoxy, ((C_{1}C_{6}) alkyl)sulfonyl-(C_{1}-C_{6}) alkyl-, (C_{3}-C_{12}) cycloalkyl, ((C_{3}C_{12}) cycloalkyl)-(C_{1}-C_{6}) alkyl-, (C_{4}-C_{12}) cycloalkenyl, and ((C_{4}C_{12}) cycloalkenyl)-(C_{1}-C_{6}) alkyl-;

R^{12} and R^{13} are each independently selected from the group consisting of hydrogen, (C_{1}-C_{6}) alkyl, (C_{2}-C_{12}) alkenyl, (C_{2}C_{12}) alkynyl, (C_{1}-C_{6}) alkoxy, -(OCH_{2}CH_{2})_{n}(C_{1}-C_{6}) alkyl, (C_{2}-C_{12}) cycloalkyl, ((C_{2}-C_{12}) cycloalkyl)-(C_{1}-C_{6}) alkyl-, (C_{4}-C_{12}) cycloalkenyl, ((C_{4}-C_{12}) cycloalkenyl)-(C_{1}-C_{6}) alkyl-, (C_{6}C_{14}) bicyclocyclocycle, ((C_{6}-C_{14}) bicyclocyclocycle)-(C_{1}-C_{6}) alkyl-, (C_{8}-C_{20}) tricyclocycle, ((C_{8}-C_{20}) tricyclocycle)-(C_{1}-C_{6}) alkyl-, (C_{7}C_{14}) bicyclocyclocycle, ((C_{7}C_{14}) bicyclocyclocycle)-(C_{1}-C_{6}) alkyl-, (C_{8}-C_{20}) tricyclocycle, ((C_{8}-C_{20}) tricyclocycle)-(C_{1}-C_{6}) alkyl-, (6- to 12-membered) aryl, (6- to 12-membered) aryl) (C_{1}-C_{6}) alkyl-, (7- to 12-membered) bicyclic ring system, (7- to 12-membered) bicyclic ring system)-(C_{1}-C_{6}) alkyl-, (7- to 12-membered) bicyclic aryl,
((7- to 12-membered)bicyclic aryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C₁-C₆)alkyl-, (7- to 12-membered)bicyclocarbocycle, and ((7- to 12-membered)bicyclocarbocycle)-(C₁-C₆)alkyl-; any of which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), (C₁-C₆)alkyl, halo(d-C₆)alkyl-, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR¹, -CONR²R⁶, -COOR⁷, (C₃-C₆)cycloalkyl, ((C₃-C₆)cycloalkyl)-(C₁-C₆)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C₁-C₆)alkyl-, (7- to 12-membered)bicyclocarbocycle, and ((7- to 12-membered)bicyclocarbocycle)-(C₁-C₆)alkyl-;

[0054] R¹ is selected from the group consisting of -COOR⁷, -(C₁-C₆)alkyl-CO-OR⁷, -C(=0)-(C₁-C₆)alkyl-COOR⁷, -(C₁-C₆)alkyl-C(=0)-(C₁-C₆)alkyl-COOR⁷, -CONH₂, and (C₁-C₆)alkyl-CONH₂;

[0055] m is an integer 1, 2, 3, 4, 5, or 6;

[0056] n is an integer 0, 1, 2, 3, 4, 5 or 6;

[0057] p is an integer 0, 1 or 2; and

[0058] s is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13.

[0059] In another embodiment, Compounds of the Invention are compounds of Formula I, wherein W¹ is other than hydrogen when G is -O-.

[0060] In another embodiment, Compounds of the Invention are compounds represented by Formula II:

![Diagram](image)

and the pharmaceutically acceptable salts and solvates thereof, wherein R¹, R¹a, R¹b, R¹c, X, Z, G, Y, W¹, W², and Q are as defined in connection with Formula I.

[0061] In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein G is -O-. 
In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein G is selected from the group consisting of -OC(=0)-, -C(=0)-, -NR3-, -S-, -SO-, and -SO2-. In another embodiment, G is -OC(=0)-. In another embodiment, G is -C(=0)-. In another embodiment, G is -S-. In another embodiment, G is -SO-. In another embodiment, G is -SO2-.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein G is -NR3-, wherein R1 and R2 are both hydrogen.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein G is -NR3-, wherein R3 is selected from the group consisting of hydrogen and (Ci-C6)alkyl. In another embodiment, R3 is hydrogen.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein R1a and R1b are each independently selected from the group consisting of hydrogen, (Ci-Cio)alkyl, (Ci-Cio)alkoxy, OH, hydroxy(Ci-C6)alkyl-, -C(halo)3, -(C1-C6)alkyl-C(=0)-(C1-C6)alkoxy, -(C1-C6)alkyl-CN, -(C1-C6)alkyl-COOR7, -(d-C6)alkoxy-COOR7, (C3-C12)cycloalkyl, ((C3-C12)cycloalkyl)-(C1-C6)alkyl-, ((Cs-C cycloalkyO-id-Calkoxy-, ((C3-C12)cycloalkyl)-(C1-C6)alkoxy-(Ci-C6)alkyl-, ((6- to 12-membered)aryl)-(Ci-C6)alkyl-, ((6- to 12-membered)aryl)-(C1-C6)alkoxy-(Ci-C6)alkyl-, ((6- to 12-membered)aryl)-(C1-C6)alkoxy-(C1-C6)alkyl-, ((5- to 12-membered)heteroaryl)-(C1-C6)alkyl-, ((5- to 12-membered)heteroaryl)-(C1-C6)alkoxy-(C1-C6)alkyl-, ((5- to 12-membered)heteroaryl)-(C1-C6)alkoxy-(C1-C6)alkyl-, ((5- to 12-membered)heteroaryl)-(C1-C6)alkoxy-(C1-C6)alkyl-, ((3- to 12-membered)heterocycle)(C1-C6)alkyl-, ((3- to 12-membered)heterocycle)-(C1-C6)alkoxy-(Ci-C6)alkyl-, or together form (=0).

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R1a and R1b is selected from the group consisting of -(C1-C6)alkyl-C(=0)-(C1-C6)alkoxy, -(C1-C6)alkyl-CN, -(C1-C6)alkyl-COOR7, and ((6- to 12-membered)aryl)-(Ci-C6)alkoxy-(Ci-C6)alkyl-. In another embodiment, at least one of R1a and R1b is selected from the group consisting of -CH2CH2C(0)OCH2CH3, -CH2CN, -CH2CH2C(0)OH, or -CH2OCH2C6H4.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein R1a and R1b are each independently selected from the group consisting of hydrogen, (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C1-C6)alkoxy, OH, hydroxy(Ci-C6)alkyl-, -C(halo)3, -CH(halo)2, and -CH2(halo).

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein R1a and R1b are both hydrogen.
In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} or R\textsuperscript{1b} is hydrogen.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} or R\textsuperscript{1b} is OH.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} or R\textsuperscript{1b} is -\((\text{Ci}-\text{C}_6)\)alkyl.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} or R\textsuperscript{1b} is selected from the group consisting of methyl, ethyl and isopropyl.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} and R\textsuperscript{1b} is selected from the group consisting of -\((\text{C}_1-\text{C}_6)\)alkyl-C\((=\text{O})\)-(\(\text{Ci}-\text{C}_6\))alkoxy-(\(\text{Ci}-\text{C}_6\))alkyl-C\((=\text{O})\)-(\(\text{Ci}-\text{C}_6\))alkoxy-(\(\text{Ci}-\text{C}_6\))alkyl-.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} and R\textsuperscript{1b} is selected from the group consisting of -CH\textsubscript{2}CH\textsubscript{2}C(0)OCH\textsubscript{2}CH\textsubscript{3}, -CH\textsubscript{2}CN, -CH\textsubscript{2}CH\textsubscript{2}C(0)OH, and -CH\textsubscript{2}OCH\textsubscript{2}C\textsubscript{6}H\textsubscript{5}.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein both R\textsuperscript{1a} and R\textsuperscript{1b} are -\((\text{C}_1-\text{C}_6)\)alkyl.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} or R\textsuperscript{1b} is -CH\textsubscript{2}(halo).

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein at least one of R\textsuperscript{1a} or R\textsuperscript{1b} is selected from the group consisting of -CH\textsubscript{2}F and -CH\textsubscript{2}Cl.

In another embodiment, Compounds of the Invention are compounds of Formula I or Formula II, wherein R\textsuperscript{1a} and R\textsuperscript{1b} together form (=0).

In another embodiment, Compounds of the Invention are compounds of Formula II, wherein R\textsuperscript{1a} and R\textsuperscript{1b} both are hydrogen, W\textsuperscript{2} is hydrogen, Y is -\((\text{CH}_2)\text{n}\)CH, and n is 0, represented by Formula III:
and the pharmaceutically acceptable salts and solvates thereof, wherein G is -O- or -NH-, and R, R₁, X, Z, W, and Q are as defined in connection with Formula I. In one embodiment, G is -O-. In another embodiment, G is -NH-. In one embodiment, R₁ is C$_4$$_1$ alkyl. In another embodiment, R₁ is methyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is selected from the group consisting of hydrogen, (d-C$_{1,0}$)alkyl, (C$_2$-C$_{12}$)alkenyl, (CrC$_{1,0}$)alkoxy, (C$_{3,0}$-Ci$_2$)cycloalkyl, ((C$_{3,0}$-Ci$_2$)cycloalkyl)-(CrC$_{6}$)alkyl-, ((6- to 12-membered)aryl)-(C$_{6}$-C$_{6}$)alkyl-, ((5- to 12-membered)heteroaryl)-(C$_{1}$-C$_{6}$)alkyl-, and ((3- to 12-membered)heterocycle)-(C$_{1}$-C$_{6}$)alkyl-, any of which is optionally substituted with 1, 2, or 3 substituents each independently selected from the group consisting of (C$_{1}$-C$_{6}$)alkyl, OH, halo, -C(halo)$_{3}$, -COOR, NH$_2$, -NH(d-C$_{1}$)alkyl, NR$_9$R$_{10}$, CN, -CONR$_9$R$_{10}$, -NR$_9$COR$_{10}$, and SR$_{11}$. In one embodiment, the optional substituents are each independently selected from the group consisting OH, halo, -CONH$_2$, -COOH, -C00(C$_{1}$-C$_{6}$)alkyl, and -NR$_9$R$_{10}$. In another embodiment, the optional substituents are each independently selected from the group consisting OH, halo, -CONH$_2$, -COOH, -COOCH$_3$, -COOC$_2$H$_5$, and -NH$_2$.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is selected from

(a) hydrogen, (C$_{1}$-C$_{1,0}$)alkoxy, ((5- to 12-membered)heteroaryl)-(C$_{1}$-C$_{6}$)alkyl-, and ((3- to 12-membered)heterocycle)-(C$_{1}$-C$_{6}$)alkyl-; any of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (C$_{1}$-C$_{6}$)alkyl, OH, halo, -C(halo)$_{3}$, -CH(halo)$_{2}$, -CH$_2$(halo), NH$_2$, -NH(C$_{1}$-C$_{6}$)alkyl, NR$_9$R$_{10}$, CN, -CONR$_9$R$_{10}$, -NR$_9$COR$_{10}$, SR$_{11}$, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl; or

(b) -(C$_{1}$-C$_{10}$)alkyl, -(C$_{2}$-Ci$_2$)alkenyl, -(C$_{2}$-C$_{12}$)alkynyl, -(C$_{3}$-C$_{1,2}$)cycloalkyl, -(C$_{4}$-C$_{1,2}$)cycloalkenyl, ((C$_{3}$-Ci$_2$)cycloalkyl)-(C$_{1}$-C$_{6}$)alkyl-, ((GrC$_{1}$cycloalkenyl)MCr C$_{6}$)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C$_{1}$-C$_{6}$)alkyl-, (5- to 12-membered)heteroaryl, ((3- to 12-membered)heterocycle)-(C$_{1}$-C$_{6}$)alkyl-, phenyl, or benzyl; each of which is substituted with 1, 2, or 3 substituents independently selected from the group consisting of NR$_9$R$_{10}$, -CONR$_9$R$_{10}$, -NR$_9$COR$_{10}$, and SR$_{11}$.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is selected from the group consisting of hydrogen, (Ci-Cio)alkyl, (C$_{2}$-Ci$_2$)alkenyl, ((C$_{3}$-Ci$_2$)cycloalkyl)-(C$_{1}$-C$_{6}$)alkyl-, and tetrazolyl-(C$_{1}$-
C₆₅alkyl-, any of which is optionally substituted with 1, 2, or 3 substituents each independently selected from the group consisting of OH, halo, -CONR⁸R⁹, COOR⁷, -COO(Ci-C₆)alkyl, and NR⁹R¹₀; preferably each independently selected from the group consisting of OH, halo, -CONH₂, -COOH, -COO(d-C)alkyl, and -NR⁹R¹₀; and more preferably each independently selected from the group consisting OH, halo, -CONH₂, -COOH, -COOCH₃, -COOC₂H₅, and -NH₂.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is unsubstituted C₄₆ alkyl, and preferably unsubstituted C₄₄ alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, or tert-butyl, and more preferably methyl or ethyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is selected from the group consisting of hydrogen, methyl, cyclopropylmethyl, -CH₂CH=CH₂, -CH₂CH₂C(O)NH₂, -CH₂CH₂C(O)OH, -CH₂C(O)OH, -CH₂C(O)NH₂, and -CH₂-tetrazolyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is selected from the group consisting of -CH₂CH₃, benzyl, -CH₂CH₂C₆H₅, -(CH₂)₄-C₆H₅, -CH₂CH=CH-C₆H₅, -CH₂CF₃, -CH₂CH₂CF₃, -CH₂CH₂CH₂CF₃, -CH₂CHF₂, -CH₂C₆H₁₁, -CH₂C₃H₅, -CH₂-tetrahydropyran, -CH₂CHC(CH₃)₂, and -CH₂CH₂C(=CH₂)(CH₃).

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is C₃₄ (cycloalkyl)(C₆)alkyl or C₃₄ (cycloalkenyl)(C₄)alkyl, and especially C₃₄ (cycloalkyl)(C₁₄)alkyl, such as cyclopropyl(C₁₄)alkyl, cyclobutyl(C₁₄)alkyl, cyclopentyl(C₁₄)alkyl, or cyclohexyl(C₁₄)alkyl, optionally substituted with 1, 2, or 3 substituents, each independently selected from the group consisting of hydroxy, C₄₄ alkyl, halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), amino, C₄₄ alkylamino, and carboxy, and preferably optionally substituted with 1 or 2 substituents, each independently selected from the group consisting of hydroxy, methyl, ethyl, halo, trifluoromethyl, amino, methylamino, ethylamino, and carboxy. In one embodiment, R¹ is unsubstituted cyclopropyl(C₄)alkyl. In another embodiment, R¹ is unsubstituted cyclohexyl(C₄)alkyl, such as cyclohexylmethyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is unsubstituted (cyclopropyl)methyl, 2-(cyclopropyl)ethyl or 3-(cyclopropyl)propyl. In one embodiment, R¹ is (cyclopropyl)methyl.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R\textsuperscript{1} is selected from the group consisting of C\textsubscript{1-6} alkyl, and preferably C\textsubscript{1-4} alkyl, substituted with 1, 2, or 3 substituents selected from the group consisting of halo (such as fluoro), -C(halo)\textsubscript{3} (such as, for example, trifluoromethyl), -CH(halo)\textsubscript{2}and -CH\textsubscript{2}(halo); phenyl(C\textsubscript{1-4}alkyl); and ((5- or 6-membered) heterocycle)(C\textsubscript{1-4}alkyl). In one embodiment of this aspect of the invention, R\textsuperscript{1} is benzyl, phenethyl, 3-phenylpropyl, tetrahydropyran-4-ylmethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, or 2,2-difluoroethyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R\textsuperscript{1} is selected from the group consisting of C\textsubscript{2-6} alkenyl, and preferably C\textsubscript{2-4} alkenyl, which is unsubstituted or substituted with 1, 2, or 3 substituents selected from the group consisting of C\textsubscript{1-4} alkyl (such as methyl), halo (such as fluoro), -C(halo)\textsubscript{3} (such as, for example, trifluoromethyl), -CH(halo)\textsubscript{2} and -CH\textsubscript{2}(halo); phenyl(C\textsubscript{2-6}alkenyl); and ((5- or 6-membered) heterocycle)(C\textsubscript{2-6}alkenyl). In one embodiment of this aspect of the invention, R\textsuperscript{1} is 3-methyl-but-2-enyl, 3-methylbut-3-enyl, or 4-phenylbut-2-enyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R\textsuperscript{1} is -(C\textsubscript{1-6})alkyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of -(C\textsubscript{1-6})alkyl, OH, halo, -C(halo)\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), NH\textsubscript{2}, -NH(C\textsubscript{1-6})alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R\textsuperscript{1} is selected from the group consisting of methyl, ethyl, or isopropyl, and preferably methyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (C\textsubscript{1-6})alkyl, OH, halo, -C(halo)\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), NH\textsubscript{2}, -NH(C\textsubscript{1-6})alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R\textsuperscript{1} is (C\textsubscript{2-12})alkenyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (C\textsubscript{1-6})alkyl, OH, halo, -C(halo)\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), NH\textsubscript{2}, -NH(C\textsubscript{1-6})alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R^1 is selected from the group consisting of ethenyl and propenyl, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (Ci-C_{6})alkyl, OH, halo, -C(halo)_2, -(CH(halo))_2, -CH$_2$(halo), NH$_2$, -NH(C$_1$-C$_6$)alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R^1 is (C$_3$-C$_{12}$)cycloalkyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (Ci-C$_6$)alkyl, OH, halo, -C(halo)$_3$, -CH(halo)$_2$, -CH$_2$(halo), NH$_2$, -NH(C$_1$-C$_6$)alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R^1 is (C$_4$-C$_{12}$)cycloalkenyl optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (Ci-C$_6$)alkyl, OH, halo, -C(halo)$_3$, -CH(halo)$_2$, -CH$_2$(halo), NH$_2$, NH(C$_1$-C$_6$)alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R^1 is ((C$_3$-C$_{12}$)cycloalkyl)-(Ci-C$_6$)alkyl, each of which is optionally substituted.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R^1 is selected from the group consisting of cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, and cyclohexylmethyl, and preferably cyclopropylmethyl, each of which is optionally substituted.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R^1 is (6- to 12-membered)aryl, (5- to 12-membered)heteroaryl, or (3- to 12-membered)heterocycle, each of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of (C$_1$-C$_6$)alkyl, OH, halo, -C(halo)$_3$, -CH(halo)$_2$, -CH$_2$(halo), NH$_2$, NH(C$_1$-C$_6$)alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, and benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is selected from the group consisting of OH, (Ci-C$_{10}$)alkoxy, (6- to 12-membered)aryl, ((CrC^cycloalkylHQ-C^alkyl), ((6- to 12-membered)aryl)-(C$_1$-C$_6$)alkyl, -(OCH$_2$CH$_2$)$_3$-0(Ci-C$_6$)alkyl, -(CH$_2$CH$_2$)$_5$-(C$_1$-...
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is selected from the group consisting of OH, (C₆H₅)alkoxy, (6- to 10-membered)aryl, ((C₅-C₇)cycloalkyl)-(C₁-C₄)alkyl-, ((6- to 10-membered)aryl)-(C₁-C₄)alkyl-, -(OCH₂CH₂)s-0(C₁-C₄)alkyl, -(CH₂CH₂O)s-(C₁-C₄)alkyl, -(OCH₂CH₂)s-0H, -OC(=0)R, -O-(C₁-C₆)alkyl-COOR, -NH-(C₁-C₆)alkyl-COOR, -0-C(0)-(C₁-C₆)alkyl-C(0)OR, -NH-C(0)-(C₁-C₆)alkyl-C(0)OR, -0-C(0)-(C₁-C₆)alkyl-C(0)NR, -NH-C(0)-(C₁-C₆)alkyl-C(0)NR, and R₁⁴.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is selected from the group consisting of OH, (C₁-C₄)alkoxy, phenyl, ((C₃-C₇)cycloalkyl)-(C₁-C₄)alkyl-, phenyl-(C₁-C₄)alkyl-, -(OCH₂CH₂)s-0(C₁-C₄)alkyl, -(CH₂CH₂)s-0H, -(CH₂CH₂)s-0H, -OC(=0)H, -0-(C₁-C₄)alkyl-COOR, -O-(C₁-C₄)alkyl-C(0)OCH₃, -NH-(C₁-C₄)alkyl-COOH, -0-(C₁-C₄)alkyl-C(0)OH, -NH-C(0)-(C₁-C₄)alkyl-C(0)OH, -0-(C₁-C₄)alkyl-C(0)NH₂, -NH-(C₁-C₄)alkyl-C(0)NH₂, -0-(C₁-C₄)alkyl-C(0)NH₂, -NH-(C₁-C₄)alkyl-C(0)NH₂, -0-(C₁-C₄)alkyl-C(0)NH₂, -NH-(C₁-C₄)alkyl-C(0)NH₂, -0-(C₁-C₄)alkyl-C(0)NH₂, -NH-C(0)-(C₁-C₄)alkyl-COOR, -C(=0)-(C₁-C₄)alkyl-COOR, -NH-(C₁-C₄)alkyl-COOR, -0-(C₁-C₄)alkyl-COOR, and (C₁-C₄)alkyl-COOR.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is selected from the group consisting of OH and OCH₃. In one embodiment, Q is OH. In another embodiment, Q is OCH₃.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is (6- to 12-membered)aryl, such as phenyl or naphthyl. In another embodiment, Q is phenyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is -(OCH₂CH₂)s-0(C₁-C₆)alkyl, -(CH₂CH₂₀)s-(C₁-C₆)alkyl, or -(OCH₂CH₂)s-0H and s is 1, 2, 3, 4, 5, 6, or 7. In another embodiment, Q is -(OCH₂CH₂)s-OCH₃ or -(OCH₂CH₂)₂OCH₃.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is -0-CH₂-COOH, -NH-CH₂-COOH, -0-C(0)-CH₂-C(0)OH, or -NH-C(0)-CH₂-C(0)OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Q is -0-CH₂-CONH₂, -NH-CH₂-CONH₂, -OC(0)-CH₂-C(0)OH₂, or -NH-C(0)-CH₂-C(0)NH₂.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is selected from the group consisting of OH, hydroxy(d-C₆)alkyl-, dihydroxy(C₁-C₆)alkyl-, halogen, halo(d-C₆)alkyl, NH₂, -NR²(C=0)R¹₂, -CONR¹²R¹₃, -(C₁-C₆)alkyl-CONH₂, -(C₁-C₆)alkyl-COOH, COOH, -0-(C₁-C₆)alkyl-COOH, -0-(d-C₆)alkyl-CONH₂, (Ci-Cio)alkyl, (C₂-C₁₀)alkenyl, (Ci-Cio)alkynyl, (Ci-Cio)alkoxy, -(OCH₂CH₂)₂-0(C₁-C₆)alkyl, -(OCH₂CH₂)₂-OH, -(CH₂)₆pCHOHCH₂OH, CN, -NH-SO₂R⁹, (C₃-C₁₂)cycloalkyl, ((C₃-C₁₂)cycloalkyl)-(Ci-C₆)alkyl-, ((C₃-C₁₂)cycloalkyl)-(Ci-C₆)alkoxy-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(Ci-C₆)alkyl-, (6- to 12-membered)aryl-(Ci-Cio)alkyl-, (5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl-(Ci-Cio)alkyl-, ((5- to 12-membered)heteroaryl)-(Ci-Cio)alkoxy-, (3- to 12-membered)heterocycle, (3- to 12-membered)heterocycle-(Ci-Cio)alkyl-, (3- to 12-membered)heterocycle-(Ci-Cio)alkoxy-, (7- to 12-membered)bicyclospherocycle, (7- to 12-membered)bicyclospherocycle-(Ci-Cio)alkyl-, and (7- to 12-membered)bicyclospherocycle-(Ci-Cio)alkoxy-.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is —O-PG, wherein PG is a hydroxyl protecting group.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is selected from the group consisting of OH, hydroxy(d-C₆)alkyl-, dihydroxy(C₁-C₆)alkyl-, halogen, NH₂, -NR²(C=0)R¹₂, -CONR¹²R¹₃, -(Q-Cio)alkyl-CONH₂, -(C₁-Cio)alkyl-COOH, COOH, -0-(C₁-Cio)alkyl-COOH, -0-(d-Cio)alkyl-CONH₂, (d-Cio)alkyl, (C₁₀-Cio)alkenyl, (d-Cio)alkoxy, -(OCH₂CH₂)₂-0(C₁-Cio)alkyl, -(OCH₂CH₂)₂-OH, -(CH₂)₆pCHOHCH₂OH, CN, -NH-SO₂R⁹, (6- to 12-membered)aryl, (5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl-(Ci-Cio)alkyl-, (5- to 12-membered)heteroaryl)-(Ci-Cio)alkoxy-, (5- to 12-membered)heteroaryl)-(Ci-Cio)alkoxy-, (5- to 12-membered)heteroaryl)-(Ci-Cio)alkoxy-, and (5- to 12-membered)heteroaryl)-(Ci-Cio)alkoxy-. 
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is selected from the group consisting of OH, hydroxy(C₁-C₆)alkyl, dihydroxy(C₁-C₆)alkyl-, halogen, NH₂, -NR²(C=0)R¹₂, -CONR¹³R¹₃, -COOH, -0-(C₁-C₆)alkyl-CONH₂, -(d-C₆)alkyl, -(d-C₆)alkenyl, -(d-C₆)alkoxy, -(OCH₂CH₂)ₙ-O-(C₁-C₆)alkyl, -(OCH₂CH₂)ₙ-0-(C₁-C₆)alkyl, -(OCH₂CH₂)ₙ-0-(C₁-C₆)alkyl, -(OCH₂CH₂)ₙ-OH, -(CH₂)ₙCHOHCH₂OH, CN, -NH-SO₂R⁹, (5- to 12-membered)heteroaryl, and ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkoxy-.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is selected from the group consisting of OH, OCH₃, F, Br, COOH, -CONH₂, -OCH₂CH₂OH, -CH=CH₂, -NHSO₂CH₃, -NHC(0)CH₃, CN, -(OCH₂CH₂)ₙOCH₃, wherein s is 1, 2, 3, 4, 5, or 6, -CH(OH)CH₂OH, -OCH₂-tetrazolyl, -OCH₂C(0)NH₂, -CH₂CH(OH)CH₂OH, tetrazolyl, and NH₂.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is unsubstituted C₁₆ alkoxy. In another embodiment, X is unsubstituted methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, iso-butoxy, or sec-butoxy, and advantageously X is unsubstituted methoxy.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is halogen. In another embodiment, X is fluorine.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is -NH₂.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is -NR²(C=0)R¹₂. In another embodiment, at least one of R² or R¹₂ is phenyl. In another embodiment, both of R² and R¹₂ are phenyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is -CONR¹³R¹₃. In another embodiment, at least one of R¹₂ or R¹₃ is phenyl. In another embodiment, both R¹₂ and R¹₃ are phenyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein W² is hydrogen and W¹ is selected from the group consisting of (d-do)alkyl, -(C₂-C₂)alkenyl, -(C₂-C₁₃)alkynyl, -(d-C₁₆)alkoxy, -(OCH₂CH₂)ₙ-O(d-C₁₆)alkyl, -(CH₂CH₂O)ₙ-(C₁-C₆)alkyl, NH₂, -NH(C₁-C₆)alkyl, CN, -C0NR⁵R⁶, -(C₁-C₆)alkyl-CO-NR³R⁶, -COOR⁷, -(d-C₁₆)alkyl-CO-OR⁷, -(C₁-C₆)alkoxy-COOR⁷, (C₃-C₁₂)cycloalkyl,
((C₃-C₁₂)cycloalkyl)-(C₁-C₆)alkyl-, (C₄-C₁₂)cycloalkenyl, ((C₄-C₁₂)cycloalkenyl)-(d-
C₆)alkyl-, (C₆-C₄)bicycloalkyl, ((C₁₂-d₄)bicycloalkyl)-(d-C₆)alkyl-, (C₈.C₂₀)tricycloalkyl, ((C₈-C₂₀)tricycloalkyl)-(C₁-C₆)alkyl-, (C₇-C₁₄)bicycloalkenyl, ((C₇-
C₁₄)bicycloalkenyl)-(Cl-C₆)alkyl-, (C₈-C₂₀)tricycloalkenyl, ((C₈-C₂₀)tricycloalkenyl-
(Ci-C₆)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(Cl-C₆)alkyl-, (7-
to 12-membered)bicyclic ring system, (7- to 12-membered)bicyclic ring system)-(C[-
C₆)alkyl-, (7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Cl-
C₆)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Cl-
C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(Cl-
C₆)alkyl-, (7- to 12-membered)bicyclocycle, and (7- to 12-
membered)bicycloheterocycle)-(Cl-C₆)alkyl--; any of which is optionally substituted
with one or two substituents each independently selected from the group consisting of
OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), (C₁-C₆)alkyl, halo(C₁-C₆)alkyl-, (C₂-
C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy(d-C₆)alkyl-, dihydroxy(Ci-C₆)alkyl-, (d-
C₆)alkoxy, ((C₁-C₆)alkoxyCO(Ci-C₆)alkoxy-, -NH₂, -NH(Ci-C₆)alkyl,
-(Ci-C₆)alkyl-NH(Ci-C₆)alkyl-R¹⁴, CN, SH, -OR⁴, -CONR⁵R⁶, -(Cl-C₆alkyl)-CO-
NR²R⁸, -COOR⁷, -(C₁-C₆)alkyl-CO-OR⁷, -(C₁-C₆)alkoxy-COOR⁷, -(OCH₂CH₂)s-(d-
C₆)alkyl, -(CH₂CH₂)s-(Ci-C₆)alkyl, ((d-C₆alkyl)sulfonylKd-Qalkyl-, -NH-SO₂-(d-
C₆)alkyl, -N(SO₂-(d-C₆)alkyl)₂, -C(=NH)NH₂, -NH-CO-(Cl-C₆)alkyl, -NH-CO-(d-
NH-C(=0))NH-(Ci-C₆)alkyl, -NH-C(=0)-(6- to 12- membered)aryl, -NH-C(=0)-(C₁-
C₆)alkyl-(6- to 12- membered)aryl, -NH-(C₆-C₆)alkyl-CO-OR⁷, -NH-C(=0)-(d-
C₆)alkyl-CO-OR⁷, -NH-C(=0)-CH(NH₂)-(C₁-C₆)alkyl-CO-OR⁷, (C₃-C₆)cycloalkyl,
((C₃-C₁₂)cycloalkyl)-(d-C₆)alkyl-, (6- to 12-membered)aryl, (6- to 12-
membered)aryloxy, -(Cl-C₆)alkoxyC(0)NR²R⁶, -(NH-(C₁-C₆)alkylC(0)-NR²R⁶,
-C(0)NH-(Cl-C₆)alkyl-COOR⁷, ((6- to 12-membered)aryl)-(Cl-C₆)alkyl-, (5- to 12-
membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (3- to 12-
membered)heterocycle, ((3- to 12-membered)heterocycle)-(Cl-C₆)alkyl-, (7- to 12-
membered)bicyclocycle, and (7- to 12-membered)bicycloheterocycle)-(Cl-
C₆)alkyl.-

In another embodiment, Compounds of the Invention are compounds of any one
of Formulae I-II, wherein W₁ and W₂ are each independently selected from the group
consisting of (Cl-C₆)alkyl, (C₂-C₁₂)alkenyl, (C₂-C₆)alkynyl, (d-do)alkoxy, 
-(OCH₂CH₂)s-(0-Ci-C₆)alkyl, -(CH₂CH₂)₅-(Ci-C₆)alkyl, NH₂, -NH(C₁-C₆)alkyl,
CN, -CONR²R⁶, -(Cl-C₆)alkyl-CO-NR²R⁶, -COOR⁷, -(C₁-C₆)alkyl-CO-OR⁷, -(d-
C_6^alkoxy-COOR^7, (C_5^alkyl)cycloalkyl, ((C_5^alkyl)cycloalkyl)-(C_i^alkyl), (C_4^-C_12)cycloalkenyl, ((C_4^alkyl)cycloalkenyl)-(C_1^-C_6^alkyl), (C_6^-C_14)bicycloalkyl, ((C_6^-C_14)bicycloalkyl)-(C_i^-C_6^alkyl), (C_8^-C_20)tricycloalkyl, ((C_8^-C_20)tricycloalkyl)-(C_1^-C_6^alkyl), (C_8^-C_20)tricycloalkenyl, ((C_8^-C_20)tricycloalkenyl)-(CrC_i^alkyl), (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C_6^-C_12)alkyl-, (7- to 12-membered)bicyclic ring system, ((7- to 12-membered)bicyclic ring system)-(C_i^-C_6^alkyl), (7- to 12-membered)bicyclic alky1, ((7- to 12-membered)bicyclic aryl)-(C_6^-C_12)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C_i^-C_6^alkyl), (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C_i^-C_6^alkyl), (7- to 12-membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(C_i^-C_6^alkyl); any of which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)_{2}, -CH(halo)_{2}, -CH_{2}(halo), (C_1^-C_6^alkyl), halo(C_1^-C_6^alkyl), (C_2^-C_6^alkenyl), (C_2^-C_6^alkynyl), hydroxy(C_i^-C_6^alkyl), dihydroxyCd-C_6^alkyl, (C_1^-C^alkoxy, ((C_1^-C_6^alkoxy)CO(C_i^-C_6^alkoxy), -NH_2, -NH(C_1^-C_6^alkyl), -(C_i^-C_6^alkyl)-NH(C_1^-C_6^alkyl)-R_4^14, CN, SH, -OR^4, -CONR_i^5R^6, -(C_i^-C_6^alkyl)-CO-NR_i^5R^6, -COOR^7, -(C_i^-C_6^alkyl)-CO-OR^7, -(C_i^-C_6^alkyl)-COOY, -(OCH_2CH_2)_nY(C_i^-C_6^alkyl), -(CH_2CH_2)_nY(C_i^-C_6^alkyl), (C_i^-C_6^alkyl)sulfonyl(C_i^-C_6^alkyl), -NH-SO_2(C_i^-C_6^alkyl), N(SO_2)(C_2^alkyl)_{2}, C(CN)NH_2, -NH-CO-(d -C_6^alkyl), -NH-CO-NH_2, -NH-C(=0)-NH -(C_7^-C_6^alkyl), -NH-C(=0)-(6- to 12-membered)aryl, -NH-C(=0)-(C_i^-C_6^alkyl)-(6- to 12-membered)aryl, -NH-(C_i^-C_6^alkyl)-CO-OR^7, -NH-(C_1^-C_6^alkyl)-CO-OR^7, -NH-C(=0)-CH(NH_2)_{2}(C_i^-C_6^alkyl)-CO-OR^7, (C_3^-C_12)cycloalkyl, ((C_3^-C_12)cycloalkyl)-(CrC_i^alkyl), (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -(C_i^-C_6^alkoxy)C(0)NR_i^5R^6, -NH-(C_i^-C_6^alkyl)C(0)-NR_i^5R^6, -C(0)NH-(C_1^-C_6^alkyl)-COОР^7, ((6- to 12-membered)aryl)-(C_i^-C_6^alkyl), (5- to 12-membered)heteroaryl, (3- to 12-membered)heterocycle, (3- to 12-membered)heterocycle, (7- to 12-membered)bicycloheterocycle, and (7- to 12-membered)bicycloheterocycle)-(C_i^-C_6^alkyl).

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W^1 and W^2 is selected from the group consisting of (C_i^-C_6^alkyl), (C_2^-C_6^alkenyl), (C_2^-C_6^alkynyl), (C_3^-C_12)cycloalkyl, (C_4^-C_12)cycloalkenyl, (C_6^-C_14)bicycloalkyl, (C_8^-C_20)tricycloalkyl, (C_7^-C_14)bicycloalkenyl, (C_8^-C_20)tricycloalkenyl, (6- to 12-membered)aryl, (6- to 12-membered)aryl)-(C_i^-C_6^alkyl),
C₆alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁-
C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C₁-
C₆)alkyl-, (7- to 12-membered)bicycloheterocycle, and ((7- to 12-
membered)bicycloheterocycle)-(C₁-C₆)alkyl-; any of which is optionally substituted
with one or two substituents each independently selected from the group consisting of
OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), (C₁-C₆)alkyl, halo(d-C₆alkyl-, (C₂-
C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy(CrC₆alkyl-, dihydroxy(CrC₆alkyl-, phenyl,
benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆, and -COOR₇.

[0121] In another embodiment, Compounds of the Invention are compounds of any one
of Formulae I-III, wherein W² is hydrogen and W¹ is selected from the group
consisting of (CrC₆)alkynyl, (C₂-C₆)alkenyl, (C₁-C₆)alkynyl, (C₄-C₆)cycloalkenyl,
(C₆-C₁₂)cycloalkenyl, (C₁-C₆)alkynyl, (C₁-C₆)cycloalkyl, (C₄-C₆)cycloalkyl, (C₆-C₁₂)cycloalkyl,
(C₆-C₁₂)cycloalkenyl, (C₁-C₆)cycloalkenyl, (C₈-C₂₀)tricycloalkenyl, (C₁-C₆)alkynyl, hydroxy(CrC₆alkyl-, dihydroxy(CrC₆alkyl-, phenyl,
benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆, and -COOR₇.

[0122] In another embodiment, Compounds of the Invention are compounds of any one
of Formulae I-II, wherein W¹ and W² are each independently selected from the group
consisting of (CrC₆)alkynyl, (C₂-C₁₂)alkenyl, (C₁-C₆)alkynyl, (C₄-C₆)cycloalkenyl, (C₆-C₁₂)cycloalkenyl,
(C₆-C₁₂)cycloalkyl, (C₈-C₂₀)tricycloalkenyl, (C₁-C₆)alkynyl, hydroxy(CrC₆alkyl-, dihydroxy(CrC₆alkyl-, phenyl,
benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆, and -COOR₇.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W1 or W2 is -(Ci-Cioalkyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(C1-C6)alkyl, halohaloc(C1-C6)alkyl-, (C2-C6)alkenyl, hydroxy(C1-C6)alkyl-, phenyl, benzyl, NH2, -NH(Ci-C6)alkyl, CN, SH, OR4, -CONR5R6 and -COOR7.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W1 or W2 is selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, tert-butyl, pentyl and hexyl, each of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(d-C6)alkyl, halohaloc(C1-C6)alkyl-, (C2-C6)alkenyl, (C2-C6)alkynyl, hydroxy(C1-C6)alkyl-, phenyl, benzyl, NH2, -NH(C1-C6)alkyl, CN, SH, OR4, -CONR5R6 and -COOR7.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein both W1 and W2 are (Ci-Cioalkyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(C1-C6)alkyl, halohaloc(C1-C6)alkyl-, (C2-C6)alkenyl, (C2-C6)alkynyl, hydroxy(C1-C6)alkyl-, phenyl, benzyl, NH2, -NH(C1-C6)alkyl, CN, SH, OR4, -CONR5R6 and -COOR7.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein both W1 are W2 are selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, tert-butyl, pentyl and hexyl, each of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(Ci-C6)alkyl, halohaloc(C1-C6)alkyl-, (C2-C6)alkenyl, (C2-C6)alkynyl, hydroxy(C1-C6)alkyl-, phenyl, benzyl, NH2, -NH(d-C6)alkyl, CN, SH, OR4, -CONR5R6 and -COOR7.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W1 or W2 is (C2-C6)alkenyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(d-C6)alkyl, halohaloc(C1-C6)alkyl-, (C2-C6)alkenyl, (C2-C6)alkynyl, hydroxy(C1-C6)alkyl-, phenyl, benzyl, NH2, -NH(Ci-C6)alkyl, CN, SH, OR4, -CONR5R6 and -COOR7.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W¹ or W² is selected from the group consisting of 2-methyl-but-2-enyl and propenyl, each of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo), -CH(halo), -CH₂(halo), -(C₁-C₆)alkyl, halo-C₆H₃-alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W¹ or W² is (C₂-C₆)alkynyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo), -CH(halo), -CH₂(halo), -(C₁-C₆)alkyl, halo(C₆H₃)-alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W¹ or W² is propenyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo), -CH(halo), -CH₂(halo), -(C₁-C₆)alkyl, halo(C₆H₃)-alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W¹ or W² is (C₃-C₆)cycloalkyl, and preferably cyclobutyl or cyclohexyl, optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo), -CH(halo), -(C₁-C₆)alkyl, halo(C₆H₃)-alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein both W¹ and W² are (C₃-C₆)cycloalkyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo), -CH(halo), -(C₁-C₆)alkyl, halo(C₆H₃)-alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W¹ or W² is (C₄-C₆)cycloalkenyl optionally...
substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₁₋C₆)alkyl, halo(C₁₋C₆)alkyl-, -(C₂₋C₆)alkenyl, -(C₂₋C₆)alkynyl, hydroxy(C₁₋C₆)alkyl-, phenyl, benzyl, NH₂, -NH(d-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

[0134] In another embodiment, Compounds of the Invention are compounds of any one of Formulæ I-III, wherein at least one of W¹ or W² is (C₆-C₄)bicycloalkyl, (C₈-C₂₀)tricycloalkyl, (C₇-C₁₃) bicycloalkenyl, or (C₉-C₂₀)tricycloalkenyl, each of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₁₋C₆)alkyl, halo(C₁₋C₆)alkyl-, -(C₂₋C₆)alkenyl, -(C₂₋C₆)alkynyl, hydroxy(C₁₋C₆)alkyl-, phenyl, benzyl, NH₂, -NH(d-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

[0135] In another embodiment, Compounds of the Invention are compounds of any one of Formulæ I-III, wherein at least one of W¹ or W² is (6- to 12-membered)aryl, and preferably phenyl or naphthalenyl, optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₁₋C₆)alkyl, halo(C₁₋C₆)alkyl-, -(C₂₋C₆)alkenyl, -(C₂₋C₆)alkynyl, hydroxy(C₁₋C₆)alkyl-, phenyl, benzyl, NH₂, -NH(d-C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

[0136] In another embodiment, Compounds of the Invention are compounds of any one of Formulæ I-III, wherein at least one of W¹ or W² is phenyl optionally substituted with one or two substituents independently selected from -(C₁₋C₆)alkyl, OH, halo, NH₂, -NH(d-C₆)alkyl, CN, (=0), SH, phenyl, -C(halo)₃, -OC(halo)₃, and -O(C₁₋C₆)alkyl.

[0137] In another embodiment, Compounds of the Invention are compounds of any one of Formulæ I-III, wherein at least one of W¹ or W² is benzyl optionally substituted with one or two substituents independently selected from -(C₁₋C₆)alkyl, OH, halo, NH₂, -NH(d-C₆)alkyl, CN, (=0), SH, phenyl, -C(halo)₃, -OC(halo)₃, and -O(C₁₋C₆)alkyl.

[0138] In another embodiment, Compounds of the Invention are compounds of any one of Formulæ I-II, wherein both W¹ and W² are (6- to 12-membered)aryl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₁₋C₆)alkyl, halo(d-C₆)alkyl-, -(C₂₋C₆)alkenyl, -(C₂₋C₆)alkynyl, hydroxy(C₁₋C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁₋C₆)alkyl, CN, SH, OR₄, -CONR₅R₆ and -COOR₇.

[0139] In another embodiment, Compounds of the Invention are compounds of any one of Formulæ I-II, wherein both W¹ and W² are phenyl optionally substituted with one or
two substituents independently selected from -(C\textsubscript{1-6})alkyl, OH, phenyl, NH\textsubscript{2}, -NH(d-C\textsubscript{o})alkyl, CN, (=0), and SH.

[0140] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein both W\textsuperscript{1} and W\textsuperscript{2} are benzyl optionally substituted with one or two substituents independently selected from -(Ci-C\textsubscript{6})alkyl, OH, halo, NH\textsubscript{2}, -NH(Ci-C\textsubscript{6})alkyl, CN, (=0), and SH.

[0141] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W\textsuperscript{1} or W\textsuperscript{2} is ((6- to 12- membered)aryl)-(C\textsubscript{1-6})alkyl- optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), -(d-C\textsubscript{6})alkyl, halo(C\textsubscript{1-6})alkyl-, -(C\textsubscript{2-6})alkenyl, -(C\textsubscript{2-6})alkynyl, hydroxy(C\textsubscript{1-6})alkyl-, phenyl, benzyl, NH\textsubscript{2}, -NH(Ci-C\textsubscript{6})alkyl, CN, SH, OR\textsuperscript{4}, -CONR\textsuperscript{5}R\textsuperscript{6} and -COOR\textsuperscript{7}.

[0142] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W\textsuperscript{1} or W\textsuperscript{2} is phenyl-(Ci-C\textsubscript{6})alkyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), -(C\textsubscript{1-6})alkyl, halo(C\textsubscript{1-6})alkyl-, -(C\textsubscript{2-6})alkenyl, -(C\textsubscript{2-6})alkynyl, hydroxy(d-C\textsubscript{6})alkyl-, phenyl, benzyl, NH\textsubscript{2}, -NH(Ci-C\textsubscript{6})alkyl, CN, SH, OR\textsuperscript{4}, -CONR\textsuperscript{5}R\textsuperscript{6} and -COOR\textsuperscript{7}.

[0143] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W\textsuperscript{1} or W\textsuperscript{2} is benzyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), -(d-C\textsubscript{6})alkyl, halo(d-C\textsubscript{6})alkyl-, -(C\textsubscript{2-6})alkenyl, -(C\textsubscript{2-6})alkynyl, hydroxy(d-C\textsubscript{6})alkyl-, phenyl, benzyl, NH\textsubscript{2}, -NH(d-C\textsubscript{6})alkyl, CN, SH, OR\textsuperscript{4}, -CONR\textsuperscript{5}R\textsuperscript{6} and -COOR\textsuperscript{7}.

[0144] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein W\textsuperscript{1} and W\textsuperscript{2} are ((6- to 12- membered)aryl)-(C\textsubscript{1-6})alkyl- optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -(C(halo))\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), -(Ci-C\textsubscript{6})alkyl, halo(d-C\textsubscript{6})alkyl-, -(C\textsubscript{2-6})alkenyl, -(C\textsubscript{2-6})alkynyl, hydroxy(d-C\textsubscript{6})alkyl-, phenyl, benzyl, NH\textsubscript{2}, -NH(Ci-C\textsubscript{6})alkyl, CN, SH, OR\textsuperscript{4}, -CONR\textsuperscript{5}R\textsuperscript{6} and -COOR\textsuperscript{7}.

[0145] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y, W\textsuperscript{1} and W\textsuperscript{2} taken together are diphenylpropyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -(C(halo))\textsubscript{3}, -CH(halo)\textsubscript{2}, -CH\textsubscript{2}(halo), -(C\textsubscript{1-6})alkyl, halo(d-}
C₆alkyl-, (C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR⁴, -CONR⁵R⁶ and -COOR⁷.

[0146] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein both W¹ and W² are benzyl optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(d-C₂alkyl), halo(C₁-C₆)alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR⁴, -CONR⁵R⁶ and -COOR⁷.

[0147] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein at least one of W¹ or W² is (5- to 12-membered)heteroaryl, (3- to 12-membered)heterocycle, or (7- to 12-membered)bicycloheterocycle, and preferably pyridinyl, any of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₁-C₆)alkyl, halo(C₁-C₆)alkyl-, -(C₂-C₆)alkenyl, -(C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR⁴, -CONR⁵R⁶ and -COOR⁷.

[0148] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein -Y(W¹)(W²) is (6- to 12 membered)aryl or (5- to 12 membered)heteroaryl, each of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, NH₂, -NH(C₁-C₆)alkyl, -(C₁-C₆ alkyl)-CO-NR⁵R⁶, (C₁-C₆)alkyl, dihydroxy(C₁-C₆)alkyl-, -(d-C₂alkyl)-CO-OR⁷, -(OCH₂CH₂)₂-0(C₁-C₆)alkyl, -(CH₂CH₂O)s-(C₁-C₆)alkyl, -(C₁-C₆)alkoxy-COOR⁷, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR⁵R⁶, COOR⁷, -NH-SO₂(C₁-C₆)alkyl, -N(SO₂(C₁-C₆)alkyl)₂, -C(=NH)NH₂, -NH-CO-(C₁-C₆)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, -NH-CO-NH₂, -NH-(C₁-C₆)alkyl-COOR⁷, -NH-(C₁-C₆)alkyl-(C₁-C₆ alkyl), -(C₁-C₆)alkoxyC(0)NR⁵R⁶, -NH-(C₁-C₆)alkylC(0)-NR⁵R⁶, -C(0)NH-(C₁-C₆)alkyl-COOR⁷, -NH-(C₁-C₆)alkyl-CO-OR⁷, and -NH-(C₁-C₆)-CH(NH₂)-(C₁-C₆)alkyl-CO-OR⁷. In one embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein -Y(W¹)(W²) is unsubstituted or substituted (6- to 12 membered)aryl. In another embodiment, -Y(W¹)(W²) is unsubstituted or substituted (5- to 12 membered)heteroaryl. In one embodiment, the (6- to 12 membered)aryl is phenyl, which is optionally substituted with one or two substituents each independently selected from the group
consisting of (C,C)alkyl, dihydroxy(C,C)alkyl-, -(C,C)alkyl-CO-OR, -(OCH2CH2)s-COOR, -(C,C)alkoxy-COOR, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR2R6, -COOR, -NH-S02(d-C)alkyl, -N(S02(d-C)alkyl)2, -C(=NH)NH2, -NH-CO-(d-C)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C,C)alkyl, -NH-CO-NH2, -NH-(C,C)alkyl-COOR, -NH-C(=0)-NH-(C,C)alkyl, -(C,C)alkoxyC(0)NR2, -(C,C)alkyl-CO-OR.

In another embodiment, the (5- to 12 membered)heteroaryl is selected from the group consisting of furanyl, thiophenyl, diazolyl, tetrazolyl, benzothiazolyl, benzoxazolyl, thiadiazolyl, oxazolyl, benzoxazolyl, benzothiophenyl, and benzofuranyl, any of which is optionally substituted with one or two substituents each independently selected from the group consisting of (C,C)alkyl, dihydroxy(C,C)alkyl-, -(C,C)alkyl-CO-OR, -(OCH2CH2)s-COOR, -(C,C)alkoxy-COOR, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR2R6, -COOR, -NH-S02(C,C)alkyl, -N(S02(d-C)alkyl)2, -C(=NH)NH2, -NH-CO-(d-C)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C,C)alkyl, -NH-CO-NH2, -NH-(C,C)alkyl-COOR, -NH-C(=0)-NH-(d-C)alkyl-COOR. In another embodiment, the (5- to 12 membered)heteroaryl is unsubstituted furanyl or benzothiophenyl, or furanyl or benzothiophenyl, any of which is substituted with one or two substituents each independently selected from the group consisting of (d-C)alkyl, dihydroxy(C,C)alkyl-, -(C,C)alkyl-CO-OR, -(OCH2CH2)s-COOR, -(C,C)alkoxy-COOR, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR2R6, -COOR, -NH-S02(C,C)alkyl, -N(S02(d-C)alkyl)2, -C(=NH)NH2, -NH-CO-(d-C)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C,C)alkyl, -NH-CO-NH2, -NH-(C,C)alkyl-COOR, -NH-C(=0)-NH-(d-C)alkyl-COOR.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein -Y(W1)(W2) is unsubstituted phenyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein -Y(W1)(W2) is unsubstituted furanyl or unsubstituted benzothiophenyl.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein \(-Y(W^1)(W^2)\) is \(-CH_2-(5- to 12- membered)\)heteroaryl, which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)\(_3\), -NH\(_2\), -NH(C\(_1-C\(_6\))alkyl, -(d-C\(_6\)alkyl)-CO-NR\(_5\)R\(_6\), (d-C\(_6\)alkyl), dihydroxy(d-C\(_6\)alkyl), -(Ci-C\(_6\))alkyl, -(C,\(_i-C\(_6\))alkyl, -(d-C\(_6\))alkyl-\(CO-OR\(_7\), -(OCH\(_2\)CH\(_2\))\(_s\)-0(Ci-C\(_6\))alkyl, -(CH\(_2\)CH\(_2\))\(_s\)-(C,\(_i-C\(_6\))alkyl, -(C,\(_i-C\(_6\))alkoxy-COOR\(_7\), (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR\(_5\)R\(_6\), -COOR\(_7\), -NH-SO\(_2\)(C,\(_i-C\(_6\))alkyl, -N(SO\(_2\)(C\(_1-C\(_6\))alkyl)\(_2\), -C(=NH)NH\(_2\), -NH-CO-(C,\(_i-C\(_6\))alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(d-C\(_6\)alkyl), -NH-CO-NH\(_2\), -NH-(C,\(_i-C\(_6\))alkyl)-\(CO-OR\(_7\), -NH-C(=0)-NH-(C\(_1-C\(_6\))alkyl, -(C,\(_i-C\(_6\))alkoxyC(0)NR\(_5\)R\(_6\), -NH-(C,\(_i-C\(_6\))alkylC(0)-NR\(_5\)R\(_6\), -C(0)NH-(C,\(_i-C\(_6\))alkyl-\(CO-OR\(_7\), -NH-C(=0)-(C,\(_i-C\(_6\))alkyl-\(CO-OR\(_7\), and -NH-C(=0)-CH(NH\(_2\))-(C,\(_i-C\(_6\))alkyl-\(CO-OR\(_7\).

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein \(-Y(W^1)(W^2)\) is \(-CH_2-(6- to 12- membered)\)aryl, which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)\(_3\), -NH\(_2\), -NH(C\(_1-C\(_6\))alkyl, -(C,\(_i-C\(_6\))alkyl)-CO-NR\(_5\)R\(_6\), (C,\(_i-C\(_6\))alkyl), dihydroxy(d-C\(_6\)alkyl), -(d-C\(_6\))alkyl-\(CO-OR\(_7\), -(OCH\(_2\)CH\(_2\))\(_s\)-0(C\(_i-C\(_6\))alkyl, -(CH\(_2\)CH\(_2\))\(_s\)-(C,\(_i-C\(_6\))alkyl, -(C,\(_i-C\(_6\))alkoxy-COOR\(_7\), (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR\(_5\)R\(_6\), -COOR\(_7\), -NH-SO\(_2\)(d-C\(_i-C\(_6\))alkyl, -N(SO\(_2\)(d-C\(_i-C\(_6\))alkyl)\(_2\), -C(=NH)NH\(_2\), -NH-CO-(C,\(_i-C\(_6\))alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(d-C\(_i-C\(_6\))alkyl), -NH-CO-NH\(_2\), -NH-(d-C\(_i-C\(_6\))alkyl-\(CO-OR\(_7\), -NH-C(=0)-NH-(C\(_1-C\(_6\))alkyl, -(C\(_i-C\(_6\))alkoxyC(0)NR\(_5\)R\(_6\), -NH-(d-C\(_i-C\(_6\))alkylC(0)-NR\(_5\)R\(_6\), -C(0)NH-(C,\(_i-C\(_6\))alkyl-\(CO-OR\(_7\), -NH-C(=0)-(C,\(_i-C\(_6\))alkyl-\(CO-OR\(_7\), and -NH-C(=0)-CH(NH\(_2\))-(C,\(_i-C\(_6\))alkyl-\(CO-OR\(_7\).

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Z is unsubstituted \(-(CH_2)\(_m\)-, wherein m is as defined above in connection with Formula I. In one embodiment, m is 1, 2, or 3. In one embodiment, Z is \(-CH_2-\). In another embodiment, Z is \(-CH_2-CH_2-\). In another embodiment, Z is \(-CH_2-CH_2-CH_2-\).

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Z is \(-(CH_2)\(_m\)- substituted with 1 or 2 independently selected -(C,\(_i-C\(_6\))alkyl groups (such as, for example, selected from the group consisting of methyl, ethyl, propyl, iso-propyl, butyl, and tert-butyl), wherein m is as defined above in
connection with Formula I. In one embodiment, Z is -C(CH₃)₂-. In another embodiment, Z is

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is (CH₂)ₙ-CH and n is an integer selected from 0, 1, 2, 3, 4, 5 or 6. In one embodiment, n is 0, 1, or 2. In another embodiment, n is 0 or 1. In another embodiment, n is 1 and Y is -CH. In another embodiment, Y is -CH₂-CH₂-CH₂.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is a direct bond (i.e., is absent).

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Z is -CH₂- and Y is -CH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂- and Y is a direct bond.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is -CH₂-CH and Z is -CH₂-CH₂-.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂-CH₂- and Y is a direct bond.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂-CH₂- and Y is -CH₂-CH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein Z is -CH₂-CH₂- and Y is -CH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is a direct bond and Z is -CH₂-CH₂-CH₂-.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is -CH₂-CH₂-CH and Z is -CH₂-CH₂-.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is -CH₂-CH and Z is -CH₂-CH₂-CH₂-.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is -CH and least one of W¹ or W² is phenyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is a direct bond and W¹ is benzyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Y is -CH and both W¹ and W² are phenyl.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (C₁-C₆)alkyl, W¹ is (C₂-C₆)alkynyl, W² is hydrogen, and at least one of R¹a and R¹b is H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (C₆)alkyl, W¹ is (C₂-C₆)alkynyl, W² is hydrogen, and both R¹a and R¹b are H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (d-Cc̃i-alkyl, W¹ is (6- to 12-membered)aryl, W² is hydrogen, and at least one of R¹a and R¹b is H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (d-Cc̃i-alkyl, W¹ is (6- to 12-membered)aryl, W² is hydrogen, and both R¹a and R¹b are H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((Os-C̃cycloalkyl-HC-C₆)alkyl-, W¹ is (C₂-C₆)alkenyl, W² is hydrogen, and at least one of R¹a and R¹b is H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₅-C₆)cycloalkyl)-(C₁-C₆)alkyl-, W¹ is (C₂-C₆)alkenyl, W² is hydrogen, and both R¹a and R¹b are H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₅-C₆)cycloalkyl)-(C₁-C₆)alkyl-, W¹ is (C₂-C₆)alkenyl, W² is hydrogen, and least one of R¹a and R¹b is H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₅-C₆)cycloalkyl)-(C₁-C₆)alkyl-, W¹ is (C₂-C₆)alkenyl, W² is hydrogen, and both R¹a and R¹b are H.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₃-C₅)cycloalkyl)-(C₆-C₈)alkyl-, W is (6- to 12-membered)aryl, W² is hydrogen, and both R¹a and R¹b are H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (C₁-C₆)alkyl, W¹ is (C₂-C₆)alkenyl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (C₁-C₆)alkyl, W¹ is (C₂-C₆)alkynyl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is (C₁-C₆)alkyl, W¹ is (6- to 12-membered)aryl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₃-C₄)cycloalkyl)-(C₆-C₈)alkyl-, W¹ is (C₂-C₆)alkenyl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₃-C₄)cycloalkyl)-{C₁-C₆}alkyl-, W¹ is (C₂-C₆)alkynyl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₃-C₄)cycloalkyl)-{C₁-C₆}alkyl-, W¹ is (C₂-C₆)alkynyl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is -CH₂-CH, R¹ is ((C₃-C₄)cycloalkyl)HC₁-C₂alkyl-, W¹ is (6- to 12-membered)aryl, W² is hydrogen, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is ((C₃-C₄)cycloalkyl)-(C₂-C₆)alkyl-, W¹ is (6- to 12-membered)aryl, and at least one of R¹a and R¹b is H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is ((C₃-C₄)cycloalkyl)-(C₂-C₆)alkyl-, W¹ is (6- to 12-membered)aryl, and both R¹a and R¹b are H.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y absent, R¹ is -(C₁-C₆)alkyl, W¹ is (C₂-C₆)alkenyl, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is -(C₁-C₆)alkyl, W¹ is (C₂-C₆)alkynyl, and at least one of R¹a and R¹b is OH.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is -(Ci-C₆)alkyl, W¹ is (6- to 12-membered)aryl, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is ((C₃-Ci₂)cycloalkyl)-(C₁-C₆)alkyl-, W¹ is (C₂-C₆)alkenyl, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is ((C₃-Ci₂)cycloalkyl)-(C₁-C₆)alkyl-, W¹ is (C₂-C₆)alkynyl, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein Z is -CH₂, Y is absent, R¹ is ((C₃-Ci₂)cycloalkyl)-(C₁-C₆)alkyl-, W¹ is (6- to 12-membered)aryl, and at least one of R¹a and R¹b is OH.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹ is CH₃ or cyclopentylmethyl; and X is selected from the group consisting of F, NH₂, NHCOCH₃, NHSO₂CH₃, CN, CO₂H, CONH₂, -(OCH₂CH₂)ₓ-0(C₁-C₆)alkyl, and -(OCH₂CH₂)ₓ-OH; and R¹a, R¹b, Q, Z, G, Y, W¹, and W² are as defined above in connection with any of Formulae I-III.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein X is OH or NH₂, then W¹ is selected from ((C₃-Ci₂)cycloalkyl)-(C₁-C₆)alkyl-, ((3- to 12-membered)heterocycle)-(C₁-C₆)alkyl-, ((6- to 12-membered)aryl)-(C₁-C₆)alkyl-, ((5- to ^membered^ heteroaryl)-Cd-C^alkyl-; any of which is optionally substituted.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, wherein X is OH or -(CrC₆)alkoxy; Q is OMe; Z is -(CH₂)m; G is -OC(=O)-; Y is -CH; W¹ is NH₂; W² is -(C₁-C₆)alkyl, -(C₂-C₆)alkenyl, -(C₆-C₆)alkynyl, phenyl, benzyl, hydroxy(Ci-C₆) alkyl-, dihydroxy(Ci-C₆)alkyl, -(Ci-C₆)alkyl-NH₂, -(d-C₆)alkyl-CO-NH₂, -(Ci-C₆)alkyl-CO-NH-(C₁-C₄)alkyl, -(C₁-C₆)alkyl-CO-OH, or -(C₁-C₆)alkyl-CO-0(d-C₆)alkyl; R¹ is selected from hydrogen, -(C₁-C₆)alkyl, -(C₆-C₆)cycloalkyl, and ((C₃-C₆)cycloalkyl)-(Ci-C₆)alkyl; R¹a and R¹b are both hydrogen; R¹e is Ci-C₄ alkyl (such as methyl) and m is an integer 1 or 2.

In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-III, wherein R¹e is Ci-C₄ alkyl. In another embodiment, R¹c is methyl, ethyl, n-propyl, or iso-propyl. In another embodiment, R¹c is methyl.
In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-II, represented by Formula IV:

and the pharmaceutically acceptable salts and solvates thereof, wherein

G is -0-, -OC(=0)-, -C(=0)-, -NH-, -S-, -SO-, or -SO₂⁻; and preferably -O- or -NH-;

R¹⁵ is selected from the group consisting of

wherein R¹⁶ is selected from the group consisting of hydrogen, halogen, -(C₁₋₄ alkyl)halo₃,
-0(C₁₋₄ alkyl)halo₃, phenyl, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, 1,2-dihydroxyethyl, C(0)NH₂, -OCH₂COOH, -NHCOOH, -OCH₂C(0)OCH₃, imidazolyl, -NHC(0)NH₂, -NHC(0)NHCH₃, -NHC(0)-phenyl, and -C(=NH)NH₂; and R¹, R¹ᵃ, R¹ᵇ, Q, X and Z are as defined above in connection with Formula I. In another embodiment, R¹ is CH₃ or cyclopropylmethyl, X is selected from the group consisting of OH and (C₁₋₄)alkoxy, Q is selected from the group consisting of OH and (C₁₋₄)alkoxy, and R¹ᵃ and R¹ᵇ are both hydrogen. In another embodiment, Z is -CH₂⁻.

In another embodiment, Compounds of the Invention are compounds of Formula IV, wherein R¹⁶ is selected from the group consisting of
and $R^1$, $R^{1a}$, $R^{1b}$, $Q$, $X$ and $Z$ are as defined above in connection with Formula I. In another embodiment, $R^1$ is CH$_3$ or cyclopropylmethyl, $X$ is selected from the group consisting of OH and (C$_{1-4}$)alkoxy, $Q$ is selected from the group consisting of OH and (C$_{1-4}$)alkoxy, and $R^{1a}$ and $R^{1b}$ are both hydrogen. In another embodiment, $Z$ is -CH$_2$-.

In another embodiment, Compounds of the Invention are compounds of Formula IV, wherein $G$ is -0- and $R^{15}$ is selected from the group consisting of -(OCH$_2$CH$_2$)$_s$-0(C$_{-C_6}$)alkyl,

![Chemical Structure]

and $R^1$, $R^{1a}$, $R^{1b}$, $Q$, $X$ and $Z$ are as defined above in connection with Formula I. In another embodiment, $R^1$ is CH$_3$ or cyclopropylmethyl, $X$ is selected from the group consisting of OH and (C$_{1-4}$)alkoxy, $Q$ is selected from the group consisting of OH and (C$_{1-4}$)alkoxy, and $R^{1a}$ and $R^{1b}$ are both hydrogen. In another embodiment, $Z$ is -CH$_2$-.

In another embodiment, Compounds of the Invention are compounds of Formula IV, wherein $G$ is -NH- and $R^{15}$ is selected from the group consisting of -(OCH$_2$CH$_2$)$_s$-0(C$_{-C_6}$)alkyl,

![Chemical Structure]

and $R^1$, $R^{1a}$, $R^{1b}$, $Q$, $X$ and $Z$ are as defined above in connection with Formula I. In another embodiment, $R^1$ is CH$_3$ or cyclopropylmethyl, $X$ is selected from the group consisting of OH and (C$_{1-4}$)alkoxy, $Q$ is selected from the group consisting of OH and (C$_{1-4}$)alkoxy, and $R^{1a}$ and $R^{1b}$ are both hydrogen. In another embodiment, $Z$ is -CH$_2$-.

In another embodiment, Compounds of the Invention include:
and the pharmaceutically acceptable salts and solvates thereof.

[0206] In another embodiment, Compounds of the Invention include:

![Chemical structures](image)

and the pharmaceutically acceptable salts and solvates thereof.

[0207] In another embodiment, Compounds of the Invention are compounds of any one of Formulae I-IV, wherein X is -O-PG, wherein PG is a hydroxyl protecting group.

[0208] In another embodiment, Compounds of the Invention are compounds of Formula I, represented by Formula V:

![Chemical structures](image)

and the pharmaceutically acceptable salts and solvates thereof, wherein R₁, R¹a, R¹b, X, Z, G, Y, W¹, W², and Q are as defined in connection with Formula I. Suitable and preferable definitions for R₁, R¹a, R¹b, R¹c, X, Z, G, Y, W¹, W², and Q are those described above for any of Formulae I-IV.

[0209] Suitable hydroxyl protecting groups for PG are well known and include, for example, any suitable hydroxyl protecting group disclosed in Wuts, P. G. M. & Greene, T. W., *Greene's Protective Groups in Organic Synthesis*, 4rd Ed., pp. 16-430 (J. Wiley & Sons, 2007), herein incorporated by reference in its entirety. The term "hydroxyl protecting group" as used herein refers to a group that blocks (i.e., protects) the hydroxy functionality while reactions are carried out on other functional groups or parts of the molecule. Those skilled in the art will be familiar with the selection, attachment, and cleavage of protecting groups and will appreciate that many different protective groups are known in the art, the suitability of one protective group or another being dependent on the particular synthetic scheme planned. Suitable hydroxy protecting groups are
generally able to be selectively introduced and removed using mild reaction conditions that do not interfere with other portions of the subject compounds. These protecting groups can be introduced or removed at a convenient stage using methods known in the art. The chemical properties of such groups, methods for their introduction and removal are known in the art and can be found, for example, in Greene, T.W. and Wuts, P.G.M., above. Additional hydroxyl protecting groups can be found, for example, in U.S. Patent No. 5,952,495, U.S. Patent Appl. Pub. No. 2008/0312411, WO 2006/035195, and WO 98/02033, which are herein incorporated by reference in their entireties. Suitable hydroxyl protecting groups include the methoxymethyl, tetrahydropyranyl, tert-butyl, allyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, acetyl, pivaloyl, benzoyl, benzyl (Bn), and p-methoxybenzyl group.

[0210] It will be apparent to a person of ordinary skill in the art in view of this disclosure that certain groups included in the definitions of -O-PG overlap with the other definitions for X, such as methoxy, tert-butoxy, etc., and, thus, certain Compounds of the Invention having X groups that include groups acting as hydroxyl protecting groups can be pharmaceutically active as described herein.

[0211] In one embodiment, the hydroxyl protecting group PG is selected from the group consisting of alkyl, arylalkyl, heterocyclo, (heterocyclo)alkyl, acyl, silyl, and carbonate, any of which are optionally substituted.

[0212] In another embodiment, the hydroxyl protecting group PG is an alkyl group, typically an optionally substituted C1-6 alkyl group, and suitably unsubstituted methyl or tert-butyl.

[0213] In another embodiment, the hydroxyl protecting group PG is an arylalkyl group. Suitable arylalkyl groups include, for example, an unsubstituted benzyl group, substituted benzyl groups, such as p-methoxybenzyl, and naphthylmethyl.

[0214] In another embodiment, the hydroxyl protecting group PG is a heterocyclo group, such as unsubstituted tetrahydropyranyl or optionally substituted tetrahydropyranyl.

[0215] In another embodiment, the hydroxyl protecting group PG is a (heterocyclo)alkyl group. Suitable (heterocyclo)alkyl groups include, for example, 4-morpholiny(C1-4)alkyl groups, such as, 2-(4-morpholinyl)ethyl.

[0216] In another embodiment, the hydroxyl protecting group PG is a silyl group. The term "silyl" as employed herein refers to the group having the following structure:
wherein \( R^{17}, R^{18}, \) and \( R^{19} \) are each independently selected from the group consisting of alkyl, cycloalkyl, aryl, (cycloalkyl)alkyl, or arylalkyl, any of which is optionally substituted. In one embodiment, the silyl group is trimethyl silyl, tert-butyldimethyl silyl, tert-butyldiphenyl silyl, or tri-isopropyl silyl.

[0217] In another embodiment, the hydroxyl protecting group \( PG \) is an acyl group. The term "acyl" as employed herein refers to the following structure:

\[
\begin{array}{c}
\text{O} \\
\text{R}^{20} \\
\end{array}
\]

wherein \( R^{20} \) is alkyl, cycloalkyl, aryl, (cycloalkyl)alkyl, or arylalkyl, any of which is optionally substituted. The acyl group can be, for example, \( C_{1-4} \) alkylcarbonyl (such as, for example, acetyl), arylcarbonyl (such as, for example, benzoyl), levulinoyl, or pivaloyl. In another embodiment, the acyl group is benzoyl.

[0218] In another embodiment, the hydroxyl protecting group is a carbonate group. The term "carbonate" as employed herein refers to the following structure:

\[
\begin{array}{c}
\text{O} \\
\text{R}^{21} \\
\end{array}
\]

wherein \( R^{21} \) is alkyl, alkenyl, cycloalkyl, aryl, (cycloalkyl)alkyl, or arylalkyl, any of which is optionally substituted. Typically, \( R^{21} \) is \( C_{1-10} \) alkyl (e.g., 2,4-dimethylpent-3-yl), \( C_{2-6} \) alkenyl (e.g., ethenyl or prop-2-enyl, i.e., allyl), \( C_{3-12} \) cycloalkyl (e.g., adamantyl), phenyl, or benzyl. In one embodiment, the carbonate is (benzyloxy)carbonyl.

[0219] The orvinol scaffold has the following numbering:

Accordingly, the substituent \( R^{16} \) is at the 7p-position in a compound of any one of Formulae I-V.

[0220] In one embodiment, a Compound of the Invention contains an enantiomeric excess of the 7p-epimer relative to the 7a-epimer. In this aspect of the invention, the
percent enantiomeric excess of the 7β-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5%. In one embodiment, the percent enantiomeric excess of the 7p-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 90%. In another embodiment, the percent enantiomeric excess of the 7β-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 95%. In another embodiment, the percent enantiomeric excess of the 7β-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 96%. In another embodiment, the percent enantiomeric excess of the 7β-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 97%. In another embodiment, the percent enantiomeric excess of the 7β-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 98%. In another embodiment, the percent enantiomeric excess of the 7β-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 99%. In another embodiment, the percent enantiomeric excess of the 7p-epimer of a compound of any one of Formulae I-V, and the pharmaceutically acceptable salts and solvates thereof, is at least about 99.5%.

The "enantiomeric excess" or "ee" refers to a measure of how much of one enantiomer is present compared to the other. For a mixture of R and S enantiomers, the percent enantiomeric excess is defined as \( \frac{|R - S| \times 100}{R + S} \), where R and S are the respective mole or weight fractions of enantiomers in a mixture such that \( R + S = 1 \). With knowledge of the optical rotation of a chiral substance, the percent enantiomeric excess is defined as \( \frac{[\alpha]_{obs} - [\alpha]_{max}}{[\alpha]_{max}} \times 100 \), where \([\alpha]_{obs}\) is the optical rotation of the mixture of enantiomers and \([\alpha]_{max}\) is the optical rotation of the pure enantiomer. Determination of enantiomeric excess is possible using a variety of analytical techniques, including NMR spectroscopy, chiral column chromatography, or optical polarimetry.

Optional substituents attached to aryl, phenyl and heteroaryl rings each take the place of a hydrogen atom that would otherwise be present in any position on the aryl, phenyl or heteroaryl rings.
As used herein, the terms "halo" and "halogen" refer to fluoro, chloro, bromo or iodo.

Useful alkyl groups are selected from straight-chain and branched-chain \((C_1-C_i)_a\)alkyl groups. As used herein, the term "\((C_i-C_i)\)alkyP" as used by itself or as part of another group refers to straight-chain and branched non-cyclic saturated hydrocarbons having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. Typical \((C_i-C_i)\)alkyl groups include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, and n-decyl, isopropyl, sec-butyl, tert-butyl, iso-butyl, iso-pentyl, neopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 3-ethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-methylhexyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,2-dimethylhexyl, 1,3-dimethylhexyl, 3,3-dimethylhexyl, 1,2-dimethyloctyl, 1,3-dimethyloctyl, and 3,3-dimethyloctyl, among others. In one embodiment, useful alkyl groups are selected from straight chain \((C_1-C_i)_a\)alkyl groups and branched \((C_3-C_6)\)alkyl groups. Typical \((C_3-C_6)\)alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, iso-butyl, pentyl, 3-pentyl, hexyl, among others. In one embodiment, useful alkyl groups are selected from straight chain \((C_2-C_i)_a\)alkyl groups and branched \((C_3-C_6)\)alkyl groups. Typical \((C_2-C_i)_a\)alkyl groups include ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, iso-butyl, pentyl, 3-pentyl, hexyl among others. In one embodiment, useful alkyl groups are selected from straight chain \((C_1-C_4)\)alkyl groups and branched \((C_3-C_4)\)alkyl groups. Typical \((C_1-C_4)\)alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, and iso-butyl.

Useful alkenyl groups are selected from straight-chain and branched-chain \((C_2-C_12)\)alkenyl groups. As used herein, the term "\((C_2-C_12)\)alkenyl" as used by itself or as part of another group refers to straight chain and branched non-cyclic hydrocarbons having from 2 to 12 carbon atoms and including at least one carbon-carbon double bond. Representative straight chain and branched \((C_2-C_i)\)alkenyl groups include vinyl, allyl, 1-butenyl, 2-butenyl, isobutylene, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, and the like. In one embodiment, useful \((C_2-C_12)\)alkenyl groups are \((C_4-C_12)\)alkenyl groups, \((C_2-C_6)\)alkenyl groups, and preferably \((C_2-C_4)\)alkenyl. Typical \((C_2-C_12)\)alkenyl groups include ethenyl (i.e., vinyl), allyl, 1-butenyl, 2-butenyl, isobutylene, 1-pentenyl, 2-
pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 1-pentenyl, and 1-hexenyl. Typical \((C_2-C_4)\)alkenyl groups include ethenyl, propenyl, isopropenyl, butenyl, and sec-butenyl.

Useful alkenyl groups are selected from straight-chain and branched-chain \((C_2-C_{12})\)alkenyl groups. As used herein, the term \("(C_2-C_{12})\)alkenyl" as used by itself or as part of another group refers to straight chain and branched non-cyclic hydrocarbons having from 2 to 12 carbon atoms and including at least one carbon-carbon triple bond. Representative straight chain and branched \((C_2-C_{12})\)alkenyl groups include acetylenyl, propynyl, butyn-1-yl, butyn-2-yl, pentyn-1-yl, pentyn-2-yl, 3-methylbutyn-1-yl, pentyn-4-yl, hexyn-1-yl, hexyn-2-yl, hexyn-5-yl, and the like. In one embodiment, the \((C_2-C_{12})\)alkenyl group is a \((C_2-C_6)\)alkenyl group. Typical \((C_2-C_6)\)alkenyl groups include acetylenyl (i.e., ethenyl), propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, 4-pentynyl, and the like. In another embodiment, the \((C_2-C_{12})\)alkenyl group is a \((C_2-C_4)\)alkenyl group. Typical \((C_2-C_4)\)alkenyl groups include ethynyl, propynyl, butynyl, and 2-butynyl groups.

Useful halo\((C_1-C_6)\)alkyl groups include any of the above-mentioned \((C_1-C_6)\)alkyl groups, preferably any of the above-mentioned \((C_1-C_6)\)alkyl groups, and preferably any of the above-mentioned \((C_1-C_4)\)alkyl groups, substituted by one or more independently selected fluorine, chlorine, bromine or iodine atoms (e.g., fluoromethyl, difluoromethyl, difluorochloromethyl, trifluoromethyl, pentafluoroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, and trichloromethyl groups).

As used herein, the term \"-CH\(_2\)(halo)\" as used by itself or as part of another group refers to a methyl group where one of the hydrogens of the methyl group has been replaced with a halogen. Representative -CH\(_2\)(halo) groups include -CH\(_2\)F, -CH\(_2\)C\(_1\), -CH\(_2\)Br, and -CH\(_2\)I.

As used herein, the term \"-CH(halo)\(_2\)\" as used by itself or as part of another group refers to a methyl group where two of the hydrogens of the methyl group have been replaced with a halogen. Representative -CH(halo)\(_2\) groups include -CHF\(_2\), -CHCl\(_2\), -CHBr\(_2\), -CHCl\(_2\), -CHBrCl, -CHClI, and -CHI\(_2\).

As used herein, the term \"-C(halo)\(_3\)\" as used by itself or as part of another group refers to a methyl group where each of the hydrogens of the methyl group has been replaced with a halogen. Representative -C(halo)\(_3\) groups include -CF\(_3\), -CCl\(_3\), -CBr\(_3\), and -CI\(_3\).
As used herein, the term "hydroxy(C₁-C₆)alkyl" as used by itself or as part of another group refers to any of the above-mentioned C₁₀ alkyl groups substituted by one or more hydroxy groups. Representative hydroxy(C₁-C₆)alkyl groups include hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl groups, and especially hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl, 4-hydroxybutyl, 2-hydroxy-1-methylpropyl, and 1,3-dihydroxyprop-2-yl.

As used herein, the term "dihydroxy(C₁-C₆)alkyl" as used by itself or as part of another group refers to any of the above-mentioned C₁₀ alkyl groups substituted by two hydroxy groups. Representative dihydroxy(C₁-C₆)alkyl groups include dihydroxyethyl, dihydroxypropyl and dihydroxybutyl groups, and especially 1,2-dihydroxyethyl, 1,3-dihydroxypropyl, 2,3-dihydroxypropyl, 1,3-dihydroxybutyl, 1,4-dihydroxybutyl, and 1,3-dihydroxyprop-2-yl.

Useful cycloalkyl groups are selected from saturated cyclic hydrocarbon groups containing 1, 2, or 3 rings having from 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms i.e., (C₃-C₁₀)cycloalkyl) or the number of carbons designated. In one embodiment, the cycloalkyl has one or two rings. In another embodiment, the cycloalkyl is a (C₅-C₁₀)cycloalkyl. In another embodiment, the cycloalkyl is (C₅-C₁₀)cycloalkyl. In another embodiment, the cycloalkyl is (C₃-C₁₀)cycloalkyl. Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, decalin, and adamantyl.

As used herein, the term "(C₃-C₁₂)cycloalkyl" as used by itself or as part of another group refers to cyclic saturated hydrocarbon having from 3 to 12 carbon atoms. Representative (C₃-C₁₂)cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, and the like.

As used herein, "(C₆-C₁₄)bicycloalkyl" as used by itself or as part of another group refers to a bicyclic hydrocarbon ring system having from 6 to 14 carbon atoms and at least one saturated cyclic alkyl ring. Representative (C₆-C₁₄)bicycloalkyl groups include indanyl, norbornyl, 1,2,3,4-tetrahydronaphthalenyl, 5,6,7,8-tetrahydronaphthalenyl, perhydronaphthalenyl, and the like.

As used herein, the term "(C₈-C₂₀)tricycloalkyl" as used by itself or as part of another group refers to a tricyclic hydrocarbon ring system having from 8 to 20 carbon atoms and at least one saturated cyclic alkyl ring. Representative (C₈-C₂₀)tricycloalkyl
groups include pyrenyl, adamantyl, 1,2,3,4-tetrahydroanthracenyl, perhydroanthracenyl, aceanthrenyl, 1,2,3,4-tetrahydroperphenanthrenyl, perhydrophenanthrenyl, tetradecahydro-1H-cyclohepta[a]naphthalenyl, tetradecahydro-1H-cycloocta[e]indenyl, hexadecahydrocycloocta[b]naphthalenyl, hexadecahydrocyclohepta[a]heptalenyl, tricyclo-pentadecanyl, tricyclo-octadecanyl, tricyclo-nonadecanyl, tricyclo-icosanyl, and the like.

As used herein, the term "(C₄-Ci₂)cyclealkenyl" as used by itself or as part of another group refers to a cyclic hydrocarbon having from 4 to 12 carbon atoms, and including at least one carbon-carbon double bond. Representative (C₄-Ci₂)cyclealkenyl groups include cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl, cycloheptatrienyl, cyclooctenyl, cyclooctadienyl, cyclooctatrienyl, cyclooctatetraenyl, cyclononeny1, cyclononadienyl, cyclodeceny1, cyclodecadieny1, norborneny1, and the like.

As used herein, the term "(C₇-Ci₄)bi-cyclealkenyl" as used by itself or as part of another group refers to a bi-cyclic hydrocarbon ring system having at least one carbon-carbon double bond in at least one of the rings and from 7 to 14 carbon atoms. Representative (C₇-Ci₄)bi-cyclealkenyl groups include bicyclo[3.2.0]hept-2-eny1, indenyl, pentaleny1, naphthalenyl, azuleny1, heptalenyl, 1,2,7,8-tetrahydronaphthalenyl, and the like.

As used herein, the term "(C₈-Ci₂₀)tri-cyclealkenyl" as used by itself or as part of another group refers to a tri-cyclic hydrocarbon ring system having at least one carbon-carbon double bond in one of the rings and from 8 to 20 carbon atoms. Representative (C₈-Ci₂₀)tri-cyclealkenyl groups include anthracenyl, phenanthrenyl, phenalenyl, acenaphthalenyl, as-indacenyl, s-indacenyl, 2,3,6,7,8,9,10,11-octahydro-1H-cycloocta[<?>]indenyl, 2,3,4,7,8,9,10,11-octahydro-1H-cyclohepta[a]naphthalenyl, 8,9,10,11-tetrahydro-7H-cyclohepta[fl]-naphthalenyl, 2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-cyclohepta[a]heptalenyl, 1,2,3,4,5,6,7,8,9,10,11,12,13,14-tetradecahydro-dicyclohepta[a,c]cyclooctenyl, 2,3,4,5,6,7,8,9,10,11,12,13-dodecahydro-1H-dibenzo[a,c]cyclooctenyl, and the like.

As used herein, the term "(5- to 12- membered)carbo-cyclic ring" as used by itself or as part of another group refers to a bicyclic hydrocarbon ring system having from 5 to 12 carbon atoms, which is either saturated, unsaturated, non-aromatic or
aromatic. Representative "(5- to 12- membered)carbocyclic ring" include for example "(8- to 12- membered)carbocyclic rings".

[0241] As used herein, the term "(7- to 12- membered)bicyclic ring system" as used by itself or as part of another group refers to a 7- to 12-membered carbocyclic or heterocyclic ring, which may be either unsaturated, saturated, non-aromatic, or aromatic.

[0242] As used herein, the term "(Ci-Cio)alkoxy" as used by itself or as part of another group refers to a straight chain or branched non-cyclic hydrocarbon having one or more ether groups and from 1 to 10 carbon atoms. Representative straight chain and branched (Ci-Cio)alkoxy groups include methoxy, ethoxy, propoxy, butyloxy, pentyloxy, hexyloxy, heptyloxy, methoxymethyl, 2-methoxyethyl, 5-methoxypentyl, 3-ethoxybutyl, and the like.

[0243] As used herein, the term "(Ci-Cio)alkoxy" as used by itself or as part of another group refers to a straight chain or branched non-cyclic hydrocarbon having one or more ether groups and from 1 to 6 carbon atoms. Representative straight chain and branched (Ct-Cio)alkoxy groups include methoxy, ethoxy, propoxy, butyloxy, pentyloxy, hexyloxy, methoxymethyl, 2-methoxyethyl, 5-methoxypentyl, 3-ethoxybutyl, and the like.

[0244] As used herein, the term "(d-Cs)alkoxy" as used by itself or as part of another group refers to a straight chain or branched non-cyclic hydrocarbon having one or more ether groups and from 1 to 5 carbon atoms. Representative straight chain and branched (Ct-Cs)alkoxy groups include methoxy, ethoxy, propoxy, butyloxy, pentyloxy, methoxymethyl, 2-methoxyethyl, and the like.

[0245] Useful alkoxy(Ci-Cio)alkyl groups include any of the above-mentioned Ci-Cio alkyl groups substituted with any of the above-mentioned (Ci-Cio)alkoxy groups (e.g., methoxymethyl, methoxymethyl, methoxypropyl, methoxybutyl, ethoxymethyl, 2-ethoxyethyl, 3-ethoxypropyl, 4-ethoxybutyl, propoxymethyl, iso-propoxymethyl, 2-propanyloxy, 3-propoxypropyl, butoxymethyl, tert-butoxymethyl, isobutoxymethyl, sec-butoxymethyl, and pentyloxymethyl).

[0246] Useful halo(Ci-Cio)alkoxy groups include oxygen substituted by one of the halo(Ci-Cio)alkyl groups mentioned above (e.g., fluoromethoxy, difluoromethoxy, trifluoromethoxy, and 2,2,2-trifluoroethoxy).

[0247] Useful cycloalkyl(Ci-Cio)alkyl groups include any of the above-mentioned C1-C6 alkyl groups substituted with any of the above-mentioned cycloalkyl groups.
Representative cycloalkyl(Ci-6)alkyl groups are (C3-12)cycloalkyl(C1-6)alkyl (e.g., (cyclopropyl)methyl, 2-(cyclopropyl)ethyl, (cyclopropyl)propyl, (cyclobutyl)methyl, (cyclopentyl)methyl, and (cyclohexyl)methyl).

[0248] Useful aryl groups are C6,i4 aryl, especially C6,i0 aryl. Typical C6,i4 aryl groups include phenyl, naphthyl, phenanthryl, anthracyl, indenyl, azuleny1, biphenyl, biphenylenyl, and fluorenyl groups, more preferably phenyl, naphthyl, and biphenyl groups. In one embodiment, the aryl group is a (6- to 12-membered)aryl group. As used herein, the term "(6- to 12-membered)aryl" as used by itself or as part of another group refers to an aromatic carbocyclic ring containing 6 to 12 carbon atoms, including both mono- and bicyclic ring systems. Representative (6- to 12-membered)aryl groups include indenyl, phenyl, naphthyl, and the like.

[0249] As used herein, the term "(7- to 12-membered)bicyclic aryl" as used by itself or as part of another group refers to a bicyclic aromatic carbocyclic ring containing 7 to 12 carbon atoms. Representative (7- to 12-membered)bicyclic aryl groups include indenyl, naphthyl, and the like.

[0250] Useful aryloxy groups include oxygen substituted by one of the aryl groups mentioned above (e.g., phenoxy). As used herein, the term "(6- to 12-membered)aryloxy" as used by itself or as part of another group refers to an oxygen substituted by an aromatic carbocyclic ring containing 6 to 12 carbon atoms, including both mono- and bicyclic ring systems. Representative (6- to 12-membered)aryloxy groups include phenoxy and 4-fluorophenoxy, and the like.

[0251] Useful aryl(C1-6)alkyl groups include any of the above-mentioned C1-C6 alkyl groups substituted by any of the above-mentioned aryl groups such as C6,i4 aryl(Ci-6)alkyl group (e.g., benzyl and phenethyl).

[0252] Useful aryl(C2-6)alkenyl groups include any of the above-mentioned C2-C6 alkenyl groups substituted by any of the above-mentioned aryl groups (e.g., phenylethenyl).

[0253] Useful aryl(C2-6)alkynyl groups include any of the above-mentioned C2-C6 alkynyl groups substituted by any of the above-mentioned aryl groups (e.g., phenylethenyl).

[0254] Useful ar(Ci-6)alkyloxy groups include oxygen substituted by one of the above-mentioned aryl(Ci-6)alkyl groups (e.g., benzylloxy).

[0255] As used herein, the term "(5- to 12-membered)heteroaryl" as used by itself or as part of another group refers to an aromatic heterocycle ring of 5 to 12 members,
including both mono- and bicyclic ring systems, where at least one carbon atom (of one or both of the rings) is replaced with a heteroatom independently selected from nitrogen, oxygen, and sulfur, or at least two carbon atoms of one or both of the rings are replaced with a heteroatom independently selected from nitrogen, oxygen, and sulfur. In one embodiment, one of the bicyclic (5- to 12-membered) heteroaryl rings contains at least one carbon atom. In another embodiment, both of the bicyclic (5- to 12-membered) heteroaryl rings contain at least one carbon atom. Representative (5- to 12-membered) heteroaryl groups include pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinolinyl, isoquinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, oxadiazolinyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidyl, pyrimidinyl, pyrazinyl, thiadiazolyl, triazinyl, thienyl, thiadiazolyl, cinnolinyl, phthalazinyl, quinazolinyl, and the like.

As used herein, the phrase "tetrazolyl group" as used by itself or as part of another group means

\[ \text{tetrazolyl group} = \left( \begin{array}{c} \text{N} \text{N} \\ \text{H} \text{N} \text{N} \end{array} \right) \text{ or } \left( \begin{array}{c} \text{N} \text{N} \\ \text{N} \text{N} \text{N} \end{array} \right) \]

In one embodiment, the tetrazolyl group is

\[ \left( \begin{array}{c} \text{N} \text{N} \\ \text{H} \text{N} \text{N} \end{array} \right) \]

In another embodiment, the tetrazolyl group is

\[ \left( \begin{array}{c} \text{N} \text{N} \\ \text{H} \text{N} \text{N} \end{array} \right) \]

In another embodiment, the tetrazolyl group is

\[ \left( \begin{array}{c} \text{N} \text{N} \\ \text{N} \text{N} \text{N} \end{array} \right) \]

In another embodiment, the tetrazolyl group is
The terms "heterocyclic" and "heterocyclo" are used herein to mean "(3- to 12-membered)heterocycle", "(3- to 12-membered)heterocyclo", 
"(5- to 12-membered)heterocycle", "(7- to 12-membered)bicycloheterocycle", or "(7- to 12-membered)bicycloheterocyclo".

As used herein, the terms "(3- to 12-membered)heterocycle" or "(3- to 12-membered)heterocyclo" as used by itself or as part of another group refer to a 3- to 12-membered monocyclic heterocyclic ring which is either saturated, or unsaturated, and non-aromatic. A 3-membered heterocycle can contain up to 1 heteroatom; a 4-membered heterocycle can contain up to 2 heteroatoms; a 5-membered heterocycle can contain up to 4 heteroatoms; a 6-membered heterocycle can contain up to 4 heteroatoms; and a 7-membered heterocycle can contain up to 5 heteroatoms. Each heteroatom is independently selected from the group consisting of nitrogen (which can be quaternized), oxygen, and sulfur (including sulfoxide and sulfone). The (3- to 12-membered)heterocycle can be attached via a nitrogen or carbon atom. Representative (3- to 12-membered)heterocycle groups include thiazolidinyl, morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperazinyl, 2,3-dihydrofuranyl, dihydropyranyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, dihydropyridinyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like. In one embodiment, the (3- to 12-membered)heterocycle is a "(5- to 12-membered)heterocyclo", "(4- to 8-membered)heterocycle" or "(4- to 8-membered)heterocyclo".

As used herein, the terms "(4- to 8-membered)heterocycle" or "(4- to 8-membered)heterocyclo" as used by itself or as part of another group refer to a 4- to 8-membered monocyclic heterocyclic ring which is either saturated or unsaturated, and non-aromatic. A 4-membered heterocycle can contain up to 2 heteroatoms; a 5-membered heterocycle can contain up to 4 heteroatoms; a 6-membered heterocycle can contain up to 4 heteroatoms; and a 7-membered heterocycle can contain up to 5 heteroatoms. Each heteroatom is independently selected from the group consisting of nitrogen (which can be quaternized), oxygen, and sulfur (including sulfoxide and sulfone). The (4- to 8-membered)heterocycle can be attached via a nitrogen or carbon atom. Representative (4- to 8-membered)heterocycle groups include morpholinyl,
piperidinyl, piperazinyl, 2,3-dihydrofuranyl, dihydropyranyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, dihydropyridinyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.

As used herein, the terms "(7- to 12-membered)bicycloheterocycle" or "(7- to 12-membered)bicycloheterocyclo" as used by itself or as part of another group refer to a 7- to 12-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, non-aromatic, or aromatic. At least one ring of the bicycloheterocycle contains at least one heteroatom. A (7- to 12-membered)bicycloheterocycle contains from 1 to 4 heteroatoms independently selected from the group consisting of nitrogen (which can be quaternized), oxygen, and sulfur (including sulfoxide and sulfone). The (7- to 12-membered)bicycloheterocycle can be attached via a nitrogen or carbon atom. Representative (7- to 12-membered)bicycloheterocycles include quinolinyl, isoquinolinyl, chromonyl, coumarinyl, indolyl, indoliziny, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, carbazolyl, β-carbolinyl, indolinyl, isoindolinyl, 1,2,3,4-tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, pyrrolopyrrolyl, and the like.

Useful heterocyclo(C_{1-6})alkyl groups include any of the above-mentioned C_{1-6} alkyl groups substituted by any of the above-mentioned heterocyclic groups (e.g., (pyrrolidin-2-yl)methyl, (pyrrolidin-1-yl)methyl, (piperidin-1-yl)methyl, (morpholin-4-yl)methyl, (2-oxooxazolidin-4-yl)methyl, 2-(2-oxooxazolidin-4-yl)ethyl, (2-oxoimidazolidin-1-yl)methyl, (2-oxo-imidazolidin-1-yl)ethyl, and (2-oxo-imidazolidin-1-yl)propyl).

As used herein, the term "amino" or "amino group" refers to -NH_3.

Useful amino(C_{1-6})alkyl groups include any of the above-mentioned C_{1-6} alkyl groups substituted with one or more amino group.

As used herein, the term "aminocarbonyl" refers to -C(=0)NH_2.

Useful alkylcarbonyl groups include a carbonyl group, i.e., -C(=0)-, substituted by any of the above-mentioned C_{1-6}alkyl groups.

Useful alkylcarbonyloxy or acyloxy groups include oxygen substituted by one of the above-mentioned alkylcarbonyl groups.
Useful alkylcarbonylamino or acylamino groups include any of the above-mentioned alkylcarbonyl groups attached to an amino nitrogen, such as methylcarbonylamino.

As used herein, the term "carboxamido" refers to a radical of formula -C(=0)NR^{22}R^{23}, wherein R^{22} and R^{23} are each independently hydrogen, optionally substituted C_{1-10} alkyl, or optionally substituted aryl. Exemplary carboxamido groups include -CONH_{2}, -CON(H)CH_{3}, -CON(CH_{3})_{2}, and -CON(H)Ph.

As used herein, the term "sulfonamido" refers to a radical of formula -S{0}_{2}NR^{24}R^{25}, wherein R^{24} and R^{25} are each independently hydrogen, optionally substituted C_{1-10} alkyl, or optionally substituted aryl. Exemplary sulfonamido groups include -S{0}_{2}NH_{2}, -S{0}_{2}N(Н)CH_{3}, and -S{0}_{2}N(Н)Ph.

As used herein, the term "(Ci-C_{6})alkylsulfonyl(Ci-C_{6})alkyl" refers to a radical of formula -(Ci-C_{6})alkyl-SG_{2}-(Ci-C_{6})alkyl, wherein the alkyl groups include any of the above-mentioned C_{1-6} alkyl groups.

As used herein, the term "thiol" refers to -SH.

Useful mercapto(C_{6})alkyl groups include any of the above-mentioned Ci-C_{6} alkyl groups substituted by a -SH group.

As used herein, the term "carboxy" refers to -COOH.

Useful carboxy(C_{6})alkyl groups include any of the above-mentioned C_{1-6} alkyl groups substituted by -COOH.

As used herein, the terms "hydroxyl" or "hydroxy" refer to -OH.

As used herein, the term "cyano" refers to -CN.

As used herein, the term "nitro" refers to -NO_{2}.

As used herein, the term "ureido" refers to -NH-C(=0)-NH_{2}.

As used herein, the term "azido" refers to -N_{3}.

The term "ambient temperature" as used herein means the temperature of the surroundings. The ambient temperature indoors is the same as room temperature, which is from about 20 °C to about 25 °C.

The term "about," as used herein in connection with a measured quantity, refers to the normal variations in that measured quantity, as expected by the skilled artisan making the measurement and exercising a level of care commensurate with the objective of measurement and the precision of the measuring equipment. Typically, the term "about" includes the recited number ± 10%. Thus, "about 10" means 9 to 11.
As used herein, the term "optionally substituted" refers to a group that may be unsubstituted or substituted.

Optional substituents on optionally substituted groups, when not otherwise indicated, include 1, 2, or 3 groups each independently selected from the group consisting of -(C<sub>1</sub>-C<sub>6</sub>)alkyl, OH, halo, -C(halo)<sub>3</sub>, -CH(halo)<sub>2</sub>, -CH<sub>2</sub>(halo), NH<sub>2</sub>, -NH(d-C<sub>6</sub>)alkyl, CN, SH, (5- to 12-membered)carbocyclic ring, (5- to 12-membered)heterocycle, phenyl, benzyl, ( =0), halo(C<sub>6</sub>C<sub>1</sub>)alkyl, (C<sub>2</sub>-C<sub>6</sub>)alkenyl, (C<sub>2</sub>-C<sub>6</sub>)alkynyl, hydroxy^ -C<sub>6</sub>alkyl, OR<sup>4</sup> (such as -OC(halo)<sub>3</sub> and -0(d-C<sub>6</sub>alkyl), -CONR<sup>8</sup>R<sup>6</sup>, and -COOR<sup>7</sup>, where R<sup>4</sup> is selected from the group consisting of (C<sub>1</sub>-C<sub>6</sub>)alkyl, (C<sub>2</sub>-C<sub>6</sub>)alkenyl, (C<sub>3</sub>-C<sub>6</sub>)alkynyl, (C<sub>4</sub>-C<sub>6</sub>)cycloalkyl, (C<sub>5</sub>-C<sub>6</sub>)heterocycle, (C<sub>6</sub>-C<sub>12</sub>)cycloalkyl, (C<sub>7</sub>-C<sub>12</sub>)arylglycycloalkenyl, (C<sub>8</sub>-C<sub>20</sub>)tricycloalkenyl, (6- to 12-membered)aryl, (5- to 12-membered)heteroaryl, (3- to 12-membered)heterocycle, and (7- to 12-membered)bicyclic/heterocycle; R<sup>5</sup> and R<sup>6</sup> are each independently selected from the group consisting of (C<sub>1</sub>-C<sub>6</sub>)alkyl, (C<sub>3</sub>-C<sub>6</sub>)cycloalkyl, (C<sub>3</sub>-C<sub>6</sub>)cycloalkyl-(d-C<sub>6</sub>alkyl-), or together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle; and R<sup>7</sup> is selected from the group consisting of hydrogen, (d-C<sub>6</sub>)alkyl, (C<sub>2</sub>-C<sub>6</sub>)alkenyl, (C<sub>3</sub>-C<sub>6</sub>)alkynyl, (C<sub>4</sub>-C<sub>6</sub>)cycloalkyl, (C<sub>5</sub>-C<sub>12</sub>)cycloalkyl-(C<sub>6</sub>-C<sub>6</sub>)alkyl-, ((C<sub>3</sub>-d<sub>2</sub>)cycloalkenyl)-(d-C<sub>6</sub>alkyl-, -d(C<sub>6</sub>)alkoxy-COOR<sup>7</sup>, -NH-C(=0)-NH-(d-C<sub>6</sub>alkyl, -NH-C(=0)-(6- to 12-membered)aralkyl, -NH-C(=0)-(d-C<sub>6</sub>)alkyl-(6- to 12-membered)aryl, -NH-(d-C<sub>6</sub>alkyl)-CO-OR<sup>7</sup>, -NH-(C<sub>1</sub>-C<sub>6</sub>)alkyl-(6- to 12-membered)aralkyl, -NH-(C<sub>1</sub>-C<sub>6</sub>)alkyl-CO-OR<sup>7</sup>, -NH-C(=0)-CH(NH<sub>2</sub>)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-CO-OR<sup>7</sup>, (C<sub>3</sub>-C<sub>12</sub>)cycloalkyl, (6- to 12-membered)aryl, (5- to 12-membered)aryloxy, -(C<sub>1</sub>-C<sub>6</sub>)alkoxyC(0)NR<sup>5</sup>R<sup>6</sup>, -NH-(d-C<sub>6</sub>alkylC(0)-NR<sup>5</sup>R<sup>6</sup>, -C(0)NH-(C<sub>1</sub>-C<sub>6</sub>)alkyl-COOR<sup>7</sup>, -(d-C<sub>6</sub>alkyl-C(=0)-(d-C<sub>6</sub>)alkoxy, -(C<sub>1</sub>-C<sub>6</sub>)alkoxy-C(=0)-(d-C<sub>6</sub>alkyl, -(d-C<sub>6</sub>alkyl-CN, -(d-C<sub>6</sub>alkoxy-COOR<sup>7</sup>, -(d-C<sub>6</sub>alkoxy-COOR<sup>7</sup>, ((C<sub>3</sub>-C<sub>12</sub>)cycloalkyl)-(d-C<sub>6</sub>)alkyl-, -(d-C<sub>6</sub>alkyl)-Md^alkoxy<sup>-</sup>, ((C<sub>3</sub>-C<sub>12</sub>)cycloalkyl)-(C<sub>1</sub>-C<sub>6</sub>)alkoxy-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, -(d-C<sub>6</sub>alkyl-C(=0)-(C<sub>1</sub>-C<sub>6</sub>)alkoxy-alkynyl, (C<sub>4</sub>-C<sub>12</sub>)cycloalkenyl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl- (C<sub>4</sub>-C<sub>12</sub>)cycloalkenyl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, -(d-C<sub>6</sub>alkoxy-C<sub>1</sub>-C<sub>6</sub>)alkyl-, (6- to 12-membered)aryl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (6- to 12-membered)aryloxy-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (6- to 12-membered)aryl)-(C<sub>1</sub>-C<sub>6</sub>)alkoxy-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (5- to 12-membered)heteroaryl)-(d-C<sub>6</sub>alkoxy-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (3- to 12-
membered)heterocycle, ((3- to 12 membered)heterocycle)-(Ci-C₆)alkyl-, ((3- to 12 membered)heterocycle)-(Ci-C₆)alkoxy-, and ((3- to 12 membered)heterocycle)-(C₁-C₆)alkoxy-(C₁-C₆)alkyl-. In another embodiment, optional substituents on optionally substituted groups, when not otherwise indicated, include 1, 2, or 3 groups each independently selected from the group consisting of halo, halo(Ci-6)alkyl, aryl, heterocycle, cycloalkyl, C₁-6 alkyl, C₂-6 alkenyl, C₂-6 alkynyl, aryl(Ci-6)alkyl, aryl(C₂-6)alkenyl, aryl(C₂-6)alkynyl, cycloalkyl(Ci-6)alkyl, heterocyclo(Ci-6)alkyl, hydroxy(Ci-6)alkyl, amino(Ci-6)alkyl, carboxy(Ci-6)alkyl, alkoxy(d-6)alkyl, nitro, amino, ureido, cyano, alkylcarbonylamino, hydroxy, thiol, alkylcarbonyloxy, aryloxy, ar(Ci-6)alkyloxy, carboxamido, sulfonamido, azido, Ci-6 alkoxy, halo(Ci-6)alkoxy, carboxy, aminocarbonyl, (=0), and mercapto(Ci-6)alkyl groups mentioned above. In one embodiment, optional substituents include halo, halo(Ci-6)alkyl, hydroxy(Ci-6)alkyl, amino(Ci-6)alkyl, hydroxy, nitro, C₁-6 alkyl, C₁-6 alkoxy, halo(Ci-6)alkoxy, and amino.

As used herein, the term "Z is unsubstituted" means that Z is "-(CH₂)ₘ" and m is 1, 2, 3, 4, 5, or 6.

As used herein, the term "Z is substituted" means that Z is "-(CH₂)ₘ" and m is 1, 2, 3, 4, 5, or 6 and at least one of the hydrogen atoms has been replaced by a –(C₁-C₆)alkyl group.

Compounds of the Invention encompass all the salts of the disclosed compounds of Formulae I-V. The present invention preferably includes all non-toxic pharmaceutically acceptable salts thereof of the disclosed compounds. Examples of pharmaceutically acceptable addition salts include inorganic and organic acid addition salts and basic salts. The pharmaceutically acceptable salts include, but are not limited to, metal salts such as sodium salt, potassium salt, cesium salt and the like; alkaline earth metals such as calcium salt, magnesium salt and the like; organic amine salts such as triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N'-dibenzylethlenediamine salt and the like; inorganic acid salts such as hydrochloride, hydrobromide, phosphate, sulphate and the like; organic acid salts such as citrate, lactate, tartrate, maleate, fumarate, mandelate, acetate, dichloroacetate, trifluoroacetate, oxalate, formate and the like; sulfonates such as methanesulfonate, benzenesulphonate, p-toluenesulfonate and the like; and amino acid salts such as arginate, aspartagine, glutamate and the like.
Acid addition salts can be formed by mixing a solution of the particular compound of the present invention with a solution of a pharmaceutically acceptable non-toxic acid such as hydrochloric acid, fumaric acid, maleic acid, succinic acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid, oxalic acid, dichloroacetic acid, or the like. Basic salts can be formed by mixing a solution of the compound of the present invention with a solution of a pharmaceutically acceptable non-toxic base such as sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate and the like.

Compounds of the Invention also encompass solvates of any of the disclosed compounds of Formulae I-V. Solvates typically do not significantly alter the physiological activity or toxicity of the compounds, and as such may function as pharmacological equivalents. The term "solvate" as used herein is a combination, physical association and/or solvation of a compound of the present invention with a solvent molecule such as, e.g., a disolvate, monosolvate or hemisolvate, where the ratio of solvent molecule to compound of the present invention is about 2:1, about 1:1 or about 1:2, respectively. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances, the solvate can be isolated, such as when one or more solvent molecules are incorporated into the crystal lattice of a crystalline solid. Thus, "solvate" encompasses both solution-phase and isolatable solvates. Compounds of the Invention may be present as solvated forms with a pharmaceutically acceptable solvent, such as water, methanol, ethanol, and the like, and it is intended that the invention includes both solvated and unsolvated forms of compounds of any of Formulae I-V. One type of solvate is a hydrate. A "hydrate" relates to a particular subgroup of solvates where the solvent molecule is water. Solvates typically can function as pharmacological equivalents. Preparation of solvates is known in the art. See, for example, M. Caira et al., *J. Pharmaceut. Sci.*, 93(3):60l-611 (2004), which describes the preparation of solvates of fluconazole with ethyl acetate and with water. Similar preparation of solvates, hemisolvates, hydrates, and the like are described by E.C. van Tonder et al., *AAPS Pharm. Sci. Tech.*, 5(1):Article 12 (2004), and A.L. Bingham et al., *Chem. Commun.*: 603-604 (2001). A typical, non-limiting, process of preparing a solvate would involve dissolving a compound of any of Formulae I-V in a desired solvent (organic, water, or a mixture thereof) at temperatures above about 20 °C to about 25 °C, then cooling the solution at a rate sufficient to form crystals, and isolating the crystals by known methods, e.g., filtration. Analytical techniques such
as infrared spectroscopy can be used to confirm the presence of the solvent in a crystal of the solvate.

Compounds of the Invention can be isotopically-labeled (i.e., radio-labeled). Examples of isotopes that can be incorporated into the disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as $^2$H, $^3$H, $^{11}$C, $^{13}$C, $^{14}$C, $^{15}$N, $^{18}$O, $^{17}$O, $^{31}$P, $^{32}$P, $^{35}$S, $^{18}$F and $^{36}$Cl, respectively, and preferably $^3$H, $^{11}$C, and $^{14}$C. Isotopically-labeled Compounds of the Invention can be prepared by methods known in the art in view of this disclosure. For example, tritiated Compounds of the Invention can be prepared by introducing tritium into the particular compound by catalytic dehalogenation with tritium. This method may include reacting a suitable halogen-substituted precursor of a Compound of the Invention with tritium gas in the presence of an appropriate catalyst such as Pd/C in the presence of a base. Other suitable methods for preparing tritiated compounds can be found in Filer, *Isotopes in the Physical and Biomedical Sciences, Vol. 1, Labeled Compounds (Part A)*, Chapter 6 (1987). $^{14}$C-labeled compounds can be prepared by employing starting materials having a $^{14}$C carbon.

Isotopically labeled Compounds of the Invention, as well as the pharmaceutically acceptable salts and solvates thereof, can be used as radioligands to test for the binding of compounds to an opioid receptor. For example, a radio-labeled Compound of the Invention can be used to characterize specific binding of a test or candidate compound to the receptor. Binding assays utilizing such radio-labeled compounds can provide an *in vitro* alternative to animal testing for the evaluation of chemical structure-activity relationships. For example, the receptor assay may be performed at a fixed concentration of a radiolabeled Compound of the Invention and at increasing concentrations of a test compound in a competition assay. In a non-limiting embodiment, the present invention provides a method for screening a candidate compound for the ability to bind to an opioid receptor, comprising a) introducing a fixed concentration of a radio-labeled Compound of the Invention to the receptor under conditions that permit binding of the radio-labeled compound to the receptor to form a complex; b) titrating the complex with a candidate compound; and c) determining the binding of the candidate compound to said receptor.

Some of the compounds disclosed herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms, such as epimers. The present invention is meant to encompass the uses of all
such possible forms, as well as their racemic and resolved forms and mixtures thereof. The individual enantiomers may be separated according to methods known to those of ordinary skill in the art in view of the present disclosure. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that they include both E and Z geometric isomers. All tautomers are intended to be encompassed by the present invention as well.

As used herein, the term "stereoisomers" is a general term for all isomers of individual molecules that differ only in the orientation of their atoms in space. It includes enantiomers and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereomers).

The term "chiral center" refers to a carbon atom to which four different groups are attached.

The term "epimer" refers to diastereomers that have opposite configuration at only one of two or more tetrahedral stereogenic centres present in the respective molecular entities.

The term "stereogenic center" is an atom, bearing groups such that an interchanging of any two groups leads to a stereoisomer.

The terms "enantiomer" and "enantiomeric" refer to a molecule that cannot be superimposed on its mirror image and hence is optically active wherein the enantiomer rotates the plane of polarized light in one direction and its mirror image compound rotates the plane of polarized light in the opposite direction.

The term "racemic" refers to a mixture of equal parts of enantiomers and which mixture is optically inactive.

The term "resolution" refers to the separation or concentration or depletion of one of the two enantiomeric forms of a molecule.

The terms "a" and "an" refer to one or more.

The term "treating" or "treatment" refers to administering a therapy in an amount, manner, or mode effective to improve a condition, symptom, or parameter associated with a disorder or to prevent progression of a disorder, to either a statistically significant degree or to a degree detectable to one skilled in the art. An effective amount, manner, or mode can vary depending on the subject and may be tailored to the patient.

Open terms such as "include," "including," "contain," "containing" and the like mean "comprising."
As used herein, compounds that bind to receptors and mimic the regulatory effects of endogenous ligands are defined as "agonists". Compounds that bind to receptors and are only partly effective as agonists are defined as "partial agonists". Compounds that bind to a receptor but produce no regulatory effect, but rather block the binding of ligands to the receptor are defined as "antagonists". (Ross and Kenakin, "Ch. 2: Pharmacodynamics: Mechanisms of Drug Action and the Relationship Between Drug Concentration and Effect", pp. 31-32, in Goodman & Gilman's the Pharmacological Basis of Therapeutics, 10th Ed. (J.G. Hardman, L.E. Limbird and A. Goodman-Gilman eds., 2001)).

In certain embodiments, the Compound of the Invention is an agonist at one or more of the µ, δ and/or κ opioid receptors. In certain non-limiting embodiments, the Compound of the Invention produces fewer side effects and/or less severe side effects than currently available analgesic opioid compounds when administered at doses producing equivalent levels of analgesia and/or anti-hyperalgesia. In certain embodiments, the Compound of the Invention is an agonist at ORL-1 opioid receptor.

In certain embodiments, Compounds of the Invention can be used in combination with at least one other therapeutic agent. The other therapeutic agent can be, but is not limited to, a µ-opioid agonist, a non-opioid analgesic, a non-steroidal anti-inflammatory agent, a Cox-II inhibitor, an anti-emetic, a β-adrenergic blocker, an anticonvulsant, an antidepressant, a Ca\(^{2+}\)-channel blocker, an anticancer agent, or a mixture thereof.

Compounds of the Invention potently bind to the µ and/or κ and/or δ and/or ORL-1 opioid receptors. Compounds of the Invention can be modulators at the µ and/or κ and/or δ and/or ORL-1 opioid receptors, and therefore Compounds of the Invention can be used/administered to treat, ameliorate, or prevent pain.

In some embodiments, Compounds of the Invention are antagonists of one or more opioid receptors. In another embodiment, Compounds of the Invention are antagonists of the µ and/or κ opioid receptors.

In some embodiments, Compounds of the Invention are partial agonists of one or more opioid receptors. In another embodiment, Compounds of the Invention are partial agonists of the µ and/or κ opioid receptors.

In another embodiments, Compounds of the Invention are agonists of one or more opioid receptors. In another embodiment, Compounds of the Invention are agonists of the µ and/or κ opioid receptors.
In some embodiments, Compounds of the Invention have both: (i) antagonist activity at the ORL-1 receptor; and (ii) agonist activity at one or more of the µ, δ and/or κ receptors. In another embodiments, Compounds of the Invention have both: (i) antagonist activity at the ORL-1 receptor; and (ii) agonist activity at the µ receptor. In another embodiments, Compounds of the Invention have both: (i) antagonist activity at the µ receptor; and (ii) agonist activity at the κ receptor. In another embodiments, Compounds of the Invention have: (i) antagonist activity at the ORL-1 receptor; (ii) antagonist activity at the µ receptor; and (iii) agonist activity at the κ receptor. In another embodiments, Compounds of the Invention have: (i) antagonist activity at the µ receptor; (ii) agonist activity at the κ receptor; and (iii) antagonist activity at the δ receptor.

Compounds of the Invention that are antagonists of the µ-opioid receptor or agonists of κ-opioid receptor, or both, can be used/administered to treat or ameliorate constipation. Compounds of the Invention that are agonists of µ-opioid receptor can be used/administered to treat or ameliorate diarrhea.

Compounds of the Invention can be used to treat or prevent acute, chronic pain (which includes but is not limited to, neuropathic pain, postoperative pain, and inflammatory pain), or surgical pain. Examples of pain that can be treated or prevented using a Compound of the Invention include, but are not limited to, cancer pain, neuropathic pain, labor pain, myocardial infarction pain, pancreatic pain, colic pain, post-operative pain, headache pain, muscle pain, arthritic pain, and pain associated with a periodontal disease, including gingivitis and periodontitis.

Acute pain includes, but is not limited to, perioperative pain, postoperative pain, post-traumatic pain, acute disease related pain, and pain related to diagnostic procedures, orthopedic manipulations, and myocardial infarction. Acute pain in the perioperative setting includes pain because of pre-existing disease, the surgical procedure, e.g., associated drains, chest or nasogastric tubes, or complications, or a combination of disease-related and procedure-related sources.

Chronic pain includes, but is not limited to, inflammatory pain, postoperative pain, cancer pain, osteoarthritis pain associated with metastatic cancer, trigeminal neuralgia, acute herpetic and postherpetic neuralgia, diabetic neuropathy, causalgia, brachial plexus avulsion, occipital neuralgia, reflex sympathetic dystrophy, fibromyalgia, gout, phantom limb pain, burn pain, and other forms of neuralgia, neuropathic, and idiopathic pain syndromes.
Compounds of the Invention can be used to treat or prevent pain associated with inflammation or with an inflammatory disease in a patient. Such pain can arise where there is an inflammation of the body tissue which can be a local inflammatory response or a systemic inflammation. For example, a Compound of the Invention can be used to treat or prevent pain associated with inflammatory diseases including, but not limited to, organ transplant rejection; reoxygenation injury resulting from organ transplantation (see Grupp et al., J. Mol. Cell Cardiol. 31:297-303 (1999)) including, but not limited to, transplantation of the heart, lung, liver, or kidney; chronic inflammatory diseases of the joints, including arthritis, rheumatoid arthritis, osteoarthritis and bone diseases associated with increased bone resorption; inflammatory bowel diseases, such as ileitis, ulcerative colitis, Barrett's syndrome, and Crohn's disease; inflammatory lung diseases, such as asthma, adult respiratory distress syndrome, and chronic obstructive airway disease; inflammatory diseases of the eye, including corneal dystrophy, trachoma, onchocerciasis, uveitis, sympathetic ophthalmitis and endophthalmitis; chronic inflammatory disease of the gum, including gingivitis and periodontitis; tuberculosis; leprosy; inflammatory diseases of the kidney, including uremic complications, glomerulonephritis and nephrosis; inflammatory disease of the skin, including sclerodermatitis, psoriasis and eczema; inflammatory diseases of the central nervous system, including chronic demyelinating diseases of the nervous system, multiple sclerosis, AIDS-related neurodegeneration and Alzheimer's disease, infectious meningitis, encephalomyelitis, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and viral or autoimmune encephalitis; autoimmune diseases, including Type I and Type II diabetes mellitus; diabetic complications, including, but not limited to, diabetic cataract, glaucoma, retinopathy, nephropathy (such as microaluminuria and progressive diabetic nephropathy), gangrene of the feet, atherosclerotic coronary arterial disease, peripheral arterial disease, nonketotic hyperglycemic-hyperosmolar coma, foot ulcers, joint problems, and a skin or mucous membrane complication (such as an infection, a shin spot, a candidal infection or necrobiosis lipoidica diabeticorum), immune-complex vasculitis, and systemic lupus erythematosus (SLE); inflammatory disease of the heart, such as cardiomyopathy, ischemic heart disease hypercholesterolemia, and atherosclerosis; as well as various other diseases that can have significant inflammatory components, including preeclampsia, chronic liver failure, brain and spinal cord trauma, and cancer. Compounds of the Invention can also be used to treat or prevent pain associated with inflammatory disease that can, for
example, be a systemic inflammation of the body, exemplified by gram-positive or gram negative shock, hemorrhagic or anaphylactic shock, or shock induced by cancer chemotherapy in response to pro-inflammatory cytokines, e.g., shock associated with pro-inflammatory cytokines. Such shock can be induced, e.g., by a chemotherapeutic agent that is administered as a treatment for cancer.

Compounds of the Invention can be used to treat or prevent pain associated with nerve injury (i.e., neuropathic pain). Chronic neuropathic pain is a heterogenous disease state with an unclear etiology. In chronic pain, the pain can be mediated by multiple mechanisms. This type of pain generally arises from injury to the peripheral or central nervous tissue. The syndromes include pain associated with spinal cord injury, multiple sclerosis, post-herpetic neuralgia, trigeminal neuralgia, phantom pain, causalgia, and reflex sympathetic dystrophy and lower back pain. The chronic pain is different from acute pain in that chronic neuropathic pain patients suffer the abnormal pain sensations that can be described as spontaneous pain, continuous superficial burning and/or deep aching pain. The pain can be evoked by heat-, cold-, and mechano-hyperalgesia or by heat-, cold-, or mechano-allodynia.

Chronic neuropathic pain can be caused by injury or infection of peripheral sensory nerves. It includes, but is not limited to pain from peripheral nerve trauma, herpes virus infection, diabetes mellitus, causalgia, plexus avulsion, neuroma, limb amputation, and vasculitis. Neuropathic pain can also be caused by nerve damage from chronic alcoholism, human immunodeficiency virus infection, hypothyroidism, uremia, or vitamin deficiencies. Stroke (spinal or brain) and spinal cord injury can also induce neuropathic pain. Cancer-related neuropathic pain results from tumor growth compression of adjacent nerves, brain, or spinal cord. In addition, cancer treatments, including chemotherapy and radiation therapy, can cause nerve injury. Neuropathic pain includes but is not limited to pain caused by nerve injury such as, for example, the pain from which diabetics suffer.

Compounds of the Invention can be used to treat or prevent pain associated with migraine including, but not limited to, migraine without aura ("common migraine"), migraine with aura ("classic migraine"), migraine without headache, basilar migraine, familial hemiplegic migraine, migraineous infarction, and migraine with prolonged aura.

Compounds of the Invention can also be used as an agent to treat or prevent withdrawal from alcohol addiction or drug addiction; as an agent to treat or prevent...
addictive disorders; as an agent to treat a pruritic condition; and in treating or ameliorating constipation and diarrhea.

The present invention is also directed to the use of a compound represented by any of defined Formulae I-IV and V, or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for treating a disorder responsive to the modulation of one or more opioids receptors (e.g., any of the disorders listed above) in a patient suffering from said disorder.

Furthermore, the present invention is directed to a method of modulating, in particular activating, one or more opioid receptors in a patient in need thereof, said method comprising administering to the patient at least one compound represented by any of defined Formulae I-IV and V, or a pharmaceutically acceptable salt or solvate thereof.

The present invention is also directed to the use of a compound represented by any of defined Formulae I-IV and V, or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament, in particular a medicament for modulating, in particular activating, one or more opioid receptors, in a patient in need thereof.

Synthesis of Compounds

Compounds of the Invention can be prepared using methods known to those skilled in the art in view of this disclosure, or by illustrative methods shown in the schemes below. For example, Compounds of the Invention can be prepared as shown in the Schemes A-C below. Additional methods of synthesis are described and illustrated in the working examples set forth below.

Scheme A
Compound A can be prepared, for example, as described in International Patent Application Publication WO 2013/007796 Al. R' can be, for example, a suitable alkyl group (such as methyl or ethyl) or a cycloalkyl group (such as cyclopropyl). Compound C is prepared as a mixture of isomers by heating Compound A with an excess of an α,β-unsaturated aldehyde, such as Compound B, wherein R^la, R^lb, and R^lc are as defined above in connection with Formula I, in a suitable solvent, such as toluene. The isomers are separated by a suitable technique such as column chromatography to give Compound D and Compound E.

Scheme B

[0329] Compound E is prepared by hydrogenation of Compound D in a suitable solvent, such as EtOH, in the presence of a suitable catalyst, such as Pd/C. Compound F is prepared by reduction of the aldehyde group in Compound E by a suitable reducing agent, such as NaBH₄, in a suitable solvent, such as EtOH. Compound F is further reduced to Compound G by a suitable reducing agent, such as LAH, in a suitable solvent such as THF. Compound I is prepared by reaction of Compound G with a suitable alkylating agent, such as Compound H, where T is a suitable leaving group such as halogen, tosylate, mesylate or triflate, and R'' is Y(W¹)(W²) or W¹ as defined above in connection with Formula I, in a suitable solvent, such as DMF in the presence of a suitable base, such as sodium hydride.

Scheme C
Compound G is oxidized to Compound J by reaction with a suitable oxidizing agent, such as TPAP, with or without a co-oxidant, such as NMO, in a suitable solvent, such as DCM. Compound L is prepared by reductive amination of Compound J with a suitable amine, such as Compound K, where $R''$ is $Y(W')(W^2)$ or $W^1$ as defined above in connection with Formula I, in a suitable solvent, such as MeOH in the presence of a suitable reducing agent, such as NaBH$_3$CN.

Subsequent side chain modifications can be accomplished via appropriate functional group manipulations known to one skilled in the art.

**In vitro Assay Protocols**

**µ-Opioid Receptor Binding Assay Procedures:** Radioligand dose-displacement binding assays for µ-opioid receptors used 0.3 nM [³H]-diprenorphine (Perkin Elmer, Shelton, CT), with 5 mg membrane protein/well in a final volume of 500 μl binding buffer (10 mM MgCl$_2$, 1 mM EDTA, 5% DMSO, 50 mM HEPES, pH 7.4). Reactions were carried out in the absence or presence of increasing concentrations of unlabeled naloxone. All reactions were conducted in 96-deep well polypropylene plates for 2 hours at room temperature. Binding reactions were terminated by rapid filtration onto 96-well Unifilter GF/C filter plates (Perkin Elmer, Shelton, CT), presoaked in 0.5% polyethylenimine using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by performing three filtration washes with 500 μl of ice-cold binding buffer. Filter plates were subsequently dried at 50 °C for 2-3 hours. BetaScint scintillation cocktail (Perkin Elmer, Shelton, CT) was added (50 μl/well), and plates were counted using a Packard Top-Count for 1 min/well. The data were analyzed using the one-site competition curve fitting functions in GraphPad PRISM™ v. 3.0 or higher (San Diego, Calif), or an in-house function for one-site competition curve-fitting.

**µ-Opioid Receptor Binding Data:** Generally, the lower the K, value, the more effective Compounds of the Invention will be at treating or preventing pain or another
Condition. In certain embodiments, Compounds of the Invention exhibit a $K_i$ (nM) of about 10,000 or less for binding to $\mu$-opioid receptors. Typically, Compounds of the Invention exhibit a $K_i$ (nM) of about 1000 or less for binding to $\mu$-opioid receptors. In one embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of about 300 or less for binding to $\mu$-opioid receptors. In another embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of about 100 or less for binding to $\mu$-opioid receptors. In another embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of about 10 or less for binding to $\mu$-opioid receptors. In still another embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of about 1 or less for binding to $\mu$-opioid receptors. In still another embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of about 0.1 or less for binding to $\mu$-opioid receptors.

**[0334]** **$\mu$-Opioid Receptor Functional Assay Procedures:** $[^{35}\text{S}]\text{GTPyS}$ functional assays were conducted using freshly thawed $\mu$-receptor membranes prepared in-house from a cell line expressing recombinant $\mu$ opioid receptor in a HEK-293, CHO or U-2 OS cell background or purchased from a commercial source (Perkin Elmer, Shelton, CT; or DiscovRx, Fremont, CA). Assay reactions were prepared by sequentially adding the following reagents to binding buffer (100 mM NaCl, 10 mM MgCl$_2$, 20 mM HEPES, pH 7.4) on ice (final concentrations indicated): membrane protein (0.026 mg/mL), saponin (10 mg/mL), GDP (3 mM) and $[^{35}\text{S}]\text{GTPyS}$ (0.20 nM; Perkin Elmer, Shelton, CT). The prepared membrane solution (190 $\mu$L/well) was transferred to 96-shallow well polypropylene plates containing 10 $\mu$L of 20x concentrated stock solutions of the agonist [D-Ala$^2$, N-methyl-Phe$^4$ Gly-$\text{ol}^5$]-enkephalin (DAMGO) prepared in dimethyl sulfoxide (DMSO). Plates were incubated for 30 min at about 25°C with shaking. Reactions were terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by three filtration washes with 200 $\mu$L of ice-cold wash buffer (10 mM NaH$_2$P0$_4$, 10 mM Na$_2$HP0$_4$, pH 7.4). Filter plates were subsequently dried at 50°C for 2-3 hours. BetaScint scintillation cocktail (Perkin Elmer, Shelton, CT) was added (50 $\mu$L/well) and plates were counted using a Packard Top-Count for 1 min/well. Data were analyzed using the sigmoidal dose-response curve fitting functions in GraphPad PRISM v. 3.0, or an in-house function for non-linear, sigmoidal dose-response curve-fitting. $[^{35}\text{S}]\text{GTPyS}$ functional assays can also be conducted using freshly thawed $\mu$-receptor membranes prepared from a cell line expressing recombinant $\mu$ opioid receptor in a CHO-K1 cell background.
µ-Opioid Receptor Functional Data: µ GTP EC<sub>50</sub> is the concentration of a compound providing 50% of the maximal response for the compound at a µ-opioid receptor. Typically, Compounds of the Invention exhibit a µ GTP EC<sub>50</sub> (nM) of about 5000 or less. In certain embodiments, Compounds of the Invention exhibit a µ GTP EC<sub>50</sub> (nM) of about 2000 or less; or about 1000 or less; or about 100 or less; or about 10 or less; or about 1 or less; or about 0.1 or less.

µ GTP E<sub>max</sub> (%) is the maximal effect elicited by a compound relative to the effect elicited by DAMGO, a standard µ agonist. Generally, the µ GTP E<sub>max</sub> (%) value measures the efficacy of a compound to treat or prevent pain or other Conditions. Typically, Compounds of the Invention exhibit a µ GTP E<sub>max</sub> (%) of greater than about 10%; or greater than about 20%. In certain embodiments, Compounds of the Invention exhibit a µ GTP Emax (%) of greater than about 50%; or greater than about 65%; or greater than about 75%; or greater than about 85%; or greater than about 100%.

κ-Opioid Receptor Binding Assay Procedures: Membranes from HEK-293, CHO or U-2 OS cells expressing the recombinant human kappa opioid receptor (κ) were prepared by lysing cells in ice cold hypotonic buffer (2.5 mM MgCl<sub>2</sub>, 50 mM HEPES, pH 7.4) (10 mL/10 cm dish) followed by homogenization with a tissue grinder/Teflon pestle. Membranes from a cell line naturally expressing kappa opioid receptor can also be used. Membranes were collected by centrifugation at 30,000 x g for 15 min at 4°C and pellets were resuspended in hypotonic buffer to a final concentration of 1-3 mg/mL. Protein concentrations were determined using the BioRad protein assay reagent with bovine serum albumen as standard. Aliquots of κ receptor membranes were stored at -80 °C.

Radioligand dose displacement assays used 0.4 nM [³H]-U69,593 (GE Healthcare, Piscataway, NJ; 40 Ci/mmole) with 15 µg membrane protein (recombinant κ opioid receptor expressed in HEK 293 cells; in-house prep) in a final volume of 200 µl binding buffer (5% DMSO, 50 mM Trizma base, pH 7.4). Non-specific binding was determined in the presence of 10 µM unlabeled naloxone or U69,593. All reactions were performed in 96-well polypropylene plates for 1 hour at a temperature of about 25°C. Binding reactions were terminated by rapid filtration onto 96-well Unifilter GF/C filter plates (Perkin Elmer, Shelton, CT) presoaked in 0.5% polyethyleneimine (Sigma). Harvesting was performed using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by five filtration washes with 200 µl ice-cold binding buffer. Filter plates were subsequently dried at 50°C for 1-2 hours. Fifty µl/well scintillation cocktail
(Perkin Elmer, Shelton, CT) was added and plates were counted in a Packard Top-Count for 1 min/well.

**κ-Opioid Receptor Binding Data:** In certain embodiments, Compounds of the Invention exhibit a $K_i$ (nM) for κ receptors of about 10,000 or more (which, for purposes of this invention, is interpreted as having no binding to the κ receptors). Certain Compounds of the Invention exhibit a $K_i$ (nM) of about 20,000 or less for κ receptors. In certain embodiments, Compounds of the Invention exhibit a $K_i$ (nM) of about 10,000 or less; or about 5000 or less; or about 1000 or less; or about 500 or less; or about 450 or less; or about 350 or less; or about 200 or less; or about 100 or less; or about 50 or less; or about 10 or less; or about 1 or less; or about 0.1 or less for κ receptors.

**κ-Opioid Receptor Functional Assay Procedures:** Functional $[^{35}S]GTPyS$ binding assays were conducted as follows. κ opioid receptor membrane solution was prepared by sequentially adding final concentrations of 0.026 µg/µl κ membrane protein (in-house), 10 µg/mL saponin, 3 µM GDP and 0.20 nM $[^{35}S]GTPyS$ to binding buffer (100 mM NaCl, 10 mM MgCl$_2$, 20 mM HEPES, pH 7.4) on ice. The prepared membrane solution (190 µl/well) was transferred to 96-shallow well polypropylene plates containing 10 µl of 20x concentrated stock solutions of agonist prepared in DMSO. Plates were incubated for 30 min at a temperature of about 25°C with shaking. Reactions were terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Packard) and followed by three filtration washes with 200 µl ice-cold binding buffer (10 mM Na$_2$P$_2$O$_4$, 10 mM Na$_2$HP0$_4$, pH 7.4). Filter plates were subsequently dried at 50°C for 2-3 hours. Fifty µl/well scintillation cocktail (Perkin Elmer, Shelton, CT) was added and plates were counted in a Packard Top-Count for 1 min/well.

**κ-Opioid Receptor Functional Data:** κ GTP $EC_{50}$ is the concentration of a compound providing 50% of the maximal response for the compound at a κ receptor. Certain Compounds of the Invention exhibit a κ GTP $EC_{50}$ (nM) of about 20,000 or less to stimulate κ opioid receptor function. In certain embodiments, Compounds of the Invention exhibit a κ GTP $EC_{50}$ (nM) of about 10,000 or less; or about 5000 or less; or about 2000 or less; or about 1500 or less; or about 1000 or less; or about 600 or less; or about 100 or less; or about 50 or less; or about 25 or less; or about 10 or less; or about 1 or less; or about 0.1 or less.
κ GTP $E_{\text{max}}$ (%) is the maximal effect elicited by a compound relative to the
effect elicited by U69,593. Certain Compounds of the Invention exhibit a κ GTP $E_{\text{max}}$
(%) of greater than about 1%; or greater than about 5%; or greater than about 10%; or
greater than about 20%. In certain embodiments, Compounds of the Invention exhibit a
κ GTP $E_{\text{max}}$ (%) of greater than about 50%; or greater than about 75%; or greater than
about 90%; or greater than about 100%.

δ-Opioid Receptor Binding Assay Procedures: δ-Opioid Receptor Binding
Assay Procedures are conducted as follows. Radioligand dose-displacement assays can
use 0.3 nM $[^3]$H-Naltrindole (Perkin Elmer, Shelton, CT; 33.0 Ci/mmole) with 5 µg
membrane protein (Perkin Elmer, Shelton, CT) in a final volume of 500 µl binding
buffer (5 mM MgCl$_2$, 5% DMSO, 50 mM Trizma base, pH 7.4). Non-specific binding
is determined in the presence of 25 µM unlabeled naloxone. All reactions are
performed in 96-deep well polypropylene plates for 1 hour at a temperature of about
25°C. Binding reactions are terminated by rapid filtration onto 96-well Unifilter GF/C
filter plates (Perkin Elmer, Shelton, CT) presoaked in 0.5% polyethylenimine (Sigma).
Harvesting is performed using a 96-well tissue harvester (Perkin Elmer, Shelton, CT)
followed by five filtration washes with 500 µl ice-cold binding buffer. Filter plates are
subsequently dried at 50°C for 1-2 hours. Fifty µl/well scintillation cocktail (Perkin
Elmer, Shelton, CT) is added and plates are counted in a Packard Top-Count for 1
min/well.

δ-Opioid Receptor Binding Data: In certain embodiments, Compounds of the
Invention exhibit a $K_j$ (nM) for δ receptors of about 10,000 or more (which, for the
purposes of this invention, is interpreted as having no binding to the δ receptors).
Certain Compounds of the Invention exhibit a $K_i$ (nM) of about 20,000 or less for δ
receptors. In one embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of about
10,000 or less; or of about 9000 or less for δ receptors. In another embodiment,
Compounds of the Invention exhibit a $K_i$ (nM) of about 7500 or less; or of about 6500
or less; or of about 5000 or less; or of about 3000 or less; or of about 2500 or less for δ
receptors. In another embodiment, Compounds of the Invention exhibit a $K_i$ (nM) of
about 1000 or less; or of about 500 or less; or of about 350 or less; or of about 250 or
less; or of about 100 or less; or of about 10 or less for δ receptors.

binding assays are conducted as follows. δ opioid receptor membrane solution is
prepared by sequentially adding final concentrations of 0.026 µg/µl δ membrane protein
(Perkin Elmer, Shelton, CT), 10 μg/mL saponin, 3 μM GDP and 0.20 nM [\(^{35}\)S]GTPyS to binding buffer (100 mM NaCl, 10 mM MgCl\(_2\), 20mM HEPES, pH 7.4) on ice. The prepared membrane solution (190 μl/well) is transferred to 96-shallow well polypropylene plates containing 10 μl of 20x concentrated stock solutions of agonist prepared in DMSO. Plates are incubated for 30 min at a temperature of about 25°C with shaking. Reactions are terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Packard) and followed by three filtration washes with 200 μl ice-cold binding buffer (10 mM NaH\(_2\)PO\(_4\), 10 mM Na\(_2\)HP0\(_4\), pH 7.4). Filter plates are subsequently dried at 50°C for 1-2 hours. Fifty μl/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-count for 1 min/well.

**δ-Opioid Receptor Functional Data:** δ GTP EC\(_{50}\) is the concentration of a compound providing 50% of the maximal response for the compound at a δ receptor. Certain Compounds of the Invention exhibit a δ GTP EC\(_{50}\) (nM) of about 20,000 or less; or about 10,000 or less. In certain embodiments, Compounds of the Invention exhibit a δ GTP EC\(_{50}\) (nM) of about 3500 or less; or of about 1000 or less; or of about 500 or less; or of about 100 or less; or of about 90 or less; or of about 50 or less; or of about 25 or less; or of about 10 or less.

δ GTP E\(_{\text{max}}\) (%) is the maximal effect elicited by a compound relative to the effect elicited by met-enkephalin. Certain Compounds of the Invention exhibit a δ GTP E\(_{\text{max}}\) (%) of greater than about 1%; or of greater than about 5%; or of greater than about 10%. In one embodiment, Compounds of the Invention exhibit a δ GTP E\(_{\text{max}}\) (%) of greater than about 30%. In another embodiment, Compounds of the Invention exhibit a δ GTP E\(_{\text{max}}\) (%) of greater than about 50%; or of greater than about 75%; or of greater than about 90%. In another embodiment, Compounds of the Invention exhibit a δ GTP E\(_{\text{max}}\) (%) of greater than about 100%.

**ORL-1 Receptor Binding Assay Procedure:** Membranes from recombinant HEK-293 cells expressing the human opioid receptor-like receptor (ORL-1) (Perkin Elmer, Shelton, CT) can be prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM MgCl\(_2\), 50 mM HEPES, pH 7.4) (10 ml/10 cm dish) followed by homogenization with a tissue grinder/Teflon pestle. Membranes are collected by centrifugation at 30,000 x g for 15 min at 4°C and pellets resuspended in hypotonic buffer to a final concentration of 1-3 mg/ml. Protein concentrations are determined using the BioRad
protein assay reagent with bovine serum albumen as standard. Aliquots of the ORL-1 receptor membranes are stored at -80°C.

[0349] Radioligand binding assays (screening and dose-displacement) use 0.1 nM [³H]-nociceptin (Perkin Elmer, Shelton, CT; 87.7 Ci/m mole) with 12 µg membrane protein in a final volume of 500 µl binding buffer (10 mM MgCl₂, 1 mM EDTA, 5% DMSO, 50 mM HEPES, pH 7.4). Non-specific binding is determined in the presence of 10 nM unlabeled nociceptin (American Peptide Company). All reactions are performed in 96-deep well polypropylene plates for 1 h at room temperature. Binding reactions are terminated by rapid filtration onto 96-well Unifilter GF/C filter plates (Perkin Elmer, Shelton, CT) presoaked in 0.5% polyethyleneimine (Sigma). Harvesting is performed using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by three filtration washes with 500 µl ice-cold binding buffer. Filter plates are subsequently dried at 50°C for 2-3 hours. Fifty µl/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-Count for 1 min/well. The data from screening and dose-displacement experiments are analyzed using Microsoft Excel and the curve fitting functions in GraphPad PRISM™, v. 3.0 or higher, respectively, or an in-house function for one-site competition curve-fitting.

[0350] **ORL-1 Receptor Binding Data:** Certain Compounds of the Invention can have a Kᵢ (nM) of about 5000 or less. In one embodiment, certain Compounds of the Invention can have a Kᵢ (nM) of about 1000 or less. In one embodiment, certain Compounds of the Invention can have a Kᵢ (nM) of about 500 or less. In other embodiments, the Compounds of the Invention can have a Kᵢ (nM) of about 300 or less; or of about 100 or less; or of about 50 or less; or of about 20 or less. In yet other embodiments, the Compounds of the Invention can have a Kᵢ (nM) of about 10 or less; or of about 1 or less; or of about 0.1 or less.

[0351] **ORL-1 Receptor Functional Assay Procedure:** Membranes from recombinant HEK-293 cells expressing the human opioid receptor-like (ORL-1) (Perkin Elmer, Shelton, CT) can be prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM Mg Cl₂, 50 mM HEPES, pH 7.4) (10 ml/10 cm dish) followed by homogenization with a tissue grinder/Teflon pestle. Membranes are collected by centrifugation at 30,000 x g for 15 min at 4°C, and pellets resuspended in hypotonic buffer to a final concentration of 1-3 mg/ml. Protein concentrations are determined using the BioRad protein assay reagent with bovine serum albumen as standard. Aliquots of the ORL-1 receptor membranes are stored at -80°C.
Functional $[^{35}\text{S}]$GTPyS binding assays are conducted as follows. ORL-1 membrane solution is prepared by sequentially adding final concentrations of 0.026 μg/μl ORL-1 membrane protein, 10 μg/ml saponin, 3 μM GDP and 0.20 nM $[^{35}\text{S}]$GTPyS to binding buffer (100 mM NaCl, 10 mM MgCl$_2$, 20 mM HEPES, pH 7.4) on ice. The prepared membrane solution (190 μl/well) is transferred to 96-shallow well polypropylene plates containing 10 μl of 20x concentrated stock solutions of agonist/nociceptin prepared in DMSO. Plates are incubated for 30 min at room temperature with shaking. Reactions are terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Packard) and followed by three filtration washes with 200 μl ice-cold binding buffer (10 mM NaH$_2$PO$_4$, 10 mM Na$_2$HP0$_4$, pH 7.4). Filter plates are subsequently dried at 50°C for 2-3 hours. Fifty μl/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-Count for 1 min/well. Data are analyzed using the sigmoidal dose-response curve fitting functions in GraphPad PRISM v. 3.0 or higher, or an in-house function for non-linear, sigmoidal dose-response curve-fitting.

**ORL-1 Receptor Functional Data:** ORL-1 GTP EC$_{50}$ is the concentration of a compound providing 50% of the maximal response for the compound at an ORL-1 receptor. In certain embodiments, the Compounds of the Invention that have a high binding affinity (i.e. low K$_i$ value) can have an ORL-1 GTP EC$_{50}$ (nM) of greater than about 10,000 (i.e. will not stimulate at therapeutic concentrations). In certain embodiments Compounds of the Invention can have an ORL-1 GTP EC$_{50}$ (nM) of about 20,000 or less. In one embodiment, the Compounds of the Invention can have an ORL-1 GTP EC$_{50}$ (nM) of about 10,000 or less; or of about 5000 or less; or of about 1000 or less. In still other embodiments, the Compounds of the Invention can have an ORL-1 GTP EC$_{50}$ (nM) of about 100 or less; or of about 10 or less; or of about 1 or less; or of about 0.1 or less.

ORL-1 GTP E$_{\text{max}}$ % is the maximal effect elicited by a compound relative to the effect elicited by nociceptin, a standard ORL-1 agonist. In certain embodiments, Compounds of the Invention can have an ORL-1 GTP E$_{\text{max}}$ of less than 10% (which, for the purposes of this invention, is interpreted as having antagonist activity at ORL-1 receptors). Certain Compounds of the Invention can have an ORL-1 GTP E$_{\text{max}}$ (%) of greater than 1%; or of greater than 5%; or of greater than 10%. In other embodiments, Compounds of the Invention can have an ORL-1 GTP E$_{\text{max}}$ of greater than 20%; or of
greater than 50%; or of greater than 75%; or of greater than 88%; or of greater than 100%.

In Vivo Assays for Pain

[0355] Test Animals: Each experiment uses rats weighing between 200-260 g at the start of the experiment. The rats are group-housed and have free access to food and water at all times, except prior to oral administration of a Compound of the Invention when food is removed for about 16 hours before dosing. A control group acts as a comparison to rats treated with a Compound of the Invention. The control group is administered the carrier for the Compound of the Invention. The volume of carrier administered to the control group is the same as the volume of carrier and Compound of the Invention administered to the test group.

[0356] Acute Pain: To assess the actions of a Compound of the Invention for the treatment or prevention of acute pain, the rat tail flick can be used. Rats are gently restrained by hand and the tail exposed to a focused beam of radiant heat at a point 5 cm from the tip using a tail flick unit (Model 7360, commercially available from Ugo Basile of Italy). Tail flick latencies are defined as the interval between the onset of the thermal stimulus and the flick of the tail. Animals not responding within 20 seconds are removed from the tail flick unit and assigned a withdrawal latency of 20 seconds. Tail flick latencies are measured immediately before (pre-treatment) and 1, 3, and 5 hours following administration of a Compound of the Invention. Data are expressed as tail flick latency(s) and the percentage of the maximal possible effect (% MPE), i.e., 20 seconds, is calculated as follows:
\[
\% \text{ MPE} = \frac{\text{post administration latency} - \text{pre-administration latency}}{\text{pre-administration latency}} \times 100
\]


[0358] To assess the actions of a Compound of the Invention for the treatment or prevention of acute pain, the rat hot plate test can also be used. Rats are tested using a hot plate apparatus consisting of a clear plexiglass cylinder with a heated metal floor maintained at a temperature of 48-52 °C (Model 7280, commercially available from Ugo Basile of Italy). A rat is placed into the cylinder on the hot plate apparatus for a maximum duration of 30 s, or until it exhibits a nocifensive behavior (behavioral endpoint), at which time it is removed from the hot plate, and the response latency recorded. Hot plate latencies are measured immediately before (pre-treatment) and 1, 3, and 5 hours following administration of a Compound of the Invention. The nocifensive behavioral endpoint is defined as any of the following: 1) paw withdrawal, either as a sustained lift or with shaking or licking; 2) alternating foot lifting; 3) escape or attempted escape from the testing device; or 4) vocalization. Data are expressed as response latency(s) and the percentage of the maximal possible effect is calculated as described above for the tail flick test. The hot plate test is described in G. Woolfe and A.D. MacDonald, *J. Pharmacol. Exp. Ther.* 50:300-307 (1944).

[0359] **Inflammatory Pain:** To assess the actions of a Compound of the Invention for the treatment or prevention of inflammatory pain, the Freund's complete adjuvant ("FCA") model of inflammatory pain can be used. FCA-induced inflammation of the rat hind paw is associated with the development of persistent inflammatory mechanical hyperalgesia and provides reliable prediction of the anti-hyperalgesic action of clinically useful analgesic drugs (L. Bartho *et al.*, "Involvement of Capsaicin-sensitive Neurones in Hyperalgesia and Enhanced Opioid Antinociception in Inflammation," *Naunyn-Schmiedeberg's Archives of Pharmacol.* 342:666-610 (1990)). The left hind paw of each animal is administered a 50 μL intraplantar injection of 50% FCA. Prior to injection of FCA (baseline) and 24 hour post injection, the animal is assessed for response to noxious mechanical stimuli by determining the PWT, as described below. Rats are then administered a single injection of 1, 3, or 10 mg/kg of either a Compound of the Invention; 30mg/kg of a control drug selected from Celebrex, indomethacin or
naproxen; or carrier. Responses to noxious mechanical stimuli are determined 1, 3, 5 and 24 hours post administration. Percentage reversal of hyperalgesia for each animal is defined as:

\[
\text{% Reversal} = \frac{\text{(post administration PWT) - (pre-administration PWT)}}{\text{(baseline PWT) - (pre-administration PWT)}} \times 100
\]

[0360] **Neuropathic Pain:** To assess the actions of a Compound of the Invention for the treatment or prevention of neuropathic pain, either the Seltzer model or the Chung model can be used.

[0361] In the Seltzer model, the partial sciatic nerve ligation model of neuropathic pain is used to produce neuropathic hyperalgesia in rats (Z. Seltzer et al., "A Novel Behavioral Model of Neuropathic Pain Disorders Produced in Rats by Partial Sciatic Nerve Injury," *Pain* 45:205-218 (1990)). Partial ligation of the left sciatic nerve is performed under isoflurane/\(0.5\) inhalation anaesthesia. Following induction of anesthesia, the left thigh of the rat is shaved and the sciatic nerve exposed at high thigh level through a small incision and is carefully cleared of surrounding connective tissues at a site near the trocanther just distal to the point at which the posterior biceps semitendinosus nerve branches off of the common sciatic nerve. A 7-0 silk suture is inserted into the nerve with a 3/8 curved, reversed-cutting mini-needle and tightly ligated so that the dorsal \(\frac{V}{2}\) to \(\frac{1}{2}\) of the nerve thickness is held within the ligature. The wound is closed with a single muscle suture (4-0 nylon (Vicryl)) and vetbond tissue glue. Following surgery, the wound area is dusted with antibiotic powder. Sham-treated rats undergo an identical surgical procedure except that the sciatic nerve is not manipulated. Following surgery, animals are weighed and placed on a warm pad until they recover from anesthesia. Animals are then returned to their home cages until behavioral testing begins. The animal is assessed for response to noxious mechanical stimuli by determining PWT, as described below, prior to surgery (baseline), then immediately prior to and 1, 3, and 5 hours after drug administration. Percentage reversal of neuropathic hyperalgesia is defined as:
In the Chung model, the spinal nerve ligation model of neuropathic pain is used to produce mechanical hyperalgesia, thermal hyperalgesia and tactile allodynia in rats. Surgery is performed under isoflurane/\( O_2 \) inhalation anaesthesia. Following induction of anaesthesia, a 3 cm incision is made and the left paraspinal muscles are separated from the spinous process at the L_4 - S_2 levels. The L_6 transverse process is carefully removed with a pair of small rongeurs to identify visually the L_4 - L_6 spinal nerves. The left L_4 (or L_3 and L_6) spinal nerve(s) is isolated and tightly ligated with silk thread. A complete hemostasis is confirmed and the wound is sutured using non-absorbable sutures, such as nylon sutures or stainless steel staples. Sham-treated rats undergo an identical surgical procedure except that the spinal nerve(s) is not manipulated. Following surgery animals are weighed, administered a subcutaneous (s.c.) injection of saline or ringers lactate, the wound area is dusted with antibiotic powder and they are kept on a warm pad until they recover from the anesthesia. Animals are then returned to their home cages until behavioral testing begins. The animals are assessed for response to noxious mechanical stimuli by determining PWT, as described below, prior to surgery (baseline), then immediately prior to and 1, 3, and 5 hours after being administered a Compound of the Invention. The animal can also be assessed for response to noxious thermal stimuli or for tactile allodynia, as described below. The Chung model for neuropathic pain is described in S.H. Kim, "An Experimental Model for Peripheral Neuropathy Produced by Segmental Spinal Nerve Ligation in the Rat," Pain 50(3):355-363 (1992).

**Response to Mechanical Stimuli as an Assessment of Mechanical Hyperalgesia:** The paw pressure assay can be used to assess mechanical hyperalgesia. For this assay, hind paw withdrawal thresholds (PWT) to a noxious mechanical stimulus are determined using an analgesymeter (Model 7200, commercially available from Ugo Basile of Italy) as described in C. Stein, "Unilateral Inflammation of the Hindpaw in Rats as a Model of Prolonged Noxious Stimulation: Alterations in Behavior and Nociceptive Thresholds," Pharmacol. Biochem. and Behavior J:451-455 (1988). The rat is gently restrained, its hindpaw is placed on a small round platform, and punctate pressure is applied to the dorsal surface of the hindpaw in a graded manner. The
maximum weight that is applied to the hind paw is set at 250 g and the end point is taken as complete withdrawal of the paw. PWT is determined once for each rat at each time point and either only the affected (ipsilateral; same side as the injury) rear paw is tested, or both the ipsilateral and contralateral (non-injured; opposite to the injury) rear paw are tested.

Response to Thermal Stimuli as an Assessment of Thermal Hyperalgesia: The plantar test can be used to assess thermal hyperalgesia. For this test, hind paw withdrawal latencies to a noxious thermal stimulus applied to the plantar surface of the hindpaw are determined using a plantar test apparatus (commercially available from Ugo Basile of Italy) following the technique described by K. Hargreaves et al., "A New and Sensitive Method for Measuring Thermal Nociception in Cutaneous Hyperalgesia," *Pain* 32(1):77-88 (1988). The maximum exposure time is set at 32 seconds to avoid tissue damage and any directed paw withdrawal from the heat source is taken as the end point. Three latencies are determined at each time point and averaged. Either only the affected (ipsilateral) paw is tested, or both the ipsilateral and contralateral (non-injured) paw are tested.

Assessment of Tactile Allodynia: To assess tactile allodynia, rats are placed in clear, plexiglass compartments with a wire mesh floor and allowed to habituate for a period of at least 15 minutes. After habituation, a series of von Frey monofilaments are presented to the plantar surface of the affected (ipsilateral) foot of each rat. The series of von Frey monofilaments consists of six monofilaments of increasing diameter, with the smallest diameter fiber presented first. Five trials are conducted with each filament with each trial separated by approximately 2 minutes. Each presentation lasts for a period of 4-8 seconds or until a nociceptive withdrawal behavior is observed. Flinching, paw withdrawal or licking of the paw are considered nociceptive behavioral responses.

Assessment of Respiratory Depression: To assess respiratory depression, rats can be prepared by implanting a femoral artery cannula via which blood samples are taken. Blood samples are taken prior to drug administration, then 1, 3, 5 and 24 hours post-treatment. Blood samples are processed using an arterial blood gas analyzer (e.g., IDEXX VetStat with Respiratory/Blood Gas test cartridges). Comparable devices are a standard tool for blood gas analysis (e.g., D. Torbati et al, *Intensive Care Med.* (26): 585-591 (2000).

Assessment of Gastric Motility: Animals are treated with vehicle, reference compound or test article by oral gavage at a volume of 10 mL/kg. At one hour post-
dose, all animals are treated with charcoal meal solution (5% non-activated charcoal powder in a solution of 1% carboxymethylcellulose in water) at a volume of 10 mL/kg. At two hours post-dose (one hour post-charcoal), animals are sacrificed by carbon dioxide inhalation or isoflurane overdose and the transit of charcoal meal identified. The stomach and small intestine are removed carefully and each placed on a saline-soaked absorbent surface. The distance between the pylorus and the furthest progression of charcoal meal is measured and compared to the distance between the pylorus and the ileocecal junction. The charcoal meal transit is expressed as a percentage of small intestinal length traveled.

Pharmaceutical Compositions

Due to their activity, the Compounds of the Invention are advantageously useful in human and veterinary medicine. As described above, the Compounds of the Invention are useful for treating or preventing a Condition in a patient in need thereof. The Compounds of the Invention can be administered to any patient requiring modulation of the opioid receptors. The term "patient" as used herein refers to any animal that may experience the beneficial effects of a Compound of the Invention. Foremost such animals are mammals, e.g., humans and companion animals, although the invention is not intended to be so limited.

When administered to a patient, a Compound of the Invention can be administered as a component of a composition that comprises a pharmaceutically acceptable carrier or excipient. A Compound of the Invention can be administered by any appropriate route, as determined by the medical practitioner. Methods of administration may include intradermal, intramuscular, intraperitoneal, parenteral, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, buccal, intracerebral, intravaginal, transdermal, transmucosal, rectal, by inhalation, or topical (particularly to the ears, nose, eyes, or skin). Delivery can be either local or systemic. In certain embodiments, administration will result in the release of a Compound of the Invention into the bloodstream.

Pharmaceutical compositions of the invention can take the form of solutions, suspensions, emulsions, tablets, pills, pellets, powders, multi-particulates, capsules, capsules containing liquids, capsules containing powders, capsules containing multi-particulates, lozenges, sustained-release formulations, suppositories, transdermal patches, transmucosal films, sub-lingual tablets or tabs, aerosols, sprays, or any other
form suitable for use. In one embodiment, the composition is in the form of a tablet. In another embodiment, the composition is in the form of a capsule (see, e.g., U.S. Patent No. 5,698,155). Other examples of suitable pharmaceutical excipients are described in Remington's Pharmaceutical Sciences 1447-1676 (Alfonso R. Gennaro ed., 19th ed. 1995), incorporated herein by reference.

Pharmaceutical compositions of the invention preferentially comprise a suitable amount of a pharmaceutically acceptable excipient so as to provide the form for proper administration to the patient. Such a pharmaceutical excipient can be a diluent, suspending agent, solubilizer, binder, disintegrant, preservative, coloring agent, lubricant, and the like. The pharmaceutical excipient can be a liquid, such as water or an oil, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil, and the like. The pharmaceutical excipient can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating, and coloring agents can be used. In one embodiment, the pharmaceutically acceptable excipient is sterile when administered to a patient. Water is a particularly useful excipient when a Compound of the Invention is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid excipients, particularly for injectable solutions. Suitable pharmaceutical excipients also include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol, and the like. The invention compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. Specific examples of pharmaceutically acceptable carriers and excipients that can be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986).

In certain embodiments, the Compounds of the Invention are formulated for oral administration. A Compound of the Invention to be orally delivered can be in the form of tablets, capsules, gelcaps, caplets, lozenges, aqueous or oily solutions, suspensions, granules, powders, emulsions, syrups, or elixirs, for example. When a Compound of the Invention is incorporated into oral tablets, such tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, multiply compressed or multiply layered.
An orally administered Compound of the Invention can contain one or more additional agents such as, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, and stabilizers, to provide stable, pharmaceutically palatable dosage forms. Techniques and compositions for making solid oral dosage forms are described in *Pharmaceutical Dosage Forms: Tablets* (Lieberman, Lachman and Schwartz, eds., 2nd ed.) published by Marcel Dekker, Inc. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in *Remington's Pharmaceutical Sciences* 1553-1593 (Arthur Osol, ed., 16th ed., Mack Publishing, Easton, PA 1980). Liquid oral dosage forms include aqueous and nonaqueous solutions, emulsions, suspensions, and solutions and/or suspensions reconstituted from non-effervescent granules, optionally containing one or more suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, flavoring agents, and the like. Techniques and compositions for making liquid oral dosage forms are described in *Pharmaceutical Dosage Forms: Disperse Systems*, (Lieberman, Rieger and Banker, eds.) published by Marcel Dekker, Inc.

When a Compound of the Invention is formulated for parenteral administration by injection (*e.g.*, continuous infusion or bolus injection), the formulation can be in the form of a suspension, solution, or emulsion in an oily or aqueous vehicle, and such formulations can further comprise pharmaceutically necessary additives such as one or more stabilizing agents, suspending agents, dispersing agents, and the like. When a Compound of the Invention is to be injected parenterally, it can be, *e.g.*, in the form of an isotonic sterile solution. A Compound of the Invention can also be in the form of a powder for reconstitution as an injectable formulation.

In certain embodiments, a Compound of the Invention is formulated into a pharmaceutical composition for intravenous administration. Typically, such compositions comprise sterile isotonic aqueous buffer. Where necessary, the compositions can also include a solubilizing agent. A Compound of the Invention for intravenous administration can optionally include a local anesthetic such as benzocaine or prilocaine to lessen pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent. Where a Compound of the
Invention is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where a Compound of the Invention is administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.

When a Compound of the Invention is to be administered by inhalation, it can be formulated into a dry aerosol, or an aqueous or partially aqueous solution.

In another embodiment, a Compound of the Invention can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); and Treat et al., Liposomes in the Therapy of Infectious Disease and Cancer 317-327 and 353-365 (1989)).

In certain embodiments, a Compound of the Invention is administered locally. This can be achieved, for example, by local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository or enema, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

In certain embodiments, a Compound of the Invention can be delivered in an immediate release form. In other embodiments, a Compound of the Invention can be delivered in a controlled-release system or sustained-release system. Controlled- or sustained-release pharmaceutical compositions can have a common goal of improving drug therapy over the results achieved by their non-controlled or non-sustained-release counterparts. In one embodiment, a controlled- or sustained-release composition comprises a minimal amount of a Compound of the Invention to treat or prevent the Condition (or a symptom thereof) in a minimum amount of time. Advantages of controlled- or sustained-release compositions include extended activity of the drug, reduced dosage frequency, and increased compliance. In addition, controlled- or sustained-release compositions can favorably affect the time of onset of action or other characteristics, such as blood levels of the Compound of the Invention, and can thus reduce the occurrence of adverse side effects.

Controlled- or sustained-release compositions can initially immediately release an amount of a Compound of the Invention that promptly produces the desired therapeutic or prophylactic effect, and gradually and continually release other amounts of the Compound of the Invention to maintain a level of therapeutic or prophylactic
effect over an extended period of time. To maintain a constant level of the Compound of the Invention in the body, the Compound of the Invention can be released from the dosage form at a rate that will replace the amount of Compound of the Invention being metabolized and excreted from the body. Controlled- or sustained-release of an active ingredient can be stimulated by various conditions, including but not limited to, changes in pH, changes in temperature, concentration or availability of enzymes, concentration or availability of water, or other physiological conditions or compounds. **[0381]**

Controlled-release and sustained-release means for use according to the present invention may be selected from those known in the art. Examples include, but are not limited to, those described in U.S. Patent Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; 4,008,719; 5,674,533; 5,059,595; 5,591,767; 5,120,548; 5,073,543; 5,639,476; 5,354,556; and 5,733,566, each of which is incorporated herein by reference. Such dosage forms can be used to provide controlled- or sustained-release of one or more active ingredients using, for example, hydroxypropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, multiparticulates, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions. Suitable controlled- or sustained-release formulations known in the art, including those described herein, can be readily selected for use with the active ingredients of the invention in view of this disclosure. See also Goodson, "Dental Applications" (pp. 115-138) in *Medical Applications of Controlled Release, Vol. 2, Applications and Evaluation*, R.S. Langer and D.L. Wise eds., CRC Press (1984). Other controlled- or sustained-release systems that are discussed in the review by Langer, *Science* 249:1527-1533 (1990) can be selected for use according to the present invention. In one embodiment, a pump can be used (Langer, *Science* 249:1527-1533 (1990); Sefton, *CRC Crit. Ref Biomed. Eng.* 14:201 (1987); Buchwald et al, *Surgery* 88:501 (1980); and Saudek et al, *N. Engl. J. Med.* 321:571 (1989)). In another embodiment, polymeric materials can be used (see *Medical Applications of Controlled Release* (Langer and Wise eds., 1974); *Controlled Drug Bioavailability, Drug Product Design and Performance* (Smolen and Ball eds., 1984); Ranger and Peppas, *J. Macromol. Sci. Rev. Macromol. Chem.* 23:6\ (1983); Levy et al., *Science* 228:190 (1985); During et al., *Ann. Neurol.* 25:351 (1989); and Howard et al, *J. Neurosurg.* 77:105 (1989)). In yet another embodiment, a controlled- or sustained-release system can be placed in proximity of a target of a Compound of the
Invention, e.g., the spinal column, brain, or gastrointestinal tract, thus requiring only a fraction of the systemic dose.

When in tablet or pill form, a pharmaceutical composition of the invention can be coated to delay disintegration and absorption in the gastrointestinal tract, thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compositions. In these latter platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time-delay material such as glycerol monostearate or glycerol stearate can also be used. Oral compositions can include standard excipients such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, and magnesium carbonate. In one embodiment, the excipients are of pharmaceutical grade.

Pharmaceutical compositions of the invention include single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled- or sustained-release.

The amount of the Compound of the Invention that is effective for the treatment or prevention of a condition can be determined by standard clinical techniques. In addition, in vitro and/or in vivo assays can optionally be employed to help identify optimal dosage ranges. The precise dose to be employed will also depend on, e.g., the route of administration and the extent of the Condition to be treated, and can be decided according to the judgment of a practitioner and/or each patient's circumstances. Variations in dosing may occur depending upon typical factors such as the weight, age, gender and physical condition (e.g., hepatic and renal function) of the patient being treated, the affliction to be treated, the severity of the symptoms, the frequency of the dosage interval, the presence of any deleterious side-effects, and the particular compound utilized, among other things.

Suitable effective dosage amounts can range from about 0.01 mg/kg of body weight to about 3000 mg/kg of body weight of the patient per day, although they are typically from about 0.01 mg/kg of body weight to about 2500 mg/kg of body weight of the patient per day or from about 0.01 mg/kg of body weight to about 1000 mg/kg of body weight of the patient per day. In one embodiment, the effective dosage amount is about 100 mg/kg of body weight of the patient per day or less. In another embodiment,
the effective dosage amount ranges from about 0.01 mg/kg of body weight to about 100 mg/kg of body weight of the patient per day of a Compound of the Invention, in another embodiment, about 0.02 mg/kg of body weight to about 50 mg/kg of body weight of the patient per day, and in another embodiment, about 0.025 mg/kg of body weight to about 20 mg/kg of body weight of the patient per day.

Administration can be as a single dose or as a divided dose. In one embodiment, an effective dosage amount is administered about every 24 hours until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 12 hours until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 8 hours until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 6 hours until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 4 hours until the Condition is abated. The effective dosage amounts described herein refer to total amounts administered; that is, if more than one Compound of the Invention is administered, the effective dosage amounts correspond to the total amount administered.

Where a cell capable of expressing the μ-opioid receptors is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the μ-opioid receptors function in a cell can typically range from about 10⁻¹² mol/L to about 10⁻⁴ mol/L, or from about 10⁻¹² mol/L to about 10⁻⁵ mol/L, or from about 10⁻¹² mol/L to about 10⁻⁶ mol/L, or from about 10⁻¹² mol/L to about 10⁻⁹ mol/L of a solution or suspension of the Compound of the Invention in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention can be from about 0.01 μL to about 1 mL. In another embodiment, the volume of solution or suspension can be about 200 μL.

Where a cell capable of expressing the δ-opioid receptors is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the δ-opioid receptors function in a cell can typically range from about 10⁻¹² mol/L to about 10⁻⁴ mol/L, or from about 10⁻¹² mol/L to about 10⁻⁵ mol/L, or from about 10⁻¹² mol/L to about 10⁻⁶ mol/L, or from about 10⁻¹² mol/L to about 10⁻⁹ mol/L of a solution or suspension of the Compound of the Invention in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention can be from about 0.01 μL to about 1 mL. In another embodiment, the volume of solution or suspension can be about 200 μL.
Where a cell capable of expressing the κ-opioid receptors is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the κ-opioid receptors function in a cell can typically range from about $10^{-12}$ mol/L to about $10^{-4}$ mol/L, or from about $10^{-12}$ mol/L to about $10^{-6}$ mol/L, or from about $10^{-12}$ mol/L to about $10^{-9}$ mol/L of a solution or suspension of the Compound of the Invention in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention can be from about 0.01 µL to about 1 mL. In another embodiment, the volume of solution or suspension can be about 200 µL.

Where a cell capable of expressing the ORL-1 receptor is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the ORL-1 receptor function in a cell can typically range from about $10^{-12}$ mol/L to about $10^{-4}$ mol/L, or from about $10^{-12}$ mol/L to about $10^{-6}$ mol/L, or from about $10^{-12}$ mol/L to about $10^{-9}$ mol/L of a solution or suspension of the compound in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention can be from about 0.01 µL to about 1 mL. In another embodiment, the volume of solution or suspension can be about 200 µL.

Compounds of the Invention can be assayed in vitro or in vivo for the desired therapeutic or prophylactic activity prior to use in humans. Animal model systems can be used to demonstrate safety and efficacy. Certain Compounds of the Invention are expected to have an ED$_{50}$ for treating inflammatory pain ranging from about 0.5 mg/kg to about 20 mg/kg. Certain Compounds of the Invention are expected to produce significant analgesia and/or anti-hyperalgesia at doses that do not induce respiratory depression. In contrast, oxygen tension, oxygen saturation and pH are significantly decreased, while carbon dioxide is significantly increased, in blood samples from rats given effective doses of conventional opioids, such as morphine.

According to the present invention, methods for treating or preventing a Condition in a patient in need thereof can further comprise co-administering to the patient an effective amount of a second therapeutic agent in addition to a Compound of the Invention (i.e., a first therapeutic agent). An effective amount of the second therapeutic agent can be known or determinable by a medical practitioner in view of this disclosure and published clinical studies. In one embodiment of the invention, where a second therapeutic agent is administered to a patient for treatment of a Condition (e.g.,
pain), the minimal effective amount of the Compound of the Invention (i.e., the first therapeutic agent) will be less than its minimal effective amount would be in circumstances where the second therapeutic agent is not administered. In this embodiment, the Compound of the Invention and the second therapeutic agent can act either additively or synergistically to treat or prevent a Condition. Alternatively, the second therapeutic agent may be used to treat or prevent a disorder that is different from the Condition for which the first therapeutic agent is being administered, and which disorder may or may not be a Condition as defined hereinabove. In one embodiment, a Compound of the Invention is administered concurrently with a second therapeutic agent as a single composition comprising an effective amount of a Compound of the Invention and an effective amount of the second therapeutic agent. Alternatively, a composition comprising an effective amount of a Compound of the Invention and a second composition comprising an effective amount of the second therapeutic agent are concurrently administered. In another embodiment, an effective amount of a Compound of the Invention is administered prior or subsequent to administration of an effective amount of the second therapeutic agent. In this embodiment, the Compound of the Invention is administered while the second therapeutic agent exerts its therapeutic effect, or the second therapeutic agent is administered while the Compound of the Invention exerts its therapeutic effect for treating or preventing a Condition.

The second therapeutic agent can be, but is not limited to, an opioid agonist, a non-opioid analgesic, a non-steroidal anti-inflammatory agent, an antimigraine agent, a Cox-IA inhibitor, a 5-lipoxygenase inhibitor, an anti-emetic, a β-adrenergic blocker, an anticonvulsant, an antidepressant, a Ca²⁺-channel blocker, an anti-cancer agent, an agent for treating or preventing UI, an agent for treating or preventing anxiety, an agent for treating or preventing a memory disorder, an agent for treating or preventing obesity, an agent for treating or preventing constipation, an agent for treating or preventing cough, an agent for treating or preventing diarrhea, an agent for treating or preventing high blood pressure, an agent for treating or preventing epilepsy, an agent for treating or preventing anorexia/cachexia, an agent for treating or preventing drug abuse, an agent for treating or preventing an ulcer, an agent for treating or preventing IBD, an agent for treating or preventing IBS, an agent for treating or preventing addictive disorder, an agent for treating or preventing Parkinson's disease and parkinsonism, an agent for treating or preventing a stroke, an agent for treating or preventing a seizure, an agent for treating or preventing a pruritic condition, an agent for treating or preventing psychosis,
an agent for treating or preventing Huntington's chorea, an agent for treating or preventing ALS, an agent for treating or preventing a cognitive disorder, an agent for treating or preventing a migraine, an agent for treating, preventing or inhibiting vomiting, an agent for treating or preventing dyskinesia, an agent for treating or preventing depression, or any mixture thereof.

A composition of the invention is prepared by a method comprising admixing a Compound of the invention with a pharmaceutically acceptable carrier or excipient. Admixing can be accomplished using methods known for admixing a compound (or derivative) and a pharmaceutically acceptable carrier or excipient. In one embodiment, the Compound of the Invention is present in the composition in an effective amount.

The present invention also relates to a kit, comprising a sterile container containing an effective amount of a Compound of the Invention and instructions for therapeutic use.

The following examples are illustrative, but not limiting, of the compounds, compositions and methods of the present invention. Suitable modifications and adaptations of the variety of conditions and parameters normally encountered in clinical therapy and which are obvious to those skilled in the art in view of this disclosure are within the spirit and scope of the invention.

**EXAMPLES**

The following abbreviations are used:

- **ACN** acetonitrile
- **aq.** aqueous
- **atm** atmosphere(s)
- **Bn** benzyl
- **°C** degrees Celcius
- **cone.** concentrated
- **DCE** 1,2-dichloroethane
- **DCM** dichloromethane
- **DMF** dimethylformamide
- **DMSO** dimethylsulfoxide
- **Et₂O** diethyl ether
- **EtOAc** ethyl acetate
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminum hydride</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>Ms</td>
<td>methanesulfonyl</td>
</tr>
<tr>
<td>MsCl</td>
<td>methanesulfonyl chloride</td>
</tr>
<tr>
<td>NMO</td>
<td>N-methylmorpholine N-oxide</td>
</tr>
<tr>
<td>Pd/C</td>
<td>palladium on carbon</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>satd.</td>
<td>saturated</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamine</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TPAP</td>
<td>tetra-n-propylammonium perruthenate</td>
</tr>
</tbody>
</table>
EXAMPLE 1

Preparation of Compound 4 and Compound 5

(a) To a solution of Compound 1 (1.80 g, 4.13 mmol) (prepared in WO 2013/007796) in a mixture of EtOH (40 mL) and THF (10 mL) was added 10% Pd/C (0.33 g). The mixture was hydrogenated at 1 atm of hydrogen for 2.5 days at RT. The mixture was filtered through Celite and the filtrate concentrated to give crude Compound 2 which was used in subsequent steps without purification (1.80 g, 100%). LC/MS, m/z = 438.2 [M + H]^+ (Calc: 437.5).

(b) To a solution of Compound 2 (1.80 g, 4.11 mmol) in EtOH (100 mL) was added NaBH₄ (0.78 g, 20.0 mmol). The reaction mixture was stirred at RT for 18 h, concentrated in vacuum, the residue treated with satd. aq. NH₄Cl solution and extracted with EtOAc. The organic extracts were washed with water, dried over Na₂SO₄ and concentrated to give crude Compound 3 which was used in subsequent steps without purification (1.69 g, 93%).

(c) To a solution of LAH (1.7 mL of 2 M in THF, 3.41 mmol) in THF (20 mL) at 0 °C was slowly added a solution of Compound 3 (1.00 g, 2.27 mmol) in THF (3 mL). The reaction mixture was heated to reflux for 2 h, cooled to RT and quenched by the slow addition of 50% water in THF (20 mL). The volatiles were removed in
vacuum, the residue diluted with water and the mixture extracted with EtOAc. The
organic extracts were washed with water, dried over Na$_2$SO$_4$, concentrated and the
residue purified by flash chromatography (Si0$_2$, 0-10% MeOH/DCM) to give
**Compound 4** (0.775 g, 80%).

[0403] $^1$H NMR (300 MHz, CDCl$_3$): $\delta$ 6.44 (d, $J = 7.9$ Hz, 1H), 6.55 (d, $J = 7.9$ Hz,
1H), 4.86 (d, $J = 2.7$ Hz, 1H), 4.06-3.70 (m, 5H), 3.52 (s, 3H), 3.22-2.88 (m, 3 H),
2.66-2.14 (m, 8H), 1.84-1.70 (m, 1H), 1.37 (s, 3H), 1.28-1.00 (m, 2H), 0.92-0.70 (m,
3H), 0.54-0.40 (m, 2H), 0.14-0.04 (m, 2H).

[0404] LC/MS, m/z = 426.2 [M + H]$^+$ (Calc: 425.6).

[0405] (d) To a mixture of **Compound 4** (0.255 g, 0.60 mmol), NMO (0.140 g, 1.20
mmol) and 3A molecular sieves (1.0 g) in DCM (15 mL) was added TPAP (0.021 g,
0.06 mmol). The mixture was allowed to stir at RT for 18 h and filtered through a pad
of Celite. The filtrate was concentrated and the residue purified by flash
chromatography (Si0$_2$, 0-50% EtOAc/hexanes) to give **Compound 5** (0.184 g, 73%).

[0406] $^1$H NMR (300 MHz, CDCl$_3$): $\delta$ 9.76 (s, 1H), 6.69 (d, $J = 7.9$ Hz, 1H), 6.55 (d, $J$
= 7.9 Hz, 1H), 4.82 (d, $J = 1.9$ Hz, 1H), 3.87 (s, 3H), 3.48 (s, 3H), 3.20-2.92 (m, 2 H),
2.72-2.15 (m, 9H), 1.80-1.40 (m, 2H), 1.35 (s, 3H), 1.20-0.70 (m, 4H), 0.58-0.04 (m,
4H).

[0407] LC/MS, m/z = 424.2 [M + H]$^+$ (Calc: 423.5).

**EXAMPLE 2**

(4$R$,$4a$S,$6$R,$7$R,$7a$R,$12$b$S)-6-((benzyloxy)methyl)-3-(cyclopropylmethyl)-7,9-dimethoxy-6-
methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinoline

(6)

(4$R$,$4a$S,$6$R,$7$R,$7a$R,$12$b$S)-6-((benzyloxy)methyl)-3-(cyclopropylmethyl)-7-methoxy-
6-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]
isoquinolin-9-ol (8)

(4$R$,$4a$S,$6$R,$7$R,$7a$R,$12$b$S)-6-((benzo[6]thiophen-2-ylmethoxy)methyl)-3-
(cyclopropylmethyl)-7-methoxy-6-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-
methanobenzofuro [3,2-e]isoquinolin-9-ol (8)
(4R,4aS,6R,7R,7aR,12bS)-3-(cyclopropylmethyl)-6-((furan-3-ylmethoxy)methyl)-7,9-dimethoxy-6-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro [3,2-e]isoquinoline (9)

(4R,4aS,6R,7R,7aR,12bS)-3-(cyclopropylmethyl)-6-((furan-3-ylmethoxy)methyl)-7-methoxy-6-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro [3,2-e]isoquinoline (10)

(4R,4aS,6R,7R,7aR,12bS)-6-((benzo[\(A\)]thiophen-2-yl)ethoxy)methyl)-3-(cyclopropylmethyl)-7,9-dimethoxy-6-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro [3,2-i]isoquinolin-9-ol (13)

(a) A solution of Compound 4 (0.170 g, 0.40 mmol) in DMF (3 mL) was added at 0 °C to a suspension of NaH (0.080 g, 2.0 mmol, 60% in mineral oil) in DMF (1 mL). The reaction mixture was allowed to stir at RT for 1 h, cooled down to ca 0 °C and benzyl bromide (0.273 g, 1.60 mmol) was added. The resulting mixture was allowed to stir at RT for 16 h, quenched with ice-cold water and extracted with EtOAc. The organic extracts were washed with water, dried over Na₂SO₄, concentrated and the residue purified by flash chromatography (SiO₂, 0-100% EtOAc/hexanes) to give the title Compound 6 (0.108 g, 52%) as a white solid.

[0408] ¹H NMR (300 MHz, CDC1₃): δ 7.40-7.20 (m, 5H), 6.68 (d, J = 8.2 Hz, 1H), 6.52 (d, J = 8.2 Hz, 1H), 4.86 (d, J = 1.9 Hz, 1H), 4.53 (s, 2H), 3.88 (s, 3H), 3.62-3.34 (m, 5H), 3.04-2.88 (m, 2H), 2.68-2.58 (m, 1H), 2.44-2.14 (m, 6H), 1.80-1.48 (m, 3H), 1.46-1.08 (m, 5H), 0.88-0.70 (m, 2H), 0.54-0.42 (m, 2H), 0.14-0.06 (m, 2H).

[0409] LC/MS, m/z = 516.3 [M + H]⁺ (Calc: 515.7).

(b) KOH (0.200 g, 3.57 mmol) was dissolved in ethylene glycol (2 mL) at 70 °C. Compound 6 (0.086 g, 0.16 mmol) was added and the resulting suspension was heated in a microwave reactor (Milestone MicroSYNTH) at 210 °C for 11 h. The
reaction was cooled to RT, quenched by the addition of satd. aq. \( \text{NH}_4\text{Cl} \) solution and extracted with EtOAc. The organic extracts were washed with water, dried over \( \text{Na}_2\text{SO}_4 \), concentrated and the residue purified by flash chromatography (Si(½, 0-10% MeOH/DCM) to give the title Compound 7 (0.050 g, 60%) as a white solid.

[0412] \[^1\text{H} \text{NMR} (300 \text{ MHz, DMSO-d}_6): \delta 8.95 \text{ (s, 1H), 7.42-7.20 \text{ (m, 5H), 6.55 \text{ (d, } J = 7.9 \text{ Hz, 1H), 6.41 \text{ (d, } J = 7.9 \text{ Hz, 1H), 4.72 \text{ (s, 1H), 4.49 \text{ (d, } J = 2.7 \text{ Hz, 2H), 3.52-3.24 \text{ (m, 5H), 2.94-2.52 \text{ (m, 3H), 2.32-2.04 \text{ (m, 6H), 1.70-1.02 \text{ (m, 8H), 0.82-0.36 \text{ (m, 4H), 0.12-0.02 \text{ (m, 2H).}}}

[0413] \text{LC/MS, } m/z = 502.2 \text{ [M + H]}^+ \text{ (Calc: 501.7).}

[0414] In a similar manner the following compounds were prepared:

[0415] (c) Compound 8:

[0416] \[^1\text{H} \text{NMR} (300 \text{ MHz, DMSO-d}_6): \delta 8.94 \text{ (s, 1H), 7.98-7.74 \text{ (m, 2H), 7.42-7.26 \text{ (m, 3H), 6.54 \text{ (d, } J = 8.2 \text{ Hz, 1H), 6.41 \text{ (d, } J = 8.2 \text{ Hz, 1H), 4.88-4.66 \text{ (m, 3H), 3.58-3.26 \text{ (m, 5H), 2.96-2.52 \text{ (m, 3H), 2.34-2.06 \text{ (m, 6H), 1.72-1.00 \text{ (m, 8H), 0.84-0.36 \text{ (m, 4H), 0.14-0.02 \text{ (m, 2H).}}}

[0417] \text{LC/MS, } m/z = 558.2 \text{ [M + H]}^+ \text{ (Calc: 557.7).}

[0418] (d) Compound 9:

[0419] \[^1\text{H} \text{NMR} (300 \text{ MHz, DMSO-d}_6): \delta 7.63 \text{ (d, } J = 1.3 \text{ Hz, 2H), 6.72 \text{ (d, } J = 8.2 \text{ Hz, 1H), 6.50 \text{ (d, } J = 8.2 \text{ Hz, 1H), 6.45 \text{ (s, 1H), 4.77 \text{ (s, 1H), 4.34 \text{ (s, 2H), 3.77 \text{ (s, 3H), 3.60-3.20 \text{ (m, 5H), 2.98-2.80 \text{ (m, 2H), 2.64-2.52 \text{ (m, 1H), 2.34-2.06 \text{ (m, 6H), 1.64-1.00 \text{ (m, 8H), 0.86-0.38 \text{ (m, 4H), 0.14-0.02 \text{ (m, 2H).}}}

[0420] \text{LC/MS, } m/z = 506.3 \text{ [M + H]}^+ \text{ (Calc: 505.6).}

[0421] (e) Compound 10:
**H NMR (300 MHz, DMSO-d$_6$):** δ 8.94 (s, 1H), 7.63 (d, $J = 1.3$ Hz, 2H), 6.60-6.36 (m, 3H), 4.71 (s, 1H), 4.33 (s, 2H), 3.48-3.20 (m, 5H), 2.94-2.52 (m, 3H), 2.30-2.04 (m, 6H), 1.62-1.00 (m, 8H), 0.82-0.38 (m, 4H), 0.12-0.02 (m, 2H).

**LC/MS, m/z = 492.2 [M + H]$^+$ (Calc: 491.6).**

Similarly, (4R,4aS,6R,7R,7aR,12bS)-6-((benzol[b]thiophen-2-ylmethoxy)methyl)-3-(cyclopropylmethyl)-7,9-dimethoxy-6-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinolin-9-ol was prepared (Compound 13):

![Compound 13]

**1H NMR (300 MHz, DMSO-d$_6$):** δ 7.98-7.75 (m, 2H), 7.42-7.26 (m, 3H), 6.72 (d, $J = 8.2$ Hz, 1H), 6.54 (d, $J = 8.2$ Hz, 1H), 4.88-4.70 (m, 3H), 3.76 (s, 3H), 3.60-3.24 (m, 5H), 2.98-2.54 (m, 3H), 2.34-2.06 (m, 6H), 1.74-1.08 (m, 8H), 0.84-0.38 (m, 4H), 0.12-0.02 (m, 2H).

**LC/MS, m/z = 572.3 [M + H]$^+$ (Calc: 571.77).**

**EXAMPLE 3**

(4R,4aS,6R,7R,7aR,12bS)-6-((benzylaminino)methyl)-3-(cyclopropylmethyl)-7-methoxy-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinolin-9-ol (12)

![Chemical Reaction]

(a) NaBH(OAc)$_3$ (0.260 g, 1.22 mmol) was added at RT to a solution of Compound 5 (0.175 g, 0.41 mmol) and benzylamine (0.088 g, 0.82 mmol) in DCE (10
mL). The reaction mixture was stirred at RT for 4 days and quenched by the addition of satd. aq. NaHCO₃ solution. The mixture was extracted with DCM and the organic extracts were washed with water, dried over Na₂SO₄, concentrated and the residue purified by flash chromatography (SiO₂, 0-20% (10% NH₄OH in MeOH) in DCM) to give Compound 11 (0.182 g, 86%) as a white solid.

**[0428]** ¹H NMR (300 MHz, DMSO-d₆): δ 7.36-7.15 (m, 5H), 6.72 (d, J = 7.9 Hz, 1H), 6.53 (d, J = 7.9 Hz, 1H), 4.78 (s, 1H), 3.76 (s, 3H), 3.68 (s, 2H), 3.52-3.24 (m, 4H), 2.96-2.54 (m, 4H), 2.42-2.04 (m, 7H), 1.50-1.22 (m, 4H), 1.16 (s, 3H), 1.08-0.38 (m, 5H), 0.14-0.02 (m, 2H).

**[0429]** LC/MS, m/z = 515.3 [M + H]⁺ (Calc: 514.7).

**[0430]** (b) KOH (0.200 g, 3.57 mmol) was dissolved in ethylene glycol (2.5 mL) at 70 °C. Compound 11 (0.070 g, 0.14 mmol) was added and the resulting suspension was heated in a microwave reactor at 210 °C for 12 h. The reaction was cooled to RT, quenched by the addition of satd. aq. NH₄Cl solution and extracted with EtOAc. The organic extracts were washed with water, dried over Na₂SO₄, concentrated and the residue purified by flash chromatography (SiO₂, 0-100% (10% NH₄OH in MeOH) in DCM) to give the title Compound 12 (0.025 g, 37%) as a white solid.

**[0431]** ¹H NMR (300 MHz, DMSO-d₆): δ 8.94 (s, 1H), 7.42-7.14 (m, 5H), 6.54 (d, J = 7.9 Hz, 1H), 6.40 (d, J = 7.9 Hz, 1H), 4.73 (s, 1H), 3.69 (s, 2H), 3.33 (s, 3H), 2.90-2.52 (m, 5H), 2.40-2.02 (m, 7H), 1.50-1.18 (m, 4H), 1.16 (s, 3H), 1.10-0.38 (m, 5H), 0.14-0.02 (m, 2H).

**[0432]** LC/MS, m/z = 501.3 [M + H]⁺ (Calc: 500.7).

**EXAMPLE 4**

**Preparation of Compound 14**

**[0433]** In a manner similar to that described in Example 1, the following compound was prepared from N-Boc-northebaine (Bartels-Keith, J. R., J. Chem. Soc, Section C: Organic 6:617 (1966)):

![Compound 14](image)

**[0434]** LC/MS, m/z = 386.2 [M + H]⁺ (Calc: 385.5).
EXAMPLE 5

(4R,4aS,6R,7R,7aR,12bS)-6-((benzyloxy)methyl)-7,9-dimethoxy-3,6-dimethyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinoline (15)

(4R,4aS,6R,7R,7aR,12bS)-6-((benzyloxy)methyl)-3,6-dimethyl-7-methoxy-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinolin-9-ol (16)

(4R,4aS,6R,7R,7aR,12bS)-6-((benzo[Z>thiophen-2-ylmethoxy)methyl)-7,9-dimethoxy-3,6-dimethyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinoline (17)

(4R,4aS,6R,7R,7aR,12bS)-6-((benzo[6]thiophen-2-ylmethoxy)methyl)-3,6-dimethyl-7-methoxy-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinolin-9-ol (18)

(4R,4aS,6R,7R,7aR,12bS)-6-((furan-3-ylmethoxy)methyl)-7,9-dimethoxy-3,6-dimethyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinoline (19)

(4R,4aS,6R,7R,7aR,12bS)-3,6-dimethyl-6-((furan-3-ylmethoxy)methyl)-7-methoxy-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinoline (20)

In a manner similar to that described in Example 2, the following compounds were prepared:
[0436] Compound 15: $^1$H NMR (300 MHz, CDCl$_3$): $\delta$ 7.20-7.40 (m, 5H), 6.73 (d, $J = 8.3$ Hz, IH), 6.58 (d, $J = 8.3$ Hz, IH), 4.88 (s, IH), 4.49 (s, 2H), 3.87 (s, 3H), 3.62 (d, $J = 8.5$ Hz, IH), 3.43 (s, 3H), 3.27 (d, $J = 8.8$ Hz, IH), 3.07 (d, $J = 18.7$ Hz, IH), 2.20-3.00 (bs, 9H), 1.95 (bd, $J = 11.8$ Hz, IH), 1.67 (bd, $J = 9.3$ Hz, IH), 1.55 (bt, $J = 8.3$ Hz, 2H), 1.22-1.40 (m, IH), 1.20 (s, 3H), 0.7-0.9 (m, IH). LC/MS, $m/z$ = 476.3 [M + H]$^+$ (Calc: 475.6).

[0437] Compound 16: $^1$H NMR (300 MHz, CDCl$_3$): $\delta$ 7.20-7.40 (m, 5H), 6.69 (d, $J = 8.3$ Hz, IH), 6.52 (d, $J = 8.3$ Hz, IH), 4.88 (d, $J = 1.6$ Hz, IH), 4.51 (s, 2H), 3.55 (d, $J = 8.5$ Hz, IH), 3.41 (s, 3H), 3.36 (d, $J = 8.5$ Hz, IH), 3.05 (d, $J = 18.2$ Hz, IH), 2.66 (d, $J = 6.0$ Hz, IH), 2.15-2.50 (m, 8H), 1.79 (d, $J = 13.5$ Hz, IH), 1.36-1.70 (m, 4H), 1.05-1.30 (m, 4H), 0.7-0.85 (m, IH). LC/MS, $m/z$ = 462.3 [M + H]$^+$ (Calc: 461.6).

[0438] Compound 17: $^1$H NMR (300 MHz, CDCl$_3$): $\delta$ 7.81 (dd, $J = 6.9$, 1.7 Hz, IH), 7.71 (dd, $J = 7.4$, 1.7 Hz, IH), 7.27-7.37 (m, 2H), 7.17 (s, 1H), 6.70 (d, $J = 8.3$ Hz, IH), 6.55 (d, $J = 8.3$ Hz, IH), 4.85 (d, $J = 1.9$ Hz, IH), 4.76 (s, 2H), 3.88 (s, 3H), 3.62 (d, $J = 8.5$ Hz, IH), 3.44 (s, 3H), 3.38 (d, $J = 8.5$ Hz, IH), 3.06 (d, $J = 18.4$ Hz, IH), 2.67 (d, $J = 6.3$ Hz, IH), 2.18-2.49 (m, 8H), 1.80 (d, $J = 13.8$ Hz, IH), 1.50-1.70 (m, 3H), 1.40 (bt, $J = 13.2$ Hz, IH), 1.10-1.30 (m, 4H), 0.70-0.85 (m, IH). LC/MS, $m/z$ = 532.2 [M + H]$^+$ (Calc: 531.7).

[0439] Compound 18: $^1$H NMR (300 MHz, CDCl$_3$): $\delta$ 7.78 (d, $J = 7.0$ Hz, IH), 7.70 (d, $J = 7.0$ Hz, IH), 7.30-7.17 (m, 3H), 6.68 (d, $J = 8.4$ Hz, IH), 6.51 (d, $J = 8.4$ Hz,
1H), 4.86 (s, 1H), 4.76 (s, 2H), 3.63-3.60 (m, 1H), 3.41-3.35 (m, 4H), 3.08-3.02 (m, 1H), 2.68-2.66 (m, 1H), 2.35-2.28 (m, 9H), 1.82-1.77 (m, 1H), 1.58-1.44 (m, 3H), 1.20-1.17 (m, 4H), 0.80-0.73 (m, 1H). LC/MS, m/z = 518.2 [M + H]+ (Calc: 517.7).

[0440] Compound 19: 1H NMR (300 MHz, CDC13): δ 7.37 (s, 2H), 6.70 (d, J = 7.0 Hz, 1H), 6.54 (d, J = 7.0 Hz, 1H), 6.38 (s, 1H), 4.84 (s, 1H), 4.40 (s, 2H), 3.88 (s, 3H), 3.53-3.49 (m, 1H), 3.44 (s, 3H), 3.33-3.29 (m, 1H), 3.10-3.03 (m, 1H), 2.66-2.63 (m, 1H), 2.50-2.40 (m, 1H), 2.35-2.10 (m, 8H), 1.75-1.70 (m, 1H), 1.65-1.50 (m, 2H), 1.45-1.30 (m, 1H), 1.20-1.10 (m, 4H), 0.83-0.77 (m, 1H). LC/MS, m/z = 466.2 [M + H]+ (Calc: 465.6).

[0441] Compound 20: 1H NMR (300 MHz, DMSO-d6): δ 8.96 (s, 1H), 7.62 (s, 2H), 6.57-6.44 (m, 3H), 4.71 (s, 1H), 4.33 (s, 2H), 3.43-3.20 (m, 6H), 2.65-2.00 (m, 9H), 1.60-1.52 (m, 1H), 1.45-1.20 (m, 3H), 1.18-1.00 (m, 4H), 0.70-0.50 (m, 1H). LC/MS, m/z = 452.2 [M + H]+ (Calc: 451.6).

EXAMPLE 6

The following Tables provide results on the activity response of exemplified Compounds of the Invention at the µ- and κ-opioid receptors.

[0442] In TABLE 1, activity response of certain Compounds of the Invention to the µ-, δ- and κ-opioid receptors was determined as described above for functional assays using HEK-293 cells.

[0443] In TABLE 2, activity response of certain Compounds of the Invention to the µ-, δ- and κ-opioid receptors was determined as described above for functional assays using U-2 OS cells cells.
<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Structure</th>
<th>Activity</th>
<th>Response</th>
<th>Opioid Receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>μ EC₅₀ (nM)</td>
</tr>
<tr>
<td>6</td>
<td><img src="image1" alt="Structure" /></td>
<td>57.7±10.9</td>
<td>43.8±4.40</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td><img src="image2" alt="Structure" /></td>
<td>0.55±0.11</td>
<td>31.3±5.24</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td><img src="image3" alt="Structure" /></td>
<td>13351±2013</td>
<td>26.0±3.51</td>
<td>ND</td>
</tr>
<tr>
<td>9</td>
<td><img src="image4" alt="Structure" /></td>
<td>15.1±0.74</td>
<td>20.7±0.33</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td><img src="image5" alt="Structure" /></td>
<td>&gt;20 μM</td>
<td>1.50</td>
<td>ND</td>
</tr>
<tr>
<td>12</td>
<td><img src="image6" alt="Structure" /></td>
<td>3.39±0.34</td>
<td>28.7±4.41</td>
<td>ND</td>
</tr>
<tr>
<td>Compound No.</td>
<td>Structure</td>
<td>Opioid Receptor</td>
<td>μ</td>
<td>κ</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EC&lt;sub&gt;50&lt;/sub&gt; (nM)</td>
<td>E&lt;sub&gt;max&lt;/sub&gt; (%)</td>
</tr>
<tr>
<td>13</td>
<td><img src="image1.png" alt="Compound 13 Structure" /></td>
<td>14.6±3.74</td>
<td>10.0±0.58</td>
<td>ND</td>
</tr>
<tr>
<td>15</td>
<td><img src="image2.png" alt="Compound 15 Structure" /></td>
<td>16.5±3.89</td>
<td>99.0±2.65</td>
<td>ND</td>
</tr>
<tr>
<td>16</td>
<td><img src="image3.png" alt="Compound 16 Structure" /></td>
<td>0.36±0.029</td>
<td>99.3±1.67</td>
<td>ND</td>
</tr>
<tr>
<td>17</td>
<td><img src="image4.png" alt="Compound 17 Structure" /></td>
<td>74.2±20.1</td>
<td>87.5±2.33</td>
<td>ND</td>
</tr>
<tr>
<td>18</td>
<td><img src="image5.png" alt="Compound 18 Structure" /></td>
<td>0.24±0.063</td>
<td>72.7±2.19</td>
<td>ND</td>
</tr>
<tr>
<td>19</td>
<td><img src="image6.png" alt="Compound 19 Structure" /></td>
<td>402.1±12.6</td>
<td>93.5±1.76</td>
<td>ND</td>
</tr>
<tr>
<td>Compound No.</td>
<td>Structure</td>
<td>Opioid Receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>µ</td>
<td>κ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC\textsubscript{50} (nM)</td>
<td>E\textsubscript{max} (%)</td>
<td>EC\textsubscript{50} (nM)</td>
<td>E\textsubscript{max} (%)</td>
</tr>
<tr>
<td>20</td>
<td>3.46±0.78</td>
<td>85.3±1</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a (%)</td>
<td>Emax (%)</td>
<td></td>
</tr>
</tbody>
</table>

ND = not determined

### TABLE 2

Activity Response of Certain Compounds of the Invention

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Structure</th>
<th>Opioid Receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>µ</td>
</tr>
<tr>
<td></td>
<td>EC\textsubscript{50} (nM)</td>
<td>E\textsubscript{max} (%)</td>
</tr>
<tr>
<td>6</td>
<td>8.81±2.80</td>
<td>88.0±1.29</td>
</tr>
<tr>
<td>7</td>
<td>0.064±0.00</td>
<td>89.7±1.33</td>
</tr>
<tr>
<td>8</td>
<td>0.14±0.00</td>
<td>43.7±1.67</td>
</tr>
</tbody>
</table>
The in vitro test results of Table 1 and Table 2 show that representative Compounds of the Invention activate these receptors as partial to full agonists. Compounds of the Invention are therefore expected to be useful to treat Conditions, particularly pain, that are responsive to the activation of one or more opioid receptors.

[0446] Having now fully described this invention, it will be understood by those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any embodiment thereof.

[0447] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

[0448] All patents, patent applications, and publications cited herein are fully incorporated by reference herein in their entirety.
WHAT IS CLAIMED IS:

1. A compound of Formula I:

[Chemical structure image]

or a pharmaceutically acceptable salt or solvate thereof, wherein:

R\(^1\) is selected from the group consisting of hydrogen, (Ci-C\(_{10}\))alkyl, (C\(_2\)-C\(_{12}\))alkenyl, (C\(_2\)-C\(_{12}\))alkynyl, (Ci-C\(_{10}\))alkoxy, (C\(_3\)-C\(_{12}\))cycloalkyl, (C\(_4\)-C\(_{12}\))cycloalkenyl, ((C\(_3\)-C\(_{12}\))cycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, ((C\(_4\)-C\(_{12}\))cycloalkenyl)-(C\(_1\)-C\(_6\))alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(Ci-C\(_6\))alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci-C\(_6\))alkyl-, (3- to 12-membered)heterocycle, and ((3- to 12-membered)heterocycle)-(C\(_1\)-C\(_6\))alkyl-; any of which is optionally substituted with 1, 2, or 3 substituents each independently selected from the group consisting of (Ci-C\(_6\))alkyl, OH, halo, -C(halo)\(_3\), -CH(halo)\(_2\), -CH\(_2\)(halo), -(d-C\(_6\))alkyl-COOR\(^7\), -COOR\(^7\), NH\(_2\), -NH(C\(_5\)-C\(_6\))alkyl, -NR\(^R\(_{10}\))\(^2\), CN, -CONR\(^R\(_{10}\))\(^2\), -NR\(^R\(_{10}\))COR\(^10\), -SR\(^11\), (5- to 12-membered)heterocycle, phenyl, and benzyl;

Z is -(CH\(_2\))\(_m\)-, optionally substituted with 1 or 2 -(C\(_1\)-C\(_6\))alkyl;

Y is -(CH\(_2\))\(_n\)-CH or a direct bond, provided that when Y is a direct bond then W\(^2\) is absent and W\(^1\) is attached to G;

G is selected from the group consisting of -O-, -OC(=0)-, -C(=O)-, -NR\(^3\), -S-, -SO-, and -SO\(^2\);

W\(^4\) and W\(^2\) are each independently selected from the group consisting of hydrogen, (Q-C\(_6\))alkyl, (C\(_2\)-C\(_{12}\))alkenyl, (C\(_2\)-C\(_{12}\))alkynyl, (C\(_2\)-C\(_{10}\))alkoxy, -(OCH\(_2\)CH\(_2\))\(_n\)-0(C\(_1\)-C\(_6\))alkyl, -(CH\(_2\)CH\(_2\))\(_n\)-(C\(_2\)-C\(_6\))alkyl, NH\(_2\), -NH(C\(_1\)-C\(_6\))alkyl, CN, -CONR\(^R\(_6\))\(^2\), -(Ci-C\(_6\))alkyl-CO-NR\(^R\(_6\))\(^2\), -COOR\(^7\), -(C\(_1\)-C\(_6\))alkyl-CO-OR\(^7\), -(C\(_1\)-C\(_6\))alkoxy-COOR\(^7\), (C\(_3\)-C\(_2\))cycloalkyl, ((C\(_3\)-C\(_2\))cycloalkyl)-(Ci-C\(_6\))alkyl-, (C\(_4\)-C\(_{12}\))cycloalkenyl, ((C\(_4\)-C\(_{12}\))cycloalkenyl)-(Ci-C\(_6\))alkyl-, (C\(_6\)-C\(_{14}\))bicycloalkyl, ((C\(_6\)-C\(_{14}\))bicycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, (C\(_1\)-C\(_{20}\))tricycloalkyl, ((C\(_8\)-C\(_2\))tricycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, and any amino acid or any di- or oligopeptide.
C_{20}tricycloalkyl)-(Ci-C_6)alkyl-, (C_7-C_{14})bicycloalkenyl, ((C_7-C_{14})bicycloalkenyl)-(Ci-C_6)alkyl-, (C_8-C_{20})tricycloalkenyln, ((C_9-C_{20})tricycloalkenyl)-(Ci-C_6)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(Ci-C_6)alkyl-, (7- to 12-membered) bicyclic ring system, ((7- to 12-membered) bicyclic ring system)-(C_1-C_6)alkyl-, (7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Ci-C_6)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci-C_6)alkyl-, (3- to 12-membered)heterocycle, (3- to 12 membered)heterocycle)-(Ci-C_6)alkyl-, (7- to 12-membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci-C_6)alkyl--; any of which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)_3, -CH(halo)_2, -CH_2(halo), (Ci-C_6)alkyl, halo(d-C_6)alkyl-, (C_2-C_6)alkenyl, (C_2-C_6)alkynyl, hydroxy(Ci-C_6)alkyl-, dihydroxy(C_1-C_6)alkyl-, (Ci-C_6)alkoxy, ((d-C_6)alkoxy)CO(Ci-C_6)alkoxy-, -NH_2, -NH(C_6-C_6)alkyl, -(Ci-C_6)alkyl-NH(C_1-C_6)alkyl-R^{14}, CN, SH, -OR^4, -CONR^8R^8, -(C_6-C_6)alkyl)-CO-NR^8R^8, -COOR^7, -(C_1-C_6)alkyl-CO-OR^7, -(C_6-C_6)alkoxy-COOR^7, -(OCH_2CH_2)_s-0(Ci-C_6)alkyl, -(CH_2CH_2O)_s-(C_6-C_6)alkyl, ((d-C_6)alkyl)sulfonyl(d-C_6)alkyl-, -NH-SO_2(C_1-C_6)alkyl, -N(SO_2(Ci-C_6)alkyl), -C(=NH)NH_2, -NH-CO-(d-C_6)alkyl, -NH-CO-NH_2, -NH-C(=0)-NH-(C_1-C_6)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, -NH-(C_1-C_6)alkyl-CO-OR^7, -NH-(C_1-C_6)alkyl-C0-OR^7, -NH-C(=0)-CH(NH_2)-(C_1-C_6)alkyl-CO-OR^7, (C_5-C_12)cycloalkyl, ((C_3-C_12)cycloalkyl)-(Ci-C_6)alkyl-, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -(C_1-C_6)alkoxyC(0)NR^8R^8, -NH-(Ci-C_6)alkylC(0)-NR^8R^8, -(C_0)NH-(d-C_6)alkyl-COOR^7, ((6- to 12-membered)aryl)-(d-C_6)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(d-C_6)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C_1-C_6)alkyl-, (7- to 12-membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci-C_6)alkyl-, provided that W^1 is other than hydrogen when Y is direct bond and G is O; 

Q is selected from the group consisting of OH, (d-C_6)alkoxy, (Ci-do)alkyl, (C_5-C_12)cycloalkyl, (6- to 12-membered)aryl, ((C_3-C_12)cycloalkyl)Hd-C_6alkyl-, ((6- to 12-membered)aryl)-(C-i-C_6)alkyl-, -(OCH_2CH_2)_s-0(C_1-C_6)alkyl, -(CH_2CH_2O)_s-(C_7-C_6)alkyl, -(OCH_2CH_2)_s-0H, -(O=C=0)R^9, -(O=C=0)alkyl-COOR^7, -(C_1-C_6)alkyl-C0OR^7, -(O=C)(C_6-C_6)alkyl-C(0)OR^7, -(NH-C(0)-(d-C_6)alkyl-C(0)OR^7, -(C_1-C_6)alkyl-C(0)NR^9R^10, -(C_1-C_6)alkyl-C(0)NR^9R^10, -(C_1-C_6)alkyl-C(0)NR^9R^10, and R^{14};
R¹a and R⁻b are each independently selected from the group consisting of hydrogen, (C₁⁻C₁₀)alkyl, (C₂⁻C₁₀)alkenyl, (C₁⁻C₂₀)alkynyl, (C₁⁻C₂₀)alkoxy, OH, hydroxy(C₁⁻C₆)alkyl, -C(halo)₃, -CH(halo)₂, -CH₂(halo), -(C₃⁻C₁₂)alkyl-C(=0)-(C₁⁻C₆)alkoxy, -(C₁⁻C₆)alkoxy-C(=0)-(C₁⁻C₆)alkyl, -(C₁⁻C₆)alkyl-CN, -(d-C^alkyl-COOR)⁷, -(C₁⁻C₆)alkoxy-COOR⁷, (C₅⁻C₁₂)cycloalkyl, ((C₃⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkyl-, ((C₃⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkoxy-, ((C₅⁻C₁₂)cycloalkylO-iC₁-Cealkoxy-Cd-C^alkyl-, (C₄⁻C₁₂)cycloalkenyl, (^C^cycloalkenyl-(C₆⁻C₁₀)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C₁⁻C₆)alkoxy-(C₁⁻C₆)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁⁻C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C₁⁻C₆)alkyl-, (5- to 12-membered)bicycloheterocycle, ((5- to 12-membered)bicycloheterocycle)-(C₁⁻C₆)alkyl-, or

R¹a and R⁻b together form (=0);

R¹c is C₁⁻C₆ alkyl;

X is selected from the group consisting of OH, hydroxy(C₁⁻C₆)alkyl-, dihydroxy(C₁⁻C₆)alkyl-, halogen, NH₂, -NR²(C=0)R¹₂, -CONR¹²R¹⁻, -(C₃⁻C₆)alkyl-CNH₂, -(C₁⁻C₆)alkyl- COOH, COOH, -C(=0)(d-C^alkyl-COOR), -(C₁⁻C₆)alkyl-CNH₂, (C₁⁻C₁₀)alkyl, (C₂⁻C₁₀)alkenyl, (C₂⁻C₁₀)alkynyl, (C₁⁻C₆)alkoxy, -(OCH₂CH₂)₂-O(C₁⁻C₆)alkyl, -(OCH₂CH₂)₃-OH, -(CH₂)₆-CHOHCH₂OH, CN, -NH-SO₂R⁹, (C₃⁻C₁₂)cycloalkyl, ((C₃⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkyl-, ((C₃⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkoxy-, (5- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C₁⁻C₆)alkyl-, ((5- to 12-membered)heteroaryl)-(C₁⁻C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C₁⁻C₆)alkyl-, (7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycloheterocycle)-(C₁⁻C₆)alkyl-, and ((7- to 12-membered)bicycloheterocycle)-(C₁⁻C₆)alkoxy-; or

X is —O-PG, wherein PG is a hydroxyl protecting group;

R² is selected from the group consisting of hydrogen, (C₁⁻C₆)alkyl, (C₂⁻C₆)alkenyl, (C₂⁻C₆)alkynyl, -(C(halo)₃, -CH(halo)₂, -CH₂(halo), hydroxy(C₁⁻C₆)alkyl-, (C₃⁻C₁₂)cycloalkyl, ((C₅⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkyl-, (C₆⁻C₁₂)bicycloalkyl, ((C₆⁻C₁₂)bicycloalkyl)-(C₁⁻C₆)alkyl-, (C₁⁻C₆)tricycloalkyl, ((C₆-C₁₂)tricycloalkyl)-(C₁⁻C₆)alkyl-, (C₄⁻C₁₂)cycloalkenyl, ((C₄⁻C₁₂)alkylCN, -(d-C^alkyl-COOR)⁷, -(C₁⁻C₆)alkoxy-COOR⁷, (C₅⁻C₁₂)cycloalkyl, ((C₃⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkyl-, ((C₃⁻C₁₂)cycloalkyl)-(C₁⁻C₆)alkoxy-, ((C₅⁻C₁₂)cycloalkylO-iC₁-Cealkoxy-Cd-C^alkyl-, (C₄⁻C₁₂)cycloalkenyl, (^C^cycloalkenyl-
C_{12}-cycloalkenyl)-(C i-C_6)alkyl-, (C_7-C_{14})bicycloalkenyl, ((C_7-C_{14})bicycloalkenyl)-(C_1-C_6)alkyl-, (C_8-C_{20})tricycloalkenyl, ((C_8-C_{20})tricycloalkenyl)-(C_1-C_6)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C_1-C_6)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C_{12})alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C_{12})alkyl-, (7- to 12-membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(C i-C_6)alkyl-

R^3 is selected from the group consisting of hydrogen, (C_1-C_6)alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkynyl, (C_1-C_{10})alkoxy, (C_3-C_2)cycloalkyl, (C_3-C_2)cycloalkenyl, ((C_3-C_2)cycloalkenyl)-(C_{12})alkyl-, ((C_{12})cycloalkenyl)-(C_1-C_6)alkyl-, -C(=O)(C_1-C_6)alkyl, and -SO_2(C_{12})alkyl;

R^4 is selected from the group consisting of (C_1-C_6)alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkynyl, (C_6-halo), -CH(halo), -CH_2(halo), hydroxy(d-C_6)alkyl-, (C_3-C_2)cycloalkyl, ((C_3-C_2)cycloalkyl)IMCrC Oalkyl-, (C_6-C_{12})bicycloalkyl, ((C_6-C_{12})bicycloalkyl)-(C_1-C_6)alkyl-, (C_{12})cycloalkenyl, ((C_{12})cycloalkenyl)-(C_1-C_6)alkyl-, (C_{12})cycloalkenyl, ((C_{12})cycloalkenyl)-(C i-C_6)alkyl-, (C_{12})cycloalkenyl, ((C_{12})cycloalkenyl)-(C i-C_6)alkyl-, (C_{12})cycloalkenyl, ((C_{12})cycloalkenyl)-(C i-C_6)alkyl-, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C_1-C_6)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C_{12})alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C_{12})alkyl-, (7- to 12-membered)bicycloheterocycle, and (7- to 12-membered)bicycloheterocycle)-(C_{12})alkyl-

R^5 and R^6 are each independently selected from the group consisting of hydrogen, (C_{12})alkyl, (C_3-C_6)cycloalkyl, ((C_3-C_6)cycloalkyl)-(C_1-C_6)alkyl-, -COOR^7, -(C_1-C_6)alkyl-CONH_2, and (d.Ceialkyl-CONH_-; or

R^5 and R^6 together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle;

R^7 is selected from the group consisting of hydrogen, (C_1-C_{12})alkyl, (C_2-C_{12})alkenyl, (C_2-C_{12})alkynyl, (C_{12})cycloalkyl, (C_{12})cycloalkenyl, ((C_{12})cycloalkyl)-(C_{12})alkyl-, and ((C_{12})cycloalkenyl)-(C_1-C_6)alkyl-

R^9 and R^{10} are each independently selected from the group consisting of hydrogen, (C_1-C_{12})alkyl, (C_2-C_{12})alkenyl, (C_2-C_{12})alkynyl, (C_{12})alkoxy, (C_{12})cycloalkyl, (C_{12})cycloalkenyl, ((C_{12})cycloalkenyl)-(C_1-C_6)alkyl-, and ((C_{12})cycloalkenyl)-(C_1-C_6)alkyl-;
$R^{1}$ is selected from the group consisting of hydrogen, (C<sub>i</sub>-C<sub>10</sub>)alkyl, (C<sub>2</sub>-C<sub>10</sub>)alkynyl, (C<sub>1</sub>-C<sub>10</sub>)alkoxy, ((d -C<sub>6</sub>)alkyl)sulfonyl(C<sub>6</sub>-alkyl)-(C<sub>1</sub>-C<sub>10</sub>)alkyl-, (C<sub>3</sub>-C<sub>10</sub>)cycloalkyl, ((C<sub>3</sub>-C<sub>10</sub>)cycloalkyl)-(d -C<sub>6</sub>)alkyl-, (C<sub>4</sub>-C<sub>10</sub>)cycloalkenyl, and ((C<sub>4</sub>-C<sub>12</sub>)cycloalkenyl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-;

$R^{12}$ and $R^{13}$ are each independently selected from the group consisting of hydrogen, (d-C<sub>10</sub>)alkyl, (C<sub>2</sub>-C<sub>12</sub>)alkenyl, (C<sub>1</sub>-C<sub>10</sub>)alkoxy, -(OCH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>-0(C<sub>1</sub>-C<sub>6</sub>)alkyl, (C<sub>3</sub>-C<sub>10</sub>)cycloalkyl, ((C<sub>3</sub>-C<sub>10</sub>)cycloalkyl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (C<sub>4</sub>-C<sub>12</sub>)cycloalkenyl, ((C<sub>4</sub>-C<sub>10</sub>)cycloalkenyl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, ((C<sub>1</sub>-C<sub>6</sub>)alkyl)-(C<sub>3</sub>-C<sub>10</sub>)bicyclic, (C<sub>1</sub>-C<sub>6</sub>)alkyl-(C<sub>2</sub>-C<sub>12</sub>)alkenyl, (C<sub>1</sub>-C<sub>10</sub>)alkoxy, ((6- to 12-membered)aryl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-,(7- to 12-membered)bicyclic ring system, ((7- to 12-membered)bicyclic ring system)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-,(7- to 12-membered)bicyclic aryl, (d -C<sub>6</sub>)alkyl-, (C<sub>1</sub>-C<sub>6</sub>)alkenyl, (C<sub>2</sub>-C<sub>10</sub>)alkenyl, (C<sub>2</sub>-C<sub>6</sub>)alkenyl, hydroxy(d -C<sub>6</sub>)alkyl-, NH<sub>2</sub>, -NH(C<sub>i</sub>-C<sub>6</sub>)alkyl, CN, SH, OR<sup>4</sup>, -CONR<sup>5</sup>R<sup>6</sup>, -COOR<sup>7</sup>, (C<sub>3</sub>-C<sub>12</sub>)cycloalkenyl, ((C<sub>1</sub>-C<sub>6</sub>)alkyl)-(C<sub>2</sub>-C<sub>10</sub>)bicyclic, (C<sub>1</sub>-C<sub>6</sub>)alkyl-(d -C<sub>6</sub>)alkyl-, (5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (3- to 12-membered)heterocycle, (3- to 12-membered)heterocycle)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-, (7- to 12-membered)bicycloheterocycle, and (7- to 12-membered)bicycloheterocycle)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-;

$R^{14}$ is selected from the group consisting of -COOR<sup>7</sup>, -(C<sub>1</sub>-C<sub>6</sub>)alkyl-CO-OR<sup>7</sup>, C(=0)-(C<sub>6</sub>-alkyl)-COOR<sup>7</sup>, -(d -C<sub>6</sub>)alkyl-C(=0)-(C<sub>1</sub>-C<sub>6</sub>)alkyl-COOR<sup>7</sup>, -CONH<sub>2</sub>, and (d-C<sub>6</sub>)alkyl-CONH-;

m is an integer 1, 2, 3, 4, 5, or 6;

n is an integer 0, 1, 2, 3, 4, 5 or 6;

p is an integer 0, 1 or 2; and

s is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13.
2. The compound of claim 1 having the Formula II:

or a pharmaceutically acceptable salt or solvate thereof, wherein R\(^1\), R\(^{1a}\), R\(^{1b}\), R\(^{1c}\), X, Z, G, Y, W\(^1\), W\(^2\), and Q are as defined in claim 1.

3. The compound of claim 1 or 2, or a pharmaceutically acceptable salt or solvate thereof, wherein R\(^{1a}\) and R\(^{1b}\) together form =0.

4. The compound of claim 1 or 2, or a pharmaceutically acceptable salt or solvate thereof, wherein R\(^{1a}\) and R\(^{1b}\) are both hydrogen.

5. The compound of any one of claims 1, 2, or 4, wherein R\(^{1a}\) and R\(^{1b}\) both are hydrogen, W\(^2\) is hydrogen, Y is -(CH\(_2\))\(_n\)-CH, and n is 0, represented by Formula III:

or a pharmaceutically acceptable salt or solvate thereof, wherein G\(^1\) is -O- or -NH-, and R\(^1\), R\(^{1c}\), X, Z, W\(^1\), and Q are as defined in claim 1.

6. The compound of claims 1-5, or a pharmaceutically acceptable salt or solvate thereof, wherein R\(^1\) is selected from the group consisting of hydrogen, (Ci-C\(_{10}\))alkyl, (C\(_2\)-C\(_{12}\))alkenyl, (C\(_1\)-C\(_{10}\))alkoxy, (C\(_3\)-C\(_{12}\))cycloalkyl, ((C\(_3\)-C\(_{12}\))cycloalkyl)-(C\(_1\)-C\(_6\))alkyl-, ((6- to 12-membered)aryl)-(Ci-C\(_6\))alkyl-, (5- to 12-membered)heteroaryl)-(C\(_1\)-C\(_6\))alkyl-, and ((3- to 12-membered)heterocycle)-(Ci-C\(_6\))alkyl-, any of which is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting
of (Ci-C₆)alkyl, OH, halo, -C(halo)₃, -COOR, NH₂, -OH(Ci-C₆)alkyl, NRᵩR¹, CN, -CONRᵩR¹, -NRᵩCORᵩ, and SR¹. 

7. The compound of any one of claims 1-6, or a pharmaceutically acceptable salt or solvate thereof, wherein R¹ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₂-C₅)alkenyl, ((C₃-C₆)cycloalkyl)-(C₁-C₆)alkyl-, and tetrazolyl-(Ci-C₆)alkyl-, any of which is optionally substituted with 1, 2, or 3 substituents each independently selected from the group consisting of OH, halo, CONRᵩR¹, COOR, -COO(C₁-C₆)alkyl, and NRᵩR¹. 

8. The compound of any one of claims 1-7, or a pharmaceutically acceptable salt or solvate thereof, wherein R¹ is selected from the group consisting of hydrogen, methyl, cyclopropylmethyl, -CH₂CH=CH₂, -CH₂CH₂C(0)NH₂, CH₂CH₂C(0)OH, CH₂C(0)OH, CH₂C(0)NH₂, and -CH₂-tetrazolyl. 

9. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or solvate thereof, wherein G or G¹ is -O-. 

10. The compound of any one of claims 1-4 and 6-8, or a pharmaceutically acceptable salt or solvate thereof, wherein G is selected from the group consisting of -OC(=0)-, -C(=0)-, -NR³-, -S-, -SO-, and -SO₂-. 

11. The compound of claim 10, or a pharmaceutically acceptable salt or solvate thereof, wherein G is -OC(=0)- or -C(=0)-. 

12. The compound of claim 10, or a pharmaceutically acceptable salt or solvate thereof, wherein G is -NR³- and R³ is selected from the group consisting of hydrogen and (C₁-C₆)alkyl. 

13. The compound of claim 12, or a pharmaceutically acceptable salt or solvate thereof, wherein G or G¹ is -NH-. 

14. The compound of any one of claims 1-13, or a pharmaceutically acceptable salt or solvate thereof, wherein Q is selected from the group consisting of OH, (C₁-C₆)alkoxy, (6- to 12-membered)aryl, ((C₃-C₁₂)cycloalkyl)-(C₁-C₆)alkyl-, ((6- to 12-membered)aryl)-(Ci-C₆)alkyl-, -(OCH₂CH₂)ₓ-0(C₁-C₆)alkyl, -(CH₂CH₂O)ₓ-(Ci-
C₆)alkyl, -(OCH₂CH₂)s-OH, -0(C =0)R ₉, -0-(d - C₆)alkyl-COO₇, -NH-(d - C₆)alkyl-COO₇, -0-C(0)-(C₁-C₆)alkyl-C(0)OR ₇, -NH-C(0)-(C₁-C₆)alkyl-C(0)OR ₇, -0-(Ci-C₆)alkyl-C(0)NR ₉R ₁₀, -NH-(Ci-C₆)alkyl-C(0)NR ₉R ₁₀, -0-C(0)-(d - C₆)alkyl-C(0)NR ₉R ₁₀, -NH-(C₁-C₆)alkyl-C(0)NR ₉R ₁₀, -0-C(0)-(d - C₆)alkyl-C(0)NR ₉R ₁₀, and R₁₄.

15. The compound of any one of claims 1-14, or a pharmaceutically acceptable salt or solvate thereof, wherein X is selected from the group consisting of OH and OCH₃.

16. The compound of any one of claims 1-15, or a pharmaceutically acceptable salt or solvate thereof, wherein X is selected from the group consisting of OH, hydroxy(C₁-C₆)alkyl-, dihydroxy(C₁-C₆)alkyl-, halogen, NH₂, -NR²(C=O)R₁₂, -CONR²R¹₃, -(d-C₆)alkyl-CONH₂, -(C₁-C₆)alkyl-COOH, COOH, -0-(C₁-C₆)alkyl-CONH₂, -(d-C₆)alkyl-COOH, -(OCH₂CH₂)₂-OH, -(CH₂)₀p CHOHCH₂OH, CN, -NH-SO₂R³, (C₅-C₆)cycloalkyl, ((C₅-C₆)cycloalkyl)-(d - C₆)alkyl-, ((C₃-C₆)cycloalkyl)-(d - C₆)alkoxy-, (5- to 12-membered)aryl, ((6- to 12-membered)aryl)-(d - C₆)alkyl-, ((6- to 12-membered)aryl) -(C₁-C₆)alkyl-,(5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl) -(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl)-(C₁-C₆)alkoxy-, (3- to 12-membered)heterocycle, (3- to 12-membered)heterocycle)-(d - C₆)alkyl-, (3- to 12-membered)heterocycle)-(C₆)alkoxy-, (7- to 12-membered)bicyclocycloalkyl, ((7- to 12-membered)bicyclocycloalkyl)-(C₁-C₆)alkyl-, and ((7- to 12-membered)bicyclocycloalkyl)-(C₁-C₆)alkoxy-.

17. The compound of any one of claims 1-16, or a pharmaceutically acceptable salt or solvate thereof, wherein X is selected from the group consisting of OH, hydroxy(C₁-C₆)alkyl-, dihydroxy(C₁-C₆)alkyl-, halogen, NH₂, -NR²(C =0)R ₁₂, CONR²R¹₃, -(d-C₆)alkyl-CONH₂, -(C₁-C₆)alkyl-COOH, COOH, -0-(C₁-C₆)alkyl-CONH₂, -(d-C₆)alkyl-COOH, -(OCH₂CH₂)₂-OH, -(CH₂)₀p CHOHCH₂OH, CN, -NH-SO₂R³, (C₅-C₆)cycloalkyl, ((C₅-C₆)cycloalkyl)-(d - C₆)alkyl-, ((C₃-C₆)cycloalkyl)-(d - C₆)alkoxy-, (5- to 12-membered)aryl, ((6- to 12-membered)aryl)-(d - C₆)alkyl-, ((6- to 12-membered)aryl) -(C₁-C₆)alkyl-,(5- to 12-membered)heteroaryl, (5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl)-(C₁-C₆)alkoxy-, (3- to 12-membered)heterocycle, (3- to 12-membered)heterocycle)-(d - C₆)alkyl-, (3- to 12-membered)heterocycle)-(C₆)alkoxy-, (7- to 12-membered)bicyclocycloalkyl, ((7- to 12-membered)bicyclocycloalkyl)-(d - C₆)alkyl-, and ((7- to 12-membered)bicyclocycloalkyl)-(C₁-C₆)alkoxy-.

18. The compound of any one of claims 1-17, or a pharmaceutically acceptable salt or solvate thereof, wherein X is selected from the group consisting of OH, hydroxy(C₁-
The compound of any one of claims 1-18, or a pharmaceutically acceptable salt or solvate thereof, wherein X is selected from the group consisting of OH, OCH₃, F, Br, -COOH, -CONH₂, -OCH₂CH₂OH, -CH=CH₂, -NHSO₂CH₃, -NHC(0)CH₃, CN, -(OCH₂CH₂)ₙOCH₃, wherein n is selected from 1, 2, 3, 4, 5, or 6, -CH(OH)CH₂OH, -OCH₂-tetrazolyl, -OCH₂C(0)NH₂, -CH₂CH(OH)CH₂OH, tetrazolyl, and NH₂, and wherein preferably X is -OH or -OCH₃.

The compound of any one of claims 1-19, or a pharmaceutically acceptable salt or solvate thereof, wherein at least one of W¹ and W² is (C₆-C₉)alkyl, (C₉-C₁₂)alkenyl, (C₉-C₁₂)alkynyl, (C₅-C₁₂)cycloalkyl, (C₄-C₁₂)cycloalkenyl, (C₆-C₁₂)bicycloalkyl, (C₈-C₁₀)tricycloalkyl, (C₇-C₁₄)bicycloalkenyl, (C₉-C₁₂)tricycloalkenyl, (6- to 12-membered)aryl, ((6- to 12-membered)aryl)-(C₁-C₆)alkyl-, (5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, (3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(C₁-C₆)alkyl-, (7- to 12-membered)bicycloheterocycle, or ((7- to 12-membered)bicycloheterocycle)-(C₁-C₆)alkyl--; any of which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -CH(halo)₂, -CH₂(halo), (C₁-C₆)alkyl, halo(C₁-C₆)alkyl-, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy(C₁-C₆)alkyl-, dihydroxy(C₁-C₆)alkyl-, phenyl, benzyl, NH₂, -NH(C₁-C₆)alkyl, CN, SH, OR, -CONR²R⁶, and -COOR⁷.

The compound of any one of claims 1-4 and 6-19, or a pharmaceutically acceptable salt or solvate thereof, wherein -Y(W¹)(W²) is (6- to 12 membered)aryl or (5- to 12 membered)heteroaryl, each of which is optionally substituted with one or two substituents independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, NH₂, -NH(C₁-C₆)alkyl, -(C₁-C₆ alkyl)-CO-NR²R⁶, (C₁-C₆)alkyl, dihydroxyid -C(=O)alkyl-, -(C₁-C₆)alkyl-CO-OR⁷, -(OCH₂CH₂)ₙ-O(C₁-C₆)alkyl, -(CH₂CH₂O)ₙ-(C₁-C₆)alkyl, -(C₁-C₆)alkoxycy-OR⁷, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR²R⁶, -COOR⁷, -NH-SO₂(C₁-C₆)alkyl, -N(SO₂)₂(d-
C₆alkyl)₂, -C(=NH)NH₂, -NH-CO-(C₁-C₆)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, -NH-CO-NH₂, -NH-(C₁-C₆)alkyl-COOR, -NH-C₆NH-id-C₆alkyl, -(C₁-C₆)alkoxyC(0)NR, -NH-(C₁-C₆)alkylC(0)-NR, -C(0)NH-(C₁-C₆)alkyl-COOR, -NH-C(=0)-(C₁-C₆)alkyl-COOR, and -NH-C(=0)-CH(NH₂)-(C₁-C₆)alkyl-CO-OR.

22. The compound of any one of claims 1-4 and 6-19, or a pharmaceutically acceptable salt or solvate thereof, wherein -Y(W₁)(W₂) is -CH₂-(5- to 12-membered)heteroaryl, which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -NH₂, -NH(C₁-C₆)alkyl, -(C₁-C₆)alkyl-CO-NR, -(C₁-C₆)alkyl, dihydroxy(C₁-C₆)alkyl-, -(C₁-C₆)alkyl-CO-OR, -(OCH₂CH₂)s-0(C₁-C₆)alkyl, -(CH₂CH₂₀)s-(C₁-C₆)alkyl, -(C₁-C₆)alkoxy-COOR, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR²R, -COOR, -NH-SO₂(C₁-C₆)alkyl, -N(SO₂(C₁-C₆)alkyl)₂, -C(=NH)NH₂, -NH-CO-(C₁-C₆)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, -NH-CO-NH₂, -NH-(C₁-C₆)alkyl-COOR, -NH-C(=0)-NH-(C₁-C₆)alkyl, -(C₁-C₆)alkoxyC(0)NR, -(C₁-C₆)alkylC(0)-NR, -(C₁-C₆)alkylCOOR, -NH-C(=0)-(C₁-C₆)alkyl-CO-OR, and -NH-C(=0)-CH(NH₂)-(C₁-C₆)alkyl-CO-OR.

23. The compound of any one of claims 1-4 and 6-19, wherein -Y(W₁)(W₂) is -CH₂-(6- to 12-membered)aryl, which is optionally substituted with one or two substituents each independently selected from the group consisting of OH, (=0), halo, -C(halo)₃, -NH₂, -NH(C₁-C₆)alkyl, -(CrC₁-C₆)alkyl, -(CrC₁-C₆)alkyl-CO-NR, -(C₁-C₆)alkyl, dihydroxyC₁-C₆alkyl-, -(C₁-C₆)alkyl-CO-OR, -(OCH₂CH₂)s-0(C₁-C₆)alkyl, -(CH₂CH₂₀)s-(C₁-C₆)alkyl, -(C₁-C₆)alkyl-COOR, (6- to 12-membered)aryl, (6- to 12-membered)aryloxy, -CONR²R, -COOR, -NH-SO₂(C₁-C₆)alkyl, -N(SO₂(C₁-C₆)alkyl)₂, -C(=NH)NH₂, -NH-CO-(C₁-C₆)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, ((5- to 12-membered)heteroaryl)-(C₁-C₆)alkyl-, -NH-CO-NH₂, -NH-(d-C₆)alkyl-COOR, -NH-C(=0)-NH-(C₁-C₆)alkyl, -(C₁-C₆)alkoxyC(0)NR, -(C₁-C₆)alkylC(0)-NR, -(C₁-C₆)alkyl-COOR, -NH-C(=0)-(C₁-C₆)alkyl-CO-OR, and -NH-C(=0)-CH(NH₂)-(C₁-C₆)alkyl-CO-OR.

24. The compound of any one of claims 1-4, 6-19, and 21, or a pharmaceutically acceptable salt or solvate thereof, wherein the (6- to 12-membered)aryl in the -Y(W₁)(W₂) group is
phenyl, which is optionally substituted with one or two substituents each independently selected from the group consisting of (C₁₋₆)alkyl, dihydroxy(C₁₋₆)alkyl-, -(C₁₋₆)alkyl-CO-OR, -(OCH₂CH₂)s-(C₁₋₆)alkyl, -(C₁₋₆)alkoxy-COOR, -(6- to 12-membered)aryl, -(6- to 12-membered)aryloxy, -CONR₂R₆, -COOR, -NH-SO₂(C₁₋₆)alkyl, -N(SO₂(C₁₋₆)alkyl)₂, -(C(=NH)NH₂), -NH-CO-(d-C₁₋₆)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, (5- to 12-membered)heteroaryl)-(C₁₋₆)alkyl-, -NH-CO-NH₂, -NH-id-Calkyl-COOR, -NH-C(=0)-NH<CO, -(C₁₋₆)alkoxyC(0)NR₆, -(C(=0)-alkylC(0)-NR₂, and -(C(0)NH-(C₁₋₆)alkyl-COOR.

25. The compound of any one of claims 1-4, 6-19, and 21, or a pharmaceutically acceptable salt or solvate thereof, wherein the (5- to 12 membered)heteroaryl in the -Y(W₁)(W₂) group is selected from the group consisting of furanyl, thiophenyl, diazolyl, tetrazolyl, benzothiazolyl, benzoxazolyl, benzothiazolyl, thiazolyl, oxazolyl, benzoxazolyl, benzo thiophenyl, and benzofuranyl, any of which is optionally substituted with one or two substituents each independently selected from the group consisting of (C₁₋₆)alkyl, dihydroxy(C₁₋₆)alkyl-, -(C₁₋₆)alkyl-CO-OR, -(OCH₂CH₂)s-(d-C₁₋₆)alkyl, -(C₁₋₆)alkoxy-COOR, -(6- to 12-membered)aryl, -(6- to 12-membered)aryloxy, -CONR₂R₆, -COOR, -NH-SO₂(C₁₋₆)alkyl, -N(SO₂(C₁₋₆)alkyl)₂, -(C(=NH)NH₂), -NH-CO-(C₁₋₆)alkyl, -NH-C(=0)-(6- to 12-membered)aryl, (5- to 12-membered)heteroaryl)-(C₁₋₆)alkyl-, -NH-CO-NH₂, -NH-(C₁₋₆)alkyl-COOR, -NH-C(=0)-NH-(C₁₋₆)alkyl, -NH-(d-C₁₋₆)alkylC(0)NR₆, -NH-(C₁₋₆)alkylC(0)-NR₂, and -(C(0)NH-(d-C₁₋₆)alkyl-COOR.

26. The compound of any one of claims 1-25, or a pharmaceutically acceptable salt or solvate thereof, wherein m is 1 or 2.

27. The compound of any one of claims 1-26, or a pharmaceutically acceptable salt or solvate thereof, wherein Y is (CH₂)ₙ-CH and n is an integer selected from 0, 1, 2, 3, 4, 5 or 6.

28. The compound of claim 27, or a pharmaceutically acceptable salt or solvate thereof, wherein n is 0 or 1.

29. The compound of any one of claims 1-26, or a pharmaceutically acceptable salt or solvate thereof, wherein Y is a direct bond.
30. The compound of any one of claims 1-29, wherein R\textsuperscript{l} is methyl.

31. The compound of claim 1 having the Formula IV:

![Chemical Structure](image)

or a pharmaceutically acceptable salt or solvate thereof, wherein

G is -O-, -OC(=0)-, -C(=0)-, -NH-, -S-, -SO-, or -SO\textsubscript{2}⁻;

R\textsuperscript{15} is selected from the group consisting of

![Chemical Structures](image)

R\textsuperscript{16} is selected from the group consisting of hydrogen, halogen, -(C\textsubscript{1-4} alkyl)(halo)\textsubscript{3}, -O(C\textsubscript{1-4} alkyl)(halo)\textsubscript{3}, phenyl, (C\textsubscript{1-4})alkyl, (C\textsubscript{1-4})alkoxy, 1,2-dihydroxyethyl, C(0)NH\textsubscript{2}, -OCH\textsubscript{2}COOH, -NHC\textsubscript{2}COOH, -OCH\textsubscript{2}C(0)OCH\textsubscript{3}, imidazolyl, -NHC(0)NH\textsubscript{2}, -NHC(0)NHCH\textsubscript{3}, -NHC(O)-phenyl, and -C(=NH)NH\textsubscript{2}.

32. The compound of claim 1 or 31, or a pharmaceutically acceptable salt or solvate thereof, wherein

R\textsuperscript{1} is CH\textsubscript{3} or cyclopropylmethyl, X is selected from the group consisting of OH and (C\textsubscript{1-4})alkoxy, Q is selected from the group consisting of OH and (C\textsubscript{1-4})alkoxy, G is -O- or -NH- and R\textsuperscript{1a} and R\textsuperscript{1b} are both hydrogen.

33. The compound of claim 1, selected from the group consisting of

![Chemical Structures](image)
34. The compound of claim 1, selected from the group consisting of

35. A pharmaceutical composition, comprising a therapeutically effective amount of a compound of any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, and one or more pharmaceutically acceptable carriers.

36. A method of treating or preventing a disorder responsive to the modulation of one or more opioid receptors in a patient, comprising administering to a patient in need of such treatment or prevention an effective amount of a compound of any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof.

37. The method of claim 36, wherein the disorder is responsive to modulation of the μ-opioid receptor or the κ-opioid receptor, or to modulation of both the μ-opioid receptor and the κ-opioid receptor.

38. The method of claim 36 or 37, wherein the disorder is responsive to modulation of the κ-opioid receptor.

39. The method of any one of claims 36-38, wherein the disorder is pain.

40. A method of treating or preventing pain, constipation, diarrhea, pruritis, an addictive disorder, withdrawal from alcohol addiction or withdrawal from drug addiction in a
patient, comprising administering an effective amount of a compound of any one of
claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, to the patient in
need of such treatment or prevention.

41. The method of claim 40, wherein the method is for treating pain.

42. The method of claim 40 or 41, wherein said pain is acute pain, chronic pain or surgical
pain.

43. The method of any one of claims 40-42, wherein said pain is chronic pain.

44. The method of claim 42 or 43, wherein said chronic pain is neuropathic pain,
postoperative pain, or inflammatory pain.

45. A method of modulating one or more opioid receptors in a patient, comprising
administering to the patient an effective amount of a compound as claimed in any one of
claims 1-34, or a pharmaceutically acceptable salt or solvate thereof.

46. The method of claim 45, wherein the μ- or κ-opioid receptor is modulated, or both the
μ- and κ-opioid receptors are modulated.

47. A compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt
or solvate thereof, for use in treatment or prevention of a disorder responsive to the
modulation of one or more opioid receptors in a patient.

48. The compound according to claim 47, wherein the disorder is responsive to modulation
of the μ-opioid receptor or the κ-opioid receptor, or to modulation of a combination
thereof.

49. The compound according to claim 47 or 48, wherein the disorder is responsive to the
modulation of the κ-opioid receptor.

50. The compound according to any one of claims 47-49, wherein the disorder is pain.

51. A compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt
or solvate thereof, for use in treatment or prevention of pain, constipation, diarrhea,
pruritis, an addictive disorder, withdrawal from alcohol addiction or withdrawal from
drug addiction in a patient.
52. The compound of claim 51, wherein said use is for the treatment or prevention of pain.

53. The compound of claim 51 or 52, wherein said pain is acute pain, chronic pain or surgical pain.

54. The compound of claim 53, wherein said chronic pain is neuropathic pain, postoperative pain, or inflammatory pain.

55. A compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, for use in modulating of one or more opioid receptors in a patient.

56. The compound as claimed in claim 55, wherein the μ- or κ-opioid receptor is modulated, or both the μ- and κ-receptors are modulated.

57. Use of a compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for treating or preventing a disorder responsive to the modulation of one or more opioid receptors.

58. The use of claim 57, wherein the disorder is responsive to modulation of the μ-opioid receptor or the κ-opioid receptor, or to modulation of both the μ-opioid receptor and the κ-opioid receptor.

59. The use of claim 57 or 58, wherein the disorder is responsive to modulation of the κ-opioid receptor.

60. The use of any one of claims 57-59, wherein the disorder is pain.

61. Use of a compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for treating or preventing pain, constipation, diarrhea, pruritis, an addictive disorder, withdrawal from alcohol addiction or withdrawal from drug addiction in a patient.

62. The use of claim 61, wherein said use is for treating or preventing pain.

63. The use of claim 61 or 62, wherein said pain is acute pain, chronic pain or surgical pain.

64. The use of claim 63, wherein said chronic pain is neuropathic pain, postoperative pain, or inflammatory pain.
65. Use of a compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for modulating of one or more opioid receptors.

66. The use as claimed in claim 65, wherein the μ- or κ-opioid receptor is modulated, or both the μ- and κ-opioid receptors are modulated.

67. A compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, for use as a medicament.

68. A pharmaceutical composition, comprising a compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

69. A compound as claimed in any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, wherein the compound is $^3$H, $^{11}$C, or $^{14}$C radiolabeled.

70. A method of screening a candidate compound for the ability to bind to an opioid receptor using a radiolabeled compound of claim 69, comprising a) introducing a fixed concentration of the radiolabeled compound to the receptor to form a complex; b) titrating the complex with a candidate compound; and c) determining the binding of the candidate compound to said receptor.

71. A method of preparing a pharmaceutical composition, comprising admixing a therapeutically effective amount of a compound of any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, with a pharmaceutically acceptable carrier.

72. A kit, comprising a sterile container containing an effective amount of the compound of any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof, and instructions for therapeutic use.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D489/12 A61K31/485 A61P25/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data, BEILSTEIN Data, BIOSIS, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>J. W. LEWIS ET AL: &quot;Novel analgesics and molecular rearrangements in the morphine?thebaine group. Part XXI I. Deamini on of 7?-ami nomethyl -6, 14-endo-etheno-7? -methyl -6,7,8, 14-tetrahydrothebain ne&quot; , JOURNAL OF THE CHEMICAL SOCIETY C: ORGANIC, 1 January 1971 (1971-01-01) , page 2298, XP055177885, ISSN: 0022-4952, DOI: 10.1039/j39710002298 page 2299, right-hand column, paragraph 5; compound (lb)</td>
<td>1,2,4, 6-8, 10, 12-19, 26,29-32</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

**A** document defining the general state of the art which is not considered to be of particular relevance

**E** earlier application or patent but published on or after the international filing date

**L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

**O** document referring to an oral disclosure, use, exhibition or other means

**P** document published prior to the international filing date but later than the priority date claimed

**T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

**X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

**Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

**Z** document member of the same patent family

Date of the actual completion of the international search: 23 March 2015

Date of mailing of the international search report: 30/03/2015

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Stroeter, Thomas
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>BENJAMIN M. GREEDY ET AL: &quot;Orvinol s with Mixed Kappa/Mu Opioid Receptor Agonist Activity&quot;, JOURNAL OF MEDICINAL CHEMISTRY, vol 56, no. 8, 25 April 2013 (2013-04-25) , pages 3207-3216, XP055111137, ISSN: 0022-2623, DOI: 10.1021/jm301543e table 1</td>
<td>1-72</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2013/007986 Al (UNIV BATH [GB]; LEWIS JOHN [GB]; HUSBANDS STEPHEN [GB]) 17 January 2013 (2013-01-17) table on pages 40ff, in particular BU128 versus BU125; claims</td>
<td>1-72</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2012038813 Al</td>
<td>29-03-2012</td>
<td>AR 083062 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011306644 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2810356 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 2013000732 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103154000 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6690803 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 20130129 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO P2013000060 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201390422 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP13012543 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2619212 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013543488 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130097210 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 609200 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 00202014 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 188300 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201242968 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201422621 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014057931 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 33618 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012038813 Al</td>
</tr>
<tr>
<td>US 2011136846 Al</td>
<td>09-06-2011</td>
<td>AU 2009277095 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2731939 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102112479 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103450206 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6341635 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2326651 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2326651 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2703404 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2449222 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1158622 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR P20140182 T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5525524 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012506839 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014208640 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110036859 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 590650 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2326651 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS 53154 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2011107440 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2013106944 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 2326651 T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM T201400023 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011136846 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010014229 Al</td>
</tr>
<tr>
<td>WO 2013007986 Al</td>
<td>17-01-2013</td>
<td>CA 2841169 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2729469 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014522854 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014213603 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013007986 Al</td>
</tr>
</tbody>
</table>