
US 2017.0005790A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0005790 A1

Brockmann et al. (43) Pub. Date: Jan.5, 2017

(54) REMOTELY MANAGED TRUSTED Publication Classification
EXECUTION ENVIRONMENT FOR (51) Int. Cl
DIGITAL-RIGHTS MANAGEMENT IN A we

DISTRIBUTED NETWORK WITH THIN Het. e O CR
CLIENTS (.01)

H04L 29/06 (2006.01)

(71) Applicant: ActiveVideo Networks, Inc., San Jose, (52) U.S. Cl.
CA (US) CPC H04L 9/08 (2013.01); H04L 63/06

(2013.01); G06F 2 1/10 (2013.01)
(72) Inventors: Ronald Brockmann, Utrecht (NL);

Gerrit Hiddink, Amersfoort (NL) (57) ABSTRACT
A method is performed at a client device distinct from an
application server. In the method, a first key is stored in a
secure store of the client device. A wrapped second key is
received from the application server. The first key is
retrieved from the secure store and used to unwrap the
second key. Encrypted media content is received from the

(60) Provisional application No. 62/187,140, filed on Jun. application server, decrypted using the unwrapped second
30, 2015. key, and decoded for playback.

(21) Appl. No.: 15/199,503

(22) Filed: Jun. 30, 2016

Related U.S. Application Data

510 DRM Supportin Cloud
N- G52DRMDC age 501 DCI glue

502. TEE Marshalling

509b
play position
playState

503 seek
set play speed

505 Provisioning
get request
handle response

in Client Set-top

504b.
504 RFB-TV capabilities 506 Policy 507 License 508 Crypto

client rotocol Enforcement Handling Services
p walidate crload msg. Sign

bei crl info msg. validate egin decryption -
license update ind decrypt

Store key generate
key wrap

51C can decrypt? key unwrap
key get

o

key alloc

509
500 TEE Media Player

Patent Application Publication Jan. 5, 2017. Sheet 1 of 10 US 2017/0005790 A1

100 High-level (non-secure) Public Key Functions 115 LeSS Secure

101 Black Box

102 Key 103 License 104 License
Storage Parsing Decryption

105. HAL AP

106 HAL Implementation

107 Key 108 Data 109 Data
Encryption+ Encryption+ Signing +
Decryption Decryption Verification

110 Key
Rebinding

112 Key
Generation 113 Hashing

114 Crypto Functions 116 More Secure

Figure 1 (Prior Art)

Patent Application Publication Jan. 5, 2017. Sheet 2 of 10 US 2017/0005790 A1

201 Network Services

203 CDN
encrypted
HTML5 Stre

2O7 \N 202. License Server 2O5
% 2O6

2O4

License Response

209 Browser
tion
KO

2
213

NSN
KEY MESSAGE Elementary Streams

20&client Device
Y

210 Player Applica 212 HTML5 Parser

o
217 CDM

KEY MESSAGE() 220 Generate
218-2 Key Request()

222 License Protocol Parser KC AEY 224 Decryptor

228 229 230 231, 227 OEMCrypto
OEMCrypto Load Keys() OEMCrypto
OEMCrypto RenewKeys() Select Keys()

232 Trusted Execution Environment

233 Secure DRM 234 Keys 235 Decrypt/Decode/Render
o OX as a

221 DecryptDecodeRender()

Figure 2A (Prior Art)

Patent Application Publication Jan. 5, 2017. Sheet 3 of 10 US 2017/0005790 A1

encrypted
HTML5 Stred

209b Browser

213b
NSN

KEY MESSAGE() Add Key()-

Giller 21GbcDM Host
215b Media Stack

217b CDM

KEY MESSAGE 21.9b 22Ob Generate
218, () Add Key() Key Request() 221b DecryptDecodeRender()

223b Cloud 24Ob DRM
222b License Protocol Parser Policy X. Remoting

Manager I/F

-

236 DRM Remoting Protocol
(to Set-Top Client 208c)

Figure2B

Patent Application Publication Jan. 5, 2017. Sheet 4 of 10 US 2017/0005790 A1

236 DRM Remoting Protocol
(to Cloud DRM Support 231b)

223C Client
Policy

Manager
224c DeCryptor

225c Key IDs
227C 228C 229C 23 Oc

232C Trusted Execution Environment

233C Secure DRM 234C KeyS 235c Decrypt/Decode/Render

Figure2C

US 2017/0005790 A1 Jan. 5, 2017. Sheet 5 of 10 Patent Application Publication

IX

X

- - - - - - - - - - - - - - - - -• • • • • • • • • • • • • • • • • • •* •

Jan. 5, 2017. Sheet 6 of 10 Patent Application Publication

Patent Application Publication US 2017/0005790 A1 Jan. 5, 2017. Sheet 7 of 10

play position
play state
seek
Set play Speed

- - - - - - - - -

505 Provisioning
get request
handle response

504b
w a 504 RFB Tv capabilities 506 Policy 507 License 508 Crypto

client rotocol Enforcement Handling Services
p validate crload msg_Sign

bei crl info msg. validate egin decryption -
license update bind decrypt

store key generate
key wrap

510 can decrypt? key unwrap
key get
key alloc

509
500 TEE Media Player
in Client Set-top

Figure 5

Patent Application Publication Jan. 5, 2017. Sheet 8 of 10 US 2017/0005790 A1

601 XMR Container Objects

602 Global Policy Container Object

603 Revocation information Version Object

604 Global Rights Setting Object

605 Minimum Environment Object

606 Playback Policy Container Object

607 Copy Policy Container Object

608 Key Material Container Object

609 Content Key Object

610 RSA Device Key Object

611 XMR Signature Object

Figure 6

US 2017/0005790 A1 Jan. 5, 2017. Sheet 9 of 10 Patent Application Publication

?JOddnS WHO pnOIO (7TI n

US 2017/0005790 A1 Jan. 5, 2017. Sheet 10 of 10 Patent Application Publication

TITTO TTTD><TTTT

US 2017/0005790 A1

REMOTELY MANAGED TRUSTED
EXECUTION ENVIRONMENT FOR

DIGITAL-RIGHTS MANAGEMENT IN A
DISTRIBUTED NETWORK WITH THIN

CLIENTS

RELATED APPLICATIONS

0001. This application claims priority to U.S. Provisional
Patent Application No. 62/187,140, filed Jun. 30, 2015,
which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

0002 The present disclosure relates generally to content
delivery systems and, more particularly, to digital-rights
management (DRM) license enforcement on distributed
networks.

BACKGROUND

0003 Content distribution services have been developed
by cable content providers and distributors in an attempt to
compete with an emerging market trend called “cord cut
ting,” wherein consumers discontinue traditional pay tele
vision Subscriptions for programming delivered via legacy
satellite or cable systems, in favor of accessing TV content
through over-the-air television and/or online Subscription
services, for example Hulu, Netflix, or YouTube. These
content distribution services, promoted as "TV Every
where, include authenticated streaming and video-on-de
mand services that allow traditional television providers
Such as cable television system operators (now known as
Multichannel Video Programming Distributors or MVPD's)
to compete directly with such alternative wireless or Internet
providers with the goal of retaining better-paying Subscrib
CS.

0004 Cable content providers have marketed the use of
such “TV Everywhere' services to allow multiplatform
access to their content on devices Such as personal comput
ers, Smartphones, tablets, and other devices. However, the
most profitable content product to distribute remains the first
release, in high definition, of a Hollywood movie delivered
to a consumer on a pay-per-view or pay-per-day basis as
early as possible in the movie's digital release window.
While highly profitable, such popular content is a prime
target for piracy and theft. To mitigate those risks, content
owners require highly-robust digital-rights management
(DRM) safeguards to ensure that the specific device request
ing the content is authorized to view the content before
allowing any device to decode and play the de-encrypted
digital file containing Such content.
0005 Digital-rights management software that is robust
enough to be trusted by movie studios and other owners of
high-value content is complex and computationally inten
sive. Such commercial DRM products may include, by way
of example only, “PlayReady” from Microsoft Corporation
or “WideVine' from Alphabet Inc.'s Google division. Per
sonal computers (PCs) and tablets typically contain the
processor speed to process these complex security measures.
DRM applications have also been devised that will run on
Some Smartphones environments. However, the typical
MVPD-supplied legacy set-top box (STB) is generally inca
pable of running the specific DRM application environment
that may be required by the content owner, because Such an
STBlacks adequate computational power. So, instead of the

Jan. 5, 2017

MVPD's encouraging their subscribers to purchase access to
first release, high-definition entertainment products from
them, those potential customers are inadvertently directed
toward competitive offerings delivered over the Internet
instead of the MVPD's content distribution system.

SUMMARY

0006. A robust digital-rights management system is
implemented that maintains the security of content entrusted
to it using entertainment industry-accepted safeguards
including completing the customer authentication process in
a Trusted Execution Environment (TEE) located within the
customer's set-top box. The TEE communicates with a
secure server, remote to the set-top box, located at the
MVPD's system headend or elsewhere on a network. The
client processor that is located in the subscriber's set-top box
may effectively be tasked only with accepting the authority
to display a certain video stream about to be transmitted to
it.
0007. In some embodiments, a method is performed at a
client device distinct from an application server. In the
method, a first key is stored in a secure store of the client
device. A wrapped second key is received from the appli
cation server. The first key is retrieved from the secure store
and used to unwrap the second key. Encrypted media content
is received from the application server, decrypted using the
unwrapped second key, and decoded for playback.
0008. In some embodiments, a client device includes one
or more processors and memory storing one or more pro
grams configured to be executed by the one or more pro
cessors. The one or more programs include instructions for
performing the above method. In some embodiments, a
non-transitory computer-readable storage medium stores
one or more programs for execution by one or more pro
cessors of a client device. The one or more programs include
instructions for performing the above method.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 For a better understanding of the various described
embodiments, reference should be made to the Detailed
Description below, in conjunction with the following draw
ings. Like reference numerals refer to corresponding parts
throughout the figures and description.
0010 FIG. 1 shows a trusted execution environment
(TEE) process stack in which the content-decryption module
requirements for a first example of a commercially available
DRM system are mapped to the functional capability of a
TEE typically located in a client set-top box.
0011 FIG. 2A shows a client device coupled to a license
server and content delivery network (CDN), with content
decryption module requirements for a second example of a
commercially available DRM system mapped to the func
tional capability of a client set-top box’s TEE.
0012 FIG. 2B shows cloud-based DRM support coupled
to a license server, a CDN, and set-top clients, wherein the
cloud-based DRM support provides DRM support to the
set-top clients, in accordance with some embodiments.
0013 FIG. 2C shows aspects of a security mechanism in
a thin-client set-top box coupled to the cloud-based DRM
support of FIG. 2B, in accordance with some embodiments.
0014 FIG. 3 shows an application programming inter
face (API) for a remotely supported TEE in accordance with
Some embodiments.

US 2017/0005790 A1

0015 FIG. 4 is a state diagram showing a message flow
between a DRM server, set-top client (i.e., set-top box), and
license server for authenticating the client and enabling the
client to decrypt and decode previously encrypted media, in
accordance with Some embodiments.
0016 FIG. 5 is a block diagram of server-to-client DRM
management functions for a remotely supported TEE archi
tecture in accordance with Some embodiments.
0017 FIG. 6 shows an Extensible Media Rights (XMR)
header data structure that, in accordance with Some embodi
ments, defines a data record structure in XML format for
communicating DRM information between trusted comput
ing elements.
0018 FIG. 7A is a high-level abstract representation of
thick-client set-top DRM security management.
0019 FIG. 7B is a high-level abstract representation of
thin-client set-top DRM security management in accordance
with some embodiments.
0020 FIG. 8 is a block diagram of a media server system
that provides secure content to a set-top box and can impose
one or more DRM encryption types on media prior to
transmission to a decoder in the set-top box, in accordance
with some embodiments.

DETAILED DESCRIPTION

0021 Reference will now be made to certain embodi
ments, examples of which are illustrated in the accompany
ing drawings. In the following description, numerous spe
cific details are set forth in order to provide an understanding
of the various described embodiments. However, it will be
apparent to those of ordinary skill in the art that the various
described embodiments may be practiced without these
specific details. In other instances, well-known systems,
methods, procedures, components, circuits, and networks
have not been described in detail to avoid unnecessarily
obscuring aspects of specific embodiments.
0022. It has proven difficult to get acceptance from poten

tial content partners for a “DRM bridge' solution, in which
a centralized server platform terminates DRM and integrates
with the MVPD's existing conditional-access system to
re-encrypt content. Accordingly, there is need for DRM
Solution that provides end-to-end encryption, from the con
tent-delivery network (CDN) down into the client device
that displays content. In some embodiments of this solution,
a generic DRM is facilitated on the client device, utilizing a
trusted execution environment (TEE), which ultimately
decrypts the content, to meet the robustness rules for content
protection imposed by the copyright holders.
0023 The initial case to consider is to provide a first
DRM for an application engine, as sourced from a commer
cial DRM technology provider, which will be called “Ven
dor A' in this discussion. In some embodiments, “Vendor A
DRM could be “PlayReady, a commercial digital-rights
management Software system from Microsoft Corporation
for third-party integration into consumer electronic devices
intended for media playback and/or recording.
0024. There are three options to provide such client
terminated DRM functionality:

(0025 1. Fully implement the Vendor A DRM on the
client. The drawback is that the client would need to be
“thick.” In this usage, “thick” is a term used by those
familiar with the relevant art to describe complex
Software that requires considerable memory space and
CPU power while executing. In contrast, software that

Jan. 5, 2017

is simpler in Scope and still executes efficiently on less
robust and less costly hardware is called “thin. A
further differentiation occurs when the separation
between the functionality of client and server is sig
nificant. By way of example, in some embodiments, the
top-level API of the example “Vendor A' environment
has 40 specific functions that are particular to that
example DRM environment.

0026. 2. Fully implement the “Vendor A DRM on the
client, wrapped inside a content-decryption module
(CDM) implementation. This will also result in a thick,
full-featured client; however, the client-server interface
running on the client is thinner than in Option 1 and
will support multiple DRMs. An example of Option 2
is shown in FIG. 8, where re-encryption 832 allows for
accommodating multiple DRM systems from a variety
of third-party vendors.

0027 3. Implement only the functionality in the client
that is common to all DRMs from all participating
Vendors, as well as any necessary functionality to keep
the solution secure. This will lead to a truly thin client,
yet with functionality similar to already-deployed solu
tions. An example of Option 3 is shown in FIG. 7,
where the remote DRM support 714 functions are
located on a cloud server 710 and securely communi
cated with the client set-top with the assistance of a
DRM remoting protocol 713.

Option 1: Implement Full “Vendor A DRM on the Client
0028. This would be the currently available array of
products for consumer set-top boxes for playback of digital
media.

Option 2: Content-Decryption Module (CDM) Support in
the Client

0029 Option 2 results in an improvement in the client on
the set-top boxes such that few computing resources are
required to Support a trusted execution environment and,
hence, a lower cost per set-top can be realized than in Option
1, among many other advantages.

Option 3: Minimal Secure Client
0030. For Option 3, functions are implemented in the
client set-top box so that security hardware in the client
set-top will be Vendor B-ready and Vendor A-ready, or
more generally will be compatible with multiple DRM
Software architectures. In some embodiments, the client
set-top box has a small-profile architecture with limited CPU
and random access memory (RAM) resources, and thus is a
thin client. The client set-top box includes a trusted execu
tion environment (TEE), which, in some embodiments,
includes hardware “root of trust,” to comply with robustness
rules (e.g., including those for high-definition content
assets). A hardware root of trust is also known as a Trusted
Platform Module (TPM). A TPM includes a secure crypto
processor, which is a dedicated microprocessor designed to
secure hardware by integrating certain cryptographic keys
into security components of set-top boxes. In some embodi
ments, a TPM is implemented in accordance with a standard
(e.g., an international standard). For example, a TPM is
implemented using a technical specification written by a
computer industry consortium called “Trusted Computing
Group” (TCG), which is a technical specification standard

US 2017/0005790 A1

ized by the International Organization for Standardization
(ISO) and International Electrotechnical Commission (IEC)
as ISO/IEC 11889 in 2009. Alternatively, a formally defined
TPM is not used and any acceptable trusted computing
platform that can be made as part of a client device for media
playback and storage is used instead. The trusted computing
platform includes a secure crypto-processor, in accordance
with some embodiments.
0031. The TEE protects access to cryptographic secrets,
allowing those secrets to be used inside the TEE without
risking exposure to unauthorized software that may be
running on the same client or on a remote computer attempt
ing to break into the client to obtain unauthorized access to
decrypted content from the set-top. The TEE decrypts the
encrypted content and then ensures that it is only sent to
certain output ports (e.g., which connects to a media player
that plays the decrypted content) to further protect the
content if such action is called for by the policies set in the
license that is associated with the content, with the TEE
ensuring that it only decrypts the encoded content if adher
ence to the content-protection policies is verified.
0032. The following subsections discuss the API func
tions and (conceptual) messages used to provide those
functions when running on a client. In some embodiments,
a minimum set of operations is Supported (e.g., rather than
the full set of operations identified by Vendor A), to ease
validation of the TEE.

“Vendor A DRM

0033 FIG. 1 shows the scope of the TEE in the Vendor
A software architecture. In some embodiments, the TEE of
FIG. 1 is implemented in a set-top box engineered to decrypt
a particular vendor's DRM (e.g., the DRM of Vendor A).
The TEE includes the following layers, in order from less
secure 115 to more secure 116: high-level public-key func
tions 100, a black box 101, a hardware-adaptation layer
application-programming interface (HAL API) 105, a hard
ware-adaptation layer (HAL) implementation 106, and cryp
tographic functions 114. The black box 101 includes func
tions for key storage 102, license parsing 103, and license
decryption 104. The functions of the black box 101 are not
exposed outside of the black box 101 and thus are not
accessible to other devices. The HAL implementation 106
includes functions for key encryption and decryption 107.
data encryption and decryption 108, data signing and Veri
fication 109, key rebinding 110, key derivation 111, key
generation 112, and hashing 113.
0034. In some embodiments, the following Vendor A
functionalities are supported by the TEE:

0035 key reference management
0036) wrapping and unwrapping of keys
0037 message authentication
0038 decryption of data
0039 generating random keys
0040 certificate management

Thick-Client TEE

0041 FIG. 2A shows an example of a client device (e.g.,
set-top box) with a thick-client TEE. Such an environment
might use or be configured similarly to “WideVine,” which
is commercially available from Alphabet Inc.'s Google
division and which will be referenced as sourced from
“Vendor B' in this description. In FIG. 2A, a client device

Jan. 5, 2017

208 (e.g., a set-top box) is communicatively coupled to
network services 201 provided by a license server 202 and
content-distribution network (CDN) 203. The client device
208 includes a browser 209, media stack 215, CDM 217,
cryptographic functions 227, and TEE 232. The crypto
graphic functions 227 may be defined by the original equip
ment manufacturer (OEM) (e.g., the set-top box manufac
turer) and referred to as OEM cryptographic functions.
0042. To play secure content, a player application 210
running on the browser 209 of the client device 208 sends a
license request 204 to the license server 202 and receives a
corresponding license response 205 from the license server
202. If the license response 205 approves the license request
204, the player application requests the secure content by
sending an HTTP GET command 206 to the CDN 203,
which responds by providing an encrypted HTML5 stream
207 (or other suitable encrypted stream) to the browser 209.
An HTML5 parser 212 (or other suitable parser) in the
browser 209 parses the encrypted HTML5 stream 207 to
produce a still-encoded elementary stream 214, which is
provided to the media stack 215. If a key is needed to
decrypt the secure content, the HTML5 parser 212 provides
a key request 211 (NEED KEY () to the player application
210, which can provide an add-key request 219 and/or a
generate-key request 220 to a license protocol parser 222 in
the CDM 217. The license protocol parser 222, which
operates in accordance with a policy manager 223, provides
corresponding requests to a secure DRM implementation
233 in the TEE 232 through cryptographic APIs 227 (e.g.,
for a load-keys function 228 and/or renew-keys function
229). Based on responses from the secure DRM 233, the
license protocol parser 222 provides key messages 218 to a
CDM host 216 in the media stack 215 and key messages 213
to the player application 210. The media stack 215 provides
the elementary stream 214 and a decrypt/decode/render
command 221 to a decryptor 224 in the CDM 217. The
decryptor 224, which operates in accordance with the policy
manager 223, provides a key ID 225 to a select-key function
230 and an elementary stream 226 to a decrypt function 231,
causing a decrypt/decode/render module 235 in the TEE 232
to decrypt, decode, and render the elementary stream 226.
The module 235 performs the decryption using keys 234
received from the secure DRM implementation 233.
0043. The client device 208 of FIG. 2A is a thick client,
because of the computational demands resulted from imple
menting the browser 209, CDM 217, cryptographic func
tions 227, and TEE 232, among other processes, at the client
device 208.

0044. In some embodiments, the TEE 232 in the client
set-top 208 will be slightly larger than the TEE supplied in
the Vendor B technology. This is done to include the policy
management, as performed by the policy manager 223, in
the client set-top TEE 232 so as to ensure that it is not
possible for an intruder to make the client set-top TEE 232
believe it is streaming to a content-protected output sink
while, in fact, it is not. Including policy management in the
TEE 232 thus helps to prevent content thieves from tapping
into a set-top box and extracting potentially valuable media
assets. While the license protocol parser 222 is shown in the
CDM 217, in some embodiments the license protocol parser
222 is entirely within the client set-top TEE 232. In some
other embodiments, the license protocol parser 222 is not
entirely in the TEE 232; however, the part that validates the

US 2017/0005790 A1

license and decides on allowable output formats is in the
TEE 232. Examples of latter embodiments are disclosed
below.

Thin-Client TEE

0045. In FIG. 2B, certain aspects of the security mecha
nism of FIG. 2A are moved to a cloud-based network server,
located for example in the headend of an MVPD, that
provides remote DRM support 231b, in accordance with
some embodiments. The remote DRM support 231b is part
of a server system that provides a browser 209b, with a
player application 210b and HTML5 parser 212b, that
functions analogously to the browser 209 (FIG. 2A). The
remote DRM support 231b includes a media stack 215b,
with a CDM host 216b, that functions analogously to the
media stack 215 (FIG. 2B). The remote DRM support 231b
further includes a CDM 217b, which has a license protocol
parser 222b and a policy manager 223b that function analo
gously to the license protocol parser 222 and policy manager
223 (FIG. 2A). The CDM 217b also includes a DRM
remoting interface 240b, which acts as a secure interface
between the remote DRM support 231b and the client device
208c (e.g., a set-top box) (FIG. 2C). The DRM remoting
interface 240b uses a DRM remoting protocol 236 to com
municate with the client device 208c. Elementary streams
sent from the DRM remoting interface 240b to the client
device 208c are encrypted, with decryption being performed
at the client device 208c, thus maintaining security while
offloading DRM business policy and other non-secure steps
from the client device to the server.

0046. The remote DRM support 231b provides non
secure, though thoroughly protected, aspects of DRM Sup
port for a multiplicity of client set-top boxes. The remote
DRM support 231b provides authentication and policy man
agement to the client device 208c (e.g., set-top box) to
enable the TEE 232c (FIG. 2C) of the client device 208c to
decrypt and decode video programming for display on a
connected display device.
0047. As shown in FIG. 2C, the client device 208c
includes a DRM remoting interface 241c for communicating
with the DRM remoting interface 240b (FIG. 2B) using the
DRM remoting protocol 236. Based on messages receiving
at the DRM remoting interface 241c, a client policy manager
223c controls a decryptor 224c, which operates by analogy
to the decryptor 224 (FIG. 2A). The client device 208c also
includes cryptographic APIs 227c (including functions 228c.
229c. 230c, and 231c) and a TEE 232c (including secure
DRM 233c that provides keys 234c to decrypt/decode/
render module 235c), which function by analogy to their
counterparts in FIG. 2A. The client device 208c thus per
forms the final security steps of decryption and decoding of
video programming using its TEE 232c. The offloading of
DRM functionality from the client device 208c to a server in
the cloud (e.g., in the headend) allows the client device 208c
to be implemented as a thin client device.
0048. Furthermore, the pieces of the CDM 217b relating
to how keys are derived, certificates are signed, and what
licenses look like, are outside the TEE 232C. This allows
generic (e.g., vendor-independent) TEE functionality to be
provided in the set-top client 208c, allowing multiple DRMs
to be built into the remote DRM support (e.g., remote DRM
support 231b) in the server, including in servers that are “in
The Cloud'. Multiple DRM schemes (e.g., including new

Jan. 5, 2017

DRM schemes developed after the client device 208c) may
thus be supported without updating the set-top client device
208C.

Splitting Commercial DRM Systems
0049. Third-party DRMs can be divided into a piece that
executes on the server that may be in The Cloud, a piece that
executes in a so-called “blackbox' on the client, and a piece
that executes on a TEE on the client. A remoting protocol is
used between the cloud server and the client black box. The
remoting protocol includes function calls that are run to
support a given media service such as Content Provider X
or “Content Provider Z video-on-demand services.
0050 FIG. 3 shows an application programming inter
face (API) for a remotely supported TEE (e.g., the TEE
232c, which is remotely supported by the remote DRM
support 231b) in accordance with some embodiments. A
set-top client 301 (e.g., client Software running on a thin
client STB such as client device 208c) is communicatively
coupled to an application engine 313 running on a server in
the cloud (e.g., at a headend). The set-top client includes a
storage agent 302, DRM agent 303, elementary stream (ES)
player 304, video ES queue 305, and audio ES queue 306.
The DRM agent 303 includes, for example, the components
of the client device 208c shown in FIG. 2C. The application
engine 313 includes a DRM controller system 314, content
provider application 316, adaptive streaming player 319,
demultiplexor (demux) 320, and ES player proxy 321. The
application engine 313 corresponds to the remote DRM
support 231b (FIG. 2B) in accordance with some embodi
ments. Such commercial products as PlayReady and
WideVine could be considered examples of the DRM con
troller system 314. Netflix could be an example of a content
provider application 316.
0051. The DRM controller system 314 receives a license
(e.g., from the license server 202b, FIG. 2B) and sends the
license 307 to the storage agent 302, which stores the
license. In some embodiments, the DRM controller system
314 also provides a wrapped key 307 (i.e., a first key
wrapped using a second key) to the storage agent, which
stores the wrapped key. The DRM agent communicates with
the DRM controller system 314 regarding data signing,
verification, and hashing 308. The content provider appli
cation 316 receives content 317 and, under the control of the
DRM controller system 314, provides the content to the
adaptive streaming player 319 (e.g., via a media queue 318),
which outputs the content through the demux 320 to the ES
player proxy 321. The ES player proxy 321 sends media
control commands 309 (e.g., play/pause/flush) to the ES
player 304 and receives the play position from the ES player
304. The ES player proxy 321 send video streams (e.g.,
encrypted or unencrypted/plain) to the video ES queue 305
and audio streams (e.g., encrypted or unencrypted/plain) to
the audio ES queue 306. Encrypted video in the video ES
queue 305 is decrypted under the control of the DRM agent
303 (e.g., as described for FIG. 2C), using an unwrapped key
from the storage agent 302. Similarly, encrypted audio in the
audio ES queue 306 may be decrypted under the control of
the DRM agent 303.
0052. In some embodiments, the DRM agent in the
set-top client 301 periodically transmits (e.g., at a periodic
ity of perhaps ten times per second) the key used to decrypt
content to the application engine 313 in the server. If the key
does not match the key provided by the application engine

US 2017/0005790 A1

313, unauthorized access, popularly called a “hack,” is
assumed and content provisioning halts: the application
engine 313 stops transmitting the video stream 311 and/or
audio stream 312 to the set-top client 301. In some embodi
ments, the ES player proxy 321 translates the content from
a first encrypted format to a second encrypted format that
can be decoded by the ES player 304.
0053 FIG. 4 is a schematic diagram showing a message
flow between an application server 401 in the cloud (e.g., in
the headend), set-top client 402, and license server 403 for
authenticating the set-top client 402 and enabling the set-top
client 402 to access encrypted media, in accordance with
some embodiments. The application server 401 includes a
player 401a and DRM layer 401b. The application server
401 executes the application engine 313 (FIG. 3) and
provides remote DRM support 231b in accordance with
some embodiments. The set-top client 402 includes a DRM
agent 402a (e.g., DRM agent 303, FIG. 3), secure store 402b
(e.g., corresponding to the storage agent 302, FIG. 3), and
ES player 402c (e.g., ES player 304, FIG. 3). The set-top
client 402 corresponds to the client device 208c in accor
dance with some embodiments. The message flow of FIG. 4
works with multiple DRM architectures including by way of
example those from both Vendor A and Vendor B (e.g., only
those from both Vendor A and Vendor B).
0054 The process of FIG. 4 begins when a user of the
set-top client 402 launches secure content. The player 401a
obtains the DRM header from the content. The DRM layer
401b queries the secure store 402h for the secure device data
406 for the set-top client 402. The secure store 402b
responds with the relevant policy and revocation data 407.
The DRM layer 401b checks 408 the policy data and checks
409 for revocation. In this manner the DRM layer 401b
verifies the user's account information. The DRM layer
401b reads secure data 410 from the secure store 402b and
receives the device identity (e.g., unique serial number) for
the set-top client 402. Using this information, the DRM
layer 401b queries the license server 403 (e.g., license server
202b, FIG. 2B) for a license 412 for the set-top client 402
and receives a license with a wrapped content key and
policies (e.g., business rules) 413 in response.
0055. The DRM layer 401b writes secure device data 414
to the secure store 402b and sends the wrapped key 415 to
the DRM agent 402a, which reads the secure device data
416 from the secure store 402b and receives the device key
417 (e.g., the key provided by the manufacturer of the client
device) for the set-top client 402 in response. The secure
device data 414 includes the unique client device ID and
other credentials used to obtain delivery of DRM keys from
the DRM layer 401b. The DRM agent 402a uses the device
key to unwrap the wrapped key received from the DRM
layer 401b, thereby setting the content key 418. The DRM
layer 401b also provides policy data 419 to the DRM agent
402a, which sets the policy (e.g., the business rules) 420
under which the set-top client 402 can access the secure
content accordingly. The DRM agent 402a writes secure
data 421 (e.g., corresponding to the policy and/or including
a key or partial key) to the secure store 402b.
0056. The player 401a obtains the secure content 422
(e.g., from a CDN 203b, FIG. 2B), buffers the secure content
(e.g., in queue 318, FIG. 3), performs media-buffer process
ing 423 for the buffered secure content (e.g., to create an
elementary stream), and sends the corresponding elementary
stream 424 to the ES player 402c in the set-top client 402.

Jan. 5, 2017

Assuming the content is indeed secure, the elementary
stream 424 is encrypted. Otherwise, the elementary stream
may be unencrypted (i.e., plain) for use, for example, in
displaying promotional previews or user-interface sessions.
The ES Player 402c commands 425 the DRM agent 402a to
decrypt the encrypted elementary stream, which the DRM
agent 402a does using the content key. The DRM agent 402a
provides the decrypted content 426 to the ES player 402c,
which provides the decrypted content 427 to a decoder 427b,
which decodes the content. The ES player 402c also pro
vides the play position 428 to the player 401a, which uses
the play position to continue to provide content to the set-top
client 402. The operations 422 through 428 are repeated as
playback continues. The player 401a closes the session 429
for the set-top client, for example when playback of the
secure content is complete or the user ends playback.
0057. In this manner, the content is securely provided to
the set-top client using a DRM to which the set-top client
402 may be agnostic, and is played back on a display device
(not shown) that is associated with the set-top client and
receives output from the decoder 427b. The use of a wrapped
key to decrypt the content allows the set-top client to be
compatible with multiple DRM schemes without imple
menting full DRM functionality. The set-top client thus may
be a thin client which is advantageous to the MVPD opera
tions for both technical and business reasons.
0058 FIG. 5 is a block diagram of server-to-client DRM
management functions for a remotely supported TEE 500
architecture in accordance with some embodiments. The
remotely supported TEE 500 is implemented in the set-top
client device and is remotely supported by DRM support
510 in the cloud (e.g., at the headend).
0059. The TEE 500 includes:

0060 Provisioning 505, which requests content and
handles responses;

0061 Policy enforcement 506, which performs valida
tion, begins decryption, and updates the license for the
client device. The policy enforcement 506 operates in
accordance with capabilities 504b of the client device,
as communicated with the DRM support 510 using a
remote-frame-buffer (RFB) TV client protocol 504;

0062 License handling 507:
0.063 Cryptographic services 508, which provides
cryptographic functions; and

0064. A media player 509.
0065. The DRM support 510 includes TEE marshalling
502 and a device control interface (DCI) glue 501. The TEE
marshalling 502 includes a HAL API 513. The DCI glue
includes a DRM DCI 512 and a system-capabilities module
511. The DRM support 510 communicates with the provi
sioning 505, policy enforcement 506, license handling 507,
cryptographic services 508, and media player 509, as
described for example with respect to FIGS. 2B, 2C, 3.
and/or 4. The policy enforcement 506 and cryptographic
services 508 determine whether the TEE 500 can decrypt
510 the secure content.
0066 FIGS. 7A and 7B compare DRM for a thick-client
set-top box (FIG. 7A) to a remotely supported TEE in a
thin-client set-top box (FIG. 7B) (e.g., a thin client as
described with respect to FIGS. 2B-5) in accordance with
some embodiments. In FIG. 7A, a client device 720a (e.g.,
a set-top box) implements non-secure third-party DRM 721,
which includes a black-box interface 722 to a DRM HAL
724a that implements a hardware TEE 723a. DRM chal

US 2017/0005790 A1

lenges and responses 702a are transmitted between the client
device 720 and a DRM license server 701a in backend 700.
The inclusion of the full DRM 721 in the client device 720a
results in the client device 720a being a thick client.
0067. In FIG. 7B, by contrast, the DRM functionality in
a client device 720b (e.g., a set-top box) does not include the
DRM 721 or black-box. 722, but instead includes a DRM
HAL 724b with a hardware TEE 723b. Non-Secure third
party DRM 711b is implemented at a server 710 that
provides cloud DRM support 714. The DRM 711b includes
a black-box interface 712 with a secure client interface 713
(e.g., DRM remoting interface 240b, FIG. 2B) that commu
nicates with the TEE 723 busing a DRM remoting protocol
713 (e.g., DRM remoting protocol 236, FIGS. 2B-2C).
DRM challenges and responses 702b are transmitted
between the DRM 711b and a DRM license server 701 b in
backend 700. FIG. 7B as compared to FIG. 7A thus moves
certain non-secure DRM elements to a server to support a
multiplicity of client set-tops with authentication and busi
ness logic functions, thus reducing the complexity of the
client set-top device 720b and compared to the client set-top
device 720a. The TEE 723 remains in the client set-top
device 720 and, upon authorization by the remote DRM
Support 714 performs the final steps of decrypting and
decoding video programming.
0068 FIG. 8 is a block diagram of a media server system
providing secure content to a set-top box where one or more
DRM encryption types can be imposed on media prior to
transmission to a decoder in the set-top box, in accordance
with some embodiments. A corresponding DRM decryption
container is invoked in the set-top box, which allows the
set-top box to decrypt multiple vendors DRM and then
share a common video decoder for playback.
0069. In the system of FIG. 8, the set-top 820 includes a
media player 821 with DRM, license parsing, a TEE, and a
stream player. The set-top 820 also includes a buffer man
ager 822, which manages buffers (i.e., queues) including a
deep audio playout buffer, deep video playout buffer, and
low-latency UI buffer. The TEE decrypts content from the
buffers managed by the buffer manager 822. The set-top 820
may further include an overlay blending module 823 to
overlay/blend pictures 809 from the server 800.
0070. The server 800 of FIG. 8 includes a CDM 800 and
executes a media Source Script (e.g., JavaScript) 804 that
receives audio and video content 807 to be provided to the
set-top 820 and controls the media player 821 in the set-top
820. For example, the media source script 804 provides play,
pause, seek, and Volume commands to the media player 821
and receives the playback position from the media player
821 (e.g., using a control protocol 830). The media source
script 804 is coupled to a buffer management proxy 805 in
the server 800 that sends commands (e.g., append and delete
commands) to the buffer manager 822 in the set-top 820. The
media source script 804 provides commands to the buffer
management proxy 805 and receives buffer time ranges from
the buffer management proxy 805. The media source script
804 receives key requests 802 from the CDM 801 and
provides key messages 803 to the CDM 801. A resegmen
tation module 806 associated with the media source script
804 provides commands to a compositor 810, which is
shown as being separate from the server 800 but may be
implemented in the server 800.
0071. The compositor 810 streams audio frames 811a and
video frames 811b to the set-top 820 (e.g., via HTTP

Jan. 5, 2017

streaming 831). A re-encryption module 832 re-encrypts the
video frames 811b in accordance with a selected DRM
scheme of a plurality of DRM schemes, thus providing
DRM bridging (i.e., bridging between multiple DRM
schemes). The re-encryption module 832 is shown as being
separate from the server 800 and compositor 810 but may be
implemented in the server 800 and/or compositor 810. The
compositor 810 may include a decode/blend/encode module
814 that overlays pictures 815 to produce blended images.
The compositor 810 may also include a stitcher 817 to
generate user interfaces in accordance with user-interface
(UI) updates 808. Output from the blending and stitching
processes are streamed in a UI stream 812 to the set-top 820
(e.g., using HTTP streaming 833).

Session Management

0072 A session API is used to manage the session and
enable creating crypto context. Once the session is stopped
all stored crypto context is destroyed.

Key Register Management

0073. The TEE maintains a table of key registers. A key
register is identified using an index. A key includes the key
type (how is the key to be used) and the binary data of the
key. The key type allows the TEE to perform verification as
to whether a provided key can be used for the purpose
intended. Before a key register can be used, it is allocated.

Allocate Key Register Procedure

0074 The AllocateRegister procedure allows the server
to allocate a key in the TEE. This reserves a key register
index, which can be filled using a separate procedure. The
server sends the AllocateRegisterRequest message, which is
responded to by the AllocateRegisterResponse.
0075. The AllocateRegisterResponse will contain a result
code and, if the result code indicates success, the Register
Index parameter will indicate the allocated key register
index. Other result codes allow the client to indicate various
error conditions, such as no room available in the key
register table. The free parameter indicates the number of
free positions after the allocation has been done, so that the
server knows in advance when the key register table is full.

FreeKey Register Procedure

0076
register.

This procedure frees a previously allocated key

Get Key Register Count Procedure

(0077. The Get Key Statistics Procedure allows the server
to get basic information about the key table residing on the
client. The server can set the KeyType to a specific key type
to count the number of keys in use for that key type, or it can
set the key type to All.
(0078. When KeyType indicates All, then count plus
free will be equal to “total.
0079. In some embodiments, the remotely supported TEE
in the client device locally caches the number of free
positions, to avoid having to count prior to attempting to
allocate.

US 2017/0005790 A1

Get Preloaded Key Index
0080. In some embodiments, the TEE comes with a
number of pre-loaded keys, such as device type specific keys
or device unique keys. The server can locate certain keys by
ID, so that it can refer to those keys using a reference index.
0081. In some embodiments, the TEE message definition
will not include a list of known Key IDs. This depends on
the DRM scheme used and what keys are provisioned at
TEE manufacturing time.

Wrapping and Unwrapping Keys
0082 Keys enter the TEE in the client device in wrapped
form allowing them to transit unprotected networks. Keys
are unwrapped in the TEE and remain there until they are
discarded. A key can only leave the TEE after wrapping it
with another secret key.
0083. In some embodiments, when wrapping a key, the
input is a key register that holds the key to be wrapped, and
a key register that holds the wrapping key. The output (the
wrapped key) is returned as bytes.
0084. In some embodiments, when unwrapping a key, the
reverse takes place: the inputs are bytes and a key register
that holds the unwrapping key. After unwrapping, the result
is placed in a key register.

Message Authentication
0085. In some embodiments, message authentication is
done using asymmetric encryption and a key-pair. In some
embodiments, message authentication is done using sym
metric encryption using the AES-OMAC1 algorithm with a
specific key.

Decryption of Data
I0086 Decryption of data is not exposed outside the TEE
and hence no remoting messages are made available as such.
However, a TEE implementation may expose decryption
functions to the trusted memory space depending on the
client hardware.

Assumptions

0087. The HAL API assumes that:
I0088 the client TEE does not encrypt media data

(samples)
I0089 encryption contexts are only used for encrypting
media data

0090 Storage on the Device
0091 Vendor A normally stores the following informa
tion in corresponding stores on a set-top box:

0092. License Store: contains licenses obtained from a
Vendor A license server. Primary index is a Key ID
(KID) which is a globally universal ID (GUID) that
identifies a content key. Secondary index is the License
ID (LID) which uniquely identifies a license. A priority
order is stored to enable licenses to be searched in
priority order.

0093 Domain Store: a set-top box can be a member of
one or more secure domains. Content can be bound to
a secure domain. A secure domain has private keys,
which are encrypted by the set-top box’s private key. A
secure domain has a certificate. A secure domain has a
domain ID that includes a service ID (identifies the
service provider), account ID (unique across service

Jan. 5, 2017

providers), and revision of the secure domain. The
domain store contains the domain certificate and pri
vate keys.

0094 Metering Data Store: contains metering data for
content files that require metering. For example, the
metering data tracks a time period within which a
content file can be accessed and/or a number of times
that a content file can be accessed. Indexed primarily by
Metering ID (MID) and secondarily by Key ID (KID).
The metering data contains a Transaction ID (TID)
which is newly generated each time the metering data
is reset for the MID. The metering data store contains
the KID, an action identifier, and a counter.

0.095 Metering Certificate Store: contains metering
certificates received from the license server.

0096. Secure Store: contains DRM state data (e.g.
license state data, revocation lists, and last loaded
time). All entries are secured by a hash that includes the
data, a unique identifier, and the private key of the
set-top box.

0097. Synchronization Store: contains a list of licenses
that expire or become used up (due to metering) and
that need to be synchronized with another device (e.g.,
a computer).

Certificates

(0098. In some embodiments, the “Vendor A' product
includes the following certificates (top to bottom):

0099 Company certificate—certificate used to sign the
firmware certificate and/or contract manufacturer cer
tificate. The company certificate is only used for cer
tificate signing. The company is the manufacturer of the
set-top box in accordance with Some embodiments.

0.100 Contract-manufacturer certificate if Company
uses a contract manufacturer, Company issues and
signs a unique contract-manufacturer certificate for use
by the contract manufacturer on behalf of Company.
The contract-manufacturer certificate is only used for
certificate signing.

0101 Firmware certificate unique certificate for each
instance of a Vendor A product. The firmware certifi
cate is also known as model certificate. The firmware
certificate is signed with the private key corresponding
to either the Company certificate or the contract-manu
facturer certificate. Each firmware version has its own
unique certificate.

0102 Device certificate—certificate issued by Com
pany or contract manufacturer for inclusion in each
model or firmware/revision manufactured by or on
behalf of Company. The device certificate is signed
with the private key corresponding to the firmware
certificate. The device certificate is used for Key
Encryption (i.e. the content key obtained from the
license server).

(0103. In addition to the aforementioned certificates, the
certificate chain includes another certificate, in accordance
with some embodiments:

0.104 Device root CA certificate this is the topmost
certificate in the chain. It contains information that
validates the certificate chain to a known root. This
certificate also contains the public key for the device
root certificate authority (CA) certificate, which is
generated and maintained by the vendor (e.g., Micro

US 2017/0005790 A1

Soft Corporation). The private key corresponding to the
device root CA certificate is used to sign the Company
certificate.

Robustness

0105. Any acceptable solution should be secure and
robust. For example, Vendor A qualification for service can
only be achieved if keys and secrets can only be discovered,
obtained, and/or used with proper authority and can be
shown to be secure from intruders (e.g., hackers) by accept
able standards.
0106. In some embodiments, secure access and modifi
cation of the following trusted values is provided:

0107 Device secrets protects various protocol keys
and ID's needed for device validation

0108) Serial number—a unique ID of the set-top box
0109) Secure clock (if supported))—a protect clock to
prevent a hacker from resetting the set-top box’s inter
nal clock to protect revocation data to preserve media
viewing timeout

0110 Revocation data—data used to determine when
viewing time has expired (e.g. after 48 hours of check
out)

0111 Protocol secrets—encrypted handshake codes
0112 Secure code (secure boot, secure update, remote
provisioning)—ensures set-top box cannot be started
up using alternate Software to take over control and
allow hacker entry.

0113 Output protection state-ensures decrypted con
text exits device with appropriate protection Such as
when set-top output video to HDTV monitor via HTMI
interface has HDCP protection imposed, among other
examples.

Policies

0114 Policies in a DRM framework are associated with
the content and define what is allowed with the content such
as possible output paths and restrictions (e.g. output via
digital output, copy, play once, only play within a specified
period). Several features of policies such as the allowed
output path are ultimately implemented on the client. Thus
low-level policy settings are transferred to the client in a
secure manner Such that commands cannot be tampered
with.

Policy Delivery

0115 Policies are delivered as objects in the license
certificates obtained from the license server.
0116 FIG. 6 shows an Extensible Media Rights (XMR)
header structure defining a data record structure 600 in XML
format for communicating DRM information between
trusted computing environments, in accordance with some
embodiments. For example, the data record structure 600 is
used for messages sent between client devices (e.g., set-top
boxes) and a server in the cloud (e.g., in the headend)
described with respect to FIGS. 2B, 2C, 3, 4, 5, 7, and/or 8.
The data record structure 600 includes one or more XMR
container objects 601 and an XMR signature object 611.
Each XMR container object 601 includes a global policy
container object 602, playback policy container object 606,
copy policy container object 607, and key material container
object 608. The global policy container object 602 includes
a revocation information version object 603, global rights

Jan. 5, 2017

setting object 604, and minimum environment object 605.
The key material container object 608 includes a content key
object 609 and RSA device key object 610. An object that is
not relevant to or absent from a particular message may be
omitted from the message.

Client Authentication

0117. A secure tunnel is established between client and
server to protect the sensitive control data Such as policy
settings obtained from the parsed license.

Examples of Implementations

0118. The functionality described herein, for the server
and/or the client, may be embodied in many different forms,
including by way of example only but in no way limited to,
computer program logic for use with a processor (e.g., a
microprocessor, microcontroller, digital signal processor, or
general purpose computer), programmable logic for use with
a programmable logic device (e.g., a Field Programmable
Gate Array (FPGA) or other PLD), discrete components,
integrated circuitry (e.g., an Application Specific Integrated
Circuit (ASIC)), or any other means including any combi
nation thereof.

0119 Computer program logic implementing all or part
of the functionality previously described herein may be
embodied in various forms, including, by way of example
only but in no way limited to, a source code form, a
computer executable form, and various intermediate forms
(e.g., forms generated by an assembler, compiler, linker, or
locator). Source code may include a series of computer
program instructions implemented in any of various pro
gramming languages (e.g., an object code, an assembly
language, or a high-level language such as Fortran, C, C++,
JAVA, or HTML) for use with various operating systems or
operating environments. The source code may define and
use various data structures and communication messages.
The Source code may be in a computer executable form (e.g.,
via an interpreter), or the source code may be converted
(e.g., via a translator, assembler, or compiler) into a com
puter executable form.
0.120. The computer program may be fixed in any form
(e.g., source code form, computer executable form, or an
intermediate form) either permanently or transitorily in a
tangible storage medium, Such as a semiconductor memory
device (e.g., a RAM, ROM, PROM, EEPROM, or Flash
Programmable RAM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a
CD-ROM), a PC card (e.g., PCMCIA card), or other
memory device. The storage medium may be a non-transi
tory computer-readable storage medium (e.g., nonvolatile
memory). The computer program may be fixed in any form
in a signal that is transmittable to a computer using any of
various communication technologies, including, but in no
way limited to, analog technologies, digital technologies,
optical technologies, wireless technologies (e.g., Bluetooth),
networking technologies, and internetworking technologies.
The computer program may be distributed in any form as a
removable storage medium with accompanying printed or
electronic documentation (e.g., shrink wrapped software),
preloaded with a computer system (e.g., on system ROM or
fixed disk), or distributed from a server over a communica
tion system (e.g., the Internet or World Wide Web).

US 2017/0005790 A1

0121 Hardware logic (including programmable logic for
use with a programmable logic device) implementing all or
part of the functionality previously described herein may be
designed using traditional manual methods, or may be
designed, captured, simulated, or documented electronically
using various tools, such as Computer Aided Design (CAD),
a hardware description language (e.g., VHDL or AHDL), or
a PLD programming language (e.g., PALASM. ABEL, or
CUPL).
0122) Programmable logic may be fixed either perma
nently or transitorily in a tangible storage medium, Such as
a semiconductor memory device (e.g., a RAM, ROM,
PROM, EEPROM, or Flash-Programmable RAM), a mag
netic memory device (e.g., a diskette or fixed disk), an
optical memory device (e.g., a CD-ROM), or other memory
device. The programmable logic may be fixed in a signal that
is transmittable to a computer using any of various commu
nication technologies, including, but in no way limited to,
analog technologies, digital technologies, optical technolo
gies, wireless technologies (e.g., Bluetooth), networking
technologies, and internetworking technologies. The pro
grammable logic may be distributed as a removable storage
medium with accompanying printed or electronic documen
tation (e.g., shrink wrapped software), preloaded with a
computer system (e.g., on system ROM or fixed disk), or
distributed from a server over the communication system
(e.g., the Internet or World Wide Web).
0123 The foregoing description, for purpose of explana

tion, has been described with reference to specific embodi
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the scope of the claims
to the precise forms disclosed. Many modifications and
variations are possible in view of the above teachings. The
embodiments were chosen in order to best explain the
principles underlying the claims and their practical applica
tions, to thereby enable others skilled in the art to best use
the embodiments with various modifications as are suited to
the particular uses contemplated.

Acronym Expander Table

API Application Programing Interface (a general term for a software
interface to software system)
CDN Content Delivery Network (servers and a network for delivery of
on-demand media)
CDM Content Decryption Module (a module to provide the decryption
keys for a TEE to decrypt a media asset)
CRM Certificate Revocation Management (a function to manage when
the viewing time of a media asset has expired-for example a feature film
may only be viewed for a specified time period after cheek-out.)
DCI Device Control Interface (a system-specific interface for device
control)
DRM Digital Rights Management
HAL Hardware Adaption Layer
MVPD Multichannel Video Programming Distributor (typically a cable or
satellite operator)
RFB Remote Frame Buffer (an open standard for conveying the image of
a computer desktop to a remote display)
TEE Trusted Execution Environment (typically a hardware implementation
for executing a
DRM procedure to enabling the decryption and decoding of media assets
Such as movies on-demand)
TPM Trusted Platform Module (a security module executed within a TEE)
XMR Extensible Media Rights (an XML structured data record for the
exchange of DRM and other security information)

Jan. 5, 2017

What is claimed is:
1. A method, comprising:
at a client device distinct from an application server:

storing a first key in a secure store of the client device;
receiving a wrapped second key from the application

server;
retrieving the first key from the secure store;
using the first key to unwrap the second key:
receiving encrypted media content from the application

server;
decrypting the encrypted media content using the
unwrapped second key; and

decoding the decrypted media content for playback.
2. The method of claim 1, wherein receiving the encrypted

media content from the application server comprises receiv
ing an encrypted elementary stream from the application
SeVe.

3. The method of claim 2, wherein decrypting the
encrypted media content comprises:

providing a decryption command from an elementary
stream player executing on the client device to a
digital-rights-management (DRM) agent executing on
the client device, the decryption command specifying
the unwrapped second key; and

decrypting the encrypted media content using the
unwrapped second key at the DRM agent.

4. The method of claim 1, wherein:
the first key is a device key provided by a manufacturer

of the client device; and
the second key is associated with a DRM scheme speci

fied by a content provider of the media content.
5. The method of claim 1, wherein the media content has

DRM header data specifying the DRM scheme.
6. The method of claim 1, wherein the wrapped second

key is received from the application server in response to a
user of the client device launching the media content.

7. The method of claim 1, further comprising:
receiving a query from the application server for secure

data; and
in response to the query, retrieving a device identity of the

client device from the secure store and transmitting the
device identity to the application server;

wherein the wrapped second key is received in response
to transmitting the device identity to the application
Sever.

8. The method of claim 7, wherein the device identity is
a unique serial number for the client device.

9. The method of claim 7, further comprising:
receiving a message from the application server specify

ing a policy corresponding to one or more business
rules for access to the media content by the client
device; and

setting the policy in response to the message;
wherein the decrypting is performed in accordance with

the one or more business rules.

10. The method of claim 9, further comprising writing
data corresponding to the policy to the secure store, in
response to the message.

11. The method of claim 9, wherein the policy corre
sponds to a license for the client device obtained by the
application server from a license server.

US 2017/0005790 A1

12. The method of claim 1, wherein:
the second key is a content key; and
the client device is configured to unwrap content keys for

a plurality of DRM schemes using the first key.
13. A client device, comprising:
one or more processors; and
memory storing one or more programs configured to be

executed by the one or more processors, the one or
more programs including instructions for:
storing a first key in a secure store of the client device;
receiving a wrapped second key from an application

server;
retrieving the first key from the secure store;
using the first key to unwrap the second key:
receiving encrypted media content from the application

server;
decrypting the encrypted media content using the
unwrapped second key; and

decoding the decrypted media content for playback.

10
Jan. 5, 2017

14. A non-transitory computer-readable storage medium
storing one or more programs for execution by one or more
processors of a client device, the one or more programs
including instructions for:

storing a first key in a secure store of the client device;
receiving a wrapped second key from an application

server;

retrieving the first key from the secure store;
using the first key to unwrap the second key:
receiving encrypted media content from the application

server;

decrypting the encrypted media content using the
unwrapped second key; and

decoding the decrypted media content for playback.
k k k k k

